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Abstract 
 

 
Over the past decade, the province of British Columbia has experienced 

undesirable rates of overweight and obesity among its residents.  These rates result in 

challenges for both overweight and obese individuals, as well as for health care 

practitioners and policy makers. The objective of the thesis was to look beyond the 

generally accepted influencers of weight (diet and exercise) and develop greater insight 

into the causal relationships among factors that influence one’s weight and well-being. 

System dynamics methodology was applied to construct a simulation model that 

investigates the underlying system structure of such relationships.  The model serves as a 

dynamic hypothesis addressing how feedbacks between individual and environmental 

factors impede one’s ability to maintain a healthy weight. The simulation model serves to 

aid policy makers in improving their understanding of the current system and to aid in the 

identification of policy leverage points to halt or reverse the obesity trend. 
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1. Problem Description 

1.1 Current State In Canada 
 

In 2005, over half of Canadian adults self-reported being overweight or obese 

according to their body mass index (BMI) (1).  One’s BMI is an indicator of body 

adiposity and is calculated by dividing one’s weight (in kilograms) by their height (in 

meters squared). One is considered to be overweight if their BMI value is greater than 

25.0, and obese if their BMI value is greater than 30.0 (2).  From the statistics, adiposity 

was higher in Canadian men, with 62% of men reported as being overweight or obese, 

while 45% of women reported being overweight or obese (3).  This translates to almost 

fourteen million Canadians overweight or obese. Although the percentage of overweight 

Canadians has been relatively stable from 2000-2011, the rates of obese individuals have 

been rising over the same time frame (4).  Twells et al. (4) found the percentage of 

individuals in the normal weight category over time has been steadily decreasing, with 

increases seen in all three classes of obesity, in particular the highest obesity class (class 

III). The trend has been seen across the different provinces and territories. There have 

been differences seen in the trends among Canadian men and women.  The rate of obesity 

from 2007 to 2012 among Canadian males has been stable and shown signs of a declining 

trend.  The prevalence of overweight and obesity among Canadian youths aged 12-17 

does not show a significant change between 2005 and 2012. The trends for Canadian 

females do not indicate the same stabilization.  For Canadian females, there has been a 

steady increase in the prevalence of obesity since 2003 (7). 
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Figure 1: Body Mass Index: Average Combined Canadian Men and Women (108) (109) 

 

Figure 1 highlights the trend seen in the BMI among Canadian men and women over 

time.  Over the past decade, we see the average BMI increasing, while still staying within 

the range of overweight.  

This thesis focuses on adiposity and public policies in the province of British 

Columbia (BC). Figure 1 depicts the trend of BMI among BC residents from 2001-2011.  

 

 
Figure 2: Body Mass Index: British Columbia (1)(3)(5) 

  

While data from the Canadian Community Health Survey (CCHS) 2007/2008 

cycle shows that BC residents had the lowest rate obesity in comparison across the 

provinces, there are still wide differences within the province indicating further room for 
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improvement (6).   Recent evidence shows there has been no statistically significant 

change in the rate of overweight among the BC population between 2003 and 2012 (7). 

Although recent data highlights a slow down or decline in the rates of overweight and 

obesity among some target groups, the current and future implications of the current state 

allow for many improvements to be made with regards to the weight of Canadians. 

1.2 Impact of Overweight and Obesity  
 

The consequences of obesity can be felt at both an individual and a societal level.  This 

This results in challenges for overweight and obese individuals, as well as health care 

practitioners and policy makers. Obesity itself increases the risk of many chronic health 

conditions, including cardiovascular disease, metabolic diseases such as type 2 diabetes, 

mental health conditions (8) and some forms of cancer including esophageal, gastric, 

pancreatic, and bowel cancers.  The World Health Organization states that after tobacco 

use, overweight and obesity are the most known avoidable causes of cancer (9). One 

Canadian study estimated that the proportion of all deaths among adults 20-64 years of 

age that could be theoretically attributed to overweight and obesity grew from 5.1% in 

1985 to 9.3% in 2000 (10). Aside from the detrimental impact obesity has on one’s 

physical health, a review of the evidence conducted by the Provincial Health Services 

Authority of British Columbia has shown that overweight and obesity impact one’s 

mental well-being (6). For example, the negative attitudes and stereotypes about those 

who are overweight can lead to both social and employment discrimination, including the 

potential for lower income, reduced employment opportunities, high job strain, and low 

co-worker support (12). 

2 Methodology 

2.1 Analysis of the Obesity Trend 
 

 There have been a number of studies attempting to understand the underlying 

causes of the obesity trend.  Although many studies have investigating the myriad of 

factors, these often focus on only one piece of the bigger picture (10). Some studies have 

moved past a reductionist approach by taking a comprehensive perspective to understand 
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the complexity of obesity.  At the core of many of these studies is the role of the 

interaction between biological (e.g. genetics and physiology), behavioural (e.g. physical 

activity and healthy eating), and socioeconomic factors (e.g. disposable income, norms 

about foods). Understanding the many interactions between these components is the 

hallmark of a systems thinking approach.  This approach has been used by studies aiming 

to achieve a comprehensive perspective.  Models that integrate social, physiological and 

economic aspects can provide deeper explanations of the observed dynamics of obesity 

and suggest policies tailored to specific communities. In order to do so, concepts such as 

feedback loops and causality need to be addressed (13).  Feedback is defined as a circular 

process of influence in which an action or event is part of a chain of cause and effect that 

forms a circuit or loop that feeds back on itself (14) 

 The following section provides an overview of different approaches used to study 

obesity from a systems perspective.  The section outlines work done using conceptual 

models (e.g., causal loop diagrams), as well as simulation models.   

2.1.1 Conceptual models 
 

 A Causal Loop Diagram (CLD) is a tool used for diagramming the feedback 

structure of systems. CLDs are simply maps showing the causal links among variables 

with arrows from a cause to an effect (15). For an example of a CLD, refer to Figures 4 

through 7.  (CLDs highlight feedback within a system. CLDs enhance linear and laundry 

list thinking by introducing circular causality and providing an opportunity for people to 

externalize their mental models and assumptions. They work to facilitate inference of 

modes of behaviour by assisting mental simulation of maps (16). Identifying feedback 

loops from the diagram may help to explain behaviour or to generate insights (17).  

Understanding the feedback loops at play in the development of obesity is a key area of 

knowledge that can propel policy makers to identify more successful interventions to 

combat the obesity problem. By understanding the different feedback loops of a system, 

policy makers are provided with a wider range of options regarding policy interventions.  

For example, policy makers may not only focus on weakening loops that produce 

unwanted behaviour, but can also identify opportunities to strength loops that lead to 

beneficial behaviour, create new control mechanisms that impact negative loops, or work 
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to transform a loop producing unwanted behaviour into one that can produce beneficial 

behaviour (18). Although causal loops can provide great insight into a systemic problem, 

they are notoriously unreliable tools for behavioral inference (16).  The mechanisms one 

emphasizes in an untested causal-loop diagram may or may not be the ones the client 

really ought to be most concerned about. In other words, only using a map is limited and 

possibly misleading: simulation or formal models are needed to test the map (16).  

Causal-loop diagrams have long been used in standard system dynamics practice for two 

purposes connected with simulation modeling. They were initially employed after 

simulation, to summarize and communicate model based feedback insights (16).   

The Foresight Obesity Map developed in the United Kingdom is a commonly 

used example for a causal loop diagram of the obesity system.  

 

 
Figure 3: Foresight Obesity Map. For a higher quality rendering of the map, we refer the reader to (19). 

The map was created with the goal to help understand the complex system 

structure of obesity and to be used as a tool for aiding policy makers in testing possible 

policy options in respond to obesity (19).  The map itself identified the broad range of 
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factors that influence obesity.  A separate analysis of the Foresight map identified four 

broad sectors influencing obesity - physiological factors, eating habits, activity levels and 

psychosocial influences (20). Within each of these main sectors, a key determinant of 

vulnerability was identified.  These vulnerability determinants included primary appetite 

control in the brain, the force of dietary habits keeping individuals from adopting 

healthier alternatives, physical activity level, and the psychological ambivalence 

experienced by individuals in making lifestyle choices. (19).  The variables in the map 

are interrelated through more than three hundred connections and more than one hundred 

feedback loops (14).   

 With the boundaries of the obesity system delineated by the Foresight map, the 

problem of obesity can be said to emerge from the adaptive responses to the interaction 

between the system and policies (food, physical activity, and social environments) which 

shape the environment in which the system operates (20).  Although the map successfully 

identifies important linkages between factors influencing obesity, it does not provide 

support for heterogeneity (21). Similar mapping approaches have looked at factors 

influencing obesity. In their report “Connecting physical and mental well-being in 

relation with overweight and obesity“ the Provincial Health Services Authority of British 

Columbia (PHSA) created a conceptual map that illustrated how a diverse range of 

factors contribute to and resulting from obesity are interrelated (6) The map seen in 

Figure 4, framed these factors not only in the perspective of obesity, but also in a more 

holistic approach by framing the interactions in terms of physical and mental wellbeing.  

The identification of multiple feedback loops involved in obesity and well-being work to 

aid decision makers in designing interventions aimed at reducing obesity (6). 
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Figure 4: Causal Loop Diagram by PHSA.  For a higher quality rendering of the map, we refer the reader 

to (6). 

2.1.2 Simulation modeling approaches 
 

 A number of studies have incorporated a quantification aspect to their analysis of 

the development of obesity through the use of simulation models.  Also known as a 

computational model, a simulation model is one in which a model is driven by suitable 

inputs and produces corresponding outputs (22). Simulation in general is a third way of 

doing science. Like deduction, it starts with a set of explicit assumptions. But unlike 

deduction, it does not prove theorems. Instead, a simulation generates data that can be 

analyzed inductively. Unlike typical induction, however, the simulated data comes from a 

rigorously specified set of rules rather than direct measurement of the real world.  These 

rules are expressed in the form of equations used to describe particular concepts (22) for 

example physical activity behaviours.  There is a strong need to create such tools for 

practitioners and policy makers in dealing with the complexities they encounter within 

obese patients and an obese (6). As John Sterman has stated that without modeling, we 

may believe we are learning to think holistically, when in reality we are actually learning 
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to jump to conclusions. (23) Conceptual models cannot study what-if scenarios, which 

limits their ability to foresee what the most relevant or sensitive factors for achieving a 

desired result.  In contrast, simulation models provide a tool for formally testing a 

dynamic hypothesis about a particular problematic behaviour in a system and determining 

its adequacy. (16). Furthermore, simulation models provide a medium to add discipline to 

the policy dialogue as well as demonstrating trade offs and suggesting efficiency 

opportunities for improving a system (24). 

 Apart from offering the opportunity to study what-if scenarios and leverage points 

for change in a system, simulation modeling provides a formal tool for testing these 

leverage points. As leverage points are often not intuitive or are attempted to be improved 

upon in a counterintuitive manner (25) a formalized tool such as a simulation model can 

help test one’s intuition in a safe environment.  Simulation models can quantify and 

forecast the effects of public policies on obesity, health, and other outcomes. Simulation 

models can show the successes and failures of past policies, as well as predicting the 

consequences of selected policy proposals before their implementation.  To develop a 

comprehensive approach, simulation models ultimately need to simultaneously consider 

multiple policies, how the effect of a policy depends on the manner in which it is 

implemented and the other policies in effect, how the effects vary by sociodemographic 

group and how the effects vary over time (13). Simulation models can integrate 

knowledge from many fields, which in the case of obesity is key to understanding the big 

picture of the system influencing one’s body weight (13). 

2.1.3 Simulation models in obesity research 
 

The use of simulation models for policy development within the obesity field is in 

its early stage of development, however simulation models have been used in other health 

care fields, ranging from chronic disease management, health care capacity planning, and 

within the pharmaceutical industry (26). Some studies have created simulations focusing 

on body weight and obesity. A study conducted by Giabbanelli applied a modeling 

approach to understanding the contribution of social norms to weight. The model created 

captured how social norms regarding food and physical activity impact an individual’s 

weight (27).  The results of the study suggested the social environment plays an important 
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role in one’s weight, however this environment depends on the connections of the 

individuals within that environment. In this model, influences were exerted continuously 

and were cumulative, causing changes only when a threshold quantity was received. This 

exhibits non-linear dynamics that were advocated to improve the realism of models.  

Non-linearity is an important concept related to system change, as it is often 

misunderstood as change is commonly assumed to be gradual and linear (28).  This can 

be the case is some systems across some periods of time, however in many systems in 

nature, change is characterized by periods of turbulence and instability, with dramatic 

changes or growth spurts (28).  

Studies completed by Edwards et al. and Bahr et al. have also investigated the 

relationships of social networks and obesity using a simulation model approach.  The 

results obtained by Edwards show that social capital and poverty are strongly associated 

with childhood obesity (104) while Bahr’s work found that for a wide variety of 

conditions, individuals with similar BMIs were found to cluster into groups, and social 

forces drove these groups towards increasing obesity (105).  Furthermore, simulation 

models have been used to understand obesity not only from a population perspective, but 

also from an individual perspective.  Models have been developed that show the 

dynamics of energy regulation at the individual and biological level in order to 

understand issues such as weight cycling (29). 

2.2 System dynamics  
 

System Dynamics (SD) is one specific branch of simulation modeling. It applies to 

dynamic problems arising in complex social, managerial, economic, or ecological 

systems — literally any dynamic systems characterized by interdependence, mutual 

interaction, information feedback, and circular causality (30).   

2.2.1  Applications of system dynamics and obesity 
 

There have been a small number of applications of this approach to obesity and 

weight. Rahmandad applied system dynamics in a model that replicates key trends in 

human growth, including changes in energy requirements from birth to old ages and short 

and long-term dynamics of body weight and composition. (31). Abdel-Hamid applied a 
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system dynamics approach in a similar fashion to Rahmandad, as his research focused on 

modeling and gaining insight into the physiology related to weight gain and loss (106). A 

simulation model was developed that integrated nutrition, metabolism, hormonal 

regulation, body composition, and physical activity (32).  Homer et al. (32) developed a 

system dynamics simulation model to understand trends in obesity in the USA.  Data on 

population body weight from 1971-2002 were combined with information from 

nutritional science and demography into a single analytic environment for conducting 

simulated policy experiment.  Hovmand and White also applied system dynamics using a 

population approach in their work investigating the role of social determinants in the 

development of childhood obesity in St. Louis, Missouri (34).  Fallah-Fini et al. 

connected the micro-level dynamics associated with elements in a population with the 

macro-level population distribution while recreating the pattern of development of the 

BMI of American women over time (35).  

2.2.2 Benefits of approach 
 

Obesity is a complex, not simply a complicated problem, there are many factors 

contribute to the problem. As these problems often relate to each other in nonlinear 

fashions, are subject to time delays, and change over time (13), the application of system 

dynamics lends itself to understanding these characteristics with respect to obesity. 

System dynamics modeling can help explore the complex multilevel social influences of 

obesity, identify potential gaps in research, and plausible intervention levers with policy 

implications by analyzing outcome patterns (29). As system dynamics allows one to test 

combinations of prevention and treatment intervention impact directed towards 

overweight and obesity individuals, it is a useful tool for policy makers as it can enhance 

their ability to understand the combination of strategies with potential for greatest impact. 

(29). Few population-level obesity prevention and management interventions have been 

evaluated from a systems perspective (10).  A system dynamics model can serve to fill 

this evaluation gap. Aside from a public policy perspective, using system dynamics can 

provide useful insight into helping not only policy makers, but also practitioners, 

understand the complexities of obesity.  As many practitioners, in particular physicians, 

have suffered from insufficient guidance on understanding and managing obesity (36), 
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there is a need to improve the understanding of those who are dealing with obesity at the 

frontlines. There are many types of simulation models that are capable of projecting 

future trends in obesity prevalence, however the benefit of a dynamic simulation model, 

(e.g. the type of model a system dynamics methodology creates) enables a more 

sophisticated analysis by incorporating changing population parameters over time, such 

as changing socio-demographic characteristics of a population (13).  The simulation 

ability of system dynamics can demonstrate the need for public health policy by 

quantifying and forecasting the effects of obesity on health and other outcomes (13). As 

simulation models can highlight the successes and failures of past policy proposals prior 

to their implementation (13), the simulation aspect of system dynamics work to aid policy 

makers in learning from their past and preventing the implementation of sub-optimal 

policies.  

The application of system dynamics with the obesity field has been primarily 

focused on understanding the role of physiology in obesity development or through 

understanding how a particular set of factors has influenced the development of obesity 

over a particular time frame.  Within the realm of all simulation models, most models 

focus on one or two links in the process of obesity development, from changes in public 

policy to the health implications of obesity (13).  Ferencik and Soderquist however 

applied system dynamics methodology that focused on public policy, rather than 

physiology.  They used the system dynamics methodology as a tool to help aid policy 

makers in building systems thinking capacity with regards to policies on childhood 

obesity (106).  

The purpose of this thesis is to go beyond the current SD work and apply the 

methodology to analyze the problem from a holistic perspective – looking not only at the 

links between one or two factors, but to see how four major sectors – physiology, 

physical activity, the food environment, and mental well-being, combine to play a role in 

influencing’s an individual’s weight over time. In doing so, the SD model can better 

support both policymakers and health practitioners in gaining a better understanding of 

the feedback processes influencing one’s weight and the non-linear causal relationships 

that exist between factors and within each sector   By developing a tool to improve 

understanding of the complex systems driving weight dynamics, it can enable decision 
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makers to better support individuals in achieving a healthy weight. 

2.3 Applied Methodology  
 

As the aim of thesis was to develop a simulation model to see ‘how’ the 

interactions between a variety of factors over time could lead to changes in weight and 

well-being, rather than to investigate ‘what’ the factor are, it was decided to use a 

previously created map outlining the different factors and their connections that are at 

play within a weight and well-being system.  The starting point for three of the four 

sector structures (mental well-being, physical activity, food environment) of the 

simulation model was the CLD created by the research team at the Provincial Health 

Services Authority of BC. The fourth sector (physiology) primarily drew on the work of 

Hall (50). The process used to translate the CLD into a SD simulation model was adapted 

from the modeling process developed by Sterman. The process designed by Sterman (15) 

was as follows: 

 
Modeling Step Key Actions 

1. Problem articulation • Theme selection 

• Identification of key variables 

• Time horizon 

• Dynamic problem definition (reference mode) 

2. Formulation of dynamic hypothesis • Initial hypothesis generation 

• System mapping 

3. Formulation of simulation model • Specification of structure and decision rules 

• Estimation of parameters and initial conditions 

4. Testing • Comparison to reference mode 

• Sensitivity tests 

• Model validation 

5. Policy design and evaluation • Scenario testing 

• Sensitivity analysis 

• Interactions of policies 

Table 1: Modeling process 
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 As this thesis is building upon the previously completed work of the PHSA, the 

nature of the relationships presented within the CLD were not analyzed themselves.  The 

initial goal of the translation from CLD to stock and flow model was to attempt to include 

all variables from the CLD into the stock and flow model.  Due to the nature of the 

variables (the majority of variables being soft variables) and the available data on such 

variables, the outcome goal of the model needed to be revised during the modeling 

process.  This resulted in the overall goal being to include representation from four major 

sectors.  Factors that were identified to be central to a particular sector (i.e. incorporated 

within feedback loops) where prioritized to be added to the stock and flow model.  

Furthermore, different levels of aggregation resulted in the inclusion of some 

relationships that were not portrayed as direct relationships in the CLD. The limited data 

for some variables and relationships required that some variables be modeled at different 

aggregation levels.  For example, the food environment sector was represented on a 

highly aggregate level to include income and ease of purchase healthy foods. Within the 

CLD created by the PHSA, this is not portrayed as a direct relationship.  

There were some deviations from the modeling process as outlined by Sterman. 

As the model created was an exploratory model, rather than an explanatory model, the 

outcome goal of the model was not to produce a behaviour that matched a specific 

reference mode. Instead, the pattern seen in the increase of BMI over time serves as a 

general reference behavior pattern that the model attempts to match.  Secondly, the 

formulation of the dynamic hypothesis and system mapping was previously completed 

through the development of the CLD.  Third, policy design and evaluation was not 

completed within the thesis work.  The emphasis was on developing a model using 

current evidence and knowledge from experts, such that it can be used in future studies to 

identify cost-effective interventions; consequently, economic analyses are beyond the 

scope of the present thesis.   
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3  Model Description 

3.1 Sector Conceptualization 

3.1.1 Overview 
 

The overall model investigates how interactions between the four major areas 

(physiology, physical activity, mental well-being, and food environment) influence one’s 

weight and well-being over time.  The causal loop diagram in Figure 5 provides an 

overview of the feedback loops at play within the model. 

 

 
Figure 5: Causal Loop Diagram of Simulation Model 

 

  The model is governed by ten reinforcing loops and two balancing loops. Loops R1, R2, 

R3, R4, and R5 influence the energy intake of an individual, while loops R6, R7, R8, R9, 

and R10 work on influencing the energy expenditure of an individual.  Loops B1 and B2 

work on the energy expenditure.  The following discussion provides more in-depth 

information on each sector.  First, an overview of the conceptualization of each sector is 
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provided with key concepts outlined.  Second, information is provided regarding the 

validation of each variable and parameter within each sector.  Third, any calibrations that 

were needed for a variable or parameter are outlined.   

 
3.1.2 Physiology Sector 

 
 At the core of the overall model structure lays the physiology sector. The 

underlying concept of the model is that a change in body weight results from an 

imbalance between the intake of energy from food and the energy expended to maintain 

life and perform physical work (37).  The physiology model structure used was adapted 

from a previous version used by Chow and Hall (37) with further adaptations 

incorporated based upon revised works on the Chow and Hall model completed by 

Rahmandad (31) and Fallah-Fini (35). Within the physiology model, the three major 

pieces involved in weight dynamics are the energy intake, energy expenditure, and 

energy partitioning.   

 The physiology model acts as the focal point for the model as it captures the 

overall dynamics of the larger system at play through two stocks - individual’s fat mass 

and fat free mass.  Fat mass can be defined as any body lipid material that would be 

soluble and extractable in ether, while fat free mass refers to body mass that are not 

considered fat mass, such as muscle, bone, and water (38). The changes seen in the two 

stocks result from a change in one’s daily energy balance.   The daily energy balance is 

the difference between one’s energy intake and energy expenditure. The energy intake 

refers to the daily kilocalories consumed by an individual.  This flow is governed by the 

energy expenditure and from other components (mental well-being and food 

consumption). 

 The physiology model can be described as a black box model in which there are 

only two points where the boundaries of the external forces (those outside the physiology 

sector) and the physiology model meet.  These two points of interconnection are the two 

flows driving the daily energy balance - the energy intake flow and the energy 

expenditure flow.  Any change in the factors influencing either of these flows will 

ultimately alter the daily energy balance, leading to either weight gain (and increase in fat 

and fat free mass) or weight loss (a decrease in fat mass and fat free mass). The allocation 
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of the energy imbalance to either fat mass or fat free mass is determined by an energy 

partitioning factor.  The physiology sub-system is schematized in Figure 6.  

 

 
Figure 6: Causal loop diagram of physiology sector 

 

 The model is governed by two balancing loops that work towards achieving no 

energy imbalance, either by altering the fat or fat free mass in the body. Resting 

metabolic rate refers to the average energy metabolism of a person resting in a 

comfortable environment, not engaged in any physical activity (110).  Any change in 

either of these variables results in a change in energy expenditure through a change in the 

resting metabolic rate.  For example, a step increase in energy intake would not result in 

an infinite weight gain. Instead, this would result in an increase in both fat mass and fat 

free mass, thus increasing each mass’s resting metabolic rate, leading to an increase in 

energy expenditure to a level that matches that of the energy intake.  This physiology 

model allows for a comprehensive approach to capturing weight dynamics as it makes 

explicit the type of body mass composing body weight - fat mass and fat free mass.  In 

doing so, the model is able to account for differences in their metabolic rates and growth 

requirements.  This explicit distinction paints a more realistic picture of the process of 

one’s weight change, as the process is not solely dependent on energy intake versus 
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energy expenditure, but also is dependent on body composition (37).  Furthermore, this 

formulation of weight provides a more realistic depiction of weight than in other models 

where weight is simplified to a single component as in the model by Giabbanelli et al. 

(27).  

3.1.3 Physical activity sector  
 

The physical activity sector reflects how both the built environment and 

individual characteristics play a role in determining the volume of physical activity one 

engages in on a daily basis.  The physical activity sub-system is schematized in Figure 7. 

 

 
Figure 7: Causal loop diagram of physical activity sector 
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Time Available.  This represents the amount of time Canadians can dedicate towards 
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chance of having a heart attack in the next 10 years (39).  The stock “Time Available for 

Leisure Activity” represents the time per day that an individual allocates towards active 

leisure activities. Based upon factors in their built environment, this determines whether 

the time available is used for physical leisure (physical activity), social leisure (activities 

where the primary focus is socializing with family and friends), or cognitive leisure 

(where the focus is on hobbies, games, and other mentally stimulating activities) (52). 

The flow Daily Recreational Physical Activity represents the fraction of leisure time 

allocated towards recreational physical activity. Recreational physical activity is defined 

as any physical activities that individuals engage in for enjoyment or pleasure (6), rather 

than because they are necessary to accomplish a task (e.g. cycling to get groceries). These 

activities may also be known as leisure-time physical activities (6).  These activities are 

often described as part of a larger category of activities called leisure time activities (40).  

The flow is governed by the effect of the number of recreational facilities within an 

individual’s buffer zone.  The flow Daily Utilitarian Physical Activity represents the 

fraction of leisure time allocated towards utilitarian physical activity.  Daily utilitarian 

physical activity refers to those activities that serve the practical purpose of transporting 

someone from one place to another. This includes active transport, which refers to any 

form of human-powered transportation such as opting to cycle to a place rather than 

drive. Examples of facilities necessary for utilitarian physical activity include sidewalks, 

trails, bicycle lanes, and amenities such as stores, community centers, libraries, and 

restaurants (41). This is summarized by the Neighbourhood Environment Walkability 

Score (NEWS, which measures residents' perceptions of the environmental attributes of 

their local area (42). Specifically, NEWS was used as a questionnaire to assess residents' 

perceptions of neighborhood characteristics related to a higher frequency of walking and 

cycling trips (42).  

Both recreational physical activity and utilitarian physical activity combine to 

form one’s daily physical activity level. There are two main outputs of the physical 

activity sector. The first is the daily physical activity, which influences the physiology 

model via energy expenditure.   In order to translate one’s daily physical activity into a 

coefficient value that can be used in one’s energy expenditure equation, the daily physical 
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activity volume was translated first into a physical activity level (PAL). The PAL is the 

ratio of total energy expenditure to basal energy expenditure (43).  One’s PAL is a 

measure of both volume and intensity of activity.  As one’s PAL is calculated, it has an 

effect on the physical activity coefficient of the energy expenditure.  The second output 

of the physical activity sector can be seen through the effect of one’s PAL on stress.   

3.1.4 Mental well-being sector 
 

The mental well-being sector of the model is the most connected sector of the 

model, creating feedback loops involving all other sectors.  A CLD of the sector can be 

found in Figure 8.  

 

 
Figure 8: Causal loop diagram of mental well-being sector 

 

The mental well-being sector looks at how one’s mental well-being influences 

one’s energy intake, their annual income and ability to purchase healthy food, as well as 

their physical activity.   At the heart of the mental well-being sector are two common 

challenges to well-being: depression and stress.  Depression can be defined as a common 

mental disorder characterized by sadness, loss of interest or pleasure, feelings of guilt or 

low self-worth, disturbed sleep or appetite, feelings of tiredness and poor concentration 

(44).  Stress can be defined as the brain's response to any demand. Many things can 

trigger this response, including change. Changes can be positive or negative, as well as 
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real or perceived (45). Both depression and stress are driven in the model by Perceived 

Weight Bias.  Weight Bias or stigma can be defined as the negative attitudes towards a 

person because he or she is overweight or obese. For example, these can include the 

stereotype that an obese person is lazy or lacking willpower to lose weight (12).  Weight 

bias is caused by a general belief that obesity is entirely under ones control (e.g. 

inadequate self-discipline, insufficient willpower) and that it is a very undesirable trait 

(46).  Weight bias is defined as perceived weight bias as this enables the model to 

include an individual perspective on the variable.  The perceived weight bias is 

influenced by one’s body weight.  Perceived weight bias drives both stress and 

depression.  

 In this sector, both stress and depression impact energy intake. One’s level of 

depression impacts their use of antidepressants, which in turn influences one’s energy 

intake level.  One’s level of stress also effects energy intake by influencing one’s level of 

engagement in emotional eating behaviors. Stress is also impacted by one’s level of 

physical activity.   

3.1.5 Food environment sector 
  

The food environment sector portrays the impact of one’s ability to purchase 

healthy foods on his or her energy intake.  Just as in the mental well-being sector, one’s 

perceived weight bias is the driver for this sector.  One’s perceived weight bias on an 

impact on one’s potential annual income.  As one’s potential annual income is decreased, 

this has the potential to reduce their ability to purchase healthy foods.  This effect 

depends on the ratio between the cost of healthy food and one’s Actual Annual Income.  

Depending on how able one is to purchase healthy foods, this will impact their energy 

intake in an indirect manner. Figure 9 portrays the causal loop diagram of the food 

environment sector. 
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Figure 9: Causal loop diagram of food environment sector 
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the change and to alter behavior.  Such delays in the model are represented by a first 

order smooth function with a delay time of six months.  

 

Energy Expenditure 

 

The outflow of the energy balance stock is the energy expenditure.  The energy 

expenditure is governed by equation 1.  

 
Equation 1:  

 

Energy Expenditure = 𝐾 + (𝛾𝐹𝐹𝑀 ∗ 𝐹𝐹𝑀) + (γF ∗ 𝐹𝑀) + 𝛿𝐵𝑊 + 𝛽𝛥𝐸𝐼 + (𝜂𝐹 ∗ 𝑑𝐹𝑀/𝑑𝑡) +

(𝜂𝐹𝐹𝑀 ∗ 𝑑𝐹𝐹𝑀/𝑑𝑡)   

 

Constant 

 

Name 
Definition Value 

Unit of 

Measure 

Calculated 

or Assumed 

Value 

Source 

K Constant 
The energy expenditure 

required for brain function.  
370.21 

 Kcal/day Assumed (48) 

γFFM 

 

Resting 

metabolic 

rate of fat 

free mass 

The energy cost of 

maintaining metabolic 

homeostasis, nerve and 

muscle tone and 

circulation and breathing 

of fat free mass  

 

22 Kcal/kg/day Assumed (48), (49) 

γFM 

 

Resting 

metabolic 

rate of fat 

mas 

The energy cost of 

maintaining metabolic 

homeostasis, nerve and 

muscle tone and 

circulation and breathing 

of fat mass 

 

3.6 Kcal/kg/day Assumed (48), (49) 



 31 

Table 2: Constants for Equation 1 

 

Table 3 describes the parameters composing the energy expenditure equation.  All values 

within the table are calculated.  

 
 

Variable Name Definition Initial Value 
Unit of 

Measure 

FM Fat mass 
Any body lipid material that would be soluble 

and extractable in ether 
56.03 Kg 

FFM Fat free mass 
Any body mass that are not considered fat 

mass, including water, protein, and minerals 
14.69 Kg 

BW Body Weight The total weight of an individual (FFM + FM) 70.27 Kg 

𝛿 
Physical 

activity 

coefficient 

The amount of energy 

expended for daily 

physical activity 

7 Kcal/kg/day Assumed (48) 

 

𝛽 

Adaptive 

Thermoge

nesis 

Parameter 

The amount of energy 

expended during a diet 

perturbation 

0.24 Unitless Assumed (48) 

𝜂𝐹 
Energy 

deposit for 

fat mas 

The energy required to 

deposit additional fat mass 
180 Kcal/kg Assumed (48) 

𝜂𝐹𝐹𝑀 

Energy 

deposit for 

fat free 

mass 

The energy required to 

deposit additional at free 

mass 

 

 

230 Kcal/kg  Assumed (48) 

𝑑𝑡 Delta time 

How frequently 

calculations in the 

simulation model are 

applied during each unit of 

time. 

1 Day Assumed N/A 
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𝛥𝐸𝐼 
Change in energy 

intake 

The impact of changes in energy intake over 

time on energy expenditure. 
0 Kcal/day 

𝑑𝐹𝑀 
Change in fat 

mass 
The change in fat mass over the period dt 0 Kg/day 

𝑑𝐹𝐹𝑀 
Change in fat free 

mass 
The change in fat free mass over the period dt 0 Kg/day 

Table 3: Parameter Description of Energy Expenditure Equation 

 

The parameters γFM  and γFFM refer to the regression coefficients that relate the resting 

metabolic rate of fat free mass versus fat mass 48). Hall (48) determined the mean value 

for γFFM  to be 22 +/- 4 kcal/kg/day, while the mean value for γFM was 3.6 +/- 2 

kcal/kg/day. The mean values for both regression coefficients were used in the model.   

The physical activity coefficient, δ, was determined by Hall (48) to be proportional to an 

individual’s body weight, and the mean value was determined to be 7 +/- 4kcal/kg/day.  

A value of 7 kcal/kg/day was used in the model. Hall, Sacks, and Chandramohan (50) 

determined this value based upon the assumption of a sedentary physical activity level 

(PAL).  

 The thermic effect of food, also known as dietary induced thermogenesis, is the 

amount of energy needed to process the food intake. This is captured through the 

parameter β, which adapts the energy needed to process food when the amount of food 

changes (48). A mean value of 0.24 +/- 0.1 was calculated and a value of 0.24 used in the 

model (48) the change in energy intake, ΔEI, takes into account the impact of changes in 

energy intake over time on energy expenditure.  The parameter is rooted in the 

understanding that over time, one’s body composition alters the energy intake required to 

maintain a zero energy balance (48). This parameter is specified by Equation 2. 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛  2:   

𝛥  𝐸𝐼   ≅
𝑑𝐵𝑊
𝑑𝑡

∗
9100𝑘𝑐𝑎𝑙

𝑘𝑔
+    𝐵𝑊  𝑚𝑒𝑎𝑛  –   BW ! ∗ 22𝑘𝑐𝑎𝑙/𝑘𝑔/𝑑𝑎�. 

The first term, !"#
!"

∗ !"##!"#$
!"

  accounts for a change in body weight on a daily basis 

and adjusts for an adequate energy intake to maintain energy balance, while the second 
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term, 𝐵𝑊  𝑚𝑒𝑎𝑛  –   BW ! ∗ 22𝑘𝑐𝑎𝑙/𝑘𝑔/𝑑𝑎𝑦. accounts for an adapting baseline energy 

expenditure over time, depending on changes in body weight over time (48). Finally, 

one’s energy expenditure takes into account the energy required to deposit additional fat 

and fat free mass, ηF and ηFFM respectively. The mean energy cost for depositing fat 

mass is 180 +/- 20kcal/kg and for fat free mass to be 230 +/- 100 kcal/kg (48). Both mean 

values are used in the model.   The total cost for depositing new fat or fat free mass is 

determined by the rate of which new fat mass or fat free mass is created (dFM/dt and 

dFF/dt respectively) (48).   

Energy Partitioning Factor 

 

The energy partition factor determines the rate of allocation of the daily energy 

balance to become either fat mass or fat free mass.  It is assumed that the partitioning 

factor is not a fixed percentage, as studies have shown the percentage of body fat lost 

depends on the body composition (37). The partitioning factor for adults is defined in 

Equation 3.  

 
Equation 3: 

 

𝐸𝑛𝑒𝑟𝑔𝑦  𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔  𝐹𝑎𝑐𝑡𝑜𝑟

=   𝐹𝑜𝑟𝑏𝑒𝑠  𝑏𝑜𝑑𝑦  𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟/(𝐹𝑜𝑟𝑏𝑒𝑠  𝑏𝑜𝑑𝑦  𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 + 𝐹𝑎𝑡!"##) 
 

The partition factor is a function of the Forbes Body Composition and the current fat 

mass.  The Forbes body composition parameter is defined in Equation 4.  
 

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛  4: 

𝑝   =   𝐶/(𝐶 + 𝐹)  𝑤𝑖𝑡ℎ  𝐶   =   10.4  𝑘𝑔  ×𝜌𝐿/𝜌𝐹      
 

This parameter describes how body composition changes as a function of the initial 

body fat mass (48).  The factor is calculated by multiplying the energy densities for 

changes in fat (ρF = 9400 kcal/kg/day) and fat free mass (ρL= 1800 kcal/kg) by a 

constant of 10.4 kg. Overall, the energy partitioning function allows for a nonlinear 
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model of body composition changes (48). As the partitioning factor determines the 

allocation of the energy imbalance towards either fat mass or fat free mass, the energy 

densities for fat mass and fat free mass determined the actual volume of change in the fat 

mass and fat free mass respectively.  The flow change in fat mass is governed by the 

partitioning factor, the size of the energy imbalance, and the energy density for fat mass 

(the volume of energy needed to add or remove one kilogram of fat mass).  The flow 

change in fat free mass is governed by the same three factors.  It should be noted that 

these flow changes do not take into account physical activity, which has the potential to 

alter the balance of fat mass and fat free mass growth.  Changes in fat mass and fat free 

mass will lead to two effects.  First, they have a direct effect on the body weight of the 

individual. Second, a change in either mass will lead to a change in resting metabolic 

rates.  This change in resting metabolic rate will in turn change the daily energy 

expenditure of the individual, as a higher fat mass and fat free mass will expend more 

energy on a day to day basis.  

 

3.2.2 Physical Activity Sector 
 

Time Allocation  

 

The driver of the physical activity sector is one’s Free Time Available.  The value 

of free time available is 5.5 hours per day.  A study indicated that in 2005 British 

Columbia residents allocated 336 minutes (5.5 hours) of their day to free time (51). Free 

time was composed of four activities: socializing, passive leisure activities, sporting and 

entertainment events, and active leisure activities.  Active leisure activities consisted of 

social leisure, cognitive leisure, and physical leisure (52).  For the purpose of this thesis, 

the activity of interest is physical leisure, as this type of activity would result in an 

activity level of moderate to vigorous activity.  The report (52) indicates that an average 

of 1.1 hours was spent in active leisure activities.  Consequently, the value of Time 

Available for Leisure Activity (Equation 4) was initialized to 1.1 hours.  The equation 

governing the flow of Time Available for Leisure Activity consists of the total free time 

available multiplied by the fraction allocated to physical activity.  The Percentage of Free 
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Time Allocated for Physical Activity is calculated from the addition of two effects: one’s 

barriers of engaging in physical activity and one’s ability to engage in physical activity.  

For modeling purposes, it was assumed that each of these factors influencing the variable 

equally (e.g. the weighing factor for each variable is 0.5). 

 

Barriers to Engaging in Physical Activity  

 

The initial value for the stock Barriers to Engaging in Physical Activity level is 

0.2.  The initial value was selected to represent a low impact of barriers on one’s 

engagement in physical activity. Using a scale of 0-1, with 1 indicating the maximum 

barrier to physical activity and 0 indicating no barrier to physical activity, a value of 0.2 

was selected as an arbitrary value to represent the prototype individual’s barrier level.  

This 0.2 was selected as it represents a low level of barriers to physical activity. As the 

individual has a BMI within the normal range, it is assumed the impact of weight bias at 

the initial time of the simulation is minimal.  As well, based upon the prototype’s BMI it 

was assumed that their Framingham risk score would also be low (assuming the 

individual is of good health). This value also represents the normal value of barriers to 

engaging in physical activity, thus providing a value of 1 for the variable Barrier of 

Engaging in Physical Activity Ratio.  The effect of barriers to engaging in physical 

activity on Percentage of Free Time Allocated for Physical Activity is represented 

through a graphical function.  The graphical function is an s-shaped curve with the limits 

of 0-5, as the maximum ratio would be a value of 5 (the initial normal value of 0.2 

dividing into the maximum effects influencing Barriers to Engaging in Physical Activity, 

a value of 1).  The s-shaped curve was selected based upon the assumption that any 

change near the low or high ends (in comparison to the normal effect) result in minimal 

changes in one’s allocation of their free time towards physical activity. There is a lack of 

current evidence that has investigated what the nature of this curve would be, as well as 

the upper and lower values.  This range of possible effects that this curve entails also 

represents the range of responses gathered by Giabbanelli in an interview with subject 

matter experts (53).  When asked about the relationship between the effect of fear of 

engaging in physical activity and it's impact on one's actual physical activity level, three 
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out of four experts responded medium strength and one responded very weak. The s-

shape nature of the curve allows for the relationship between one’s barriers to physical 

activity and physical activity to produce a weak effect (i.e. at the lower end of the curve) 

and as well a medium effect (near the middle of the curve). In the CLD created by PHSA, 

the variable Barriers to Physical Activity is represented by the variable “Fear of Engaging 

in Physical Activity.”  

 

Framingham Risk Score  

 

The Framingham Risk Score represents the variable Cardiovascular Diseases in 

the PHSA CLD.  The initial value of one’s Framingham Risk Score was selected to be 1 

due to the low percentage of British Columbia residents suffering from CVD (3.9% in 

2007-2008) (55). The theory behind cardiovascular disease as a barrier to engaging in 

physical activity stems from the fact that one’s cardiovascular condition can limit one’s 

physical abilities to engage in physical activity, and may also in some subjects create 

anxiety and fear of bringing forth another cardiac incident.   Due to difficulties in 

operationalizing cardiovascular disease for modeling purposes, the risk score was 

selected as a proxy variable to represent the concept.   

The effect of one’s Framingham Risk score on one’s fear of engaging in physical 

activity is represented by the graphical function “Effect of Framingham Risk Score on 

Barriers of Engaging in PA.”  Overall, there is a lack of current evidence that has 

investigated that would determine what the shape of the graphical function would be, as 

well as what the lower and upper limits of the curve would be.  Due to this literature gap, 

three reference sources were consulted with in order to build the graphical function. First, 

four expert interviewed by Giabbanelli provided insight on the strength of the 

relationship between CVD and one’s fear of engaging in physical activity.  The experts’ 

responses were strong, strong, medium, and non-existent (53).  The spectrum of results 

provided lent itself to using an s-shaped curve to represent such a relationship. Secondly, 

a study conducted by Kocjan and Knapik (55) found moderate intensity of fear of 

movement (kinesiophobia) in patients undergoing cardiac rehabilitation, although the 

authors concluded that one does not necessarily need to have a cardiac incident in order 
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to experience kinisiophobia, rather the predisposition to kinesiophobia is individually 

determined (55). Based upon these two sources, it was determined that the nature of the 

curve should be able to represent provide a range of effects based upon different 

Framingham Risk scores. 

 

Ability to Engage in Physical Activity 

 

The initial ratio of Ability to Engage in Physical Activity was calibrated to 

provide a value of 1, indicating the Normal Ability (value of 1) is equal to that of the 

current value.  In the PHSA CLD, one’s ability to engage in physical activity is impacted 

by eight factors (tiredness, respiratory diseases, pain, coordination, concentration, beta 

blockers, balance, access to health professionals).  The current model aggregates all of 

these factors in the variable “Ability to Engage in Physical Activity” 

 The effect of Ability to Engage in Physical Activity is represented as a graphical 

function.  The responses provided by subject matter experts indicated the relationship 

between ability to engage in physical activity and physical activity level was strong, 

medium, medium, and weak.  This spectrum of responses allowed for the use of an s-

shaped graph to be used to represent the relationship in the model.  The curve was 

anchored with a normal relationship (ratio value of 1) provided an effect value of 0.2. 

This value of 0.2, once weighted, enables the variable Percentage of Free Time Available 

for Physical Activity to provide an initial flow value of 1.1, thus aligning with published 

literature. 

 

Leisure Time Available 

 

 The stock Leisure Time Available represents the amount of time available per day 

for leisure activities.  The stock is impacted by three outflows: Daily Recreational 

Physical Activity, Daily Utilitarian Physical Activity, and Non-Physical Activity Leisure 

Time. 

 Daily Utilitarian Physical Activity 
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 The flow Daily Utilitarian Physical Activity is governed by the effect of the 

Neighbourhood Environmental Walkability Scale (NEWS). NEWS was selected as it 

encompassed a number of factors that impacted utilitarian physical activity in the PHSA 

CLD. Table 4 outlines the relationship between CLD factors and NEWS factors. 

 

Factor in PHSA CLD (6)  
Corresponding NEWS Measure 

 

Accessibility to Shops 

Proximity to nonresidential uses 

Ease of access to nonresidential uses 

 

Sidewalk Presence and Maintenance 

Street connectivity 

Walking/cycling facilities 

 

Aesthetics 
Aesthetics 

 

Perceived Environmental Safety 

Pedestrian safety from traffic 

 

Safety from crime 

 

Table 4: CLD Factors and Corresponding NEWS Measures 

 

Of the nine factors measured by NEWS, only residential density (the type of 

housing existing in the neighbourhood) did not appear to have a corresponding measure 

within the PHSA CLD. As the NEWS categorizes neighbourhoods into three categories 

(low walkability, medium walkability, and high walkability), a normalized scale was used 

in the model to represent this. Using the normalized scale rating of 0-10, the scale was 

divided into three categories: low walkability (rating of < 4), medium walkability (rating 

4.1-6) and high walkability (rating of > 6).  The scale was used as it replicates the 

categorization used by Kerr et al. (57) and Saelens et al. (58).  

The graphical function used is an s-shaped pattern with a positive slope.  The 

positive slop is determined based upon the evidence provided through subject matter 

expert interviews that as the characteristics encompassing the NEWS scale increase, 

one’s partaking in utilitarian physical activity increases in an s-shaped pattern.  The 
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model was calibrated to provide an initial value of 12 minutes of utilitarian physical 

activity per day. The assumption was made that the individual would be in an 

environment classified as low walkability, with a NEWS score of 4.  A value of 4 is in 

alignment with the finding that of the 69 largest communities in British Columbia, the 

average walk score was 4.49 (111). Based upon the current initial value of the stock 

Leisure Time available, the graphical function curve also provides an increase of 10 

minutes of physical activity from the initial 12 minutes one would move into an area of 

high walkability, as this matches results found by Saelens (58) in a 2003 study where 

those living in a high walkability area engaged in 70 minutes more of physical activity 

per week than those in low walkability areas. 

 

Daily Recreational Physical Activity 

 

The flow Daily Recreational Physical Activity is governed by the effect of the 

number of recreational facilities within a buffer zone. The number of recreational 

facilities represents the variable Sports Infrastructure from the PHSA CLD. This effect is 

captured in a graphical function, indicating that as the number of facilities increases in 

comparison with the normal number of facilities expected, one makes the decision to 

allocate more leisure time towards recreational physical activity.  This graphical function 

is calibrated to provide an initial value of twelve minutes per day of daily recreational 

physical activity. The graphical function itself is a positively sloped s-shaped curve. The 

curve was calibrated to provide an increase of five more minutes of recreational physical 

activity per day when the ratio increases to greater than four, indicating there are greater 

than four exercise facilities within one’s buffer zone.  The value of five minutes was that 

found in a Swedish study that found participants with more than four exercise facilities 

within their buffer zones (1000 meters from their household) spent on average 5.4 more 

minutes in moderate to vigorous physical activity per day, compared to those with no 

exercise facilities within their buffer zones (59).  Further studies also support the 

relationship between exercise facilities and exercise prevalence, however they lack 

supportive causal data to aid in the development of the graphical function (60). 
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Daily Physical Activity 

 

 By definition, daily Physical Activity is the combination of both one’s 

recreational and utilitarian physical activity. Statistics Canada estimates that in 2009, the 

average Canadian engaged in 24 minutes of moderate physical activity per day (61), 

which represents the mean average amount of physical activity for an individual 

classified as sedentary according to the PAL guidelines. We assumed that these 24 

minutes would be equally allocated to 12 minutes of recreational daily physical activity 

and 12 minutes of utilitarian physical activity. In attempting to determine whether or not 

such an allocation proves to be valid, two references support such an allocation.  One 

report indicates that almost six in ten Canadians report walking as a mode of 

transportation “at least sometimes,” thus proving some sort of daily utilitarian physical 

activity is plausible.  Second, with the with the average walking trip being one kilometer 

(62), and the average walking speed of 12 min/km (62), the average trip would amount to 

roughly 12 minutes, aligning with the allocation see for daily physical activity.  

 

Physical Activity Coefficient 

 

 To operationalize the connection between an individual’s volume of daily 

physical activity and the physical activity coefficient used in the energy expenditure 

equation, a five-step process was applied.  

  

1. The volume of activity was determined.  

2. The volume of activity was translated to an activity category. 

3. The activity category was translated to a PAL level 

4. The PAL level was translated to a PA factor. 

5. The PA factor was translated into a corresponding effect onto the physical 

activity coefficient used in the energy expenditure equation. 

 

 For modeling purposes, all physical activity levels were standardized to indicate a 

value of moderate physical activity. In order to move reach step 4, the variable   
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PAL point per minute of moderate PA and PAL was used.  A graphical function was used 

due to the non-linear nature of the relationship between volume of moderate daily 

physical activity and the corresponding PAL. The graphical function was calculated using 

the lower value of the volume of physical activity to correspond to the midpoint of the 

PAL range.  For example, a value of 61 minutes provides a PAL value of 1.745 in the 

graphical function. 

 Step 5 is represented in the model by the variable Effect of PAL of Physical 

Activity Coefficient. Validation of the graphical function was completed by comparing 

the multiplication of the physical activity coefficient provided through the energy 

expenditure equation with the values from the graphical function values. See section 3.4 

Model Calibration for more information on how this graphical function was calculated. 

 

3.2.3 Mental well-being sector 
 

Perceived Weight Bias  

 

 The initial value for perceived weight bias was selected to be 0.06, indicating a 

low perceived weight bias.  This value was selected as the prototype individual’s BMI 

falls within the normal BMI range, thus having a greater potential to not be subject to 

weight bias.  In the model, perceived weight bias is influenced only by one’s BMI.  The 

variable Effect of BMI on Perceived Weight Bias represents this.  The effect is an s-

shaped curve and was created based upon data from Puhl, who found that on average a 

person’s chances of being discriminated against because of weight become higher as their 

body weight increases (64). Puhl found 10 percent of overweight women reported weight 

discrimination, 20 percent of obese women reported weight discrimination and 45 percent 

of very obese women reported weight discrimination, while for men, with 3 percent of 

overweight, 6 percent of obese and 28 percent of very obese men reporting weight 

discrimination. Further studies have also indicated an increasing presence of weight bias 

as one’s weight increases, with a second study finding that found that overweight 

respondents were 12 times more likely, obese respondents were 37 times more likely, and 

severely obese respondents were 100 times more likely than normal-weight respondents 
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to report employment discrimination (12). Based upon these figures, the graphical 

function was created using the average of statistics found for men and women in the 

study conducted by Puhl (12). The output of the graphical function when the BMI falls 

within the normal range and below is zero. The output increases at an exponential rate as 

one’s BMI increases to align with the exponential increases seen in the literature.   

 

Depression  

 

The variable Actual Depression Level is represents the current level of depression 

using the Beck’s Depression Inventory (BDI), which is a 21-item test that measures the 

presence and degree of depression in adolescents and adults consistent with the DSM-IV.  

The scale is measured from 0-63, with measures of 0–9 indicates that a person is not 

depressed, 10–18 indicates mild-moderate depression, 19–29 indicates moderate-severe 

depression and 30–63 indicates severe depression (64).  The variable Maximum 

Depression Level represents a value of 63, or the maximum score on the BDI.  One’s 

actual depression level is calculated using Equation 5.   

 
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛  5: 

 

𝐴𝑐𝑡𝑢𝑎𝑙  𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛  𝑙𝑒𝑣𝑒𝑙   −   (1/2 ∗𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝐿𝑒𝑣𝑒𝑙_𝑜𝑓_𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

∗ 𝐸𝑓𝑓𝑒𝑐𝑡_𝑜𝑓_𝑆𝑡𝑟𝑒𝑠𝑠_𝑅𝑎𝑡𝑖𝑜_𝑜𝑓_𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛) + (1/2 ∗𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝐿𝑒𝑣𝑒𝑙_𝑜𝑓_𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

∗ 𝐸𝑓�𝑒𝑐𝑡_𝑜𝑓_𝑃𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑_𝑊𝑒𝑖𝑔ℎ𝑡_𝐵𝑖𝑎𝑠_𝑜𝑛_𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)  

 

The effect of both the Stress Ratio and Perceived Weight Bias are weighed 

equally due to the lack of available data on the weighting factors.   The Effect of 

Perceived Weight Bias on Depression is represented as a graphical function.  Literature 

reviews highlight the lack of longitudinal research on the relationship between weight 

bias internalization and depression.  Due to this research gap, a graphical function was 

calibrated based upon an assumption that if one were experiencing a maximum value for 

Perceived Weight Bias (a value of 1 in the model), this would indicate a score of 18 on 

the BDI, indicating mild to moderate depression. The graphical function is an s-shaped 

pattern, as it aligns with the responses provided by six experts interviewed by Giabbanelli 
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(53). These experts indicated the relationship between depression to be very strong, 

strong (three indicated), medium, and weak.  From this, the use of an s-shaped curve is 

appropriate as it has the potential to provide the relational responses indicated by experts.   

The Effect of Stress Ratio of Depression also impacts one’s actual depression 

level.  Studies have demonstrated the relationship between stress and depression through 

a number of mechanisms (65) (66), however studies have failed to investigate the 

quantitative nature of the relationship. Because of this, the graphical function used to 

represent the effect provides a response that if one’s stress ratio increases to the 

maximum value of 5; this results in a BDI score of 18, indicating mild-moderate 

depression.  
 

Antidepressant Use 

 

 The prescription of antidepressants is based upon one’s level of depression.  

Clinical guidelines indicate that antidepressants are recommended for those who present 

with symptoms of at least moderate depression (67). Based upon these recommendations, 

the variable Effect of Depression on Antidepressant Use provides a value of one, 

indicating no antidepressant use.  The stock Normal Antidepressant Use is initialized to a 

value of 1, providing an initial Antidepressant Use Ratio of 1.  This structure representing 

an actual value, a normal value, and a ratio of the two is included as it lends itself to 

providing a more realistic picture of the effects of antidepressant use on weight gain.  

With this structure, as one becomes more depressant and triggers the prescription of 

antidepressants, the effect of antidepressants on energy intake eventually decreases over 

time, until one achieves a new normal intake level.  For example, as one is initially 

prescribed an antidepressant, we would see weight gain over a particular period of time.  

However as one’s Normal Antidepressant Use increases to match one’s Antidepressant 

Use, we see the effect on energy intake (potential weight gain) diminish over time.  This 

allows for the model to provide a realistic weight change in alignment with published 

literature.  Without this structure, one’s antidepressant use would continue influence 

one’s energy intake, leading to potentially a continuous weight gain over the course of 

time one is on the antidepressant.  
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Effect of Antidepressants Use Ratio on Energy Intake 

 

 The Target Effect of Antidepressants Use Ratio on Energy Intake is a graphical 

function that was calibrated based upon published literature stating the changes in weight 

seen in different antidepressants over time.   The impact of antidepressants on weight has 

been shown be shown to vary upon the type of antidepressant (68).  With some 

antidepressants, an initial weight loss can be seen over the course of the first few weeks 

(4-12 weeks), however over the long term, weight gain is common.  Based upon a meta-

analysis of 11 different antidepressants, the average weight gain seen over a medium and 

long-term treatment (greater than four months) was 0.89kg (68). However the study was 

unclear of the duration of such weight gain (whether it was per month, or for the duration 

of the prescription).  Further reviews conducted by Schwartz et al. (69) found among five 

different antidepressants, the average weight gain seen was 2.93kg while the duration of 

such weight gain was also varied among the specific type of antidepressant.  Based upon 

the variation seen in published literature, the Target Effect of Antidepressants Use Ratio 

on Energy Intake is set to achieve a weight gain of 2.93 kg over a six-month period when 

the Antidepressant Ratio is at its maximum value of 2.  

 The Actual Effect of Antidepressants Use Ratio on Energy Intake is a first order 

smooth function of the target effect.  A smooth function was used as it takes into account 

the delay time that represents the antidepressants physiological impact on the body and its 

mechanism in which it works to promote weight gain.  Without the smooth function, the 

effect of the antidepressants would be seen immediately in the model, thus not being in 

alignment with real life patterns of weight gain seen in published studies, which indicate 

weight gain due to antidepressants to be gradual over time. 

 

Actual Stress 

 

Actual Stress is influenced by one’s physical activity level (PAL).  Studies have 

found that physical activity can be used to reduce stress through a number of mechanisms 

(70) (71).  Research has shown that physical activity is an effective means of reducing 
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anxiety and various indices of stress among adults (72). However, there is a lack of 

published literature quantifying such a relationship.  The graphical function Effect of 

PAL on Stress was calibrated to provide a reduction in one’s stress level as one’s stress 

level.  The initial value of the curve was calibrated to provide a Stress Ratio of 1 based 

upon the individual’s initial PAL of 1.15, thus providing an initial equilibrium with 

regards to one’s initial stress level.  

 

Actual Emotional Eating Level 

 

 The actual emotional eating level is influenced by the variable Effect of Stress on 

Emotional Eating. This effect is represented as a graphical function. Interviews conducted 

with experts indicated the relationship between stress and emotional eating to be medium 

(two indicated), weak, and non-existent. Due to this spectrum of answers, an s-shaped 

curve was used in the graphical function to allow for a different level of effect to be seen.  

The curve was calibrated to provide an initial Emotional Eating Ratio of 1 to ensure an 

equilibrium level upon initialization of the simulation.  The curve itself allows for a 

maximum increase of one’s emotional eating level of three times the normal value.  As 

the literature has focused on the end result of emotional eating (i.e. increased 

consumption) rather than the concept of an emotional eating level, an assumption was 

made to indicate the exact nature of the relationship, as well as the maximum increase 

that one’s stress ratio could have on one’s emotional eating level.  

 

Effect of Emotional Eating on Energy Intake 

 

 The Effect of Emotional Eating on Energy Intake is a graphical function that was 

calibrated based upon previous studies stating the changes in weight and appetite due to a 

variety of emotional changes.  Experimental studies have shown that emotional eaters 

consume more energy-dense foods in response to negative emotions than non-emotional 

eaters (73). Furthermore, a study by Macht (74) found that higher emotional eating was 

related to eating more sweet and non-sweet energy-dense foods, while it was unrelated to 
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the consumption of vegetables and fruit/berries, supporting the hypothesis that emotional 

eating is specifically related to the increased eating of sweet and high-fat foods. 

 Published literature has shown both increases and also decreases in one’s appetite 

in response to emotional stress. In this model, the assumption is made that the prototype 

individual’s energy intake increases in response to increased levels of emotional stress. 

As studies have focused on the overall behavior (i.e. eating more, eating less) (74) rather 

than quantifying the nature of such behavior (i.e. How much more?), an assumption was 

made to allow for a maximum of a 10% increase above one’s energy expenditure when 

the maximum ratio of emotional eating was reached. The use of an s-shaped curve for the 

graphical function allows for the inclusion of experts’ opinions on the relationship 

between emotional eating on healthy eating, as four experts interviewed indicated this 

relationship to be strong, medium, and very weak. (53) One expert was unsure of the 

relationship. Due to the spectrum of responses, the s-shaped curve allows for each 

effect’s strength to potentially be applied, depending on the ratio emotional eating ratio. 

 

3.2.4 Food Environment Sector 
 

Actual Annual Income 

 

 The variable Actual Annual Income is calculated by multiplying one’s Potential 

Annual Income by the variable Effect of Perceived Weight Bias on SES.  One’s Potential 

Annual Income was taken based upon the median total income for families in British 

Columbia (75). The initial value of $58 500 represents the median income in 2005. The 

parameter Annual Salary Inflation is 0.032, indicating on average, the annual salary 

inflation is 3.2% (75).  

 The Effect of Perceived Weight Bias on SES is a graphical function representing 

the effect of one’s perceived weight bias on SES. It should be noted that annual income 

was selected as a proxy representation of the concept SES (socioeconomic status) that 

was included in the PHSA CLD. Although the concept of socioeconomic status 

commonly encompasses a combination of education, income and occupation (76) 

researchers have stated that SES status is a latent variable cannot be directly measured 
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(77) and there are no mechanical devises that permit direct and relatively precise 

measurements of SES.   

The graphical function was calibrated based upon literature stating that a wage 

penalty is present as one’s weight increases.  A number of studies have measured such an 

effect. Table 5 outlines the quantification of the graphical function used. 

  
BMI Perceived Weight Bias Reduction in Wage 

Normal 0 0 

Overweight 0.065 1% 

Obese: Class 1 0.130 4.5% 

Obese: Class 2 0.450 10% 

Obese: Class 3 0.80 15.4% 

Table 5: Weight Bias and Wage Reduction 

 

All values in the Reduction in Wage are calculated.  For the Obese: Class 1 figure, the 

calculation was made based upon findings that indicated obese men experienced on 

average 1-3.4% reduction in wage, women 2.3 - 6.1%, mild obese women 5.8%, and mild 

obese white black woman 3.3% (12) For Obese: Class 3, the value of 15.4% was taken 

based upon finding indicating severely obese white women faced a 24% wage penalty, 

severely obese white men 19.6%, severely obese black women 14.6%, and severely black 

men 3.5% (12) The values for Obese Class 2 was calculated based upon the average of 

Class 1 and 3, while the value of Overweight was based upon an statistics indicating As a 

consequence, overweight and obese employees earn 1% to 6% less than normal-weight 

people in comparable positions, and this salary difference is greater for obese women 

than obese men  (12) (46). 

 

Percentage of Annual Income Allocated for food 

 

 The percentage of Annual Income Allocated for Food is calculated by dividing 

the Average Annual Cost of Purchasing Healthy Food by the Actual Annual Income.  The 

Average Annual Cost of Purchasing Healthy Food represents the annual cost of 

purchasing the Nutritious Food Basket.  The Nutritious Food Basket is a survey tool that 
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is a measure of the cost of basic healthy eating that represents current nutrition 

recommendations and average food purchasing patterns. Food costing is used to monitor 

both affordability and accessibility of foods by relating the cost of the food basket to 

individual/ family incomes (80).  The initial value of the Nutritious Food Basket 

($7853.52) represents the annual cost of purchasing the food basket for a family of four 

in British Columbia in 2005.  The parameter Annual Food Cost Inflation represents the 

annual increase in the cost of the food basket.  The value was set at 4% based upon 

historical costs of the basket (80) (81) (82) (83). 

 The initial value of one’s annual income allocated for food was calculated to be 

13.4%.  The initial value of the stock Normal Percentage of Annual Income Spent on 

Food is 12.9%, based upon 2010 statistics indicating 12.9% of household income was 

spent on food expenditures (84).  

 

Target Effect of Income Ratio on Ease of Purchasing Healthy Foods 

 

The variable Target Effect of Income Ratio on Ease of Purchasing Healthy Foods 

represents one’s ability to purchase healthy food based upon the percentage of one’s 

annual income that is need to be allocated towards purchasing the nutritious food basket.  

Given the grocery bill is a flexible cost, families often sacrifice quantity and quality of 

food to meet fixed costs, like the rent, utilities, and other essential costs of daily living 

(82) mind, the assumption is made that the Percentage of Annual Income Allocated for 

Food Ratio increases, it makes it more difficult to purchase healthy nutritious foods.  This 

assumption is based upon the fact that on research findings indicating eating a healthy 

diet versus an unhealthy one is more expensive (85).  

 Discussions with subject matter experts indicated that as one’s income available 

for food decreases, one does not in turn decrease their caloric intake – said otherwise, 

they do not continue to purchase the same foods, just less of such foods. Instead, 

individuals in the Western world continue to aim to purchase the same calorie levels, and 

do so through the purchasing of lower nutrient, more energy dense foods.  Purchasing of 

such foods often leads to increased caloric intake than normal. This finding is supported 

by research finding that low income Canadians eat fewer servings of vegetables, fruit and 
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milk than wealthier Canadians (81) Furthermore, people with lower socio-economic 

status (SES) have poorer dietary quality on average than more socioeconomically 

advantaged people (86), one can speculate this is due in part to the purchasing of less 

nutrition foods, which in turn, are often replaced by higher energy dense foods.  

3.3 Model Calibration 
 

 Physical Activity Sector 

 

 The physical activity coefficient used in the energy expenditure equation 

developed by Hall was set at of 7 +/- 4 kcal/kg/day.  As this energy expenditure equation 

was calibrated to match the reference mode behavior of the NHANES data (48), there is 

no published indication of what volume of physical activity a value of 7 represents, nor 

what scale was used in determining the value.  Due to these limitations in the information 

available, a variable Effect of PAL on Physical Activity Coefficient was introduced.  This 

variable was calibrated using the Institute of Medicine equations for estimating energy 

requirements (EER) (112).  Equation 7 outlines the equation for men, while Equation 8 

outlines the equation used for women 
  

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛  7    
  

𝐸𝐸𝑅   =   662   −   (9.53  𝑥  𝑎𝑔𝑒  [𝑦])   +   𝑃𝐴  𝑥  {  (15.91  𝑥  𝑤𝑒𝑖𝑔ℎ𝑡  [𝑘𝑔])   +   (539.6  𝑥  ℎ𝑒𝑖𝑔ℎ𝑡  [𝑚])  } 
 
 
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛  8 

  
𝐸𝐸𝑅   =   354   −   (6.91  𝑥  𝑎𝑔𝑒  [𝑦])   +   𝑃𝐴  𝑥  {  (9.36  𝑥  𝑤𝑒𝑖𝑔ℎ𝑡  [𝑘𝑔])   +   (726  𝑥  ℎ𝑒𝑖𝑔ℎ𝑡  [𝑚])  }  

  
 
Based upon the five-step process outlined in 3.3.2 Physical Activity Sector (subsector 

Physical Activity Coefficient), Table 6 provides an overview of steps 1 through 4. 
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Volume of Moderate 

Physical Activity 

(min/day) 

Activity Category (112) PAL (112) 
PAL Value Used in 

Model 

< 30        Sedentary 1.0-1.39 1.195 

30-60 Low Active 1.4-1.59 1.495 

61-180        Active 1.6-1.89 1.745 

>180 Very Active 1.9-2.5 
2.2 

Table 6: Physical Activity sector conversion factors 

Using the four different physical activity categories available for this equation, the 

EER was calculated for both men and women for each of the four levels of categories of 

physical activity. Table 7 outlines the calculations made. 

 
Physical Activity Category EER: Men EER: Women Average 

Sedentary 2358 1997 2178 

Low Active 2582 2223 2402 

Active 2866 2506 2686 

Very Active 3333 2845 3089 

Table 7: EER Calculations 

 

The graphical function Effect of PAL on Physical Activity Coefficient was 

calibrated using the average EER calculated from the Institute of Medicine equation. This 

variable was included in the model as a way to ensure that the energy expenditure 

equation produces a realistic output when one’s physical activity changes.   This 

graphical function provides an output effect that is multiplied with the initial value of 7 to 

reproduce an energy expenditure that matches that of the average values found.  Table 8 

provides information on the multiplication factors used as well as the outcome of the 

energy expenditure equation used in the model using these factors. 

 
Volume of 

Physical 

PAL 

(midpoint 

Multiplication 

Factor in Effect 

Physical Activity 

Coefficient 

Energy 

Expenditure 

Estimated 

Energy 
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Activity of range) of PAL on 

Physical Activity 

Coefficient 

(Model 

equation) 

Requirement 

(Men and 

Women 

average) 

30 min 1.195 1.33 1.33*7 = 9.31 2310 2178 

60 min 1.495 1.845 1.33*7 = 12.915 2563 2402 

90 min 1.596 2.03 2.03*7 = 14.21 2655 2686 

180 min 2.2 2.884 2.884*7 = 20.188 3075 3089 

Table 8: Physical Activity Calculations 

4 Model Simulation Results 

4.1 Simulation Characteristics 
 

The model is calibrated to represent an average British Columbia. Table 9 

provides the characteristics of the prototype individual. 

 

Table 9: Simulation prototype characteristics 

 

The time horizon for the model is set to four years.  The rationale for the time 

horizon selection is to an average length of time a political party is in power within the 

provincial government in British Columbia (88). The time increment for the model is set 

Characteristic Value Description Source 

Age 41 years Average age of British Columbian in 2012 (87) 

Sex Male - - 

Weight 70.72kg Calculation based upon weight needed to obtain average BMI 

of Canadians based upon average height.  

(108) (109) 

Height 1.69 Average height combined of Canadian men and women in 

2005  

(109) 

BMI 24.76 Average combined BMI of Canadian men and women in 2005 (109) 

Daily PA 24 minutes Volume of physical activity is in alignment with standards for 

sedentary individual 

- 



 52 

to 1 day as this allows for the representation of one’s daily energy intake and daily energy 

expenditure to be included in the model. The decision to use initialize the model using 

data from 2005 (when available) was due to an analysis of the BMI pattern seen over 

time.  The behaviour pattern seen appeared to begin its increase in 2005.    

The following section highlights the simulation results of the model based upon 

the above prototype individual.  Following discussion of the results, sensitivity tests will 

be presented and discussed based upon changes in parameter values for the prototype 

individual.  As the model allows for a range of prototypes to be tested, a second 

individual will be presented along with the results from the simulation runs. 

4.2 Simulation Results 
 

The aim of the model was to explore how the interaction between factors within 

one’s physiology, physical activity, mental well-being, and the food environment play a 

role in one’s weight over time. Figure 10 shows the simulation results of the prototype 

individual’s body weight over the course of the four-year simulation period.    

 

 
Figure 10: Simulation Results: Body Weight 

 

The behavior demonstrates an s-shaped growth pattern.  The increase in weight is 

due to an imbalance between one’s energy intake and energy expenditure.  Investigating 

the energy expenditure side, Figure 11 provides the results of one’s change in physical 

activity. The decrease in physical activity is due the increase in weight driving one’s 
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Perceived Weight Bias, which acts as a barrier to physical activity, reducing the 

percentage of one’s free time that they time one allocates to physical activity. 

 

 
Figure 11: Simulation Results: Daily Physical Activity 

 

The decrease seen in physical activity (and thus energy expenditure) and the 

increase seen in energy intake creates a positive energy balance. This initial balance leads 

to a number of effects.  First, this triggers a balancing loop that works to return to a zero 

energy balance.  This loop causes an increase in both fat mass and fat free mass that 

increases the energy expenditure to a level that matches the energy intake, eliminating the 

energy balance. As there is a only a small decrease in one’s physical activity, we can rule 

out physical activity as a driver causing a decrease in energy expenditure that may have 

led to the weight gain seen. 

In the assessment of determining what changes in energy intake could have led to 

the change in weight seen over time, we see one’s energy intake being driven initially by 

the food environment sector.  As the initial percentage of income (13.4%) allocated 

towards food is higher than the normal value (12.9%), we see this discrepancy increase 

the Percentage of Annual Income Allocated for Food Ratio.  In reality, an increase in this 

ratio represents an increase in the difficulty of purchasing healthy foods within a constant 

budget, thus leading an individual to purchase cheaper, more energy dense foods in order 

to match the same volume of food purchased.  This leads to an increase in the Target 

Effect of Income on ratio on Ease of Purchasing Healthy Foods, which in turn, leads to an 

increase in energy intake.   
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The initial weight gain leads to an increase in the Perceived Weight Bias, as seen 

in Figure 12. 

 
Figure 12: Simulation Results: Perceived Weight Bias 

 

The graph shows that the change in Perceived Weight Bias is minimal.  This is 

due to an initial value of ~ 0, as it was assumed since the individual’s initial BMI falls 

within the normal category, they would not be subject to any weight bias.  Furthermore, 

although the weight gain presented over time does increase the individual’s BMI from the 

normal category to the overweight category, the individual would only be subject to 

minimal weight bias at this BMI level.  This finding is in alignment with literature 

indicating the weight bias seen in overweight subjects to be low (only three percent of 

overweight men indicated they were subject to weight bias).   Due to the low value of 

Perceived Weight Bias, it does not trigger initially the reinforcing loops that impact the 

mental well-being sector, thus we see no effect from one’s emotional eating or 

antidepressant use on increasing energy intake, as shown in Figures 13 and 14 

respectively.   
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Figure 13: Simulation Result: Stress Ratio 

 

 
Figure 14: Simulation result: Emotional Eating Ratio 

 

The initial value of greater than 1 in both the Stress Ratio (1.04) and Emotional 

Eating Ratio (1.06) are as a result of the inability to initializing the graphical functions 

influencing both the Actual Stress Value and Actual Emotional Eating Level to a specific 

value of 1 using the iThink software. The slight increases above 1 are not significant 

enough to alter the behavioral pattern seen in body weight and therefore their effect can 

be neglected. 

 Looking at the pattern of body weight, initially we see a period of little to no 

movement in one’s weight.  This can be attributed to the delays seen in the variables 

driving the change in energy intake, specifically the Effect of the Percentage of Annual 

Income Allocated for Food.  The growth in weight gain is reduced due to a number of 
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factors.  As the Normal Percentage of Income Allocated for Food changes to match that 

of the Percentage of Income Allocated for Food, we see the ratio of the two works to 

reach a value of 1.  As the ratio moves towards a value of 1, this reduces the impact the 

variable Target Effect of Income Ratio on Ease of Purchasing Healthy Foods. The growth 

seen in weight loss is also balanced by the effects of the physiology of the individual.   

The increase in weight is counterbalanced by an increase in fat and fat free mass, thus 

increasing the energy expenditure of the body.  Overall we see that the body works to 

achieve a new set point for energy intake and energy expenditure, as seen in Figure 15. 

 

 
Figure 15: Simulation Result: Energy Intake (red) and Energy Expenditure (blue) 

 

The continued increase seen in body weight can be attributed to the reinforcing 

loop that continues to increase one’s Perceived Weight Bias.  This continually increase in 

Perceived Weight Bias further prevents one from achieving their potential income, thus 

increasing the percentage of one’s income they allocate towards foods and continuing to 

create a discrepancy between the Percentage of Income Allocated for Food and the 

Normal Percentage of Income Allocated for Food.   

5 Model Validation 
 

Although the lack of formal, objective measures available for validation testing 

may be limited for the model, one can also validate the structure of the model based upon 

semi-formal or subjective means (89).  One subjective validation test focuses on 
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validating the model with some respect to the overall purpose of the model, or judging 

the model’s usefulness as with some respect to its purpose.  As the purpose of the model 

was to explore how the interactions between physiology, physical activity, mental 

wellbeing, and the food environment can impact one’s weight over time, the model 

successfully serves as a dynamic hypothesis to achieve this purpose.  As Sterman states 

that no model can ever truly verified or validated because all models are wrong (15), this 

statement lends itself to focusing more on validating or verifying the purpose of the 

model and the process used in building the model in efforts to gain confidence in how 

well the model structure represents its counterpart in the real-world.   Sterman has also 

outlined twelve different groups of assessment tests that can be used to evaluate the 

validity and sensitivity of a model (15). Seven of these twelve groups will be discussed in 

the following section.  

5.1 Behavior Reproduction 
  

 The behavior reproduction test seeks to see if the model reproduces the behavior 

of interest in the system either qualitatively or quantitatively (15). It further looks to see if 

the model endogenously generates the symptoms of difficulty motivating the study.  One 

can answer these questions by either performing statistically analysis or by completing a 

qualitative assessment output of the model, looking at different modes of behavior and 

shape of variables.   Due to the lack of objective measures available, the change is body 

weight serves as the primary variable to validate the overall model behavior.  The 

validation measure used is the percentage weight change found in the National 

Longitudinal Survey of Youth.  The survey sampled 12,686 young men and women who 

reported their weight biennially from 1986 to 2004. The largest change between two 

successive reports was 3.6%, indicating the greatest weight gain seen was 1.8% per year 

(27). Table 10 outlines the percent growth in body weight seen in the model. 
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Time Frame End Weight (kg) Percent Change 

Day 1 70.72  

Day 1-365 71.95 1.7% 

Day 366 – 730 73.79 2.55% 

Day 731 – 1095 74.77 1.3% 

Day 1096 -1460 75.32 0.7% 

Table 10: Simulation Results: Body Weight 

 

Overall we see that the percent weight change is in alignment with the findings 

from the National Longitudinal Survey of Youth study for all but year two (day 366-730).  

Using the findings from the National Longitudinal Survey of Youth does have 

limitations.  First, the study looked at weight changes in youth, which differ from the 

prototype adult seen in the model.  Second, as the literature has shown that antidepressant 

use can cause up weight gain of up to 3.1kg in one year. Based upon the prototype 

individual, this statistic alone could account for a 4.4% increase in body weight over year 

one, well above the rate found by the National Longitudinal Survey of Youth study.  

Although the antidepressant loop is not active in this simulation, it should be taken into 

account when analyzing the annual weight gain of the simulation prototype individual.   

 The results seen in body weight provide insight on the validation of the scale for 

the three graphical functions used that impact energy intake.  For the graphical function 

Effect of Antidepressant Use on Energy Intake, the scale of the effect was set from 1 – 

1.04.  This scale was set to provide a maximum of 4% increase in energy intake as this 

would result in a maximum of 2.82 kg gained in one year, which is in alignment with the 

average weight gain seen in those using antidepressants (69).  For the other two graphical 

functions (Effect of Ease of Purchasing Healthy Foods on Energy Intake and Effect of 

Emotional Eating on Energy Intake), an arbitrary scale was set from 1-1.1.  Based upon 

the results seen for the change in body weight, one can assess that a maximum value of 

1.1 serves as a plausible upper limit for each variable, however further research is needed 

to be conducted in order to further gain confidence in these values.  
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5.2 Boundary Adequacy 
 

 Boundary adequacy tests assess the appropriateness of the model boundary for the 

purpose at hand.  These tests assess whether or not important concepts for addressing the 

problem endogenous to the model are absent from the model structure (15).  As the initial 

model boundary was set based upon the factors included in the CLD created by PHSA the 

question to be answered is whether or not the factors selected from the CLD that are 

included in the model are represent an adequate boundary to produce a plausible behavior 

over the time horizon.  As the model structure does produce a plausible behavior pattern 

of body weight over time, this indicates the current model boundary does include 

feedback loops among the four sectors necessary to produce the behavior.  However, a 

number of factors could still be added to the model in order to improve the boundary 

adequacy.  For example, several factors had to be simplified from the PHSA’s CLD given 

current gaps in the evidence. The addition of factors is discussed in Future Work.  

5.3 Dimensional Consistency 
 

 Dimensional consistency seeks to ensure that each equation is dimensionally 

consistent without the use of parameters having no real world meaning (15).  The Unit 

Check function of the iThink software can be used as an aid to check for unit consistency.  

The model does meet the criteria for dimension consistency according to iThink.   

5.4 Extreme Conditions 
 

 The purpose of extreme conditions tests is to determine if each equation make 

sense even when its inputs take on extreme values and to ensure the model responds 

plausibly when subjected to extreme shocks and values to parameters (15).   These tests 

look at assessing the model’s robustness, as the model should behave in a realistic 

manner no matter how extreme the inputs or policies imposed on the model are (15).   
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Physical Activity Extreme Condition Test 

 

 The extreme condition test performed for the physical activity sector was to assess 

the behavior of the model when there are no barriers to physical activity and when one’s 

ability to engage in physical activity is set to its maximum value.  Equation 6 outlines the 

equation used for this test.  

 
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛  6 
 
𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒  𝑜𝑓  𝐹𝑟𝑒𝑒  𝑇𝑖𝑚𝑒  𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑  𝑓𝑜𝑟  𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦  

=    (0.5 ∗ 𝐸𝑓𝑓𝑒𝑐𝑡_𝑜𝑓_𝐴𝑏𝑖𝑙𝑖𝑡𝑦_𝑡𝑜_𝐸𝑛𝑔𝑎𝑔𝑒_𝑖𝑛_𝑃𝐴_𝑜𝑛_𝑃𝐴 + 0.5
∗ 𝐸𝑓𝑓𝑒𝑐𝑡_𝑜𝑓_𝐵𝑎𝑟𝑟𝑖𝑒𝑟𝑠_𝐸𝑛𝑔𝑎𝑔𝑖𝑛𝑔_𝑖𝑛_𝑃𝐴_𝑜𝑛_𝑃𝐴) ∗ 0 + 1  

 

Both effects were negated, and a value of 1 was set for the variable.  The results for Daily 

Physical Activity are shown in Figure 16. 

 

 
Figure 16: Simulation Result: Daily Physical Activity 

 

The results seen in Daily Physical Activity are expected, as the extreme test 

allows for all of the 5.5 hours of Free Time Available to be allocated towards Leisure 

Time Available.   

Looking at the resulting behavior in one’s body weight Figure 17, we actually see 

the same pattern of weight gain as in the initial simulation, however at a stronger rate 

(greater weight gain seen).    
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Figure 17: Extreme Condition Simulation Result: Body Weight. The blue graph indicates initial 

simulation run. Red line indicates simulation result from physical activity extreme test. 

  

At the end of the simulation we see a weight of 76.48 kg, higher than the 75.32kg 

seen from the initial simulation run. When analyzing this taking into account only the 

current model structure, the results are as expected.  As one’s physical activity increases, 

so does his/her energy expenditure (via the physical activity coefficient).  As formula for 

the energy intake is formulated around one’s energy expenditure, any increase in energy 

expenditure will ultimately lead to an increase in intake too.   In part, this action is 

equivalent to what happens in the real world, as if one has a goal to maintain one’s 

weight with an increase in physical activity, one would expect to see an increase in 

energy intake. The increase in body weight seen is driven by the exact same mechanisms 

as in the initial simulation run.  Although the rationale for such weight gain is valid, the 

current model formulation lacks a decision rule that would take into account the balance 

between one’s physical activity level and energy intake.  One would expect that an 

individual performing 120 minutes of moderate physical activity per day would not be 

expecting to gain weight (albeit possibly muscle mass, however the model does not 

explicitly take into account any muscle gained through physical activity).  One 

opportunity to improve the model’s response to this extreme condition test would be to 

add structure in the model that represents an individual’s behavioral decision regarding 

whether or not they are looking to maintain, lose, or gain weight. 
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Mental Well-Being Extreme Conditions Test 

 

 The extreme conditions test selected for the mental well-being sector was to set 

the Actual Depression Level to the Maximum Depression Level.  Figure 18 provides the 

results for the extreme condition test. 

 

 
Figure 18: Extreme Condition Simulation Result: Body Weight. The blue graph indicates initial 
simulation run. Red line indicates simulation result from mental well-being extreme condition test. 

  

Overall we see a greater weight gain in the extreme conditions test.  This is due to 

the fact that this individual is subject to a greater influence of antidepressants (a value of 

2 instead of the a normal value of 1 for the variable Antidepressant Use).  This in turn 

causes a greater value for the Antidepressant Use Ratio and subsequently, a greater effect 

in the Target Effect of Antidepressant Use Ratio on Energy Intake.  Here, the concept of 

Antidepressant Use represents the quantity of antidepressants one individual may be 

prescribed.  As the individual is at the maximum level of depression (a value of 63), the 

assumption is made that this individual may be on multiple antidepressants, thus 

increasing his/her potential to be subject to the multiple weight gaining effects seen from 

the antidepressant mix.   
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Food Environment Extreme Conditions Test 

 

 The extreme conditions test selected for the food environment sector was to set 

the Potential Annual Income to an initial value of $150 000 instead of the original 

simulation value of $58 500. Figure 19 provides the results for the extreme condition test. 

 

 
Figure 19: Extreme Condition Simulation Result: Percentage of Annual Income Allocated for Food. 
The blue graph indicates initial simulation run. Red line indicates simulation result from food environment 

extreme condition test. 

 

We see that with a higher income, the Percentage of Annual Income Allocated 

For Food is decreased significantly.  This results in the variable Percentage of Annual 

Income Allocated For Food Ratio to be less than 1, resulting in no impact of the variable 

Target Effect of Income Ratio on Ease of Purchasing Healthy Foods on one’s energy 

intake, as evidence by Figure 20, which indicates no weight change over the simulation 

time. 
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Figure 20: Extreme Condition Simulation Result: Body Weight. The blue graph indicates initial 
simulation run. Red line indicates simulation result from food environment extreme condition test. 

 

As the prototype individual has a weight within the normal BMI range, the effects 

of the mental well-being sector on weight are not seen.  As the change in weight is solely 

influencing by the food environment sector in the original simulation, we would expect to 

no change in weight when the effects on energy intake from this sector are nullified.  The 

results seen in one’s body weight would be expected when viewed in terms of the food 

environment, which no longer acts as a barrier to healthy eating for the individual.  In 

reality, this may not be the true case, as other aspects of the food environment would 

need to be taken into account to truly see if an extremely high-income level nullifies the 

barrier effect seen by the food environment  

5.5 Model Specifications Tests 
 

 Model specification tests include changing the technical specifications of the 

simulation to determine if the changes alter the behavior of the model.  Two different 

tests were completed – (1) extending the time horizon to eight years (2920 days), and (2) 

changing the integration time (integration error tests). 

 

Extending Time Horizon 

 

 Figure 21 provides the results of the model behavior for body weight based when 

the time horizon is extended. 
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Figure 21 Extending Time Horizon simulation result: Body weight 

 

The behavior seen in one’s body weight beyond the initial time horizon period 

(post-1460 days) can be attributed to the impact of the food environment sector and the 

physiology sector.  We can attribute the continued rise in body weight to the continued 

discrepancy seen between the Percentage of Annual Income Allocated for Food and the 

Normal Percentage of Annual Income Allocated for Food.  As the historical data shows 

the rate of growth in price for the food basket rises faster than that of the potential annual 

income, we see the Percentage of Annual Income Allocated for Food continue to grow.  

The growth in body weight is counterbalanced somewhat by the physiology sector, where 

one’s energy expenditure due to increases in resting metabolic rates for fat mass and fat 

free mass also grow, thus attempting to reach a zero energy balance.  In reality, we would 

expect to see potential weight increases if the food environment continues to strengthen 

its effect as a barrier to healthy eating, however it is unknown to what extend (both in 

terms of quantity and time span) that such an effect would continue to promote weight 

gain.  One would expect to see this effect level off after some time, as the individual 

would become stable at a particular weight.   In order to achieve such an effect, additional 

structure would need to be added to the model to account for one’s individual decision-

making and desire to maintain a particular weight.   
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Integration Error Tests 

 

 Integration error tests seek to determine if the model simulation results are 

sensitive to the time step or numerical integration method (15). For the purpose of this 

analysis, the focus will be only on the time step. Table 11 outlines the changes in body 

weight seen based upon the different time steps  

 
Time Frame dt: 1 day dt: 2 days dt: 0.5 days dt: 0.01 days 

Day 1 70.72kg 70.72kg 70.72kg 70.72kg 

Day 366 71.95 72.01kg 71.96kg 71.96kg 

Day 731 73.79 73.82kg 73.79kg 73.79kg 

Day 1096 74.77 74.82kg 74.77kg 74.77kg 

Day 1460 75.32 75.39kg 75.32kg 75.32kg 

Table 11: Integration error tests simulation results 

 

A visual analysis of the different dt simulation results indicate there are no major 

differences between the results based upon the different dt values used.  The conclusion 

can be made that the initial dt time of 1 day yields a correct approximation of the 

underlying continuous dynamics that are accurate to meet the purpose of the model.   

6 Sensitivity Analysis  

 
 The transition of the PHSA CLD posed a number of challenges in terms of 

operationalizing the soft variables that encompass the real world systems of weight and 

well-being.  A number of graphical functions were used to represent the effects conveyed 

by the different soft variables.  As there were a number of challenges and limitations in 

the creation of such graphical functions, validation of the functions themselves proves 

difficult.  The following section provides simulation results based upon the alterations of 

a number of graphical functions and parameter values.  The purpose of conducting such 

tests is to identify parts of the model in which a change in a parameter value or graphical 

function results in a meaningful change in output behaviour.  Such parts deemed sensitive 

pieces of the model can be identified, as a piece where more literature may need to be 
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conducted to ensure the values included in the model best represent their real world 

counter parts. The sensitive parameters can also be used by policy makers to identify 

leverage points in the system that are most responsive to any future policy changes.  

 The following sections are broken down as followed.  For each sector, the results 

will be presented for one or more parameter changes, along with the results seen in body 

weight.   

6.1 Physical Activity Sector  
 

 The parameter changes for the physical activity sector focus on the built 

environment variables – Number of Facilities in Buffer Zone and the NEWS.  The 

changes made for the simulation runs are summarized in Table 12.  
 

Variable Initial Value Value: Run 1 Value: Run 2 

Number of Facilities 

Within Buffer Zone 

2 4 1 

NEWS 4 8 2 

Table 12: Sensitivity Analysis Changes: Physical Activity Sector 

The results for the simulation runs can be seen in Figure 22 and Figure 23.  

 

 
Figure 22: Sensitivity Analysis Physical Activity Sector: Daily Physical Activity 
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Figure 23: Sensitivity Analysis Physical Activity Sector: Body Weight 

 

With improvements made to the built environment that make the environment 

more conducive for physical activity, we expect to see an increase in one’s daily physical 

activity. This finding is in alignment with findings of Sallis et al. (90) whose meta-

analysis found that availability and proximity to recreation facilities has been associated 

consistently with greater physical activity among adults.  Doubling both parameters 

resulted in a 115% increase in physical activity at the end of the simulation run (22.85 

minutes to 49.25 minutes), while cutting the values in half decreased the physical activity 

by 55% (to 10.31 minutes).  This variation in the results reflect the nature of the s-shaped 

curves used for the graphical effects that represent the Effect of the Facilities on Time 

Used for Rec PA and the Effect of NEWS on Time Used for Util PA.  As the input values 

into both of these effects are reduced, the s-shaped pattern of the effect provides a lower 

output; hence we see a lower value being multiplied against the Leisure Time Available 

to provide the output value for the Daily Recreational Physical Activity or Daily 

Utilitarian Physical Activity flows. 

The changes in body weight mimic those seen in the initial simulation run. Due to 

the current formulation of the energy intake flow, we expect to see an increase in body 

weight due to the influences of the food environment sector, regardless of the changes in 

physical activity.  
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6.2 Mental Well-Being Sector  
 

 The parameter changes in the Mental Well-being sector focus on the graphical 

functions.  Due to the lack of evidence on the quantification of the relationship between 

variables within this sector, altering both the scale of the graphical functions as well as 

the shape of the curves can provide insight on whether or not a particular function serves 

as a leverage point for practitioners or policy makers. 

  

Effect of PAL on Stress 

 

 The initial graphical function Effect of PAL on Stress takes into account the 

assumption that the effect of PAL on stress falls within a range of 0-2, indicating the 

lowest PAL value (1) provides an Actual Stress Level of 2, while a maximum value of 

PAL (2.5) provides an Actual Stress Value of 1 (which matches the initial value for the 

Normal Stress Level).  The curve also assumes that any PAL value greater than the initial 

value (~1.15), the effect of PAL of Stress is equal to 1. This indicates that only a decrease 

in physical activity (from the initial value) would lead to a higher stress value. 

A parameter test was conducted with the graphical function Effect of PAL on 

Stress.  Two different curves were simulated.  Figures 24 outlines the different curves 

used. Figures 25 and 26 provide the results of the simulation. 

 

 
Figure 24: Sensitivity Analysis Mental Well-being Sector: Effect of PAL on Stress.  The blue line 

indicates the initial graphical function curve, the red line the curve used in the second simulation, and the 
purple line, the curve used in the third simulation. 
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Figure 25: Sensitivity Analysis Mental Well-being Sector: Actual Stress. The blue line indicates the 

initial simulation result; the red line the second simulation result, and the purple line, the result of the third 
simulation. 

 

 
Figure 26: Sensitivity Analysis Mental Well-being Sector: Actual Emotional Eating Level. The blue 

line indicates the initial simulation result; the red line the second simulation result, and the purple line, the 
result of the third simulation 

 

The results shown in Figure 25 indicate a stable value for Actual Stress across all 

three different graphical functions.  As one’s PAL is the only variable influencing stress 

in the model, we would expect to see this behavioral pattern due to the minimal changes 

seen in PAL over time within the model. With an initial higher Actual Stress Level (as 

seen in simulations 2 and 3), we would expect to see a higher initial value for Actual 

Emotional Eating Level (as seen in Figure 24). The behavior seen in the Actual 

Emotional Eating Level exhibits a goal seeking behavior towards a value of 1.  This is 

due to the Stress Ratio normalizing back to a value of 1 over time (due to the Normal 

Stress Level adapting to meet the Actual Stress Level).  Analysis of the graphs indicates 
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that the higher the Actual Stress level, the greater initial value we see of the Actual 

Emotional Eating Level.  

 

 
Figure 27: Sensitivity Analysis Mental Well-being Sector: Body Weight. The blue line indicates the 

initial simulation result; the red line the second simulation result, and the purple line, the result of the third 
simulation.  

 

Figure 27 highlights the changes in body weight seen through the simulation runs 

for the mental well-being sector sensitivity analysis.  In the initial simulation, the initial 

PAL value was set to ~1.115 and resulted in an Actual Stress Value of 1. Any decrease in 

the initial value of the PAL (e.g. if it was initialized at 1.04), this value produces an 

Actual Stress Value greater than 1, thus creating discrepancy it creates between the 

Actual Stress Value and the Normal Stress Value. This discrepancy triggers the 

reinforcing loop that then drives works to increase energy intake through emotional 

eating and antidepressant use.   

We see in the simulation 3 that even though the shape of the graphical function 

curve differs from that of the initial simulation, the curve in simulation three still provides 

an Actual Stress value of 1 when PAL is equal to 1.115, thus indicating no difference in 

the weight gain pattern when compared to the initial simulation run.   Overall we see that 

even with a three-fold increase in one’s Actual Stress Level (From 1 to 3), we only see a 

minimal increase in one’s body weight.  This indicates that based upon the current model 

structure, one’s stress level would not be recommended to policy makers as a leverage 

point for policies to improve the weight of Canadians. 
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Effect of Stress Ratio on Actual Emotional Eating Level  

 

The current graphical function Effect of Stress Ratio on Emotional Eating takes 

into account the assumption that the Effect of the Stress Ratio on one’s Actual Emotional 

Eating level falls within a range of 0-3. This indicates that a Stress Ratio value of less 

than or equal to 1 provides an output effect (an Actual Emotional Eating Level) of 1, 

indicating no effect on the Actual Emotional Eating Level, and a maximum value of the 

Stress Ratio (a value of 2) provides an output effect of 3.  

A sensitivity analysis was conducted with the graphical function Effect of Stress 

Ratio on Actual Emotional Eating Level. Figures 28 outlines the different curves used.  

 

 
Figure 28: Sensitivity Analysis Mental Well-being Sector: Effect of Stress Ratio on Actual Emotional 

Eating Level. The blue line indicates the initial simulation result; the purple line the second simulation 
result, and the green line, the result of the third simulation.  

 

Figure 29 highlights the change seen in the Actual Emotional Eating Level based 

upon the change in the graphical function.  We see that there is minimal change in 

simulation 1 from the initial value, however simulation 3 provides a greater change in the 

Actual Emotional Eating Level. As any value above 1 for the Actual Emotional Eating 

Level will trigger a response by the Emotional Eating Level Ratio to increase one’s 

energy intake, we see in Figure 30 that simulation 3 provides a greater increase in weight 

over time. 
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Figure 29: Sensitivity Analysis Mental Well-being Sector Actual Emotional Eating Level. The blue 
line indicates the initial simulation result; the purple line the second simulation result, and the green line, 

the result of the third simulation 

 

 
Figure 30: Sensitivity Analysis Mental Well-being Sector Body Weight. The blue line indicates the 
initial simulation result; the purple line the second simulation result, and the green line, the result of the 

third simulation. 

 

6.3 Multiple Parameter Assessments 
 

 Previous sensitivity analysis of parameters has focused on altering a single 

parameter at a time to see the effects of weight.  This section describes the model 

behavior based upon changing multiple parameters at one time. Table 13 provides 

information on the changes made in the model.  Figure 31 provides the results of the 

multiple parameter changes.   
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Parameter Initial Value Simulation 2 Value Simulation 3 Value Simulation 4 Value 

NEWS Rating 4 6 2 10 

Ability to Engage in 

Physical Activity 

1 3 0.5 5 

Normal Stress Level 1 3 2 0.2 

Normal Level of 

Emotional Eating 

1 3 2 0.2 

Potential Annual 

Income 

$58500 $65000 $48000 $70000 

Table 13: Multiple Parameter Assessments – Changed parameter values 

 

 
Figure 31: Multiple Parameter Changes – Body Weight. The blue line is the result from the initial 
simulation; the red line from simulation 2; the purple line from simulation 3; and the green line from 

simulation 4. 

 

For Simulation 2, we see minimal change in weight, with the change coming after 

year three. As the parameter changes made increased the likelihood an individual would 

increase their physical activity, coupled with increasing the normal values for the mental 

well-being variables, thus reducing the strength of the reinforcing loops from the mental 

well-being sector that drive one’s energy intake (via emotional eating and 

antidepressants), we would expect to see minimal increases in body weight. The increase 

Body Weight
Page 1

1.00 366.00 731.00 1096.00 1461.00
Days

1 :

1 :

1 :

70

75

80
Body Weight: 1 - 2 - 3 - 4 - 

1

1

1

1

2 2 2 2
3

3

3

3

4 4 4 4



 75 

in body weight seen near the end of the simulation can be attributed to the increasing cost 

of purchasing healthy food, as the annual percent increase is greater than that of the 

potential income. Even though the Potential Annual Income is greater in simulation 2, 

eventually the rise in the Average Annual Cost of Purchasing Healthy Food becomes 

greater than the Actual Annual Income, thus increasing the Percentage of Annual Income 

Allocated for Food, increasing the potential difficulty in purchasing healthy foods. 

 For simulation 3, we see a greater overall increase in body weight, with the same 

behavioral pattern represented as in the initial simulation.  In this simulation, the changes 

resulted in a decrease in the physical activity, thus reducing the impact of physical 

activity (PAL) on stress. The changes made to the mental well-being variables result in a 

weakening of the reinforcing loops that flow through the mental-well being sector, thus 

potentially offsetting some of the reinforcing effect seen from the reducing in physical 

activity.  As the Potential Annual Income was reduced from the initial value, we see this 

as the major driver behind the increase in the body weight.   

 For simulation 4, the behavioral pattern differs from the initial simulation run.  In 

this simulation, factors influencing physical activity were increased, thus reducing one’s 

stress level and the strength of the reinforcing loops that are driven by stress.  However, 

as the normal values for the mental well-being variables were reduced, this results in a 

strengthening of the same reinforcing loops that work to drive energy intake.  The 

increase in Potential Annual Income works to offset the increase in energy intake seen via 

the mental well-being sector.  The initial increase in weight can be attributed in large to 

the mental well-being sector, as both the Stress Ratio and Emotional Eating Ratio are at 

their largest values at the initial simulation, resulting in the strongest effect from both 

variables.  As the Normal values eventually are increased to meet their actual 

counterparts, we see a reduction in their strengths and thus a reduction in the rate of 

weight gain. The stabilization of body weight can be attributed to two factors.  First, as 

the aforementioned normal values adapt to meet their actual counterparts, we see their 

effects reduced to zero.  Second, as the Actual Annual Income continues to be higher than 

in the initial simulation, we see no difficulties in purchasing healthy food, hence there is 

no effect increasing one’s energy intake.  As seen in simulation 2, the body weight 
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increase seen near the end of simulation 3 can be attributed to a greater rise in food costs 

in relation to a the rise in actual income. 

7. Model Simulation Results – Prototype B Simulation 
 

 The previous sections discussed the initial simulation results and the results when 

a number of different model parameters were adjusted based upon the same prototype 

individual.  One benefit of the model is that it can be calibrated for an infinite number of 

prototype individuals.  This feature can be of use in particular to health care practitioners, 

whose learning may be improved by understanding not only the dynamics at play within 

the system, but also how these dynamics may change depending on the individual and the 

individual’s environment.   

 The following section details the profile of a second prototype individual, 

including parameter changes and simulation results.   Table 14 compares the 

characteristics of Prototype B with the prototype individual ran in the initial simulation. 

 

Characteristic Prototype A Prototype B 

Age 41 years 50 years old 

Sex Male Female 

Weight 70.72kg 87.65kg 

Height 1.69 1.66 

BMI 24.76 32 

Daily PA 24 minutes 10 minutes 

Table 14: Comparison of Prototype A and Prototype B Parameters 

 

 In order to correctly adjust for the change in physical activity, further changes 

needed to be made in the physical activity sector in order to ensure an initial value of 0 

for daily physical activity. There were a number of possible changes to make.  For this 

simulation, it was selected to change the parameters Effect of Facilities on Time Used for 

Rec PA and Effect of NEWS on Time Used for Util PA.  These two factors were changed 

instead of changing factors that influenced the flow Time Available for Leisure Activity 
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as it was assumed that the individual might still have the same amount of Leisure Time 

Available, however they can allocate it to non-Physical Activity Leisure Time (i.e. social 

or cognitive leisure activities).   

 Without changing any further parameters, the initial base run of prototype B 

shows a similar pattern of weight gain as with prototype A.  

 

 
Figure 32: Prototype B simulation run: Body Weight 

 

 Table 15 shows the rate of weight gain, compared to that of prototype A.  

 
Time Frame End Weight (kg) – 

Prototype A 

Percent Change – 

Prototype A 

End Weight (kg) – 

Prototype B 

Percent Change – 

Prototype B 

Day 1 70.72 - 87.65  

Day 365 71.95 1.7% 89.02 1.6% 

Day 730 73.79 2.6% 90.53 1.7% 

Day 1095 74.77 1.3% 91.53 1.1% 

Day 1460 75.32 0.7% 91.79 0.28% 

Table 15: Comparison of Body Weight for Prototype A and Prototype B simulation results 

 

 The results from the initial simulation of prototype B indicate the weight gain falls 

within the acceptable range found in the NLYS study (27).  Further parameters were 

changed to alter the profile of the prototype B individual. Table 16 outlines the changes. 

The results from the parameter changes for prototype B are presented in Figure 33.  
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Parameter Prototype A Prototype B 

NEWS 4 2 

Number of Facilities in Buffer 

Zone 

2 6 

Ability to Engage in Physical 

Activity 

1 0.7 

Normal Stress Level 1 0.6 

Normal Emotional Eating Level 1 0.7 

Potential Annual Income $585000 $60000 

Table 16: Comparison of parameter changes for test simulation of Prototype B. 

 

 
Figure 33: Multiple Parameter Changes Prototype B: Body Weight. The blue line indicates the initial 

simulation run for Prototype B; the red line the result of the parameter changes seen in Table 14. 

 

 Overall the behavior of weight gain in the second simulation (red) exhibits the 

same s-shaped growth pattern seen in the initial simulation.  The initial increase in weight 

can be attributed to the mental well-being sector, as reducing the normal values for both 

Emotional Eating and Stress both trigger the reinforcing loops they encompass, thus 
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increasing one’s intake. The physical activity sector works to reduce the effects seen by 

stress (As physical activity was initially increased), however due to the model’s current 

formulation, we see that this increase in energy expenditure (via in increase in physical 

activity) also drives up the energy intake, thus providing a higher baseline value for the 

effects of emotional eating and stress to be multiplied against. 

 The realistic outputs seen through the simulation runs of Prototype B improve the 

validation of the model structure as a whole.  As the model has the potential to be used by 

health care providers to help them gain insight on the influences over one’s weight over 

time (both past and future), ensuring the model can provide plausible outputs for a second 

prototype individual proves to be key in ensuring the usefulness of the model. 

8 Limitations 
 

 The results of the initial simulation model and subsequent validation and 

sensitivity tests indicate the current model structure is able to reproduce behavioral 

patterns in a number of variables that would be deemed plausible outputs in comparison 

to their real world counterparts.  However, there are a number of opportunities for 

improvement of the model, both from a conceptual and a technical perspective.  The 

following section will highlight these model limitations, providing insight on the 

limitations from a model as a whole, followed my limitations within each sector. 

 

 Conceptual Model Limitations 

 

 The initial goal of the thesis was to translate the CLD created by the PHSA into a 

stock and flow model using system dynamics methodology.  Currently the model does 

not encompass all factors that were identified within the CLD.  Although the model does 

include representation from four of the major sectors that influence weight, physical well 

being, and mental well being, without the full representation of all factors, the model is 

not able to provide its maximum benefit to both policy makers and health care 

practitioners.  The model does still lend itself to providing a lens for systems thinking, 

providing both groups with new ways to consider how to collectively address complex 
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societal problems like obesity, where biology interacts with social, cultural and built 

environmental factors in infinite permutations and combinations.  However as Finegood 

(91) states, the systems that give rise to the obesity epidemic function at multiple levels, 

and there are important interactions between these levels.  Here it is vital that we 

understand all of these interactions.  By not including all factors that play a role in the 

obesity system, this limits health care practitioners from not only gaining a full 

understanding of the system, but it also prevents them from providing the most specific, 

patient centered advice to clients who are struggling with their weight.  For policy 

makers, the absence of factors not does enable a full understanding of all leverage points 

in the system. If this model was to be used by policy makers, it runs the risk of having 

policy makers implement policies that may not necessarily be the most efficient or 

effective policies to help improve the weight and well being on the population.  

 A second limitation of the model involves the lack of representation of individual 

decision-making.  Currently the model does not account for any decision-making 

behaviour that takes into account an individual’s desire to lose, gain, or maintain their 

current weight.  As behaviour is a key component influencing one’s health behaviours 

(92) not including such a factor renders the model less effective in portraying the real-life 

system of weight and well being.   As behaviour change has been identified as a critical 

piece of one’s nutritional counselling by dietitians (93) (94), including factors 

representing individual decision making and behavioural change can serve as important 

parts of one’s obesity and wellbeing system that a health care practitioner must take into 

account. 

 Two major limitations of the overall model step from the quantification process.  

First, the data currently populating the model is based upon an individual, not the 

population.  Difficulties in accessing population data for such variables as the average 

number of facilities within a buffer zone or the average NEWS for a particular 

environment made calibrating the model to a population scope not possible.  For policy 

makers, analyzing a population level model would prove to be more useful as the policies 

implemented would be aimed at improving the population as a whole, rather than one 

individual.  In particular, the mental well-being sector includes a number of factors that 
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are calibrated based upon assumptions for an individual and therefore may not reflect the 

overall behaviour of the population with regards to some cause and effect relationships.   

A second limitation concerning the quantification of the model refers to the 

operationalizing of variables.  The PHSA CLD was composed of a number of soft 

variables or intangible variable, those that relate to attributes of human behaviour or 

effects those variations in such behaviour produce (95). These variables are difficult or 

even impossible to measure; yet their inclusion in a model is a matter of necessity as they 

are known to be a part of the causal relationship chain of a model (96).  Finding real-

world objective measures to operationalize such soft variables was not possible (i.e. 

emotional eating, perceived weight bias).  In these cases the variables were included in 

the model as proxy variables and serve as areas to be developed further. Furthermore, as 

the system dynamics methodology relies on quantified direct causal relationships to build 

a simulation model, the initial starting point of the system dynamics model, the PHSA 

CLD, was not developed based upon published, quantified data of the relationships.  

Instead, this CLD was published using the insight from subject matter experts.  Therefore 

the subject matter experts may have been correct in identifying the causal relationships, 

however published data is not yet available to support their expertise.  

In the fortunate cases where operationalizing of the soft variables was possible 

(e.g. using NEWS to represent a number of the different factors representing the built 

environment), a further challenge was met with regards to quantifying the relationship 

between the variable and its counterpart in the causal relationship.  Here, graphical 

functions were used to represent such a relationship.  In order to produce a graphical 

function, a number of pieces of information are needed: 

1. Range of values for the input variable 

2. Range of values for the output of the effect 

3. Shape of the curve representing the strength of the effect of the output at 

different levels of input. 

The majority of the published literature on the relationships did not provide the 

results of the cause and effect relationship over a range of input (or cause) values.  For 

example, the study by Erikkson et al. (59) who found that participants with more than 

four exercise facilities within their buffer zone spent on average 5.4 more minutes in 
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moderate to vigorous physical activity per day, compared to those with no exercise 

facilities within their buffer zones. This study however does not provide information on 

the increase seen if there are five or six exercises facilities within the buffer zone.  One 

may assume that as the number of facilities increase, this also increases the amount of 

physical activity, however the rate of increase is unknown. In discussion with subject 

matter experts, experts from the built environment sector indicated the nature of such 

relationship would be in the form on s-shape curve (indicating a non-linear relationship), 

however the range of output variables was too difficult to determine. As the model 

includes a number of graphical functions, the lack of published data on these factors 

serves as a limitation to the model, and highlights a gap in the current research available. 

In order to overcome such challenges in the future, one may wish to employ 

techniques such as using group model building scripts (i.e. parameterized relationship 

between two variables, ratio exercises) (97).  Similar methods were applied in an attempt 

to capture the quantified nature of some causal relationships (physical activity, mental 

well-being).  Subject matter experts where interviewed individually and were asked to 

provide information regarding the formulation of a graphical function.  The experts were 

not able to provide the full range of data required for such a function to be built. Having 

the experts perform the tasks outlined in the scripts in a group setting may be more 

successful. 

 

Physiology Sector Limitations 

 

 The current formulation of energy intake is based upon one’s energy expenditure 

multiplied by the effects from the mental well-being and food environment sector.  

Conceptually, one’s energy expenditure would influence one’s energy intake if one were 

attempting to maintain an energy balance.  However the current formulation of energy 

intake is incorrect.  As the sensitivity analysis demonstrated that even with a drastic 

increase in physical activity one would gain weight at a higher rate over the same time 

frame, this formulation is not the most accurate representation of the real world. This 

formulation could prove true if the weight gained was solely fat free mass, however this 

is not the case in the model. One may have reformulated the energy intake to be grounded 
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by only the initial value of one’s energy expenditure, thus uncoupling intake from 

expenditure through the span of the simulation.  This formulation too would be incorrect 

as it could lead to a drastic weight loss in the model if the energy expenditure stayed at a 

higher level than one’s intake over a long period of time.  

 A second limitation of the physiology section is the inability of the model to 

distinguish between the addition of fat mass and fat free mass.  Currently the model 

allocated any weight gain as either fat mass or fat free mass using the energy-partitioning 

factor.  This factor does not taken into consideration any physical activity completed, 

with the assumption being one’s physical activity can alter the body weight through the 

gaining of fat free mass and loss of fat mass. 

 

 Physical Activity Sector Limitations 

  

 The limitations mentioned for the overall model in section 5.1 can be seen within 

the physical activity sector.  These limitations have resulted in a reduced number of 

feedback loops flowing through the physical activity sector.  Due to the reduced number 

of loops, there is limited dynamic behaviour displayed by the variables within the sector.  

This lack of loops is in part due to the fact that this sector is not fully developed (there are 

a number of factors within the PHSA CLD yet to be added).  The lack of development 

within this sector does not enable the model to produce the best possible representation of 

the real world.  As policy makers may be interested in this sector particularly for the 

opportunities that the built environment lend in terms of policy design, further 

development would needed on this sector to best enable policy makers to understand the 

true system at play. 

 

 Mental Well-Being Sector 

 

 The major challenge seen specifically within the mental well-being sector is 

similar to the challenge seen within the physical activity sector.  The boundary for the 

mental well-being sector includes only a small number of factors influencing each 

variable, or in some cases, one a single causal relationship is depicted to influence a 
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variable.  For example, one’s level of depression is only influenced by stress and 

perceived weight bias.  However a simple online search for causes of depression brings 

up a host of other factors that influence depression (98) For policy makers, these specific 

factors may not be as useful to include within the scope of the model as they may be too 

individual specific and may not be the focus of policy intervention.  However for health 

care practitioners, such factors such as family history or substance abuse may be of 

interest to see how such factors influence weight and well-being.   

 

 Food Environment Sector Limitations 

 

 The behaviour seen in the initial simulation runs is in large part driven by the 

effects from the food environment sector.  As there are a number of aspects of the food 

environment (99), this model only looks at the role of income. Expanding the model 

boundary to include other factors from the CLD such as availability of healthy foods and 

the effect of food marketing would improve the portrayal of the food environment sector. 

Such an expansion would also help overcome the limitation seen in the effect of the 

Percentage of Annual Income Allocated for Food.  As the effect was derived to produce 

demonstrates a high level of sensitivity to very small changes in the Percentage of Annual 

Income Allocated for Food ratio, it is highly unlikely to see such sensitivity in the real 

world.  For example, a 2% change in one’s annual income needed to be allocated for food 

would not produce a change in purchasing behaviour, unless the percentage change was 

based upon a lower income level where a 2% change could have consequences on other 

household spending. 

9 Future Work 

 
 The simulation results highlighted the model structure’s ability to produce a 

plausible behavior in terms change in one’s body weight over time. However a number of 

limitations to the model were identified, along with recommendations to overcome the 

limitations.   This section provides further insight into one of the limitations and offers a 

more in-depth discussion on potential solutions. 
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 Although the current model structure is calibrated based upon individual 

characteristics, it currently does not take into account an individual’s own motivations or 

decision-making ability to obtain a particular body weight.  Both studies and practitioners 

have identified the role individual motivation plays in one’s weight management journey.  

(100) (101). Both internal motivation to lose weight and self-motivation have been 

identified as predictors of successful weight control. Dietitians have identified that their 

role in aiding clients in their weight management journey involves more than filling a 

knowledge gap with regards to what a client needs to eat to achieve their goals. Moving 

from the role of an expert to that of a coach, dietitians have focused on including 

motivation interviewing techniques as a method to help overcome a lack of motivation in 

clients that has been found to be cause for poor adherence to weight management 

programs (101).  There are a number of different motivational theories that have been 

researched regarding weight management, including the self-determination theory (101), 

the social cognitive theory, the transtheoretical model, the theory of planned behaviour 

(102).  These theories will not be discussed, however are presented to highlight the 

variety in change theories that have been linked to weight management. 

 A recommendation going forward is to include a motivation factor within the 

model.  The current model structure offers a number of potential opportunities to 

influence one’s motivation.  Figure 33 offers one possible framework for including 

motivation within the current model 
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Figure 33: Possible addition to current simulation model 

This causal loop diagram takes into consideration the effect of motivation on 

achieving a particular weight target.  This diagram requires an individual to make a 

decision regarding their weight – whether they wish to maintain their current weight, 

gain, or lose weight.  Based upon their decision and the time in which they hope to 

achieve such a desired weight, this provides a daily energy deficit (Indicated Energy 

Intake Deficit).  This structure mimics that normally seen in real life weight loss settings, 

as clients are often provided with an intake goal based upon their estimated energy 

expenditure.  This energy deficit goal would be influenced by a number of factors, 

including the three factors currently influencing energy intake, as well as an additional 

motivation factor.  Here, motivation would play a role in how able one is to achieve their 

target energy deficit (or energy intake).  Motivation itself has the potential to be 

influenced by a number of factors, such as one’s perceived weight bias and their health 

status.  Furthermore, one’s motivation is driven by one’s goal itself. As one gets closer 

and closer to achieving their particular weight goal, this often serves as a negative 

influence in motivation itself due to burnout.  

 Additional of this structure to the model is important if the model is going to be 

used by health care practitioners to enable them to gain a more patient centered approach 

to understanding the factors influencing their patient’s weight loss journey.  From a 
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policy maker standpoint, understanding the role of motivation from an individual 

standpoint may not add additional value to their use of the model.  For policy makers, 

future work needs to focus on two key factors.  First, adding the remaining factors from 

the PHSA CLD is critical to provide policy makers with the complete picture of the 

weight and well-being system.  Second, as the weakest piece in terms of quantification of 

the model stems from the development of the graphical functions, hosting additional 

conversations with subject matter experts will be important in order to increase the 

model’s validity to better match that of the real world system. 

 The benefits of the system dynamics model have the potential to extend beyond 

the use of policy makers and health care practitioners to both health care students as well 

as clients themselves.  For students, having an interactive tool such as a system dynamics 

model lends itself to not only aiding in the understanding of the obesity system, but also 

provides them with a safe environment to test different patient scenarios to see how 

different care plans work to provide different results depending on patient characteristics. 

For clients, this model can also serve an education purpose.  By discussing with a health 

care provider the numerous factors that play a role in one’s weight and well-being 

(regardless of the extent to which these factors apply to him/her specifically) the model 

can create a dialogue about the complexity of weight and well-being, and also to engage 

the patient in helping identify their story within the model.  In doing so, it can help shift 

away from the shame and blame game often clients feel and help them understand the 

role of the system on their weight management challenges (103).  

10  Conclusion 
 

 An initial glance of the Foresight Map or the PHSA CLD and the imagery of a 

complex, messy system is brought to light.  With the large number of variables, causal 

linkages, and feedback loops at play, such maps raise questions of not only regarding the 

“what” (as in what factors are included) but also the “how”  - how such factors interact to 

cause change in the system.  The aim of the system dynamics model created was to 

identify how the dynamic interactions between socio-economical and physical 

environmental factors affected an individual’s physical well-being, mental well being, 
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and weight.  The model accomplished this through by translating pieces of the PHSA 

CLD into a simulation modeling using system dynamics methodology.  

 The results of the simulation model demonstrated that the interactions between 

physical activity, mental well-being, the food environment, and one’s physiology within 

the current model structure could produce a change in body weight similar to that seen in 

a longitudinal study on weight gain.  Furthermore, the behavioral pattern also matches the 

pattern of weight gain seen in British Columbia residents, and Canadians, over the past 

decade.  Due to the nature of the results indicate that the current model structure can 

serve as one dynamic hypothesis describing how the problematic behavior (weight gain) 

arose over time. Although the model currently does not include all the factors from the 

CLD, representation from the four major sectors allows for an increase in confidence in 

terms of the model’s ability to accurately represent its real world system counterpart.  

 As the area of obesity is not merely complicated, but complex, the model serves 

as both an educational tool to help policy makers and health care practitioners understand 

the complex system and as well, as a tool to help improve the work of both parties. For 

health care practitioners, gaining a better understanding of the system at play that is 

influencing their client’s weight and well-being.  For policy makers, having the 

opportunity to identify leverage points within the system where policy changes can make 

an important enables them to make smarter decisions.  Furthermore, having the 

opportunity to test such policies in a safe environment as within a system dynamics 

model provides additional benefits as it increases the probability that the policies will 

produce the intended benefits, and it also provides policy makers with an idea of just how 

much change is needed to achieve a particular result, and how the performance indicators 

(variables) improve over time, taking into account the state of the system and its delays.  

 The limitations identified in the model not only serve as a seed for future 

improvements to the model itself, but also have implications for within the system 

dynamics community.  First, as the work on obesity within the system dynamics 

community has focused on building models of only a small number of pieces of the 

overall system, this model is one of the first to address a broader range of factors 

influencing not only weight, but also its links to physical and mental well-being.  Second, 

the model flags a number of challenges that future system dynamicists will face in 
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continuing within this field - particularly surrounding the operationalizing of soft 

variables and the creation of the graphical function.  The thesis works to fill a gap not 

only with regards to the aforementioned lack of system dynamics of the full obesity and 

well-being system, but to also address the current gap in research regarding how variables 

and relationships are measured.  The lack of data on the non-linear relationships should 

be of major concern for policy makers and health care practitioners as it is this concept is 

critical in their planning of interventions, whether at a population or an individual level.  
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12 APPENDIX A 
 
 
The model is enclosed in a CD-ROM.  The following pages provide the complete model 

documentation generated by the iThink software. The documentation includes the 

equations, initial and parameter values, units, as well as graphical functions 

specifications.   

 
A. Stocks and Flows: 
 
Energy_Balance(t) = Energy_Balance(t - dt) + (Energy_Intake - 
Energy_Balance__to_Fat_Mass - Energy_Expenditure - 
Energy_Balance_to__Fat_Free_Mass) * dt 
INIT Energy_Balance = 0 
UNITS: kilocalorie 
 

INFLOWS: 
Energy_Intake = Energy_Expenditure*Effect_on_Energy_Intake 
UNITS: kcal/day 
 
OUTFLOWS: 
Energy_Balance__to_Fat_Mass = ((1-
Energy_Partitioning_Factor)*Energy_Balance)/Adjustment_time__EB_to_FM 
UNITS: kcal/day 
 
Energy_Expenditure = 
(Constant+RMR_Fat_Mass+RMR_Fat_Free_Mass+(Physical_Activity__Coeffici
ent*Body_Weight)+(Adaptive_thermogenesis__parameter*Change_in__Energy_
Intake)+(Change_in_Fat_Mass*Energy_cost_for__FM_Deposition)+(Change_in_
Fat_Free_Mass*Energy_cost_for__FFM_Deposition)) 
UNITS: kcal/day 
 
Energy_Balance_to__Fat_Free_Mass = 
(Energy_Partitioning_Factor*Energy_Balance)/Adjustment_time__EB_to_FFM 
UNITS: kcal/day 
 

Average_Annual_Cost_of_Purchasing_Healthy_Food(t) = 
Average_Annual_Cost_of_Purchasing_Healthy_Food(t - dt) + 
(Change_in_Average_Annual_Cost_of_Purchasing_Healthy_Food) * dt 

INIT Average_Annual_Cost_of_Purchasing_Healthy_Food = 7853.52 
UNITS: Canadian Dollars (CAD) 
 
INFLOWS: 
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Change_in_Average_Annual_Cost_of_Purchasing_Healthy_Food = 
((Annual_Food_Cost__Inflation*Average_Annual_Cost_of_Purchasing_Healthy
_Food+Average_Annual_Cost_of_Purchasing_Healthy_Food)-
Average_Annual_Cost_of_Purchasing_Healthy_Food)/Time_to_Change_Averag
e_Annual_Cost 
UNITS: cad/day 

 
Barriers_to_Engaging__in_PA(t) = Barriers_to_Engaging__in_PA(t - dt) + 
(Change_in_Barrier_to_Engaging_in_PA) * dt 
INIT Barriers_to_Engaging__in_PA = 0.2 
UNITS: Level of Fear (Fear) 
 

INFLOWS: 
Change_in_Barrier_to_Engaging_in_PA = 
((1/2*Effect_of_Framingham_Risk_Score_on_Barrier_to_Engaging_in_PA+1/2*
Effect_of_Weight_Bias_on_Barrier_to_Engaging_in_PA)-
Barriers_to_Engaging__in_PA) 
UNITS: fear/day 

 
Body_Weight(t) = Body_Weight(t - dt) + (Change_in_Body_Weight) * dt 
INIT Body_Weight = 70.27 
UNITS: kilogram 
 

INFLOWS: 
Change_in_Body_Weight = (Change_in_Fat_Mass+Change_in_Fat_Free_Mass) 
UNITS: kg/day 

 
Fat_Free_Mass(t) = Fat_Free_Mass(t - dt) + (Change_in_Fat_Free_Mass) * dt 
INIT Fat_Free_Mass = 56.03 
UNITS: kilogram 
 

INFLOWS: 
Change_in_Fat_Free_Mass = 
(Energy_Balance_to__Fat_Free_Mass/Energy_Density_Fat__Free_Mass) 
UNITS: kg/day 
 

Fat_Mass(t) = Fat_Mass(t - dt) + (Change_in_Fat_Mass) * dt 
INIT Fat_Mass = 14.69 
UNITS: kilogram 
 

INFLOWS: 
Change_in_Fat_Mass = 
Energy_Balance__to_Fat_Mass/Energy_Density__Fat_Mass 
UNITS: kg/day 
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Leisure_Time_Available(t) = Leisure_Time_Available(t - dt) + 
(Time_Available_for_Leisure_Activity - Daily_Recreational_Physical_Activity - 
Daily_Utilitarian_Physical_Activity - Non_Physical_Activity_Leisure_Time) * dt 
INIT Leisure_Time_Available = 
Percentage_of_Free_time_allocated_for_physical_activity*Free_Time_Available 
UNITS: minutes (min) 
 

INFLOWS: 
Time_Available_for_Leisure_Activity = 
(Free_Time_Available*Percentage_of_Free_time_allocated_for_physical_activity
)/Time_to_Update__Leisure_Activity 
UNITS: min/day 
 
OUTFLOWS: 
Daily_Recreational_Physical_Activity = 
(Effect_of_Facilities_on_Desired_Time_Used_for_Rec_PA*Leisure_Time_Avail
able)/Time_to_Update_Daily_Rec_PA 
UNITS: min/day 
Daily_Utilitarian_Physical_Activity = 
(Leisure_Time_Available*Effect_of_NEWS_on_Desired_Time_Used_for_Util_P
A)/Time_to_Update_Daily_Util_PA 
UNITS: min/day 
Non_Physical_Activity_Leisure_Time = Leisure_Time_Available-
Daily_Utilitarian_Physical_Activity-Daily_Recreational_Physical_Activity 
UNITS: min/day 
 

Normal_Antidepressant_Use(t) = Normal_Antidepressant_Use(t - dt) + 
(Change_in_NAU) * dt 
INIT Normal_Antidepressant_Use = 1 
UNITS: Unitless 
 

INFLOWS: 
Change_in_NAU = (Antidepressant_Use-
Normal_Antidepressant_Use)/Time_to_Adjust_Normal_Antidepressant_Use 
UNITS: per day (1/day) 
 

Normal_Level_of__Emotional_Eating(t) = Normal_Level_of__Emotional_Eating(t - 
dt) + (Change_in_Normal_Emotional_Eating_Level) * dt 
INIT Normal_Level_of__Emotional_Eating = 1 
UNITS: Unitless 
 

INFLOWS: 
Change_in_Normal_Emotional_Eating_Level = 
(Actual_Emotional_Eating_Level-
Normal_Level_of__Emotional_Eating)/Time_to_Update_Normal_Emot_Eating_
Level 
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UNITS: per day (1/day) 
 

Normal_Percentage_of_Annual_Income_Spent_on_Food(t) = 
Normal_Percentage_of_Annual_Income_Spent_on_Food(t - dt) + 
(Change_in_Normal_Percentage) * dt 
INIT Normal_Percentage_of_Annual_Income_Spent_on_Food = 0.129 
UNITS: Unitless 
 

INFLOWS: 
Change_in_Normal_Percentage = 
(Percentage_of_Annual_Income_allocated_for_food-
Normal_Percentage_of_Annual_Income_Spent_on_Food)/TIme_to_Update_Nor
mal_Percentage 
UNITS: per day (1/day) 
 

Normal_Stress_Level(t) = Normal_Stress_Level(t - dt) + 
(Change_in_Normal_Stress_Level) * dt 
INIT Normal_Stress_Level = 1 
UNITS: Unitless 
 

INFLOWS: 
Change_in_Normal_Stress_Level = (Actual_Stress-
Normal_Stress_Level)/Time_to_Update_Normal_Stress_Level 
UNITS: per day (1/day) 
 

Potential_Annual_Income(t) = Potential_Annual_Income(t - dt) + 
(Change_in_Potential_Annual_Income) * dt 
INIT Potential_Annual_Income = 58500 
UNITS: Canadian Dollars (CAD) 
 

INFLOWS: 
Change_in_Potential_Annual_Income = 
(Potential_Annual_Income+(Annual_Salary_Inflation*Potential_Annual_Income)
-Potential_Annual_Income)/Time_to_Change_Potential_Annual_Salary 
UNITS: cad/day 

 
RMR_Fat_Free_Mass(t) = RMR_Fat_Free_Mass(t - dt) + (Change_in_RMR_FFM) * 
dt 
INIT RMR_Fat_Free_Mass = (22*56.03) 
UNITS: kilocalories (kcal) 
 

INFLOWS: 
Change_in_RMR_FFM = (Fat_Free_Mass*RMR_Coefficient_FFM)-
RMR_Fat_Free_Mass 
UNITS: kcal/day 
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RMR_Fat_Mass(t) = RMR_Fat_Mass(t - dt) + (Change_in_RMR__Fat_Mass) * dt 
INIT RMR_Fat_Mass = 3.2*14.69 
UNITS: kilocalories (kcal) 
 

INFLOWS: 
Change_in_RMR__Fat_Mass = (Fat_Mass*RMR_Coefficient_FM)-
RMR_Fat_Mass 
UNITS: kcal/day 

 
 
B. Variables and Parameters 
 
Ability_to_Engage_in_PA = 1 
UNITS: Unitless 
 
Ability_to_Engage__in_PA_ratio = 
Ability_to_Engage_in_PA/Normal_Ability_to_Engage_in_PA 
UNITS: Unitless 
 
Actual_Annual_Income = 
Effect_of_Perceived_Weight_Bias_on_Income_Level*Potential_Annual_Income 
UNITS: Canadian Dollars (CAD) 
 
Actual_Depression_Level = 
(1/2*Maximum_Level_of_Depression*Effect_of_Stress_Ratio_of_Depression)+(1/2*Ma
ximum_Level_of_Depression*Effect_of_Perceived_Weight_Bias_on_Depression) 
UNITS: Unitless 
 
Actual_Effect_of_Antidepressant_Use_of_Energy_Intake = 
SMTH1(Target_Effect_of_Antidepressant_Use_Ratio_on_Energy_Intake,365/2,1) 
UNITS: Unitless 
 
Actual_Effect_of_Easbility_of_Purchasing_Healthy_foods_in_Intake = 
(SMTH1(Target_Effect_of_Income_ratio_on_ease_of_purchasing_healthy_foods,365/2,
1)) 
UNITS: Unitless 
 
Actual_Effect_of_Emotional_Eating_on_Energy_Intake = 
Target_FX_of_Emotional_Eating_on_Energy_Intake 
UNITS: Unitless 
 
Actual_Emotional_Eating_Level = Effect_of_Stress_Ratio_on_Emotional_Eating 
UNITS: Unitless 
 
Actual_Stress = Effect_of_PAL_on_Stress 
UNITS: Unitless 



 109 

 
Adaptive_thermogenesis__parameter = 0.24 
UNITS: Unitless 
 
Adjustment_time__EB_to_FFM = 1 
UNITS: days (day) 
 
Adjustment_time__EB_to_FM = 1 
UNITS: days (day) 
 
Annual_Food_Cost__Inflation = 0.044 
UNITS: Canadian Dollars-yr/yr 
 
Annual_Salary_Inflation = 0.032 
UNITS: Unitless 
 
Antidepressant_Use = Effect_of_Depression_on_Antideprsssant_Use 
UNITS: Unitless 
Antidepressant_Use_Ratio = Antidepressant_Use/Normal_Antidepressant_Use 
UNITS: Unitless 
 
Barrier_of_Engaging__in_Phyical_Activity_Ratio =  
 
Barriers_to_Engaging__in_PA/Normal_Barrier_of__Engaging_in_PA 
UNITS: Unitless 
 
Body_Mass_Index = Body_Weight/(Height*Height) 
UNITS: kg/square meters 
 
Change_in__Energy_Intake =  
Change_in_Body_Weight*Energy_Intake_Change__Constant_A+(INIT(Body_Weight)- 
Body_Weight)*Energy_Intake_Change__Constant_B 
UNITS: kilocalories/day 
 
Constant = 370.21 
UNITS: kilocalories/day 
 
Daily_Physical_Activity = 
Daily_Utilitarian_Physical_Activity+Daily_Recreational_Physical_Activity 
UNITS: minutes/day 
 
Effect_of_Ability_to_Engage_in_PA_on_PA = 
GRAPH(Ability_to_Engage__in_PA_ratio) 
(0.00, 0.00), (1.00, 0.2), (2.00, 1.63), (3.00, 2.00) 
UNITS: Unitless 
 



 110 

Effect_of_Barriers_Engaging_in_PA_on_PA = 
GRAPH(Barrier_of_Engaging__in_Phyical_Activity_Ratio) 
(0.00, 1.00), (0.5, 0.807), (1.00, 0.2), (1.50, 0.141), (2.00, 0.0868), (2.50, 0.045), (3.00, 
0.00), (3.50, 0.00), (4.00, 0.00), (4.50, 0.00), (5.00, 0.00) 
UNITS: Unitless 
 
Effect_of_BMI_on_Perceived_Weight_Bias = GRAPH(Body_Mass_Index) 
(18.0, 0.00), (19.0, 0.00), (20.0, 0.00), (21.0, 0.00), (22.0, 0.00), (23.0, 0.00), (24.0, 0.00), 
(25.0, 0.103), (26.0, 0.116), (27.0, 0.138), (28.0, 0.145), (29.0, 0.167), (30.0, 0.183), 
(31.0, 0.19), (32.0, 0.215), (33.0, 0.235), (34.0, 0.273), (35.0, 0.338), (36.0, 0.428), (37.0, 
0.498), (38.0, 0.63), (39.0, 0.765), (40.0, 0.897) 
UNITS: Unitless 
 
Effect_of_Depression_on_Antideprsssant_Use = GRAPH(Actual_Depression_Level) 
(0.00, 1.00), (1.00, 1.00), (2.00, 1.00), (3.00, 1.00), (4.00, 1.00), (5.00, 1.00), (6.00, 1.00), 
(7.00, 1.00), (8.00, 1.00), (9.00, 1.00), (10.0, 1.00), (11.0, 1.00), (12.0, 1.00), (13.0, 1.00), 
(14.0, 1.00), (15.0, 1.00), (16.0, 1.00), (17.0, 1.00), (18.0, 1.00), (19.0, 1.00), (20.0, 1.50), 
(21.0, 1.50), (22.0, 1.50), (23.0, 1.50), (24.0, 1.50), (25.0, 1.50), (26.0, 1.50), (27.0, 1.50), 
(28.0, 1.50), (29.0, 2.00), (30.0, 2.00), (31.0, 2.00), (32.0, 2.00), (33.0, 2.00), (34.0, 2.00), 
(35.0, 2.00), (36.0, 2.00), (37.0, 2.00), (38.0, 2.00), (39.0, 2.00), (40.0, 2.00), (41.0, 2.00), 
(42.0, 2.00), (43.0, 2.00), (44.0, 2.00), (45.0, 2.00), (46.0, 2.00), (47.0, 2.00), (48.0, 2.00), 
(49.0, 2.00), (50.0, 2.00), (51.0, 2.00), (52.0, 2.00), (53.0, 2.00), (54.0, 2.00), (55.0, 2.00), 
(56.0, 2.00), (57.0, 2.00), (58.0, 2.00), (59.0, 2.00), (60.0, 2.00), (61.0, 2.00), (62.0, 2.00), 
(63.0, 2.00) 
UNITS: Unitless 
 
Effect_of_Facilities_on_Desired_Time_Used_for_Rec_PA = 
GRAPH(Number_of_Facilities_in_Buffer_Zone_Ratio) 
(0.00, 0.0804), (1.00, 0.138), (2.00, 0.183), (3.00, 0.209), (4.00, 0.293), (5.00, 0.437), 
(6.00, 0.556), (7.00, 0.817), (8.00, 0.939), (9.00, 1.00), (10.0, 1.00) 
UNITS: Unitless 
 
Effect_of_Framingham_Risk_Score_on_Barrier_to_Engaging_in_PA = 
GRAPH(Framingham_Risk_Score) 
(0.00, 0.333), (1.00, 0.333), (2.00, 0.333), (3.00, 0.333), (4.00, 0.333), (5.00, 0.333), 
(6.00, 0.34), (7.00, 0.35), (8.00, 0.357), (9.00, 0.368), (10.0, 0.374), (11.0, 0.383), (12.0, 
0.391), (13.0, 0.415), (14.0, 0.434), (15.0, 0.466), (16.0, 0.496), (17.0, 0.531), (18.0, 
0.627), (19.0, 0.733), (20.0, 0.867), (21.0, 1.00), (22.0, 1.00), (23.0, 1.00), (24.0, 1.00), 
(25.0, 1.00), (26.0, 1.00), (27.0, 1.00), (28.0, 1.00), (29.0, 1.00), (30.0, 1.00) 
UNITS: Unitless 
 
Effect_of_NEWS_on_Desired_Time_Used_for_Util_PA = GRAPH(NEWS_Rating) 
(0.00, 0.00643), (1.00, 0.00643), (2.00, 0.0257), (3.00, 0.0611), (4.00, 0.181), (5.00, 
0.28), (6.00, 0.333), (7.00, 0.437), (8.00, 0.495), (9.00, 0.524), (10.0, 0.54) 
UNITS: Unitless 
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Effect_of_PAL_on_Physical_Activity_Coefficient = GRAPH(PAL) 
(0.00, 1.00), (0.2, 1.00), (0.4, 1.00), (0.6, 1.00), (0.8, 1.00), (1.00, 1.00), (1.20, 1.33), 
(1.40, 1.66), (1.60, 2.03), (1.80, 2.57), (2.00, 2.88), (2.20, 2.88), (2.40, 2.88), (2.60, 2.88) 
UNITS: Unitless 
 
Effect_of_PAL_on_Stress = GRAPH(PAL) 
(0.00, 2.00), (0.0806, 2.00), (0.161, 2.00), (0.242, 1.98), (0.323, 1.95), (0.403, 1.92), 
(0.484, 1.88), (0.565, 1.84), (0.645, 1.72), (0.726, 1.53), (0.806, 1.42), (0.887, 1.32), 
(0.968, 1.19), (1.05, 1.13), (1.13, 1.00), (1.21, 1.00), (1.29, 1.00), (1.37, 1.00), (1.45, 
1.00), (1.53, 1.00), (1.61, 1.00), (1.69, 1.00), (1.77, 1.00), (1.85, 1.00), (1.94, 1.00), (2.02, 
1.00), (2.10, 1.00), (2.18, 1.00), (2.26, 1.00), (2.34, 1.00), (2.42, 1.00), (2.50, 1.00) 
UNITS: Unitless 
 
Effect_of_Perceived_Weight_Bias_on_Depression = GRAPH(Perceived_Weight_Bias) 
(0.00, 0.0149), (0.1, 0.0532), (0.2, 0.115), (0.3, 0.169), (0.4, 0.213), (0.5, 0.244), (0.6, 
0.26), (0.7, 0.273), (0.8, 0.286), (0.9, 0.29), (1.00, 0.29) 
UNITS: Unitless 
Effect_of_Perceived_Weight_Bias_on_Income_Level = 
GRAPH(Perceived_Weight_Bias) 
(0.00, 0.974), (0.05, 0.987), (0.1, 0.987), (0.15, 0.987), (0.2, 0.987), (0.25, 0.987), (0.3, 
0.984), (0.35, 0.984), (0.4, 0.984), (0.45, 0.981), (0.5, 0.977), (0.55, 0.971), (0.6, 0.965), 
(0.65, 0.955), (0.7, 0.945), (0.75, 0.939), (0.8, 0.932), (0.85, 0.923), (0.9, 0.907), (0.95, 
0.887), (1.00, 0.887) 
UNITS: Unitless 
 
Effect_of_Stress_Ratio_of_Depression = GRAPH(Stress_Ratio) 
(0.00, 0.0836), (0.5, 0.183), (1.00, 0.267), (1.50, 0.367), (2.00, 0.572), (2.50, 0.695), 
(3.00, 0.823), (3.50, 0.9), (4.00, 0.952), (4.50, 0.968), (5.00, 0.974) 
UNITS: Unitless 
 
Effect_of_Stress_Ratio_on_Emotional_Eating = GRAPH(Stress_Ratio) 
(0.00, 1.00), (0.2, 1.00), (0.4, 1.00), (0.6, 1.00), (0.8, 1.00), (1.00, 1.00), (1.20, 1.29), 
(1.40, 2.63), (1.60, 3.00), (1.80, 3.00), (2.00, 3.00) 
UNITS: Unitless 
 
Effect_of_Weight_Bias_on_Barrier_to_Engaging_in_PA = 
GRAPH(Perceived_Weight_Bias) 
(0.00, 0.0611), (0.05, 0.067), (0.1, 0.0965), (0.15, 0.18), (0.2, 0.277), (0.25, 0.502), (0.3, 
0.739), (0.35, 0.894), (0.4, 0.963), (0.45, 0.988), (0.5, 0.996), (0.55, 0.996), (0.6, 0.996), 
(0.65, 0.996), (0.7, 0.996), (0.75, 0.996), (0.8, 0.996), (0.85, 0.996), (0.9, 0.996), (0.95, 
0.996), (1.00, 0.996) 
UNITS: Unitless 
 
Effect_on_Energy_Intake = 
(1/3*Actual_Effect_of_Emotional_Eating_on_Energy_Intake)+(1/3*Actual_Effect_of_A
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ntidepressant_Use_of_Energy_Intake)+(1/3*Actual_Effect_of_Easbility_of_Purchasing_
Healthy_foods_in_Intake) 
UNITS: Unitless 
 
Emotional_Eating_Ratio = 
(Actual_Emotional_Eating_Level/Normal_Level_of__Emotional_Eating) 
UNITS: Unitless 
 
Energy_cost_for__FFM_Deposition = 230 
UNITS: kilocalorie/kilogram 
 
Energy_cost_for__FM_Deposition = 180 
UNITS: kilocalorie/kilogram 
 
Energy_Density_Fat__Free_Mass = 1800 
UNITS: kilocalorie/kilogram 
 
Energy_Density__Fat_Mass = 9400 
UNITS: kilocalorie/kilogram 
 
Energy_Intake_Change__Constant_A = 9100 
UNITS: kcal/kg 
 
Energy_Intake_Change__Constant_B = 22 
UNITS: Kcal/kg/day (kcal/kg-day) 
 
Energy_Partitioning_Factor = 
Forbes_body_composition_parameter/(Forbes_body_composition_parameter+Fat_Mass) 
UNITS: Unitless 
 
Forbes_body_composition_parameter = 
(10.4*(Energy_Density_Fat__Free_Mass/Energy_Density__Fat_Mass)) 
UNITS: Unitless 
 
Framingham_Risk_Score = 1 
UNITS: Unitless 
 
Free_Time_Available = 5.5*60 
UNITS: minutes (min) 
DOCUMENT:  5.5 hours - stat from 2009 "Time Spent Study" 
 
Height = 1.69 
UNITS: meters (m) 
 
Maximum_Level_of_Depression = 63 
UNITS: Unitless 
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NEWS_Rating = 4 
UNITS: Unitless 
 
Normal_Ability_to_Engage_in_PA = 1 
UNITS: Unitless 
 
Normal_Barrier_of__Engaging_in_PA = 0.2 
UNITS: Level of Fear (Fear) 
 
Normal_Number_of_Facilities_within_Buffer_Zone = 1 
UNITS: Rec Facilities (RecFacilities) 
 
Normal_Physical_Activity_Coefficient = 7 
UNITS: Kcal/kg/day (kcal/kg-day) 
 
Number_of_Facilities_in_Buffer_Zone_Ratio = 
Number_of_Facilities_within_Buffer_Zone/Normal_Number_of_Facilities_within_Buffe
r_Zone 
UNITS: Unitless 
 
Number_of_Facilities_within_Buffer_Zone = 2 
UNITS: Rec Facilities (RecFacilities) 
 
PAL = PAL_point_per_minute_of_moderate_PA 
UNITS: Unitless 
 
PAL_point_per_minute_of_moderate_PA = GRAPH(Daily_Physical_Activity) 
(0.00, 1.00), (30.0, 1.20), (60.0, 1.50), (90.0, 1.60), (120, 1.70), (150, 1.95), (180, 2.20), 
(210, 2.20) 
UNITS: Unitless 
 
Perceived_Weight_Bias = SMTH1(Effect_of_BMI_on_Perceived_Weight_Bias,365/2) 
UNITS: Unitless 
 
Percentage_of_Annual_Income_allocated_for_food = 
Average_Annual_Cost_of_Purchasing_Healthy_Food/Actual_Annual_Income 
UNITS: Unitless 
 
Percentage_of_Annual_Income_Allocated_for_Food_Ratio = 
Percentage_of_Annual_Income_allocated_for_food/Normal_Percentage_of_Annual_Inc
ome_Spent_on_Food 
UNITS: Unitless 
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Percentage_of_Free_time_allocated_for_physical_activity = 
(Effect_of_Barriers_Engaging_in_PA_on_PA)*(1/2)+(1/2)*(Effect_of_Ability_to_Enga
ge_in_PA_on_PA) 
UNITS: Unitless 
 
Physical_Activity__Coefficient = 
Effect_of_PAL_on_Physical_Activity_Coefficient*Normal_Physical_Activity_Coefficie
nt 
UNITS: Kcal/kg/day (kcal/kg-day) 
 
RMR_Coefficient_FFM = 22 
UNITS: Kcal/kg/day (kcal/kg-day) 
 
RMR_Coefficient_FM = 3.2 
UNITS: Kcal/kg/day (kcal/kg-day) 
 
Stress_Ratio = Actual_Stress/Normal_Stress_Level 
UNITS: Unitless 
 
Target_Effect_of_Antidepressant_Use_Ratio_on_Energy_Intake = 
GRAPH(Antidepressant_Use_Ratio) 
(1.00, 1.00), (1.12, 1.00), (1.25, 1.01), (1.38, 1.01), (1.50, 1.02), (1.62, 1.03), (1.75, 1.04), 
(1.88, 1.04), (2.00, 1.04) 
UNITS: Unitless 
 
Target_Effect_of_Income_ratio_on_ease_of_purchasing_healthy_foods = 
GRAPH(Percentage_of_Annual_Income_Allocated_for_Food_Ratio) 
(1.00, 1.00), (1.00, 1.00), (1.00, 1.00), (1.01, 1.00), (1.01, 1.00), (1.01, 1.01), (1.02, 1.01), 
(1.02, 1.02), (1.02, 1.03), (1.02, 1.04), (1.02, 1.04), (1.03, 1.05), (1.03, 1.05), (1.03, 1.06), 
(1.04, 1.06), (1.04, 1.06), (1.04, 1.07), (1.04, 1.07), (1.04, 1.07), (1.05, 1.07), (1.05, 1.07) 
UNITS: Unitless 
 
Target_FX_of_Emotional_Eating_on_Energy_Intake = 
GRAPH(Emotional_Eating_Ratio) 
(1.00, 1.00), (1.20, 1.00), (1.40, 1.00), (1.60, 1.01), (1.80, 1.02), (2.00, 1.04), (2.20, 1.06), 
(2.40, 1.08), (2.60, 1.09), (2.80, 1.10), (3.00, 1.10) 
UNITS: Unitless 
 
Time_to_Adjust_Normal_Antidepressant_Use = 365/2 
UNITS: days (day) 
 
Time_to_Change_Average_Annual_Cost = 365 
UNITS: days (day) 
 
Time_to_Change_Potential_Annual_Salary = 365 
UNITS: days (day) 
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Time_to_Update_Daily_Rec_PA = 1 
UNITS: days (day) 
 
Time_to_Update_Daily_Util_PA = 1 
UNITS: days (day) 
 
Time_to_Update_Normal_Emot_Eating_Level = 365/2 
UNITS: days (day) 
 
TIme_to_Update_Normal_Percentage = 365 
UNITS: days (day) 
 
Time_to_Update_Normal_Stress_Level = 365/2 
UNITS: days (day) 
 
Time_to_Update__Leisure_Activity = 1 
UNITS: days (day) 
 
 
 


