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Abstract
Background: Positron emission tomography (PET) with fluor-18-deoxy-glucose (FDG) is widely used for diagnosing

recurrent or metastatic disease in patients with differentiated thyroid cancer (DTC).

Purpose: To assess the diagnostic accuracy of FDG-PET for DTC in patients after ablative therapy.

Material and Methods: A systematic search was conducted in Medline/PubMed, EMBASE, Cochrane Library, Web of

Science, and Open Grey looking for all English-language original articles on the performance of FDG-PET in series of at

least 20 patients with DTC having undergone ablative therapy including total thyroidectomy. Diagnostic performance

measures were pooled using Reitsma’s bivariate model.

Results: Thirty-four publications between 1996 and 2014 met the inclusion criteria. Pooled sensitivity and specificity

were 79.4% (95% confidence interval [CI], 73.9–84.1) and 79.4% (95% CI, 71.2–85.4), respectively, with an area under the

curve of 0.858.

Conclusion: F18-FDG-PET is a useful method for detecting recurrent DTC in patients having undergone ablative

therapy.
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Introduction

Differentiated thyroid cancer (DTC) is the most
common malignant endocrine tumor. Although prog-
nosis is generally favorable, with reported 5-year sur-
vival rates of 95% for women and 87% for men (1),
some patients continue to experience adverse outcomes
despite improvements in imaging and surgical tech-
nique (2,3).

Serum human thyroglobulin (hTg) is a reliable
marker for persistent or recurrent disease after previous
ablative therapy with total thyroidectomy with or with-
out additional ablative radioiodine therapy (RIT).
Routine ultrasound of the neck is often negative in
these patients, as we recently demonstrated in a pro-
spective cohort from our institution (2). Scanning with
radioactive iodine, in particular after a therapeutic
activity of iodine 131 (I-131), may reveal tumor lesions
missed by conventional imaging (4). In two seminal

papers in 1995 and 1996, Feine et al. demonstrated
that positron emission tomography (PET) with fluor-
18-deoxy-glucose (FDG) can detect tumor lesions that
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are missed by I-131-scintigraphy (5, 6). To explain their
findings, they postulated a ‘‘flip-flop-phenomenon’’,
whereby highly differentiated thyroid cancer cells
show iodine uptake due to the expression of sodium-
iodide symporter (NIS) but no glucose uptake, while
less differentiated cells that ceased to express NIS exhi-
bit upregulated glucose and FDG uptake (7–9).

Since then F18-FDG-PET has become an important
method in patients with DTC with suspected recurrent
or persistent DTC, as is evidenced in many series pub-
lished since the late 1990s. A systematic meta-analysis,
published by Dong et al. in 2009, documented a pooled
patient-based sensitivity of F18-FDG-PET of 83.5%
and specificity of 84.3% (10). We recently published
results from multimodal imaging including F18-FDG-
PET from a prospective cohort of 51 patients (2) and
wanted to compare our results with more current data
from the literature.

Material and Methods

We performed a systematic literature search for all
English-language original articles addressing diagnostic
performance of F18-FDG-PET in series of 20 patients
or more with suspected or known recurrence after pre-
vious ablative therapy published from 1996 until
31 December 2014.

More specifically, our selection criteria were: (i) all
patients had undergone previous ablative therapy
including total thyroidectomy; (ii) patients were sus-
pected of having recurrences and/or metastases or had
risk factors such as a measurable or rising hTg or cir-
culating hTg antibodies; (iii) patients underwent an
FDG-PET or combined hybrid FDG-PET/computed
tomography (CT) of the torso; (iv) reported study
data were sufficient to calculate sensitivity and specifi-
city for tumor detection; (v) histology, cytology, or
follow-up were used as gold standard. Exclusion cri-
teria were: article types other than original articles
such as abstracts, letters, editorials, and comments.
When data or subsets of data were presented in more
than one article, the most recent article was chosen.

A systematic literature search was conducted on
17 February 2015 in five databases including Ovid
MEDLINE(R)/PubMed (http://www.ncbi.nlm.nih.
gov/pubmed; U.S. National Library of Medicine,
Bethesda/MD), EMBASE (Ovid), Cochrane Library
(Wiley), Web of Science (Thomson Reuters), and
Open Grey (http://www.opengrey.eu) using standar-
dized subject headings (MeSH, EMTREE) for thyroid
cancer and FDG or PET as well as their free-text
equivalents.. The detailed search strategy can be
obtained from the author.

All of 3625 hits were screened based on abstract and
title by two authors (MB, TH), and then further

analyzed based on the full manuscript. All relevant
manuscripts were available in full text format. To
assess the methodologic quality and the applicability
of the included articles, the QUADAS-2 instrument
was independently applied by the two authors (11).
As suggested by the QUADAS-2 instrument, additional
signaling questions were defined. Based on the follow-
up results from our own cohort (2) we introduced an
extra signaling question ‘‘Is the mean or median follow-
up duration after imaging two years or more?’’ and we
assumed a risk of bias regarding the time/flow domain
when it was not (see Supplementary Materials 1 [online
only] for further details on the study-specific signaling
questions and scoring criteria).

All pertinent data from the included articles were
registered in MDCake, a dedicated client-server data-
base application developed by our group for data
collection and management (12). The observers were
blinded to each other when entering QUADAS-
scores. Data were re-aggregated into a single SQL
view for qualitative as for statistical analysis. Pooled
diagnostic performance was estimated using R package
mada based on Reitsma’s bivariate model (13,14). The
application of univariate models for pooling sensitiv-
ities and specificities in diagnostic studies is no longer
considered appropriate (15).

Results

The literature search identified 34 studies with a total of
2639 patients meeting the inclusion criteria (6,16–48).
Eleven studies reported on the diagnostic accuracy of
single-modality PET, 17 on PET/CT, and six on both
PET and PET/CT (‘‘mixed’’). The pertinent details of
the 34 studies are presented in Supplementary Materials
2, Table (online only).

Methodological quality. QUADAS-2 scores are sum-
marized in Fig. 1. According to the QUADAS-2 stand-
ard, patient selection should be consecutive in a
prospective study design (11). The precise mode of
patient selection was however unclear in 14 (41%) of
the studies and apparently biased in three (9%). The
index test should be applied blinded to the outcomes or
in a prospective manner. This was insufficiently docu-
mented in nine (26%) of the studies. Most frequently
the reviewers had concerns regarding the timing and the
flow of the studies: only in eight (24%) of the studies
was the duration of post-imaging follow-up considered
sufficient, while potential bias was found in 18 (53%) of
the studies and high risk of bias in eight (24%).

Meta-analysis. Forest plots of sensitivity and specifi-
cities in the component studies are presented in Figs. 2
and 3. Pooled sensitivity and specificity of all studies in
relation to the reference standard were 79.4 % (95%
confidence interval [CI], 73.9–84.1) and 79.4% (95%
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Fig. 2. Forest plot of the diagnostic sensitivities of the 34 component studies with 95% confidence intervals (continuity corrected).
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Fig. 1. Results of QUADAS-2 scoring of the 34 component studies according to the four QUADAS-2 domains patient selection,

index test, reference standard, and flow/timing (11).

Haslerud et al. 3

 at Universitetsbiblioteket i Bergen on December 22, 2015acr.sagepub.comDownloaded from 

http://acr.sagepub.com/


CI, 71.2–85.4), respectively, with an area under the
curve of 0.858 (Fig. 4). In a subgroup analysis, PET-
CT performed slightly better than single modality PET
(Table 1), but the difference was not statistically
significant.

Discussion

F18-FDG-PET is a useful tool for evaluating patients
with suspected recurrence of DTC with a pooled sensi-
tivity of 79.4% and specificity of 79.4% across all stu-
dies. These results compare well to the most recent
systematic meta-analysis published in 2009, which
reported a pooled patient-based sensitivity and specifi-
city of 81% (74–86%) and 82% (73–88%) based on 17
studies using comparable statistical methodology (10).

The stable, rather than improved diagnostic per-
formance over the past 5–6 years was surprising,
given the latest developments in imaging technology
such as high resolution PET-CT (Table 1). Although
PET-CT performs better than single-modality PET in
head-to-head comparisons (2,38), the effect did not
reach statistical significance in the meta-analysis.
Interestingly, pooled specificity was highest for
‘‘mixed’’ studies reporting on cohorts examined
with either single-modality PET or PET-CT. We
regard this as an outlier as the ‘‘mixed’’ studies
did not differ in their QUADAS-2 scores from the
PET-CT studies.

The apparently constant diagnostic performance of
PET despite major advances in imaging technology can
hardly be explained by the considerable heterogeneity
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Fig. 3. Forest plot of the diagnostic specificities of the 34 component studies with 95% confidence intervals (continuity corrected).

The raw specificity in the study by Mirallié et al. was 0% (seven false positive FDG-PET studies among the seven patients without

detectable disease) (37).
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of the individual studies uderlying the present meta-
analysis, by publication bias or overoptimistic report-
ing (49,50). We suspect that this rather points to two
methodical flaws common to most studies on our meta-

analysis. The generally accepted definition of a ‘‘true
positive’’ examination is the finding of at least one
true positive lesion in the imaging study confirmed in
a surgical specimen or a biopsy regardless of the

False Positive Rate
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Fig. 4. Summary receiver operating characteristics (SROC) curve of the 34 component studies. Pooled sensitivity/specificity over all

studies is marked in the center of the plot with a surrounding 95% confidence ellipse. Sensitivity and specificity of the individual studies

are plotted in ROC space. PET, studies using single-modality PET; PET-CT hybrid PET + CT; mixed, studies reporting on a mixture of

PET and PET-CT; PET, studies using single-modality PET; PET-CT, hybrid PET þ CT.

Table 1. Pooled diagnostic performance of PET and PET/CT.

Type Studies (n) Patients (n) Pooled sensitivity Pooled specificity AUC

PET 11 640 76.6% (62.8–86.4) 75.7% (59.5–86.8) 0.826

PET-CT 17 905 80.2% (73.5–85.6) 75.5% (62.8–85.0) 0.844

Mixed 6 1094 82.1% (69.4–90.2) 91.2% (82.8–95.7) 0.933

All 34 2639 79.4% (73.9–84.1) 79.4% (71.2–85.4) 0.858

Pooled diagnostic performance measures with 95% confidence intervals.

AUC, area under the summary receiver operating characteristics (SROC) curve; PET, studies using single-modality PETonly; PET-CT hybrid PET + CT

only; mixed, mixture of PET and PET-CT in the same study; PET-CT, hybrid PETþCT.

An AUC of 1 represents an ideal test while a non-discriminatory test will have an AUC of 0.5.
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number of possible false negative lesions that may have
been overlooked. True positive and false negative
lesions can, however, coexist in the same patient, and
if overlooked in a thyroid cancer patient, may lead to
avoidable repeat surgery (2). Similarly, false positive
lesions, which may lead to unnecessary surgery, will
not be scored in patients who have at least one true
positive lesion. Thus patient-based sensitivity and
specificity tend to be overoptimistic compared with
lesion-based analysis. The second problem lies in the
composite reference standard that is based on a com-
bination of pathology, imaging, and clinical outcomes.
As discussed in our recent publication, prophylactic
surgery for DTC in the absence of imaging findings is
considered unethical (2). Thus the only means of iden-
tifying false negative (overlooked) findings in an ima-
ging study is careful patient follow-up. To a large
extent, this follow-up relies on the same imaging tech-
niques (e. g. ultrasound and PET) in which the false
negative lesion was potentially overlooked. Thus the
reference standard is not independent from the index
test. An independent reference standard is, however,
the fundamental assumption underlying diagnostic
accuracy studies (11). A similar issue occurs if image-
guided biopsy forms part of the composite standard:
Only lesions that are seen can be biopsied, thus a
biopsy will not guard against overlooked lesions.
Thyroid cancer is, as a rule, a slow growing tumor.
In our QUADAS-2 analysis, we therefore stipulated
that the mean or median follow-up should be 2 years
or more. This was based on our experience that, until
now, four overlooked false negative lesions in our series
were detected 0.9, 1.1, 1.1, and 3.8 years after the initial
PET study (2). We therefore suggest that future
diagnostic imaging studies in solid tumors employ
both patient-based and lesion-based analysis, and
follow-up of sufficient duration for the cancer type
under study.

Our meta-analysis has the following limitations.
First, we restricted our analysis to English language
articles. Second, we excluded studies with fewer than
20 subjects. Meaningful estimates of sensitivity and spe-
cificity need a minimum number of cases with and with-
out disease (51). However, the choice of the threshold
was arbitrary given that disease prevalence varies
between studies. Third, we abstained from conducting
extensive subgroup analyses, such as on the role of TSH
stimulation on the diagnostic performance of FDG-
PET, the presence or absence of iodine uptake, or the
correlation of serum hTg or hTg antibodies and true
positive PET findings. Given the considerable hetero-
geneity between the component studies, we do not
think a meta-analysis will provide reliable valid conclu-
sions. Finally, we did not pool lesion-based sensitivities
and specificities as there are were only five studies that

presented lesion-based diagnostic performance data
(Supplementary Table).

In conclusion, F18-FDG-PET continues to be a
useful method for detecting recurrent thyroid cancer,
with a pooled patient-based sensitivity of 79.4% and
specificity of 79.4% across all studies.
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