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Abstract

This dissertation concerns mathematical modeling related to heat transfer in the sub-
surface relevant for geothermal energy extraction. Two applications are considered:
First, natural convection in a homogeneous porous medium around a borehole is stud-
ied. Secondly, pore scale models for non-isothermal reactive transport with changing
porosity are formulated and upscaled.

Natural convection is the heat transfer due to currents arising from density differences
in the fluid. A vertical borehole heat exchanger not injecting fluid into the subsurface,
may encounter convection currents in the surrounding porous medium when the porous
medium is saturated with water. These convection currents can affect the heat transfer
into the borehole, hence have an influence on the heat production from the borehole.
To address this issue, both a theoretical framework and a numerical approach for the
natural convection is considered. In the theoretical framework a linear stability analy-
sis is applied to quantify when and how convection currents may occur spontaneously
without the presence of a producing borehole heat exchanger. A high-order numeri-
cal scheme is implemented to quantify the effect on an operating borehole. The lin-
ear stability analysis is performed for an idealized setting with a homogeneous porous
medium filling an annular cylinder that is heated from below and cooled from above.
The analysis provides criterions for onset of convection and the associated pattern for
convection currents in the linearized case. As the onset criterion and the convection
pattern that appears depend on the size of the annular cylinder, maps describing the on-
set criterion and the convection pattern as a function of the inner and outer radius of the
annulus are created.

To investigate the non-linear regime of natural convection, pseudospectral methods are
applied to discretize the non-linear model equations. Pseudospectral methods are high-
order numerical schemes known for their exponential convergence rate. The conver-
gence rate for our model problem is investigated, and the scheme is used to examine
the stability of the convection currents found in the linear stability analysis. The lin-
ear and non-linear regimes are found to overlap when the convection is weak, while
stronger convection introduces non-linear artifacts only visible through the simulations.
Further, by applying a more realistic configuration for the geothermal reservoir, pseu-
dospectral methods are used in combination with domain decomposition to estimate
the effect from natural convection on an operating borehole. By varying the flow prop-
erties and temperature conditions, some cases where the presence of convection would
lower the amount of heat that is produced by the borehole are found, while other cases
give a positive effect on the heat production.
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When geothermal energy is produced through injecting fluid into the subsurface and
producing warmer fluid, other challenges arise. The in-situ groundwater and the in-
jected water will typically have different temperature and ion content, hence the in-
jection shifts the geochemical system from its original state of equilibrium. We focus
on mineral precipitation and dissolution reactions induced by this shift. As most min-
erals have temperature-dependent solubilities, chemical reactions may be triggered by
both the temperature change as well as the variations in ion content. Due to the rock-
fluid interactions mineral precipitation and dissolution entail, the porosity and hence
the permeability of the porous medium can be changed, which again alters the pro-
duction conditions for the geothermal reservoir. As the fluid flow, heat transport and
reactive transport affect each other and involves processes over several time scales, this
problem is highly coupled and challenging to model. This coupling is illustrated and
used to motivate the need for pore scale models in order to better understand how the
interactions between the physical processes behave at the pore scale. Further, upscaling
through homogenization is performed on three different pore scale models, each apply-
ing different assumptions on the pore scale geometry or on the underlying physics. The
upscaling process isolates the average behavior of the pore scale effects and shows how
the processes are coupled at Darcy scale. One of the upscaled models is illustrated
by implementing it using a finite volume scheme and is compared with some simpler
models to illustrate when the upscaled model should be used and when it can be dis-
regarded for a simpler model not honoring all the pore scale effects. Finite volume
methods are conservative schemes, which are applied when consistent formulation of
the transportation mechanisms is important.



Outline

This dissertation consists of two parts. The first part contains the background theory
covering the papers found in the second part.

Part I is structured as follows: In Chapter 1 the two main topics covered in the disserta-
tion; natural convection and reactive transport models, are introduced. The mathemati-
cal framework is presented in Chapter 2, which includes how flow in porous media and
the governing equations for both topics are formulated. In Chapter 3 the linear stability
analysis that is applied to the natural convection problem is presented. Theory for ho-
mogenization of pore scale models is considered in Chapter 4. Chapter 5 presents the
numerical framework that is used in the included papers. Finally, the included papers
are summarized and discussed in Chapter 6.

The included papers found in part II are:

Paper A: C. Bringedal, I. Berre, J.M. Nordbotten, D.A.S. Rees, Linear and nonlinear

convection in porous media between coaxial cylinders, Physics of Fluids 23, 9,
http://dx.doi.org/10.1063/1.3637642, 2011.
Paper based on work from Master thesis [20].

Paper B: C. Bringedal, I. Berre, J.M. Nordbotten, Influence of natural convection in a

porous medium when producing from borehole heat exchangers, Water Resources
Research 49, 8, http://dx.doi.org/10.1002/wrcr.20388, 2013.

Paper C: C. Bringedal, I. Berre, F.A. Radu, An Approach for Investigation of Geochemi-

cal Rock-Fluid Interactions, Proceedings, Thirty-Ninth Workshop on Geothermal
Reservoir Engineering, Stanford University, 2014.

Paper D: C. Bringedal, I. Berre, I.S. Pop, F.A. Radu, A model for non-isothermal flow and

mineral precipitation and dissolution in a thin strip, Journal of Computational and
Applied Mathematics 289, http://dx.doi.org/10.1016/j.cam.2014.12.009, 2015.

Paper E: C. Bringedal, I. Berre, I.S. Pop, F.A. Radu, Upscaling of non-isothermal re-

active porous media flow with changing porosity, Transport in Porous Media,
http://dx.doi.org/10.1007/s11242-015-0530-9, 2015.

Paper F: C. Bringedal, I. Berre, I.S. Pop, F.A. Radu, Upscaling of non-isothermal reac-
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Part I

Background





Chapter 1

Introduction

Geothermal energy is a renewable energy source and utilizes the thermal energy stored
in the Earth’s crust. The subsurface becomes gradually warmer with depth, which is
quantified through the geothermal gradient. The heat can be produced through wells
and boreholes. To produce the geothermal energy it is essential to understand the sub-
surface thermal transport processes. In the following chapter some background infor-
mation about geothermal energy is given and the two main subjects considered in this
thesis are introduced.

1.1 Geothermal energy

As the world population is growing and at the same time experiences an increase in
living standards, there is a large increase in the demand for energy. Simultaneously,
the world suffers from global warming due to emissions from carbon based energy
resources as coal, oil and gas. To account for these challenges, alternative sources of
energy can be used. The EU Renewable Energy Targets, also known as the 20-20-20
targets, sets an overall target of 20 % share of energy from renewable sources within
2020 [90]. Most of the new renewable energy needed is believed to come from wind
and solar energy as well as biomass, but an additional option is geothermal energy.
The two main advantages of geothermal energy compared to other renewable energy
sources are low surface area requirements and the reliability when operating: Solar
energy and biomass require large land areas, and the daily efficiency of wind and solar
power depend highly on the weather conditions. Geothermal energy is stable as it does
not depend on weather conditions and is capable of producing with same effect all year
long [88].

Geothermal energy is already used to some extent: In 2010, 24 countries had an
installed capacity of 10715 MW [45], while the capacity in August 2013 was 11765
MW [63]. Including projects that are under construction, the global capacity will reach
13402 MW by 2017 [45]. Most of this geothermal energy production occur at so-
called hot spots, which is where the geothermal gradient is locally increased, hence
high temperatures are reached at lower depths. Hot spots are normally found in regions
with volcanic activity, such as in Iceland, California and the Philippines [45]. How-
ever, geothermal energy for electricity production can be produced anywhere as long
as the wells are drilled deep enough, and utilizing geothermal energy for direct heat-
ing has lower requirements for the subsurface temperature. These possibilities open for
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geothermal energy production at more locations, and increases the availability and the
geothermal energy potential worldwide. When including regions with medium and low
geothermal gradient, the recoverable potential of geothermal energy in the US alone is
estimated to be 2.8× 106 EJ [88]. However, drilling deeper increases the investment
costs of the geothermal plant, and may cause a potential plant to not be economically
feasible.

There are several setups for extracting geothermal energy and two of the most com-
mon types are considered in this thesis: The system normally associated with geother-
mal energy extraction has one or several injection and production wells. The injected
fluid flows through the subsurface where it may mix with any in-situ groundwater be-
fore fluid is produced at a higher temperature. This approach is suitable for utilizing
geothermal energy for electricity production when the temperature and flow conditions
in the reservoir are favorable, or for direct heating. Another approach for extracting
geothermal energy is drilling boreholes and let a fluid circulate inside them. This way,
the fluid does not interact directly with the groundwater and the thermal energy is pro-
duced by conduction due to the temperature difference between the borehole heat ex-
changer and the subsurface. This method is suitable for direct heating only, typically in
combination with heat pumps depending on the temperature conditions.

In order to plan a geothermal plant, recognizing how the subsurface thermal pro-
cesses behave is necessary. It is essential to understand the heat transfer mechanisms in
the subsurface to optimize the heat extraction and to produce commercially competitive
energy. Studying how heat is transferred in the subsurface and how it interacts with any
fluid flow, can give vital information about how much energy can be produced from a
specific reservoir; and, how one should drill to be able to produce a required amount of
energy. Mathematical and numerical modeling of the interaction between flow and heat
transfer in the subsurface is important to understand how the processes could affect the
energy production. In this context we go into detail in two problems; the effect of natu-
ral convection on geothermal heat production and the effect of porosity changes due to
mineral dissolution and precipitation. Mathematical models describing these phenom-
ena are formulated and new insight obtained through analysis of the model equations
and computer simulations is presented.

1.2 Natural convection

Heat transfer in the subsurface is mainly due to convection and conduction [17]. While
conduction is caused by molecular vibrations and always transfers energy from warmer
to colder regions, convection is heat transfer due to mass transfer and transfers the
energy with the fluid movement. Natural convection is when the fluid movement is a
result of density differences in the fluid. As warm water is less dense than cold water,
these density differences can generate flow, which is then called natural convection
currents. When these currents form closed trajectories they are called convection cells.
For a case where the saturated porous medium is heated from below and cooled from
above, see Figure 1.1.

When determining the location of a new geothermal plant, subsurface heat prop-
erties are important and a large geothermal gradient is desirable. As the geothermal
gradient locally increases at the upper part in the upflow region of convection cells,
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Figure 1.1: Convection cells in a porous medium. Figure from [20].

geothermal plants can be placed at locations where large, naturally occurring convec-
tion cells appear [12, 24, 29, 55, 84]. Convection cells may also occur after production
initiation in the case with borehole heat exchangers. When the borehole does not in-
ject fluid into the subsurface, there could be natural convection currents arising in the
subsurface surrounding the borehole. As the borehole contains a cold fluid, the nearby
ground is cooled, creating a horizontal temperature gradient which can cause density
differences in the fluid and hence convection currents [91].

Convection currents can arise when there is either a horizontal or vertical temper-
ature gradient. The onset and spatial distribution of the convection currents can be
investigated through linear stability analysis and have been investigated extensively
throughout the last decades [71]. The equations are linearized and solved analytically,
finding criteria for when convection currents occur and how they distribute at onset.
The criterion for onset of convection can be quantified through the critical Rayleigh
number: When the Rayleigh number is larger than the critical, convection currents can
develop. The Rayleigh number is a non-dimensional number depending on properties
of the permeable rock and of the saturating fluid. Further, the linear stability analy-
sis can show how the convections cells distribute spatially at the onset of convection.
More background information on the linear stability analysis can be found in Chapter
3. To investigate the non-linear regime and to consider cases not feasible through lin-
ear stability analysis, we develop a high-order numerical scheme using pseudospectral
methods. More details on the numerical solver can be found in Chapter 5.

The main contributions in this thesis related to the study of natural convection are:

1. Performing linear stability analysis in a porous medium filling an annu-

lar cylinder. In Paper A we consider an annular cylinder filled with a porous
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medium, depicting the subsurface outside a (non-operating) borehole. To get
a better understanding of how the natural convection behave, we consider two
cases; either the sidewalls being perfectly heat conducting, or insulated. The crit-
ical Rayleigh number with the corresponding preferred convection mode is found.
The model with insulated sidewalls has been considered before by Bau and Tor-
rance [14], but our analysis reveals more details than previously found. Further,
the non-linear model equations are implemented and the findings compared with
those from the linear regime. Using the numerical scheme, the stability of the
convection modes with respect to different types of perturbations is studied.

2. Investigating the effect of natural convection on an operating borehole. By
developing the non-linear solver, a more relevant model for geothermal energy
extraction is considered in Paper B. This way, we are able to investigate how
the natural convection would affect the heat transfer into an operating borehole
when there is no background advective flow. The considered model is idealized
and tailored to isolate the effect of natural convection. Several cases where the
natural convection will have a large impact on an non-injecting borehole is found.

1.3 Reactive transport and the need for pore scale models

In a geothermal system using injection and production wells, cold fluid is injected into
the reservoir and mixes with the in-situ groundwater, which typically has a different ion
content than the injected fluid. Before injection, the ion content of the groundwater is
in equilibrium with the host rock, meaning that the groundwater is fully saturated with
the minerals present in the host rock. The solubility of these minerals are normally
temperature dependent, hence minerals may be triggered to dissolve or precipitate as
the fluid injection starts; both due to the injection of a colder fluid and due to the
changes in ion content introduced by the injected fluid.

Precipitation and dissolution of minerals as anhydrite, calcite, silica and quartz are
known to cause the porosity and hence the permeability to change significantly in a
(geothermal) reservoir [67, 73, 77, 86, 98, 102]. As the permeability changes, the flow
conditions throughout the reservoir changes, distributing more fluid through regions
where the permeability is increasing due to minerals dissolving and less through re-
gions where minerals precipitate. As the injected fluid flows through the reservoir, its
temperature and ion content change continuously as well as the flow properties of the
porous medium changes. The interactions between fluid flow, chemical reactions and
heat transfer challenging to model, but important to inlcude in exploiting of geother-
mal systems. Computer simulations have high requirements to the scheme due to the
challenging physics, and mass conservative schemes are preferable.

To better understand the couplings and interactions between fluid flow, reactive
transport and heat transport, a pore scale model can be considered. A pore scale model
is formulated at local pore structures in the porous medium, allowing us to formulate
equations valid in the fluid-filled void space and in the solid space separately. This
distinction between void space and solid space enables a more accurate mathematical
formulation of the relevant physical processes. Unfortunately, doing computer simula-
tions on a pore scale model for a geothermal reservoir would require too much com-



1.3 Reactive transport and the need for pore scale models 7

putational power to be feasible. A typical reservoir is on kilometer-scale, while pores
are typically on micrometer-scale [15]. In 3D, this would require at least 1027 nodes to
resolve the pores, which is impossible with today’s computer power. Instead, the pore
scale model equations need to be upscaled to a more comprehensive scale for modeling,
which is typically the Darcy scale.

Upscaling of pore scale models can be done several ways, and one common up-
scaling method is homogenization. The basic idea of homogenization is to find a clear
separation between the relevant scales and use this separation to find which of the fea-
tures in the pore scale model equations are important on the Darcy scale and which
can be disregarded. This separation of scales is illustrated in Figure 1.2 where zoom-
ing in in the domain reveals a detailed pore structure. More background information
on separation of scales and homogenization can be found in Chapter 4. To illustrate
the behavior of the reactive transport models, we have applied a simple finite volume
scheme. More details on this can be found in Chapter 5.

Figure 1.2: The left-most figure shows the reservoir, while the right-most figure shows the

pore structure that is visible when zooming in. Figure adapted from Paper E.

The main contributions in this thesis regarding reactive transport are:

1. Formulating a mass conservative scheme for a coupled reactive transport

model at Darcy scale. In Paper C we formulate a 2D solver using TPFA where
fluid flow, heat transfer and reactive transport with changes in porosity are in-
cluded. The model allows for injection and production through wells, and the
wells are handled in a mass conservative way consistent with the formulation.
The scheme includes a simplified geochemical model, but can illustrate the effect
of changes in porosity and permeability due to the considered mineral precipita-
tion and dissolution reactions.

2. Formulating pore scale models taking into account fluid flow, heat transport

and reactive transport and honoring the changes in pore geometry. To better
understand processes at the pore scale, we formulate several pore scale models
and identify the relevant pore scale model equations. We consider two geome-
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tries; a thin strip and a periodic porous medium. The thin strip model can il-
lustrate a single channel and is easier to formulate as the presence of minerals
can be handled explicitly through the varying grain width and the aperture of the
strip. The chemical reactions then cause changes in the size of the grain width
and is formulated through an ODE. The periodic model uses the geometry shown
in Figure 1.2 and requires a level set formulation to account for the changes in
porosity.

3. Upscaling the pore scale models to Darcy scale. Through homogenization we
can upscale the pore scale models to Darcy scale, which is a more convenient
scale for computer simulations. To perform the homogenization, a separation of
scale must be identified: For the thin strip, the separation of scale is due to the
strip being very thin compared to the length. The thin strip model is considered
in Paper D and Paper F, where different assumptions on the physical processes
have been assumed. In the periodic model, the separation of scale is identified
through the typical length scale of the grain size and the reservoir size and is
treated in Paper E. By identifying the relevant scales, we find effective variables
and effective model equations through homogenization.



Chapter 2

Mathematical framework

A porous medium consists of solid rock and the void space in between the rocks, which
in our case will be assumed to be fully saturated with a fluid. We separate between two
scales: The pore scale which is visible when zooming in and and observing single
pores with all its details, and the Darcy scale where zooming out and only consider the
average behavior of the porous medium. Section 2.1 defines the governing equations
relevant on the pore scale, while Section 2.2 deals with the Darcy scale. Some equations
have similarities, but they are valid in different domains and scales. To emphasize the
two scales, all relevant equations are defined in both settings. The different scales
require different considerations. The mathematical framework is presented briefly and
is based on [13, 15, 17, 47, 71, 74].

2.1 Pore scale models

The advantage of using pore scale models is the possibility of giving an accurate math-
ematical description of what happens at the pore scale where it is easier to isolate the
relevant processes. Pore scale models requires an explicit description of the pore struc-
ture and is computationally expensive to do computer simulations on as very fine grids
are required. The constitutive equations depend on few assumption, typically the con-
tinuum hypothesis and conservation laws [13]. However, utilizing pore scale models
also requires information about the actual pore structure, which is often not available.
Pore scale models are well used in describing flow through porous media and are con-
sidered useful when pore scale effects are important, such as in rock-fluid interactions
[59, 93, 94], biofilm growth [96], drug release [81] and evolving microstructures [75].
These papers have in common that they use homogenization to derive effective models
at the macroscale and this technique is covered more extensively in Chapter 4.

We consider non-isothermal reactive transport with evolving pore geometry, for-
mulated at the pore scale. The following presentation is based on Papers D, E and F,
where variations of the model are considered and the pore scale equations are upscaled
to Darcy scale using certain assumptions. The reactive transport model is based on the
models by van Noorden and Pop in [95] and by van Noorden in [93, 94], who consider
the isothermal case. Considering pore scale models requires assumptions on the pore
structure and we have investigated two different cases; either a single pore shaped as
a thin strip or a more general porous medium with periodically distributed grains. In
either case the mineral precipitation and dissolution are allowed to affect the porosity,
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which in a pore scale setting means having a model with a free boundary. The thin strip
model is shown in Figure 2.1 and the periodic model is shown in Figure 1.2 with the
pore structure in Figure 2.2.

x

y

nε

Γε(t)

Gε(t)

Ωε(t)

Figure 2.1: The thin strip geometry. Figure adapted from Papers D and F.

As seen in Figure 2.1 and 2.2, the pore scale models consists of the solid space, the
void space and the moving boundary between them. The thin strip model is formulated
within the rectangle

ϒ = {(x,y) ∈ R2 | 0 ≤ x ≤ L,−l/2 ≤ y ≤ l/2},
where l and L are positive numbers and l is much smaller than L. These two numbers
also define the microscopic and macroscopic scales, respectively. The scale difference
is recognized as ε = l/L, where ε is a small number. In the following, dependence on
the different scales is emphasized by using ε as a superscript. The mineral width d(x, t)
is used to characterize the domain and we assume symmetry across the horizontal axis.
To avoid clogging, we assume 0 ≤ d(x, t)< l/2. The void space Ωε(t) where fluid can
flow is defined as

Ωε(t) = {(x,y) ∈ R2 | 0 ≤ x ≤ L,−(l/2−d(x, t))≤ y ≤ (l/2−d(x, t))},
while the grain space Gε(t) consisting of mineral is

Gε(t)= {(x,y)∈R2 | 0≤ x≤ L,−l/2≤ y≤−(l/2−d(x, t))∨(l/2−d(x, t))≤ y≤ l/2}.
The void space and grain space are separated by the moving interface Γε(t) where
mineral precipitation and dissolution can occur, and is given by

Γε(t) = {(x,y) ∈ R2 | 0 ≤ x ≤ L,y =±(l/2−d(x, t))}.
Assuming d(x, t) is a differentiable function, the unit normal vector pointing into the
grain space is expressed as

nε = (∂xd,−1)T/
√

1+(∂xd)2
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y1

y2

nε

Γi j(t)

Gi j(t)

Ωi j(t)

Figure 2.2: The zoomed in geometry of the periodic porous medium. Figure adapted from

Paper E.

for the lower part of Γε(t).

The geometry of the periodic model is a bit more tedious to define. The porous
medium is inside a two-dimensional domain Ω with external boundary Γ, seen in the
left-most part of Figure 1.2. The domain is inside a square x = (x1,x2) ∈ (0,L)2 for
some positive number L. The domain is perforated in a periodic manner, consisting
of a connected pore space Ωε(t), the grain space Gε(t) and the boundary between
them Γε(t). The pore structure seen in Figure 2.2 can be defined using local variables
(y1,y2) ∈ (0, l)2, where l is much smaller than L, and this smaller region is denoted Y .
As in the previous model ε = l/L is a small, characteristic number and is used as a su-
perscript to emphasize dependence on both scales. Note that x, y, L and l play different
roles in this model compared to the thin strip model, but we use the same symbols to
indicate the similarities: In both models x can be interpreted as a macroscopic variable
with typical length L, while y is the microscopic variable having typical length l.

The region Y consists of void space Ωi j(t), grain space Gi j(t) and the moving
boundary between them Γi j(t) having unit normal nε pointing into the grain space.
The grain space Gi j(t) consists of a non-reactive part Bi j located in the centre of the
square, seen in light grey in Figure 2.2, and is surrounded by the reactive mineral. The
indices i, j denote which subdomain in the total domain Ω is considered, and the set of
indices {i, j} is such that the whole domain is covered. Assuming a periodic structure
in the porous medium, y= (y1,y2) is periodic with period l. This way, Ωε(t) =∪Ωi j(t),
Gε(t) = ∪Gi j(t), Bε = ∪Bi j and Γε(t) = ∪Γi j(t). To describe the positions of the inter-
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faces Γi j the level set function Sε(x, t) [72] is defined such that

Sε(x, t) =

⎧⎪⎨
⎪⎩
< 0 if x ∈ Ωε(t),

0 if x ∈ Γε(t),

> 0 if x ∈ Gε(t).

This choice of Sε(x, t) assures that the gradient of Sε(x, t) points into the grain space
and will be parallel to the unit normal nε , hence

nε =
∇Sε(x, t)

|∇Sε(x, t)| .

2.1.1 Describing a moving boundary

The moving boundary Γε(t) changes position due to mineral precipitation and dissolu-
tion and the development is expressed using an equation describing the rate of change.
A simple mineral precipitation and dissolution reaction is considered; a mineral can
dissolve into the fluid releasing two ions; or, oppositely, two ions can go together form-
ing a mineral molecule. The two ions are assumed to have the same concentration u in
the fluid. As the boundary moves it has a normal velocity vn, which is proportional to
the local difference between the dissolution and precipitation rate [54, 94]:

ρCvn =−( fp− fd) on Γε(t), (2.1)

where ρC is the molar density of the mineral and fp and fd are the precipitation and
dissolution rates, respectively. The rates are [23, 93], for both geometries,

fp(Tf ,u) = k0e
− E

RTf
(γu)2

Km(Tf )
and fd(Tf ,u,λ ) = k0e

− E
RTf w(λ ,Tf ,u), (2.2)

where k0 is a rate constant, Tf is fluid temperature and Km(Tf ) is the solubility product
of the mineral. The Arrhenius factor exp(−E/RTf ) describes how reaction rates in-
crease with higher temperatures. Here, E is the activation energy and is known through
tables and R is the gas constant. The activity coefficient γ will assumed to be constant
and in some cases set to be 1. The solubility product is known through tables and the
reaction rates are such that the net reaction rate ( fp − fd) is positive when the fluid is
supersaturated with ions and negative when the fluid is undersaturated. Our geochemi-
cal model is very simplified and includes only what is necessary to describe a moving
interface. In Section 2.2.2 we consider a slightly more realistic geochemical model on
the Darcy scale. The function w(λ ,Tf ,u) is defined as

w(λ ,Tf ,u) =

⎧⎪⎨
⎪⎩

0 if λ < 0,

min(
(γu)2

Km(Tf )
,1) if λ = 0,

1 if λ > 0.

The variable λ accounts for the amount of mineral that is left, hence the factor w assures
that the dissolution rate is not larger than the precipitation rate when all the minerals
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have dissolved. In the thin strip model, we use the grain width d(x, t) in the role of λ ,
while in the periodic model the position x at the boundary Γε(t) is used to calculate the
distance between x and Bε , hence dist(x,Bε) replaces λ . Note that the reaction rate is
discontinuous at λ = 0, which is typically handled by applying a Lipschitz approxima-
tion:

w(λ ) =

⎧⎪⎨
⎪⎩

0 if λ < 0,

λ/δ if 0 ≤ λ ≤ δ ,

1 if λ > δ

for some small δ > 0. This type of regularization is also common for numerical sim-
ulations. Kumar et al [58] formulates a convergent mixed finite element scheme with
a discretization parameter that ensures δ approaching zero, hence ending up with the
original w(λ ,Tf ,u).

In the thin strip model an explicit expression for the normal velocity of Γε(t) can
be found using the grain width d(x, t). A point at the lower part of the interface has
coordinates s(t) = (x(t),−(l/2− d(x, t))) and velocity s′(t) = (x′(t),∂xd(x, t)x′(t) +
∂td(x, t)). Hence, the normal velocity of the lower interface is

vn = nε · s′(t) =− ∂td(x, t)√
1+(∂xd(x, t))2

.

Combining with (2.1) an equation describing how the rate of d(x, t) is connected with
the reaction rates is achieved:

ρC∂td = ( fp(Tf ,u)− fd(Tf ,u,d))
√

1+(∂xd)2 on Γε(t).

In the periodic medium model the level set equation is used to describe the evolution
of the changing pore structure. The level set equation is

∂tS
ε + vn|∇Sε |= 0,

which combined with (2.1) shows that

∂tS
ε =

1

ρC

( fp(Tf ,u)− fd(Tf ,u,x))|∇Sε | for x ∈ Ω.

Note that the level set equation is defined in the entire domain and not only on the
moving boundary. This is handled by defining a continuous extension of the reaction
rates to Ω.

How the developing geometry is expressed depends on the model, but in both mod-
els we separate between the void space Ωε(t), grain space Gε(t) and the moving in-
terface Γε(t). The normal velocity vn of the moving boundary will be proportional to
the difference between the reaction rates, as expressed in (2.1). In the following, the
model equations and boundary conditions at the moving boundary are formulated for
their relevant domains, keeping in mind that the evolution of the geometry is described
differently.
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2.1.2 Solute transport

The two ions having molar concentration u in the fluid, satisfy the convection-diffusion
equation in the void space:

∂tu+∇ · (uq) = ∇ · (D∇u) for x ∈ Ωε(t), (2.3)

where q is the fluid velocity and D is the diffusion coefficient which is assumed con-
stant. The ions can cross the moving boundary through the precipitation and dissolution
reactions. Applying a Rankine-Hugoniot condition [38] for conserving ions across a
moving boundary yields

nε · (D∇u−uq) = vn(ρC −u) on Γε(t).

The left-hand side of the above equation is the jump of fluxes across the boundary: Ions
in the fluid have a convective and diffusive flux, while the ions in the mineral molecules
have zero flux. The right-hand side contains the jump of the preserved quantity: A
mineral molecule consists of one of each type of the two ions, hence the difference
represents the jump across the interface for each of the ions.

2.1.3 Mass conservation

Mass conservation in the void space is expressed as

∂tρ f +∇ · (ρ f q) = 0 for x ∈ Ωε(t),

where ρ f is the molar density of the fluid. The fluid consists mainly of water and
is assumed to not be affected by the chemical reactions, but varies with temperature.
Using a linear dependence yields

ρ f = ρ0(1−βρ f
(Tf −T0)),

where Tf is fluid temperature, ρ f = ρ0 at some reference temperature T0, and βρ f
is the

thermal expansion coefficient. As water becomes less dense with increasing tempera-
ture, βρ f

is a positive number with the above definition. As there is a mass flux across
the moving interface, the Rankine-Hugoniot condition applied to mass is

nε · (−ρ f q) = vn(2ρC −ρ f ) on Γε(t). (2.4)

The difference on the right-hand side is the jump of the mass across the moving bound-
ary. Since a mineral molecule contains two ions, the term 2ρC appears. If 2ρC = ρ f , the
normal component of the velocity is zero at the interface, meaning that the chemical re-
actions do not cause volume change. As the fluid density varies with temperature while
the mineral density is assumed constant, this is in general not the case in our models.
In [93, 94], van Noorden uses the quotient K = (ρ f −2ρC)/ρ f to describe the effect of
volume changes due to chemical reactions.
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2.1.4 Momentum conservation

The fluid is assumed to be newtonian, that the stress tensor is a linear function of the
strain rates and that the fluid is isotropic. The model is two-dimensional so the gravity
is not present, hence

∂t(ρ f q)+∇ · (ρ f qq) =−∇p+∇ · (μ(∇q+(∇q)T )
)− 2

3
∇(μ∇ ·q) for x ∈ Ωε(t),

(2.5)
where p is pressure and μ is fluid viscosity. Note that the dimensions of these quantities
have to be in a molar manner to coincide with the molar density. Water viscosity
depends on temperature, and a linear relationship is assumed:

μ = μ0(1−βμ(Tf −T0)),

where μ = μ0 at the reference temperature T0. Water viscosity decreases with tem-
perature, hence βμ is positive. We assume no-slip conditions at the moving interface,
meaning that q has no tangential component at Γε(t). It may however still have a nor-
mal component due to the chemical reactions, and combined with (2.4) this results in

q =
ρ f −2ρC

ρ f

vnnε on Γε(t).

2.1.5 Energy conservation

We distinguish between fluid temperature Tf and grain temperature Tg. This distinc-
tion is mainly to emphasize the different processes in the two domains. The energy is
conserved in both void space and grain space. Assuming no viscous dissipation energy
conservation in the void space is given by

∂t(ρ f c f Tf )+∇ · (ρ f c f Tf q) = ∇ · (κ f ∇Tf ) for x ∈ Ωε(t).

In the grain space, energy conservation is expressed as

∂t(ρCcgTg) = ∇ · (κg∇Tg) for x ∈ Gε(t).

In the above equations, c f and cg are specific heats, and κ f and κg are heat conduc-
tivities, of fluid and grain respectively, and all are assumed constant. At the moving
boundary we apply the Rankine-Hugoniot jump condition:

nε · (κ f ∇Tf −ρ f c f Tf q−κg∇Tg) = vn(ρCcgTg −ρ f c f Tf ) on Γε(t),

and also require temperature continuity at the interface:

Tf = Tg on Γε(t).

Assuming temperature continuity at the interface corresponds to local thermal equi-
librium at the pore scale. This is not the same as assuming Tf and Tg to always be
equal, which would not be meaningful as the two temperatures are defined on different
domains.
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2.2 Darcy scale models

The Darcy scale refers to the scale where we zoom out and cannot longer observe the
independent pores. Instead small volumes called representative elementary volumes
(REVs) [15] are considered. An REV is so large that the average behavior is well
defined, but still small enough to capture spatial variations. In an REV one cannot
follow the actual route the fluid flow has through the pore structure, but only access the
average mass flux flowing through a part of the domain. Darcy scale models are relevant
when we are interested only in the average behavior. The advantage of using Darcy
scale models is that they are computationally cheaper as they can be applied on a much
coarser grid compared to the pore scale models. However, a Darcy scale model relies on
several assumptions and criteria that must be met, and needs values for several "average
parameters". These parameters can be found through measurements either from the
reservoir or core samples, but it can be difficult to isolate specific effects, making it
problematic to describe the relevant phenomena accurately. Darcy scale models are the
most widely used description for flow in porous media.

As already mentioned, the porous medium consists of the solid rock and the void
space between them. Some pores are isolated from the other ones and do not contribute
to the fluid flow, and their contribution to the porous medium is normally neglected.
The ratio of the volume of the pores, excluding the isolated pores, and the total volume
within an REV, defines the effective porosity of the medium. As we are not interested
in the isolated pores, we refer to this as the porosity and denotes it φ . Note that the
porosity does not take into account any pore structure, only the volume fractions. In
this sense it is an macroscopic variable as it contains only average values from the
microstructure. The conservation laws are formulated as averages over the voids and
grains using the porosity as weighting. Papers A, B and C deal with a Darcy scale
description of the porous medium and the presentation of the model equations are based
on these papers. In Paper A and Paper B we consider natural convection, while Paper
C concerns reactive transport combined with heat transport.

2.2.1 Darcy’s law and permeability

The permeability is considered a property of the porous medium, but is defined only
through Darcy’s law. Permeability describes the flow conductivity of the rock and is
normally determined experimentally. Darcy’s law is named after the French engineer
Henry Darcy who performed experiments with water flowing through various types of
sand, and found a relation between the pressure drop, sand type and the volumetric
flow. The modern version of Darcy’s law is written as

v =−K

μ
(∇P+ρ f gk), (2.6)

where v is the Darcy velocity, μ is the viscosity and ρ f the density of the fluid, P is
pressure, while g is the gravity acceleration and k is a unit vector pointing upwards.
Finally, K is the permeability. The Darcy velocity v is the volume flux through an
area and not the actual fluid velocity. If q is the fluid velocity through the pores, then
q = v/φ . Note that the fluid density is now defined as a mass density and similarly
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with the fluid viscosity. In Papers A and B, the density is assumed to vary linearly with
temperature, hence

ρ f = ρ0(1−βρ f
(Tf −T0)), (2.7)

where Tf is fluid temperature, ρ f = ρ0 at some reference temperature T0, and βρ f
is

the thermal expansion coefficient. In Paper C density changes from varying ion con-
centration are also taken into account, and the density is assumed to vary linearly with
temperature and ion concentrations. Also, the viscosity is assumed to vary with tem-
perature by fitting the relevant data from [56] with a second order polynomial.

If the relation between flow and pressure drop varies with the flow direction in
Darcy’ law, which is often the case in layered reservoirs, the permeability is anisotropic
and can be represented by a tensor K. As only isotropic permeabilities will be consid-
ered in Papers A, B and C, K remains a scalar. However, K will be allowed to vary
with space and time in the reactive transport model, giving a heterogeneous permeabil-
ity. When the permeability varies due to chemical reactions, K is considered to be a
function of porosity φ . How K varies with φ is not obvious; the permeability is in gen-
eral increasing with larger porosity as more void space are available for flow, but the
pore geometry is just as important. However, information about the pore geometry is
not explicitly available at the Darcy scale as only the average quantity porosity is ob-
served. Earlier studies for permeability-porosity relations have tried to overcome this
by assuming certain pore structures and then found approximate or upscaled equations
describing how the permeability can vary with porosity. One well-used model is the
Kozeny-Carman equation [15, 105]

K(φ) = K0

(1−φ0

1−φ

)2( φ

φ0

)3
,

where K = K0 for some reference porosity φ0. This dependence on porosity is a sim-
plified representation and will not necessarily describe the dependence correctly. For
fractures and one-dimensional flow, a simpler cubic relationship between flow rate and
hydraulic aperture is normally applied. This model is found by Witherspoon et al [103]
to adequately describe the flow through a fracture.

2.2.2 Solute transport and varying porosity

In the reactive transport model in Paper C, the saturating fluid has ions dissolved in it
that are transported either through advection or by random diffusion. The ion concen-
tration of ion k is denoted ck. Each ion type satisfies the advection-dispersion equation

∂

∂ t
(φck)+∇ · (ckv) = ∇ · (φD∇ck)+Rck

(Tf ,ck,φ), (2.8)

where D is the diffusion coefficient and Rck
is the net reaction rate for increasing con-

centration of ion k, possibly due to several reactions. Note that the diffusion coefficient
is assumed to be constant and not depending on the ion. Also, the porosity φ is vary-
ing due to the mineral precipitation and dissolution reactions, and is considered as an
unknown variable.

Describing the reaction rates is not straightforward and depends on the geochemical
model. We consider a similar case as in [57] with calcite and anhydrite dissolving and
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precipitating, and include 7 ions as well as the minerals CaCO3 (calcite) and CaSO4

(anhydrite). The ions are Ca2+, CO2−
3 , SO2−

4 , HCO−
3 , HSO4−, H+ and OH−. These

ions and minerals are involved in five reactions:

CaCO3(s)↔Ca2++CO2−
3 (2.9a)

CaSO4(s)↔Ca2++SO2−
4 (2.9b)

H++CO2−
3 ↔ HCO−

3 (2.9c)

H++SO2−
4 ↔ HSO−

4 (2.9d)

H++OH− ↔ H2O (2.9e)

The first two reactions affect the porosity, while the following three are included as
they highly affect the equilibrium concentrations of the involved ions. All five reactions
can go both ways and will shift direction in order to reach its equilibrium state. The
equilibrium can be given through thermodynamic considerations. For the first reaction
(2.9a), we use the relation

[Ca2+][CO2−
3 ]

[CaCO3]
= QCaCO3

,

where Q is called the reaction quotient and the use of brackets means the activities of
the ions. Each reaction has a solubility product, which for (2.9a) is denoted KCaCO3

(Tf ).
When Q<K, the fluid is undersaturated with the ion pair and the reaction shifts towards
dissolution of mineral. Oppositely, if Q > K the fluid is supersaturated with ions and
net precipitation of the mineral will take place. The solubility product as a function
of temperature is known through measurements and can be found, e.g., in [76]. The
activity of Ca2+ is given by

[Ca2+] = γCa2+cCa2+,

where γCa2+ is the activity coefficient and is given by either the Debye-Hückel equation
or the Davies equation depending on the ionic strength of the fluid [22]. For small ion
concentrations, it is quite common to assume that activities are given by the concentra-
tion alone, which corresponds to the activity coefficients to be 1. The activities of pure
water and solids are always assumed to be 1.

The reaction (2.9a) can be visioned as two separate reactions; one precipitation reac-
tion and one dissolution reaction, where equilibrium is reached when the precipitation
rate equals the dissolution rate. With this in mind, and following [57], the net reaction
rate for increasing CaCO3 is given by

RCaCO3
(Tf ,cCa2+,cCO2−

3
,φ) = A(φ)r0e

− E
RTf

( [Ca2+][CO2−
3 ]

KCaCO3
(Tf )

−1
)
. (2.10)

This way, the parenthesis is positive, resulting in net precipitation when the fluid is
supersaturated with ions and negative, giving net dissolution, when the fluid is under-
saturated with ions. In the above equation, A is the reactive surface and depends on
porosity, while r0 is a rate constant and exp(−E/RTf ) is the Arrhenius factor as de-
fined earlier. By tracking the amount of mineral present, one can easily rewrite the
above reaction rate to assure no net dissolution when all the calcite has dissolved, as
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in (2.2). The two reactions (2.9a) and (2.9b) can be described using this rate descrip-
tion. The three reactions (2.9c)-(2.9e) are faster such that in the typical time step we
will use, they will reach equilibrium immediately. A scenario of this type is normally
modeled through splitting these reactions from the rest of the system and iterate, as in
[104], but for simplification an approach using rates with larger rate constants is ap-
plied. This simplification has some disadvantages, but as our purpose with this model
is only to implement and illustrate the possible changes in porosity due to rock-fluid
interactions, this will not cause any major problems. For each ion being described with
an advection dispersion equation (2.8), the reaction rate Rck

can be found by summing
the contribution from each reaction rate where the ion is involved in the reaction.

The porosity varies as minerals are precipitated and dissolved. As porosity is only
a volume fraction, the rate with which porosity changes is proportional to the reaction
rates for the mineral reactions (2.9a) and (2.9b). Applying a volume balance equations
shows that

∂φ

∂ t
=−νCaCO3

RCaCO3
−νCaSO4

RCaSO4
,

where νCaCO3
and νCaSO4

are the molar volumes of the two minerals.

2.2.3 Mass conservation

The general equation for mass conservation in the fluid flowing through a porous
medium is

∂

∂ t
(φρ f )+∇ · (ρ f v) = 0, (2.11)

where v is the Darcy velocity.
In the natural convection model in Papers A and B, we assume there are no fluid-

rock interactions appearing, hence the porosity remains constant. In this model the
Boussinesq approximation is applied. The Boussinesq approximation states that small
density differences can be neglected, except when they appear together with the gravity
acceleration, and is a common assumption when dealing with buoyancy-driven flow.
The density differences are then included in the gravity term, where they should be in-
cluded to achieve buoyancy-driven flow, but otherwise neglected. Hence, in the natural
convection model in Papers A and B the mass conservation equation (2.11) simplifies
into

∇ ·v = 0. (2.12)

2.2.4 Energy conservation

Energy is assumed to be transported through the porous medium either through convec-
tion or conduction. Hence, any internal energy sources or sinks are neglected. How-
ever, the energy can be transported through both the solid part or the fluid part of the
domain. Only conduction can occur in the solid part, while convection and conduction
take place in the fluid part. Separating between fluid temperature Tf and solid temper-
ature Ts within each REV to emphasize the different processes, we can formulate two
energy conservation equations:

∂

∂ t
(φρ f cp f Tf )+∇ · (ρ f cp f vTf ) = ∇ · (φk f ∇Tf )+h(Ts −Tf ),
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∂

∂ t
((1−φ)ρscpsTs) = ∇ · ((1−φ)ks∇Ts)+h(Tf −Ts).

In the above equations, cp f and cps are specific heat capacities and k f and ks are the heat
conductivities, of fluid and solid respectively and are all assumed constant. Further, ρs

is the (constant) density of the solid and h is the heat transfer coefficient between fluid
and solid. Note that the two above equations are valid at Darcy scale and have the Darcy
velocity appearing in the convective term. If we assume local thermal equilibrium; that
is, Ts = Tf = T within each REV, and sum the two equations, we obtain

∂

∂ t
((ρcp)mT )+∇ · ((ρcp) f vT ) = ∇ · (km∇T ),

where (ρcp)m = (1− φ)(ρcp)s + φ(ρcp) f and km = (1− φ)ks + φk f are the medium
heat capacities and conductivities weighted over the REV. In the natural convection
model, this equation can be further simplified by using that porosity is constant and
rewrite using the mass conservation equation (2.12). Hence,

(ρc)m

∂T

∂ t
+(ρcp) f v ·∇T = km∇2T. (2.13)



Chapter 3

Linear stability analysis for natural convection

To describe natural convection in a porous medium, we apply Darcy’s law (2.6), the
simplified mass conservation equation (2.12) and the energy conservation equation
(2.13). Even with the Boussinesq approximation for the fluid density (2.7), the sys-
tem equations are non-linear due to the coupling in Darcy’s law and the convective
term in the energy equation. However, the model equations can still be investigated by
performing a linear stability analysis. The linear stability analysis can give information
about criteria for when natural convection can occur and how the convection currents
will distribute at the onset of convection.

The idea behind the linear stability analysis is to linearize the model equations
around a stationary solution, and find criteria for when the linear system of equations
has a non-trivial solution. This criterium can be quantified, e.g., by using a homoge-
nization approach based on pore scale perturbations [68, 69] or through the Rayleigh
number, which we will focus on here. The Rayleigh number is a non-dimensional num-
ber indicating whether conduction or convection is dominating in the system. Using the
Rayleigh number a critical Rayleigh number can be identified, and is such that natural
convection will only occur when the Rayleigh number is larger than the critical, hence
being a criterium for a non-trivial solution. While the Rayleigh number depends on
flow and thermal properties of the medium and fluid, the critical Rayleigh number de-
pends only on the geometry of the domain and the imposed boundary conditions. When
a non-trivial solution exists, the linear stability analysis can also provide information
about the appearance of the convection cells, which is classified through convection
modes and can be presented in mode maps.

Natural convection has been investigated through linear stability analysis in several
contexts. Horton, Rogers and Lapwood considered a uniform horizontal porous layer of
infinite extent and found the critical Rayleigh number to be 4π2 [49, 60] when the layer
was subject to impermeable and perfectly heat conducting upper and lower surfaces.
Other boundary configurations can be considered as well, and an overview over critical
Rayleigh numbers in an infinite porous layer with various boundary conditions can be
found in Table 6.1 in [71]. In the following we look into the basic ideas behind the
linear stability analysis and outline how to find criteria for onset of convection and the
corresponding convection mode. To illustrate the steps of the linear stability analysis,
we consider a basic Horthon-Rogers-Lapwood problem. The presentation is based on
[49, 60, 71].
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3.1 Non-dimensional equations and the Rayleigh number

Before the model is linearized, it is convenient to non-dimensionalize the governing
equations. As we are interested in how the system behaves when relevant parameters
are changed, we can avoid the possibility of unnecessary work due to two (or more) pa-
rameters giving the same effect on the system by considering non-dimensional fractions
of parameters instead. This way, we can see how ratios of parameters affect the system.
To nondimensionalize (2.6), (2.12) and (2.13), the following coordinate transformation
is applied:

x∗ =
x

h
, t∗ =

tα f

σh2
, P∗ =

PK

μα f

v∗ =
vh

α f

, T ∗ =
T −Tc

Tw −Tc

,

where x = (x,y,z) denotes the spatial position. Here, h is the height of the domain,
α f = km/(ρcp) f is the thermal diffusivity and σ = (ρcp)m/(ρcp) f is the ratio of the
volumetric heat capacities of the medium and fluid. The two temperatures Tw and Tc

are reference temperatures and are the applied boundary conditions on the bottom and
top of the domain, respectively. Using the star, ∗, as a superscript indicates that the
variable is non-dimensional. Using this transformation, the non-dimensional versions
of Darcy’s law (2.6), mass conservation (2.12) and energy conservation (2.13) are now:

v∗ =−∇P∗+RaT ∗k, (3.1a)

∇ ·v∗ = 0, (3.1b)

∂T ∗

∂ t∗
+v∗ ·∇T ∗ = ∇2T ∗, (3.1c)

where Ra=
βρ f

ρ f ghK(Tw−Tc)

μα f
is the Rayleigh number. As mentioned earlier, the Rayleigh

number is a measure of the strength of the convection. Using the non-dimensional
form makes it easier to identify important aspects by the model equations as it is now
clear what effect various parameters as permeability, temperature difference and density
differences has on the system in the natural convection context. The model equations
are accompanied with boundary conditions at the top and bottom of the domain. No
boundary conditions are applied in the horizontal direction as the domain is an infinite
layer. The top and bottom of the layer are assumed to be impermeable and perfectly
heat conducting; hence,

T ∗ = 1 and v∗z = 0 at z∗ = 0,

T ∗ = 0 and v∗z = 0 at z∗ = 1.

3.2 Linearization around a stationary solution

The model equations (3.1) with the above boundary conditions have a steady-state so-
lution. This is the solution corresponding to no fluid flow, and all heat transfer being in
the form of conduction due to the temperature difference between top and bottom of the
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domain. Using a linear stability analysis, we are interested in the onset of convection.
Hence, the starting point will be the steady-state solution and this solution is perturbed
- investigating whether convection currents will evolve or diminish. The steady state
solution of (3.1) with the above boundary conditions is

v∗s = 0, T ∗
s = 1− z, P∗

s = Ra(z− z2

2
)+P0,

for some reference pressure P0. A small perturbation is introduced to the system, hence
a small (non-dimensional) velocity v̂, temperature T̂ and pressure field P̂ are added to
the above solution. The perturbed expressions are inserted in the model equation (3.1)
and non-linear terms are neglected: The reason for this is that the perturbed quanti-
ties are small, hence a squared perturbed quantity will be negligible. As we are only
interested at the onset of convection, the time dependence is also neglected:

v̂ =−∇P̂+RaT̂k, (3.2a)

∇ · v̂ = 0, (3.2b)

−v̂z = ∇2T̂ . (3.2c)

These equations can be rewritten into a single fourth order equation for T̂ . Combining
(3.2), we obtain

∇4T̂ +Ra∇2
1T̂ = 0, (3.3)

where ∇2
1 = ∇2 − ∂ 2

∂ z2 . The perturbed quantities fulfill homogeneous versions of the

above boundary conditions, and rewritten into boundary conditions in T̂ only, results in

T̂ = 0 and ∇2T̂ = 0 at z∗ = 0,1. (3.4)

Assuming separation of variables, the solution is given as

T̂ (x∗,y∗,z∗) = sin(lx∗)sin(my∗)Z(z∗),

for some positive numbers l and m. Inserting this expression into (3.3) results in an
equation for Z only:

(
d2

dz∗
−a2)2Z = a2RaZ,

where a= (m2+ l2)1/2 is called the wavenumber. Requiring fulfillment of the boundary
conditions (3.4), yields

T̂ (x∗,y∗,z∗) = sin(lx∗)sin(my∗)sin( jπz∗), (3.5)

where

Ra =
( j2π2 +a2)2

a2
(3.6)

and j is a positive integer.
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3.3 The critical Rayleigh number

With each solution (3.5), there is a corresponding Rayleigh number associated with
the choices of a and j through the relation (3.6). We seek the wavenumber a and the
integer j minimizing the Rayleigh number. This will be the smallest Rayleigh number
for which convection is possible, hence it is the critical Rayleigh number. The minimum
still giving a non-trivial solution is reached when j = 1 and a = π; hence,

Rac = 4π2.

The critical Rayleigh numbers acts as a criterion for whether natural convection cur-
rents can develop. When Ra < Rac, only conduction is present, but convection currents
can occur when the Rayleigh number is above 4π2.

The critical Rayleigh number is a result of the geometry and boundary conditions
that were applied. Later works applying linear stability analysis on natural convection
have included other geometries such as boxes [16, 99] and cylinders [44, 100, 106].
When finite domains as boxes and cylinders are investigated, the boundary conditions
at the vertical boundaries must also be accounted for, giving a large variety in potential
configurations, and also new shapes of the solution T̂ . Typically, the solution method
for finding T̂ and the critical Rayleigh number is changed to account for the vertical
boundary conditions, but the steps concerning perturbation of a steady-state solution are
the same as described above. Beck [16] considered an impermeable three-dimensional
box with insulated sidewalls which is heated from below and cooled from above. For
various box sizes he found critical Rayleigh numbers. The presence of vertical walls
impedes convection to develop, resulting in the critical Rayleigh number being either
equal to or larger than 4π2. Wang [99] used a similar configuration as Beck, but where
the bottom is heated by a constant flux, giving lower values for the critical Rayleigh
number. Wang also considered a cylinder where the top was permeable, while the bot-
tom was either held at a constant temperature or at a constant heat flux [100]. A vertical
porous cylinder which is heated from below and cooled from above has also been con-
sidered by Haugen and Tyvand [44], who investigated the case when the sidewalls were
heat conducting, and by Zebib [106], who considered insulated sidewalls. Several other
configurations have been considered as well, and we refer to Chapter 6 in Nield and Be-
jan’s book [71] which provides an extensive overview over the studied cases. Paper A
in this dissertation is also mentioned.

In Paper A we apply linear stability analysis to a porous medium filling the domain
between two coaxial cylinders where the top and bottom are kept at constant tempera-
tures. The domain can be seen in Figure 3.1. All external walls are impermeable, and
the sidewalls are either perfectly heat conducting or insulated. This case is similar to
the work of Haugen and Tyvand [44] and Zebib [106], but replacing the cylinder with
an annular cylinder. The internal cylinder introduces an extra obstacle for the natural
convection to overcome and can represent the presence of a borehole. The case with an
annular cylinder with insulated sidewalls has also been considered by Bau and Torrance
[14].
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Figure 3.1: Annular cylinder with inner radius Rw and outer radius R. Figure adapted from

Paper A and [20].

3.4 Convection modes

The linear stability analysis may identify the number of convection cells at the onset
of convection through the minimizing wavenumber. The number of convection cells
and how they distribute at the onset of convection is called the convection mode. As
seen from the perturbed temperature profile (3.5) of the Horton-Rogers-Lapwood prob-
lem, the solution consists of convection cells with length 2π/l and width 2π/m, hence l

and m determines the shape of the convection pattern. However, in the Horton-Rogers-
Lapwood problem, the convection mode determination is degenerate as the wavenum-
ber is given by a2 = l2 +m2 and any combination of l and m fulfilling l2 +m2 = π2

corresponds to the convection mode at onset of convection. Hence, linear theory is not
sufficient to determine the convection for this setting, but can be performed for other
geometries.

Mode maps giving the convection mode as a function of the size of the domain
have been found by Beck [16], Wang [99, 100], Zebib [106], and Haugen and Tyvand
[44] for their configurations. Bau and Torrance [14] who also considered an annular
cylinder with insulated sidewalls, found mode maps. However, as shown in Paper A,
we find a mode map with greater detail than Bau and Torrance.





Chapter 4

Homogenization of pore scale models

The model equations defined in Section 2.1 constitute the processes relevant at the pore
scale. These model equations take into account the changing geometry of the porous
medium and allows for detailed treatment of the pore structure. The development of
the pore structure is important when modeling chemical reactions with mineral precip-
itation and dissolution as the flow conditions can change significantly in a geothermal
reservoir, but doing simulations using a pore scale model would require a very fine
grid as a typical pore size could be micrometers, while the reservoir scale is typically
kilometers [15]. Also, even if we would have been able to explicitly include the pore
scale effects in the simulations, we are maybe only interested in finding the average
behavior of the system. Hence, a system of equations at Darcy scale would be more
comprehensive.

To incorporate pore scale effects into Darcy scale models, upscaling from pore scale
to Darcy scale can be applied: Then model equations at the Darcy scale including
the pore scale effects through upscaled effective parameters are achieved. Hence, the
average effects of the pore scale processes are still included. Upscaling of pore scale
models shows clearer how the pore scale mechanisms affect the average behavior at
Darcy scale. The alternative - using a Darcy scale method based on measurements at
reservoir scale, obstructs isolating the pore scale effects and might result in inaccurate
parameters. Through upscaling, the values of effective parameters can be determined
using values known from pore scale measurements.

There exists a variety of upscaling techniques applicable for porous media, both an-
alytical and numerical. The assumptions and applicabilities of the techniques vary, and
we refer to e.g. [30, 37] for a review of various methods. Which method to apply de-
pends on the starting and ending scale, which features that are present in the model,
and what the goal of the upscaling is. We focus here on homogenization as upscal-
ing method, which is an analytical technique deriving effective model problems based
on the pore scale model equations. Upscaling techniques such as spatial averaging
and Green’s function approaches are capable of doing the same, but using different as-
sumptions [30]. The basis behind homogenization is the notion of separation of scales
and using asymptotic expansions to capture the macroscale behavior of the microscale
equations.

Pore scale models and upscaling through homogenization can be used for a much
wider group of problems than reactive transport in the subsurface and are, e.g., used in
biological applications as well. Weller et al [101] analyzed various growth problems
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of a thrombus in a blood vessel: As the thrombus grows, the model contains a free
boundary and the authors show existence of a smooth solution. Using a periodic porous
medium approach, Marciniak-Czochra and Ptashnyk [62] upscaled the behavior of cell
receptors to derive an effective macroscopic formulation. Several models with mineral
precipitation and dissolution at pore scale have been considered, as in [92, 97] where
geochemical reactions on a fixed boundary is analyzed. Models with a fixed geometry
are applicable when size of the mineral layer does not change much in width due to
the chemical reactions. Pore scale models with a free boundary but no fluid flow is
studied in [95]. Later, van Noorden included fluid flow and performed upscaling from
pore scale to Darcy scale of a thin strip [94] and van Noorden extended the analysis
to consider upscaling in a periodic porous medium [93]. Ray et al [81] considered a
similar model as in [93], describing drug release from collagen matrices. Kumar et al
[59] performed upscaling of a model including solute transport with Taylor dispersion
in a thin strip with changing aperture due to mineral precipitation and dissolution, while
Allaire et al [11] considered a similar problem in a periodic porous medium, but with
a fixed geometry. Allaire and Habibi [8] upscaled various forms of heat transfer in a
fixed periodic porous medium.

The following presentation of homogenization as upscaling technique is based on
[27, 46, 47]. For illustration, we consider first a simple diffusion problem, but keeping
the pore scale model equations from Section 2.1 in mind.

4.1 Scale separation

The first step in a homogenization process is isolating a separation of scales through
some small number ε . This could be an highly oscillating diffusion coefficient varying
with period ε or a medium with holes of size ε . The two geometries presented in
Section 2.1 included a thin strip with height l and length L, and a perforated medium
contained in (0,L)2 where the typical perforated structure was contained within (0, l)2.
As the microscopic length scale l is much smaller than the macroscopic length scale
L, the quotient ε = l/L can be used as the indicator of the separation of scales. As
already introduced in Section 2.1 we separate between the macroscopic variable x and
the microscopic variable y.

To illustrate the scale separation a simple 1D diffusion equation is presented, which
is the same illustrative example used in [47]. We consider the boundary value problem

d

dx

(
aε(x)

d

dx
uε(x)

)
= 0 for 0 < x < 1,

uε(x) = 0 at x = 0,

uε(x) = 1 at x = 1,

where aε(x) is a highly oscillatory diffusion coefficient and can be written as aε(x) =
a( x

ε ) where a(y) is a periodic function with period 1. The possibility of rewriting aε(x)
this ways, defines the separation of scales: The model equation is formulated using
the macroscopic variable x, but the problem depends on variations on a much smaller
scale, which is better captured using the microscopic variable y instead, and ε gives the
scaling between x and y. Even though this problem can be solved explicitly, we are
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interested in the average solution, which in this case would be when aε(x) is replaced
with a constant a∗. Solving the original problem leads to

uε(x) = x+

∫ x
ε

0 ( 1
a(y) −1)dy

∫ 1
ε

0
1

a(y)dy

,

while the solution of the average problem, denoted u(x), is

u(x) = x.

Hence, the original solution can be written as

uε(x) = u(x)+ εu1(
x

ε
),

where u1(y) is a 1-periodic function given by

u1(y) =

∫ y
0

dȳ
a(ȳ)∫ 1

0
dȳ

a(ȳ)

− y.

Normally, the explicit solution of the original problem is not known, but this simple
1D-problem illustrates the separation of scale. The solution to the average problem
u(x) is found, and we see that the solution of the original problem contains this average
solution in addition to a correction term containing the microscopic behavior. When ε
is small, the correction term is also small, and

lim
ε→0

uε(x) = u(x).

Hence, for small values of ε the average solution is expected to mimic the original
solution well.

A similar scale separation can be made in the two geometries defined in Section
2.1. In the periodic model we separated between the macroscopic variable x and the
microscopic variable y capturing the behavior in the pore structure, and ε was found
in the scaling between the two variables. The thin strip model has a slightly different
separation of scale; here y is not a scaled version of x, but in another spatial direction.
As the strip is thin and long, we can still identify a difference in length scales and a
value for ε .

The model equations defined in Section 2.1 can be clearer investigated if written
using non-dimensional variables. Non-dimensionalizing the model equations shows at
which scale various terms depend on and will clarify the further analysis. In Papers
D, E and F we use slightly different ways of non-dimensionalizing the equations and
present here from the version in Paper E. As our purpose is to illustrate the procedure,
we only non-dimensionalize the solute transport equation (2.3) and the momentum
equation (2.5) here. We introduce tre f , xre f = L, yre f = l, ure f , qre f , pre f = L4ure f /t2

re f l2,

μre f = l2 pre f/Lqre f , and let ε = l/L. Non-dimensional variables are denoted with a hat
and are defined as

t̂ = t/tre f , x̂ = x/xre f , ŷ = y/yre f , ûε = u/ure f ,

q̂ε = q/qre f , p̂ε = p/pre f , ρ̂ f = ρ f/ure f , μ̂ = μ/μre f .
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We emphasize dependence on the small variable ε by denoting our main variables with
ε as a superscript. To proceed we introduce some relevant reference times: The refer-
ence time for fluid flow is TF = L/qre f which will also act as reference time for obser-
vations; tre f . This is because we are interested in the typical time for any injected fluid

flowing through the reservoir. For solute diffusion the reference time is TD = L2/D.
The Péclet number, which is a measure of the relative strength between advection and
diffusion, is defined as

PeD =
TD

TF

= O(ε−β ).

In Paper F we have a convection dominated problem, hence β will be positive, giving
large Péclet number and we assume β = 1. In Papers D and E we assume convection
and diffusion to be at the same time scale, hence β = 0 in these papers. Following
Paper E, the non-dimensional solute diffusion parameter is

D̂ =
D

Lqre f

,

where D̂ is assumed independent of ε . Since we will only use non-dimensional vari-
ables in the following, we skip the hat. The non-dimensional convection-diffusion
equation (2.3) becomes

∂tu
ε +∇ · (qεuε) = D∇2uε in Ωε(t), (4.1)

while the momentum balance equation (2.5) is now written

ε2

(
∂t(ρ f q

ε)+∇ · (ρ f q
εqε)

)
=−∇pε

+ ε2

(
∇ ·

(
μ(∇qε +(∇qε)T )

)
− 2

3
∇(μ∇ ·qε)

)
in Ωε(t), (4.2)

All the model equations have been non-dimensionalized and we refer to Papers D,
E and F for a complete overview. Equations (4.1) and (4.2) illustrate how the non-
dimensionalization can emphasize the scale dependence. We see that all the terms but
the pressure gradient is multiplied with ε2 in (4.2), indicating that pressure differences
have an important role in the momentum equation as all other terms are much smaller.
In Paper F, the diffusive term in (4.1) is multiplied with a factor ε due to the assump-
tion of dominating convection, while diffusion and convection have the same relative
strength in Papers D and E. Our goal is to find an average problem mimicking the be-
havior of the pore scale problem, using the assumption that ε is small.

4.2 Homogenization ansatz

The steps towards finding upscaled model equations start with the homogenization
ansatz and using formal asymptotic expansions. We assume that the unknowns uε(x)
and qε(x) can be written in the form of two-scale asymptotic expansions such that

uε(x) = u0(x,y)+ εu1(x,y)+ ε2u2(x,y)+ . . . , (4.3a)

qε(x) = q0(x,y)+ εq1(x,y)+ ε2q2(x,y)+ . . . , (4.3b)
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and similarly for the other variables. We can call u0 the macroscopic part of uε and we
see that

u0 = lim
ε→0

uε ,

while u1 can be thought of as the first order correction as

u1 = lim
ε→0

1

ε
(uε −u0),

and similarly with u2. Due to the inclusion of explicit dependence of y in the series
expansion terms, it follows from the chain rule that the nabla-operator is ∇ =∇x+

1
ε ∇y.

The 1
ε -factor is due to the difference in scaling of y.

Note that introducing the asymptotic expansion is an assumption. Assuming that
the series representation is valid, we seek model equations that capture the main fea-
tures when ε is small. The procedure is to insert the asymptotic expansions (4.3) into
the model equations (4.1) and (4.2), and isolate the terms that are dominating since ε is
small. Through this procedure one can show that u0 will be a function of x only, mean-
ing that the dominating part of the solution does not depend on the microscale variable
y - as expected. By detecting terms that are of same order with respect to ε , new model
equations using u0 (and sometimes also including u1) as a variable can be formulated.
The new system of model equations is known as the homogenized problem.

The thin strip case is slightly different as the y-dependence comes from the transver-
sal direction in the strip and is not a product from scaling. The homogenization of the
periodic porous medium relies on the periodicity of y, while no periodicity is necessary
in the thin strip setting. However, as the strip is thin there is still a separation of length
scales and similar asymptotic expansions. The ∇-operator is in the thin strip case given

as ∇ = ∂
∂x

i+ 1
ε

∂
∂y

j, hence the procedure with finding dominating terms in the thin strip

case is surprisingly similar as with the periodic porous medium, and is presented in
Papers D and F.

4.3 Two-scale convergence

The disadvantage of the above described procedure is that it relies on the assumption of
the validity of asymptotic expansions and if u0 is in fact the limit of uε as ε approaches
zero. Nguetseng [70] introduced the notion of two-scale convergence to address this
challenge, which was later developed further by Allaire [6]. The concept of two-scale
convergence is applicable for the periodic porous medium and is defined in the follow-
ing way:

Definition 1. A sequence of functions uε ∈ L2(Ωε) is said to converge two-scale to a

limit u0 ∈ L2(Ω×Y ) if

lim
ε→0

∫
Ωε

uε(x)φ(x,
x

ε
)dx =

∫
Ω

∫
Y

u0(x,y)φ(x,y)dxdy

for all φ ∈D(Ω;C∞
per(Y )), where C∞

per(Y ) is the space of infinite differentiable periodic

functions.
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The definition is accompanied by two theorems providing the two-scale conver-
gence and strong convergence for linear elliptic problems [6]:

Theorem 1. Let uε be a bounded sequence in L2(Ω). There exists a subsequence, also

denoted uε , and a function u0(x,y) ∈ L2(Ω×Y ), where Y is the unit cube, such that

lim
ε→0

∫
Ω

uε(x)φ(x,
x

ε
)dx =

∫
Ω

∫
Y

u0(x,y)φ(x,y)dxdy

for any smooth function φ(x,y) which is Y -periodic in y.

Theorem 2. Let uε be a sequence that two-scale converges to u0(x,y). Then, uε weakly

converges in L2(Ω) to u(x) =
∫

Y u0(x,y)dy, and we have

lim
ε→0

||uε ||L2(Ω) = ||u0||L2(Ω×Y ),

and if u0(x,y) is smooth, then

lim
ε→0

||uε(x)−u0(x,
x

ε
)||L2(Ω) = 0.

The first theorem proves the existence of the first term in the ansatz (4.3). Note that
the theorems are formulated in Ω, but as proven in [2], as long as Ωε is connected, the
convergence can be proven for an extended function ūε defined in the whole domain.
To prove the two-scale convergence for a specific model equation, one needs to show
boundedness in the relevant norm for uε . In a perforated domain, this is not straight-
forward as one needs to extend uε onto Ω in a continuous manner. How to define
this extension depends on the boundary conditions imposed on the perforations. Tak-
ing into account the perforations changing with time complicates the procedure. Our
model equations in Section 2.1 are non-linear, hence proving the two-scale convergence
would be challenging, although convergence results for some non-linear problems ex-
ists [6, 32, 48]. We note that Peter [75] proved two-scale convergence and Meier [64]
also proved existence and uniqueness for a (quasi)linear coupled reaction-diffusion pro-
cess with a prescribed reaction rate by transforming the developing domain into a fixed
reference domain. Using a prescribed velocity field, Allaire et al [7, 9, 10] have shown
two-scale convergence for a reactive transport problem with a free boundary under var-
ious assumptions. The results were also confirmed by numerical computations.

The framework of two-scale convergence is a powerful tool to prove the existence
and uniqueness of the macroscopic solution in the limit as ε approaches zero. However,
applying it to the coupled model equations considered in Section 2.1 has not been done
due to the complexity of the procedure for this model problem and is beyond the scope
of this thesis. Hence, in Papers D, E and F, the assumption of asymptotic expansions
remains an assumption.

4.4 Verifications and limitations

When the two-scale convergence is not proven, the validity of the homogenization pro-
cedure relies on the assumption of the homogenization ansatz (4.3). This is not neces-
sarily a problem, and a quite common simplification in many homogenization papers.
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The two papers by van Noorden [93, 94], which corresponds to the isothermal versions
of Papers D and E, do not include any two-scale convergence, but has compared the
upscaled model with the original pore scale model equations in some special cases. As
one expects the upscaled model to mimic the average behavior of the original model
equations when ε is close to zero, numerical calculations of both the pore scale model
and the upscaled model can be done to check if there actually is a correspondence for
small values of ε . This way, it is still possible to substantiate the validity of the upscal-
ing procedure.

Kumar et al [59] compared the upscaled Taylor dispersion model in a thin strip with
the original pore scale equations and found correspondence as ε decreased. Kumar et
al also compared the upscaled model equations with simplified versions of the model
equations and found the simplified versions to also correspond well when using a small
value of ε (that is, ε = 0.0001). The upscaled model was the one that corresponded
best with the average solution of the pore scale equations, especially for slightly larger
values of ε .

Implementing the pore scale model equations with a free boundary requires extra
care. Kumar et al [59] and van Noorden [93, 94] used an ALE (Arbitrary Lagrangian-
Eulerian) formulation [33] to deform the grid in the void space as the geometry de-
veloped. Implementing a level set formulation to track the moving interface is also
possible and we refer to, e.g., [51] for an example of such an implementation in 3D.
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Numerical framework

Solving the coupled non-linear model equations arising from natural convection or re-
active transport, requires numerical methods. Numerical methods allow us to discretize
the equations and find approximate solutions that are converging to the exact solution.
There exists a large variety of numerical methods, each having advantages and deficien-
cies. Which numerical method to apply depends on properties of the model equations
and which features are needed in the approximate solution. In our research two classes
of methods have been applied: Pseudospectral methods and finite volume methods.
Pseudospectral methods have the advantage of high accuracy and easy implementa-
tion, while extra care is needed for complex domains. Finite volume methods allow
flexible gridding and has the advantage of being conservative, meaning that properties
such as mass and energy will be conserved in the discretization. However, the conver-
gence rate is low. In the natural convection model high accuracy is needed to capture
the convection accurately. As a relatively simple domain is considered, pseudospectral
methods are applicable. For the reactive transport model, conserving mass and energy
through the fluid flow is important due to the intricate flow evolution caused by the
changing porosity. Hence, finite volume methods are applied for this model.

5.1 Pseudospectral methods

The presentation of pseudospectral methods is based on the books of Trefethen [89] and
Boyd [19]. Pseudospectral methods are a branch within spectral methods, which are
based on approximating the unknown solution u(x) by a sum of N +1 basis functions
ψi(x) that span the space where the approximate solution exists:

u(x)≈ uN(x) =
N

∑
i=0

aiψi(x),

where {ai}N
i=0 is a set of unknown weights. We seek the approximate solution of the

differential equation
Lu(x) = f (x),

where L is a differential operator and f is a known function. The approach of pseu-
dospectral methods is to minimize the residual

R(x;a0,a1, . . . ,aN) = LuN − f
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by requiring it to be zero in a set of N+1 collocation points {x j}N
j=0. As basis functions

one uses polynomials of order N + 1 or trigonometric functions. The basis functions
are chosen such that they have the value 1 in one collocation point and 0 in the others;
that is,

ψi(x j) = δi j. (5.1)

This way, the unknown weights ai are the function values of the approximated solution
uN in the collocation points xi. If the differential operator L is linear, the differential
equation can be reformulated into the linear matrix equation

Ax = b,

where x is the vector containing the unknown function values uN(xi), A is the (N+1)×
(N+1) matrix with entries Ai j = Lψ j(xi), and b is a vector with components f (xi). The
matrix A will in general be a full matrix. Each line in the matrix equation represents an
equation for the function value in a specific node.

5.1.1 Choice of collocation points

How to choose the collocation points, and hence the basis functions, is an essential as-
pect of pseudospectral methods as a bad choice could lead to low or no convergence.
If the solution is expected to have some periodicity, the Fourier nodes with accompa-
nying Fourier basis should be chosen. If the solution does not have any periodicity and
exists in a finite interval, Chebyshev nodes and Chebyshev polynomials as basis func-
tion will produce the best results. For solutions on infinite or semi-infinite intervals,
other choices such as Laguerre, rational Chebyshev or Hermite functions can be used
as basis functions. In the natural convection model a finite domain with periodicity in
the azimuthal direction is considered. As only Chebyshev and Fourier basis function
will be relevant for our model, we focus on them in the following presentation.

For the radial and vertical direction, a rewritten version of Chebyshev polynomials
is applied as basis functions. The set of collocation nodes will be a Gauss-Lobatto-
Chebyshev (GLC) grid, which consists of the critical points of the Nth order Chebyshev
polynomial TN(x) and the endpoints −1 and 1. This set of points can easily be rescaled
and shifted to any finite interval. The (N +1) GLC points are given by

xi = cos
(πi

N

)
for i = 0, . . . ,N,

while the basis functions satisfying the desired kronecker-delta property (5.1) are

ψi(x) =
(−1)i+1

ciN2

(1− x2)

x− xi

dTN(x)

dx
for i = 0, . . . ,N, (5.2)

where ci is 2 when i is 0 or N and otherwise 1. The grid points are clustered near the
edges of the interval, which assures minimizing any Runge’s phenomenom [18].

In the azimuthal direction the critical points of cos(Nx
2 ) are used as grid points:

xi =
2πi

N
for i = 1, . . . ,N.
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Note that only N points are needed in the azimuthal direction instead of N + 1. Due
to the periodicity requirement the point i = 0 would be the same point as i = N and is
therefore neglected. The required basis functions fulfilling (5.1) are

ψi(x) =
1

2N
sin

(
N(x− xi)

)
cot

(1

2
(x− xi)

)
for i = 1, . . . ,N. (5.3)

Also note that the grid points are equidistant, which is normally associated with caus-
ing Runge’s phenomenon. As the basis functions are trigonometric functions and not
polynomials, this is not a risk in this case.

5.1.2 Differentiation matrices

The discretization of the differential operator L can be constructed from differentiation
matrices. The differentiation matrix for single derivation will have entries d

dx
ψ j(xi), and

similarly will a differentiation matrix for double derivation has entries d2

dx2 ψ j(xi). As
the basis functions are known from (5.2) and (5.3), we can calculate the differentiation
matrices. The following formulas are derived by Gottlieb et al in [42].

The first order differentiation matrix for Chebyshev nodes has entries

Ai j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(1+2N2)/6 if i = j = 0,

−(1+2N2)/6 if i = j = N,

−x j/(2−2x2
j) if i = j;0 < j < N,

(−1)i+ jci/(c j(xi − x j)) if i �= j.

Higher order differentiation matrices with this choice of Chebyshev basis function are
given as

Ak = (A1)
k,

where Ak is kth order differentiation matrix and k is a positive integer.
The first order differentiation matrix for Fourier nodes has entries

Ai j =

{
0 if i = j,
1
2(−1)i−1 cot(1

2(xi − x j)) if i �= j,

while the second order differentiation matrix is given by

Ai j =

{
−(1+2N2)/6 if i = j,
1
2
(−1)i−1+1 csc2(1

2
(xi − x j)) if i �= j.

The differential operator is discretized by combining the necessary differentiation
matrices. We can note that in the designing and assembling of the discretization, the
Chebyshev and Fourier basis functions are not explicitly used, but they are part of the
underlying derivation in the distribution of nodes and setup of differentiation matrices.
Boyd shows in Section 4.4 in [19] that discretization using series expansions explicitly
or through collocation points and differentiation matrices are equivalent and share the
same convergence properties. Using the differentiation matrices, boundary conditions
are incorporated through the collocation nodes located at the boundary: The equation
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line corresponding to the boundary node is replaced with an equation representing the
applied boundary condition. As our system of equations is non-linear due to the con-
vective term, the resulting discretization of L will be non-linear and is solved iteratively
using Newton’s method, which is described in Section 5.4.

5.1.3 Convergence rates

Pseudospectral methods are known for their exponential convergence rate, which is due
to the convergence properties of series expansions of orthogonal functions. As Fourier
and Chebyshev series create the basis for the pseudospectral methods, the convergence
properties of pseudospectral methods are the same as with these series expansions. We
present two short proofs showing why the Fourier series and the Chebyshev series have
such fast convergence. The proofs are given thoroughly by Gottlieb and Orszag in
Section 3 in [43].

Fourier series

The complex Fourier series g(x) of a periodic function f (x) defined on the interval
[0,2π] is given by

g(x) =
∞

∑
j=−∞

a je
i jx,

where i refers to the imaginary unit
√−1. The series coefficients a j are given by

a j =
1

2π

∫ 2π

0
f (x)e−i jxdx.

Defining the truncated series

gN(x) =
N

∑
j=−N

a je
i jx,

we seek the convergence rate of | f (x)−gN(x)| as N increases. If f (x) has continuous

derivatives up to order k − 1 for some positive integer k, and if f (k)(x) exists and is
integrable, then integration by parts yields

a j =
1

2π(i j)k

∫ 2π

0
f (k)(x)e−i jxdx.

The Riemann-Lebesgue lemma implies that |a j|  1/ jk as j →±∞, which assures that

| f (x)−gN(x)|= O(
1

Nk
) as N → ∞.

This is called algebraic convergence of order k. If f (x) is infinitely differentiable and
periodic, then

| f (x)−gN(x)|= O(
1

Nk
) ∀ k ≥ 0 as N → ∞.

This is called exponential or spectral convergence and means that gN(x) converges to
f (x) more rapidly than any finite power of 1/N as N → ∞.
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Chebyshev series

Chebyshev series have the same convergence properties as Fourier series as they can be
interpreted as a rewritten form of the Fourier cosine series. The Chebyshev series for a
function f (x) defined on the interval [−1,1] is

g(x) =
∞

∑
j=0

a jTj(x),

where Tj(x) is the Chebyshev polynomial of order j. Then G(θ) = g(cosθ) is the
Fourier cosine series of F(θ) = f (cosθ) for θ ∈ [0,π]. This follows directly from the
cosines property of Chebyshev polynomials as Tj(cosθ) = cos( jθ) and the mapping
x= cosθ . This mapping also ensures the periodicity requirement needed for the Fourier
series. The series coefficients a j in the above expansion are given by

a j =
2

πd j

∫ 2π

0
f (cosθ)cos( jθ)dθ =

2

πd j

∫ 1

−1
f (x)Tj(x)(1− x2)−1/2dx,

where d0 = 2 and otherwise 1. Since a Chebyshev series can be mapped into a Fourier
cosine series, Chebyshev series will have the same convergence properties. Hence, if
f (x) is infinitely differentiable, the truncated series expansion gN(x) converges to f (x)
at exponential/spectral rate as N → ∞.

It is important to note that if f ′(x) is known to only be, e.g., piecewise continuous
and differentiable, we cannot expect convergence faster than O(1/N2).

5.1.4 Domain decomposition

As the nodes have to be chosen in specific ways in order for pseudospectral meth-
ods to converge (fast), this puts restrictions on which domains that can be considered.
Using cartesian coordinates, cuboids would be ideal, while in cylindrical coordinates
cylinders or annular cylinders are preferable. To overcome this limitation when deal-
ing with slightly more complex domains, we can decompose the domain into several
parts such that a pseudospectral grid can be applied to each part. In Paper B we con-
sider a three-layer porous medium with the borehole interacting with the middle layer.
A cross-section of the domain is shown in Figure 5.1. The top and bottom layers act as
heat reservoirs for the middle layer, which is connected with the borehole. The circulat-
ing fluid inside the outer part of the borehole and the interaction between the borehole
and the reservoir is included explicitly.

As different model equations are applied in the layers of the porous medium, the
porous medium is divided into three domains according to the layering. The bore-
hole is introduced as one domain. Each domain is discretized using scaled and shifted
Chebyshev nodes in radial and vertical direction and Fourier nodes in azimuthal direc-
tion. Where the domains meet, precautions must be made and we require continuity
in relevant variables and in their fluxes across the internal boundaries. For the energy
equations, this means that we demand temperature continuity across all internal bound-
aries as well as continuity in heat flux. As the heat conductivity varies between the
layers and the borehole, this results in a discontinuous temperature gradient. The dis-
continuous temperature gradient entails that we cannot expect high convergence rates.
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Figure 5.1: Cross-section of the annular cylinder with inner radius Rw and outer radius R. The

outer part of the borehole pipe has inner radius Ri and interacts with the middle layer of the

porous medium. Figure adapted from Paper B.

Pseudospectral is however still a good choice for discretizing as the truncation error
from pseudospectral methods is in general smaller than from comparable methods.

5.2 Finite volume methods

The following presentation of finite volume methods is based on the book by Eymard et
al [36]. As mentioned in the introduction, the advantage of using finite volume methods
to discretize model equations, is due to the methods being conservative. The methods
rely on dividing the computational domain into subsets called control volumes. When
discretizing equations expressing conservation of some quantity; e.g., mass, energy or
ions, the conservation equations are integrated over the control volume. Applying the
divergence theorem leads to each control volume expressing that the accumulation of
the quantity within the volume equals the fluxes over the boundary. The fluxes over the
boundary are then discretized.

The finite volume methods work on arbitrary geometries and on unstructured
meshes, but simplifies when used on cartesian grids. Several versions of the meth-
ods exists, depending on how to approximate the fluxes. As we have only applied two
point flux approximation (TPFA), we will present this version of the method, but men-
tion here that versions using multi point flux approximation (MPFA) exist [1, 61]. The
below presentation utilizes a two-dimensional uniform cartesian grid.
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5.2.1 Conservative schemes

The two-dimensional domain Ω is divided into subsets denoted Vi j, where the indices
{i, j} are such that the whole domain is covered. The grid is rectangular and uniform
with nodes in the cell centers. We consider the discretization of the general conserva-
tion equation

∂

∂ t
u(x, t)+∇ ·F(x, t) = f (x, t),

where u is the quantity to be conserved, F denotes the flux of u, and f is a source/sink
term, e.g., coming from a chemical reaction. Comparing with the model equations
given in Section 2.2 (and also in Section 2.1, of course), we see a relationship with the
above conservation law.

The above equation is integrated over the control volume Vi j. Applying the diver-
gence theorem for the flux term yields

∫
Vi j

∂

∂ t
udx+

∫
∂Vi j

F ·nds =

∫
Vi j

f dx, (5.4)

where ∂Vi j is the positively oriented boundary of Vi j and n is the unit normal of ∂Vi j

pointing outwards. As the grid is rectangular, the four edges of the boundary can be
denoted σi±1/2, j±1/2. For each edge, a two point flux approximation is applied, hence
using the cell centers on each side of the edge to approximate the value on the edge.
For the vertical edge σi+1/2, j located on the right-hand side of Vi j, this means

∫
σi+1/2, j

F ·nds =

∫
σi+1/2, j

{Fi+1, j,Fi, j}ds.

How to express the flux using Fi+1, j and Fi, j will be explained below, but we note for
now that the equation (5.4) expresses the conservation: The first term is the accumula-
tion of u inside the control volume, while the second term is the flux of u leaving the
volume over the edges. The term on the right-hand side expresses how much is pro-
duced/annihilated inside the control volume. To express the flux over the edge, and
to have a conservative scheme, we require consistency. Hence, what leaves one con-
trol volume through one edge must equal what enters the neighboring control volume
through the same edge. This means,∫

σi+1/2, j

{Fi+1, j,Fi, j}ds =−
∫

σi+1/2, j

{Fi, j,Fi+1, j}ds,

where the right-hand side is what enters the control volume Vi+1, j through its left edge.
A large variety of meshes and schemes exists, but they all require this consistency in
fluxes to be conservative. To indicate how the fluxes are discretized we consider a small
example using F = vu−D∇u, which corresponds to an convection-diffusion equation.
When the flow velocity v is known at the control volume edges, the flux across σi+1/2, j

can be approximated by∫
σi+1/2, j

{Fi+1, j,Fi, j}ds = Li+1/2, jvi+1/2, jui+1/2, j −Li+1/2, jD
ui+1, j −ui, j

hx

,
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where Li+1/2, j is the length of edge σi+1/2, j, vi+1/2, j is the horizontal component of v

at the edge and hx is the distance between the cell centers in control volumes Vi+1, j and
Vi, j. If D is not constant, it should be replaced with its harmonic mean between the two
cells. For the convective term upstream approximation is applied, meaning that

ui+1/2, j =

{
ui, j if vi+1/2, j ≥ 0,

ui+1, j if vi+1/2, j < 0.

5.2.2 Convergence rate

Eymard et al [36] provide several conditions for existence and convergence on some
domains, meshes and flux discretizations for various types of model equations, as well
as providing error estimates. For a linear elliptic equation on a two-dimensional unit
square and Dirichlet boundary conditions, discretized with a uniform rectangular grid,
it is straight-forward to show that the finite volume discretization provides an error
that approaches zero as O(h2) in the L2(Ω)-norm as the grid size h approaches zero
(Proposition 3.1, [36]).

For more general meshes and schemes, the requirement is that the mesh should be
admissible, meaning that the union of all control volumes should cover the domain Ω,
have common edges and not be overlapping. Then, existence and convergence of a
linear elliptic model equation can still be shown. Hence, finite volume methods is a
robust method as it handles more general domains and meshes. Error estimates in the
form O(h), where h is now a measure of the maximum diameter of the control volumes,
can be shown (Theorem 3.3, [36]).

Showing convergence rates for non-linear coupled system of equations is not
straightforward. In general, one can show existence of a unique solution and conver-
gence under some requirements and we refer to Eymard et al [36] for further reading.
A convergence of O(h2) is expected for uniform, rectangular grids on linear problems,
but the model equations in Section 2.2 are non-linear. However, finite volume methods
are preferred due to the conservation properties as they provide consistent formulations.
Convergence of the discretized scheme can still be indicated by comparing numerical
solutions on increasingly finer grids.

5.3 Time discretization

Up to now we have discussed spatial discretization, and we assume now that our model
equations are discretized in space such that time discretization of the general system of
equations

d

dt
u = S(u), (5.5)

can be considered. Here S is some vector function obtained through the spatial dis-
cretization and u is a vector containing the values of u at the prescribed grid. Due to
the non-linearities in the model equations, S will in general be non-linear. To perform
time integration, the time variable t is divided into time steps denoted tn. In general, the
time step length Δtn+1 = tn+1 − tn can vary, for instance in combination with an error
estimate creating an adaptive time stepping.
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We separate between explicit and implicit time stepping and present them through
forward Euler and backward Euler. Forward Euler is an explicit time stepping scheme
and discretizes the above equation through

un+1 −un

Δtn+1
= S(un),

where un contains the values of u at present time step tn and are hence known, while
un+1 contains the values of u at the next time step and are unknown. The above equation
can easily be solved for un+1, giving an explicit expression for the solution at the next
time step. Backward Euler uses the unknown un+1 on the right-hand side, hence

un+1 −un

Δtn+1
= S(un+1).

This means that an expression for un+1 cannot in general be obtained due to the non-
linearities in S. Hence, un+1 is known implicitly through the above relation, and itera-
tive schemes are needed to find un+1.

The stability of these two methods can be estimated through A-stability [53]. When

S is differentiable, the Jacobian matrix J exists and has components ∂Si

∂u j
. The forward

Euler method is A-stable if
ρ(I+Δtn+1J)< 1,

while the backward Euler method is A-stable when

ρ((I−Δtn+1J)−1)< 1.

The notation ρ(B) means the spectral radius of the matrix B and is given as the maxi-
mum eigenvalue. In general, backward Euler will have a larger stability region than for-
ward Euler. The backward Euler method is normally applied for stiff model problems,
but has the disadvantage of introducing more smearing and each time step requires
more computational effort. Forward Euler is faster, but typically introduces extra con-
straints on the time step.

In Papers A and B the model equations were time discretized using MATLAB’s
built-in ODE15s [83]. ODE15s has adaptive time stepping based on backward differ-
entiation formulas, hence it is an implicit scheme and suitable for stiff problems. In
Paper C, the model equations were decoupled and time stepped using a combination of
backward Euler and forward Euler. Paper F utilizes forward Euler.

5.4 Newton’s method

When the resulting discretized system of equations is non-linear, iterative methods are
needed to solve it. We consider the non-linear vector equation

G(x) = 0,

where G is an n-dimensional differentiable vector function and x is the n-dimensional
unknown. To solve this system of equations, Newton’s method is applied. Newton’s
method relies on the iteration

xk+1 = xk −J−1(xk)G(xk),
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where J is the Jacobian matrix of G. The starting point x0 of the iteration has to be
close enough to the correct solution, otherwise the iteration might not converge, or
converge to the wrong solution. When used in combination with time stepping, x0 is
typically chosen to be the known values at the previous time step. Since x0 has to
be close to the solution; that is, the unknown values at the next time step, this can
result in additional constraints on the time step length. Newton’s method has quadratic
convergence when it converges [53]. Radu and Pop [79, 80] applied Newton’s method
for reactive transport using the mass conservative mixed finite element method and
could show the quadratic convergence. Although the proof is performed for mixed
finite elements, a corresponding proof for finite volumes on the same model equations
would be similar.



Chapter 6

Summary and outlook

The research results are contained in six papers that are included in Part II, and we
present here a summary and discussion of the papers. Papers A and B involve natural
convection, where Paper A focuses more on the theoretical background for natural
convection, while Paper B relates the convection to a geothermal setting. Papers C,
D, E and F concern reactive transport. Paper C can be read as a motivation for the
following pore scale models that are formulated and upscaled in Papers D, E and F.
Part I of this thesis ends with some conclusive remarks and outlook.

6.1 Summary of papers

Paper A: Linear and nonlinear convection in porous media between coaxial cylinders

In this paper we investigate the convection in a porous medium filling an annulus. First
the linear case is investigated and a linear stability analysis is performed on the model
equations to find criteria for the onset of convection and the expected convection pattern
at onset. Two different cases are considered: one where the sidewalls are insulated and
one where the sidewalls are perfectly heat conducting. The setting is motivated mainly
by the papers of Zebib [106], who considered an insulated cylinder; of Haugen and Ty-
vand [44], who analyzed an heat conducting cylinder; and of Bau and Torrance [14],
who among other things investigated an annulus with insulated sidewalls. Hence, the
linear stability analysis on the annulus with insulated sidewalls had already been con-
sidered, but our research reveals more detailed mode maps, and we include some other
sizes of the annular cylinder. The case with an annular cylinder and heat conducting
sidewalls have not been analyzed before.

The linear stability analysis results in critical Rayleigh numbers and mode maps
as a function of the inner and outer radius of the annulus for both cases. Comparing
our findings with Zebib [106] and Haugen and Tyvand [44] for small values of the
inner cylinder, reveals that our critical Rayleigh numbers converge to the findings of
Zebib and Haugen and Tyvand. Using Taylor series expansions, we can also show
convergence in terms of the inner radius approaching zero. A recent paper by Kang et
al [52] uses linear stability analysis to investigate the Coriolis effect in a viscoelastic
fluid saturating a porous medium filling a rotating annulus. By introducing the non-
dimensional Taylor number, which quantifies the importance of centrifugal forces, they
find critical Rayleigh numbers with corresponding mode maps. They show that as the
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Taylor number approaches zero, their findings reduce to the same results as in Paper A.

Using pseudospectral methods we implement the non-linear model equations using
an annulus as domain and apply the same type of boundary conditions as in the stabil-
ity analysis. This way, the non-linear time dependent regime can be investigated to see
whether the linear and non-linear regimes show large deviations at the onset of convec-
tion. By varying the Rayleigh number, good correspondence between the linear and
non-linear regimes are found for low Rayleigh numbers: When the Rayleigh number
is lower than the critical, the simulations reveal no convection, while increasing the
Rayleigh number to be slightly larger than the critical gives convection and the convec-
tion mode is the one predicted by the linear stability analysis. This result is important
in two ways: Firstly, it shows that the linear stability analysis is capable of predicting
the correct critical Rayleigh numbers and convection modes. Hence, the error made in
the linearization of the model equations is not large. Secondly, this means that since
the non-linear regime will give the same convection mode as the linear analysis, one
can use the linear results as a benchmark for numerical implementations.

Using the implementation of the non-linear regime of the convection problem can
be further investigated. By increasing the Rayleigh number even further, some convec-
tion modes are found to not be stable with respect to perturbation, and some convec-
tion modes not predicted by the linear analysis appear. This shows that the non-linear
regime deviates from the linear as the Rayleigh number increases: Larger Rayleigh
numbers corresponds to stronger convection, hence the perturbed quantities, herein the
perturbed velocity, are not small anymore, causing the error made in the linearization
of the convective term to grow. Some overlapping stability regimes are found: For
a given size of the domain and Rayleigh number slightly larger than the critical, two
stable convective modes are found.

The linear stability analysis proves to be an important tool for analyzing natural con-
vection problems in a porous medium. The analysis can give information about when
convection appears and how the convection currents will distribute. However, the lin-
ear analysis has some drawbacks: It is clear that the non-linear regime deviates from
the linear for larger Rayleigh numbers, which is as expected. Also, to perform the lin-
ear stability analysis, one relies on solving the linearized system of equations together
with the boundary conditions. This is possible using separation of variables, but the as-
sumption of separating the variables puts some restriction on possible solutions. Even
so, using more advanced or realistic boundary conditions impedes finding an analyti-
cal solution, causing the linear analysis to be unsuccessful. In this case, one has to rely
on numerical methods to investigate the natural convection, which was our motivation
behind Paper B.

Paper B: Influence of natural convection in a porous medium when producing from

borehole heat exchangers

In this paper we develop the pseudospectral solver from Paper A to cover a case more
realistic for geothermal energy extraction in order to say something about the effect
of natural convection on a borehole heat exchanger (BHE). Borehole heat exchangers
use a closed loop of pipes to extract heat and are utilized for direct heating of buildings
[35]. A domain containing a three-layer porous medium and the borehole is considered.
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The borehole contains a fluid that is circulated inside the borehole; where cold fluid is
pumped down in an outer pipe and warmer fluid up the inner pipe. Only the outer pipe
in the domain is included as this is where the heat exchange with the subsurface occurs.
The geothermal reservoir is included as a three-layer medium where the middle layer
is permeable and saturated with fluid. The top and bottom layers are not saturated with
fluid and act as heat reservoirs and receivers for the middle layer.

The simulations are initialized with a stationary conductive heat transfer with no
fluid flow. Advective groundwater flow is known to have a large impact on borehole
heat exchangers when present [26, 31, 35], but to isolate the effect of natural con-
vection, any background advective flow is neglected. Throughout the simulations the
borehole is continuously filled with cold fluid which then receive heat from the warmer
subsurface. The amount of heat produced by the borehole is calculated. The heat flow
across the borehole wall triggers a horizontal temperature difference in the subsurface,
which is known to cause convection when the porous medium is permeable [91]. By
varying the Rayleigh number we can control how strong the natural convection is and
hence investigate the effect on the heat production. A similar problem was studied by
Zhao et al [107]: They used experiments and simulations to study the heat transfer
around a BHE in saturated soil. Natural convection was studied, although from a dif-
ferent perspective than in our work. They concluded that borehole temperature, initial
ground temperature and flow rate in the porous medium affect the heat transfer into the
BHE.

For the spatial discretization the pseudospectral solver from Paper A is developed.
However, the domain in the present paper is more complex, creating some challenges.
The porous medium contains three layers where physical quantities as the heat con-
ductivity vary between the layers, and where different model equations in the layers as
there is no fluid in the top and bottom layers. Also, the BHE is included explicitly, al-
though in a simplified version. The presence of the borehole also causes the domain to
no longer be cylindrical, which is challenging for the discretization with pseudospec-
tral methods. These difficulties are handled by combining pseudospectral with domain
decomposition, treating the borehole and each layer of the porous medium as sepa-
rate domains. The domains are glued together by requiring continuity of variables and
fluxes across the interfaces. Due to the discontinuity in model parameters, we can-
not expect the solver to give more than second order convergence. However, despite
only having second order convergence, the errors in the simulations are found to still
be small.

By varying the initial temperature conditions and the Rayleigh number and calculat-
ing the amount of heat produced in the production period, the effect of natural convec-
tion is estimated. We find that in the cases with large variations in the initial subsurface
temperature and a borehole temperature close to the coldest subsurface temperature,
the natural convection will have a negative effect on the heat production. The cooling
of the subsurface near the well causes the colder, upperlying groundwater to flows to-
wards the borehole, while the warmer groundwater lying deeper in the reservoir flows
away. Hence, less heat is produced by the borehole. However, using colder fluid in
the borehole will provide a positive effect on the convection: The convection currents
still distribute such that the upperlying fluid flows towards the borehole, but due to
the large temperature difference between subsurface and borehole, the effect of more
mixing in the fluid becomes more important. This draws us to the conclusion that the
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effect of natural convection depends on the difference between borehole temperature
and subsurface temperature variations.

Our investigation on the effect of natural convection has some weaknesses. Al-
though a more complicated porous media model is considered and the borehole is ex-
plicitly included, the model is still a very simplified one and does not contain features
as permeability heterogeneities and isotropy, effect of temperature dependent viscos-
ity, more details on the heat transfer inside the borehole, to mention some. Despite the
shortcomings, the goal of the model was to isolate and describe the natural convection
induced by a BHE, which the model is adequate for. The simulations show how the
effect of convection could be in an idealized, but relevant, scenario, and clearly shows
that natural convection could have a large impact on the production from BHEs.

Paper C: An Approach for Investigation of Geochemical Rock-Fluid Interactions

Paper C introduces a Darcy-scale model for coupled fluid flow, heat transport and solute
transport with chemical reactions. Motivated by the interaction between fluid flow and
mineral precipitation and dissolution in a geothermal reservoir, we formulate a coupled
model where dissolution and precipitation of calcite and anhydrite can cause porosity
changes. Our goal is to investigate how the porosity changes lead to variations in per-
meability and hence affect the fluid flow. As the minerals have solubilities depending
on temperature, this dependence introduces more couplings.

We consider a simplified setup as the goal is only to illustrate the approach and high-
light the couplings, hence the geochemical model is not complete as it only contains
7 active ions. This is a simplifications as the activities, which are needed for solubil-
ity calculations, can be affected by ions not participating in the reactions. A simple
dependence of how the permeability varies with porosity is chosen. As discussed in
Section 2.2.1, the permeability depends on the in-situ pore structure, which normally
is not known in a geothermal reservoir, hence we are left with simplified models as
the Kozeny-Carman relation. The Kozeny-Carman relation for permeability is applied,
and assumptions on how the reactive surface affects the reaction rates given in Section
2.2.2 is made. Our setup is loosely inspired by Kühn et al [57] who considered poros-
ity changes due to calcite and anhydrite precipitation and dissolution in a geothermal
reservoir in Stralsund, Germany.

To describe how the interaction between flow and permeability changes can be, dis-
cretizing the model equations in a consistent way is important. Hence we choose finite
volumes as discretization method. Finite volumes are conservative and utilize expres-
sions for the fluxes of the conserved variables, which is an advantage as the fluid flow
is complex to model in this case. Other codes modeling this type of coupled prob-
lem exist; Cheng and Yeh [25] developed the finite element method code 3DHYDRO-
GEOCHEM, while Clauser [28] introduced SHEMAT and Xu et al [104, 105] made
TOUGHREACT applying finite differences. However, finite elements and finite differ-
ences are in general not conservative.

The domain is two-dimensional with one injection well and one production well.
The injection well injects fluid at a constant rate at a temperature lower than the initial
temperature in the reservoir as in the case with heat production from a geothermal
reservoir. To incorporate the two wells consistently with the conservative schemes a
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discretization method similar as one presented in [36] is applied for the wells. In this
discretization the wells are introduced as internal boundaries in the control volume they
are located in, using the unknown flux from the well as a variable.

Despite the simplifications in the geochemical model and the permeability depen-
dence, our findings in how the permeability changes due to the chemical reaction is
in good correspondence with the findings of Kühn et al [57]. This preliminary study
was meant as a starting point for further development in geochemical modeling to ac-
count for rock-fluid interactions, and to possibly incorporate this type of interactions in
MRST [61], which is a open source code based on finite volumes on unstructured grids
and can include fractures [85]. However, this study also made us aware of the need
to understand couplings between flow, heat transport and reactive transport at the pore
scale [15, 34]. As how the permeability in Darcy’s law evolves due to the chemical
reactions is of high importance in this type of models, we decided to prioritize better
understanding of the pore scale processes. Hence, the continued focus turned out to be
on upscaling of pore scale models, which is treated in Papers D, E and F.

Paper D: A model for non-isothermal flow and mineral precipitation and dissolution

in a thin strip

In this paper we follow the ideas from Paper C to better incorporate pore scale effects
in the model equations. The strategy is to start with a pore scale model and upscale
through formal homogenization to Darcy scale, and hence obtain a better understanding
of how the coupled fluid flow, heat flow and reactive transport interact at Darcy scale.
As formulating a pore scale model requires an explicit presentation of the pore scale
geometry, we start with a simple thin strip, representing a single pore channel.

The pore scale model consists of the void space, which is filled with fluid, the grain
space consisting of minerals and the boundary between them. The possible changes in
geometry are included by letting the boundary between void and grain space to move,
hence causing the void and grain space to develop dynamically with time. For the
thin strip case, this development is expressed through the grain width d(x, t). The
conservation equations for mass, solute and heat are expressed in their respective spaces
and with a Rankine-Hugoniot jump condition across the moving boundary, as described
in Section 2.1. The model is inspired by van Noorden [94] who considered a pore
scale model of a thin strip with changing aperture, but without temperature dependence.
Including a moving boundary is challenging, and there are more research available for
the pore scale models in the fixed geometry case, such as [92, 97].

Although the pore scale model of a thin strip is a simplified presentation of pore
geometry, the upscaling process can still give important information about the coupling
between the various processes at Darcy scale. Also, if the thin strip is interpreted as a
fracture, the upscaled equations could be included in a fracture network model [3, 39].
These types of models are typically applied for highly fractured granite reservoirs when
the matrix has low permeability outside the fractures.

The present work is similar to the paper by van Noorden [94], but including the
temperature dependence entails several new elements and complications to the model
and the upscaling of it. Including the energy conservation equation in the void space
is not an impeding element as this model equation is very similar as the ion conserva-
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tion equation. However, as the variations in the grain temperature must be included,
there is now a model equation also in the grain space, unlike the model by van Noor-
den that consists of model equations only in the void space. The presence of a model
equation in the grain space affects the choice of boundary conditions for energy at the
moving boundary. Upscaling the two coupled energy conservation equations requires
new strategies for how to handle such a system. Further, as the fluid density is vary-
ing, the mass conservation equation is different and has to be considered in another
way than by van Noorden, who upscaled the simplified mass conservation equation by
incorporating it into the momentum equation.

The upscaling process results in five unknowns; ion concentration, transmissivity,
pressure, temperature and grain width, and five coupled equations to describe them.
The five equations express ion conservation, mass conservation, fluid flow, energy con-
servation and how the grain width depends on the reaction rates; all one-dimensional.
Note that even though the pore scale model contains two energy conservation equa-
tions and two temperature variables, this system reduces as the lowest order asymptotic
expansion term of the fluid and grain temperatures turn out to be equal and the two
conservation equations combine into one. The fluid flow equation can be interpreted
as Darcy’s law with a cubic relationship between the volume flux and the aperture,
as known from flow through fractures [103]. The three conservation equations fol-
low the same system with weighting the conserved quantity over void space and the
grain space, using (1− 2d0) (the width of the void space) and 2d0 (the total width of
the grain space) as weights. This weighting is similar to porosity-weighting if the void
space aperture is interpreted as the porosity φ and the grain part as (1−φ). As the grain
width d0(x, t) changes with time according to the mineral precipitation and dissolution
rates, the chemical reactions and varying aperture are incorporated into the upscaled
model equations. The upscaled equations are all one-dimensional, only keeping the di-
rection along the strip, while the transversal direction has been averaged away in the
upscaling procedure. This shows, as expected, that the most important features of the
model equations are what happens along the thin strip. The upscaled model contains a
discontinuous reaction rate and Agosti et al [4, 5] showed well-posedness for a similar
model and introduced a numerical strategy for implementation of such a reaction rate.

The resulting effective model shows how fluid flow, reactive transport and heat
transfer are coupled when taking into account the changes in geometry. This type of
pore scale model with a free boundary has not been considered in an upscaling process
earlier. A simple geometry has been used, but is still relevant for flow through a single
channel, possibly part of a pore or fracture network. A natural extension of this work
would hence be considering a more complex geometry, which is investigated in Paper
E.

For completeness, we mention that a more detailed version of the paper with ex-
tensive explanation of the upscaling process can be found in the technical report [21].

Paper E: Upscaling of non-isothermal reactive porous media flow with changing

porosity

One limitation of the model in Paper D is the simplified geometry, as the choice of
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thin strip introduces a constraint in how applicable and descriptive the upscaled model
can be. Hence, in Paper E we consider a more general geometry with solid grains dis-
tributed periodically in the medium. These grains consist of some non-reactive solid in
the center and are covered by a layer of some mineral that can dissolve or precipitate.
The assumption of periodic distribution of the grains is made in order to perform the
homogenization and derive Darcy-scale equations.

We consider the same pore scale model equations for ion conservation, mass con-
servation, momentum conservation and energy conservation as in Paper D, but apply a
level set formulation to describe the free boundary. The Rankine-Hugoniot boundary
conditions at the free boundary are the same as in Paper D, but the unit normal vec-
tor at the free boundary is defined through the gradient of the level set function. The
model formulation is similar to van Noorden [93], who considered a pore scale model
with the same periodic structure of the porous medium and included the free boundary
with the level set formulation. The model of van Noorden considered reactive trans-
port at isothermal conditions. As in Paper D, we incorporate temperature variations by
including two energy conservation equations and letting fluid density and viscosity as
well as the reaction rates and solubility product depend on temperature.

Using the level set formulation to describe the developing geometry gives a flexible
formulation of the model geometry as it is not necessary to assume certain shapes or
use explicit functions to describe the shape of the boundary, neither initially nor at later
times. Instead, the boundary is given implicitly as where the level set function Sε(x, t)
is equal to zero. This implicit formulation causes some challenges in the upscaling, but
is handled through parametrization representations and Taylor expanding the level set
function. As the considered pore geometry is given in a general way, some cautionary
steps must be made before the upscaling procedure starts. Similar precautions are also
done by van Noorden [93]. As in the thin strip model in Paper D, including the energy
conservation in the grain space introduces difficulties and requires special care in the
upscaling procedure. We prove an extension of a lemma from [93] to deal with the
energy conservation equations. As the mass conservation equation is more complex
due to varying fluid density, this equation must be dealt with independently as in Paper
D.

The upscaling process results in five unknowns; ion concentration, transmissivity,
pressure, temperature and the level set function, and five coupled equations to desbrice
them. The five equations express ion conservation, mass conservation, fluid flow, en-
ergy conservation and how the level set function develops with the reaction rates, all
valid at the Darcy scale. The equations are still two-dimensional, but only the level
set function contains explicit dependence on the microscale variable. As in Paper D,
the upscaled equations contain terms with porosity-weighted averages of the conserved
quantities. The porosity is defined through the level set function, which varies with the
reaction rates. The volume flux is given by Darcy’s law, where the permeability is de-
fined through a tensor with components arising from a cell problem on the microscale.
Hence, to find the permeability one still needs to take the microscale into account, but
the two scales are decoupled: For each macroscopic point (that is, for each REV), one
needs to solve the microscale cell problem and use the calculated permeability to solve
the macroscopic flow problem. From a computational point of view, this decoupling is
important as it is no longer necessary to solve the full problem on a fine grid. Redeker
and Eck [82] proposed a fast adaptive solution strategy for a model with two-scale
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dependence through a similar separation of the micro- and macroscale as formulated
here.

The upscaled solute diffusion and heat conduction also introduce tensors with com-
ponents coming from cell problems. The purpose of the tensors is to account for the
permeability, diffusion and conduction potentially being anisotropic due to the shape
of the grains. If the grains in Figure 2.2 are, e.g., elliptic, the fluxes in the direction
of the semi-major axis are expected to be larger than in the transversal direction. The
well-used geothermal simulator TOUGHREACT [105] utilizes only scalar diffusion,
conduction and permeability, which could be a limitation. Simulations on upscaled
models formulated through cell problems have been implemented: We mention that
Frank et al [40, 41] performed some interesting simulations using mixed finite ele-
ments for a Stokes-Nernst-Planck-Poissson system using various shapes of the grains
and considered circular grains in the case of varying porosity, and other models incor-
porating changing geometry and depence on cell problems have been implemented as
well [81, 93].

As with Paper D, the resulting effective model shows how fluid flow, reactive trans-
port and heat transfer are coupled in the presence of rock-fluid interactions. Through
the level set formulation a more general porous medium than the channel can be con-
sidered, but the upscaling process relies on the assumption of periodicity in the grain
distribution. The upscaling results are only formal as no two-scale convergence is
proved. The upscaled model still provide important information about how the various
processes are coupled and how the flow and diffusion are affected by the interaction
between the processes.

Paper F: Upscaling of non-isothermal reactive porous media flow under dominant Pé-

clet number: the effect of changing porosity

In this paper we return to homogenization of a thin strip, but include dominant con-
vection by applying a large Péclet number in the model equations. The formulation of
the geometry and the model equations is the same as in Paper D, except that the Péclet
number is assumed to be of order 1/ε . This means that the convection is dominating,
as the solute diffusion and heat conduction in the dimensionless model is now multi-
plied with a factor ε , indicating these processes being less important. This change in
model equations is made as geothermal problems typically are convection dominated
due to the large injection rates of fluid into the subsurface. Model equations honor-
ing the dominating convection is expected to give a better description of the transport
processes after upscaling to Darcy scale.

Homogenization procedures for a thin strip including dominant convection has
been, among others, considered earlier by Kumar et al [59], by Mikelić et al [65] and
by Mikelić and Rosier [66]. The two latter assume a prescribed velocity and only up-
scale the ion conservation equation, while Kumar et al also consider the interaction
effects between flow and changing aperture of the strip. Kumar et al [59] consider
an isothermal model where the fluid density is constant and they also assume that the
chemical reaction does not include any volume change, hence simplifying the bound-
ary condition for the flow rate at the internal boundary. As in Papers D and E, including
temperature variations introduces new challenges through dealing with the energy con-
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servation in the grains and the more complicated mass conservation equation, but also
through the model equations being more coupled. Also, due to the dominating convec-
tion the upscaling procedure is more laborious; both for the energy equations and for
the other model equations.

A straight-forward upscaling approach as in Paper D, would lead to an hyperbolic
model. This is because the diffusive and conductive terms are multiplied with a fac-
tor ε , hence these terms are one order smaller than in Paper D. A hyperbolic model
would maybe not be a good enough description of the Darcy scale processes, hence an
alternative approach is to keep terms of the second lowest order as well [59]. Keep-
ing terms of O(ε) in the upscaling process means that the diffusion is honored, while
still preserving the dominating convection. This will introduce Taylor dispersion in the
Darcy-scale equations [87].

While we in Paper D (and Paper E) found Darcy scale equations using only the low-
est order approximations in the asymptotic expansions, the first order correction terms
are now kept. In a thin strip, the lowest order approximations are independent of the
transversal variable y, but this is general not the case with the first order correction
terms. As we seek Darcy scale equations that are one-dimensional, effective variables
that take into account the vertical average of the first order correction terms are in-
troduced. This procedure requires some extra care in the non-linear convective terms,
which in the upscaling process gives rise to the dispersive terms. As the transversal
direction is averaged over, the resulting model equations are one-dimensional.

In Paper D we showed that the lowest order expansions of the fluid and grain tem-
peratures were equal, hence the Darcy-scale model equations only contained one tem-
perature variable. As first order correction terms are included and the vertical averages
of these are in general not equal, the Darcy-scale model must include two temperature
variables, and also one extra equation to describe the energy conservation properly.
Hence, the upscaled system of equations contains six unknowns and six coupled equa-
tions, all containing some corrective terms compared to the model found in Paper D.
Darcy’s law contains non-linear terms due to the viscosity depending on temperature:
The extra term can be interpreted as a Forchheimer-term [50], which is expected to
appear when inertial effects are important. The mass conservation equation and ion
conservation equation both include dispersion terms and correction terms due to the
varying aperture. The equation connecting the grain width with reaction rates include
these correction terms and also derivatives of the reaction rates.

As already mentioned, fluid and grain temperature at the Darcy scale are in general
not equal anymore, hence the energy conservation equation must be accompanied by an
extra equation describing how the two temperatures deviate. Note that the more com-
mon modeling choice is to consider one conservation equation for energy in the grain,
and one equation for fluid, and coupling these with some transfer term [78]. Hence,
our description can be considered as an alternative, but still valid formulation. The two
equations describing the temperature development contain correction terms due to the
changing geometry, and the energy conservation equation has a Taylor dispersion term
arising from the fluid convection.

As the six resulting model equations are quite complex, we implement the system
of equations along with three simplified versions of the model to test two scenarios.
In the first scenario, the upscaled Péclet model is compared with one model contain-
ing diffusion but no dispersion, and one hyperbolic model. In the other scenario, we
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compare the Péclet model with a model using a fixed aperture of the thin strip, but oth-
erwise including dispersive terms. For both scenarios, the idea is to investigate when
simpler versions of the upscaled model will give effectively the same results, and when
the models deviate, hence giving some notion of when the upscaled Péclet model can
be replaced with a simplified version. Applying finite volumes to discretize the model
equations (which is in fact equivalent to finite differences due to the cell-centered equi-
spaced grid) and forward Euler in time, we vary the input parameters and the external
boundary conditions to investigate any potential differences between the models. In the
first scenario, the models produce quite different results for larger values of ε; that is,
in the range 0.05−0.01. Decreasing ε will provide the models to produce more similar
results; this is reasonable as the Péclet model, and also the diffusion model, reduce to
the hyperbolic model as ε approaches zero. In the second scenario the variable and the
fixed geometry models deviate for small values of the (dimensionless) mineral density
ρ; that is, in the range 1−5. Increasing the mineral density means that the precipitated
mineral layer will have a smaller volume, hence the changes in aperture of the strip
will be smaller. Using a value of ρ around 10 gives small differences between the two
models.

Through the upscaling of the pore scale equations, we can show how fluid flow,
reactive transport and heat transfer are coupled when taking into account the changes in
geometry. Including the dominating convection, which is typical for geothermal plants
using large injection rates, shows how the Taylor dispersion occur. As we keep track
of lower order terms, several new terms compared to Paper D appear in the upscaled
model. These terms are second order effects from the varying aperture and from the
temperature dependent viscosity and density. By implementing the upscaled equations
and comparing the findings with simpler models, we can indicate when the second order
terms are important and when they can be neglected. Comparing the upscaled model
with one assuming a fixed geometry, shows when the varying aperture is important to
include and when it can be neglected.

6.2 Conclusion and outlook

This thesis concerns mathematical modeling regarding heat transfer processes in the
context of geothermal energy extraction. The studied issues have involved natural con-
vection, which may have an affect on the heat production for non-injecting borehole
heat exchangers, and the coupling between heat transfer and reactive transport with
porosity changes, which is relevant for energy production systems utilizing injection
and production wells. To analyze these issues we have applied linear stability analysis,
numerical simulations and upscaling procedures.

By investigating the theoretical framework for onset of natural convection in a
porous medium filling an annulus by a linear stability analysis, we have gained bet-
ter understanding of how the natural convection currents behave in an idealized setting.
The findings of this theoretical analysis was used as a benchmark for a high-order nu-
merical simulator, which was then applied to investigate the non-linear regime of nat-
ural convection. The simulator was later developed to consider a configuration more
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realistic for geothermal energy production of a non-injecting borehole and the effect
of natural convection on a producing borehole was quantified for some cases. This in-
vestigation have shown that natural convection may have either a positive or negative
effect on the heat production, depending on the flow properties of the subsurface and
on the temperature difference between the borehole and the subsurface.

As the natural convection may have an effect on the production from borehole heat
exchangers, continued analysis of this problem setting is a topic that deserves future
attention. The model we applied was idealized and did not include features as temper-
ature dependent viscosity and heterogeneities in the porous medium, and the borehole
was incorporated in a simplified manner. Also, we assumed there was no background
advective groundwater flow present. Extending the simulator to include the presence
of such components would have been useful to better understand the interaction with
natural convection and heat production better. Especially, considering a case with a
borehole and surrounding porous medium from a real-life scenario would be interest-
ing and could also contribute to validate our findings through field experiments.

Considering a geothermal system including injection and production wells intro-
duces new challenges through potential porosity changes due to mineral precipitation
and dissolution. The presence and effect of these chemical reactions have already been
described through numerous field studies and numerical studies, and the work presented
in this thesis contributes to the modeling of the interaction between heat transfer, so-
lute transport and permeability changes due to porosity changes. As pore scale effects
are highly important in this setting, we have performed upscaling through homoge-
nization from pore scale to Darcy scale in three different scenarios to investigate the
coupling and effective behavior of the relevant physical processes. Two of the mod-
els concerned a single pore channel; either with convection dominating the diffusion
or with convection and diffusion being at the same time scale, while the third model
investigated convection and diffusion at the same order in a periodic porous medium.
Our findings quantifies the average behavior of the pore scale effects under the different
assumptions.

To continue the analysis of the reactive transport model and the pore scale effects,
it would be interesting to include the findings from the upscaled system of equations in
an existing simulator. The thin strip model can be useful when incorporated in a pore
(or fracture) network model, and in this context including mechanical effects would
be an appropriate extension as opening of fractures through pressure stimulation is a
highly relevant topic in geothermal energy extraction for low-permeable rocks. The
upscaled model with a periodic porous medium is more applicable when concerning
flow through porous media. We have not attempted to implement the periodic model,
but doing so would give more insight to the coupling of the physical processes and
the importance of the pore scale effects. For the periodic porous medium we have
only considered the case when convection and diffusion is at the same time scale and
a possible extension would be to consider when convection is dominant also for this
geometry. However, including dominant convection and second order effects in the
thin strip case required intricate calculations for the second order terms, which are not
expected to be easier in the periodic porous medium. The results from the upscaling
procedure have not been validated through two-scale convergence proofs or numerical
simulations. Implementing the pore scale equations and comparing with the upscaled
equations would substantiate the validity of the upscaled models.
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Fig. 1. Model of thin strip.

the solubility of several minerals are temperature dependent, hence the cooling of the porous medium can itself trigger

chemical reactions. As reported from field studies and simulations, porosity and permeability changes due to precipitation

and dissolution of minerals such as silica, quartz, anhydrite, gypsum and calcite have been observed [2–7]. Modeling of the

mineral precipitation and dissolution is important in order to understand the processes and to better estimate to which

extent the chemical reactions can affect the permeability of the porous medium.

When dealing with porosity changes, what happens at the pore scale is highly relevant. The pore geometry affects

the reaction rates for the dissolution and precipitation process as the reactive surface area is changed, and the resulting

permeability is affected by the pore geometry. To achieve expressions for both reaction rates and permeability that depend

on the pore scale effects we start with a model at the pore scale, and derive the Darcy scale model by homogenization. We

propose in this paper a pore scale model to investigate these matters. Pore scale models incorporatingmineral precipitation

and dissolution have been studied earlier in [8,9] and the corresponding Darcy scale models have been investigated further

in [10,11]. These papers assume that the pore geometry is not changed by the chemical reactions,which is a valid assumption

when the deposited or dissolved mineral layer is thin enough. Investigations honoring the porosity changes may be found

in [12–14], where mineral precipitation and dissolution have been considered on either circular grains or in a thin strip. In

these papers, the position of the interface between grain and void space is tracked, giving a problem with a free boundary.

Similar models can also be obtained for biofilm growth [15], for drug release from collagenmatrices [16], and on an evolving

microstructure [17]. Recently, Kumar et al. [18] considered how to do numerical computations of a mineral precipitation

and dissolution process in a thin strip with a free boundary.

In the spirit of [14], we consider mineral precipitation and dissolution in a thin strip and take into account the effect of

temperature on the chemical reactions and on the fluid flow, giving a larger system of equations. Temperature changes can

initiate or accelerate the rate of chemical reactions due to changes in solubility of theminerals. Also, the fluid flow is affected

by the temperature changes due to changes in the fluid density and viscosity. For geothermal systems, the temperature

dependence can be of high importance [19].

The structure of this paper is as follows. In Section 2 we discuss the pore scale model and themodel equations describing

the relevant processes on the pore scale. In Section 3 we perform formal homogenization on themodel equations, obtaining

upscaled equations valid when the width of the strip approaches zero. The paper ends with some concluding remarks on

the resulting equations in Section 4.

2. Pore scale model

The pore model is represented by a two-dimensional thin strip with width l and length L, where L is much larger than l,

and can be seen in Fig. 1.

We assume symmetry around the x-axis, hence the upper half of the strip is a reflection of the lower half. The width of

the mineral part is d(x, t) where 0 ≤ d(x, t) < l/2, as a greater width would clog the pore channel. The total domain Υ is

the rectangle seen in the figure given by

Υ = {(x, y) ∈ R2
|0 ≤ x ≤ L, −l/2 ≤ y ≤ l/2}.

The void space Ω(t) where fluid can flow is defined as

Ω(t) = {(x, y) ∈ R2
|0 ≤ x ≤ L, −(l/2 − d(x, t)) ≤ y ≤ (l/2 − d(x, t))},

while the grain space G(t) consisting of minerals is

G(t) = {(x, y) ∈ R2
|0 ≤ x ≤ L, −l/2 ≤ y ≤ −(l/2 − d(x, t)) ∨ (l/2 − d(x, t)) ≤ y ≤ l/2}.

The void and grain spaces are separated by the interface Γg(t) where mineral precipitation and dissolution can occur, and

is given by

Γg(t) = {(x, y) ∈ R2
|0 < x < L, y = ±(l/2 − d(x, t))}.

The inflow and outflow boundaries are

Γi(t) = {(x, y) ∈ R2
|x = 0, −(l/2 − d(x, t)) ≤ y ≤ (l/2 − d(x, t))}
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and

Γo(t) = {(x, y) ∈ R2
|x = L, −(l/2 − d(x, t)) ≤ y ≤ (l/2 − d(x, t))},

respectively. The outward unit normal n of the interface is (for the lower part)

n = (∂xd, −1)T/
√
1 + (∂xd)2.

As the mineral width d(x, t) changes with time, a point located at the interface Γg(t) has a certain velocity. A point at the

interface has coordinates s(t) = (x(t), −(l/2 − d(x, t))) and velocity s′(t) = (x′(t), ∂xd(x(t), t)x
′(t) + ∂td(x(t), t)). Hence,

the normal velocity of the lower boundary is

vn = n · s′(t) = −∂td/
√
1 + (∂xd)2. (1)

The Rankine–Hugoniot condition guarantees conservation of quantities across a moving boundary:

n · [j] = vn[u]. (2)

Here, u is the preserved quantity (e.g. mass or energy) and j is the flux of this quantity. The use of square brackets means

the jump of the quantities, and is the difference between the quantities at each side of the interface.

Weassume conservation of ions,mass,momentumandenergy to forma complete set of equations describing the relevant

processes on the pore scale and refer readers to e.g. [20] for justification of the conservation equations. We will prescribe

boundary conditions at the internal boundary Γg(t) and otherwise at the external boundaries when these are necessary for

the upscaling process.

For a complete model to be used for computer simulations, several boundary conditions at Γi(t) and Γo(t) will be

necessary. Also, initial conditions are required. As these external boundary conditions and initial conditions are not necessary

for the upscaling process, they will not be specified, but their presence will be briefly mentioned.

2.1. Conservation of ions

There are two active ions in the fluid, having molar concentrations u1 and u2. Both ions satisfy the convection–diffusion

equation in the void space;

∂tu
i
= ∇ · (D∇ui

− qui) for (x, y) ∈ Ω(t), (3)

where D is the diffusion coefficient which is assumed constant and equal for both ions, and q is the fluid velocity. At the

interface, one ion from each species can together form amineral molecule, or conversely, one mineral can dissolve into two

ions: u1
+ u2

↔ C . Hence the ions can appear on both sides of the interface Γg(t); either as a free ion in the void space, or

as part of a mineral in the grain space. The Rankine–Hugoniot condition (2) for conserving ions across the moving interface

is

n · (D∇ui
− qui) = vn(ρC − ui) on Γg(t), (4)

where ρC is the molar density of the formed solid. As the minerals do not move within the grain space G(t), they have zero

flux there. On the right-hand side, the difference (ρC −ui) appears as onemineralmolecule contains one ion of ui.We assume

that our two ions have initially the same concentration, and that they are subject to the same external boundary conditions.

Typical choices are Dirichlet conditions on Γi(t) and Neumann conditions at Γo(t). As the same number of ions disappear

or are produced through the reaction, the two ions always have the same concentration. Hence, u1
= u2

= u.

2.2. Conservation of mass

The mass of the fluid is conserved when it flows through the pore. As the fluid consists mainly of water, the fluid molar

density ρf depends on temperature and cannot be assumed constant as the temperature changes. Hence, the mass conser-

vation equation is

∂tρf + ∇ · (ρf q) = 0 for (x, y) ∈ Ω(t). (5)

In a geothermal system, the fluid density is often assumed to also depend on pressure. As we are mainly interested in the

effect from temperature, we neglect the pressure dependence. At the boundary, ions can leave the fluid and become part of

the grain space instead. Hence, there is amass flux through the boundaryΓg(t). Note that even though the ion concentration

in the fluid varies, we assume that the variations are so small that we can assume the fluid density not to change due to the

chemical reactions. The Rankine–Hugoniot boundary condition applied to mass is

n · (−ρf q) = vn(2ρC − ρf ) on Γg(t). (6)

As one mineral molecule contains two ions; one of each kind, the term 2ρC appears. Note that if ρf ≡ 2ρC , the normal

component of the velocity is zero at the interface, meaning that the chemical reactions do not cause volume change. This
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simplifying assumption is made in some models, e.g. in [12], but would be inconsistent with our model having a varying

fluid density and a constant grain density. Hence, we keep the original expression (6).
If Dirichlet boundary conditions are imposed for the velocity q at the inflow and outflow boundaries, they have to be

consistent with mass being conserved. Hence, if q = qb on Γi(t) and Γo(t), then qb has to satisfy
∫

Γi(t)∪Γo(t)

ρf qb · nds =

∫

Γg (t)

vn(2ρC − ρf )ds −

∫

Ω(t)

∂tρf dV .

In practice, one would normally specify a Dirichlet condition for the velocity only on Γi(t), and a condition for the pressure

on Γo(t).

2.3. Conservation of momentum

Momentum of the flowing fluid is also conserved. We assume that all body forces arise from viscous stress and that the

fluid is Newtonian. Furtherwe assume the stress tensor to be a linear function of the strain rates, that the fluid is isotropic and

that the body forces are such that the fluid is at rest at hydrostatic pressure. Then conservation ofmomentum is expressed as

∂t(ρf q) + ∇ · (ρf qq) = −∇p + ∇ ·

(
μ(∇q + (∇q)T )

)
−

2

3
∇(μ∇ · q) for (x, y) ∈ Ω(t), (7)

where μ is fluid viscosity and p is pressure. No-slip conditions are assumed at the boundary which means that the velocity

q does not have a tangential component at the internal boundary. Note that no-slip boundary conditions are normally asso-

ciated with velocity q being zero at the boundary. This is however not the case when there is amoving boundary, where the

no-slip condition reduces to q being normal to themovement of the boundary. Hence, q is parallel to vnn atΓg(t). Combining

with the boundary condition (6), the new boundary condition becomes

q =
ρf − 2ρC

ρf

vnn on Γg(t). (8)

2.4. Conservation of energy

For now, we separate between two temperatures: the temperature in the fluid Tf and temperature in the grain Tg . Fluid

temperature only exists in the void space Ω(t) and grain temperature only exists in the grain space G(t), and heat energy is

transferred differently in the two domains. The separation between Tf and Tg is mainly to emphasize the difference between

the energy in the void space and in the grain space and has no physical meaning.
We assume no viscous dissipation, hence energy transfer in Ω(t) can happen through diffusion and convection:

∂t(ρf cf Tf ) = ∇ · (kf ∇Tf − ρf cf qTf ) in Ω(t). (9)

In the grain space flow is not possible, hence

∂t(ρC cTg) = ∇ · (kg∇Tg) in G(t). (10)

In the above equations, cf and c are specific heats, and kf and kg are heat conductivities, of fluid and mineral respectively,

and are all assumed constant. The Rankine–Hugoniot condition for conservation of energy across the interface is

n · (kf ∇Tf − ρf cf qTf − kg∇Tg) = vn(ρC cTg − ρf cf Tf ) on Γg(t), (11)

and we also assume temperature continuity at the interface:

Tg = Tf on Γg(t). (12)

For the lower and upper parts of G(t), we assume homogeneous Neumann boundary conditions:

∂yTg = 0 for 0 ≤ x ≤ L, y = ±l/2. (13)

To do simulations, boundary conditions for Tf should be specified atΓi(t) andΓo(t), while boundary conditions for Tg should

be given at the vertical boundaries of the grain part; that is, at {(x, y) ∈ R2
|x = 0, − l/2 ≤ y ≤ −(l/2 − d(x, t)) ∨ (l/2 −

d(x, t)) ≤ y ≤ l/2} and similarly for x = L.

2.5. How reactions affect d(x, t)

At the boundary Γg(t), minerals can precipitate and dissolve. When a mineral molecule dissolves and releases two ions

into the fluid, the boundary change its position at the same time as the mineral molecule is no longer a part of the grain

space G(t). Oppositely, when two ions come together and form amineral molecule, they attach themselves at the boundary

between void and grain space and become a part of the grain space, hence changing the position of the interface at the same

time.
As the position of the interface Γg(t) changes with precipitation and dissolution, we can quantify this change using the

width of G(t); d(x, t), and the normal velocity of the interface vn. To quantify the extent of dissolution and precipitation
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taking place, we introduce precipitation and dissolution rates. As we defined the normal vector n pointing into the grain

space (out of the void space) as seen in Fig. 1, the normal velocity of the interface is positive when dissolution occurs,

and negative when precipitation occurs. Hence, the normal velocity is proportional to the local difference between the

dissolution and precipitation rates:

ρCvn = −(fp − fd) on Γg(t), (14)

where fp and fd are the precipitation and dissolution rates for the reaction.

We assume the precipitation rate to increase with ion concentration and also with temperature. This is described by a

kinetic rate with an Arrhenius factor:

fp(Tf , u) = k0e
−E/RTf

(γ u)2

Km(Tf )
, (15)

where E is the activation energy, R is the gas constant, γ is the activity coefficient of the ions, Km(Tf ) is the equilibrium

constant for the mineral, and k0 is a positive rate constant. The equilibrium constant is called a constant as it does not

depend on ion or mineral concentrations, but it may however depend on fluid temperature. We assume dissolution to take

place as long as there are minerals present; that is, as long as d(x, t) > 0. We further assume that the dissolution happens

faster at higher temperatures, hence

fd(Tf , d) = k0e
−E/RTf w(d(x, t)), (16)

where w(d) is given by

w(d) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if d < 0

min

(
(γ u)2

Km(Tf )
, 1

)

if d = 0

1 if d > 0.

The reason for defining the rates thisway is to incorporate equilibrium states of the reaction properly. At equilibrium, the ion

concentrationudoes not change,meaning theprecipitation anddissolution rates are equal.When there areminerals present,

meaning d(x, t) > 0, then fp − fd = k0 exp(−E/RTf )((γ u)2/Km(Tf ) − 1) = 0 at equilibrium, resulting in Km(Tf ) = (γ ueq)
2,

which is how the equilibrium constant is defined. At equilibrium, the precipitation rate and dissolution rate have the same

magnitude, hence the position of the interface is not changed. When there are no minerals left, the dissolution rate can be

either the same magnitude or smaller than the precipitation rate, corresponding to the system either being in equilibrium

or supersaturated with ions.

Collecting Eqs. (14)–(16) and combining with Eq. (1) for vn, yields

ρC∂td(x, t) = k0e
−E/RTf

( (γ u)2

Km(Tf )
− w(d(x, t))

)√
1 + (∂xd(x, t))2 on Γg(t), (17)

which describes how the width d(x, t) is changed by the reactions.

2.6. Non-dimensional equations

To achieve non-dimensional quantities, we introduce tref , xref = L, uref , qref = L/tref , pref = L3uref /t
2
ref l, μref = l2pref /

Lqref , Tref and let ε = l/L. Non-dimensional variables are denoted with a hat and are defined as

t̂ = t/tref x̂ = x/L ŷ = y/L ûε
= u/uref d̂ε

= d/l

q̂ε
= q/qref p̂ε

= p/pref ρ̂f = ρf /uref ρ̂ = ρC/uref

k̂ = k0tref /uref l D̂ = Dtref /L
2 μ̂ = μ/μref T̂ ε

= T/Tref .

We emphasize the dependence on the small variable ε by denoting our main variables with ε as a superscript. Since we will

only use non-dimensional variables in the following, we skip the hat.

Using non-dimensional variables, the total domain is defined by

Υ ε
= {(x, y) ∈ R2

|0 ≤ x ≤ 1, −ε/2 ≤ y ≤ ε/2}.

The void space is now given by

Ωε(t) = {(x, y) ∈ R2
|0 ≤ x ≤ 1, −ε(1/2 − dε(x, t)) ≤ y ≤ ε(1/2 − dε(x, t))},

while the grain space is defined as

Gε(t) = {(x, y) ∈ R2
|0 ≤ x ≤ 1, −ε/2 ≤ y ≤ −ε(1/2 − dε) ∨ ε(1/2 − dε) ≤ y ≤ ε/2}.
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The interface between the void and the grain space is now

Γ ε(t) = {(x, y) ∈ R2
|0 ≤ x ≤ 1, y = ±ε(1/2 − dε(x, t))},

while the outward unit normal for the lower part of the interface is given by

nε
= (ε∂xd

ε, −1)T/
√
1 + (ε∂xdε)2. (18)

Inserting the dimensionless variables into the model equations gives the following set of equations and boundary

conditions. We insert the normal velocity vn from Eq. (1), when necessary.
The convection–diffusion equation (3) describing the ion concentration, is now written

∂tu
ε

= ∇ · (D∇uε
− qεuε) in Ωε(t), (19)

while the boundary equation (4) becomes

nε
· (D∇uε

− qεuε) = −ε∂td
ε(ρ − uε)/

√
1 + (ε∂xdε)2 on Γ ε(t). (20)

Note that a simplifying assumption is that the non-dimensional diffusion coefficientD is not depending on ε, hence diffusion
and convection occur at the same time scale. Geothermal systems are often convection-dominated due to the injection of

water, but our assumption is valid as long as the injection rate is not too large.
The mass conservation equation (5) transforms into

∂tρf + ∇ · (ρf q
ε) = 0 in Ωε(t). (21)

The corresponding Rankine–Hugoniot boundary equation (6) has the non-dimensional form

qε
· nε

= −ε
ρf − 2ρ

ρf

∂td
ε/

√
1 + (ε∂xdε)2 on Γ ε(t). (22)

The momentum balance equation (7) becomes

ε

(

∂t(ρf q
ε) + ∇ · (ρf q

εqε)

)

= −∇pε
+ ε2

(

∇ ·

(
μ(∇qε

+ (∇qε)T )

)
−

2

3
∇(μ∇ · qε)

)

in Ωε(t), (23)

while the boundary condition (8) is now written

qε
= −ε

ρf − 2ρ

ρf

∂td
εnε/

√
1 + (ε∂xdε)2 on Γ ε(t). (24)

The non-dimensional form of the energy conservation equations (9) and (10) is

∂t(ρf T
ε
f ) + ∇ · (ρf q

εT ε
f ) =

1

Pe
∇

2T ε
f in Ωε(t) (25)

and

∂t(ςρT ε
g ) =

1

Pe
κ∇

2T ε
g in Gε(t), (26)

where Pe = L2uref cf /kf tref is the Péclet number, which we assume is not depending on ε. This means that we assume

convection and diffusion to be on the same time scale. Further we have ς = c/cf and κ = kg/kf , which are also assumed to

be of order 1. The boundary condition (11) is written

nε
·

(
1

Pe
∇T ε

f − ρf q
εT ε

f −
1

Pe
κ∇T ε

g

)

= −ε(ςρT ε
g − ρf T

ε
f )∂td

ε/
√
1 + (ε∂xdε)2 on Γ ε(t), (27)

and the continuity condition (12) is

T ε
g = T ε

f on Γ ε(t). (28)

The boundary condition (13) for Tg is now

∂yT
ε
g = 0 for 0 ≤ x ≤ 1, y = ±ε/2. (29)

Finally, Eq. (17) describing how the width d(x, t) is changed by chemical reactions is now written

ρ∂td
ε

= (fp(T
ε
f , uε) − fd(T

ε
f , dε))

√
1 + (ε∂xdε)2 on Γ ε(t). (30)

Introducing the constant α = E/RTref , the non-dimensional reaction rates are

fp(T
ε
f , uε) = ke

−α/T ε
f
(γ uε)2

Km(T ε
f )

and fd(T
ε
f , dε) = ke

−α/T ε
f w(dε(x, t)), (31)

where the non-dimensional Km(T ε
f ) has been scaled with u2

ref .
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3. Asymptotic expansion

We perform a formal asymptotic expansion for the variables depending on ε, namely uε, dε, qε, pε, T ε
f and T ε

g . For all

excepting dε we assume

uε(x, y, t) = u0

(
x,

y

ε
, t

)
+ εu1

(
x,

y

ε
, t

)
+ O(ε2).

Due to the scaling of the second variable, ui(x, z, t) is defined in the domain

Ω̃(t) = {(x, z)|0 ≤ x ≤ 1, −(1/2 − dε) ≤ z ≤ (1/2 − dε)}.

The exception is Tgi which is defined in

G̃(t) = {(x, z) ∈ R2
|0 ≤ x ≤ 1,−1/2 ≤ z ≤ −(1/2 − dε) ∨ (1/2 − dε) ≤ z ≤ 1/2}.

As the velocity qε is a vector function, we assume the above expansion for both the horizontal component q(1) and vertical

component q(2). The width of the grain space, dε , does not depend on y and has the expansion

dε(x, t) = d0(x, t) + εd1(x, t) + O(ε2).

The components di are defined for 0 ≤ x ≤ 1.

We assume the fluid density ρf and viscosity μ to depend linearly on fluid temperature T ε
f :

ρf (T
ε
f ) = ρ0 − βρf T

ε
f = ρ0 − βρf (Tf 0 + εTf 1 + O(ε2)); (32)

μ(T ε
f ) = μ0 − βμT

ε
f = μ0 − βμ(Tf 0 + εTf 1 + O(ε2)), (33)

where βρf and βμ are positive constants. Other forms can be considered straightforwardly.

Belowwe follow the ideas in [14], details can be found in [21]. The goal is to derive an upscaled effectivemodel describing

the thin strip with vanishing width, obtaining a one-dimensional model still honoring the changes in aperture.

Inserting the asymptotic expansion for uε into (19) and (20), and collecting the lowest order terms yield

∂zzu0 = 0 in Ω̃(t) and ∂zu0 = 0 on Γ̃ (t),

implying u0 = u0(x, t). Integrating equation (19) over y, interchanging integration and differentiation, recalling the sym-

metry in y, give

∂t

(1

ε

∫ ε(1/2−dε )

−ε(1/2−dε )

uεdy

)
+ 2∂td

εuε
|y=−ε(1/2−dε ) = ∂x

(1

ε

∫ ε(1/2−dε )

−ε(1/2−dε )

(D∂xu
ε
− qε(1)uε)dy

)

+ 2∂xd
ε(D∂xu

ε
− qε(1)uε)|y=−ε(1/2−dε ) −

2

ε
(D∂yu

ε
− qε(2)uε)|y=−ε(1/2−dε ).

For the last two termswe use (20). Inserting the asymptotic expansion for uε and substituting z = y/ε give the lowest order

terms

∂t((1 − 2d0)u0 + 2ρd0) = ∂x(D(1 − 2d0)∂xu0 − q̄u0) for 0 ≤ x ≤ 1,

where we have used the fact that u0 does not depend on z, and where we have defined the transmissivity q̄(x, t) =∫ 1/2−d0
−(1/2−d0)

q
(1)
0 (x, z, t)dz.

As for the concentration, the lowest order terms of the temperatures, Tf 0 and Tg0 do not depend on z. Inserting the

expansions for T ε
f and T ε

g into their energy equations (25) and (26) and collecting the lowest order terms give

∂zzTf 0 = 0 in Ω̃(t) and ∂zzTg0 = 0 in G̃(t).

The lowest order terms arising from inserting the expansions into the boundary conditions (27)–(29) are

∂zTf 0 − κ∂zTg0 = 0 and Tf 0 = Tg0 on Γ̃ (t), ∂zTg0 = 0 at z = ±1/2.

The only possible solution of the above equations with these boundary conditions is that Tf 0 and Tg0 do not depend on z,

hence

Tf 0 = Tf 0(x, t) and Tg0 = Tg0(x, t).

Since the continuity condition assures that Tg0 and Tf 0 are equal for all x, we introduce T0 = Tg0 = Tf 0.

To find the upscaled equation for the velocity, we integrate equation (21) across a thin section of the void space with

width δx; the integration area is given by Y = {(x, y) ∈ R2
|x1 ≤ x ≤ x1 + δx,−ε(1/2 − dε) ≤ y ≤ ε(1/2 − dε)}. Applying

Gauss Theorem to the integral of the flux term and dividing the equation by δx provide

0 =
1

δx

∫

Y

∂tρf dV +
1

δx

∫

∂Y

ρf q
ε
· nds,
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where n is the outward unit normal field of the boundary ∂Y . Due to the symmetry around the x-axis, the integrals of the

upper and lower parts of the boundary of ∂Y are equal, hence

0 =
1

δx

∫ x1+δx

x1

∫ ε(1/2−dε )

−ε(1/2−dε )

∂tρf dydx +
1

δx

∫ ε(1/2−dε )

−ε(1/2−dε )

ρf q
ε(1)dy|x=x1+δx

−
1

δx

∫ ε(1/2−dε )

−ε(1/2−dε )

ρf q
ε(1)dy|x=x1 +

2

δx

∫ x1+δx

x1

ρf q
ε
· nε

√
1 + (ε∂xdε)2dx|y=−ε(1/2−dε ).

For the last term, we use (22). We insert the expression for the density (32) together with asymptotic expansions for qε and

T ε
f . We make a change in variables, using z = y/ε, and collect the lowest order terms:

0 =
1

δx

∫ x1+δx

x1

∫ 1/2−d0

−(1/2−d0)

∂tρf 0dzdx +
1

δx

∫ 1/2−d0

−(1/2−d0)

ρf 0q
(1)
0 dz|x=x1+δx −

1

δx

∫ 1/2−d0

−(1/2−d0)

ρf 0q
(1)
0 dz|x=x1

−
2

δx

∫ x1+δx

x1

(ρf 0 − 2ρ)∂td0dx.

In the above equation, ρf 0 = ρ0 −βTf Tf 0. Since Tf 0 does not depend on z, integral evaluation in z is straight forward. Letting

δx approach zero results in

0 = (1 − 2d0)∂tρf 0 + ∂x(ρf 0q̄) − 2(ρf 0 − 2ρ)∂td0,

which can be rewritten as

∂t

(
(1 − 2d0)ρf 0 + 2d02ρ

)
+ ∂x(ρf 0q̄) = 0 for 0 ≤ x ≤ 1.

This is the upscaled mass conservation equation with varying fluid density.

Inserting the asymptotic expansions directly into the mass conservation equation (21) gives

∂t

(
ρ0 − βρf (Tf 0 + εTf 1)

)
+

(
∂xi +

1

ε
∂z j

)
·

(
(ρ0 − βρf (Tf 0 + εTf 1))(q0 + εq1)

)
= 0.

The lowest order term is

∂z(ρf 0q
(2)
0 ) = 0.

As ρf 0 does not depend on z, this implies ∂zq
(2)
0 = 0. The lowest order term of (22) gives q

(2)
0 = 0 at z = ±(1/2− d0), hence

q
(2)
0 ≡ 0 in Ω̃(t).

Further, the asymptotic expansions in (23) leads to

∂zp0 = 0,

hence p0 = p0(x, t). The horizontal component of the second-lowest order terms is

−∂xp0 + ∂z(μf 0∂zq
(1)
0 ) = 0.

As μf 0 = μ0 − βμTf 0 does not depend on z, this results in

μf 0∂zzq
(1)
0 = ∂xp0. (34)

The lowest order terms of (24) is

q
(1)
0 = 0 at z = ±(1/2 − d0).

Integrating (34) twice with respect to z and applying this boundary condition, give

q
(1)
0 =

1

2μf 0

∂xp0(z
2
− (1/2 − d0)

2).

We then integrate this equation from z = −(1/2 − d0) to z = 1/2 − d0 to obtain q̄:

q̄ = −
(1 − 2d0)

3

12μf 0

∂xp0 for 0 ≤ x ≤ 1.

For the energy equations (25) and (26), we seek one upscaled equation containing information from both. We inte-

grate both equations over their respective domains in y and sum the integrals. Changing the order of integration and
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differentiation, and making use of (27) and (29) along with symmetry in y results in

∂t

(1

ε

∫ ε(1/2−dε )

−ε(1/2−dε )

ρf T
ε
f dy +

2

ε

∫
−ε(1/2−dε )

−ε/2

ςρT ε
g dy

)
+ ∂x

(1

ε

∫ ε(1/2−dε )

−ε(1/2−dε )

ρf q
ε(1)T ε

f dy

)

= ∂x

(1

ε

∫ ε(1/2−dε )

−ε(1/2−dε )

1

Pe
∂xT

ε
f dy +

2

ε

∫
−ε(1/2−dε )

−ε/2

1

Pe
κ∂xT

ε
g dy

)
.

Inserting the expansion for T ε
f and T ε

g , collecting lowest order terms and integrating, give

∂t

(
(1 − 2d0)ρf 0T0 + 2d0ςρT0

)
+ ∂x(ρf 0q̄T0) =

1

Pe
∂x

(
(1 − 2d0)∂xT0 + 2d0κ∂xT0

)
for 0 ≤ x ≤ 1.

In order to derive an effective equation for how the width dε is affected by the reactions, we need to regularize the

dissolution rate to ensure a Lipschitz continuous function. We define wδ(d
ε) such that

wδ(d
ε) =

{
0 if dε < 0

dε/δ if 0 ≤ dε
≤ δ

1 if dε > δ.

We insert the asymptotic expansions for dε, uε and T ε
f into (30), obtaining

ρ∂t(d0 + εd1) = (fp(Tf 0 + εTf 1, u0 + εu1) − fd(Tf 0 + εTf 1, d0 + εd1))
√
1 + (ε∂x(d0 + εd1))2,

where w(dε) in Eq. (31) is to be replaced with the regularized function defined here. Since fp and fd are both Lipschitz, the

lowest order expansion is

ρ∂td0 = fp(Tf 0, u0) − fd(Tf 0, d0) for 0 ≤ x ≤ 1.

If we now let the δ approach zero, we obtain our original expression for w(d0).

4. Summary and discussion

To summarize, we have derived an upscaled model for mineral precipitation and dissolution in a thin strip honoring

changes in aperture, with fluid flow and heat transport. The model includes five unknowns: ion concentration u0(x, t),
mineral width d0(x, t), fluid transmissivity q̄(x, t), pressure p0(x, t) and temperature T0(x, t). Recall that the fluid density

ρf 0 and viscosity μf 0 are not constant, but depend linearly on the temperature T0. We can note that all our main variables

only depend on x and t , hence the thin strip problem has reduced to a one-dimensional problem which is as expected. We

have five equations to describe our main variables:

∂t

(
(1 − 2d0)u0 + 2d0ρ

)
= ∂x

(
(1 − 2d0)D∂xu0 − q̄u0

)
,

∂t

(
(1 − 2d0)ρf 0 + 2d02ρ

)
+ ∂x(ρf 0q̄) = 0,

q̄ = −
(1 − 2d0)

3

12μf 0

∂xp0,

∂t

(
(1 − 2d0)ρf 0T0 + 2d0ςρT0

)
+ ∂x(ρf 0q̄T0) =

1

Pe
∂x

(
(1 − 2d0)∂xT0 + 2d0κ∂xT0

)
,

ρ∂td0 = fp(T0, u0) − fd(T0, d0).

All equations are valid for 0 ≤ x ≤ 1. When the system of equations is used for modeling purposes, the equations should be

accompanied with boundary conditions at x = 0 and x = 1, and with initial conditions for t = 0.

The equations follow a certain pattern; terms associated with the void space appear in combination with the factor

(1 − 2d0), which is the width of the void space. Terms associated with the grains have the factor 2d0, which is the width of

the grain space. Thismeanswe obtain upscaled equations taking into account the changing aperture through the derivatives

of d0. We can also note that the middle equation is similar to Darcy’s law. In a fracture, the permeability is known to be

proportional to the aperture width squared, and we obtain a cubic relationship as we integrated the velocity across the

height of the aperture. Our findings are consistent with the findings of van Noorden [14], where our results include the

effect from temperature dependence through fluid properties ρf 0 and μf 0 and the reaction rates.

The thin strip problem is relevant for a geothermal setting as our thin strip may represent a fracture. In geothermal

reservoirs where the rock is highly fractured and has otherwise low permeability; such as in e.g. granite reservoirs, the

fluid flow is mainly through the fractures. The model presented here can describe how the efficient equations for flow, heat

transport and solute transport are affected as minerals precipitate and dissolve inside the fractures through the production

period of the geothermal reservoir.
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