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Chapter 1

Introduction

In the field of complexity theory there are several important classes of problems
(also known as languages). These classes exist to divide up the problems based on
certain properties possessed by the algorithms which can solve the problems. Two
of the most well-known classes of problems are the classes P and NP. An easy way
to visualize these classes are that P consists of all the problems which are easy to
solve for a computer and which are very often used in practice, such as sorting lists
of numbers or strings, finding the shortest path between two points and finding out
how different two words are (Edit distance). On the other hand NP consists of
harder problems, some which are very hard to solve for computers, especially as the
problems input size grows.

The classes of problems P and NP are related as we know that P ⊆ NP , and
the question of whether P = NP or P 6= NP is probably the greatest unsolved
mystery in computer science. Most people believe that P 6= NP , the problem has
been intensively researched for many years and so far nobody has been able to show
the opposite. If it turned out that P = NP then this would be a major discovery
with large amounts of practical importance, our computer security systems would
probably have to be reworked and we would be able to make large amounts of
interesting calculations on huge datasets which we are presently unable to do. Until
a proof is found for either one we just have to work with what we have, and therefore
many methods to solve problems in NP in a more efficient way have been developed.

A set of problems, which is a subset of NP is known as the set of NP-Complete
problems. These problems can be said to be the hardest problems in NP and possess
a very interesting property: for any other problem in NP, it is possible to transform
the input instance to the problem, so that it becomes an instance of an NP-Complete
problem and which can then be solved by an algorithm that solves the NP-Complete
problem. This transformation can be done in polynomial time.

Definition 1.1. A problem A is NP-Complete if for any problem B in NP with

1



input instance I, it is possible to transform (reduce) I in polynomial time into a new
instance I ′ of problem A. An algorithm which solves problem A can then be applied
to I ′ and yield an answer which can also be used to answer problem B. For A to be
NP-Complete it is additionally necessary that A belongs to the class NP.

Throughout this paper the Big-O notation is used to indicate how fast an algorithm
is, and for some runtime function f(x), Big-O is written as O(f(x)). This is used to
hide constant factors and make it more clear to the reader how the functions will
grow with size. For instance, an algorithm with runtime 100 · n10 will be written as
O(n10).

Algorithms must have some input to run on, and if an algorithm is designed to
solve a certain problem A, then the input given to the algorithm is said to be an
instance of problem A. The size of the instance is usually denoted by n, and O(f(n))
is used to describe the runtime as a function of the instance size. Polynomial Time
algorithms are algorithms which run in time polynomial in n, so any polynomial
time algorithm will have the Big-O notation O(nk) where n is the input size and k
is some constant associated with the algorithm. Exponential Time algorithms are
all the algorithms which require exponential time to execute. They will have their
runtime described as O(kn) where k is some constant and n is the input size. It is
easy to see that the difference in runtime between a polynomial time algorithm and
an exponential time algorithm is enormous as the size of the input grows, and while
most computers can probably manage to solve instances of sizes in the billions in a
few seconds for some polynomial time algorithms, they may only be able to solve
exponential time algorithms for instances of size less than a few hundred at best.

Utilizing a regular computer (as opposed to a quantum computer or some theoretical
computational model), all the problems in the class P can be solved in polynomial
time while the problems that are NP-complete will take exponential time. Even
though the algorithms we have to solve NP-complete problems are generally slow,
they are nonetheless important problems and can have many real life applications
as well. This motivates us to find ways to deal with these problems in a better way.
The common ways of speeding up an algorithm is to relax the solution requirements
of the problem. Some ways of getting polynomial time instead of exponential time
algorithms for NP-complete problems are:

Approximation algorithm Instead of requiring the best possible solution, it is
acceptable for the solution to be a certain factor away from being optimal.
This factor can either be a constant or some function of n.

Restricted input The algorithm will only run on certain instances of the problem,
where these instances can be described and grouped together in a concise man-
ner. This leads to large hierarchies and relationship systems for the different
classes of inputs, where if you can solve one class in a better way you are also
able to solve related problems in a better way.
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Parametrized algorithm By using some additional input or property of the input
as part of the algorithm, it is possible to edit the way in which the runtime is
expressed, giving an algorithm which is not exponential in n.

We focus on the type algorithms which run on restricted input. The problem we
consider is restricted to inputs of graphs which are P5-free (definitions are found
in the terminology section). This thesis explores a polynomial time algorithm for
Independent Set in P5-free graphs, described by Lokshtanov et al.[12]. Implementing
the algorithm and performing empirical tests is the main priority. A large part of
the project involves selecting the correct algorithms for smaller sub-problems which
do not have well-defined algorithms in the paper which this thesis is based on, but
rather just refers to the running-time which is possible. Algorithms we select need
to satisfy the overall runtime proven in the paper, even though each sub-routine
does not necessarily have to be optimal. A compromise is made between how easy
an algorithm is to implement and how fast it is.

A secondary aim of this thesis is to improve the upper bound of the algorithm,
either by refining the algorithm or by proving a better upper bound on the same
algorithm. Implementation work is done in Java as there is a package of algorithms
called Grapher that is already written in Java, and it contains some helper classes
that should reduce the time and complexity necessary for the implementation. Java
also seems to have equivalent performance to other languages for this type of problem
from a general consensus of search results, although for some specific tasks C++ can
be faster, these are not very applicable here and the improvement is not significant
enough to make large differences in the outcome. Many of the results of interest are
sizes of objects generated by the algorithm, and given a correct algorithm, the sizes
of these objects will be the same regardless of language or framework or speed of
computation. The number of easily accessed libraries in Java also seem to be large
enough to cover most needs.

1.1 Independent Set Problem

Finding an independent set of a given size in an input graph G = (V (G), E(G)),
where V(G) is the vertices of the graph and E(G) are the edges of the graph, is an
extensively studied and well-known NP-Complete problem for general graphs. The
Independent set problem is equivalent to one of Karp’s 21 NP-complete problems[11].
Karp proved NP-Completeness of a problem known as Clique which queries if a graph
contains a Clique of size k, where k is given as input. For a graph G = (V (G), E(G))
the complement graph D is a graph where for each pair of vertices u, v ∈ V (G), if
there is an edge (u, v) ∈ E(G) then there is no edge between u and v in D while
if the edge (u, v) /∈ E(G) then there is an edge between u and v in D. The Clique
problem is the Independent Set problem in the complement graph. With this in
mind, we know that to answer the question: "Is there an independent set of size k
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in the graph G" we just have to answer the question "Is there a clique of size k in
the graph D" and the answers to the two questions will be equal. This also shows
that Independent set must be an NP-Complete problem, as otherwise we could use
it to solve the Clique problem faster, and thus Clique would not be NP-Complete.

Definition 1.2. An Independent set in a graph G is a set of vertices S ⊆ V (G),
such that for any pair of vertices u, v ∈ S, G does not contain an edge between u
and v.

There are multiple versions of the Independent set problem, the most commonly
used are the decision and the optimization versions.

Definition 1.3 (Independent set decision problem). Given a graph G and an integer
k, does the graph G contain an Independent set S ⊆ V (G) such that |S| = k?

Sometimes the decision problem will ask for an Independent set S ⊆ V (G) such that
|S| ≥ k instead of asking for equality. As an independent set which is larger than k
must contain a subset of size k which is also independent, these two definitions are
equivalent.

Definition 1.4 (Independent Set optimization problem). Given a graph G, pick as
large a set S of vertices in G as possible, such that no two vertices in S are neighbours
(share an edge) in G.

1 2

3

4

5

Figure 1.5: A graph with its maximum independent set marked in red. We are not
able to add the node with id:1 into the independent set, as it has edges to other
nodes already in the independent set, and so we would have to remove those. The
resulting independent set would only contain the node with id:1 and be known as
a maximal independent set, as we can not increase its size while the set remains
independent.

We are mostly interested in the optimization version of the problem. For general
graphs the naive way of discovering the largest possible independent set involves
simply producing each subset of the set of vertices, test if it is an Independent set
and then keep it if it is larger than any other set seen so far. This algorithm would
require time O(n22n) as the power set of a set is of size 2n, and for each set in the
power set one has to test if there are edges between any pair of vertices, and there are
n2 possible pairs of vertices. The best algorithm for Independent Set at present is
an O(1.2108n) algorithm given by Robson[15]. For small graphs, this may be faster
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than the polynomial time algorithm discussed in the thesis, but as n grows large,
the algorithm in this paper will be much faster. It is also of theoretical interest
to produce a polynomial time algorithm as a part of the larger effort to classify
algorithmic problems on different graph classes.

The Independent set problem has numerous applications, among them are varying
types of scheduling, map colouring (when using Independent set in relation to the
graph colouring problem) and analysis of social networks. In general it is used in
all sorts of relationship graphs where one wants to find a large group of events that
don’t depend on or obstruct each other. It is easy to find other applications where
it could be used, even in a persons daily life. An example is a student wishing
to take as many subjects as possible, with the requirement that the exams of two
subjects can not overlap. The student can simply make a graph where each node is
a subject and add an edge between two nodes if their exams are on the same day.
The student can then find the largest independent set, which will be the largest
set of subjects possible to take without exam collisions. Another example could be
automatic parallelization of code where one could find parts of code that do not
depend on each other and then executing them on different processors.

Given a restricted graph class, it is possible to solve this problem more efficiently. It
is possible to solve Independent Set in polynomial time for claw-free[17] and perfect
graphs[9] among others. From a recent paper, it is known that the Independent
problem on P5-free graphs is solvable in polynomial time[12]. The class of graphs
that are P5-free are the graphs not containing induced paths of length 5 (See 1.1 for
definition of induced path).

1.2 Libraries and technologies

For convenience and to save some time, two larger libraries were used. One was
used for most of the implementation work related to the Independent Set algorithm.
Another library was used for generating graphs in a procedural way, to run certain
tests across all graphs of a certain size, and for some random graph generation
(discussed further in the Random neighbourhood subsection).

The first major library is named Grapher (which is strictly speaking an application,
not a library). Grapher was created by the informatics department at the University
of Bergen and it compiles to an Android App that is available in the Google Play
store. This App allows a user to draw graphs by inserting nodes and edges. After-
wards the user can select from a number of algorithms which can be executed on
the graph drawn. As this library contains a large number of pre-made algorithms, it
seemed convenient to use it for the implementation of the Independent set algorithms
of this thesis. As it is written for android, which requires Java code, this was also
convenient as it is the language is very flexible. Grapher uses another library called
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jgrapht, which is a large collection of graph structures and a few trivial algorithms
on graphs. It was therefore necessary to conform to the graph class used across all
the algorithms in Grapher. The standard way of representing a graph in the Grapher
application is with a class called SimpleGraph, which represents an undirected, un-
weighted and simple(no multi-edges or self-loops) graph. SimpleGraph is a generic
class where any class can represent an edge and any other class can represent a
vertex. This is not the most convenient format to work with when this information
is not required, so at the start of the Independent Set algorithm any SimpleGraph
that is passed as input will be converted into a SimpleGraph with Integer values for
vertices and edges, and a mapping is created so that it is possible to retrieve the
original values if it should be relevant at any point. The edges in the SimpleGraph
are represented by an integer which is created when an edge is added between two
vertices, and this number is determined by the Cantor pairing function.

Definition 1.6. The Cantor pairing function is a bijective function that maps
any pair of non-negative integers to a unique number. The formula is F (x, y) =
(x+y)(x+y+1)

2 + y.

As the graphs are undirected, the numbers x and y are sorted before given as input
to the Cantor pairing function and thus adding edge (x,y) and (y,x) gives the same
edge. This is very convenient as one can check in constant time in a hashtable if an
edge has been added or not. The Cantor pairing function has the restriction that
the size of the output will be up to n2, so if it were given two numbers with the
maximum size of a 16 bit integer, it would no longer fit in a 32 bit integer. This
is irrelevant for our purposes as the largest integer will be that of the largest graph
size used, and since this will never exceed 100, the function output is well within any
limitation of the integer class. A few helper functions like finding closed and open
neighbourhoods of a node or a set of vertices, and a function to make an induced
sub-graph of a given graph together with the inducing vertex set, were also used.

The second library we use is S-Space. This is a very large library, contains all the
algorithms necessary for the purpose of building Semantic Spaces. It was created
by the Natural Language Processing group at UCLA. We used a single algorithm
from this library: Graph Isomorphism, which would have been somewhat tricky to
implement. This library was chosen because it was implemented in Java and so it
could easily connect with the rest of the code. Isomorphism testing was necessary
when building a list of all P5-free graphs of a given size, as otherwise the number of
graphs would have been too large to process. By building a list of non-isomorphic
graphs it should be possible to test quickly if a graph is isomorphic to any of the
graphs already in the list by creating some data structures to speed the comparisons
up, but the algorithm in S-Space does a pairwise test between every graph in the
non-isomorphic graphs list and the given graph to test isomorphism for. This puts
a big restriction on how fast the algorithm is, and also limits the size of graphs
which can be generated if one wants to generate all graphs of a given size. It was
not feasible to generate all P5-free graphs of graphs larger than size 9 due to the
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time restrictions of the algorithm. It might have been possible to get some speed-
up by either doing a custom implementation or looking at implementations done
in C/C++. In addition it is possible that there may be faster graph Isomorphism
algorithms for P5-free graphs than for general graphs. To work within this library
it was necessary to use a class of graphs called sparseUndirectedGraph which were
simply unweighted and undirected graphs with no multi-edges or self-loops. The
graph-class was easy to work with and was used for generating large samples of
random P5-free graphs of select sizes for different tests.

Each of the libraries had their own graph-class, and since a large number of test
graphs were generated in the sparseUndirectedGraph graph-class, it was necessary
to devise a way to convert between the classes. The solution was to make a binary
string representation of the graphs, and from there it was easy to convert between
the classes as the logic behind the graph structures was the same. For a more in-
depth discussion of the bit representation of the graphs, see the "Generating P5-free
graphs" section.

In retrospect, it was too time consuming to work with all the different aspects of the
libraries compared to how much of them were used. If it was possible to restart with
current knowledge, a custom graph class with a very simple structure would have
been used, and the only external algorithm necessary would have been for Graph
Isomorphism, and then the C++ version from the "boost" package would have been
used.

1.3 Notation and terminology

A graph G = (V,E) consists of a set of vertices (also referred to as nodes) V, and a
set of edges E. An edge connects two vertices and an edge between vertices u and v
is denoted as (u,v) or e(u,v). V(G) denotes the set of vertices in G and E(G) denotes
edges in G. If v is a vertex in G we say that v ∈ V (G) and if (u,v) is an edge in G
we say that (u, v) ∈ E(G). The size of the vertex set of G |V (G)| = n, and the set
of G’s edge-set |E(G)| = m.

Each node in a given graph G of size n will in this thesis be definable by a unique
id such that id ∈ [0, n− 1].

Simple graphs are graphs that disallow self-loops, more specifically ∀u ∈ V (G), (u, u) /∈
E(G).

Undirected graphs are graphs where it is possible to travel along (traverse) an edge
in both directions so (u, v) ∈ E(G) ⇒ (v, u) ∈ E(G) and (v, u) ∈ E(G) ⇒ (u, v) ∈
E(G), while directed graphs can have an edge pointing only one way.

Labelled graphs are graphs where each node is given some label, and two labelled
graphs with a seemingly equal structure but different labels are not inter-changeable.

7



An induced sub-graph G[U] where U ⊆ V (G) is a graph consisting of vertex set U
and exactly the edges connecting vertices of U in G. An illustration of the process
which creates a sub-graph is seen in figure 1.7. There we create an induced sub-
graph as seen in figure 1.7b from an original graph seen in figure 1.7a, where the
vertex set we use to induce the sub-graph is marked in red.

1 2

3

4

5

(a) Graph G with the vertex set U highlighted in Red.

1 2

3

(b) The graph G[U], where only nodes of U and the edges between nodes of U remain

Figure 1.7: The process of creating an induced subgraph. The desired vertex set is
marked in Red in the original graph, in the resulting graph, only the marked vertices
and the edges which connects them remain.

For some vertex set C, G-C or G \ C indicates the graph that remains when the
vertices in C, together with any edges with endpoints in C, are removed from G. Let
H be any other graph, G ⊆ H if H contains all vertices and edges of G, and H can
contain additional edges, we may also so that H is a super-graph of G.

A path in a graph is a set of vertices which can be placed in a sequence such that
each vertex in the sequence has an edge to the next one, and the first and last
element of the sequence are not connected (If they were then it would be a cycle). If
a path is an induced path then the only edges connecting the vertices of the path are
the ones between the consecutive pairs of vertices. The differences between induced
and normal paths are shown in figure 1.8.
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1 2

3

4 5

(a) A path from node 1 to node 5, with some extra edges within the path highlighted in red

1 2

3

4 5

(b) An induced path between nodes 1 and 5

Figure 1.8: In example a) we see a valid path between nodes 1 and 5, which is not an
induced path as there are additional edges along the way. Example b) is an induced
path of length 5 as there are no other edges than the ones between consecutive nodes
in the sequence

Open and closed neighbourhoods for a vertex v ∈ G are written as N(v) and N [v]
respectively. N(v) is the set of vertices which have en edge to v, while N [v] =
N(v) ∪ v. The notation can also be extended to NG(v) or NG[v] where one can
insert the relevant graph G for which the neighbourhood shall be evaluated. It can
also be generalised to a set of vertices C, where NG[C] =

⋃
v∈C NG[v], in other words

create a new set and add the neighbourhood of each of the nodes in C to the set. If
G is not included, it is assumed that the relevant graph should be assessable from
context.

δG(v) denotes the neighbours of vertex v in G which have neighbours outside of the
neighbourhood of v. Formally δG(v) = {u ∈ N(v) : N(u) 6⊆ N [v]}.

Picking two independent nodes u and v from G and turning δG(v) and δG(u) into
cliques, a new graph Guv is obtained. This is relevant as we can turn the graph Guv

into a chordal graph without adding edges between the rest of the graph and u or v.

Chordal graphs are graphs for which every cycle of size at least 4 has a chord within
the cycle. These graphs have many special properties (e.g. limitation on the number
of maximal cliques) which are exploited in the algorithm implemented in this thesis.

A triangulation H of a graph G is a super-graph of G (G ⊆ H) in terms of edges, such
that H is a chordal graph with the same nodes as G and containing all edges of G, but
with an additional set of edges F which we call fill-edges. If we letG = (V (G), E(G)),
then H = (V (G), (E(G)∪F ), where the addition of F turns G into a chordal graph.
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1 2

34

Figure 1.9: A chordal graph which is a triangulation of the graph C4 where the
chord which was added is indicated in red

A triangulation H of G is aminimal triangulation when there is no graph H’ such that
H’ is a triangulation of G and a strict sub-graph of H ( @H ′ such that G ⊆ H ′ ⊂ H).

We call a triangulation for I-good if for a set I of independent vertices in G, the
triangulation H does not add any edges between vertices in I and any other vertices.
We can call a triangulation good for a some set of I, so a u,v-good triangulation is
an I-good triangulation with I = u,v.

A maximal object in a graph G is generally a set of nodes of the graph that has a
specific property, and by maximal it is meant that you can not add any more items
to the set while still retaining the property. Some specific examples are maximal
independent sets, where a maximal independent set S stops being an independent
set if one tries to add any other node to it, because all remaining nodes have an edge
to a vertex already in S. Another example is a maximal clique Q for which no other
node in the graph has an edge to all nodes in Q, so trying to add another node to
Q will make it stop being a clique. All maximum(largest) objects are also maximal,
but not all maximal objects are maximum.

Potential maximal cliques (referred to as p.m.c.) of a graph G, are cliques in some
triangulation H of G which satisfy the criteria of proposition 4.1.

A minimal object is defined in the same way as a maximal object, but rather than
not being able to add any more items to the set, in a minimal object you can not
remove any items from the set and still retain the desired property.

Let an (a,b)-separator of a graph G be a vertex set S such that removing S from
the graph, giving G \ S which is a collection of components C, a and b are in
different components in C. The separator is minimal if no subset of the separator
still separates a from b. For a vertex set Ω, let ∆(Ω) denote a function which returns
the set of minimal separators contained within Ω.

Elimination ordering is any ordering of the vertices in a given graph.

A Perfect Elimination Ordering, commonly referred to as p.e.o. is an elimination
ordering of a graph with a special property. For each vertex v in the p.e.o. v will
form a clique together with its neighbours that occur later in the p.e.o. A graph is
chordal if and only if it has a perfect elimination ordering[8]. Perfect elimination
orderings are discussed more thoroughly in the Minimal triangulation chapter.
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Connected graphs are graphs where there is a path between any pair of vertices
in the graph, in contrast with a disconnected graph which can contain multiple
components that are completely independent of each other.

A tree decomposition T of a graph G is a mapping of the graph into a tree. Given
a graph G = (V, E), a tree decomposition is a pair T = (X, L) where X is a set
of subsets of V which we refer to as bags, and L are edges connecting the bags to
form a tree. We say that a vertex b ∈ X is a bag of T, and for any bag b, we let
χ(b) = S, where S ⊆ V . For more in-depth discussion on tree decomposition, please
consult other resources as it is a common concept, but we only briefly mention it in
this thesis so we do not feel more information is needed.

1.4 Overview

By reading this thesis in the given order, each of the algorithms that were imple-
mented during the thesis are explained in some depth. The main algorithm which
the thesis is focused on is the polynomial time algorithm for independent set in P5-
free graphs, and the runtime of this algorithm depends on certain structures that
are found in the graph. A way to list these structures is therefore necessary, so each
algorithm described during this paper was implemented as needed, to be able to
construct this list of structures.

P5-free graphs and their properties that are relevant for our purposes are discussed,
together with some methods to generate P5-free graphs, both a procedural method
to generate all possible P5-free graphs of a certain size and multiple ways to generate
random P5-free graphs of a given size. Towards the end of the thesis we discuss the
implementation of the Independent set algorithm itself, and afterwards provide both
experimental and theoretical results. The experimental results will both look at the
actual runtime of the algorithm when tested on the system available, and it will
look at the size of certain objects generated that are a crucial part of the analysis
of the algorithms runtime. The conclusion will summarize the findings and look at
possible paths for further interesting study.

We discovered a dynamic P5 detection algorithm with runtime O(nm) (where n is
the number of nodes and m the number of edges), described under the section with
the same name. With this we were able to produce an algorithm which generates
size n P5-free graphs, only requiring time O(n3m).

Our test results indicated the possibility of a much lower upper-bound on the runtime
than the current theoretical bound. This comes mainly from observing that the list of
potential maximal cliques generated is much smaller than the bounds would suggest,
together with a list of precursors used to generate the potential maxim cliques being
smaller than expected as well.
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Chapter 2

P5 free graphs

As mentioned in the introduction, a P5-free graph is a graph not containing any
induced paths of length 5. In figure 2.1 we give two example graphs, where graph a)
is a simple graph containing a P5, while graph b) is an example of a P5-free graph.

1 2 3

6

4 5

(a) A graph containing an induced P5, which is highlighted in red. We see that for each pair
of nodes in the induced path, there are no other edges connecting the nodes than the edges
between consecutive nodes

1 2 3

6

4 5

(b) An example of a P5-free graph. Any graph which does not contain an induced P5 is
categorized as P5-free

Figure 2.1: Two example graphs. a) shows a graph which is not P5-free, as there is
an induced path of length 5 highlighted in red, b) shows a graph with no induced
path of length 5, the longest path in this graph has length 4.

If two nodes in a connected P5-free graph are not neighbours, there must be at
least one induced path between them, and these paths can contain at most 2 other
vertices each. Due to this property, most random P5-free graphs will have a high
number of edges.

To find an independent set in a P5-free graph, we re-purpose an algorithm originally
designed to find the maximum independent set in a general graph. Some background
is necessary to understand how this algorithm works, and how it is modified for the
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use on P5-free graphs.

All graphs contain some maximum size independent set I and minimal triangulation
H, such that for each maximal clique C of H, the maximal clique contains at most
1 node from I. A formal lemma of this statement, together with a proof is provided
in lemma 2.2.

Lemma 2.2. For any graph G, let I be the maximum independent set in G. ∃
minimal triangulation H of G such that ∀ maximal cliques C in H, |C ∩ I| ≤ 1.

Proof. As there are no edges between nodes in the maximum independent set I in G,
they can never be in the same clique in G. For all nodes not in I, form a clique, this
is a triangulation K of G. K is a split graph (a graph consisting of a clique and an
independent set) and so it must be chordal. Either the triangulation K is a minimal
triangulation of G, or there is a graph K’ such that G ⊆ K ′ ⊂ K. K’ can easily be
obtained by removing edges, so we end up with a minimal triangulation in either
case. For each maximal clique C in K’, at most 1 node from I can be contained in
C as no pair of nodes from I have edges between them and therefore are unable be
in the same maximal clique.

From a paper by Fomin and Villanger[6] we get the following proposition, which
we can combine with the properties of P5-free graphs to obtain a polynomial time
algorithm for independent set.

Proposition 2.3. There is an algorithm that given as input a vertex weighted graph
G on n vertices and m edges, together with a list Π of potential maximal cliques,
outputs in time O(|Π|n5m) the weight of the maximum weight independent set I such
that there exists a minimal triangulation H of G such that every maximal clique C
of H is on the list Π and satisfies |C ∩ I| ≤ 1.

Even though the proposition calls for a weighted graph, it is easy to convert an
unweighted graph to the right format. Simply add a weight of 1 to every node,
and now the maximum weight independent set will also be the largest independent
set in terms of number of vertices. This shows that the proposition also applies to
unweighted graphs.

One of the main results of a paper by Lokshtanov et al.[12] is to show that for P5-
free graphs, one can compute a list Π of potential maximal cliques in polynomial
time, such that for every independent set I there exists a minimal triangulation H
of G, such that every maximal clique c of H is on the list Π, and satisfies |C ∩ I| ≤
1. Particularly this holds for the maximum size independent set I, therefore the
algorithm of proposition 2.3 when run on G with the list Π will find the size of the
largest independent set of G. The size of Π affects the runtime of the independent
set algorithm and in the paper by Lokshtanov et al. it is shown that the size of Π is
upper-bounded by n7. The purpose of this thesis is to investigate if the upper-bound
is crude or tight.
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2.1 Detecting P5s in general graphs

Being able to detect whether a graph contains a P5, and doing so in a reasonable
time, is highly desirable for multiple purposes. A list of objects we call Π (discussed
in the subsection "Generating Π"5.1) requires that a graph is P5-free to get the
required results. Based on the input it is possible to select whether or not it is
sensible to execute the algorithm that generates Π, this will be done by checking
that the graph is P5-free. Another important application is in the ability to generate
the random P5-free graphs needed in the empirical tests. The algorithms used to
generate random P5-free graphs are based on taking a graph that is already P5-free
and making modifications to it, with the requirement that the graph retains its P5-
free property at every modification step. To achieve this, we require a fast algorithm
to detect induced length 5 paths, otherwise we are unable to generate larger graphs.

The naive algorithm for finding a P5 in a given graph G is to try all subsets of size
5, which can be counted as

(n
5
)

= n!
5!(n−5)! = n5

120 giving O(n5). This is guaranteed to
use n5 execution steps thus for practical purposes it will be rather slow, compared
to algorithms which can have better average execution-times. We decided on using
a better algorithm, which depends on the number of edges and is practically much
faster.

From a recent paper by Hoàng et al.[10] we get an algorithm which can determine if a
graph G contains an induced P5 in time O(m2). The algorithms logic is for each edge
(u,v) to make an attempt in extending it into a P5 of the form uvwxy (shorthand
for a sequence {u, v, w, x, y} where only the consecutive pairs are connected by an
edge) or vuwxy, and this is done by finding a P4 in either G \N [u] or G \N [v].

An algorithm to find a P5, in pseudo-code based on the implementation is seen
in Algorithm 1. Initially a graph G is passed to the algorithm. It then searches
through all possible edges in the orientation uv. Attempts to expand the edge into
a path of the form uvwxy are made. On the step where it is initialised with edge
(u,v) it lists all components of the graph G induced by V (G) \ (N(v) ∪ N(u)) as
C1, C2, ...Ct. If the graph contains a P5 then it must also contain a P4 ending in v,
and where the only edge connecting the P4 to u is uv. This type of P4 can only exist
if we have a vertex w ∈ N(v) AND w /∈ N(u) such that the neighbourhood of w is
a strict subset of one of the components listed earlier (N(w) ⊂ Ci : C). If a P5 is
detected, it can be output by selecting the endpoints u and v of the original edge,
together with w. Then one must consider which component Ci met the sufficient
criteria, and in this pick a vertex x which is a neighbour of w and a vertex y which
is a neighbour of x but not of w. These vertices can be chained together form the
P5 uvwxy.

Theorem 2.4. [10]There is an algorithm which takes as input a graph G and de-
termines if the graph G is P5-free. It is able to do so in time O(m2), where m is
the number of edges in the graph. Additionally it is able to output a single P5 in the
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same time-frame.

The idea behind the algorithm is illustrated in the following figure 2.5.

Figure 2.5: Illustration of the P5 detection algorithm. w contains all of C1 in its
neighbourhood so it is not possible to form a length 3 induced path with vertices
from C1 and w. w contains none of C3 in its neighbourhood so it is not considered.
As w only contains part of C2 in its neighbourhood we know that we can form a P5.

In figure 2.5 there is a labelled P5: uvwxy. The algorithm starts by looking through
all edges in the graph, for the iteration where the P5 shown was found it was consid-
ering the edge uv. Next it lists all the components C1, C2, ..., Cn that is produced by
taking G \N [u, v]. It then proceeds to look for a third node w that is a neighbour
of v but not of u. Now we have a P3: uvw. To be able to expand uvw to a P5, we
must find a component Ci where w is a neighbour of some vertices but not all. In
our example illustration, we see that w is a neighbour with both vertices in C1, so
we can exclude that, while in C2 it is only a neighbour of x, so we keep expanding
in that direction. Once it has added x, it just needs to find one more vertex in C2
that is not a neighbour of any of the previous vertices in the path, and that is y.
Our P5 uvwxy is now complete.

If one is only interested in knowing whether there is a P5 or not, it is possible to
skip a few steps: once a w is found, count how many neighbours of w are in each
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component. If the number of neighbours of w in component Ci is less than the size of
Ci, then we know that it is possible to select one vertex from Ci that is a neighbour
of w and one that is not, thus there is a P5.

Algorithm 1 An O(m2) algorithm which will output true if the graph contains at
least one induced path of length 5. If the algorithm has tested each edge in the
edge-set and failed to find a P5, it will output false

1: function FindP5(Graph G)
2: for all uv : E(G) do
3: B ← V (G) \N [u, v]
4: [C1, ..., Cn]← componentsOf(G[B])
5: c[C.size()]← 0
6: Initialize Set L
7: for all w : {w ∈ N(u) AND w /∈ N(v)} do
8: for all d ∈ N(w) ∩B do
9: j ← index of component containing d

10: Count neighbours of w in component j: c[j]← c[j] + 1
11: Explore component j later: L← L ∪ j
12: end for
13: for all j : L do
14: if c[j] ≤ C[j].size() then
15: return "YES"
16: end if
17: c[j]← 0
18: L← L \ j
19: end for
20: end for
21: end for
22: return "NO"
23: end function

By checking if c[j] ≤ C[j].size() we are testing if the component j contains a vertex
which is not a neighbour of w. Due to the way they were generated, we know that
the components are not neighbours of u and v, so once we have the P3 uvw, all we
need to do is to find a component that contains one x which is a neighbour of w, and
one node y which is not a neighbour of w. As x and y are in the same component,
there must be a path between them, and so we are guaranteed a P5 if there is such a
component where w is not a neighbour of every node in it. The time analysis results
from considering O(m) edges uv, and for each edge we need to list all components
which takes time O(m), guaranteeing a runtime of O(m2). Furthermore each w
will visit its neighbourhood in the components, but each edge between a w in N(u)
and a component in C is just explored once, so this will also take time O(m). The
algorithm for computing the components is run separate of w, so our overall runtime
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is O(m2).

If it is necessary to output the P5 that the graph contains, then one must replace
the line that returns yes with the code in algorithm 2. This continues to explore the
component where x and y can be found. It does so by looking at all neighbours x of
w in the component j, and then it looks for a vertex y ∈ Cj which is not a neighbour
of w. Once found, return uvwxy as the solution.

Algorithm 2 If a P5 has been confirmed to exist, use this code-snippet to output
full path of length 5

1: X ← N(w) ∩ C[j]
2: Y ← C[j] \X
3: for all x : X do
4: for all y : N(x) do
5: if y ∈ Y then
6: Solution← v ∪ u ∪ w ∪ x ∪ y
7: return Solution
8: end if
9: end for

10: end for

The P5 detection algorithm must run twice for each edge uv, once in the orientation
(u,v) and once in the orientation (v,u). Because the ordering of u and v give different
results it is necessary to run both or we could miss a P5. One can only conclude
with the graph being P5-free at the end of the second run. At first glance, it might
as if actually producing the P5 will exceed the runtime of O(m2) as algorithm 2 has
runtime O(nm) and the for loops that go outside it are of size O(m2), seemingly
giving O(m3n) but upon more careful consideration one will realize that the code in
algorithm 2 will only be executed if a P5 is found, and this will only happen once,
and so the runtime will instead be O(m2 + nm) = O(m2).

An even faster algorithm for recognizing P5s is not unfathomable, and would help
in generating even larger P5-free graphs, even though the final Independent set
algorithm would not be affected by it.

2.1.1 Dynamic P5-detection

Due to the way we apply the P5 detection algorithm, we can modify it to give us
a slightly better result in some cases. In particular, we often face the following
problem: we have a graph G at our disposal, and we know that G is P5-free, we
add/remove an edge to G to obtain the graph G’, and we wish to determine whether
G’ remains P5-free. We can often use the knowledge that G was P5 free, combined
with the procedure by which we obtained G’ from G. This allows us to check whether
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G’ is P5-free in a manner which is faster than in the general setting. This setting
is known as dynamic graph algorithms and is quite well studied, see the article by
Nikolopoulos et al. [14] for a summary of known results for dynamic algorithms for
graph class recognition. We now give a fully dynamic algorithm for P5-free graph
recognition, our algorithm supports edge addition and edge deletion in time O(nm).
To the best of our knowledge, this is the first algorithm beating order O(m2) for
dynamic P5-free recognition. We have implemented the algorithm and use it in the
section ("Random edge generation"2.2.1). The dynamic P5 recognition problem is
described in definition 2.6.

Definition 2.6 (Dynamic edge P5 detection). Given a P5-free graph G = (V (G), E(G)),
together with a pair of vertices u and v, determine if G = (V (G), E(G) ∪ (u, v)) or
G = (V (G), E(G)− (u, v)) contains a P5.

We consider the problems of adding and subtracting edges separately.

Incremental P5-detection

We define the incremental P5 detection problem as:

Definition 2.7 (Incremental P5 detection). Given a P5-free graph G, independent
vertices u and v, determine if G = (V (G), E(G) ∪ (u, v)) contains a P5.

When a P5-free graph G gets a new edge (u, v), if G∪ (u, v) is no longer P5-free then
we are always able to find a P5 containing the edge (u, v). This statement together
with a proof is found in lemma 2.8.

Lemma 2.8. Given a P5-free graph G where u and v are independent vertices, let
G′ = (V (G), E(G)∪ (u, v)). G′ is no longer P5-free if and only if there is an induced
path P of length 5, such that (u, v) ∈ E(P ). Furthermore, any induced path of length
5 in G′ must contain (u, v) as an edge.

Proof. ⇐ If G′ contains an induced path P of length 5, such that (u, v) ∈ E(P ),
then G′ by definition contains a P5.
⇒ Assume G′ is not P5-free but does not contain an induced path P of length 5 with
(u, v) as an edge. Let one such P5 be abcde (we could replace one of the vertices with
either u or v, but both u and v can not be in the path by definition), so G induced by
abcde produces the edge-set {(a, b), (b, c), (c, d), (d, e)}. Remove the edge (u, v) from
G′ to obtain the exact graph G. G should by definition be P5-free, but G induced
by abcde still produces the same edge-set as we have not added or removed edges
between any pair of vertices in the path. Thus abcde is still a P5 in G, contradicting
that G was P5-free. This proves both that if G′ is not P5-free then there must be an
induced path P of length 5, such that (u, v) ∈ E(P ) and that for any induced path
of length 5 in G′ then (u,v) must be an edge in the path.
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Given that the newly added edge uv must be part of some P5 for the graph to contain
a P5, we need to consider the configurations in which uv can be placed. Any P5
will have the form p1, p2, p3, p4, p5 where there are only edges between consecutive
pairs of vertices, this gives us four possible positions for an edge to be. We can say
that the edges (p1, p2) and (p4, p5) are symmetrical, and do the same for (p2, p3)
and (p3, p4), as clearly if we are able to find a P5 based on an edge in one of the
orientations, then we can do the same for the opposite orientation. This leaves us
with two options, an "outer-edge" like (p1, p2) and an "inner-edge" like (p2, p3).

To determine if (u, v) is an "outer-edge", we execute algorithm 1, but instead of
looping through all edges in E(G), we simply insert uv into the beginning and
execute the algorithm as stated, and make sure to reverse it and test in the vu
orientation as well. If uv is an "outer-edge" then it was either added at the start as
uvwxy or at the end as yxwvu, but this is irrelevant as the algorithm will find it in
either orientation (w has an edge to both x and v, G \N [u, v] will have x and y in
the same component as they have an edge between them, and the same situation
applies to G \ N [x, y]). This can clearly be done in time O(m) as all we did was
remove the O(m) possible choices for edges in the O(m2) algorithm.

Determining if (v, w) (we renamed the vertices for convenience) is an "inner-edge"
can be done as follows: for a P5 uvwxy, given vw, find u and xy. We can again insert
our vertices into algorithm 1, but this time we look at each u in G \ N [w] instead
of all edges, and we already know what the value of w is. For each such u, we split
the graph into components by taking G \N [u, v] and finding x and y such that x is
a neighbour of w and y is not. This can be done in O(nm) as we consider at most
n vertices as a possibility for u, and we count O(m) components per n. w is fixed,
so instead of O(m) time to explore all possibilities for w as in the usual algorithm,
we just explore the neighbourhood of w into the components, and this is bounded
by O(n).

So given that G was P5-free before we added edge (u,v), we simply test if it is "outer-
edge" and "inner-edge" P5-free, with (u,v) as a parameter. If both answer true, then
the resulting graph is P5-free, otherwise a P5 has formed when (u,v) was added, and
(u,v) must be removed to make the graph become P5-free again.

We end this subsection with lemma 2.9.

Lemma 2.9. The incremental P5-detection problem can be solved in time O(nm).

Proof. The proof is the algorithm described in the previous paragraphs.

Decremental P5-detection

Decremental P5-detection is the problem of finding a P5 after removing a single edge.
The problem is accurately described in definition 2.10.
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Definition 2.10 (Decremental P5-detection). Given a P5-free graph G with edge
(u,v), determine if the graph G = (V (G), E(G) \ (u, v)) is P5-free.

To create an algorithm for decremental detection, we need to use the result of lemma
2.11.

Lemma 2.11. Let G be a P5-free graph with (u,v) an edge in G, let G′ = (V (G), E(G)−
(u, v)). G′ contains a P5 if and only if there is an induced path P on 5 nodes with
u ∈ P , v ∈ P , (u, v) /∈ P .

Proof. ⇐ if there is such an induced path P on 5 nodes, G′ necessarily contains a
P5.
⇒ clearly the edge (u, v) is not in the path, as this is not an edge in the graph.
Assume there is an induced path L on length 5 such that at most one of {u, v} is in
the path. Add back the edge (u,v) to obtain G, L must also be an induced path of
length 5 in G, as G induced by the path can have no more edges than before, this
contradicts the statement that G is P5-free. Thus any P5 in G’ must contain both
u and v.

Next we need to consider the possible orientations in which u and v can be found in
the path. As they do not share an edge, they can not be adjacent in the path. This
means that we can have {u, p2, v, p4, p5}, or {u, p2, p3, v, p5}, or {u, p2, p3, p4, v} or
lastly {p1, u, p3, v, p5}, and any other configuration is just a rotation of one of the
states given. With this in mind, we can see that the problem can be reduced to
finding a P5 where either u or v is one of the endpoints of the P5, or where neither is
an endpoint. If one of them is an endpoint, then we can determine if such a P5 exists
by executing algorithm 1 with either u or v pre-determined, and looking at their
neighbourhoods. This is done instead of looking over O(m) edges, so we look at the
neighbourhood of two vertices, giving us 2n possible edges. Components and w is
computed in the usual O(m) manner, so an overall runtime of O(nm) is obtained.
The second configuration where neither is an endpoint can be determined by letting
one of the vertices represent v in the P5 uvwxy, then looking at each possible u in
its neighbourhood. For any w we consider, ensure that u and w are not neighbours.
The rest of the algorithm is executed as normal, again giving us a runtime of O(nm)

We combine these efforts into making executing the endpoint test for u and v, and
subsequently performing the other test for u and v. If none of these provide a P5,
the resulting graph must be P5-free, otherwise there is a P5 in the graph.

Lemma 2.12. The decremental P5-detection problem can be solved in time O(nm).

Proof. The proof is the algorithm described in this section.
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Fully dynamic P5-detection

To solve the problem given in definition 2.6, we combine the two lemmas obtained
in the previous sections, that is lemma 2.9 and lemma 2.12. This gives us an overall
algorithm to solve the problem together with theorem 2.13.

Theorem 2.13. The Dynamic P5-detection problem can be solved in time O(nm).

Proof. If an edge is added, apply lemma 2.9 which gives an O(nm) time solution. If
an edge is deleted, apply lemma 2.12 which gives an O(nm) time solution.

We can now apply this theorem whenever we need use a relevant algorithm.

2.2 Generating P5-free graphs

Multiple methods for generating P5-free graphs for later tests were explored. In
an optimal situation, the method should be able to generate any size k graph from
the set of all P5-free graphs of size k, and the probability of it selecting any of the
graphs should be equal. An algorithm which generates uniformly random P5-free
graphs for practical purposes has to be able to do the following: given an integer
n, in time polynomial in n, output a graph G of size n, such that G is P5-free
and for for any P5-free graph H from the space of all P5-free graphs of size n,
P [G = H] = 1

Xn
, where Xn denotes the number of P5-free graphs of size n. An

open question of this paper is if there is a way to generate uniformly random P5-free
graphs with a reasonable amount of efficiency. The methods used in this paper can
not guarantee P [G = H] = 1

Xn
(uniform distribution), the first method can not

guarantee P [G = H] 6= 0 (the sample space contains all possible P5-free graphs),
while the second method of generation can.

Due to the expected runtime of the algorithm, it did not seem necessary to generate
very large graphs and so the methods focused on generating small P5-free graphs.
After implementing a larger portion of the algorithm, certain run-times were quite a
bit lower than expected, so more experimental results from larger graphs would have
been very interesting. Unfortunately the speed of graph generation by the methods
provided here are not fast enough to get a good sized set of large graphs.

Several methods for generating the graphs were considered. As the final algorithm
can run on separate components independently on each other, we are only interested
in connected graphs. The most intuitive way to get P5-free graphs of a given size
with a completely random distribution would be to generate completely random
graphs of the given size, then one would keep the graph if it was a connected P5-
free graph and discard it otherwise. This method depends directly on two things,
the speed at which one can detect if a graph contains a P5 and the ratio of the
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number of graphs of size n to the number of graphs of size n which are P5-free and
connected. As this ratio probably means a large number of misses and time wasted
on each verification, other methods were considered. We know that the probability
of picking a P5-free graph from the set of all random graphs of size n is at best 0.988n.
There are 2(n

2) total labelled graphs of size n. By considering labelled graphs of size
5, we can generate a P5 in 5!

2 different ways, as this is the number of ways to order
the 5 vertices, and as each ordering is unique except the ones which are equivalent
by rotating the graph, we get the previous number. It follows that the probability
p of selecting a not P5-free graph on 5 nodes is 5!/2

2(
5
2) ≈ 0.0586. The probability of a

graph being P5-free is then (1−p) = 0.941. For a graph on n nodes we generalize the
result by placing the nodes into groups of 5, and we end up with n

5 such groups. For
each group, the probability of it being P5-free remains the same as for the graph on
5 nodes, so the probability of all of them being P5-free will be (1−p)n/5 = (1−p)1/5n

and replacing (1− p) with the previously calculated probability and taking the 5th
root we end up with 0.988n as an upper bound on the probability of a graph on at
least 5 nodes being P5-free. As this is exponential we can see that the probability of
a large graph being P5-free is small, e.g. a graph on 100 nodes has a probability of
about 0.3 of being P5-free. But there are many more ways of forming P5s so although
this might be the best case scenario, in reality the chance of a random graph of size
100 being P5-free is probably close to 0. This method was used to generate a few
samples of relatively small graphs (size 10) for some benchmark purposes, but it did
not scale as n increased, without setting the edge density of the G(n, p) graphs to a
very high amount.

The next method under consideration was to start with a graph containing n nodes
and no edges, where n is the desired final graph size. This graph is clearly P5-free,
so one can randomly pick a pair of nodes and add an edge, and if the graph remains
P5-free after this addition, the edge stays, otherwise it is removed. Although this
seems like an intuitive method of making random graphs, it is shown in the next
section why this will not work. A similar idea based on starting with a clique and
removing edges at random was also thought of, but this is also shown to be futile in
the next section.

The two methods which were finally decided on are probably not uniformly random,
but they seem to give good enough results to perform the tests for which the graphs
are needed. The first method described is based on combining the two concepts in
the previous paragraph, by both adding and removing edges and as such it should
be possible to generate all P5-free graphs, although this has not been proven. The
second method used simply starts with any P5-free graph and expands it into a
graph of the desired size by adding nodes one by one, and picking a random edge-set
from the new node into the existing vertices which makes the graph remain P5-free.
As it is possible to pick any P5-free extension of a given graph, one can see that this
is able to generate absolutely all P5-free graphs.
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2.2.1 Random edge generation

With this method, one starts by specifying how large the desired graph should be.
The algorithm then creates a set of vertices with no edges between them. Next the
algorithm will pick a pair of vertices at random and it will either try to add an edge
or remove an edge, but it will only edit the graph if it remains P5-free after the edit
has happened. The pseudo-code is seen in algorithm 3.

Algorithm 3 Random Edge P5-free graph generation, which generates a P5-free
graph by a dynamic algorithm so attempts to both add an remove edges are made
while preserving the P5-free property

1: function randP5free(graphsize, iterations)
2: G← graphsize many nodes
3: for i = 0; i < iterations; i← i+ 1 do
4: j ← Random[0, n)
5: k ← Random[0, n)
6: if j = k then
7: continue
8: end if
9: if FindP5(G ± edge(j,k)) = false then

10: G← G± edge(j, k)
11: end if
12: end for
13: end function

For readability the algorithm is compressed to one evaluation on line 10 where it
originally tries to add an edge if there is none, and tries to remove it if it already
exists. The randomness comes from selecting a pair of vertices to consider with a
probability function.

However this algorithm does not yet have a proof of its ability to generate all possible
graphs of size n, as this would require a proof of connectivity in the graph of P5-free
graphs with edges between graphs differing in 1 edge only. This connectivity was
tested for graphs up to and including 9 vertices, and it did not break connectivity
for those sizes.

Both adding and deleting vertices seem to be necessary to get all graphs as there
are counter-examples showing that only adding or only deleting can not produce all
P5-free graphs from any starting points. For deleting, if you start with an arbitrary
graph and at some point end up with a cycle on 5 nodes, no matter which edge you
delete you will end up with a P5, even though it’s possible to get P5-free graphs of
size 5, for instance by deleting one edge from a P5. This is illustrated in the figure
below.
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Figure 2.14: C5, a graph on 5 nodes where no matter which edge is deleted, a P5 is
produced.

Lemma 2.15. The graph C5 is edge minimal with respect to remaining P5-free.

Proof. Assume the graph G = C5 is not edge minimal. There must exist an edge
e ∈ E(G) such that G−e is P5-free. There are only 5 edges in G and we can see that
the graph obtained from removing a single edge is isomorphic to all other graphs
obtained by removing a single edge. Remove a single edge. The obtained graph is
exactly a P5, contradicting our original assumption, and thus proving G to be edge
minimal.

The counter-example for only adding edges consists of a large amount of P4s that
are connected in such a manner so that no matter which edge is added, a P5 is
produced. This graph is illustrated below.

3

1 2

4 5

6

78

9

Figure 2.16: A graph on 9 nodes where no matter which edge is added, a P5 is
produced. This graph will be referred to as the QuadTri graph (quadruple triangle)

Lemma 2.17. The graph QuadTri is edge maximal with respect to remaining P5-
free.

Proof. It is easy to see that the graph is quite symmetrical, and the only graphs
that can be obtained from adding a single edge will either be equivalent to the
graph obtained by adding the edge (1,7) or the edge (1,8). By adding (1,7), the
P5s (2,1,7,4,5) and (2,1,7,4,6) are produced. By adding (1,8) the P5s (2,1,8,7,4),
(1,8,7,4,5), (1,8,7,4,6) and others are obtained. This proves that the QuadTri graph
is edge maximal.

A test was run on all graphs of size 9 to determine if each P5 graph could be reached
from any other P5-free graph by adding or deleting edges. This test was performed
by first generating all possible P5-free graphs of size 9 up to isomorphism (using
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an external library for isomorphism tests). The test then went on to create a new
graph where all non-isomorphic P5-free graphs of size 9 were represented as vertices
in the graph. In this connectivity graph, an edge was added between two graphs A
and B if it was possible to add an edge to A and get a graph isomorphic to B, or
vice-versa. After doing this for all graphs, a connectivity test was performed. The
test produced only a single component consisting of all graphs, thus all graphs of
size 9 can be transformed into one another by adding or subtracting one edge at a
time.

When we insert the result for Dynamic P5-detection, we get an algorithm with
runtime O(n3m), and get

Lemma 2.18. It is possible to generate a random P5-free graph of size n in time
O(n3m) by adding or subtracting edges at random, as long as the graph remains
P5-free at every step.

Proof. For each random pair of vertices u,v either add or subtract an edge based on
what the current situation is. For each such action, perform the dynamic P5-free
detection algorithm from theorem 2.13, if a P5 appears, reverse the action. This
gives us O(n2) pairs and a O(nm) test for each pair, yielding an overall O(n3m)
algorithm.

Starting with an independent set and attempting to connect the nodes with edges,
it is highly likely that the result will be a relatively sparse graph. It would also be
possible to start with a clique and perform the same algorithm, but this graph would
likely be very dense. As highly dense graphs are unlikely to have the properties we
are looking for (and a few sample runs were performed with dense graphs which
supported this hypothesis), it was decided that only the graphs which started as
independent sets would be created.

2.2.2 Random neighbourhood generation

Another method for generating P5-free graphs was discovered while generating all
possible P5-free graphs up to a certain size. Starting with any P5-free graph of size
n, a P5-free graph of size n+1 can be generated in the following manner: create a
new vertex v, and pick a random selection of vertices from the original graph. After
adding edges between v and the randomly selected vertices, test if the resulting
graph is P5-free, and if it is then return it, otherwise keep looping and trying other
options. Save configurations already attempted to avoid wasting a large amount of
time retesting configurations. The algorithm used is seen in Algorithm 4.
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Algorithm 4 Random expansion P5-free graph generation algorithm, which when
given a seed graph G is able to expand the graph-size by a single node, and do so
in a way which can generate absolutely any P5-free graph of the relevant size. An
additional function which expands a graph to any size desired by using the first
function as a subroutine is also provided

1: function randExtendP5(seedGraph G)
2: G← G ∪ u
3: upperBound← 2|G−1|

4: Tried
5: while |Tried| ≤ upperBound do
6: neigh = rand[0, upperBound]
7: if neigh ∈ Tried then
8: continue
9: end if

10: Tried← Tried ∪ neigh
11: position i in the binary representation of neigh represents vertex i in G,

add edge (u,i) to G if i = 1, don’t add edge otherwise.
12: if isP5free(G) then
13: return G
14: else
15: remove the edges that were added.
16: end if
17: end while
18: end function
19: function randExtendP5(targetSize, seedGraph G)
20: while |G| ≤ targetSize do
21: G← randExtendP5(G)
22: end while
23: return G
24: end function

Representing the nodes in the graph as a binary sequence, where the index of each
position in the binary sequence corresponds to the node with id=index, gives a very
useful and practical algorithm for looping through the possible neighbourhoods of
the new node u. In practice, the speed of the algorithm is improved, as checking
if a configuration has already been attempted becomes much quicker, simply by
doing a lookup in a hash-table for the relevant binary sequence. This reveals if it
already has been tried in constant time. This is done rather than storing a set of
integers representing the vertices, and then for each new trial one would have to
make a lookup which would take time O(n · k) where n is the number of potential
neighbourhoods already tested and k is the size of the neighbourhood which needs to
be tested. If one insisted on using this method (in case of special requirements of the
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class representing nodes), it would be possible to improve it’s speed significantly by
using a prefix-tree(Trie) to find out if the neighbourhood had already been tested.
Using a prefix-tree would yield an algorithm for lookup which runs in time O(k)
if it is implemented correctly. The problem of checking if a sequence has already
been attempted could be eliminated completely. This could be done by taking the
set of all possible neighbourhoods and giving it some random ordering, then the
neighbourhoods could be tested one by one, and this avoids the chance of testing
the same neighbourhood twice completely. However, problems arise with this idea
as the number of possible neighbourhoods is O(2n) and even though the graphs in
general are somewhat small, this would still be guaranteed to add a large amount of
time to the algorithms pre-compute step. If we were willing to sacrifice randomness,
it is also possible to create a function which generates every value in the given
range by starting on a random number and then generating the remainder in some
deterministic order.

A way to completely represent a graph of size ≤ 11 as a long was also used for some
tests. The format was simply to save the lower triangle of the graphs adjacency
matrix as a binary sequence, and for graphs smaller than 12 nodes, this fit exactly
inside a long. This was later extended using something capable of storing larger
values, known as BigInteger. This format lends itself naturally to many applications,
and one which was especially convenient was to use this encoding as a way to store
large sets of generated graphs. This allowed printing the generated graphs to file and
reading them back in a very efficient manner. Operations involving comparisons of
2 graphs can easily get more speed in practice due to how the processor is normally
able to manipulate 64 bits at a time within the registry, and therefore the run-time
on many normally linear functions can be divided by 64. This was originally used
in practice to test connectivity (for the set of all graphs, not just non-isomorphic) in
the graph of graphs where two nodes shared an edge if the graphs they represented
only differed by a single edge. Using the binary representation of the graphs and
considering that the graphs were of the same size, one could simply do an XOR
operation on the bit-representations and then count the number of bits set to 1 in
the output bit-string. If exactly one bit was set to 1, then the two graphs differed by
exactly 1 edge and an edge was added between the nodes representing the graphs.

It would also be possible to generate larger graphs by the generate all graphs method,
but the available tool for testing graph isomorphism did not run at a speed that
would allow it, even though there might be better algorithms there did not seem to
be any other known isomorphism testers for Java. The isomorphism tester seemed
to work by checking isomorphism against every graph in the set of non-isomorphic
graphs in some low polynomial time. Even for size 9 graphs, this took several hours
to generate the complete list, and for size 10 graphs it might take weeks. If it was
possible to check graph-isomorphisms against a set in a time not bounded by the
size of the set (which might be possible, given the right data-structures), each check
would probably be bounded in time by checking for P5s instead of the isomorphism
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test.

Some interesting conclusions can be drawn by investigating the set of graphs gen-
erated by the algorithm that generates all non-isomorphic graphs for different sizes
of i. The result of generating all non-isomorphic graphs of sizes i=5 through i=9
yielded the following result for the sizes of the different sets:

i Size
5 33
6 136
7 685
8 4550
9 38123

Figure 2.19: A table showing the relationship between the size of graphs i and the
number of non-isomorphic P5-free graphs of that size

The general trend seems to be multiplying the previous size with approximately 10
to get the number of graphs in the next set. If we keep multiplying by 10 we get the
following predictions for values 10 to 12:

i Size
10 381230
11 3812300
12 38123000

Figure 2.20: A table showing the predicted relationship between the size of graphs
i and the number of non-isomorphic P5-free graphs of that size

Given that the P5-free test takes O(m2) ≤ O(n4) we can predict that to generate
all graphs of size 12, it would take 124 · 38123000 = 790, 518, 528, 000 operations
(assuming no overhead, which is probably far from the truth) which approaches
what is feasible to do on a computer in a reasonable amount of time. So even if
graph isomorphism was much faster, runtime of the P5-free test, combined with the
large size of results implies that it is not reasonable to generate much larger graphs
than 9 either way.

An important consideration for the randomized extender algorithm is the uniformity
of the results, that is, will it pick P5-free graphs of size n from the pool of all P5-
free graphs of size n with an even distribution. By considering a single expansion
iteration of the algorithm this problem is easier to study. Assume the algorithm is
given the set of all possible P5-free graphs of size k. We know that the set of P5-free
graphs of size k+1 it generates is equal to the set generated by starting with graphs
of size k, such that the graphs are not restricted to being P5-free. This is quite easy
to see as a graph that contains a P5 can not have it removed by adding a new node
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to the graph, because inducing the graph by the nodes in the P5 will give exactly
the same edges independently of how the rest of the graph is modified. This shows
that we can generate all possible P5-free graphs of size k+1, so next we will consider
the chances of getting a graph of size k+1 with the same probability as just selecting
one at random from a precomputed set of all possible size k+1 P5-free graphs. To do
this, we will consider the set of labelled graphs on k+1 nodes. If the algorithm was
truly random, our chance of getting any one of the labelled graphs on k+1 nodes
would be 1

Xk+1
, but by considering a branching tree from all size k graphs into k+1

graphs, we realize that the different degrees of the nodes representing size k graphs
will make a uniform distribution impossible. This tree is illustrated in figure 2.21.

Figure 2.21: Illustration of the branching tree formed by generating larger graphs

We see that some graphs of size k can only branch into very few size k+1 graphs,
while others can branch into many more. We are always guaranteed to be able
to branch into 2 new graphs, one where the added node is universal (has an edge
to every existing node) or where it is independent of the existing graph. We have
a 1

4 ·
1
2 = 1

8 probability of picking node a, while node b is only selected with a
probability 1

4 ·
1
7 = 1

28 . It is hard to analyse exact probabilities, but we are at least
able to say that the distribution will not be uniform.

The runtime for this algorithm is potentially exponential as it may only have the
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two options of a universal or an independent node for expanding the graph while
keeping it P5-free, but as this is unlikely and we randomly try nodes, it seems to be
able to expand the graph size relatively fast, at least up until n exceeds size 30. It
would be possible to make this algorithm practically faster by finding a dynamic P5
detection algorithm for adding a single node with runtime O(nm). We almost have
this, but we are missing an O(nm) time algorithm to determine if a given node w is
in a P5 of the form uvwxy, so this is stated as an open problem.
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Chapter 3

Minimal Triangulations

Triangulation is the process of making any given graph G into a chordal graph, which
is defined as a graph in which every cycle of length ≥ 4 has a chord (an edge within
the cycle). Turning any graph into a chordal graph by the triangulation method,
involves adding a set of edges called a fill-set (will be referred to as F), filling the
gaps in too long cycles with chords. The triangulation of G = (V(G),E(G)) yields a
new graph H = (V(H),E(H)) where V (G) = V (H) and E(H) = E(G)∪F . A chordal
graph H, G ⊆ H is a called a triangulation of G, and H is a minimal triangulation
if no proper sub-graph of H is a triangulation of G. A formal definition is given in
definition 3.1.

Definition 3.1. A minimal triangulation H of a graph G is a chordal graph with
the same set of nodes as G, but if G is not chordal, H also contains a fill-set of edges
which turn G into a chordal graph. For H to be minimal, no chordal graph H ′ exist
such that G ⊆ H ′ ⊂ H.

From a paper by Rose et al[16], we get an another useful property of a minimal
triangulation. A triangulation H of G is said to be a minimal triangulation if there
is no e ∈ E(H) such that H − e is still a chordal.

Chordal graphs always have a perfect elimination ordering (referred to as p.e.o.),
which is a sequence of vertices of the graph, such that any vertex in the sequence
forms a clique with its neighbours that come later in the sequence.

3.1 Maximum Cardinality Search

Calculating a minimal triangulation of a given graph G can be done in O(nm)
time by an algorithm known as MCS-M [1]. MCS-M is based on MCS ( Maximum
cardinality search) which is a commonly used O(n + m) algorithm for computing
a p.e.o. for a given chordal graph H. MCS computes a p.e.o. by first assigning all
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vertices weight 0. At each step it picks the vertex v with highest weight (which has
not been picked before), and if multiple nodes have the same weight our version
of the algorithm will proceed to pick the one with lowest id, although in general
the algorithm can be executed on an unlabelled graph where any node of maximum
weight is selected. It then increases the weight of all unmarked (nodes which have
not been previously picked) neighbours of v by 1, marks v and repeats the process.
The p.e.o. is constructed in backwards order, so the first vertex selected by the
algorithm becomes the last one in the p.e.o. and the last selected comes first. An
ordering δ of the vertices in graph G is known as an MCS ordering, if there is a way
of assigning id’s to the vertices of G, such that the MCS algorithm executed on G
outputs p.e.o. δ.

MCS-M is an algorithm based on MCS which runs on non-chordal graphs. When
MCS-M is executed on graph G, in addition to computing a perfect elimination
ordering of G, the MCS-M algorithm will also compute a minimal fill-set. The
minimal fill-set can then be used to create a minimal triangulation. The p.e.o.
computed by MCS-M will only be a perfect elimination ordering in the minimal
triangulation created by MCS-M. It runs in the same way as MCS, but at the step
where MCS increases the weight of N(v) by 1, MCS-M also considers all unmarked
nodes u for which there exists a path (v, x1, ..., xi, u) and the weight of u is greater
than the weight of any other node xi along the path. For each such u, the edge (u,v)
is added to F and the weight of u is increased by 1. At completion of execution the
algorithm has produced a fill-set F which is used to create a minimal triangulation,
and the order in which the vertices were picked will form a p.e.o. of H, exactly like
in MCS.

The algorithm for MCS-M in pseudo-code is given in Algorithm 5, and it uses a
sub-function called Minimum bottleneck paths, described in the next section.
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Algorithm 5 MCS-M, an algorithm which given as input a graph G computes a
minimal fill-set which when added to G yields a minimal triangulation H of G. If
G is already a chordal graph then the fill-set is empty, but a perfect elimination
ordering is still computed.

1: function MCS-M(Graph G)
2: initialize peo
3: initialize weightof to 0 for all vertices
4: initialize unNumbered with all vertices of G
5: for i = |V (G)|; i ≥ 0; i← i− 1 do
6: initialize S
7: Vertex k ← maximum weight vertex in unNumbered
8: for all u : (N(k) ∩ unNumbered) do
9: S ← S ∪ u

10: end for
11: for all u : Mbp(k) do
12: S ← S ∪ u
13: end for
14: for all u : S do
15: weightof(u)← weightof(u) + 1
16: unNumbered← unNumbered \ u
17: end for
18: peo← peo ∪ k
19: end for
20: end function

3.1.1 Minimum bottleneck paths

An important part of the algorithm for MCS-M is to find paths between vertices
such that at every step of the path from v to u, (v, x1, ..., xi, u) the weight of u is
always strictly greater than any xi on the path. To find these paths an algorithm
called Minimum bottleneck path is used, and will henceforth be referred to as m.b.p.
The algorithm m.b.p. starts by selecting any vertex v, then it proceeds to explore
the remainder of the graph in a breadth-first manner, and at each node it keeps
two entries, the first entry keeps track of the minimum weight path which allows
one to reach the node from v and the second entry is the maximum of the nodes
own weight and the minimum weight path (the first entry). Upon completion, the
algorithm proceeds to search through all the nodes to retrieve nodes whose own
weight exceeds the weight of the minimum weight path which reaches them, and
those nodes are added to the set S which is used in MCS-M. A pseudo-code version
of the m.b.p. algorithm is seen in algorithm 6.
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Algorithm 6 Minimum bottleneck paths
1: function Mbp(List unNumbered, vertex v, vertex-weights w)
2: initialize set S
3: initialize Queue q
4: initialize map weightTo
5: initialize map weightIncluding
6: for all V ertice u : N(v) do
7: S.add(u)
8: end for
9: q.add(v, 0) . place v with weight 0 into queue

10: while !q.isEmpty() do
11: (vertex k, weight kW) ← q.pop()
12: if kW ≥ weightTo(k) OR k /∈ unNumbered then
13: continue
14: end if
15: weightTo(k)← kW
16: weightIncluding(k)←Max(kW,w(k))
17: for all vertex u : N(k) do
18: q.add(u,weightIncluding(k)
19: end for
20: end while
21: for all vertex u : w(u) ≥ weightTo(u) do
22: S ← S ∪ u
23: end for
24: return S
25: end function

Minimum bottleneck paths, also known as widest paths problem is a common prob-
lem, found in many real life scenarios. The most common version of the problem
uses weighted edges, and finds the path between two vertices which maximises the
size of the smallest edge. A common illustration of the problem is to find the set of
pipes that allow the largest amount of water to go between two points at once. Our
version of the problem is node-weighted instead of edge-weighted, and for our appli-
cation (minimal triangulation) we start with a graph where all nodes have weight
0. The version given here will use time O(n logn + m) for finding all the values
from a single source, but it is possible to get an O(n + m) algorithm [18] as we
are only interested in integer weighted and undirected graphs but as this will not
have any impact on the overall runtime of the independent set algorithm, it is not
implemented.

Necessary for our method of finding maximal cliques is the following result, found
in theorem 3.2. The result is quite apparent from the algorithm descriptions, but
we were unable to find a proof in the literature, so one is given here.
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Theorem 3.2. MCS-M executed on graph G outputs a minimal triangulation H and
a p.e.o. δ1, MCS executed on graph H outputs p.e.o. δ2, δ1 = δ2.

Proof. As both MCS-M and MCS at each stage adds the highest weight vertex to
the p.e.o.(lowest id if several vertices have same weight), it is enough to show that
at all nodes in V(G) have the same weight at the same step of execution of MCS-M
and MCS.

Step 0: At start of execution all vertices have the same weight. Both MCS-M and
MCS will choose node with id=0, then increase weight of the neighbourhood of the
vertex by 1.

Step k: MCS-M and MCS will have selected the highest weight vertex vk at this step.
MCS-M will increase the weight of the neighbourhood of vk, and ∀u ∈ V (G), u /∈
N(vk) such that mbp(vk, u) ≤ w(u), it will increase their weight by 1 and then add
edge (vk, u) to E(H). When MCS is run on H from vk, the neighbourhood of vk is the
same as NG(vk) + the fill edges that was added by MCS-M at this step, as MCS-M
only adds edges between unlabelled vertices, no additional edges are added between
vk and any other node after it has been processed. MCS will therefore increase the
weights of exactly the same set of vertices that MCS-M increased weight on. So at
every step of execution MCS and MCS-M will pick the same node and give other
nodes the same weight, thus they create the same p.e.o.

3.2 Listing Maximal Cliques in a Minimal Triangulation

After producing a minimal triangulation of the given graph, we are interested in
finding all the maximal cliques in this minimal triangulation. We use these to fill up
the list of potential maximal cliques of the original graph (discussed in the "Potential
Maximal Cliques" chapter). Luckily we can exploit some useful properties of the way
we create the minimal triangulations of graphs to obtain a fast algorithm which lists
all the maximal cliques.

Using Theorem 3.2 together with lemma 8 from a paper by Blair and Peyton, re-
stated here as proposition 3.3, there is a simple method for producing all maximal
cliques of a chordal graph in linear time.

Proposition 3.3. [2] Let v1, v2, ..., vn be a perfect elimination ordering obtained by
applying the maximum cardinality search algorithm to a connected chordal graph G.
Then the list of maximal cliques in G contains precisely the following sets: {v1} ∪
madj(v1), together with any set {vi+1} ∪madj(vi+1), 1 ≤ i ≤ n− 1, for which
|N(vi) ∩ Li+1| ≤ |N(vi+1) ∩ Li+2|

In the above proposition the term madj(v) is the set of neighbours of v that are
also placed later in the perfect elimination ordering. Li are the vertices from i up
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to n in the p.e.o. , more specifically Li = vi, vi + 1, ..., vn. The vertex set produced
by madj(vi) is equal to the set produced by taking N(vi) ∩ Li+1 as both produce
vertices that are neighbours of vi and which occur after vi in the p.e.o. and both
sets exclude vi.

Given that the p.e.o. produced by MCS-M is equal to the one produced by MCS, to
get all maximal cliques of G in triangulation H, one can simply pick the sets specified
by Proposition 3.3. Start by selecting the first vertex in the p.e.o. together with
its neighbours, as they by definition have to occur later in the ordering. Proceed
to select {vi+1} ∪ madj(vi+1) for any vertex v which does not produce a smaller
madj(v) than the previous vertex in the ordering. This is to ensure that each clique
is maximal. This procedure will yield an exhaustive list of maximal cliques.
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Chapter 4

Potential Maximal Cliques

Referring back to proposition 2.3 we see that potential maximal cliques are a crucial
part of the polynomial time algorithm for independent set in P5-free graphs which
was implemented in this thesis. The main result comes from restricting the number
of potential maximal cliques in a P5-free graphs to some size polynomial in n, and
showing that this list of potential maximal cliques satisfy the requirements of the
algorithm. It is therefore important to have efficient methods for working with
potential maximal cliques, both for recognizing and generating them. In this section
the methods used to verify if a set of vertices is a potential maximal clique in a
specific graph are discussed.

A potential maximal clique (often shortened to p.m.c.) of graph G is a set S of
vertices such that there exists a minimal triangulation H of G, in which S is a
maximal clique.

From a paper by Bouchitté and Todinca[4] we get the proposition 4.1 regarding the
structure of a p.m.c.

Proposition 4.1. Let Ω ⊆ V be a set of vertices of the graph G. Then Ω is a
potential maximal clique of G if and only if:

1. G \ Ω has no full component associated to Ω, i.e. for every S ∈ ∆(Ω) we have
S ⊂ Ω, and

2. the graph on the vertex set Ω obtained from G[Ω] by completing each S ∈ ∆(Ω)
into a clique, is a complete graph. In other words, every pair of non-adjacent vertices
of Ω is in some S ∈ ∆(Ω).

Note that ∆(Ω) denotes the set of minimal separators of G contained in Ω. The set
of minimal separators can be generated by the logic of the following lemma.

Lemma 4.2. Let G be a graph, Ω a p.m.c. The minimal separators of Ω in G are:
∆(Ω) = {N(C) : C ∈ ConnectedComponents(G \ Ω)}

39



Proof. For each connected component C, the neighbourhood of C: N(C), is exactly
the subset S of vertices in Ω that must be removed to separate C from the rest of
the graph. If a single node is removed from S, C has an edge to this vertex and so
C is not separated from the rest of the graph, thus S is minimal.

A full component with regards to some vertex set Ω is a component for which the
neighbourhood of the component is Ω, in other words:

Definition 4.3. Vertex set C is a full component to Ω if N(C) = Ω.

These properties naturally lead to an algorithm which can test whether or not a
vertex set V is a p.m.c. in a graph G.

4.1 Verify P.M.C.

From our definitions, we create an algorithm which receives a graph and a vertex
set, and either outputs true if the vertex set is a p.m.c. in the graph, or false if it is
not.

Proposition 4.4. There exists an algorithm to determine if a vertex set Ω ⊆ V (G)
is a potential maximal clique of a graph G, and it runs in time O(nm)

The p.m.c. verification algorithm can be seen in Algorithm 7.
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Algorithm 7 An algorithm to test whether or not vertex set V is a potential
maximal clique in the given graph G.
function verifyPMC(Graph G, Vertex-set V)

if !isMinimal(G,V ) AND isCompleteNM(G,V ) then
return true;

else
return false;

end if
end function
function isMinimal(Graph G, Vertex-set V)

comps ← connected components of G \ V
for all c : comps do

neighbours← N(c), c ∈ V
if |neighbours| = |V | then

return true
end if

end for
return false

end function
function isCompleteNM(Graph G, Vertex-set V)

initialize adjacency matrix V mat of size |V |
comps ← connected components of G \ V
minSeps ← N(c) for each c : comps
for all seps : minSeps do

add edges between each pair in s
end for
if Vmat yields complete graph then

return true
else

return false
end if

end function

In complexity theory there is a plethora of different models which represents com-
puters. Some of these models are closely related to real computers used today, while
others are much more unlikely to ever exist. By considering an algorithm in the
different models of computation, the analysis will yield a variation of run-times.
This can help to focus on different parts of the algorithm that could be improved
by future computers, or which are not as relevant to the runtime as others.

Turing machines, which are models of computation based on a simple tape which can
be read and written to, together with some extra functionality, provide a framework
to analyse algorithms. By expressing an algorithm in a format that is natural for a
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human, it is possible to create a Turing machine from the given algorithm, and the
two formats are said to be equivalent. Using this common framework, we reach the
following lemma.

Lemma 4.5. There exists an algorithm to determine if a vertex set Ω ⊆ V (G) is a
potential maximal clique of a graph G, and it runs in time n2 c

k and in Big-O O(n2c)
but since c is bounded by n, the actual upper bound is O(n3).

In Lemma 4.5, the runtime uses symbols c and k. c is the number of minimal
separators in Ω while k is the size of the CPU registry. It is necessary that c

k ≥ 1 as
it does not make sense for an operation to take less than a single instruction cycle,
so if the result is smaller than 1, it must be replaced by exactly 1. This version of
the algorithm should run faster in practice than the O(nm) algorithm, and so it is
used instead. As c is bounded by n, where n is the number of nodes in the graph,
and these nodes are represented by a binary string which has length c (one bit in the
binary string of a node represents one minimal separator), if the graph is somewhat
small the algorithm is very efficient. As most of the graphs dealt with in this thesis
are smaller than 100, the c

k component of the runtime can mostly be ignored, giving
us an O(n2) time algorithm for graphs that fit within the registry.

The improved runtime is due to an improvement in the speed of the isComplete
function. The changed method looks as follows.

Algorithm 8 A method to test whether completing minimal separators of V in G
will make V a complete
function isCompleteCK(Graph G, Vertex-set V)

for all i : V do
si ← 0

end for
minSepList ← minimal separators of V in G
for all minSep : minSepList do

for all j : minSep do
set position k in sj to 0 if vj is not in minimal separator k, 1 otherwise.

end for
end for
for all i : V do

for all j : V do
if i 6= j AND i and j not neighbours in G AND si, sj share no minimal

separators then
return false

end if
end for

end for
end function
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Algorithm 7 with isComplete method from Algorithm 8 runs in O(n2 c
k ) by the fol-

lowing reasoning: For every pair of vertices O(n2) perform a binary AND operation
of the associated binary strings. Lengthwise the binary string is at most the number
of minimal separators, which again is equal to the number of connected components
in the graph G \ V . An AND operation of two numbers is normally a constant
time operation. By using Java and representing the binary string with BigInteger,
taking an AND of two BigIntegers simply splits the string into chunks of size long,
which in modern processors are 64-bit, and then executes the AND operation on
each pair. Thus the maximum number of operations necessary to take an AND of
two BigIntegers on a 64-bit processor is c

64 and generally on a processor with size
k registry we use O( c

k ) operations. As the AND operation is done for each pair of
vertices, the total runtime comes to O(n2 c

k ).

By considering the RAM model of computation, more specifically the Transdichoto-
mous model proposed by Fredman and Willard[7], and even more specifically the
Word RAM model, some interesting results can be obtained. The relevant parts of
this ram model for the isComplete check is that the word size (register size) is re-
lated to the problem input, so the registers are of size ≥ log2n. Common operations
are also considered to be executed in constant time, which is relevant for the AND
function used in the algorithm, in real computers this should also hold true for AND
operations between two numbers that each fit inside a register.

Definition 4.6. Transdichotomous RAM model is a model of computation which is
a variant of the random access machine where the word size is assumed to match
the problem size. Usually word size ≥ log2n.

Definition 4.7. Word RAM model is an extension of the Transdichotomous RAM
model which adds O(1) time operations that are common in "C-style" languages.
Examples of common operations are +,−, ·, |,&.

When the isComplete algorithm from Algorithm 8 is reconsidered in the Word RAM
model, some different results can be obtained.

Lemma 4.8. There exists an algorithm to determine if a vertex set Ω ⊆ V (G) is
a potential maximal clique of a graph G, and it runs in time n2 c

log2n (c is assumed
to be larger than log2n and if it’s not, c

log2n should be replaced by 1) and in Big-O
notation O( n3

log2n).

Proof. Given a graph G and a vertex set V, to test if V is a p.m.c. in G do the
following: List minimal separators of G \ V in time O(n + m). A binary string
associating each vertex with the minimal separators they are found in is constructed
in time O(n2), and has length at most n. For each pair of vertices (n2) perform
an AND operation of their binary strings. In the Word RAM model, each binary
string will take at most n

log2n registers, and the AND operation can be performed in
constant time for each pair of registers. n

log2n ≥ 1 as otherwise it would be possible
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to perform a computer operation in less than 1 instruction cycle, which does not
make sense on a regular computer (maybe quantum computers?). So for each pair
of vertices, run the and operation, and this yields a total runtime of O( n3

log2n).

We briefly mention here that in the analysis of the method to generate the list Π,
the paper provides an algorithm with a total runtime of O(|∆|n6m), as first a list
of size O(|∆|n4) is produced, and for each element on the list, an algorithm with
runtime O(n2m) is performed. The O(n2m) algorithm gets its bound by performing
the p.m.c. verification algorithm O(n) times. If we analyse the algorithm within the
bounds of the Word RAM model, together with our new version of the verify p.m.c.
algorithm, we get an O( n4

log2(n)) algorithm which we perform the same number of

times as before, giving us a total of O( |∆|n
8

log2(n)). In practice this should be faster, as
the Word RAM model holds true for any graph of size less than O(264) on a modern
computer. And so we get a slight improvement in our overall runtime for generating
Π.
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Chapter 5

Algorithms for computing
Independent set

The algorithm discussed in this chapter is the same algorithm created and explained
in the paper by Lokshtanov et al.[12].

The main algorithm which this paper considers is an algorithm which receives a
graph G, a list Π of potential maximal cliques of G, and through the use of dy-
namic programming is able to find the largest independent set in G. It is able to
do so for both the weighted and unweighted versions of the problem. The weighted
optimization version of the problem is defined as follows.

Definition 5.1 (Weighted independent set problem). Given a node-weighted graph
G, pick the set S of vertices which maximizes the sum of weights of the vertices in
S, with the restriction that no pair of vertices in S have an edge between them.

The basis of the independent set algorithm is a list of potential maximal cliques
of the graph G. We call this list Π, and it is a subset of all potential maximal
cliques of G. Π is filled with potential maximal cliques which are entirely within the
closed neighbourhood of independent vertices u and v. It also contains the potential
maximal cliques which only contain vertices outside NG[u, v]. The procedure to
generate this list is described in the following section.

5.1 Generating Π

Π is made by taking the union of two smaller lists, known as Π1 and Π2, which
both contain sets of p.m.c.’s. The final list that the paper is aiming for is therefore
defined as:

Definition 5.2. Π = Π1 ∪Π2
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5.1.1 creating Π1

The first of the two lists that we are creating, Π1, is a list of maximal cliques of
some particular triangulations of the graph G. The definition is given below.

Definition 5.3. For each pair of non-adjacent vertices (u,v) in G, let Guv be de-
fined as the graph obtained by turning δG(u) and δG(v) into cliques. Let Huv be a
triangulation of Guv for which no edges are added to u or v (also known as u,v-good).

Π1 =
⋃

u,v∈G

MaximalCliques(Huv[NG[u, v]])

So the minimal triangulation Huv can be generated by simply running MCS-M on
Guv and we can guarantee that Huv is u,v-good by the simple property that no node
can form a cycle of length ≥ 4 with only its immediate neighbourhood, so therefore
any such cycle must go through neighbours which have outside neighbours, but in
our case we already made these nodes into a clique, and so any cycle that goes
through u or v and 2 of their neighbours, already has a chord. All maximal cliques
of the triangulated graph are then generated by the method described earlier in this
thesis. All maximal cliques are evaluated, and they are discarded if they contain
vertices from outside NG[u, v]. This leaves the final list Π1.

Lemma 5.4. |Π1| ≤ n3 and Π1 can be computed in time O(n3m)

Proof. The size bound comes from the fact that there are n2 possible choices for u
and v, and for each chordal graph Huv, the number of maximal cliques is bounded
by n [5]. The runtime is derived from having the selection of n2 possible pairs u,v,
together with the runtime of O(nm) to calculate the minimal triangulation, yielding
an algorithm with runtime O(n3m).

The runtime is a slight improvement over the O(n6) algorithm given in the pa-
per by Loksthanov et al. Considering that the triangulation has to stay u,v-good,
they assumed that an algorithm with runtime O(n4) was necessary for computing
such a minimal triangulation. As the graph to be triangulated is of the form Guv,
any minimal triangulation will necessarily be u,v-good and so the faster minimal
triangulation algorithm with runtime O(nm) can be used instead.

A triangulation H of G is said to be I-good if, given some independent set I in G,
the triangulation does not add edges between vertices in I.

The result in lemma 5.5 was produced during the writing of this thesis and was
used to achieve some speed-up for the algorithm which generates Π1, compared to
the runtime in the paper. However this does not affect the size of Π1 or the overall
runtime of the independent set algorithm.

Lemma 5.5. Given a graph Guv where u and v are independent vertices and δG(u), δG(v)
are cliques, any minimal triangulation Huv of Guv is (u,v)-good.
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Proof. Assume Huv is a minimal triangulation of Guv which is not (u,v)-good, so
either an edge was added to u or to v. It is enough to look at one of the vertices and
generalize the result. Assume that an edge (u,x) was added between u and some
vertex x. As δG(u) is a clique and any cycle involving u must go through vertices
in δG(u), for any such cycle there is already a chord between the vertices in the
neighbourhood of u, and so removing the edge that was added to u lets the graph
remain chordal. As Huv − (u, x) is still a chordal graph and a triangulation of Guv,
we contradict the original assumption that Huv was a minimal triangulation. Thus
showing that no minimal triangulations add an edge to u or v.

The pseudo-code for this algorithm is given in algorithm 9.

Algorithm 9 A method which generates the list Π1, which is the list of all potential
maximal cliques of u,v-good triangulations of some graph G, such that the p.m.c.s
are subsets of N [u, v].
function generatePi1(Graph G)

Solution S
for i = 0; i < n; i = i+ 1 do

for j = i+ 1; j < n; j = j + 1 do
if i = j OR j ∈ neigh(i) then

continue
end if
Hij ←MinimalTriangulationOf(Gij)
for c : maximalCliquesOf(Hij) do

if c ⊆ NG[i, j] then
S ← S ∪ c

end if
end for

end for
end for
return S

end function

Π1 will generate all maximal cliques of I-good minimal triangulations which can
be covered by the neighbourhood of 2 independent vertices u and v. As such, to
get a complete list of maximal cliques that can be generated from I-good minimal
triangulations, the next step is to generate all maximal cliques which are NOT
covered by the neighbourhood of 2 independent vertices. This list will be called Π2.
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5.1.2 creating ∆2

To generate Π2, a precursor set of vertex sets called ∆2 is needed. ∆2 is defined so
that for any maximal clique Ω of an I-good minimal triangulation H, such that Ω is
not a subset of NG[u, v] for any choice of u, v ∈ I, it will satisfy ∆(Ω) ⊆ ∆2, where
∆(Ω) is the list of minimal separators in Ω.

∆2 is defined by definition 5.6, from the paper by Lokshstanov et al.

Definition 5.6. ∆2 is a list of sets of vertices such that for each ordered triple
(u,v,w) of vertices from G

• (u,v,w) are independent vertices in G

• Cw is the connected component of G \NG[u, v] containing w

• Ĉu is the connected component of G \NG[Cw] containing u

we put NG(Ĉu) ∈ ∆2.

An illustration of how an object in ∆2 looks is seen in figure 5.7.
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Figure 5.7: Graph split into components used in finding vertex set for ∆2. In
this example u and v are in the same component when the graph is divided up
by NG[Cw]. The output is NG(Ĉu) which is a subset in both this example and in
general of NG[Cw].

In the illustration figure 5.7, u and v are found in the same component so Ĉu is equal
to NG[u, v] \NG(Ĉu). It is also possible for them to be in separate components as
seen in figure 5.8.
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Figure 5.8: Graph split into components used in finding vertex set for ∆2. In
this example u and v are in different components when the graph is divided up by
NG[Cw]. The output is NG(Ĉu).

Creating an object in ∆2 consists of picking any two independent vertices u and
v in the graph G, splitting up the graph into at most n components by remov-
ing NG[u, v] from G, then removing components one by one and inspecting the
component containing u in the resulting graph. Finally the neighbourhood of the
component containing u in the original graph is selected.

So the definition and the derived algorithm to calculate ∆2 is very simple. The
algorithm can be executed in time O(n4m), and the size of the output has the
following property.

Lemma 5.9. |∆2| ≤ n3.

Proof. Each set in ∆2 is uniquely defined by three vertices u, v and w and so it can
not possibly be larger than n3.

The size of ∆2 is carried on into the size of the list Π2 and so it is a good place to
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focus efforts for a possibility of reducing the final runtime. Results regarding this
will be discussed in the results chapter.

5.1.3 creating Π2

Finally we need to consider Π2 which is the theoretically largest list of p.m.c.s and
also the most complicated to generate. Π2 is defined so that it contains all p.m.c.s
in G that are not a subset of NG[u, v] where u and v are independent vertices (it can
also contain p.m.c.s within some NG[u, v], but for any p.m.c. which do not satisfy
this property, the p.m.c. will be found in Π2). As these were already generated in
Π1, we know that Π will cover all p.m.c.s from I-good triangulations of G.

From the paper by Lokshtanov et al. we obtain lemma 5.10.

Lemma 5.10. There is an algorithm that given as input a P5-free graph G and
a family ∆2 of vertex sets in G, outputs in time O(|∆2|n6m) the family {Ω ∈
Ω(G) : ∆(Ω) ⊆ ∆}. The size of the family output by the algorithm is no more
than O(2|∆2|n4).

In the lemma {Ω ∈ Ω(G) : ∆(Ω) ⊆ ∆2} by Ω(G) we mean the list of p.m.c.s of
I-good triangulations of G and by ∆(Ω) we mean the list of minimal separators
within the p.m.c. Ω. In other words, we are looking for p.m.c.s where every minimal
separator in the p.m.c. is found on the list ∆2. For the proof this this lemma you
are referred to the paper [12].

To generate the list Π2 we need to generate some some additional lists Πi
A and Πi

B.
We can then construct each p.m.c. Ω ∈ Π2 by using Ωi ∈ Πi

A ∪ Πi
B as a base and

expanding it through an iterative process. Finally we test if ∆(Ω) ⊆ ∆2 and if this
is true we can add Ω to the list Π2.

We will now consider each of the steps necessary to generate Π2 individually.

As a pre-computation step, a sub-graph of G is produced for each i from 0 to n. The
sub graph Gi is produced by the following definition.

Definition 5.11. Gi is the sub-graph of G which is induced by the vertices with ids
from 0 up to and including n. In other words Gi = G[0, ..., i].

As this is only done once and is relatively quick, the naive method is used and we
do not need to consider the runtime as long as it is sensible.

Our first step is to compute a list of lists which we call ∆i, that is used in the
generation of the other lists we produce as part of making Π2. For each S ∈ ∆2
and for each i ≤ n compute all components of Gi \ S, then put the neighbourhood
of each of those components into ∆i. This will give the minimal separators of S in
the graph Gi that we will later use to generate Π2. The formal definition we use is
found in definition 5.12;

51



Definition 5.12. ∀i ≤ n∀S ∈ ∆2 let CC = C1, ..., Cj be all the components of
Gi \ S, then {X ∈ ∆i : X = NGi(Ck ∈ CC)}.

Now that we have done all the necessary set-up, we can move on to produce lists
Πi

A and Πi
B. We start by defining Πi

A.

Definition 5.13. ∀i ≤ n : Πi
A = {(Si ∪ {v}) ∈ Πi : Si ∈ ∆i, v ∈ Vi}

In the above definition Vi is the set of vertices with indices from 0 up to and including
i, in other words v ∈ Vi ⇔ v ∈ [0, ..., i]. So to generate ΠA we must do it for one
value of i, 0 ≤ i ≤ n at a time. Start with the lowest value of i, proceed through the
list ∆i in any order and at each step pick some set S ∈ ∆i. For each v ∈ Vi, v /∈ S
proceed create a new set for each combination of S and v and add this new set S ∪ v
to Πi

A. Once this has been done exhaustively, the list ΠA will contain a sub-list for
each value of i which will again contain all of the sets generated which are associated
with that value of i, and ΠA is then completed.

We move on to the next list which we name ΠB and which consists of vertex sets
which attempts to expand the vertex sets in ∆i in a different manner than ΠA. We
define ΠB as follows:

Definition 5.14. ∀i ≤ n loop through Si ∈ ∆i, v ∈ Si, Ci ∈ CC(Gi \ Si) to get
triplets of the form (Si, v, Ci). Then Si ∪ (NGi(v) ∩ Ci) ∈ Πi

B.

CC(G \ S) is shorthand for the list of connected components obtained by removing
vertex set S from graph G. ΠB consists of sets S of ∆i which are expanded by
splitting the graph into components C0, ..., Ci by taking G\S, then proceeds to loop
through vertices in S and testing the overlap of the neighbourhood of each vertex
with each of the components, ending up with NG(v)∩Ci where Ci is some component
obtained as mentioned previously. This is then added to S, and the result is added
to the ΠB. ΠB contains a sub-list for each i, which is related to the ∆i from which S
was obtained. Pseudo-code which explains how to generate ΠB is given in algorithm
10.
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Algorithm 10 Amethod for generating ΠB, which is a list used as part of generating
Π2

function generatePiB(Graph G, List Delta)
Solution ΠB

for i = 0; i < n; i = i+ 1 do
for all Si ∈ ∆i do

for all Ci ∈ CC(Si) do
for all v : Si do

Πi
B ← Πi

B ∪ (Si ∪ (NGi(v) ∩ Ci))
end for

end for
end for

end for
return ΠB

end function

For some value i, we call the vertex sets in Πi
A and Πi

B for seed potential maximal
cliques of Gi as these are what we will use to produce proper potential maximal
cliques of G. Let the set of seed potential maximal cliques of Gi be found in the
list Ωi, and define Ωi = Πi

A ∪ Πi
B. We can now proceed to use the seed potential

maximal cliques to create the potential maximal cliques using lemma 5.15 from a
paper by Bouchitté and Todinca.

Lemma 5.15 ([3]). ∀i ≤ n,Ωi ∈ Gi there is exactly one p.m.c. of G which satisfies
Ωi = Ω ∩ Vi. Given Ωi, Ω can be computed in time O(n2m).

The algorithm used to reconstruct the potential maximal clique from a seed potential
maximal clique is seen in algorithm 11.

Algorithm 11 Function which constructs a valid p.m.c. in G from a seed p.m.c.,
which is a vertex set that is a valid p.m.c. in some sub-graph of G
function reconstructPMC(set seedPMC, int start)

Solution S ← seedPMC
for i = start+ 1; i < n; i+ + do

if !isPMC(Gi, S) then
S ← S ∪ vi

end if
end for
return S

end function

The algorithm is given a set of vertices seedPMC which is a p.m.c. in Gstart. At each
step of execution we may or may not alter seedPMC. If we add a new vertex vi+1
to Gi there are two possible outcomes, seedPMC will remain a p.m.c. in Gi ∪ vi+1
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or it does not. If it is still a p.m.c. then we can keep expanding the graph while
keeping seedPMC the same, while if it is no longer a p.m.c. then by the definition
of a p.m.c. the new node must be a full component to seedPMC, and so our only
option is to add the new node to seedPMC to obtain a p.m.c. in Gi ∪ vi+1. This
process is repeated until i = (n− 1) (for a zero-indexed graph) and we have the full
graph. Once we have the full graph, seedPMC after the modification steps described
will be a p.m.c. in G.

We can now move on to the final step, which is to remove the potential maximal
cliques generated so far which do not satisfy the requirement of lemma 5.10. This
implies that for each p.m.c. Ω ∈ Π2 it is necessary that ∆(Ω) ⊆ ∆2. In other
words: each minimal separator of a p.m.c. Ω such that Ω ∈ Π2 must be found in
the list ∆2. The number of p.m.c.s which needs to go through the filtering process
will be O(|∆2|n4) as for each value of i, |Πi

A∪Πi
B| ≤ |∆2|n3 and there are n possible

values of i. For each p.m.c. Ω of the |∆2|n4 p.m.c.s we need to consider n possible
components from G \ Ω, this means that we need to perform the test s ∈ ∆2 for
each set s ∈ ∆(Ω) and in total there are |∆2|n5 such sets. The naive algorithm
to perform this check would compare set s with each set in ∆2 and only accept if
it finds a q ∈ ∆2 such that s = q (irrespective of the order of the elements in the
set). We would end up with an algorithm with runtime |∆2|2n5 if we did it this
way, and this has the potential to increase the overall runtime of the independent
set algorithm. Therefore we need a better algorithm, and the solution is to use a
Trie.

Definition 5.16. A Trie, also known as a prefix-tree, is a data-structure with the
shape of a tree, which is used for fast lookups of membership. The root node r
branches into one node for each possible value which an element in the Trie can
have in the relevant position, and the branching continues in the same manner all
the way to the leafs. By following some path from the root to a leaf, the sequence
obtained is a member of the set of elements used to construct the Trie.

Depending on how the Trie is constructed we get different amounts of speed-up
over the naive version. The Trie has to consist of every element in ∆2 and if one
sequence in ∆2 is a subset of another sequence, the Trie must indicate where each
sequence ends, as we need to test for exact equality. So essentially what we need is
a data-structure with ability to add a new sequence to the tree, stop-mark where
the sequence ends if the last element in the sequence does not end up as a leaf in
the tree, we must also be able to test whether the Trie contains a given sequence,
where the sequence must end on either a stop-mark or on a leaf.

To actually construct a Trie we need two classes, a Trie class and a Trienode class.
A Trienode will contain the symbol of the node, together with an array of Trienodes
of the same size as the number of symbols possible. Each entry in the Trienode
array will point to null until a child is added to the Trienode. The Trie class will
contain one root node which will point to its children, and thus allow traversing of
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the tree. Add sequence and lookup sequence will also be performed from the root
node by methods in the Trie class. For the Trie constructed from ∆2, the symbols
are the set of values which members of ∆2 can contain, and this is the same as the
integers from 0 to n as ∆2 contains sets of vertices of the graph of size n.

Before we add a set of ∆2 to the Trie, it is necessary to sort the set so we get an
increasing sequence. As ∆2 only contains integers in the range from 0 to n, we
represent ∆2 as a 2-dimensional matrix of size |∆2| rows by n columns. We need to
sort the set found in each row, but do not need to consider the rows in comparison
to each other. This is done with algorithm 12.

Algorithm 12 Function which sorts each row in a 2D matrix of m entries, where
each entry has value at most n
function sort2D(List<List<Integer» matrix)

List<List<Integer» tmpS
for i = 0; i < m; i = i+ 1 do

for j = 0; j < matrix[m].size(); j = j + 1 do
tmpS[matrix[i][j]]← tmpS[matrix[i][j]] ∪ i

end for
end for
List<List<Integer» S
for i = 0; i < n; i = i+ 1 do

for j = 0; j < tmpS[i].size(); j = j + 1 do
S[tmpS[i][j]]← S[matrix[i][j]] ∪ i

end for
end for
return S

end function

The sorting algorithm creates a new 2D matrix tmpS, which is actually a list of lists,
so it is scalable. We proceed to loop through the input matrix, one row at a time.
For each element x in row i of the original matrix, we remember that x occurred in
row i by adding i to row x of tmpS. So tmpS ends up with n rows, and in each row
x the rows of the original matrix containing x are listed. Finally we create matrix
S which is a recreation of the original matrix but in a sorted form. This is done by
starting at row 0 of tmpS, then for each row in the original matrix which contained
0 we add 0 as the first element in the corresponding row of the sorted matrix S. This
is repeated until the whole array is sorted, and this takes time O(mn) with m being
the number of rows in the matrix and n is the largest element in the input matrix.
So for our usage this leads to a runtime of |∆2|n.

Finally we add each sorted sequence of ∆2 to the Trie, and we end up with a tree in
which we can make fast lookups. To test if a sequence x0, x1, ..., xn is contained in
the Trie, we ask the root node of the Trie if it has a child x0, as the list of children
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is of size n and x0 is an integer, we can make an instant lookup. In the code we
would perform the following routine if(root.children[x0] 6= null), and if this is true
we retrieve the child and continue this procedure for each element in the sequence.
If we reach a leaf before the whole sequence has been found then the sequence is not
a member of ∆2, and if the sequence ended in a non-leaf node which does not have
a stop-mark then it is not in ∆2, or if the the query for a child yields null then the
sequence is not an element of ∆2. As lookups are done in constant time, and the
maximum length of a sequence is n (as ∆2 contains subsets of the vertex set of the
graph) we can see that each lookup is done in time O(n).

It might be possible to do faster lookups (constant time) by creating some hash-
function which takes a sorted set of integers and produces some unique integer for
each set, but this hash-table would require nn space and as n grows larger this is
quite infeasible.

After filtering the p.m.c.s which do not contain minimal separators in ∆2, we end
up with the list we wanted, Π2. The last list, Π is made by combining Π1 and Π2,
so Π = Π1 ∪Π2.

5.2 Polynomial time algorithm for Independent Set on
P5-free graphs

Proposition 2.3 mentions the algorithm which forms the basis of this thesis. In the
previous chapters, all the components that are necessary for making an algorithm
to generate a list Π of potential maximal cliques have been explained and analysed
to a necessary depth.

We can now proceed to discuss the actual algorithm which is used in producing a
maximum independent set from the given graph together with the list Π.

From the input graph G, we now have a list Π of p.m.c.s of G. From lemma 16 in
the paper[12], we know that this list has the following property. For every inclusion
maximal independent set I it is possible to build a tree decomposition of G where
each bag is an element in Π and every bag of the tree decomposition contains at most
one element from I. Our aim now becomes making an algorithm which constructs
such a tree decomposition of G for a maximum size independent set I. This will
allow us to find the maximum size independent set of G.

We have two possible algorithms which give the same solution. One slow algorithm
with a total runtime of O(|Π|2n4m), and a fast algorithm which which is the one
described in 2.3, giving us runtime O(|Π|n5m). Both papers are described in the
paper by Fomin and Villanger, but only the slow one has been proved to work for
P5-free graphs in the intended way, although a proof for the fast one follows very
closely from a proof to the slow algorithm, and we did not find any discrepancy in
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the the size of the maximum independent set the two algorithms output. We will
now give a high level sketch of the two algorithms.

Slow algorithm

To solve the independent set problem given the list Π of p.m.c.s, we pick a p.m.c.
and find the largest independent set in a tree-decomposition in which the given
p.m.c. is a bag. To do this we need to create a lookup table M, together with an
algorithm used to create the lookup table.

Our function M needs to be a recursion which accepts three parameters, p.m.c.
Ω ∈ Π, a vertex v ∈ Ω ∪ e where e signifies the empty element (in practice, this can
be denoted by giving v a special value like -1), and the component C ∈ CC(G \ Ω)
which is a component obtained by removing Ω from the graph G. The function M
will return the size of the maximum independent set I in Ω ∪ C where Ω contains
v, and so Ω ∩ I = v. The solution has a few more requirements related to the tree-
decomposition, but we refer the reader to the paper [12] for details. The unweighted
version of the algorithm which we end up with is seen in algorithm 13.

In the following algorithm, let |x| = 0 if x = e, 1 otherwise.

Algorithm 13 Function which returns the largest independent set by selecting
vertex sets which together form a tree-decomposition of the graph G, where each
bag is a p.m.c. from the list Π, and I contains at most one vertex from each bag
function M(Ω, x, C)

max
if M[Ω,x,C] 6= null then

return M[Ω,x,C]
end if
for all Ω′ ∈ Π : Ω′ ⊆ Ω ∪ C,N(C) ⊆ Ω′,Ω′ ∩ C 6= 0 do

for all x′ ∈ Ω′ : Ω′ ∩ x = Ω ∩ x′, x′ /∈ NG(x) do
sum← maximum(|x′| − |x|, 0)
for all C ′ ∈ CC(G \ Ω′ : C ′ ⊆ C do

sum← sum+ (M(Ω′, x′, C ′)− |x′|)
end for
if sum > max then

max← sum
end if

end for
end for
max← max+ |x|

end function
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Dynamic programming requires a table structure for lookup, so we use memoization.
The table M can have its values accessed by specifying x, the set Ω and the set C.
For each set, we need to be able to do efficient lookup by e.g. having a hash-table.

As each bag Ω ∈ Π of the tree decomposition is a separator of the graph, it is
sufficient to maximize across each section of the tree at a time and then sum together
the value obtained. To obtain the maximum independent set in G, we run algorithm
13 for each Ω ∈ Π and x ∈ Ω∪ e, and maximize across the runs. The result will give
us the size of the largest independent set in G, and to obtain the actual independent
set some standard back-tracking is used.

An illustration of the algorithm can be seen in figure 5.17.

Figure 5.17: The algorithm iterates over potential maximal cliques, and potential
subset x of I. In the original graph, two maximal cliques can overlap in either 0 or
1 members of the maximum Independent set I. In this example, the two potential
maximal cliques Ω and Ω′ overlap in the vertex x.

As each potential maximal clique Ω is a bag in the tree-decomposition of G, by
definition Ω will separate the graph. We therefore look at its components C and
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try to chain together p.m.c.s, with either 1 or 0 vertices x in each p.m.c. which will
form the basis of I. Eventually we will have explored every possibility for selecting
p.m.c.s from Π, and end up with the optimal result.

For more details see the paper [12].

Fast algorithm

We also implement a faster algorithm, which was briefly mentioned in the paper.
This algorithm has a theoretical runtime of O(|Π|n5m), which is a big improvement
over the slow algorithm. The key to this algorithm is to consider the minimal
separators ∆ within each Ω.

For each Ω ∈ Π, compute the list of minimal separators in Ω denoted as ∆(Ω), and
take the union over all Ω to form the list S. Then create a graph R, where each node
represents a vertex set. Each node will be equal to either Ω or a set s ∈ S. Add an
edge between vertex a and b if a ∈ Π, b ∈ S, b ∈ ∆(a). We now need two DP tables,
T1 and T2.

The method T1 takes the same parameters as M: vertex set Ω ∈ Π, node x ∈ Ω ∪ e
and set C ∈ CC(G\Ω). It proceeds to calculate a minimal separator Q in Ω which is
the neighbourhood of C. Next it calls T2 with parameters Q, C, x, where everything
but Q retains the value it had at time of input. The method T2 retrieves the node q
associated with Q in the graph R (which connects minimal separators and p.m.c.s).
Each neighbour of q which is also a subset of Q ∪ C are added to a new list QuC.
Each element in QuC is a p.m.c., and so we look at them one at a time, calculate the
components of the graph when the p.m.c. is removed, and call T1 with the triplet
of values, where the first value is an element of QuC, the second value is one of the
components, and the third value is a vertex in the p.m.c. The sum functions are the
same as in algorithm 13.

To maximize across the graph, pre-compute the list S, then maximize over all values
of Ω ∈ Π together with the potential values of x and C, as previously described.

For more details see the paper of Fomin and Villanger [6].
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Chapter 6

Results

In this chapter we aim to give a thorough overview of the experimental results,
together with any theoretical conclusions that we were able to draw from the exper-
iments, or that were found otherwise and which are relevant to the runtime of the
algorithm. We use the symbols ∆2 and ∆ interchangeably in this section, and both
refer to the set ∆2, described earlier.

To ensure correctness of the independent set algorithms result, the size of output
for each random test-graph was compared with the output of another Independent
set algorithm which was implemented by another person as part of the Grapher
package. As there were no discrepancies in results, it is reasonably assumed that
the algorithm is correct.

The run-times calculated are the sum of times for the actual minimum independent
set algorithm to perform its task, summed with the time to pre-compute the list
Π, according to the specifications discussed in this thesis. We use two different
independent-set algorithms, the "slow" one with time bound O(|Π|2n4m) ≤ O(n18m)
and a "fast" algorithm with time bound O(|Π|n5m) ≤ O(n12m).

For each data-set we consider the average data trend, and the maximum. The results
may be skewed based on the methods used to generate the graphs, but by having
different methods and comparing them, it is possible to have some overview of how
far from average the results are. If there is a family of graphs which pushes the sizes
of the objects close to the theoretical limit, then their random appearance may also
skew the maximum results from what another more average, random sample would
contain.

Three sets of graphs were generated, the first set is a set of random uniformly dis-
tributed graphs of size 10 over the given edge probability ( P5-free G(n,p) graphs),
with a sample of 1000 of each graph and each of the probabilities 0.2 - 0.9 in 0.1 in-
crements. The second set consists of graphs generated by the random edge method,
but one of the edges were added as a universal vertex in the start, as otherwise it
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would be nearly impossible to get a connected graph of a reasonable size. Graphs in
the third set are random neighbourhood generated graphs. The random neighbour-
hood graphs of graph-size 9 include all non-isomorphic, connected graphs of size 9,
while the remainder are simply randomly generated graphs, potentially isomorphic
to other graphs in the set of graphs with the given size (as the sample size is small
compared to the total number of graphs, it is not very likely that many of the graphs
are isomorphic).

6.1 Effects of edge density

Based on the method of generation and the size of the graph, the density of edges
in the graph will change. To get some idea of how large the effects of edge density
on the size of the desired objects are, a small experiment was performed. For small
graphs (size ≤ 10), it is possible to generate completely random graphs and filter out
the P5-free graphs in a reasonable amount of time. Equipped with this knowledge,
a test-set was generated by creating a completely random graph with a given edge
probability, and accepting it into the test-set if the graph was a single component
and P5-free. A collection of graphs were generated for each probability increment of
0.1, from 0.2 to 0.9. The plot of results of the algorithm executed on these graphs
can be seen in figure 6.1.
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Figure 6.1: A plot displaying the relationship between the edge probability of the
random graphs and the size of the objects generated. For each edge probability,
we provide the average size of the objects, and the maximum object size across all
graphs of the given edge probability. The striped plots overlap another plot, so to
determine which plot it is, look in the legend for which dataset a striped plot is used.

The figure was generated from a sample size of 1000 randomly generated graphs
of each probability value. We see that ∆2 and Π2 (which is highly dependent on
the size of ∆2) decreases quickly as the density of the graph grows larger, this is
likely due to that fewer unique components of G \ N [u, v] can be generated in a
dense graph as the neighbourhood grows large. Average size of Π follows Π1 very
closely, and even though Π2 which is strongly dependent on ∆2 starts to decrease at
approximately 0.5, Π keeps growing. As Π1 is the number of p.m.c.s which can be
found in the neighbourhood of two vertices, this number naturally increases as the
average neighbourhood size grows larger.

Π2 is much smaller than its theoretical bound in this case, and we will attribute this
to the small size of the graphs. As Π2 is dependent on ∆2, and ∆2 requires triplets
of independent nodes, it is hard to create a P5-free graph of a small size where there
are many such triplets, and the basic cases where you can find many triplets (like
star graphs) will generally only be able to create a few unique components based
on the specification of ∆2. Due to the time taken for generating these completely
random graphs, it was not possible (in a reasonable amount of time) to make this
experiment for graphs larger than size 10, and so we consider these results to be
more useful as an indicator of Π and Π1 size, than Π2 and ∆.

We also studied the effect of the edge density on the run-times of the maximum
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independent set algorithms. The results can be seen in figure 6.2.

Figure 6.2: A graph displaying the relationship between the edge probability of the
random graphs and the runtimes of the independent set algorithm. We plot the
result of executing the two algorithms described earlier, the "slow"5.2 algorithm and
the "fast"5.2 algorithm. For each of the algorithms we give the average runtime at
each edge probability, and the maximum runtime of any graph of the given edge
probability.

The run-times are the total run-times including both generating the list Π and
performing the maximum independent set algorithm on the resulting list and graph.
We can see that the slow algorithm is more dependent on the size of Π than the
fast algorithm, as can be expected from their theoretical run-times. The general
size trend seems to follow the same trend as the size of Π for both the slow and fast
algorithm, but as the time used for generating Π increases with the number of size 2
or more independent sets, we see that the less dense graphs require more time. The
runtimes are given in seconds · 10−3 (milliseconds) for easier readability.

Using these results, we may be able to compare our findings for the other graphs
with these benchmarks to have some insight into which edge density the graphs skew
towards.

6.2 Size of Π and ∆2-lists

In this section we will present results regarding the size of list Π produced by the
algorithm previously described. We will discuss the results and attempt to gain
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some insight into limitations of the algorithm, together with some properties which
can improve the algorithm.

In figure 6.3 we see a list of data produced by the algorithm on sample inputs. The
sample sizes are large enough and likely random enough to give a good impression
of the output on an average P5-free graph of the given size.

Figure 6.3: A plot displaying the relationship between the graph size and the size
of the lists Π and ∆. We have two different methods of generating graphs, the
"Edge" method (random edge generation) and the "Neighbour" method (random
neighbourhood generation). For each method, we plot the average value of Π and
∆, and we plot the maximum value across all our sample graphs of the given size of
the same two objects.

In this plot we see the relationship between graph sizes and the sizes of the lists Π
and ∆, output by the algorithm. Plots include data from executing the algorithm
on graphs generated by the random edge generator and the random neighbourhood
generator. The max size of the list ∆2 follows the size of the graph very closely,
generally being equal to or 1 below the graph size. ∆2s average size seems to grow
at the same rate as graph size, although it’s value is somewhat lower. Comparing
the plots for Π average between edge and neighbourhood generated graphs, it seems
to both have a consistently higher value as well as a higher growth rate in the
neighbourhood graphs. If we refer back to figure 6.1 which shows object counts
of size 10 graphs for different edge probabilities, we can assume that the random
edge graphs are closer to the extreme values (very high of very low density) than
the random neighbourhood graphs. Considering the size of Π2 average in figure
6.5 we see that the random edge generated graphs has a lower value than random
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neighbourhood generated graphs, connecting this with the other information it seems
likely that random edge generation produces high density graphs, while random
neighbourhood are medium to high density. To investigate this further we generated
the average and maximum edge densities for each set of graphs we use and we list
these results in figure 6.4.

Graph size Edge Average Edge Max Neighbour Average Neighbour Max
9 0.52 0.75 0.52 0.9
12 0.55 0.78 0.53 0.72
14 0.52 0.76 0.55 0.74
15 • • 0.56 0.73
20 • • 0.6 0.75
21 0.36 0.67 • •
25 • • 0.63 0.76
30 0.26 0.48 0.66 0.78
40 0.2 0.32 • •
50 0.16 0.21 • •

Figure 6.4: A table of edge densities across the different graphs used for our tests.
The density is related to the number of edges in the graph, and the probability for
there to be an edge between two randomly selected nodes. For the graph sizes for
which we only generated graphs with one of the methods, a black circle is placed as
a filler for the other method.

In this table we see the average and maximum edge densities for the graphs gen-
erated by the random edge method, denoted "Edge" and the graphs generated by
the random neighbourhood method, denoted "Neighbour". Counter to our assump-
tion, we see that the random Edge generated graphs are actually of lower densities,
and as the graph size grows larger, the density tends towards a lower value. This
can be explained by the large influence adding one edge has in a large graph which
already has many other edges, as the graph grows larger adding a single edge has
the potential to create more P5s. The reason for our assumption being erroneous
is likely due to Π2 not being able to express its full size on the size 10 graphs used
in our comparison figure. As discussed earlier, this figure was applied due to the
difficulty of generating fully random P5-free graphs of any larger size. The random
neighbourhood generation method produces graphs of medium density, but as the
graph size increases, the trends seems to tend towards more dense graphs. It would
be interesting to see how this trend continues, but the method for generating graphs
of this form is too slow to create a reasonable sample size of larger graphs. The
random Edge generator method starts from an independent set and fills in edges,
therefore it is also likely to become more sparse as graph size increases, but as we
assume the set of allP5-free graphs to be connected, we could also have started with
cliques and executed the same algorithm. By starting with cliques, the output graph
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would be connected with a high likelihood, and the edge density would likely tend
towards 1, instead of 0 as the current situation is.

Figure 6.5: plots displaying the relationship between graph size and the size of the
lists Π1 and Π2 for the two methods of generating graphs, together with plots for
the average and maximum object size at each graph size.

In figure 6.5 the neighbourhood method produces graphs with potentially much
larger sizes than the edge method. However, the sizes of the lists are far below the
theoretical bound. The size of Π1 and Π2 are closely correlated, and for the edge
method we see that their averages overlap. This is because Π2 generates a large
amount of the same p.m.c.s as Π1, and the number of unique p.m.c.s in Π2 is very
low. The largest difference between Π1 and Π2 size can be found for the size 30
random neighbourhood graphs, and the average is only approximately 2, the max
difference is 13.

In conclusion, we can say that the list Π is far below the theoretical bound, even at
its largest. The maximum value found was 188 for size 30 graphs, while the bound
is O(|∆2|n4) = O(n7) which for a size 30 graph would be 21,870,000,000, but as we
never found a ∆2 larger than n, we could try to bound it to O(n5) which would
equal 24,300,000 but this is still far beyond the size of the output.

6.3 Poly-time Independent set algorithm

Running the two algorithms on some sample graphs the results obtained are found
in the table in the following figure.
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Figure 6.6: Plot displaying the relationship between graph size and runtime for the
two methods of generating graphs and the average and highest possible time taken
for a given n-value

The figure contains plots for both the fast and the slow polynomial time maximum
independent set algorithms. The slow algorithm is more sensitive to the size of the
list Π, while the fast one is slightly more dependent on the graph size. Considering
the plot for Neighbourhood slow max, the runtime grows very large for size 30 graphs,
which likely correlates with the max size Π list, of size 188. Considering that the
time needed to generate the list Π is relatively high compared to the time taken for
executing the minimal independent set algorithm on the finished list, the difference
in runtime between the slow and the fast algorithm seems small even though the fast
algorithm would be much faster if given Π as part of the input. A quick comparison
was done with the exponential algorithm which was used as a benchmark for the size
of the maximum independent set, as expected it had a lower runtime until n started
approaching 25-30, in which case the polynomial time algorithms were faster, the
runtime data from this does not add much value to the rest of the discussion so they
are not included.

If we want to relate the practical run-time of the algorithm to the theoretical runtime,
we can relate the runtime to the number of operations performed. We do this by
measuring the computers Instructions Per Second (IPS), and then relating this back
to the time taken, to get an approximate number of execution steps. We measure
IPS by performing some very simple task (like summing numbers) a large number
of times and measuring the time taken. For the testing-rig a sum operation was
performed 1011 times, with a number so that the final result fit into a long (64-bit).
This took time 45027477813 ns (nano-seconds), dividing number of instructions by
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time taken in seconds (45.027...) we get the number of instructions per second. In
our case this number is 2.22 · 109, which matches closely to the 2.3GHz from the
i7-3610QM CPU used. To obtain the number of instructions which the algorithm
uses, we take the runtime in seconds and multiply it by the number of instructions.
Finally we want to relate this back to some nk, and as we know n, we just solve for
nk = runtime, giving us k = logn(runtime).

n k fast runtime fast (s · 10−3) k slow runtime slow (s · 10−3)
9 8.55 64 8.63 78
12 7.97 179 8.25 356
14 7.49 174 7.63 254
15 7.24 148 7.38 215
20 7.00 591 7.08 727
25 6.70 1068 6.89 1951
30 6.50 1807 6.79 4763

Figure 6.7: A presentation of the relationship between k in nk and the maximum
runtime, for all random neighbourhood graphs. The table contains values for both
the slow and the fast independent set algorithm

In the table, we notice that as n grows larger, k seems to grow smaller. For the graphs
of size 9, we are considering absolutely all non-isomorphic connected graphs of the
given size, thus the given answer is the absolutely worst possible case among all P5-
free graphs of size 9. The reason for k to be decreasing may be related to the smaller
sample size compared to the total number of graphs as n grows larger, as without a
very powerful computer it would be hard to compute results for much larger sample
sizes. Even though we have samples for larger graphs for the random Edge graphs,
k is lower than for the random neighbourhood graphs, which corresponds well with
the results for object count that we have observed in the graphs so far.

There are three theoretical run-times which are meaningful for comparing the results.
There is the runtime for generating the list Π which is given as O(|∆2|n6m), the
runtime of the "slow" maximum independent set algorithm which is O(|Π|2n4m)
and the "fast" algorithm with time bound O(|Π|n5m). As we sum the runtime
for generating Π together with the runtime of the algorithm, we end up with an
O(|∆2|n6m+ |Π|2n4m) algorithm for the slow algorithm and O(|∆2|n6m+ |Π|n5m)
for the fast version. For the slow algorithm, the worst case scenario obtained is
a O(n8.63) ≈ O(n9) algorithm, which is far better than the O(n18m) we get by
replacing Π and ∆2 by their upper-bounded values. Based on our data, we have
yet to find a ∆2 larger than O(n) and we have not seen any Π which seemed larger
than O(n2) (for 30 we have max(|Π|) = 188 which could be 302

c where c is some
constant). Inserting for these results which are based on our data, we get O(n7m)
to generate Π, O(n8m) for the slow algorithm and O(n7m+n6m) = O(n7m) for the
fast algorithm. This fits our data very well, and it is possible that this is a lower
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bound of the current algorithm. The fast maximum independent set algorithm may
be able to give a total O(n6m) algorithm if a better algorithm for generating Π is
found, even though |Π| remains unchanged.
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Chapter 7

Conclusion

In this thesis we have explained each part necessary for producing a maximum inde-
pendent set of a P5-free graph in polynomial time. We have provided descriptions of
how an actual implementation is done, and we included means of generating P5-free
graphs for any future testing.

The graph which maximizes the runtime may not be in the set of graphs generated,
perhaps it is in its own family of graphs. We were however able to provide a method
which has the possibility of generating absolutely any P5-free graph of a given size. If
such a family of graphs exists, it is likely to be very small as none of our results have
provided any data supporting the existence of such a graph family. It is difficult to
analyse whether the method by which we generate graphs impose some structure on
the graphs, which make them less likely to maximise the runtime of the algorithm.
We have not been able to expose any such structure from our investigations of the
data.

We implemented an algorithm to detect whether a graph contains a P5. Because we
generate graphs by performing single modification steps at a time, we also devised a
new dynamic P5-free graph recognition algorithm with better runtime for each mod-
ification step than the runtime of the static recognition algorithm of Hoàng et al.[10].
To the best of our knowledge, this is the first such algorithm. We implemented the
dynamic P5-free recognition algorithm and used it in our tools for generating P5-free
graphs.

We discovered a new algorithm to determine whether a vertex set is a potential
maximal clique in a given graph. This algorithm has runtime O( n3

log2(n)) in the RAM
model of computation was discovered. For practical purposes on graphs of the sizes
we considered (up to 50), our implementation of this algorithm performed better
than the previously known O(nm) algorithm.

We provided a large set of results, both in terms of objects generated and in terms
of runtime of the algorithms. Even though we were not able to provide a better
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theoretical upper bound of |Π|, it now seems highly likely that |Π| is much smaller
than the upper bound of O(n7) by Lokshtanov et al. Moreover the list ∆2 has yet
to exceed size O(n), and it might be possible to bound it to O(n). Assuming that
|∆2| ≤ O(n2), we also end up with |Π| ≤ n6, and inserting this into the algorithm
we have runtime O(n11m) as a much more likely upper bound, even though it is
probably even lower based on the experimental data.

From our experimental results, the list Π has yet to exceed size O(n2), and of the
two sub-lists of Π, Π1 seems to be larger, as this approaches size O(n2) while Π2
does not appear to be larger than some constant multiplied by n, in other words
from the data it is possible that |Π2| ≤ O(n).

We also performed experimental tests to determine the upper bound on the runtime,
and we concluded with us being unable to get a runtime higher than O(n9) for the
whole algorithm (generating Π and finding the maximum independent set).

The maximum independent set algorithm seems fast enough for it to be viably
executed on most P5-free graphs of size at least up to 50.

All code produced during this thesis can be found at the relevant links in the ap-
pendix, together with some test-files used and the code used to generate test graphs.

7.1 Open problems

Some interesting questions that arose during the production of this thesis have been
mentioned in the sections in which they are relevant, but for a quick overview they
are reproduced here.

• Is there a better algorithm than O(m2) for detecting if a graph contains a P5?

• For the dynamic P5-recognition problem, can we do better than O(nm) for
edge addition and deletion? Can we obtain a O(nm) algorithm for the node
addition problem (almost possible at present, only missing a way to determine
if G contains a P5 in which the node w is given and w is in the middle of the
P5 of the form uvwxy, in time O(nm))?

• Can one generate random P5-free graphs of a given size n, such that the graphs
are uniformly distributed over the space of all possible P5-free graphs of size
n, and that is reasonably fast? (must be much better than just generating a
random graph and discarding if not P5-free).

• Can we prove NP-Completeness for independent set on some Pk-free graph? If
so, what is the lowest Pk for which independent set is NP-Complete? From a
more recent paper by Lokshtanov et al.[13], it is known that Independent set
can be solved on P6-free graphs in time O(nlog2(n)) so it is likely that k must
be at least 7.
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• What is the lowest upper bound on |Π| using the methods described?

• How many unique components can be generated in a size n P5-free graph
by splitting the graph using two independent vertices u,v, and their closed
neighbourhood N [u, v]. What effect will this have on |∆2|?

7.2 Other applications

For any graph class that has a restricted number of potential maximal cliques, it is
possible to use the same algorithm to produce the maximum independent set size.
Some graph classes with very small lists of potential maximal cliques are chordal
graphs and trees which have at most O(n) maximal cliques. Further Circle graphs,
Circular arc graphs and weakly chordal graphs have O(nO(1)) potential maximal
cliques, for these the algorithms which we implemented run in polynomial time.
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Appendix A

The code produced during this project can be found on Github. A push will be
made at the same time as this thesis is delivered so it is possible to revisit the code,
but generally the code might become edited over time, even after delivering this
thesis. Code for random neighbourhood graph generation, together with other tools
to analyse the structures considered can be found at

https://github.com/mitresthen/P5freeGraphGen

The main algorithm, together with any helper classes added are found at

https://github.com/mitresthen/PolyP5freeIndependentSet

Please contact Håvard Haug for any further information regarding the code.
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