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Abstract. The Yermak Plateau (YP), located northwest of

Svalbard in Fram Strait, is the final passage for the inflow

of warm Atlantic Water into the Arctic Ocean. The region

is characterized by the largest barotropic tidal velocities in

the Arctic Ocean. Internal response to the tidal flow over

this topographic feature locally contributes to mixing that

removes heat from the Atlantic Water. Here, we investigate

the tidal forcing, barotropic-to-baroclinic energy conversion

rates, and dissipation rates in the region using observations of

oceanic currents, hydrography, and microstructure collected

on the southern flanks of the plateau in summer 2007, to-

gether with results from a global high-resolution ocean cir-

culation and tide model simulation. The energetics (depth-

integrated conversion rates, baroclinic energy fluxes and dis-

sipation rates) show large spatial variability over the plateau

and are dominated by the luni-solar diurnal (K1) and the

principal lunar semidiurnal (M2) constituents. The volume-

integrated conversion rate over the region enclosing the to-

pographic feature is approximately 1 GW and accounts for

about 50 % of the M2 and approximately all of the K1 con-

version in a larger domain covering the entire Fram Strait

extended to the North Pole. Despite the substantial energy

conversion, internal tides are trapped along the topography,

implying large local dissipation rates. An approximate local

conversion–dissipation balance is found over shallows and

also in the deep part of the sloping flanks. The baroclinic en-

ergy radiated away from the upper slope is dissipated over

the deeper isobaths. From the microstructure observations,

we inferred lower and upper bounds on the total dissipation

rate of about 0.5 and 1.1 GW, respectively, where about 0.4–

0.6 GW can be attributed to the contribution of hot spots

of energetic turbulence. The domain-integrated dissipation

from the model is close to the upper bound of the observed

dissipation, and implies that almost the entire dissipation in

the region can be attributed to the dissipation of baroclinic

tidal energy.

1 Introduction

The Yermak Plateau (YP, Fig. 1), located northwest of Sval-

bard, is the main topographic obstacle to the warm Atlantic

inflow into the Arctic Ocean. In the vicinity of Svalbard,

the marginal ice zone (MIZ), the transition region between

open water and dense ice cover, is typically located over the

plateau, indicating substantial oceanic heat loss to the melt-

ing of sea ice in the region. The YP is identified as a region

of enhanced tidal variability for both diurnal and semidiur-

nal tides (Hunkins, 1986; Padman et al., 1992; D’Asaro and

Morison, 1992; Plueddemann, 1992). Strong tidal currents

over the sloping flanks of the plateau lead to increased inter-

nal wave activity and intense diapycnal mixing of water prop-

erties (Padman and Dillon, 1991; Wijesekera et al., 1993; Fer

et al., 2010). The mixing in this region is of particular interest

because it can contribute to the cooling of the West Spitsber-

gen Current, which carries warm and saline Atlantic Water

through Fram Strait. The heat removed from the Atlantic Wa-

ter layer can influence the inflowing water mass properties to

the Arctic Ocean as well as the regional ice cover north of

Svalbard.

The breaking of internal waves is a major source of

turbulence-driven diapycnal mixing in the ocean. One gen-

eration mechanism of internal waves is the baroclinic re-

sponse to barotropic tidal flow of a stratified water column
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over favourable topography, such as continental slopes, iso-

lated ridges, or areas of enhanced seafloor roughness (Gar-

rett and Kunze, 2007). Near sites of internal tide generation,

some of the energy dissipates locally through the breaking

of high-mode, small-scale waves (e.g. Klymak et al., 2008),

whereas the remainder propagates away as low-mode inter-

nal tides. The propagation of linear plane internal tides is

possible; however, only equatorward of the critical latitude

at which the Coriolis parameter, f , equals the tidal wave

frequency, ω. The Coriolis parameter changes with the lati-

tude,9, through f = 2�sin9, where�= 7.292×10−5 s−1

is the Earth’s angular rotation. The critical latitudes for the

principal lunar semidiurnal tide M2 and the diurnal tides K1

and O1 are near 74◦30′ and 30◦, respectively. Poleward of

the critical latitude the wave equation changes form from

hyperbolic to elliptic, and no progressive linear plane wave

solution is allowed (Vlasenko et al., 2005). The solution is

evanescent, exists locally where the barotropic-to-baroclinic

energy conversion occurs, and decays exponentially in the

vertical and in the cross-slope direction. Baroclinic distur-

bances in response to tidal flow over topography above the

critical latitude are thus topographically trapped near the gen-

eration site (a continental slope, a ridge, or a seamount). The

energy propagation of topographically trapped waves is pos-

sible along the slope, around the topographic feature with

negligible radiation away in the cross-slope direction. This is

analogous to the sub-inertial baroclinic trapped waves prop-

agating around isolated seamounts (Brink, 1989). Trapped

tides dissipate their energy locally, or elsewhere along the

topography, leading to substantial vertical mixing (Padman

and Dillon, 1991; Tanaka et al., 2010; Johnston and Rudnick,

2014).

In general, the generation of near-inertial and sub-inertial

internal tides has not obtained much attention, although there

are strong signs that they have the potential to impact decadal

climate variations (Tanaka et al., 2012; Müller, 2013). A re-

cent numerical study in the Barents Sea shows internal M2

tides with bottom-enhanced energy density and dissipation

rates, trapped in the vicinity of their generation sites (Ka-

gan and Sofina, 2014). The bottom-trapped tides in the Arc-

tic Ocean are of particular importance because most of the

Arctic Basin is located north of critical latitude of the most

energetic tidal constituent M2. Falahat and Nycander (2014)

computed an area-integrated energy flux of about 1.1 GW

(1 GW ≡ 109 W) for topography-trapped internal tides (sum

of theK1,O1, andM2 constituents, where about 70 % isM2).

Estimates from global numerical models of the conversion

rates of barotropic-to-baroclinic tidal energy in the Arctic re-

gion are roughly 5 GW (Simmons et al., 2004; Müller, 2013).

At the latitudes of the YP, except from the principal so-

lar semidiurnal tide (S2, with critical latitude near 85◦), all

diurnal frequencies and the principal M2 semidiurnal fre-

quency are sub-inertial; locally generated internal tides are

trapped. The critical latitude also serves as a turning lati-

tude for low-mode internal tides generated elsewhere below
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Figure 1. (a) Location map of the study area with the Yermak

Plateau (YP) enlarged in (b). Isobaths are drawn at 1000 m inter-

vals (Global Relief Model, ETOPO5) in (a), and at 250 m inter-

vals to 1000 m followed by 1000 m intervals (ETOPO1; Amante

and Eakins, 2009) in (b). Stations 1–5 are marked. Station 5 is

co-located with the short-term mooring (rectangle). The drift of

the CEAREX-O camp is shown by the red line on the north-

ern flanks. The ice edge digitized from high-resolution ice charts

(http://polarview.org/services/hric.htm) provided by the Norwegian

Meteorological Institute are shown for 23 (dashed) and 25 July 2007

(solid).

the critical latitude, and propagating poleward. At the YP,

M2 frequency is only slightly sub-inertial (f ≈ 1.025ωM2
),

and an anti-cyclonic relative vorticity can shift the effective

Coriolis frequency, fe, relaxing the trapping and the turning

latitude. For fe < ωM2
, progressive solutions are allowed:

so-called near-inertial vortex-trapped internal waves (Kunze

and Toole, 1997). As we show in the following, the YP is

a site of substantial barotropic-to-baroclinic energy conver-

sion. It is thus expected that the baroclinic energy extracted

from the barotropic tide cannot propagate away and likely

dissipates locally, contributing to turbulent mixing where the

internal tide is forced. This is supported by observations in

the YP region that show localized energetic turbulence and

mixing (Padman and Dillon, 1991).

Earlier investigations typically used observations of hy-

drographic properties and water column velocity sampled

from ice camps or by autonomous buoys, see Padman et al.

(1992) and Fer et al. (2010) for an overview. Measurements

of ocean currents from a drifting buoy showed that energy

increased threefold from its level in the Nansen Basin as the

buoy passed over the YP (Plueddemann, 1992), dominated

by diurnal and near-inertial (semidiurnal) frequencies. Ener-

getic bursts of near-inertial internal wave packets were in-

ferred to propagate upwards, presumably generated by inter-

action of the barotropic tide with bottom topography. Simi-

larly, D’Asaro and Morison (1992) identified upward prop-

agating near-inertial waves and enhanced eddy diffusivity

over the central plateau. Average ocean-to-ice heat fluxes of

22 W m−2 were inferred from an automated buoy as it drifted

over the northern YP (McPhee et al., 2003). In the pycn-

ocline above the Atlantic Water layer, Padman and Dillon

Ocean Sci., 11, 287–304, 2015 www.ocean-sci.net/11/287/2015/
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Table 1. Summary of station position, sampling duration, and vertical coverage; 5-M is the mooring located near station 5. Water depth is

the mean ±1 SD over the station duration. The corresponding stretched depth (in stretched metre; sm) and the covered fraction are listed for

a range of 3–500 m for MSS and 12–360 m for the VM-ADCP.

Station Latitude Longitude Duration (h) Water depth Stretched depth Coverage

(N) (E) MSS/ADCP (m) (sm) (%)

1 80◦7.95′ 4◦18.10′ 24.1/24.3 1253± 57 1147 64/52

2 80◦25.14′ 6◦55.24′ 23.1/24.7 637± 9 715 84/67

3 80◦34.00′ 9◦46.73′ 22.7/8.8 1000± 86 828 66/50

4 80◦0.57′ 9◦59.25′ 24.4/18.8 484± 4 567 99/73

5 80◦0.10′ 5◦58.10′ 24.2/4.6 879± 29 988 70/49

5-M 79◦59.78′ 5◦55.95′ 195.5/15.1a 889 990 75b

a Duration of Microcat sampling/duration of Longranger sampling.
b Percentage of the stretched depth covered by the moored Microcats.

(1991) observed an upward heat flux of 25 W m−2, which

decreased to 6 W m−2 below the surface mixed layer. These

mixing rates and heat fluxes are strong and comparable to

those observed over the shelves north of Svalbard and in

proximity to the West Spitsbergen Current branches (Fer and

Sundfjord, 2007; Sirevaag and Fer, 2009). Here, we hypothe-

size that spatially varying tides and their baroclinic response

over topography are responsible for the observed variability

and mixing near the YP.

In this paper we discuss tidal forcing and the role of tides

in mixing near the YP. Our study differs from the earlier

work in that we report observations from stations, each occu-

pied typically for 1 day, and an 8-day-long time series from

a bottom-anchored mooring. The data set is presented ear-

lier in Fer et al. (2010, hereafter F2010), who reported strong

variability in the internal wave activity and vertical mixing at

the YP. However, the rate of conversion of surface tide en-

ergy to baroclinic energy, the spatial distribution of the baro-

clinic energy fluxes, and the energy dissipation rates are un-

known. The limited observational data set is therefore sup-

plemented with results from a global high-resolution ocean

circulation and tide model simulation (STORMTIDE, Müller

et al., 2012), to obtain barotropic-to-baroclinic energy con-

version rates and baroclinic energy fluxes in the region. A

thorough evaluation of model–observation comparison and

model performance is not intended in this paper. Our ap-

proach is to use the (limited) observations to document the

substantial tidal variability and levels of turbulence mixing,

and use the tidal model results to infer integrated, regional

energetics.

2 Methods

2.1 Observational data

The site and measurement details are described fully in

F2010; only a brief summary is given here. Observations

were made in summer 2007 from the R/V Håkon Mosby in

southern YP. Sampling was limited by the ice edge in the

MIZ, and included five stations and an 8-day-long time se-

ries from a mooring (Fig. 1 and Table 1). Each station was

occupied for approximately 1 day. Full-depth CTD (con-

ductivity, temperature, depth) profiles were collected using

a Sea-Bird Scientific SBE911 plus system. At each station

ocean microstructure profiles were taken approximately ev-

ery 30–60 min (222 casts in total) in the upper 520 m us-

ing a loosely tethered free-fall profiler equipped with shear

probes (Micro-Structure Sonde, MSS, manufactured by ISW

Wassermesstechnik, Germany). Velocity in the water column

was measured by a vessel-mounted Teledyne RD Instruments

(RDI) Narrowband 150 kHz acoustic Doppler current pro-

filer (VM-ADCP) in the upper 360 m. Additionally, at sta-

tion 1, six velocity profiles at approximately 4 h interval were

collected to the bottom, using eXpendable Current Profilers

(XCPs).

The mooring was deployed at a water depth of 889 m, co-

located with station 5. The mooring line was instrumented

with 19 SBE37 Microcats recording conductivity, tempera-

ture and (16 of them) pressure, distributed between 99 and

873 m; a Teledyne RDI 75 kHz Longranger ADCP at approx-

imately 2 m above the bottom looking upward and sampling

in 8 m bins; and an Aanderaa (Xylem Inc.) Seaguard cur-

rent meter at 23 m depth. Sampling interval was 1 min for

all moored instruments. Time series of the depth of each in-

strument is inferred from the pressure record (the depth of

the two Microcats without pressure sensors were interpo-

lated from the adjacent sensors). The resulting time-depth

structure of temperature and salinity is then gridded onto

20 m regular vertical spacing. This processing accounts for

the mooring motion. With the exception of the Longranger

that stopped after 15 h because of a leakage, all moored in-

struments sampled throughout the deployment.

Post-processing of the CTD and current measurements

follows common procedures and is briefly summarized in

F2010. Post-processing of the microstructure data follows

Fer (2006), see also F2010. Profiles of dissipation rate of tur-

bulent kinetic energy (TKE) per unit mass, ε, are obtained

www.ocean-sci.net/11/287/2015/ Ocean Sci., 11, 287–304, 2015



290 I. Fer et al.: Tidal mixing near the Yermak Plateau

from the shear probes to a noise level of 5× 10−10 W kg−1.

The reduced data set collected from the vessel and used in

the analysis includes current profiles from the VM-ADCP

(hourly temporal and 4 m vertical average) and XCPs (2 m

vertical average), temperature, salinity and potential density

anomaly, σθ , profiles from the ship’s CTD and from the MSS

(1 m vertical average), and dissipation rate ε from the MSS

(1 m vertical average). The data set from the mooring in-

cludes hourly averaged and vertically gridded horizontal ve-

locity and σθ profiles at 8 and 20 m vertical resolution, re-

spectively.

2.2 Numerical modelling

The numerical model is a global high-resolution ocean cir-

culation and tide model coupled to a thermodynamic sea-

ice component (STORMTIDE, Müller et al., 2012). The

STORMTIDE model is formulated on a global tripolar

grid with an average horizontal resolution of about 10 km,

which becomes as small as 5 km in high latitudes. Thus,

the mesoscale ocean circulation is implicitly resolved. There

are 40 vertical z levels and the time step of the numerical

scheme is 600 s, sufficient to simulate the low-mode internal

tides. The model physics and numerics are based on the Max

Planck Institute Ocean Model (Jungclaus et al., 2006). The

astronomical tidal forcing is described by ephemerides and

represents the complete lunisolar tidal forcing of second de-

gree. The model uses no internal wave drag, i.e. no additional

energy sink for barotropic tides in the deep ocean. The con-

version of barotropic-to-baroclinic tidal energy (Sect. 3.1)

amounts to 1.14 TW (1 TW≡ 1012 W) in the deep ocean, and

is in the range of previous estimates from models, theory, and

observations (Egbert and Ray, 2000; Simmons et al., 2004;

Nycander, 2005).

A 10-year STORMTIDE simulation is used in the present

study, and a detailed description on the set-up of the model

simulation including atmospheric forcing, restoring schemes,

and physical parametrization can be found in Müller et al.

(2014). The hourly output of 32 days of sea level and ve-

locities, starting 1 January, has been used for a harmonic

analysis with respect to several tidal constituents (Foreman

et al., 2009). Global model products of tidal velocities, ener-

getics, and sea level are available for download at the World

Data Centre for Climate (see Müller et al., 2014, for details).

The barotropic and low-mode internal tides have been eval-

uated in Müller et al. (2012). It has been shown that the sur-

face signature of internal tide, evaluated by sea surface satel-

lite products, is reasonably well captured. The barotropic-

tide-induced sea level variability is captured to 93 % and

a recent barotropic tide model intercomparison shows that

STORMTIDE ranks similar to other modern hydrodynamic

tide models (Stammer et al., 2014).

3 Methods of analysis

In order to characterize the tidal forcing and energetics at the

YP region and at the observation stations, the STORMTIDE

and the cruise data, respectively, are used. The methods in-

volved are summarized below. The analysis is based on the

baroclinic perturbation fields (e.g. horizontal velocity and

pressure) at tidal frequency which are obtained using har-

monic analysis of the model and observational baroclinic

perturbation fields. The baroclinic perturbations are indicated

by a prime; purely sinusoidal baroclinic fluctuations gener-

ated using the harmonic analysis results are indicated by a

tilde over the corresponding variable.

3.1 Tidal energy conversion and baroclinic energy

fluxes from STORMTIDE

The simulated tidal energy flux and conversion of barotropic-

to-baroclinic tidal energy are computed from the model by

using the derivations presented in Kang and Fringer (2012).

The vertically integrated, barotropic-to-baroclinic tidal en-

ergy conversion rates are obtained from

C = 〈gρ̃W 〉t , (1)

where ρ̃ is the density perturbation associated with the tidal

motion, g the gravitational acceleration, and 〈·〉t and the

overbar denote averages in time and integral in the verti-

cal, respectively. Using the model bottom topography and

the barotropic tidal currents, the barotropic vertical velocity

W(z) at depth z is defined as

W(z)=
z

H
(uBT · ∇HH), (2)

where H is the total water depth, ∇H is the horizontal differ-

ential operator, and uBT the horizontal barotropic tidal cur-

rent vector.

The vertically integrated, baroclinic tidal energy flux with

zonal and meridional components, F = (Fu,Fv), is calcu-

lated from

F = 〈p̃(z, t )̃u(z, t)〉t , (3)

where p̃ is the perturbation pressure associated with tidal

motions and ũ is the baroclinic tidal current vector, both ob-

tained using harmonic analysis of the model output. At the

latitudes of the YP, ωM2
< f and the internal wave solution

is evanescent (the horizontal wave number is imaginary and

the group velocity, cg, is zero). The common approach of

relating p̃ũ to the baroclinic energy flux, Ecg where E is

the energy density, should be interpreted with caution (see

Sect. 3.3 for discussion). We further derive baroclinic radia-

tion defined as the horizontal divergence of the baroclinic en-

ergy flux, ∇H ·F , and define the depth-integrated dissipation,

C−∇H ·F , as the difference between tidal energy conversion

and radiation (e.g. Kang and Fringer, 2012).

Ocean Sci., 11, 287–304, 2015 www.ocean-sci.net/11/287/2015/
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3.2 Energy and energy flux from observations

The calculation of the baroclinic energetics follows the com-

mon methods, see, e.g., Kunze et al. (2002) and Nash et al.

(2005), and also accounts for isopycnal heaving by move-

ment of the free surface (Kelly et al., 2010). For a sinusoidal

wave, the calculation requires perturbation profiles of ve-

locity and pressure isolated at the corresponding frequency

band, sampled over the whole water column, for an inte-

ger number of wave periods. We apply harmonic analysis to

determine the amplitude and phase of the lunar semidiurnal

wave, generate full-period time series, and project them onto

flat-bottom vertical modal shapes to obtain full-depth pro-

files at each station. Section 3.2.1–3.2.5 detail the methods

involved in each step. The caveats associated with the flat-

bottom assumption and the limited time and vertical span of

observations are discussed in Sect. 3.3. At all stations, den-

sity profiles are available for approximately two semidiur-

nal cycles (day-long time series). Comparably long veloc-

ity time series are obtained from VM-ADCP at stations 1,

2, and 4 (Table 1). Stations 3 and 5, however, have too short

VM-ADCP sampling duration to resolve the semidiurnal cur-

rents and are excluded from the analysis. At the mooring lo-

cation near station 5, approximately full-depth, between 23

and 864 m, and 15.1 h long current profiles recorded by the

moored instruments allow for energy flux calculations.

3.2.1 Baroclinic perturbation calculations

Using the observed velocity and density profiles, baroclinic

perturbation fields of velocity, u′, and buoyancy, b, are calcu-

lated similar to the methods described in Kunze et al. (2002)

and Nash et al. (2005). The calculation of baroclinic pres-

sure requires cumulative full-depth integrals, and is deferred

to Sect. 3.2.5.

Baroclinic perturbation velocity, u′, is calculated by re-

moving the depth-averaged velocity profile at each time and

then removing the time average at each depth; u′(z, t)=

u(z, t)−〈u(z, t)〉z−〈u(z, t)〉t . 〈·〉z and 〈·〉t indicate averag-

ing over depth and time, respectively. The depth average is an

approximation to the barotropic velocity, and is valid because

the frictional surface and bottom boundary layers are not cov-

ered by the moored instruments and the VM-ADCP. Verti-

cal isopycnal displacement profiles, ξ(z, t), are constructed

using displacements of isopycnals from their station time-

mean depth. For the mooring data, displacements are calcu-

lated relative to 24 h moving average density profiles. The

measured buoyancy perturbation is b =−(g/ρ0)(σθ−〈σθ 〉t ).

Equivalent results are obtained using the vertical displace-

ment, ξ =−bN−2, where N(z)= [−(g/ρ0)(∂〈σθ 〉t/∂z)]
1/2

is the buoyancy frequency.

3.2.2 Semidiurnal fits

In order to infer the baroclinic semidiurnal energy flux, we

isolate the semidiurnal band using harmonic analysis. The

semidiurnal frequency, ωM2
= 1.405× 10−4 s−1, and the in-

ertial frequency at 80◦ N, f = 1.44× 10−4 s−1
∼ 1.025ωM2

,

cannot be distinguished because of short record length.

Therefore, semidiurnal must be understood as the near-

inertial band when discussing observations. However, in the

period spanning the cruise and 4 weeks prior to the cruise,

wind forcing in the region was weak (quantified and dis-

cussed in Sect. 3.3), and we do not expect significant con-

tribution from wind-induced near-inertial waves.

The semidiurnal fluctuation x̃M2
of a perturbation variable

x′ is estimated using harmonic analysis:

x̃M2
(z, t)= 〈x′〉t+ xM2

(z)cos
(
ωM2

t −φxM2
(z)
)

by minimizing the residual R(z, t) in a least-square sense to

determine the coefficients in

x′(z, t)= A(z)cos(ωM2
t)+B(z)sin(ωM2

t)+R(z, t),

where the amplitude profile is xM2
(z)= (A2

+B2)1/2 and the

phase profile is φxM2
(z)= arctan(B/A). The harmonic analy-

sis is applied to u′, b, and ξ . Semidiurnal fits for the horizon-

tal velocity components explain 30–90 % of the total variance

at the stations, whereas the semidiurnal vertical displacement

accounts for relatively less (15–65 %) of the observed vari-

ance.

When the harmonic analysis is repeated using two con-

stituents (ωK1
= 7.292× 10−5 s−1 and ωM2

) for the stations

with sufficiently long time series, the variance explained by

M2 is within 5 % of the values obtained using the M2 con-

stituent only (much less than the uncertainty we assigned

to harmonic analysis; see Sect. 3.3). At stations 1 and 2,

where there are long enough VM-ADCP data to fit both

constituents, K1 accounts for 20–25 % of the horizontal ve-

locity. Diurnal vertical displacement accounts for 20–40 %

at stations 1–4 and dominate (57 %) at station 5. The diur-

nal component is clearly important at the YP. Because of

the short station durations, we do not report diurnal baro-

clinic fluxes from the observations, but discuss them using

the STORMTIDE model results.

3.2.3 Vertical modes

Constructed full-period baroclinic semidiurnal time series

are used to derive full-depth profiles of ũ, ξ̃ , and b̃. At each

time, the corresponding vertical profile is projected onto or-

thogonal vertical modes with vertical structure Gj of each

mode j governed by (Phillips, 1977)

d2Gj (z)

dz2
+

[
N2(z)

c2
j

]
Gj (z)= 0, (4)

www.ocean-sci.net/11/287/2015/ Ocean Sci., 11, 287–304, 2015
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where cj is the eigenspeed for mode j . Vertical velocity

and vertical displacement structures of each mode scale with

Gj , while the horizontal velocity is proportional to dGj/dz.

Equation (4) is solved numerically for each station, using the

station meanN2(z) and the boundary conditionsGj (−H)=

Gj (0)= 0, where H is the total depth. Modal amplitudes

are then obtained by least-squares fitting (stable solutions

are obtained for the first three baroclinic modes). The full-

depth profiles are constructed as the sum over modes as, for

example, ũ(z, t)=
∑

U j (t)dGj (z)/dz, where U j is the am-

plitude of the horizontal velocity for mode j . When averaged

over each station’s duration, the first three modes account for

50–80 % of the semidiurnal baroclinic velocity and 30–65 %

of the semidiurnal isopycnal displacement. Vertical modes

are orthogonal only over the full depth and over flat bottom.

For steep slopes (relative to the wave slope), the horizontal

and vertical structures cannot be separated and modal cou-

pling may occur. The associated error in our analysis is dis-

cussed in Sect. 3.3.

3.2.4 Wentzel–Kramers–Brillouin scaling

Although the stations are closely spaced, the stratification

differs significantly as a result of lateral gradients in prox-

imity to the ice edge (see F2010). In order to account for the

varying stratification, we apply Wentzel–Kramers–Brillouin

(WKB) scaling (Leaman and Sanford, 1975) using the survey

mean stratification of N0 = 2.4 × 10−4 s−1 as the reference

buoyancy frequency. The stretched depth for a given station

mean N(z) profile is zwkb =
∫ 0

z
N(z′)/N0dz′. Horizontal ve-

locity and pressure scale as (N0/N(z))
1/2, and vertical ve-

locity and displacement scale as (N(z)/N0)
1/2. Table 1 lists

the stretched water depth and the percentage of the stretched

water column covered by the instruments. Although the sam-

pling was limited to the upper 520 m (MSS) and 360 m (VM-

ADCP), 64–99 % (MSS) and 49–73 % (VM-ADCP) of the

stretched water column were covered. The portion of the

mooring densely equipped with the Microcats covers 75 %

of the stretched depth.

3.2.5 Energy and energy flux calculations

Full-depth and full-period baroclinic semidiurnal fields ũ

and b̃ are constructed as the sum of the first three baro-

clinic modes. Baroclinic horizontal kinetic energy (HKE)

and available potential energy (APE) in units of J m−3 are

obtained from

HKE(z)=
ρ0

2
〈̃u(z, t)2+ ṽ(z, t)2〉t , (5)

APE(z)=
ρ0

2
N(z)−2

〈̃b(z, t)2〉t ,

where N(z) is the station-mean buoyancy frequency profile

(calculated using the time-averaged density profile, 〈σθ 〉t ).

The vertically integrated horizontal baroclinic energy flux,

F , is obtained from Eq. (3). The internal tide baroclinic pres-

sure perturbation, p̃, in units of Pa, is calculated using hydro-

static assumption and following Kelly et al. (2010) as

p̃(z, t)=

0∫
z

ρ0(̃b− b
η)dz′− c, (6)

where ρ0 is the reference density and c is a constant of in-

tegration that ensures p̃ has zero depth average. The sec-

ond term in Eq. (6) is buoyancy due to isopycnal heaving

by movement of the free surface,

bη =−N2η

(
z+H

H

)
, (7)

where η is the surface displacement (Kelly et al., 2010). We

use η from STORMTIDE at the observation station locations.

When the pressure perturbation induced by the isopycnal

heaving by movement of the free surface is ignored, calcu-

lations of Kelly et al. (2010) indicate 10–50 W m−1 error in

depth-integrated baroclinic energy fluxes, negligible over the

energetic Kaena Ridge in Hawaii, but amounting to 10–45 %

error over the Oregon continental slope.

3.3 Errors, uncertainty, and caveats

Observations suffer from short sampling duration, and from

the uncertainty propagated from modal fits to vertically

gappy sampling. Furthermore, in the analysis of the observa-

tions there are errors as a result of the study site that is char-

acterized by topography (modal analysis assumes flat bot-

tom) and high latitude (near-inertial waves are in the semid-

iurnal band). The analysis of the STORMTIDE model data

is free from these errors because modal analysis is not em-

ployed, and the inertial and tidal frequencies are delineated

by the harmonic analysis of sufficiently long time series.

Errors and systematic bias in baroclinic energy flux cal-

culations for a variety of oceanographic sampling schemes

are discussed thoroughly in Nash et al. (2005). Using Monte

Carlo simulations of synthetic data, including a combination

of semidiurnal, near-inertial and internal wave continuum

signal, they assess magnitude and parameter dependence of

flux estimates made from temporally or vertically imperfect

data. For large baroclinic semidiurnal energy fluxes, such

as those near a generation site in Hawaiian Ridge, a set of

six full-depth profiles spanning 15 h leads to unbiased esti-

mates of semidiurnal depth-integrated energy flux with 10 %

error. Even for much weaker fluxes, the error is about 25 %,

which is representative of our XCP sampling at station 1 with

six casts spanning 20 h. The error further decreases with in-

creasing number of profiles collected in a tidal period. Our

shipboard sampling is typically 20–26 profiles (MSS and

hourly averaged VM-ADCP) spanning two semidiurnal cy-

cles; hence, errors associated with the harmonic analysis are

expected to be small. The analysis of Nash et al. (2006), how-

ever, ignores the possible contamination of the semidiurnal
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band by the inertial waves at high latitudes. Inertial motions

in the upper mixed layer are typically excited by energetic

wind events and only a small fraction of the energy prop-

agates deeper into the water column as near-inertial waves

(see e.g. Alford et al., 2012). Short time series at our stations

can be contaminated by near-inertial wave signals generated

previous to the cruise at distant poleward locations. During

the period 25 June–2 August 2007, spanning the cruise pe-

riod and 4 weeks prior to the cruise, average ERA-Interim

10 m height wind speed using all grid points within a 100 km

radius from station 2 is 5 m s−1, with only 4 % stronger than

10 m s−1, and none stronger than 12 m s−1. We therefore do

not expect significant contribution from wind-induced near-

inertial waves. Considering the competing effects of weak

baroclinic energy fluxes (more error) and more than six pro-

files per analysis period (less error), and an unquantified

but small contamination from near-inertial waves, we assign

20 % error to harmonic analysis.

For the case of vertically gappy sampling, Nash et al.

(2005) find that larger gaps can be tolerated near the bot-

tom after WKB scaling (as in the case of our MSS and VM-

ADCP sampling), but estimates are sensitive to the data near

the surface. Because the energy flux scales as the buoyancy

frequency, it is typically surface intensified. For a two-mode

fit, when only the top 30 % of the WKB-stretched water col-

umn is sampled, Nash et al. (2006) inferred less than 40 %

error in F . Using the XCP data (approximately full-depth

profiles), we attempt to estimate the error associated with the

limited vertical extent of our station data sets. We repeat the

XCP-station analysis using the portion of the velocity mea-

surements between 12 and 360 m depth, identical to the VM-

ADCP coverage, and the CTD profiles between 3 and 500 m

depth, identical to the MSS coverage. Relative to the full-

depth analysis, error in the depth-averaged HKE and APE

is 7 and 100 %, respectively. The latter is a result of poor

modal fits when the lower half of the water column is not

sampled. The depth-integrated baroclinic energy flux error is

52 %, comparable to the error reported by Nash et al. (2005).

Our modal decomposition has errors as a result of imper-

fect depth coverage and sloping bottom. Modes are orthogo-

nal only over the full water depth and over flat bottom, and

contamination arises when unresolved variance is projected

onto resolved modes, or when the horizontal and vertical

structure cannot be separated over steep topography. The er-

ror associated with modal analysis can be estimated using

the station 4 data. This station has the best vertical coverage

and the energetics can be inferred using the observed pro-

files without modal analysis. The profiles of density cover

approximately the entire water column (Table 1), crucial for

pressure anomaly calculations. We repeat the station 4 anal-

ysis, but without fitting to the modal shapes. The error will

thus include both the effect of sloping bottom and the un-

resolved higher vertical modes. Relative to results without

modal fits, error in the depth-averaged HKE and APE is 34

and 36 %, respectively. The depth-integrated baroclinic en-

ergy flux error is 48 %.

The errors estimated for each source (harmonic analysis,

imperfect vertical sampling, and projection onto flat-bottom

normal modes), are not entirely independent, and are not the

same for each station. Overall, we assign total errors of 50 %

to HKE and 100 % to APE and F .

At the latitudes of the YP diurnal and lunar semidiurnal,

internal waves are evanescent with zero group velocity, and

our calculations (for both the observations and the model

data), using the common approach of Ecg = p̃ũ, should be

interpreted with caution. The water column is not a solid

boundary, and forced internal waves in the water column

will leak their energy from the generation site to only a lim-

ited vertical and lateral extent. Trapped sub-inertial baro-

clinic motions, however, are also possible and may propagate

along the topographic contours (several examples are cited

in Sect. 6). Our results thus represent the baroclinic fluxes

in a given frequency band, induced by pressure and velocity

perturbations associated with tidal response over topography,

with possible leaking internal waves and trapped waves.

The STORMTIDE model results are obtained from a

global model which has, from a regional perspective, a rather

coarse resolution. The model is hydrostatic and thus only

permits internal waves with frequencies much less than the

buoyancy frequency, which is a reasonable limit for the

semidiurnal waves. The horizontal resolution restricts the

model to resolve only the low-mode internal tides. The model

results are limited to interpretation for linear wave character-

istics. The global model thus can not compete with regional

models resolving non-linear characteristics of internal wave

propagation (e.g. Simmons et al., 2011). However, due to its

global characteristics it explicitly avoids the boundary con-

dition issue, which is critical for concurrent simulations of

mesoscale ocean circulation and internal tides. The dissipa-

tion of internal waves results from numerical parametriza-

tion of bottom friction and eddy viscosity and further by

numerical dissipation. Previous evaluations against observa-

tions from satellite altimetry (Müller et al., 2012), tide gauges

(Müller et al., 2014), and a detailed comparison of the gen-

eration of internal tides with observations, theory, and in-

verse models (Müller, 2013) support with confidence that

the model simulated internal tides inherit some degree of re-

alism: the internal wave generation and propagation of in-

ternal tides are reasonably well represented; near generation

sites in the deep ocean, the magnitude of the surface signa-

ture of internal tides is reasonably well reproduced; and the

magnitudes and the regional characteristics of barotropic-to-

baroclinic tidal conversion rates compare well with those in

other models, and observational and theoretical studies.
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4 Variability at the observation stations

Observations in 2007 were made during neap and transition

to spring tides (Fig. 2). The data show strong variability in

velocity and vertical isopycnal displacement in both diur-

nal and semidiurnal bands. Tidal surface elevation inferred at

the model grid point nearest to the mooring location shows

a tidal range of up to ±0.5 m, and both its phase and magni-

tude agree with the record inferred from the moored pressure

sensor nearest to the seabed (Fig. 2a), lending further confi-

dence on the model output. The duration of the current record

is short; however, the depth-average current agrees well with

the tidal flow. A detailed comparison is not attempted since

we cannot infer all four tidal constituents (M2, S2, K1, O1)

from the 15.1 h long ADCP record. The time-depth maps of

the vertical isopycnal displacement recorded by the moored

instruments show up to ±40 m alternating bands with mixed

diurnal and semidiurnal periodicity. On the southern flanks of

the plateau, tidal ellipses derived from STORMTIDE show

comparably strong semidiurnal (M2) and diurnal (K1) cur-

rents (not shown). At the observation site, STORMTIDE

tidal current amplitudes at station 2 (the most energetic sta-

tion for all constituents) are (K1, O1, M2, S2) = (13, 6, 14,

5) cm s−1; i.e. semidiurnal and diurnal bands are of com-

parable magnitude and typically K1 and M2 dominate over

O1 and S2. Frequency spectra of total velocity at the pycno-

cline presented in F2010 correspond to about 3 times larger

HKE in the diurnal band compared to the semidiurnal band.

In agreement with the velocity spectrum, the diurnal band

is the most energetic in the vertical isopycnal displacement

spectra throughout the water column at the mooring loca-

tion (F2010). Consistently, depth-integrated baroclinic en-

ergy fluxes from STORMTIDE averaged within 10 km of the

mooring location (station 5) are dominated by K1 (Sect. 5;

Table 4).

An overview of the semidiurnal amplitudes obtained from

the harmonic analysis of the horizontal current and isopycnal

displacements at stations 1, 2, and 4 is given in Fig. 3. A de-

tailed model–observation comparison is not attempted; how-

ever, the observed semidiurnal amplitudes generally compare

well with the STORMTIDE results. Station 2 has baroclinic

semidiurnal amplitudes comparable to the barotropic tide,

whereas at the other stations the barotropic component is

larger. The observed barotropic current amplitude of approx-

imately 5 cm s−1 at station 2 is significantly less than the M2

amplitude from STORMTIDE mentioned above. Overall, the

baroclinic semidiurnal current amplitudes are weak; never-

theless, the semidiurnal signal accounts for a significant per-

centage of the observed profiles (Sect. 3.2.2). The amplitudes

are comparable to those from a numerical modelling study

of the Barents Sea that show less than 5 cm s−1 semidiur-

nal baroclinic velocity at intermediate depths (Kagan and So-

fina, 2014). For comparison, trapped baroclinic diurnal cur-

rent amplitudes off the southern California Bight (Johnston

and Rudnick, 2014) are typically 2–3 times more energetic
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Figure 2. Time series at station 5 of (a) tidal surface elevation from

STORMTIDE (red; sum of 8 major constituents) and near-bottom

pressure anomaly from the deepest moored instrument (dashed),

(b) tidal current from STORMTIDE (red; sum of M2, K1, S2

and O1) and depth-averaged current measured by the moored in-

struments (dashed), and (c) vertical isopycnal displacements. The

downloaded archived STORMTIDE global data set is limited to

these four major constituents for the tidal velocity and phase. The

time-average depth of the instruments are shown by triangles on the

right. Bars on top show the duration of stations 1–5.

than the semidiurnal current amplitudes at our YP stations.

On the northern part of the YP, where the major barotropic-

to-baroclinic energy conversion sites are located, larger am-

plitudes are modelled (Sect. 5). At station 1, baroclinic verti-

cal displacement is typically less than the barotropic compo-

nent. In the upper 150 m of stations 2 and 4 and between 200

and 300 m at station 4, baroclinic vertical displacement ex-

ceeds the barotropic contribution. The phase of the horizon-

tal current increases approximately linearly with depth at sta-

tion 1, indicating upward energy propagation with a vertical

wavelength of at least 500 m. This is supported by the verti-

cal wave number spectra obtained for the bottommost 512 m

of the full-depth shear profiles sampled by XCPs suggesting

upward energy propagation (F2010). The phase of the ver-

tical displacement, on the contrary, typically decreases with

depth. This can be a consequence of the sub-inertial semidi-

urnal waves trapped along the topography. At stations 2 and

4, phase profiles show 180◦ jumps suggesting a vertically

standing behaviour.

Observed baroclinic energetics inferred from full-depth

profiles for the sum of the first three modes are summarized

in Table 2. The ratioR of depth-averaged HKE to APE varies
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Figure 3. Profiles of amplitude and phase of baroclinic u, v, and ξ obtained from the semidiurnal fits to VM-ADCP and MSS profiles at

stations (a) 1, (b) 2, and (c) 4. Also shown are the corresponding barotropic amplitude (vertical lines for u and v, and slanted lines for ξ ) and

phase (vertical lines), inferred from identical harmonic analysis of the depth-averaged currents and profile of barotropic displacement.

Table 2. Semidiurnal baroclinic energetics at observation stations. Results are shown for the sum of the first three baroclinic modes. An

overbar indicates integration over depth; 1-XCP is station 1 with results obtained from the XCP profiles; 5-M is the mooring located near

station 5.

Station 103
×HKE 103

×APE R HKE APE Fu Fv

(Jm−3) (Jm−3) (Jm−2) (Jm−2) (Wm−1) (Wm−1)

1-XCP 211± 106 41± 41 5± 5 205± 103 25± 25 −29± 29 41± 41

1 143± 72 56± 56 3± 3 142± 71 33± 33 −20± 20 21± 21

2 87± 44 22± 22 4± 4 84± 42 12± 12 −14± 14 8± 8

3 – 97± 97 – – 70± 70 – –

4 80± 40 15± 15 5± 5 50± 25 8± 8 −2± 2 −3± 3

5 – 39± 39 – – 20± 20 – –

5-M 315± 158 47± 47 7± 7 148± 74 12± 12 −4± 4 15± 15

between 3 and 7, but with 100 % error bars. R is equivalent

to the shear-strain ratio Rω discussed in F2010. The values

up to 14, when a factor of 2 uncertainty is considered, are

typical in the ocean and are consistent with the values in-

ferred in F2010. Estimates from the XCP data at station 1

are larger than those from the MSS/VM-ADCP profiles (but

within the error bars), suggesting that the lack of MSS/VM-

ADCP sampling in the deepest 50 % of the stretched depth

affects the results. The horizontal components of the depth-

integrated M2 baroclinic energy flux are listed in Table 2. At

stations 1 and 5, F is directed nearly along the isobaths. The

largest F is observed at station 1 on the western flank. The

results are similar when derived from the MSS/VM-ADCP

profiles or from the XCP profiles.

The measurements of the dissipation rate will be used in

Sect. 6 to characterize the typical volume-integrated dissi-

pation levels in the YP region. A station-mean profile of

dissipation rate ε measured by the microstructure profiler

is obtained by averaging over all profiles collected at each

station (Fig. 4). Depth-integrated dissipation rates are given

in Table 3. Station 4 has the largest dissipation rates. Sta-

tion 4 profile extends to the bottom; observations at other
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Table 3. Depth-integrated dissipation rate at observation stations in

units of 10−3
×W m−2. Integrations down to 500 m are obtained

from the station mean ε profiles. Integrations from 50 m to the bot-

tom use the assumed minimum and maximum ε profiles described

in the text.

Station
∫ 500 m

0 ρεdz
∫ 500 m

50 m ρεdz
∫H

50 mρεmindz
∫H

50 mρεmaxdz

1 3.7 0.4 0.3 1.0

2 2.3 0.6 0.7 1.2

3 0.8 0.5 0.6 1.3

4 1.9 1.3 1.3 1.3

5 0.9 0.3 0.2 0.7

stations, however, are limited to 500 m depth. Because the

turbulence near the surface layer can be dominated by other

processes than internal wave-induced mixing, values inte-

grated between 50 and 500 m depth are also listed in Ta-

ble 3. In order to have an estimate of the full-depth (be-

low 50 m) integrated ε for all stations, we construct a lower

bound (εmin) and an upper bound (εmax) profile down to the

mean echo depth of each station. Profiles of εmax are ob-

tained by extending the 450–500 m average value to 100 m

height above seabed, and thereafter exponentially increas-

ing this value by a factor of 10 until the bottom is reached

(Fig. 4). The near-bottom enhancement for εmax is applied

to account for bottom boundary turbulence and breaking of

internal waves over the slope. The profiles of εmin are con-

structed by extending the observed profiles by an assumed

low dissipation of 10−10 W kg−1. Observed profiles at sta-

tions 1 and 5 reach the noise level of 5×10−10 W kg−1 below

about 150 m, suggesting that actual values can be lower. We

therefore exponentially reduce the 450–500 m average value

for stations 2 and 3, and the value at 200 m for stations 1 and

5, to 10−10 W kg−1 over a 200 m vertical scale, and extend

this value to the seabed (Fig. 4). Depth-integrated dissipa-

tion below the surface mixed layer is typically between 0.2

and 1.3×10−3 W m−2, with largest values at station 4. Lim-

ited by the ice edge, our observations were made only on

the southern part of the YP. On the one hand, these stations

are not as energetic as the significant conversion sites on the

northern flanks. On the other hand, the dissipation rate pro-

files do cover several regimes (the quiescent station 1, the

moderately turbulent station 2, and the turbulent station 4).

Using the constructed dissipation profiles described above,

we are confident that we obtain lower and upper bounds on

the dissipation rate representative of the YP.

5 Energetics from the model

Barotropic tidal fluxes inferred from STORMTIDE are

shown in Fig. 5. These can be compared to the K1 and M2

tidal fluxes around Svalbard shown in Chen et al. (2009): the

limited region shown in Fig. 5 is part of a pattern in which

the M2 energy propagates clockwise around the Svalbard is-
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Figure 4. Dissipation rate profiles for stations 1–5. Horizontal lines

with the station number indicated mark the mean echo sounder

depth for the station. Observed, station-mean profiles are shown in

the upper 500 m. Assumed full-depth profiles used in calculating

depth-integrated ε are shown for the lower bound εmin and the up-

per bound εmax.

lands, whereas the K1 tidal energy is mainly trapped along

the steep bottom topography. Both theK1 andM2 tidal fluxes

are elevated along the shelf break north of Spitsbergen and

also along the outer flank of the plateau, particularly close

to the CEAREX-O camp drift site. These regions of large

barotropic fluxes are also associated with high conversion

rates and depth-integrated baroclinic fluxes (Fig. 6).

The depth-integrated baroclinic fluxes in the energetic

parts of the YP are on the order of 200 W m−1 for M2 and

1000 W m−1 for K1. Near our mooring location, the depth-

integrated energy flux is 1 order of magnitude smaller than

at many of these energetic sites, and is reduced by another

order of magnitude at the other stations.

Barotropic-to-baroclinic energy conversion rate, C, is

shown for the semidiurnal and the diurnal tide in Fig. 6. The

CEAREX-O site is characterized by moderate M2 but sub-

stantially larger K1 conversion rates, reaching 0.05 W m−2;

the fluxes echo this pattern. The model results are thus con-

sistent with the observations from the CEAREX-O camp

where energetic internal waves and enhanced mixing were

measured (Padman and Dillon, 1991). Negative conversion

rates seen in Fig. 6 are typical of numerical studies on inter-

nal tide energetics (Simmons et al., 2004; Kang and Fringer,

2012). A negative conversion occurs when energy is trans-

ferred from baroclinic tide to the barotropic tide and indicates

interaction between locally and remotely generated baro-

clinic tides. Relatively large semidiurnal baroclinic fluxes
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can be observed on the western part of the plateau around

82◦ N, and also along the shelf break north of Spitsbergen.

Fluxes are typically directed along the topography and with

a limited lateral extent consistent with trapped tides.

The site of observational stations is characterized by weak

conversion rates and depth-integrated baroclinic fluxes, F ,

except near stations 1 and 5 on the western slope. From

the model, F is calculated as the average over grid points

within 10 km in the vicinity of each station. The results, to-

gether with 1 standard deviation, are listed in Table 4 for the

major diurnal and semidiurnal constituents. The variability

at neighbouring grid points is large. The M2 and K1 con-

stituents are comparable in magnitude and are greater than

the S2 and O1 fluxes. The fluxes inferred from the obser-

vations (for M2 only) compare fairly well with the model

results when averaged in the vicinity of the station location

(compare Tables 2 and 4); however, the comparison is poor

when a single data point from the nearest grid to the station

is used. Observed flux vectors are smaller than the size of the

station markers in Fig. 6a; hence, they are not shown (a direct

comparison on map is presented in Sect. 6).

The conversion rates in the vicinity of the stations are dom-

inated by theM2 andK1 constituents (3–10 times larger than

S2 andO1), with values between 1 and 10×10−3 W m−2, and

with largest rates near station 1. Model dissipation rates at

the station positions are weak, similar for M2 and K1, and

vary between an order of 10−3 W m−2 (station 2) and an or-

der of 10−2 W m−2 (station 1). These can be compared to

the observed values of order 10−3 W m−2 shown in Table 3.

The observational stations are limited to the relatively less
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Table 4. Depth-integrated baroclinic fluxes, F , in units of Wm−1 inferred from STORMTIDE using the grid points within 10 km of the

observation stations. The average ±1 SD over the corresponding grid points are listed for the horizontal components (Fu,Fv) of the four

major constituents.

Station M2 S2 K1 O1

1 (−16± 29,54± 32) (0± 2,−4± 3) (44± 16,17± 15) (8± 8,5± 11)

2 (−2± 1,−3± 1) (0± 1,0± 0) (14± 7,3± 1) (1± 2,1± 1)

3 (5± 6,−22± 11) (1± 2,0± 3) (2± 2,−2± 3) (0± 1,0± 2)

4 (1± 2,−8± 3) (0± 1,0± 1) (3± 3,−5± 6) (0± 1,−1± 1)

5 (2± 3,13± 7) (−1± 1,1± 1) (11± 5,8± 6) (2± 1,2± 2)

energetic southern flanks of the YP. It is therefore crucial to

utilize the model data to account for the energetic parts of the

plateau. In the following we shall rely on the model results

to discuss the energetics in the region and its role for vertical

mixing.

The baroclinic radiation and depth-integrated dissipation

rates are obtained from the model. A negative radiation is

horizontal convergence of the depth-integrated flux and in-

dicates that the location is a sink, whereas a positive radi-

ation indicates that the site is a source for baroclinic en-

ergy. Volume-integrated conversion, radiation, and dissipa-

tion rates are calculated over the YP region bounded between

5◦W and 25◦ E zonally, 79 and 83◦30′ N meridionally, and

by the 250 m isobath north of Svalbard. Surface area in this

domain with water depth deeper than 250 m is approximately

2×1011 m2, with a mean water depth of 2300 m. For the M2

constituent, several outliers in the radiation data (in total 10

grid points, all between the 750 and 2250 m isobaths with ra-

diation values between 0.03 and 0.06 W m−2) are co-located

with weak conversion rates of an order of 10−3 W m−2, lead-

ing to unphysical negative dissipation rates. We removed

these points from the calculations. The volume-integrated

conversion rate in the region is 322 MW forM2 and 618 MW

for K1; the radiation is 8 and 1 MW, respectively. This in-

dicates that despite substantial energy conversion into inter-

nal tides, only a minute fraction (if any) propagates out of

the region, implying substantial local dissipation. The spatial

distribution of depth-integrated dissipation rate for the M2

and K1 components is shown in Fig. 7. Total dissipation in-

tegrated over the domain is 314 and 617 MW for the M2 and

K1 constituents, respectively.

The conversion is spatially variable, and is particularly

concentrated near the 2000 m isobath in the northern flanks

of the plateau (Fig. 6). Dissipation is typically elevated

where the conversion rates are large and the spatial dis-

tribution is characterized by several regions (hot spots)

where the dissipation is enhanced (Fig. 7). For quantifica-

tion of their contribution, we define hot spots as grid-volume-

integrated total dissipation exceeding 0.5 MW (correspond-

ing to approximately 10−2 W m−2 depth-integrated dissipa-

tion, strong colours in Fig. 7). The percent of area with

hot spots is 7 % for M2, 11 % for K1, and 15 % for the

sum of M2 and K1. Dissipation of diurnal energy is con-

centrated on the northern flanks of the plateau, around the

CEAREX-O drift site, over the shallow part of the plateau

near the MIZEX83 drift, and around 17–18◦ E north of Sval-

bard. Dissipation of semidiurnal energy shows a similar pat-

tern, but with relatively less pronounced dissipation near the

CEAREX-O drift site. There is a patch of elevated dissipation

near station 4 where the highest mixing rates were recorded

during our cruise (Fig. 4). These locations of energetic turbu-

lence also coincide with regions of large barotropic tide ve-

locities. The maximum tidal velocity amplitudes during one

spring-neap cycle exceed 0.4 m s−1 in localized regions over

the plateau and approach 1 m s−1 over the shelf north of Sval-

bard east of our station 4. Over the plateau, the largest tidal

velocity is near the seamount where D’Asaro and Morison

(1992) inferred eddy diffusivities greater than 10−4 m2 s−1

from XCP shear. Close to the CEAREX-O camp, on the

northern flanks, the maximum tidal velocity is approximately

25 cm s−1, greater than that at our stations.

The spatial variability is further investigated using the inte-

grated conversion and radiation rates over volumes bounded

by increasing isobaths, following Kang and Fringer (2012).

The results for the M2 and K1 constituents are shown in

Fig. 8 using 250 m depth bins. Cumulative rates between cho-

sen isobaths are tabulated in Table 5. The barotropic tide is

converted to internal tide at all depths, for both constituents.

The semidiurnal conversion shows an increase at isobaths

deeper than 1500 m (over the sloping sides of the plateau)

and with a peak around the 3000 m isobath (Fig. 8a). The ra-

diation is nil below the 750 m isobath, positive between 750

and 2000 m, and negative for deeper water. All of the semid-

iurnal energy converted at depths shallower than 750 m, and

also the amount generated in deeper water which propagates

into shallower depth, are thus dissipated over the shelves.

The slope between 750 and 2000 m depth is a generation site

for propagating internal tide (positive radiation). The deeper

part of the slope is a sink, and dissipates the energy that is

locally generated as well as the fraction that is radiated from

the upper slope. The radiation for these trapped waves must

be interpreted in the context of a decay of energy with an

e-folding scale of Rossby radius (Sect. 6).
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Figure 7. Depth-integrated dissipation rate, presented in base-10 logarithm, for the (a) M2 and (b) K1 constituents obtained from

STORMTIDE. Isobaths (grey) drawn at 500 m intervals are from the model topography. The 2000 m isobath is drawn in black for refer-

ence. Station positions (open circles) and the drift of CEAREX-O (Padman and Dillon, 1991) and MIZEX83 (D’Asaro and Morison, 1992)

are also shown.

Table 5. Volume-integrated conversion and radiation rates for the M2 and K1 constituents, bounded by selected isobaths. Shallower than

250 m (not listed), there is approximately 10 MW conversion, for both M2 and K1, balanced by local dissipation.

M2 M2 M2 K1 K1 K1

Isobath Conversion Radiation Dissipation Conversion Radiation Dissipation

(m) (MW) (MW) (MW) (MW) (MW) (MW)

250–750 19 0 19 42 −4 46

750–2000 85 80 5 175 −23 198

2000–5000 218 −72 290 401 28 373

Volume-integrated conversion of K1 (618 MW) is approx-

imately twice that of M2. Similar to the M2 pattern, there

is radiation away from the upper part of the slope, whereas

the deeper slope is a sink for the baroclinic K1 energy

flux. The major source and sink regions are relatively more

constrained by the isobaths for K1 (1000–1500 and 1750–

2250 m) compared to a broader distributed M2 (750–2000

and 2250–4000 m). Most of the dissipation occurs deeper

than 1500 m. The dissipation curve shows an approximate

local conversion–dissipation balance over the shallows and

also on the deeper part of the slope, but the dissipation ex-

ceeds twice the conversion rates between 1500 and 2000 m

depth; all the K1 energy radiation from the upper slope is

dissipated here.

6 Discussion

The model results show substantial barotropic tidal fluxes

around the YP and localized regions of large barotropic-to-

baroclinic energy conversion rates for both K1 and M2 con-

stituents. These conversion sites are shown to be associated

with baroclinic energy fluxes. Is it realistic to have baro-

clinic energy fluxes and radiation for tides above their cor-

responding critical latitudes? Analogous to barotropic con-

tinental shelf waves, variable bottom topography of ridges,

seamounts and plateaus in homogeneous water can support

trapped waves (Rhines, 1969; Huthnance, 1974). If, for ex-

ample, diurnal tidal frequency is close to the natural fre-

quency of one of such free wave modes, the topographically

trapped free wave will be resonantly excited by the oscilla-

tion of the diurnal tide. Using arbitrary stratification, Brink

(1989) showed that sub-inertial baroclinic trapped waves

are also supported at isolated seamounts. Wang and Mooers

(1976) showed that in a continuously stratified ocean with

sloping bottom, topographic Rossby waves are the only form

of sub-inertial wave motion (for a negligible coastal wall),

and reduce to barotropic shelf waves and to bottom-trapped

waves in the limits of small and large stratification, respec-

tively. The energy of the topographically trapped waves prop-

agates along the slope, around the topographic feature with

a decay scale of Rossby radius of deformation and negli-

gible radiation in the cross-slope direction. Sub-inertial in-

ternal wave energy and energy fluxes have been observed

and modelled elsewhere (Allen and Thomson, 1993; Tanaka

et al., 2010; Johnston and Rudnick, 2014; Robertson, 2001;

Kunze and Toole, 1997). The internal Rossby radius, c1/f ,

for the first mode eigenspeed obtained from the modal anal-

ysis of our observational data, varies between 3 and 5 km.
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Figure 8. Total baroclinic radiation (red), conversion (dashed

black), and dissipation (green, circles) for the (a) M2 and (b) K1

constituents, integrated in 250 m isobath bounded volumes.

The bottom slope between the 1000 and 2000 m isobaths

along the northwestern slope, representative of the genera-

tion sites, is 0.06 (±0.03). The cross-slope distance covered

between the 1000 and 2000 m isobaths is thus 17 km (±8).

If the trapped wave generated between these isobaths decays

with the Rossby radius, a decay to 5 % of the background

value occurs between 9 and 15 km. Hence, the substantial in-

ferred radiation near the isobaths where conversion occurs

(Fig. 8) is plausible.

The bottom-trapped tides in the Arctic Ocean are of par-

ticular importance because most of the Arctic Basin is lo-

cated north of critical latitude of the most energetic tidal

constituent M2 (Falahat and Nycander, 2014). Using global

numerical models, baroclinic tidal energy (including pole-

ward of the critical latitudes) are reported by Niwa and Hi-

biya (2011) for the major diurnal constituents and by Müller

(2013) for the major diurnal and semidiurnal constituents.

In an idealized study, Falahat and Nycander (2014) exam-

ine the bottom-trapped internal tides for the M2, K1, and O1

tidal constituents over the global ocean. To infer the energy

conversion rates from the barotropic tides to bottom-trapped

internal tides, they calculate the energy density for linear in-

viscid waves and assume that the trapped wave energy, for all

vertical modes, decays over a 3-day timescale. This ad hoc

timescale is representative of Fieberling Seamount which is

a strongly forced and damped system with large dissipation

and eddy diffusivity (Kunze and Toole, 1997). In the Arc-

tic Ocean, Falahat and Nycander (2014) inferred an area-

integrated energy flux of 1.1 GW for topography-trapped in-

ternal tides (sum of the M2, K1, and O1 constituents, where

about 70 % is due to M2). The diurnal component, of about

0.3 GW, is 1 order of magnitude less than the diurnal inter-

nal tides in the Arctic Ocean reported in Müller (2013), and

hence should be considered as a lower bound.

At high latitudes, diurnal tides with frequencies close to

the half of the inertial frequency are a likely source to force

resonant-trapped waves (Huthnance, 1974). In the Rockall

Bank, the diurnal tidal frequencies are close to the resonance

frequency of a natural trapped mode progressing clockwise

around the bank, leading to strongly excited diurnal currents

consistent with observations (Huthnance, 1974). A similar

excitation of diurnal currents was also shown around the Bear

Island near the M2 critical latitude (Huthnance, 1981). Yer-

mak Plateau is an area known to have resonantly enhanced

diurnal tides, particularly over the northern flanks (Hunk-

ins, 1986; Chapman, 1989; Padman et al., 1992). Using a

barotropic model with an idealized axisymmetric submarine

plateau both Hunkins (1986) and Chapman (1989) showed

near-resonant diurnal trapped topographic waves propagat-

ing around the YP. While Hunkins (1986) looked at the free

waves in a frictionless ocean, Chapman (1989) included fric-

tion and forcing by rectilinear K1 tidal currents (i.e. forced

and damped trapped waves). The topography of the YP, how-

ever, is not axisymmetric (Fig. 1). Padman et al. (1992)

showed that dispersion relations derived separately on the

northwestern and eastern flanks of the Plateau suggest free

diurnal waves on the northwest slope (near the CEAREX-

O site) but approximately zero group velocity on the east-

ern slope. This is inconsistent with the axisymmetric model

and with a resonant interaction mechanism related to the path

length of a free wave that encircles the entire plateau. They

proposed an alternative generation where diurnal energy is

due to topographic diurnal waves on the eastern part where

the group velocity is near zero, allowing maximum ampli-

fication. Although these studies address the barotropic diur-

nal currents in neutral stratification (for simplicity), they are

applicable to baroclinic solutions (Brink, 1989; Wang and

Mooers, 1976). For example, Tanaka et al. (2010) uses the

baroclinic coastal trapped wave solutions to explain the sub-

inertial diurnal baroclinic tidal energy propagating around

the Kuril Islands. On the continental slope of the Laptev Sea,

Pnyushkov and Polyakov (2012) reported that the baroclinic

solutions of the topographically trapped waves show no sig-

nificant change of the cross-slope structure of tidal current

and sea level amplitudes compared with the barotropic ex-

periment.

Sub-inertial internal wave energy and energy fluxes have

been observed and modelled elsewhere. Over the Juan de

Fuca Ridge, trapped (laterally and vertically) baroclinic

Ocean Sci., 11, 287–304, 2015 www.ocean-sci.net/11/287/2015/



I. Fer et al.: Tidal mixing near the Yermak Plateau 301

subinertial motions were reported (Allen and Thomson,

1993). In a numerical study, Tanaka et al. (2010) show that

most of the internal wave energy subtracted from the diur-

nal barotropic tide is dissipated within the Kuril straits. K1

tidal frequency is sub-inertial in this area and the tidal en-

ergy is fed into topographically trapped waves which prop-

agate along slope around each island with negligible radia-

tion away from the straits. Energy subtracted from the K1

barotropic tide is approximately 30 GW; most of the energy

dissipates locally, only 0.6 GW radiating out from the anal-

ysed domain. The local conversion and dissipation balance

is similar to what we found near the YP. Johnston and Rud-

nick (2014) observed topographically trapped diurnal inter-

nal waves along the California continental slope and over the

Santa Rosa–Cortes Ridge in the southern California Bight.

The diurnal (sub-inertial) internal tides are more energetic

than the semidiurnal internal tides and are associated with el-

evated diffusivities near topography. Using current measure-

ments in the upper 200 m in about 2700 m deep water on the

continental slope of the Laptev Sea, Pnyushkov and Polyakov

(2012) inferred baroclinic tide in the upper 50 m, twice as

energetic as the barotropic tidal currents. Numerical solu-

tions of trapped waves over the continental shelf and slope

suggest resonance and enhancement of semidiurnal energy

consistent with the observations. Poleward of the critical lat-

itudes, near-inertial internal waves have also been observed.

For a review of the near-inertial internal tides in the Wed-

dell Sea in Antarctica see Robertson (2001). Over Fieber-

ling Seamount near 32◦ N Kunze and Toole (1997) reported

vortex-trapped near-inertial diurnal internal waves. The dis-

sipation rates are strong enough to dissipate the K1 motions

within 3 days, implying a strongly forced and damped envi-

ronment. At the YP, M2 is the strongest semidiurnal compo-

nent. D’Asaro and Morison (1992) reported that tides here

are an attractive source for enhanced near-inertial band en-

ergy where sub-inertialM2 tide generated on the seamount is

trapped to the seamount by the barotropic vorticity field.

At the YP region, the trapped diurnal tides are likely

generated by resonant forcing of diurnal tides through the

processes described in Chapman (1989) and Padman et al.

(1992). The trapped semidiurnal tides are possibly gener-

ated locally. Internal waves are generated over critical slopes

where the ratio γ = β/α is unity. Here β is the topographic

slope and α = (ω2
− f 2)1/2(N2

−ω2)−1/2 is the character-

istic along which linear internal waves with frequency ω

propagate (i.e. the horizontal slope of the internal wave ray).

Although the critical condition (γ = 1) is optimal, internal

wave generation at supercritical slopes (γ > 1) is also com-

mon. The critical condition also leads to enhanced shear and

turbulence (Eriksen, 1985). As the turning latitude where

ω = f is approached; however, the non-linear terms be-

come increasingly important and the parameter γ becomes

a crude indicator of the potential for internal wave gener-

ation (Vlasenko et al., 2003). Poleward of the turning lati-

tude negative background vorticities can effectively reduce
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   0o     5oE   10oE   15oE   20oE   25oE 
  79oN 

  80oN 

  81oN 

  82oN 

  83oN  20 W m−1

Figure 9. Contours of γ , the ratio of semidiurnal internal wave

characteristic to the bottom slope. An effective inertial frequency

of 0.95f (i.e. assuming negative, anti-cyclonic, relative vorticity

of 0.05f ) is used in the calculations. Superimposed are the iso-

baths (250, 500, 750, 1000, 1500, 2000, and 3000 m), station posi-

tions (circles), and the depth-integrated baroclinic semidiurnal en-

ergy flux (arrows) with scale given on the top left. Red arrows are

inferred from the observations, whereas the black arrows are from

STORMTIDE (sum of M2 and S2) averaged over 10 km range of

the stations. At station 1 the two observed flux vectors are obtained

from the VM-ADCP and the XCP data.

the inertial frequency and thereby potentially allow for lin-

ear sub-inertial internal waves (Kunze and Toole, 1997). We

evaluate γ for the M2 frequency, using an effective inertial

frequency of 0.95f , and the buoyancy frequency from the

survey mean full-depth CTD profiles. Anti-cyclonic loops

and negative background vorticity on the order of 10−5 s−1

were previously inferred from floats over YP (Gascard et al.,

1995). For the M2 constituent, the northwestern flanks and

the seamount region on the plateau are characterized by val-

ues of γ between 0.8 and 1.2 (Fig. 9), which favour the gener-

ation of semidiurnal internal tides and suggest elevated shear

and mixing, consistent with earlier observations. The ampli-

tude of depth-integrated baroclinic semidiurnal energy flux

is about 15–50 W m−1 at station 1, and can be compared

to the values from STORMTIDE (Fig. 9). The sampling is

limited, however, Fig. 9 shows depth-integrated semidiurnal

baroclinic energy flux on the southern YP where γ is near

unity. The large STORMTIDE baroclinic semidiurnal fluxes

apparent on the flanks of the YP and along the slope north

of Svalbard (Fig. 6a) are also co-located with near-critical

slopes. An entirely different generation mechanism is pos-

sible when non-linearity is strong, leading to unsteady lee

waves at relatively short horizontal length scales (see, e.g.,

Vlasenko et al., 2003). The STORMTIDE results, however,
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do not include the effect of such non-linear internal wave

generation.

A crude estimate of the total energy dissipated over the

YP can be made from observations as follows. We use the

same domain surface area of 2× 1011 m2 and the mean wa-

ter depth of 2300 m inferred from the model. We choose two

representative ε profiles: a lower bound (ε2300 m-min) and an

upper bound (ε2300 m-max), each constructed to 2300 m depth.

For the lower and upper bounds, we extend the εmin and εmax

profile, respectively, of stations 1 and 2 to 2300 m depth. Sta-

tion 2, comparably to station 3, is representative of the typi-

cal upper level of dissipation rates over the YP, excluding lo-

calized, enhanced dissipation observed on the northwestern

flanks and the seamount over the plateau. At such locations

where the bottom topography is near critical to the semidiur-

nal waves (Fig. 9), the dissipation profile of station 4 would

be more appropriate. Using ε2300 m-min and ε2300 m-max, the

lower and upper bounds on the total energy dissipated are

100 and 800 MW, respectively. Assuming 10–15 % of the re-

gion is characterized by exceptionally enhanced dissipation

rates (hot spots, Sect. 5), using 2300 m integrated dissipation

from station 4, 400–600 MW can be attributed to localized

mixing regions. The bounds on the dissipation rate, includ-

ing the hot spots, are thus approximately 500 and 1100 MW.

This observation-based estimate of the total dissipation in-

cludes a contribution from dissipation of internal tides (of di-

urnal and semidiurnal period) as well as other contributions

such as turbulence due to mean shear.

The domain-integrated dissipation from STORMTIDE is

931 MW (sum of K1 and M2, where M2 is 314 MW), in the

range inferred from the observations, and suggests that al-

most the entire dissipation (below 50 m depth) can be ex-

plained by the dissipation of baroclinic tidal energy. Using

a global domain numerical model with 10 vertical layers,

Simmons et al. (2004) reported approximately 1 GW of M2

conversion rate in the Fram Strait–Yermak Plateau region.

Their box for the calculation of this domain covers 76–90◦ N

between 20◦W and 15◦ E. For the same domain, we obtain

0.62 GW for M2 and 0.63 GW of K1 from STORMTIDE.

According to our model result in the Fram Strait–Yermak

Plateau region, about 50 % of theM2 conversion, and almost

100 % of the K1 conversion occurs over the YP. Our calcu-

lations suggest that 40–80 % of the energy contained in the

internal tides in this extended region is dissipated around the

YP.

The volume-integrated total dissipation can be converted

to an eddy diffusivity using the Osborn model (Osborn,

1980), which can then be related to turbulent vertical heat

flux using the mean vertical temperature gradient. We ex-

tracted annual average temperature and salinity profiles from

the Polar Science Centre Hydrographic Climatology (Steele

et al., 2001), from 125 grid points in the domain used in the

YP energetics calculations. Domain-averaged annual mean

temperature profile below 100 m increases with depth at

a rate of 1◦ C per 100 m down to the core of the Atlantic

layer at 250 m depth below which the temperature decreases.

If the entire dissipation takes place in this 150 m thick layer

between 100 and 250 m (average N2
= 1.5× 10−5 s−2), the

average upward turbulent heat flux is obtained as 17 W m−2.

This value is comparable to the average ocean-to-ice heat

flux of 22 W m−2 measured by McPhee et al. (2003) in the

YP region. The dissipation of baroclinic tidal energy is thus

a significant contributor to turbulent mixing and cooling of

the Atlantic layer north of Svalbard.

7 Conclusions

Observations made in summer 2007 over the southern part of

the Yermak Plateau (YP), together with results from a global

high-resolution ocean circulation and tide model simulation

(STORMTIDE) are used to investigate the role of tides, to-

pography, and trapped internal tides in turbulent mixing near

the YP. The plateau located northwest of Svalbard is of in-

terest because it is the main topographic obstacle for the At-

lantic Water carried by the West Spitsbergen Current to the

Arctic. Tidal forcing, barotropic-to-baroclinic energy con-

version rates, baroclinic energy fluxes, and dissipation rates

in the region are discussed. Observational-based analysis

suffers from errors as a result of short sampling duration,

vertically imperfect sampling, and sloping topography. The

STORMTIDE model results are limited to interpretation for

linear wave characteristics.

Depth-integrated conversion rates, baroclinic energy

fluxes, and dissipation rates show large spatial variability

over the YP. The energetics are dominated by the K1 and

M2 constituents. The volume-integrated conversion rate over

the region enclosing the topographic feature is 322 MW for

M2 and 618 MW for K1. This corresponds to about 50 % of

theM2 and approximately all of theK1 conversion in a larger

domain covering the entire Fram Strait, extended to the North

Pole (76–90◦ N, 20◦W–15◦ E). Despite the large energy con-

version, internal tides are trapped with a negligible radia-

tion out of the YP region, implying substantial local dissipa-

tion. The suggested enhanced levels of dissipation are sup-

ported by past observations showing high dissipation rates

and strong mixing over the upper slope on the northern flanks

(Hunkins, 1986; Padman and Dillon, 1991) and in the vicin-

ity of a seamount over the plateau (D’Asaro and Morison,

1992). At the YP region, the trapped diurnal tides are likely

generated by resonant forcing of diurnal tides through the

processes described in Chapman (1989) and Padman et al.

(1992). The trapped semidiurnal tides are possibly generated

locally over near critical slopes. When a plausible negative

background relative vorticity is allowed, we find the bottom

topography in these regions critical to the semidiurnal fre-

quency. Similar bottom slopes are also typical over the shelf

north of Svalbard, close to one of our station with the largest

mixing rates.
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An approximate local conversion–dissipation balance is

inferred over regions shallower than 1000 m, and also in the

deep part of the sloping flanks, deeper than about 2000 m.

On average, there is radiation of the baroclinic K1 and M2

energy away from the upper part of the slope, which is dis-

sipated over the deeper isobaths. Most of the dissipation oc-

curs in water deeper than 1500 m. Approximately the entire

K1 energy radiated in the region is dissipated between 1000

and 1500 m depth. The dissipation of the radiatedM2 energy

is broadly distributed over the 2250–4000 m isobaths.

From observations, we inferred lower and upper bounds

on the total dissipation rate of 500 and 1100 MW, of which

approximately 400–600 MW can be attributed to the contri-

bution of hot spots. The domain-integrated dissipation from

STORMTIDE is in the range inferred from the observations,

and suggests that almost all the dissipation in the region can

be attributed to the dissipation of baroclinic tidal energy. Us-

ing the climatological temperature profiles and stratification

averaged above the core of the Atlantic layer, the volume-

integrated total dissipation leads to an average upward turbu-

lent heat flux that is comparable to the average ocean-to-ice

heat flux measured in the YP region. Although our regional

calculations are crude, they underscore that the dissipation

of baroclinic tidal energy can be a significant contributor to

turbulent mixing and cooling of the Atlantic layer north of

Svalbard. The role of tidal forcing in the heat budget of the

Arctic Ocean in general merits further studies.
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