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Abstract

Numerical simulations have become an essential tool for planning well operations in
the subsurface, whether the application is petroleum production, geothermal energy,
groundwater utilization or waste disposal and leakage. To represent a complicated
heterogeneous subsurface reservoir in a simulator model, material properties within
each part of the reservoir are replaced by effective properties through upscaling. In
this thesis, analytical upscaling methods for fractured reservoirs are studied, with spe-
cial emphasis on effective medium methods. These methods have been suggested for
fracture upscaling by a number of authors, but reliable analytical error estimates and
comparisons with comprehensive numerical simulations have been lacking.

The work in this thesis evaluates the accuracy of effective medium methods by pro-
viding an extensive comparison between analytical and numerical estimates, for both
isotropic and anisotropic three-dimensional fracture configurations. The estimates are
also analyzed with respect to known theoretical results, such as rigorous upper and
lower bounds, asymptotic behavior and percolation properties.

It is found that one of the effective medium variants, the asymmetric self-consistent
method, has the correct asymptotic behavior, satisfy all analytical bounds, and agree
well with numerical percolation results. This is somewhat surprising, since the method
has been regarded in the literature as having the weakest theoretical foundation. One
explanation for the good results may be the special geometry that a fracture/matrix
system represents, which agree well with the way the method is defined and derived.

As a part of the work in this thesis, effective medium formulations that are nu-
merically stable for arbitrarily thin inclusions are developed. The formulations show
good convergence properties in the general anisotropic case, and explicit expressions
for the isotropic and slightly anisotropic case are also given. In the case of very thin
inclusions, the new formulations allows the number of input parameters to be reduced.

Finally, the thesis investigates the use of assisted history matching for fractured
reservoirs. It is shown that history matching of upscaled models may generate param-
eter distributions that are inconsistent with the underlying fracture description, result-
ing in unphysical connectivity estimates for the fracture network. The problem can
be avoided by history matching the fracture parameters directly, and include fracture
upscaling as an integral part of the parameter inversion framework. This adds to the
computational cost, but the additional computational effort is negligible if analytical
fracture upscaling is used.
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Outline

This thesis is organized into two parts. The first part gives an overview of scientific
theory and mathematical methods that are relevant to the thesis. The second part con-
tains papers that are either published or submitted for publication in scientific journals.

Part I is structured into six main chapters as follows:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

motivates the use of analytical upscaling methods for fractured geological
reservoirs, and summarizes the main contributions of the thesis.

presents common parameters used to characterize fractured reservoirs,
and how they are measured in the field.

describes the standard equations used to model flow in fractured porous
media. Since some of the included papers also deal with electrical con-
ductivity, a short overview of the equations governing flow of electrical
currents is given as well.

gives the definition of effective permeability and conductivity and intro-
duces some basic upscaling methods for estimating these quantities.

provides a short introduction to ensemble-based parameter inversion,
which is relevant to the issues discussed in Paper D.

gives an overview of all the included papers and their scientific contribu-
tions.

Part II contains the following scientific papers:

Paper A

Paper B

S&vIK, P. N., BERRE, 1., JAKOBSEN, M., AND LieN, M. Electrical conduc-
tivity of fractured media: A computational study of the self-consistent
method. In SEG Technical Program Expanded Abstracts (2012). Society
of Exploration Geophysicists. doi: 10.1190/segam2012-1026.1

S&vik, P. N., BERRE, 1., JakoBseN, M., anD Lien, M. A 3D Computa-
tional Study of Effective Medium Methods Applied to Fractured Media.
Transport in Porous Media 100, 1 (2013), 115-142. doi: 10.1007/s11242-
013-0208-0
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Paper C

Paper D

S&VIK, P. N., JAKOBSEN, M., LIEN, M., AND BERRE, 1. Anisotropic effec-
tive conductivity in fractured rocks by explicit effective medium methods.
Geophysical Prospecting 62, 6 (2014), 1297-1314. doi: 10.1111/1365-
2478.12173

S&vik, P. N., Lien, M., aAND BERrE, 1. An integrated approach to up-
scaling and history matching of fractured reservoirs. Submitted to Water
Resources Research (2015).
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Chapter 1

Introduction

The study of fluid flow in underground geological structures has relevance to widely
different applications, including petroleum production, utilization of geothermal en-
ergy, groundwater management and underground contamination assessment. In all of
these applications, mathematical and numerical modeling plays an important role. Nu-
merical computer simulations can be used to predict the outcome of a given drilling
and production strategy, and assess the financial and environmental risks associated
with possible scenarios. Mathematical tools are also used to infer physical properties
of an underground reservoir, which are difficult to obtain by direct measurements.

Rocks may be permeable to fluid flow due to the microscopic pore space between
the rock grains, and/or due to fractures and larger cavities (vugs) within the rock. Frac-
tures may form as a result of natural processes, such as faulting and folding, or they
may be engineered for enhanced reservoir permeability. Petroleum producing wells
are often hydraulically fractured as a routine part of their completion [34], and the
production of oil and gas from tight shale formations depend entirely on the abil-
ity to create fractures within the formation by hydraulic stimulation. In geothermal
reservoirs, reservoir permeability can be improved by hydraulically induced fracture
shearing, which enhances the permeability of the existing natural fracture networks
[27].

Mathematical modeling of flow and transport in a fractured reservoir is challeng-
ing for a number of reasons. First of all, the macroscopic material properties of frac-
tured rock is difficult to measure directly, since core samples taken during well drilling
are much smaller than the typical fracture size. Secondly, fractured reservoirs often
have anisotropic characteristics, due to the fact that fractures often form along cer-
tain preferential directions. Third, fractured reservoirs may exhibit dual porosity be-
havior, where the fractures and the surrounding rock matrix behave as two separate,
interacting media. A fourth complication is that large fractures often need to be mod-
eled explicitly, since the preferential pathways they create are difficult to capture in a
standard grid-block numerical model.

Because of the computational cost, it is infeasible to represent all fractures explic-
itly in a numerical model. A more viable strategy is to use a continuum model for the
small scale fractures. In a continuum formulation, the fractured rock is modeled as an
unfractured, homogeneous medium with modified material properties, correspond-
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ing to the effective (macroscopic) properties of the fractured rock. These properties
may be estimated using upscaling techniques, where statistical information on frac-
ture density, orientation, size etc. are used as input parameters. Upscaling techniques
can also be used the other way around, by establishing bounds on the fracture pa-
rameters based on certain macroscopic measurements. For instance, information from
seismic surveys can be used to infer some of the fracture properties, which in turn can
be used to limit the feasible range of effective hydraulic permeability.

Fracture upscaling can be performed by analytical or numerical methods. In nu-
merical upscaling, a geometric representation of the fracture network is generated and
meshed. A set of boundary conditions is applied, and the resulting flux through the
matrix-fracture system is calculated. This approach is accurate if the true fracture ge-
ometry is known, the boundary conditions conform to the flow directions in the field,
and a fine mesh is generated for the fracture network. On the other hand, accurate
numerical upscaling is computationally demanding.

In analytical upscaling, the true fracture network is represented by a simplified,
idealized geometry, whose properties is calculated analytically. Analytical methods
are fast, but may not always be applicable. In particular, they require that the fractured
rock is macroscopically homogeneous, which is implies that no large-scale features are
permitted within the upscaling domain.

A particular class of analytical upscaling methods given much attention in this the-
sis, are the methods based on effective medium theory. This framework for upscaling of
heterogeneous materials has a long history, starting with the works of Maxwell [45],
Bruggeman [9] and Eshelby [19]. By theoretical considerations, effective medium
theory is expected to give accurate estimates for homogeneous materials containing
well-separated, rounded inclusions. A particular effective medium method known as
the symmetric self-consistent method is also known to be a good approximation for
materials that possess phase symmetry, such as polycrystals [68].

The use of effective medium theory for estimating the hydraulic permeability and
electrical conductivity of fractured rocks has been suggested by a number of authors
[5, 7,23, 56]. Nevertheless, the quality of these estimates for dense fracture networks
has been questioned, partly due to the lack of reliable error estimates [31, 68]. In the
included Paper A and B, this objection is addressed by applying three commonly used
effective medium methods to a variety of fracture configurations, and comparing the
estimates with results from numerical upscaling. In addition, the methods are com-
pared with the alternative analytical upscaling approach of Mourzenko et al [50].

Paper A and B also address a problem with traditional effective medium formulas,
which is that they become numerically unstable for inclusions of vanishing thickness.
To overcome this limitation, the papers present a novel set of formulas that are numer-
ically stable for arbitrarily thin inclusions. The new formulas show fast and reliable
convergence behavior for isotropic and anisotropic media, below and above the per-
colation threshold, for all levels of matrix/fracture conductivity contrast. They also
require a smaller number of input variables, compared with the traditional formula-
tion.

The effective medium methods presented in Paper A and B are implicit formu-



lations, which must be solved by iterative algorithms. In a similar manner, Paper C
is concerned with explicit effective medium methods. The benefits of explicit meth-
ods are ease of use, computational efficiency and the ability of computing analytical
derivatives. On the other hand, the methods are not applicable to media that are both
strongly heterogeneous and strongly anisotropic.

Similar to Paper A and B, Paper C presents novel formulas for existing explicit
effective medium methods, that are numerically stable for inclusions of vanishing
thickness. Furthermore, three novel explicit schemes for anisotropic media are con-
structed, based on an implicit scheme previously suggested by Berryman and Hover-
sten [7]. The methods in the paper are applied to various fracture configurations, and
the estimates are compared with results from numerical upscaling.

In Paper D, a different issue regarding analytical fracture upscaling is addressed.
Upscaled models of fractured reservoirs are commonly calibrated (or history matched)
to measured well data, to improve the predictive quality of the model. However, the
calibration is commonly performed on upscaled parameters instead of fracture param-
eters. Paper D shows that this approach may give upscaled variables that are incon-
sistent with the underlying fracture model, and may also result in a larger mismatch
between measured and predicted data. Improved results with internally consistent vari-
ables are obtained when fracture parameters are calibrated directly, and fracture up-
scaling is included as an integral part of the history matching workflow. Although this
has an added computational cost, the difference is negligible if analytical upscaling
methods are used.
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Chapter 2

Characterization of fractured
reservoirs

From a geomechanical point of view, a fracture is a part of the rock where tensile and
shear stress has caused partial loss of cohesion. Due to the mechanisms responsible
for crack and fracture generation, fractures are usually planar or near-planar, with a
thickness much smaller than their lateral extent. The matrix is the rock surrounding the
fractures, including the pore space within the rock'. Usually, the pore throats within
the rock matrix are small compared to the thickness of the fractures. Because of this,
fractures provide a high-permeable pathway for fluid flow through the rock, unless
they have been sealed over time due to mineral depositions. They may also provide a
preferential conduit for electrical currents if they are filled with a highly conductive
fluid or mineral.

Fractured reservoirs can be described, or characterized, in a number of differ-
ent ways. In this chapter, we focus on the geometrical properties of the fracture net-
work, and the parameters commonly used to describe them. Geological, geophysical
and hydraulic investigations can reveal fracture information on different scales, from
micrometer-scale investigations of the interior fracture geometry to macroscopic sur-
veys determining the connectivity of the fracture network.

Common techniques used to obtain fracture parameters are laboratory studies of
wellbore core samples, field studies of outcrop analogs, seismic and electromagnetic
surveys, different variants of well logging, hydraulic well testing and tracer injection
tests [28, 64]. Information on likely fracture parameter values can also be inferred
from the lithology and stress field within the reservoir. In core sample studies and
outcrop studies, fracture parameters are measured directly, whereas the other meth-
ods mentioned above are indirect measurement techniques based on the macroscopic
physical behavior of fractured media. The coupling between fracture parameters and
macroscopic properties are discussed in more detail in Chapter 4.

'In non-fractured reservoirs, the term «matrix» is often used to describe the rock phase itself, excluding the pore
space between the rock grains.
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Figure 2.1: Rough-walled fracture. The hydraulic aperture is indicated by dashed lines.

2.1 Characterization of the fracture interior

Although it is mathematically convenient to model a fracture as a two-dimensional
feature, fractures have a complex three-dimensional interior geometry, which must be
taken into account during fracture characterization. Interior fracture properties may
vary greatly, depending on the stresses responsible for creating the fracture, the prop-
erties of the rock, and the physical processes taking place inside the fracture after its
formation. To determine the interior properties of fractures in a specific reservoir, lab-
oratory studies of core samples can be helpful, as well as studies of outcrop analogs.
Some information may also be obtained from geological interpretation, by considering
typical fracture characteristics for the lithology and stress field within the formation.

2.1.1 Aperture

Of the most important fracture characteristics is the fracture aperture, which is the
distance between the fracture walls. Commonly, fractures in subsurface rocks have
small apertures due to overburden stress [64]. Tensile fractures, which are typically
created due to folding processes, tend to have larger apertures than shear fractures,
which form in response to shear stresses. Over time, the fracture aperture may increase
or decrease due to mineral dissolution or precipitation reactions.

For a rough-walled fracture, a distinction is often made between the mechanical
aperture and hydraulic aperture. The mechanical aperture is the true, physical distance
between the fracture walls, sometimes defined as an average over the whole fracture.
The definition of the hydraulic aperture, on the other hand, is based on how easily a
fluid can flow through the fracture. Specifically, the flow rate through a fracture with
hydraulic aperture a is equal to the flow rate through a hypothetical smooth-walled
fracture with mechanical aperture a, when subject to the same boundary conditions
[58]. In practice, the hydraulic aperture is always smaller than the mechanical aperture,
due to the additional friction created by fracture wall roughness. A simple illustration
is given in Figure 2.1.

2.1.2 Roughness

The roughness of a fracture can potentially be defined as a geometric quantity, e.g.,
as the mean height of the fracture irregularities divided by the mean mechanical aper-
ture [64]. From a hydrodynamical point of view, it is often more convenient to define
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roughness as the ratio of mechanical to hydraulic aperture. For this definition to be
well-defined, the flow within the fracture must be laminar, otherwise the value of the
hydraulic aperture would depend on the fluid velocity. An indication of whether or
not the flow is laminar, is given by the Reynolds number,

VD
Re = 2221 2.1)
u

where p is the fluid mass density, u is the fluid viscosity, V' is the velocity of the fluid,
and D, is the hydraulic diameter, defined as

D, = 4AIP, (2.2)

where A is the cross-sectional area of the fracture, and P is the perimeter of the cross
section [16]. Experimental data indicate that the transition from laminar to turbulent
flow occurs at Reynolds numbers between 100 and 2300, depending on the fracture
roughness [43, 64].

In the included papers, it is consistently assumed that the flow within the fractures
is laminar. In practice, this assumption may be violated near production and injection
wells, where fractures are wide and the fluid velocity is high.

2.1.3 Filler material

Not all fractures have an open space between the fracture walls. The walls of a frac-
ture may be heavily coated by precipitated minerals, or the entire pore space may be
filled with mineral deposits. In this case, flow within the fracture is subject to the
same physical laws as the surrounding porous rock, only with different material prop-
erties, which may be measured by laboratory studies. Mineral deposits may preserve
or destroy fracture permeability, depending on the deposition process [42].

Porous rocks may contain low-permeable, planar features that are usually not clas-
sified as fractures since they are generated by different processes. For instance, defor-
mation bands, dykes and stylolites fall into this category [24, 28, 30]. Although dif-
ferent in origin, these structures can be treated as cemented fractures from a hydraulic
point of view. They may be characterized using laboratory measurements and general
geological interpretation.

2.2 Characterization of individual fractures

It is difficult to make direct measurements of the geometry of individual fractures,
since a fracture is typically much larger than the size of a core sample, and smaller
than the resolution of seismic imaging techniques. Furthermore, tight fractures that
do not cause shearing may not show up on seismic images regardless of their size.
To gain information on the size, shape and orientation of fractures, one may instead
take advantage of indirect measurements from well logs, and anomalies detected dur-
ing seismic or electromagnetic surveys [28, 64]. Outcrop analogs may also provide
a valuable source of information, as well as general knowledge on typical parameter
values based on geological interpretation of lithology and formation stress.
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2.2.1 Size

The fracture length, or persistence, is a major factor controlling the connectivity of the
fracture network. Fractures that are much longer than the typical fracture spacing tend
to form a well-connected network, and fractures much smaller than the typical spacing
tend to be isolated. The fracture length is a difficult parameter to quantify, and the best
source of information may be outcrop analogs. When recording the length of exposed
fractures in the outcrop, one should take care to correct for various types of biases
such as the inability to measure the full fracture length due to incomplete exposures
[14].

Natural fractures are polydisperse, meaning that fractures of different size occur
within the same reservoir volume. The power law distribution is commonly used to
describe the statistical variation of fracture sizes [8].

2.2.2 Shape

All real fractures are irregular, but in both analytical and numerical models the fracture
shape is usually approximated by an idealized geometrical shape, such as a hexagon or
an ellipsoid. Virtually all synthetic fracture models assume that the fractures are planar,
although natural fractures may be bent and curved to some degree. Elongated fractures
may cause anisotropy in the direction of the elongation, and the degree of elongation
may be included in the fracture model. Furthermore, the choice of a representative
fracture shape may affect the estimated connectivity of the network [50].

2.2.3 Orientation

Fracture orientation is commonly described by the parameters dip and strike [29].
The strike refers to the direction of the horizontal tangent vector, which is found by
intersecting the fracture with a horizontal plane. The dip angle is the angle between
the fracture and the horizontal plane. Sometimes the parameter dip direction is used
instead of the strike, defined as the direction orthogonal to the strike and tangential
to the fracture, pointing downwards. Yet another way of describing orientation is by
giving the coordinates of the unit normal vector (or pole), which points in the direction
orthogonal to the fracture plane. The different ways of describing fracture orientation
is illustrated in Figure 2.2.

Due to the stress field and the geological history of a fractured rock, natural frac-
tures often show a preferential orientation in one or several directions. For this reason,
fractures are often divided into sets (or families), each with separate main directions. A
statistical distribution, such as the Fisher distribution [21, 51], is then used to describe
the fracture orientations within each set.
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Figure 2.2: Terminology for fracture orientation

2.3 Characterization of a fracture network

The effective properties of a fracture network are not only dependent on the mean
properties of fractures constituting the network, but also on the geometry of the net-
work as a whole. The fracture network can be characterized by a number of geometri-
cal and topological parameters, with fracture density and connectivity being the most
important ones. These parameters can be found by outcrop studies and wellbore sam-
ples, as well as indirect measurements such as tracer tests.

2.3.1 Fracture density

Fracture density, also called fracture intensity, describes the amount of fractures
present in the reservoir. Dershowitz and Herda [17] identified 6 ways of defining frac-
ture density, based on the measured quantity (i.e., fracture length, spacing, surface
area, volume or number of fractures), and the dimension of the measurement region
(i.e., lineal, areal or volumetric). In three-dimensional fracture models, the most use-
ful measure is arguably the fracture surface area per volume (the P32 density), and its
dimensionless variant which is the P32 density scaled by the fracture size.

Balberg et al. [4] showed that the dimensionless P32 density is directly propor-
tional to the average number of intersections per fracture. Thus, the measure is di-
rectly related to the connectivity of the fracture network. Furthermore, Mourzenko et
al. [49] showed that the effective permeability of a fracture network is almost insensi-
tive to the fracture size distribution, if the dimensionless P32 fracture density is fixed.
It is therefore more important to know the fracture density of the system than having
detailed knowledge on the variation in fracture sizes.

2.3.2 Fracture connectivity

The connectivity of a fracture network can be characterized in many ways [59], using
topological parameters (e.g., Betti numbers, Euler characteristics, coordination num-
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bers), geometrical parameters (e.g., tortuosity, fraction of isolated fractures, cluster
sizes) or by hydraulic parameters (e.g., true fracture network permeability vs. per-
meability in a fully connected network). In the included papers, the latter approach
is used. Specifically, connectivity is defined as a parameter between 0 and 1, where
0 represents a disconnected set of fractures that does not contribute to permeability,
and 1 corresponds to the fully connected case which gives the maximal permeability
contribution.

If the fractures have a polygonal or circular shape of fixed size, are randomly dis-
tributed in space, and the fractured domain is infinitely large, then the connectivity
of the fracture network is only a function of the dimensionless P32 fracture density
[68, 75]. If the fracture density drops below a critical value (the percolation thresh-
old), the network becomes unconnected, meaning that there are no clusters of con-
nected fractures that are infinitely large. Just above the critical density, the effective
permeability of the fracture network is proportional to (p — pc)z, where p is the dimen-
sionless P32 fracture density, and p, is the percolation threshold [50, 68].

In a domain of finite size, the percolation threshold is defined as the density where
there is a 50% chance of the network being connected. The effect of the domain size
on percolation properties has been studied by Mourzenko et al [49]. Their results show
that the percolation thresholds for finite and infinite domains are similar when the size
of the domain is an order of magnitude larger than the fracture size, and the fractures
are randomly oriented.

2.3.3 Matrix connectivity

If the fractures act as barriers to flow due to cementation, the connectivity of the frac-
ture network itself is of less importance. Instead, the connectivity of the surrounding
rock matrix becomes a crucial factor. For randomly distributed fractures with a fixed
size and shape within an infinite domain, the matrix is connected only if the fracture
density is smaller than the void percolation threshold [76]. If the rock matrix is con-
nected, fluid flowing through the domain can bypass the fractures by going through
the matrix, and the impact of the fractures is small. On the other hand, if cemented
fractures divide the rock matrix into isolated regions, the fluid must go through the
fractures as well. This results in a significantly smaller effective permeability of the
rock.



Chapter 3

Mathematical framework

At the heart of any reservoir simulation tool lies the mathematical equations used to
describe the simulated physical processes. In this chapter, a short introduction to the
standard equations describing single- and multiphase fluid flow in porous rocks is
given. The multiphase situation is particularly interesting when the rock is fractured,
since capillary forces may play a dominant role in this case. We also introduce the
dual-continuum formulation, which is often used to separate flow in the fractures and
the surrounding rock matrix.

In the last part of the chapter, a brief description of Maxwell’s equations is given,
which are used to model electromagnetic processes within the reservoir. Electromag-
netic techniques are important tools in reservoir characterization, and may also be used
to estimate some of the fracture parameters described in Chapter 2.

3.1 Single-phase flow in porous media

A rock may be permeable to fluid flow due to the microscopic pore space between
the rock grains, and/or due to fractures and larger cavities (vugs) within the rock. At
the microscopic level, fluid flow within the pores and fractures of a rock is accurately
described by the Navier-Stokes equations. Solving these equations is computation-
ally demanding even for small rock samples, and requires detailed knowledge on the
pore geometry within the rock. On the reservoir scale, one is not interested in the fluid
movement within each individual rock pore, but rather in the bulk movement of the
fluid, called the volume flux. Fortunately, the volume flux can be described by equa-
tions that are computationally much more tractable than the Navier-Stokes equations.

3.1.1 Darcy's law

In a porous medium, the volume flux is related to the fluid pressure through Darcy s
law, which was first found empirically by the french engineer Henry Darcy [64]. Later,
it has been shown to be consistent with the Navier-Stokes equations under certain
assumptions that are usually satisfied for flow in porous rocks [73]. Using common
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notation, Darcy’s law is expressed as
K
u= —;(Vp—ngZ) (3.1

where u is the volume flux (sometimes called the Darcy velocity), K is the tensor-
valued hydraulic permeability of the rock, y is the fluid viscosity, p is the fluid pres-
sure, p is the fluid mass density, g is the acceleration of gravity, and z is the coordinate
for the vertical direction.

3.1.2 Fluid properties

Darcy’s law contains two parameters that are properties of the fluid within the pore
space of the rock, namely the fluid mass density p and the fluid viscosity u. Both
of these properties are generally state variables, thus they may be functions of on
the fluid pressure and temperature. Whether or not this dependence is of importance,
is determined by the specific application. For instance, the viscosity often changes
with temperature, but not so much with pressure, and may be regarded as constant
in isothermal reservoirs. The mass density of water in the liquid state is largely in-
sensitive to moderate changes in pressure and temperature, and is often taken to be
constant as well. On the other hand, the density of liquid oil may be much more likely
to change significantly with pressure and temperature.

3.1.3 Rock permeability

The rock permeability K is a positive definite tensor, and it is usually assumed to
be symmetric. The value of the permeability is directly related to the pore geometry
within the rock, most notably the density, size and tortuosity of the pores. In practice,
the permeability is usually determined from laboratory experiments on core samples
taken during drilling, and from analysis of transient pressure behavior during well
testing [34].

3.1.4 Fracture permeability

As explained in Section 2.1.3, some fractures may be filled with mineral deposits,
and flow within these fractures is physically similar to flow within the porous rock
matrix. To find the intrinsic permeability of a cemented fracture, laboratory tests of
core samples can be used.

For open fractures, the concept of «fracture permeability» is more complicated.
For this concept to make sense, the volume flux through the fracture must be pro-
portional to the applied pressure gradient, at least for small fluid velocities. It can be
easily shown from the Navier-Stokes equations that the volume flux through a smooth-
walled, infinitely extending fracture is given by the expression

2
u=-—2_(Vp-pgVz), (3.2)
12u
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where a is the mechanical fracture aperture, and we have assumed that Vp points in
the tangential direction [77]. This expression is clearly consistent with Darcy’s law

(3.1), with
2

K=2%1 3.3
B (3.3)

Since the effective permeability of the fracture network is proportional to both the
intrinsic fracture permeability given by (3.3), and the total porosity (volume fraction)
of the fractures, flow through smooth-walled fractures is effectively proportional to
the cube of the aperture. This is usually referred to as the cubic law.

In a rough-walled fracture, volume flux is not necessarily linearly dependent on
the pressure gradient, either because of inertial effects, or because of turbulent flow.
As explained in Section 3.3, the dimensionless Reynolds number may be used as an
indication of which flow regime is present. In the included papers, it is assumed that
the flow velocity is sufficiently small to give a linear relation between volume flux
and pressure gradient. In this case, Darcy’s law (3.1) may be used to calculate flow
both in both the fracture and the matrix. Equation (3.3) represents an upper bound on
the intrinsic fracture permeability, while the true permeability can either be measured
directly, or estimated from the mechanical aperture and the roughness of the fracture
[58].

3.1.5 Mass conservation

In addition to Darcy’s law (3.1), the full set of equations describing fluid flow includes
the mass conservation equation. This equation is derived by observing that the fluid
mass change within an arbitrary domain is equal to the mass influx plus the contribu-
tion from mass sources (e.g., production and injection wells). Mathematically, this is

formulated as
Q// q’)de:—ﬂ pu~ndS+///qu, (3.4)
ot [l oQ Q

where ¢ is the fraction of pore volume within the rock (the porosity), n is the outward
surface normal, ¢ is a mass source term, and € is an arbitrary domain. Applying the
divergence theorem, and using the fact that the equation is valid for any domain, we
arrive at the local form of the equation,

%(cbp) = V- (pu) +q. (3.5)

3.2 Multiphase flow in porous media

Multiple fluid phases may co-exist within the same rock formation, such as oil, water
and gas in petroleum reservoirs, water and steam in geothermal reservoirs, and wa-
ter and supercritical CO, in aquifers used for CO, storage. The presence of multiple
phases leads to additional physical effects, which must be accounted for in the math-
ematical models for flow and transport. For instance, capillary pressure may cause a
wetting fluid to displace a non-wetting fluid, even without the presence of an external
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Figure 3.1: Linear relative permeability, which is commonly assumed within fractures.

pressure gradient. Furthermore, phases that co-exist within the same rock volume ef-
fectively reduce the permeability of the rock. Common models for these multiphase
effects are introduced below.

3.2.1 Relative permeability

In a multiphase system, each fluid phase occupy some of the pore volume, thereby
effectively reducing the pore volume available to the other flowing phases. Thus, the
volume flux of each fluid phase is reduced accordingly. This physical effect is com-
monly modeled by the multiphase extension of Darcy’s law,

rel

u, = —Kﬂi (Vpo—pgVz), (3.6)
¢

where the subscript € can denote either of the phases present in the system, and k’;’
is the relative permeability of phase £. Since k’;’ represents the flux reduction due to
a reduced effective pore volume, it is clear that k’;’ should be 1 if the pore volume
is completely filled (or saturated) with the phase £, and 0 if the phase is not present.
When more than one phase is present, the value of k’;’ depend on the volume frac-
tion (or saturation) of phase ¢, but also on the distribution of phases within the rock.
For instance, if the phase only occupies the smaller pores, the relative permeability
is smaller than if the fluid occupies the larger pores. In practice, the dependence of
relative permeability on saturation is determined by laboratory experiments.

When laboratory data on fracture relative permeability is not available, it is com-
monly assumed that the relative permeability is described by linear functions of the
fluid saturation, as shown in Figure 3.1. This relationship is verified experimentally
for two-phase flow in perfectly smooth-walled fractures, but for realistic, non-smooth
fractures, the assumption of linear relative permeability curves is questionable [54].
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Non-wetting phase

Wetting phase

Figure 3.2: Typical distribution of wetting and non-wetting fluid. The wetting fluid adheres to
the rock walls and enters the smaller pores first, possibly creating isolated pockets of trapped
non-wetting fluid.

3.2.2 Capillary pressure

When two fluid phases are present within in the same porous rock, one of the phases
will typically show a stronger attraction to the rock walls than the other. The phases
with stronger and lesser rock wall attraction are called the wetting fluid and non-
wetting fluid, respectively. Microscopically, the unequal attraction forces cause the
wetting fluid to adhere to the rock walls, and move towards the portions of the rock
with the smallest pore throats, as illustrated in Figure 3.2. Furthermore, there will be a
pressure jump over the phase interface, which is known as the capillary pressure. The
microscopic capillary pressure can be calculated from fluid properties and the diame-
ter of the pore. The macroscopic definition of capillary pressure is slightly different,
and can be thought of as the microscopic capillary pressure in the largest rock pore
that is filled with wetting fluid [55]. Thus, it is a function of fluid saturation, and is
usually determined experimentally.

Since the fracture apertures are typically much larger than the size of the pores, the
capillary pressure in the fractures is small compared to the rock matrix. Thus, any wet-
ting fluid entering the fracture space tends to migrate into the smaller pore space in the
matrix, displacing the non-wetting fluid within. This counter-current imbibition pro-
cess is an important oil recovery mechanism in water-wet fractured reservoirs, where
injected water travels through the fractures and displaces the oil within the surround-
ing rock [20, 28].

3.2.3 Mass conservation

In a multiphase reservoir, one must keep track of the volume fluxes for each phase
separately. Thus, there is a mass conservation equation similar to Equation (3.5) for
each of the mobile phases in the reservoir,

0

> (Swe) ==V - (pa1y) +ap (3.7

where the subscript £can denote either of the phases, and .S, is the saturation of phase .
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3.3 Dual continuum models

In some applications of flow in fractured geological formations, the fractured rock may
behave as a regular porous rock with some special anisotropic characteristics. This is
the case, for instance, if the rock matrix is impervious to flow, if there is only a single
phase with negligible compressibility, or if there are two incompressible phases and
capillary equilibrium is instantaneously obtained. In general, however, the rock matrix
and the fracture network may behave as two separate, interacting media. Provided that
the fracture network is amenable to upscaling (see Chapter 4), the interaction between
the fracture network and the surrounding rock may be modeled by a dual continuum
formulation.

3.3.1 Compressible flow

If the fluid within the porous rock is perfectly incompressible, changes in fluid pres-
sure are instantaneous through the entire computational domain. In a realistic reser-
voir, changes in fluid pressure travels at a finite speed, dependent on both the fluid
compressibility and the rock permeability. In a fractured rock, changes in fluid pres-
sure travels much faster in the fractures than in the matrix due to higher permeability
in the fractures.

This behavior becomes important when interpreting the results of hydraulic well
tests. Consider for instance a pressure drawdown test, where a production well is shut
down for some time, and then reopened for production at a constant pressure. While
the well is shut, the fluid pressure in the reservoir stabilizes and the pressure within the
fractures and the rock approaches equilibrium. Immediately after reopening the well,
the fluid residing in the fractures flows towards the well at a high rate. This causes
the pressure in the fractures to decline, which also reduces the flow rate. After some
time, the fluid within the porous matrix starts to flow towards the fractures due to the
pressure difference between the fractures and the matrix. This helps sustaining fluid
flow, and slows down the pressure decline in the fractures.

To model the flow between fractures and matrix as described above, separate pres-
sure variables are assigned to the fluids in the matrix and fractures. The mass flux
between the two media is described by a transfer function, which in the simplest case
is given as

K
r=opt (s = Pm)> (3.8)

where 7 is the mass transfer rate per volume, K,, is the permeability of the matrix, u
is the fluid viscosity, p is the fluid mass density, p, and p,, is the fluid pressure for the
fractures and matrix, respectively, and o is the shape factor, also called the transfer
coefficient or sigma factor [71]. The shape factor is proportional to the square of the
P32 fracture density (as defined in Section 2.3.1), but is also dependent on the variation
in fracture orientation [57].
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3.3.2 Two-phase flow

To correctly model the flow of separate fluid phases between the fractures and the
porous matrix, a transfer function for each of the phases is needed. Assuming two
phases, a wetting and non-wetting phase, the transfer functions are given as

K
T, = o-pwklrjlﬂ—m (pf —pm) , (3.9)

w

K
T, =o-pnk:flﬂ—m (Py = P +pe) > (3.10)

n
where the subscripts w and n denote the wetting and non-wetting phases, respectively,
k" is the relative permeability, p ¢ and p,, denote the wetting fluid pressure for the
fractures and matrix, respectively, and p, is the macroscopic capillary pressure [40].
Due to capillary pressure, the two transfer functions 7, and 7, commonly have oppo-
site signs, representing a counter-current imbibition process.

If the capillary force is strong compared to the bulk velocity of fluid movement,
the fluid transfer between fractures and matrix can be formulated as an equilibrium
relation. In this case, the fractured rock behaves as a single-continuum material with
a modified relative permeability relationship [44].

3.3.3 Mass conservation

In a dual continuum formulation, there are twice as many mass conservation equa-
tions compared with the single-continuum mass conservation equations (3.7), and the
volume flux of fluids between the two continua appears as an extra source term. Us-
ing the superscripts m and f to denote the matrix and fractures, respectively, we get
the following formulation:

%(W"SZ'/"Z) ==V (pju}) +7,+ 4y, (3.11)

P
< (qbfsgpgf) - V. (p;fuf;) —r+ql, (3.12)

where u refers to the volume flux of fluids within each continuum and  is the mass
transfer rate from the fractures to the matrix [40].

3.3.4 Heat flux

In geothermal reservoirs, the temperature of the fluid and surrounding rock is an im-
portant variable. If the fluid can not be assumed to be in thermal equilibrium with the
rock, a heat transfer term similar to Equation (3.8) is defined,

e =Ky (T, - T,) . (3.13)

where 77 is the heat transfer rate per volume, o is the shape factor, K** is the heat

conductivity of the matrix, and T, and T, are the temperatures within the fracture and
rock matrix, respectively [39].
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3.4 Flow of electric currents

Electromagnetic techniques are often used to gain knowledge about the properties of a
geological reservoir. Examples of such techniques are controlled-source electromag-
netic surveys [15], borehole resistivity logging [38] and crosswell electromagnetic
tomography [74]. To interpret the results of these methods, the flow of electrical cur-
rents within the reservoir must be modeled. A thorough description of mathematical
models used for electromagnetic investigation techniques is beyond the scope of this
section, but a short introduction to the governing equations is given below.

3.4.1 Maxwell's equations

Macroscopic electromagnetic processes are generally described by the macroscopic
version of Maxwell’s equations,

V-D=p, (3.14)

V.B=0, (3.15)

vxE=- (3.16)
ot

wn:u%, (3.17)

where E is the electric field intensity, B is the magnetic flux density, D is the electric
Sflux density or displacement field, H is the magnetic field intensity or magnetizing
field, J is the current density, and p, is the charge density for free electrical charges
[41, 63]. For simple materials, the current density and the electrical field are related
by Ohm's law,

J=o0E, (3.18)

where o is the tensor-valued electric conductivity, which is a material constant.

The electric conductivity is an important parameter, since this is the material prop-
erty that electromagnetic methods are the most sensitive to. In particular, since saline
water has significantly higher conductivity than oil, electromagnetic methods are well-
suited to distinguish between water-filled and oil-filled regions of a geological forma-
tion.

3.4.2 Stationary currents

In practice, electromagnetic methods are not sensitive to the pore-scale conductivity
variations of the rock, but rather the effective conductivity. This is the average value
of the electric conductivity within a certain volume depending on the resolution of the
method. We return to the precise definition of effective conductivity in Section 4.1.2.
Here, we merely state that the effective conductivity can be defined by considering
stationary electromagnetic fields, i.e., fields that are time-invariant. In this case, the
electric field E becomes irrotational (curl-free), and may therefore be represented by
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a scalar potential function,
E=V¢, (3.19)

where ¢ is called the electric potential. Furthermore, by taking the divergence of Equa-
tion (3.17) and inserting Equation (3.18), we get the relation

0=V-(cV¢). (3.20)

Equation (3.20) is mathematically equivalent to the Laplace equation, and will be used
in Section (4.1.2) to define effective conductivity.
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Chapter 4

Upscaling of fracture permeability

Standard solution techniques for the equations presented in Chapter 3 require that the
computational domain is subdivided into a finite number of cells, and a single value is
used to represent the permeability within each of them. The size of the computational
cell is determined by the required accuracy and the available computational power. In
general, smaller cell sizes result in both higher accuracy and larger computational de-
mand. With the computational capacity available to standard field-scale simulations,
the lateral extent of a computational cell is typically chosen to be of the order of 100
m.

Ideally, fractures that are larger than the size of a typical computational cell should
be represented explicitly in the numerical model, unless they are also closely spaced.
This can be done by employing a Discrete Fracture Matrix (DFM) formulation [60],
where the fractures are discretized by two-dimensional cells within an otherwise three-
dimensional computational domain. But even if large fractures are separated from the
rest of the model using a DFM formulation, the model may still contain a large amount
of fractures that are smaller than the typical computational cell. This makes each cell
highly heterogeneous in terms of permeability, and it is not trivial to find a single
permeability value that is representative for the cell as a whole.

The process of obtaining a representative property value from a spatially heteroge-
neous material is called upscaling or homogenization. In this chapter, we first discuss
how the representative permeability should be defined, by introducing the concept of
effective permeability. For this concept to make sense, heterogeneous features within
the material must be sufficiently small, and it is therefore only applicable if large-scale
fractures have been removed using the DFM approach. In the second part of the chap-
ter, we introduce two classes of analytical methods that can be used for estimating the
effective permeability of fractured rocks, which is the layer-based methods and the ef-
fective medium methods. The accuracy and applicability of various effective medium
methods is the topic of Paper A, B and C. In dual permeability models (see Section
3.3), the matrix and the fracture network must be upscaled independently, whereas the
combined effective properties of matrix and fractures are required in a single contin-
uum model.
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4.1 Effective permeability

For applications to fluid permeability in porous rocks, it is appropriate to relate the
concept of effective permeability to the average volume flux of an incompressible,
single-phase fluid through the rocks [72]. Darcy’s law for such a fluid is given by

u=K%vn, (4.1)
U
where h = plpg + z is the hydraulic head. Combined with the mass conservation
equation (3.5), this gives the pressure equation for an incompressible fluid in a porous
medium with no mass sources,

V-KVh =0. (4.2)

In the above equation, we have factored out the fluid properties and the gravity con-
stant, since they are all spatially invariant.
We now define the effective permeability' K, of a heterogeneous rock with per-
meability K, as
(KVhy =K,;(Vh), (4.3)

where (-) denotes the volume average over the domain, and A is any hydraulic head
satisfying Equation (4.2). With this definition, the average fluid flux through the het-
erogeneous rock is equal to the average flux through a hypothetical homogeneous rock
with permeability K, subject to the same boundary conditions. The effective perme-
ability can therefore be used in a reservoir simulator as a representative value for the
heterogeneous permeability within a computational cell.

4.1.1 Macroscopic homogeneity

For the effective permeability to be well-defined, Equation (4.3) should give consis-
tent values for K, regardless of the boundary conditions. We refer to this property
as macroscopic homogeneity. The assumption of macroscopic homogeneity is very
strong, and does not strictly apply to heterogeneous finite-sized domains. A real ma-
terial therefore has no effective permeability in the strict sense. It can still have an
effective permeability in the approximate sense, meaning that Equation (4.3) holds
exactly for a certain set of boundary conditions, and is approximately valid if the
boundary conditions are changed. This is the definition of effective permeability most
commonly used in field-scale applications of permeability upscaling.

4.1.2 Analogous physical properties

The concept of effective permeability can be extended to other physical properties
as well. Mathematically, Equation (4.2) is equivalent to the Laplace equation, which

I As the term «effective permeability» has a slightly different meaning in the field of stochastic hydrology, the
term «equivalent permeability» is often used in the literature to avoid confusion [72].
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may be used to describe a number of physical phenomena. One example is the equa-
tion for stationary electrical currents in conductive media, Equation (3.20), introduced
in Section 3.4.2. Similar to the effective permeability, we may define the effective con-
ductivity o, of a heterogeneous conductive medium as

(oVo) = e_ff<v¢> ) (4.4)

where ¢ is any electric potential satisfying Equation (3.20). With this definition, the
average current density though the heterogeneous medium is equal to the average
current density through a hypothetical homogeneous medium with conductivity o,
subject to the same boundary conditions.

In the remainder of this chapter, upscaling methods for fractured media are dis-
cussed using terminology from fluid flow in porous media. However, it is important
to keep in mind that the same methods are applicable to electrical conductivity as well,
due to the mathematical analogy described above. Other effective properties that can
be defined in an analogous way include the effective thermal conductivity and the
effective diffusion coefficient [68].

4.1.3 Numerical upscaling

Given an explicit description of the heterogeneous permeability field within a grid
block, it is possible to find its effective permeability numerically. One approach is
to first solve Equation (4.2) for the heterogeneous material using periodic boundary
conditions, with an applied head gradient along one of the main directions of the grid
block. Finally, equation (4.3) is applied to compute the value of K -along the direction
of the gradient. This procedure is repeated for the other main directions of the grid
block, until all components of K, has been computed.

If the principal directions of K ; are known to be aligned with the grid block,
K, can also be found by specifying a fixed hydraulic head on two opposing sides,
and apply no-flow conditions on the remaining block faces. Even more methods for
estimating K, numerically are summarized by [72].

Numerical upscaling gives an accurate estimate of the effective permeability pro-
vided that a fine, high-quality mesh is used. The disadvantage of the approach is the
computational effort required, which can be very demanding for applications to frac-
tured media.

4.1.4 Stochastically defined materials

In a fractured geological reservoir, the exact location, size and orientation of the frac-
tures are often unknown. Instead, the fracture geometry is specified by statistical pa-
rameters and probability distributions, which makes the permeability field a stochas-
tic quantity. Thus, to find the effective permeability by numerical means, one must
generate a realization of the fracture geometry, and compute the corresponding effec-
tive permeability of the realization. If the medium is infinitely extending and ergodic
(meaning that a volume average can replace an ensemble average), any realization
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Figure 4.1: Layered medium.

of the material gives the same effective permeability [68]. Since a real, finite-sized
medium does not meet these criteria exactly, one should find the effective permeabil-
ity of several different realizations and compute the average of the results, in order to
find a representative permeability value for the material.

4.2 Layer-based upscaling models

Numerical upscaling of a fractured material is computationally very expensive, since
an accurate solution of the pressure equation (4.2) for a three-dimensional fractured
medium requires a very fine mesh and the solution of a large linear system. Thus,
analytical estimates of the effective permeability are attractive, even if they are less
accurate than numerical methods. In this section, we introduce the simple harmonic
and arithmetic averaging techniques, and show how they may be useful for applica-
tions to fractured media.

4.2.1 The arithmetic and harmonic average

To derive the equation for the arithmetic average, suppose that we have a layered
material as depicted in Figure 4.1, with isotropic permeability within each layer. Let
K; and ¢, denote the permeability and volume fraction, respectively, of layer i. Also,
suppose that a fixed hydraulic head difference is prescribed between the left and right
side, and assume periodic boundary conditions for the remaining sides. By solving
the pressure equation (4.2) for this configuration, and applying Equation (4.3), we
find that the effective permeability in the horizontal direction is

Keff,hor = d)] Kl + ¢2K2. (45)

It can be shown that the arithmetic average represent the upper bound for the effective
permeability, for any mixture of the two materials K, and K, [68].

Similarly, to derive the harmonic average, suppose that we change the boundary
conditions such that there is a fixed hydraulic head difference between the top and
bottom face, and periodic boundary conditions on the remaining sides. By solving
the pressure equation (4.2) and applying Equation (4.3), we find that the effective
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permeability in the vertical direction is given by
L _ ¢,
Keﬂ,'ver K 1 K2

Just as the arithmetic average is an upper bound for the effective permeability, the har-
monic average represent a lower bound for the effective permeability of any mixture
of the materials K, and K, [68].

Merging the two results above, we arrive at the expression for the anisotropic ef-
fective permeability of layered media,

Koy = Kopor (I=1n") + K, 0", “4.7)

(4.6)

where I is the identity matrix, n is the unit normal vector for the layers and nn' de-
notes the outer product. The expression is valid even for repeated, aligned layers with
uneven layer spacing [68].

Equation (4.7) can be used to estimate the effective permeability of a fractured
medium where all the fractures are infinitely extending and aligned in the same direc-
tion. Since fractures are very thin, it may be appropriate to set the volume fraction of
the matrix material to 1, in which case the formulas can be rewritten as

Keff,'hor = aAKf + Km, (4.8)

1 ad | 1
=22 (4.9)
Kgpo K, K

m

where K, is the fracture permeability, K,, is the matrix permeability, a is the frac-
ture aperture, and A is the fracture surface area per rock volume, i.e., the P32 frac-
ture density (see Section 2.3.1). In the case of open fractures, we have K4, ~ K,,,
since aA < K/K,,. Similarly, for cemented fractures, we have K g, ~ K,, since
aAK, < K,

4.2.2 Non-aligned layers

Equation (4.7) can be extended by superposition to materials with layers in different
directions, provided that the layers are thin [52, 66, 68]. For open fractures, this results

in the formula
N

-

K=K, + Y a,AK;(I-nn]), (4.10)
i=1

where N is the number of fracture sets, and a;, 4;, K iy denote the aperture, surface

area per volume, permeability and unit normal, respectively, for the fracture set i.

The permeability contribution in the fracture normal direction is neglected since it is

assumed that the fractures are thin. The equivalent of Equation (4.10) for cemented

fractures is
N

-1 _ gl aA; 1
K=K, + ; Enn. . (4.11)
If there is a continuous distribution of fracture orientations, the summation in Equa-
tions (4.10) and (4.11) are replaced by an integral.
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4.2.3 Partially connected fractures

A simple way of extending Equations (4.10) and (4.11) to fractures that are not infinite
in size, is to introduce the connectivity parameter f, which scales the permeability of
the fracture network according to the connectivity of the network. Applied to open
fractures, we have

N
K=K, +f Z a;A;Ky; (I - nin,-T) ) 4.12)
i=1
and for cemented fractures we have
N a.A.
K =K' +f Z{ I’(—ﬁ’n,.nj. (4.13)

Various ways of estimating f analytically for open fractures are given by [31, 33, 48,
50]. On the other hand, less is known about the relationship between f and fracture
parameters in the cemented case.

4.3 Inclusion-based upscaling models

Layer-based upscaling methods starts with the assumption that the fractures are in-
finitely extending and modifies the resulting expressions to account for partially con-
nected fractures. Inclusion-based upscaling methods can be viewed as the opposite
approach; assume that the fractures are infinitely well separated and modify the re-
sulting expressions to account for interactions between the fractures. For this strategy
to be successful, a way of calculating the impact of a single fracture on permeability
is needed. It turns out that the impact of a single fracture can be calculated analyti-
cally if the fracture is shaped as a thin ellipsoid. For this reason, most inclusion-based
upscaling methods assume that the fractures have ellipsoidal shapes.

4.3.1 Single inclusion problem

The single inclusion problem can be formulated as finding the average pressure gra-
dient (Vp) through an ellipsoidal inclusion with intrinsic permeability K, which is
embedded in a matrix of homogeneous permeability K,, and subject to an externally
applied pressure gradient Vp,, (see Figure 4.2). It turns out that the pressure gradient
within the inclusion is actually constant under these conditions, and linearly dependent
on the externally applied pressure. By solving the pressure equation (4.2) in spherical
coordinates [19, 41, 68], the solution is found to be

Vp =RVp,,, (4.14)

where R is the field concentration tensor, given by

R = (14K, AK,’ (K—Km)>_1. (4.15)
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Vp far

Figure 4.2: Single inclusion problem. The background material is homogeneous with perme-
ability K, the inclusion has permeability K. The pressure gradient Vp within the inclusion
is constant and linearly dependent on the externally applied pressure gradient Vpy,,, as given
by Equation (4.14).

In the above expression, A is the depolarization tensor, which is dependent on the
shape and orientation of the ellipsoidal inclusion, as well as the anisotropy of the
background permeability K, .

If K,, is isotropic, the depolarization tensor A is oriented along the axes of the
ellipsoidal inclusion, with eigenvalues (depolarization factors) given by

A= rlrzzr3 / ) d : (4.16)
V() ) () (1472)

where r, r, and r; are the half-axis lengths of the ellipsoid. Equation (4.16) is a sym-
metric elliptic integral of the second kind, which may be calculated using duplication
[11] or half- and double-argument transformations [26].

If K,, is anisotropic, the values of r|, r, and r; in Equation (4.16), as well as the
eigenvectors of A, depend on the degree of anisotropy as shown in [5] and in Paper
B.

4.3.2 Dilute limit approximation

For a material containing well-separated ellipsoidal inclusions, the average volume
flux through the medium is found by splitting the domain into many single inclusion
problems and adding the contributions of each inclusion as given by Equation (4.14).
With the assumption that the inclusions do not interact, the definition of effective per-
meability (4.3) can thus be applied directly. This gives the dilute limit approximation,

N
K,;=K,+ ) ¢;,(K,—-K,)R, (4.17)

i=1
where the subscript i denote the inclusion family (determined by the inclusion shape,
size, orientation and permeability), and ¢,, K, R, are the volume fraction, permeabil-
ity and field concentration tensor, respectively, of inclusion family i. As before, K,
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is the effective permeability, and K, is the permeability of the matrix. Details on the
derivation of Equation (4.17) may be found, for instance, in [36, 56], as well as in
Paper B.

4.3.3 Effective medium methods

Effective medium methods are a group of upscaling methods based on the dilute limit
approximation that account for interactions between inclusions to some degree. Some
of the more popular variants are the differential method, the symmetric and asym-
metric self-consistent methods, the Maxwell approximation and the cluster expansion
methods, although the latter group is not always classified as an effective medium
method. Within the included Paper B and C, reviews of different effective medium
methods are given, and adapted for applications to fractured media. More compre-
hensive introductions to general effective medium theory are given in [46, 68].



Chapter 5

Ensemble-based parameter inversion

Although most fracture parameters can be measured, the measurements have a high
degree of uncertainty. Consequently, there may be a mismatch between the predicted
and actual well flow rates and fluid composition. A similar mismatch may also be
observed for other data types, such as the seismic response. History matching methods
make use of this discrepancy to adjust the reservoir model and improve its predictive
value.

The last of the included papers, Paper D, is concerned with the interplay be-
tween upscaling and history matching of fractured reservoirs. The paper focuses on
ensemble-based history matching methods, which have gained popularity in recent
years. As a background for the paper and the methods therein, this chapter provides
a short introduction to inverse modeling and different variants of ensemble-based pa-
rameter inversion.

5.1 The inverse problem

History matching is the process of adjusting the parameters of the reservoir model such
that the measured flow rates, fluid temperature and fluid composition agree with the
predictions of the model. More generally, reservoir history matching can be viewed as
an inverse problem. To define this term, assume that we have a mathematical model,
possibly simplified, describing some physical process with a measurable outcome.
Furthermore, assume that the model is dependent on some physical parameters that
are unknown or uncertain. The inverse problem can be formulated as estimating the
parameters of the mathematical model using the measured outcome of the physical
process. In other words, we are concerned with finding the parameters y, given im-
plicitly as

F(y)=d+e¢, (5.1

where F represents the mathematical model of the physical process, d is the measured
data and € represents the measurement noise and model uncertainty.
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5.1.1 Direct inversion methods

Direct inversion methods make use of optimization algorithms to minimize the mis-
match between the predicted and actual measurements,

§ = argmin ||[F (y) = d|* + T (y), (5:2)

where ¥ are the estimated parameters and T is a regularization function, which is ap-
plied to avoid letting the measurement noise have too much influence on the solution.
In the case of simple Tikhonov regularization [2], T is given as

T(y) =7 llyll?, (5.3)

where y is a regularization parameter that is dependent on the noise level.

Direct inversion methods differ in which optimization algorithm is used, the way
they regularization term is formulated, and how the degree of regularization is deter-
mined. An introduction to various methods for direct inversion is given by [2].

5.1.2 Bayesian inversion methods

Unlike direct methods, Bayesian inversion methods may be used to find both a pa-
rameter estimate and an uncertainty estimate, since they are based on a probabilistic
formulation. Moreover, they are also able to take prior parameter information into
account. An introduction to general Bayesian inversion is given by [53].

The goal of Bayesian methods is to estimate the posterior parameter distribution
according to Bayes’ theorem,

pdly)p(y)

p(d)
where p (y|d) is the probability density for the posterior distribution, p (d|y) is the
likelihood, p(y) is the probability density for the prior parameter distribution and
p(d) can be interpreted as a normalization factor. The likelihood is the probability
density for a measurement outcome d, given a certain set of parameters y. The prior
distribution represents our initial knowledge on likely parameter values, before any
measurement is made.

A common way of representing a multidimensional parameter distribution, is by
drawing a random sample from the distribution. If the number of parameters is small,
Equation (5.4) can be sampled using the rejection algorithm or a similar sampling algo-
rithm [53]. If the number of parameters is large, however, direct sampling of Equation
(5.4) becomes computationally very expensive. This is because multidimensional in-
tegrals are difficult to evaluate when the number of dimensions is large, a fact known
as the curse of dimensionality.

p(yld) = , (5:4)

5.2 The Ensemble Kalman Filter and related methods

The Ensemble Kalman Filter (EnKF) is a Bayesian inversion method that approx-
imates the posterior distribution by assuming that the distribution is approximately
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Gaussian. A detailed derivation of the method is given, for instance, in [1, 53]. The
method has gained popularity because of its modest computational requirements, ease
of implementation, and relative robustness in reservoir applications.

5.2.1 Sequential assimilation

Applications of the EnKF begin by defining a prior ensemble, which is a random
sample of parameter values from the prior distribution. The static parameters and the
dynamic state variables are jointly organized in a matrix M, where each column of M
represents an ensemble member. A reservoir simulator is then applied to each ensem-
ble member, to produce a set of data variables such as fluid pressure and composition
within wells. This is the forecast stage. The data variables are assembled into a matrix
D, where each column represents data from a single simulation.

After the forecast step, the data variables are compared with physical measure-
ments, and the mismatch is used to adjust the model variables. This is the assimilation
stage. The following formula is used, which is an ensemble-based approximation of
Equation (5.4) for Gaussian distributions [53],

Mpost =M+ Mdiff’
My = AMAD" [Cp+ ADADT| ™" Dy, (5.5)

Dyi¢r = Dyps — D + €,

where M, is an ensemble representing the posterior distribution, Cp, is the covari-
ance matrix for the data noise, D, is a vector of actual measurement data, and € is a
matrix of realized data noise (i.e., artificial Gaussian noise with covariance Cj)). The
operator A denotes a square root of the ensemble covariance, defined by
am=M=-M (5.6)
N -1

where M is the ensemble mean of M , and N is the number of ensemble members.

An illustration of the EnKF procedure is given in Figure 5.1. In standard applica-
tions of the EnKF, data are assimilated sequentially in time, applying Equation (5.5) at
each time step where data is available. Note that dynamic state variables such as pres-
sure and saturation are included in the ensemble matrix M, and are adjusted at each
data assimilation step. The adjusted state variables then become initial conditions for
the next forecast stage.

5.2.2 Simultaneous assimilation

A problem with including state variables in the ensemble matrix M, is that the as-
similation step may introduce inconsistencies to the solution, such as the loss of mass
conservation. It may also introduce an artificial spatial roughness in the state vari-
ables, which makes it difficult to restart the simulation after a data assimilation step.
The problem can be avoided by assimilating all the measured data, from all time steps,
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Forecast stage

Static parameters Physical model State variables

Initial conditions — Data variables

Assimilation stage

Static parameters
State variables

Dat bl Model update Updated static parameters
ata variables —_— Updated state variables
+
Measurements

Figure 5.1: The forecast and assimilation stages of the Ensemble Kalman Filter. The state
variables and data variables computed in the forecast step are used as input in the assimilation
step, where Equation (5.5) is used to update the model. The updated state variables are used
as initial conditions for the next forecast step.

in a single step at the end of the numerical simulation. This is the ensemble smoother
method [65], which is also called simultaneous assimilation. With this approach, one
does not have to estimate the state variables, and the problem of restarting the simula-
tion from unphysical parameters is eliminated. The major disadvantage of the method
is that the ensemble smoother is much more sensitive to model nonlinearities than
the sequential EnKF [25]. Therefore, it is often coupled with iterative schemes as de-
scribed in the following sections.

5.2.3 Multiple Data Assimilation

The Multiple Data Assimilation (MDA) scheme [18] is an iterative version of Equation
(5.5) that performs better for nonlinear models. The update formula is given by

M; = M;_| + Mg
-1
Dyitr; = Dops — D; + €,
where i is the iteration index, and #n is the number of iterations, which must be de-
termined beforehand. The scheme can be applied to both sequential and simultane-
ous data assimilation. If the prior distribution is Gaussian and the simulation model

is linear, Equation (5.7) samples the posterior distribution correctly regardless of the
number of iterations.

5.2.4 Ensemble Randomized Maximum Likelihood

Another scheme for iterative data assimilation is the Ensemble Randomized Maxi-
mum Likelihood (EnRML) method [12]. Unlike the MDA algorithm, the number of
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iterations is not predefined, and the iterations can be terminated at any time due to a
data mismatch criterion. Since the EnRML is formulated as an optimization scheme,
there are several variants of the method depending on the optimization algorithm used
[12, 13]. When used in conjunction with the Levenberg-Marquard scheme, the update
formula is given by

My = M; + Mg, + M,

My, = AM,AD] [(1+ 4,) Cp + AD,AD]| ™ (Dyyy — D; +¢;) (5.8)
My, =AM, [(1+ 4,) I+ AD[C;'AD]™ AM]Cy,l (Mo — M),

CorT,i i

where 4; is the Levenberg-Marquard regularization parameter, and C,, is the covari-
ance matrix for the prior ensemble. The term M, ; represents a correction factor,
ensuring that the posterior distribution estimate does not deviate too much from the
prior distribution.

In practical computations, several of the terms in Equation (5.8) should be com-
puted using a scaled truncated singular value decomposition (TSVD) for better nu-
merical stability, as described by [13]. In particular, the inverse of the prior covariance
matrix Cy, is difficult to estimate without using a TSVD, since the standard ensemble

estimate of Cy, does not have full rank.
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Chapter 6

Introduction to the papers

This chapter provides an introduction to the included papers, all of which are either
published or submitted for publication in scientific journals. The author of this thesis
is also the first author of the papers. The co-authors have contributed by providing
research directions through scientific discussions, and by giving valuable suggestions
on how to improve the manuscripts.

6.1 Paper Aand B

Paper A

Title: Electrical conductivity of fractured media: A computational study of
the self-consistent method

Authors:  P. N. Sevik, I. Berre, M. Jakobsen and M. Lien

Journal:  In SEG Technical Program Expanded Abstracts (2012)

Paper B

Title: A 3D Computational Study of Effective Medium Methods Applied to
Fractured Media

Authors: P. N. Savik, I. Berre, M. Jakobsen and M. Lien

Journal:  Transport in Porous Media 100, 1 (2013)

Paper A and B assess the potential of effective medium theory for estimating macro-
scopic properties of fractured rocks. The use of effective medium methods for this
purpose was previously suggested by a number of authors [5, 7, 23, 56], but the qual-
ity of the estimates has been questioned [31, 68]. This is partly due to the lack of
analytical error estimates, and partly because the microgeometry of a densely frac-
tured rock is very different from the geometries where effective medium theory is
known to be reliable.

In Paper A and B, predictions from effective medium theory is compared with re-
sults from numerical upscaling. Thus, the papers represent a valuable contribution to
determining if effective medium theory is applicable to fractured media. Paper A con-
tains preliminary results, where estimates from the asymmetric self-consistent method
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is compared with numerical upscaling for two orthogonal fracture sets. In Paper B, the
full set of numerical results is presented, and used to assess the accuracy of three dif-
ferent classes of effective medium methods. For comparison, Paper B also includes
the semi-analytical method of Mourzenko et al [50], which is based on principles that
are fundamentally different from effective medium theory. Paper A is presented in the
context of electrical conductivity, whereas Paper B is presented in the context of fluid
permability.

The numerical computations are performed on randomly distributed, equisized
disc-shaped fractures with predefined orientations. By a simple scaling of the results,
this geometrical configuration is also representative for fractures with polygonal shape
and a power-law size distribution [49]. Two types of numerical computations are per-
formed: Finite-element computations to determine the effective permeability or con-
ductivity, and topological computations to determine the percolation threshold of dif-
ferent configurations.

The papers also address a problem with traditional effective medium formulas
when applied to fractured media, namely, that they become numerically unstable
for flat inclusions. This problem is solved by introducing a novel reformulation of
the standard equations, which is numerically stable even in the limit of zero thick-
ness. The new formulas show fast and reliable convergence behavior for isotropic
and anisotropic media, below and above the percolation threshold, for all levels of
matrix/fracture permeability contrast. Furthermore, they require a smaller number of
input variables compared with the traditional formulation when applied to thin inclu-
sions. Traditional formulations require both the thickness and the permeability of the
inclusion to be specified, but the reformulated equations reveal that the effective per-
meability is only sensitive to the product (for open fractures) or quotient (for cemented
fractures) of these quantities.

For open fractures, our results show that self-consistent methods, especially the
asymmetric variant, may be used to give reasonable estimates of the effective con-
ductivity even beyond the percolation threshold. The symmetric variant gives the best
estimate just above the threshold, but has the wrong asymptotic behaviour for large
fracture densities. For non-percolating geometries, or when the fracture/matrix con-
ductivity contrast is small, all effective medium methods are performing well, and the
differential method is marginally the best estimator. The semi-analytical method of
Mourzenko et al. [50] usually gives the most accurate results whenever it is applica-
ble, i.e., high-density networks of conductive fractures with equal transmissitivities.
In the case of cemented fractures, our numerical simulations only cover fracture den-
sities below the void percolation threshold. Within this range, the differential method
is seen to give the best estimate. For high fracture densities, the self-consistent meth-
ods predict percolation thresholds that are well below the theoretical value, and the
differential method has no percolation threshold at all.

A somewhat surprising result was the close agreement between numerically com-
puted percolation thresholds and the thresholds predicted by the asymmetric self-
consistent method. The self-consistent percolation estimates also scaled well with
changes in the fracture intersection angle. Previously, it was unknown whether or
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not these estimates were useful, since there are no theoretical results linking the self-
consistent percolation estimates to the true percolation threshold of finite-sized frac-
tures. Our results show that the asymmetric self-consistent method can give a very
good indication of the percolation threshold for a large range of fracture configura-
tions.

6.2 PaperC

Title: Anisotropic effective conductivity in fractured rocks by explicit
effective medium methods

Authors: P. N. Savik, M. Jakobsen, M. Lien and 1. Berre
Journal:  Geophysical Prospecting 62, 6 (2014)

The effective medium methods considered in Paper A and B are implicit, meaning
that the analytical estimates are defined by implicit equations that must be solved
using iterative methods. In contrast, Paper C is concerned with explicit methods, where
the estimates can be calculated directly from an explicit formula. As in Paper A, the
methods are discussed in the context of electrical conductivity.

Explicit methods are easy to use and implement, they are computationally efficient,
and it is possible to obtain analytical derivatives, which may be important in optimiza-
tion applications. On the other hand, the methods are not applicable to media that are
both strongly heterogeneous and strongly anisotropic. Two existing explicit methods
are considered in the paper, namely, the Maxwell approximation [45, 68] and the T-
matrix method [36, 37]. In addition, three novel explicit schemes for anisotropic media
are constructed, based on the weakly self-consistent assumption previously suggested
by Berryman and Hoversten [7].

In the original paper by Berryman and Hoversten, the weakly self-consistent as-
sumption was applied only to the asymmetric self-consistent method, and the resulting
expression was solved iteratively, for conductive fractures only. In Paper C, we show
that the assumption is applicable to both the symmetric and asymmetric self-consistent
method, as well as the differential method. We also show how the resulting expres-
sions can be evaluated explicitly, for both conductive and resistive fractures.

Similar to the procedure used in Paper A and B, the methods considered in Pa-
per C are reformulated and adapted for applications to thin inclusions. To assess the
accuracy of the methods, conductivity estimates are compared with theoretical upper
and lower bounds, theoretical percolation thresholds and asymptotic bounds, as well
as numerical simulations.

The analysis in Paper C shows that the asymmetric variant of the weakly symmet-
ric self-consistent method has the correct asymptotic behavior and satisfies all bounds,
whereas the symmetric variant does not. This holds even in the isotropic case, where
the weakly self-consistent methods coincide with the original implicit methods. The
result is surprising, since the symmetric method is regarded to have a stronger theoret-
ical foundation than the asymmetric one [6, 7, 47, 68]. Specifically, it has been proven
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that the symmetric method is a physically realizable scheme, and should therefore not
show unphysical behavior [3, 46]. A possible explanation is that the proof of realizabil-
ity is not applicable to the special geometry that a fracture-matrix system represents,
but further research is required in order to confirm this.

The comparisons between analytical and numerical results show that all the meth-
ods give accurate estimates for small fracture densities. For high densities and large
matrix/fracture conductivity contrasts, all but the weakly self-consistent methods
break down. Furthermore, the analysis in the paper shows that the weakly self-
consistent methods predict percolation thresholds that are independent of fracture ori-
entation, which is a gross oversimplification in the anisotropic case. We show that
one remedy is to scale the result by a given percolation threshold, which may be esti-
mated using other techniques. The resulting estimate is seen to agree closely with the
original implicit self-consistent estimate. The scaling technique can not be used for
non-percolating geometries, such as aligned fractures or, in the resistive case, geome-
tries with less than three linearly independent fracture orientations. In these situations,
the weakly self-consistent methods fails completely at high densities.

6.3 PaperD

Title: An Integrated Approach to Upscaling and History Matching of
Fractured Media

Authors: P. N. Savik, M. Lien and I. Berre
Journal:  Submitted to Water Resources Research (2015)

In Paper D, we investigate a particular problem that may occur when fracture upscaling
methods are used together with history matching. Upscaling is commonly performed
as a separate step prior to history matching, while the subsequent inversion algorithm
uses upscaled parameters as primary variables. Paper D shows that this approach may
lead to parameter combinations that are inconsistent with the underlying fracture de-
scription. Instead, we suggest in this paper to perform history matching on the fracture
parameters directly, and include fracture upscaling as an integral part of the history
matching workflow. This approach has an added computational cost, but if analytical
upscaling methods are used, the added computational work is negligible.

The issues highlighted in Paper D are relevant to a number of physical applications,
such as geothermal reservoirs, CO, storage and groundwater contamination problems,
but the paper focuses primarily on applications to two-phase flow in petroleum reser-
voirs. Furthermore, we focus on the Ensemble Kalman Filter class of history match-
ing methods, and use the analytical permeability upscaling method by Mourzenko et
al [50]. Issues similar to the ones discussed in the paper are expected to arise with
other method choices as well, such as Occam’s razor and other direct methods for
history matching [2], and the effective medium methods from Paper A, B and C for
permeability upscaling.
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We demonstrate the difference between the traditional and our proposed approach
using simple numerical examples, as well as a synthetic field case based on the PUNQ-
S3 model [22]. The simpler numerical examples are used to demonstrate that param-
eter inconsistencies does not appear for linear fracture upscaling relations, since the
Ensemble Kalman Filter class of methods are invariant under linear variable changes.
In particular, it is shown that upscaling of fully connected and randomly oriented frac-
ture networks is linear if logarithmic variables are used.

The results from the field case show that the use of upscaled parameters as primary
inversion variables does not only generate inconsistent parameter values, but may also
make it difficult to match data. In our example, the inversion algorithm was able to
match the data from all the wells only if fracture parameters were used as primary
variables. When upscaled parameters were used as inversion variables, the posterior
ensemble spread was significantly larger than the measurement uncertainty, and some
well data could not be matched at all.
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