
8

MAX INTERNAL SPANNING TREE

Reducing to Independent Set Structure — the Case ofk-INTERNAL SPANNING

TREE1

Elena Prieto Christian Sloper

Abstract

Thek-INTERNAL SPANNING TREE problem asks whether a certain graphG
has a spanning tree with at leastk internal vertices. Basing our work on the
results presented in [PS03], we show that there exists a set of reduction rules
that modify an arbitrary spanning tree of a graph into a spanning tree with no
induced edges between the leaves. Thus, the rules either produce a tree with
many internal vertices, effectively deciding the problem, or they identify a
large independent set, the leaves, in the graph. Having a large independent set
is beneficial, because then the graph allows both ‘crown decompositions’ and
path decompositions. We show how this crown decomposition can be used
to obtain aO(k2) kernel for thek-INTERNAL SPANNING TREE problem,
improving on theO(k3) kernel presented in [PS03].

8.1 INTRODUCTION

The subject of Parameterized Complexity is motivated by an abundance of NP-complete
problems that have very different behavior when parameterized. These problems in-
cludes well-known problems likeDOMINATING SET, BANDWIDTH , SET SPLITTING,
and INDEPENDENT SET (for definitions the reader may refer to [GJ79]). Some of the
NP-complete are tractable when parameterized and admits very good parameterized al-
gorithms. A formal definition of the class of problems which are tractable when parame-
terized is defined as follows:

1This paper has been accepted to Nordic Journal of Computing and is due to appear.

BIBLIOGRAPHY 65

[PS03] E. Prieto, C. Sloper. Either/Or: Using Vertex Cover Structure in designing FPT-
algorithms - the case of k-Internal Spanning Tree,Proceedings of WADS 2003,
LNCS vol 2748, pp 465-483.

[PS04] E. Prieto, C. Sloper. Looking at the Stars,To Appear in proceedings of IWPEC04,
Springer Lecture Notes in Computer Science, (2004).

[PT93] J.A.Telle and A.Proskurowski. Practical algorithms on partialk-trees with an ap-
plication to domination-like problems.Proceedings WADS’93 - Third Workshop on
Algorithms and Data Structures.Springer Verlag, Lecture Notes in Computer Sci-
ence vol.709 (1993) 610-621.

[RS83] N. Robertson and P. D. Seymour, Graph minors. I. Excluding a forest,J. Comb.
Theory Series B, 35 (1983), pp. 39-61.

[RS99] N. Robertson, PD. Seymor. Graph Minors. XX Wagner’s conjecture.To appear.

8.2 USING REDUCTION RULES 53

Definition 8.1.1 (Fixed Parameter Tractability) A parameterized problemL ⊆ Σ∗ × Σ∗

is fixed-parameter tractableif there is an algorithm that correctly decides, in timef(k) nα,
for input (x, y) ∈ Σ∗ × Σ∗ whether or not(x, y) ∈ L, wheren is the size of the input
x, |x| = n, k is the parameter,α is a constant (independent ofk) andf is an arbitrary
function.

The class of fixed-parameter tractable problems is denoted FPT.

It is not believed that allNP-complete problems are Fixed Parameter Tractable, the class
is split into a hierarchy of classes FPT⊆W[1]⊆W[2]⊆ · · · ⊆W[P]. Here the classes
W[1]⊆W[2]⊆ · · · ⊆W[P] are intractable and we justify this by a completeness-result not
unlike classical complexity. In [CCDF97] Cai, Chen, Downey, and Fellows proved that
k-SHORT NONDETERMISTICTURING MACHINE ACCEPTANCE(Will a Nondetermistic
Turing Machine halt ink or less steps?) is W[1]-complete thus giving strong natural
evidence thatFPT 6= W [1].

Further background on parameterized complexity can be found in [DF98].

The problem we address in this paper concerns spanning trees, namelyk-INTERNAL

SPANNING TREE (DoesG have a spanning tree with at mostn−k leaves?). The problem
is NP-complete asHAMILTONIAN PATH can be considered a special case ofk-INTERNAL

SPANNING TREE by makingk = |V | − 2, andHAMILTONIAN PATH is NP-complete.

In Section 8.4 we use standard techniques to show thatk-INTERNAL SPANNING TREE

is in FPT. In Section 8.5 we describe how to use the boundedindependent set structure
to design an FPT algorithm fork-INTERNAL SPANNING TREE. We give an analysis of
the running time of the algorithm generated by the method in Section 8.6. In Section 8.7
we show how the independent structure allows a pathwidth decomposition which can be
useful for some problems, we illustrate this onNONBLOCKER, the dual ofDOMINATING

SET. We conclude with some remarks about future research. Also, as a consequence
of the preprocessing of the graph necessary to create our fixed-parameter algorithm, we
easily obtain a polynomial time 2-approximation algorithm fork-INTERNAL SPANNING

TREE.

8.2 USING REDUCTION RULES

Currently, the main practical methods of FPT algorithm design are based onkernelization
and bounded search trees. The idea of kernelization is relatively simple, and can be
quickly illustrated for theVERTEX COVER problem.

In kernelization we seek to bound the size of the input instance to a function of the pa-
rameter. To achieve this we preprocess the graph using reduction rules. Two examples
of reduction rules forVERTEX COVER are theleaf-ruleand theBuss-rule. The leaf-rule

8.2 USING REDUCTION RULES 54

states that given an instance(G, k) whereG has a pendant vertexv of degree 1 connected
to vertexu, then it is never wrong to includeu in the vertex cover instead ofv, as the
edgeuv must be covered andu possibly covers other edges as well. Thus(G, k) can
be reduced to(G′, k − 1), whereG′ = G − {u, v}. Another rule, the Buss-rule [B98],
states that if the instance(G, k) has a vertexu of degree greater thank, thenu must be in
everyk-vertex cover ofG, since otherwise all its more thank neighbors would have to be
included. Thus,(G, k) can be reduced to(G′, k − 1) whereG′ = G− u.

The term ‘Reduction rule’ is somewhat unfortunate as it seems to imply a rule that reduces
the graph in size. Although a reduction in size is a consequence, it is wrong to consider
this the goal. Reduction rules should not be viewed as a ‘reduction in size’ but rather as
a ‘reduction to structure’. In parameterized complexity the goal of the reduction process
is to prove that the problem is after preprocessing trivially decidable for any ‘large’ in-
stance, i.e., irreducible instances larger than a functionf(k), our kernel size. It is here
that reduction rules provide us with the necessary information about the structure of the
instance. In a sense, reduction rules are used to impose structure that allow us to make
claims about irreducible graphs.

It is easy to be led astray by reduction rules that only offer a reduction in size, since if they
do not also convey some useful structural information, then the rule is ultimately useless
from the point of view of kernelization. However, such a rule could of course be very
useful in practice as a preprocessing tool or in search tree algorithms.

To illustrate what we mean we again consider the leaf-rule and the Buss-rule for vertex
cover. After repeated application of both we reach a graph where neither rule can be
applied. We say that this graph isirreduciblefor our reduction rules. From the knowledge
that the rules do not apply we can conclude that the graph has two properties. First, from
the leaf-rule, we know that every vertex has degree at least 2. Second, from the Buss-rule,
we know that every vertex has degree at mostk.

Knowing that the minimum degree of the graph is at least two is important for ruling out
cases in the search tree analysis, but it does not provide any ‘useful’ structural information
as we both have arbitrarily large graphs with minimum degree at least two that have ak-
Vertex Cover, and others that do not have ak-Vertex Cover. However, with the Buss-rule
the situation is different. Knowing that every vertex has degree at mostk combined with
the fact that we can select at mostk of them is enough to conclude that no irreducible
yes-instance fork-Vertex Cover has more thank(k + 1) vertices. Thus we can trivially
decide any irreducible instance of size greater thanf(k) = k(k +1). We have a quadratic
kernel for vertex cover.

In this paper we show that we can learn something about the structure of the graph on
a global level without reducing the graph in size. We show that there exists a set of
reduction rules that modify an arbitrary spanning tree of a graph into a spanning tree with
no induced edges between the leaves. Thus, the rules either produce a tree with many

8.3 PRELIMINARIES 55

internal vertices, effectively deciding the problem, or they identify a large independent
set, the leaves, in the graph. Having a large independent set is beneficial, because then the
graph allows a ‘crown decomposition’. We show how this crown decomposition can be
used to obtain aO(k2) kernel for thek-INTERNAL SPANNING TREEproblem, improving
on theO(k3) kernel presented in [PS03].

8.3 PRELIMINARIES

We assume simple, undirected, connected graphsG = (V, E) where |V | = n. The
set of neighbors of a vertexv is denotedN(v), and the neighbors of a setS ⊆ V is
N(S) =

⋃
v∈S N(v)− S.

We use the simplerG \ v to denoteG[V \ v] andG \ e to denoteG = (V, E \ e) where
v ande is a vertex and an edge respectively. Likewise for sets,G \ V ′ denotesG[V \ V ′]
andG \E ′ denotesG = (V, E \E ′) whereV ′ is a set of vertices andE ′ is a set of edges.

We say that ak-internal treeT is a subgraph ofG, whereT is a tree with at leastk internal
vertices. IfV (T) = V (G) we say thatT is ak-internal spanning treeof G.

8.4 k-I NTERNAL SPANNING TREE IS FPT

Using Robertson and Seymour’s Graph Minor Theorem it is straightforward to prove the
following membership inFPT.

Lemma 8.4.1 Thek-INTERNAL SPANNING TREE problem is inFPT.

Proof. LetFk denote the family of graphs that do not have spanning trees with at leastk
internal vertices. It is easy to observe that for eachk this family is a lower ideal in the mi-
nor order. Less formally, let(G, k) be aNO-instance ofk-INTERNAL SPANNING TREE,
that is a graphG for which there is no spanning tree with at leastk internal vertices. The
local operations which configure the minor order (i.e., edge contractions, edge deletions
and vertex deletions) will always transform thisNO-instance into anotherNO-instance.
By the Graph Minor Theorem of Robertson and Seymour and its companion result that
order testing in the minor order isFPT[RS99] we can conclude thatk-INTERNAL SPAN-
NING TREE is alsoFPT. (An exposition of well-quasiordering as a method ofFPTalgo-
rithm design can be found in [DF98].) 2

Unfortunately, thisFPTproof technique suffers from being nonuniform and nonconstruc-
tive, and gives anO(f(k)n3) algorithm with a very fast-growing parameter function com-
pared to the one we obtain in Section 8.5.

8.5 INDEPENDENTSET STRUCTURE 56

We remark that it can be shown that all fixed graphs with a vertex cover of sizek are well-
quasi ordered by ordinary subgraphs and have linear time order tests [F03]. The proof of
this is substantially shorter than the Graph Minor Project and could be used to simplify
Lemma 8.4.1.

8.5 INDEPENDENT SET STRUCTURE

In this section we show how to obtain a quadratic kernel fork-INTERNAL SPANNING

TREE. We first give a set of reduction rules that either produces a spanning tree with the
desired number of internal vertices or shows that the graph has a large independent set.

We will then show that this structural information is enough to prove that any irreducible
instance has size at mostO(k2), improving the result obtained in [PS03]. Using acrown
decompositionwe are able to prove that any graph with a large independent set contain
redundant vertices that can be removed, reaching the desired kernel size.

Lemma 8.5.1 Any graphG has a spanning treeT such that all the leaves ofT are inde-
pendent vertices inG or G has a spanning treeT ′ with only two leaves.

Proof. Given a spanning treeT of a graphG, we say that two leavesu, v ∈ T are in
conflict if uv ∈ E(G). We now show that given a spanning tree withi conflicts it is
possible to obtain a spanning tree with less thani conflicts using one of the rules below:

1. If x andy are in conflict andz, the parent ofx has degree3 or more, then a new
spanning treeT ′ could be constructed using the edgexy in the spanning tree instead
of xz.

2. If x andy are in conflict and both their parents have degree2, then letx′ be the first
vertex on a path fromx to y that has degree different from 2. If there is no such
vertexx′ we know that the spanning tree is a Hamiltonian path and has only two
leaves. Otherwise we create a new spanning tree disconnecting the path fromx to
x′ (leavingx′) and connectingx to y, repairing the conflict betweenx andy. Since
x′ is now of degree at least2 we have not created any new conflicts.

The validity of the rules is easy to verify and it is obvious that they can be executed in
polynomial time. Lemma 8.5.1 then follows by recursively applying the rules until no
conflicts exist. 2

Observe that any application of the rules on a spanning tree produces a spanning tree with
more internal vertices, thus the reduction rules above are used less thank times.

8.5 INDEPENDENTSET STRUCTURE 57

For the remainder of the paper we assume that we obtained a spanning treeT where the
leaves are independent and we define the setA as the internal vertices ofT andB as the
leaves ofT . Observe thatA is a connected set andB an independent set.

Several corollaries follow easily from this Lemma. One of them gives an approxima-
tion for k-INTERNAL SPANNING TREE, the others relate the problem to the well-studied
INDEPENDENT SET.

Corollary 8.5.1 k-INTERNAL SPANNING TREE has a 2-approximation algorithm.

Proof. Note that sinceB is an independent set it is impossible to include more than
|A| elements ofB as internals in the optimal spanning tree, as otherwise the spanning
tree would contain a loop. The maximum number of internal vertices is at most2|A|,
and since the spanning tree generated by the algorithm in Lemma 8.5.1 has|A| internal
vertices, it is a 2-approximation fork-INTERNAL SPANNING TREE. 2

Corollary 8.5.2 If a graphG = (V, E) is aNO-instance for(n−k)-INDEPENDENTSET

thenG is a YES-instance fork-INTERNAL SPANNING TREE.

Proof. If a graph does not have an independent set of size greater then(n − k), then
|B| < (n− k) and|A| ≥ k, aYES-instance ofk-INTERNAL SPANNING TREE. 2

Corollary 8.5.3 If a graph G = (V, E) is a YES-instance for(n − k)-INDEPENDENT

SET thenG is a NO-instance for(2k + 1)-INTERNAL SPANNING TREE.

Proof. If G has an(n−k)-INDEPENDENTSET I then for each vertex inI that we include
as an internal in the spanning tree we must include at least one other vertex inV −I. Thus
at most2k vertices can be internal in the spanning tree and thereforeG is aNO-instance
for (2k + 1)-INTERNAL SPANNING TREE. 2

We now know that if a graph does not have an(n − k)-INDEPENDENT SET then it is a
YES-instance fork-INTERNAL SPANNING TREE. We will now show how we can use
this structural information to give a bound on the size of the kernel. To reduce the large
independent set we will use the crown-reduction technique seen in [CFJ03, FHRST04,
F03, ACFL04] to reduce the size of the independence set.

Definition 8.5.1 A crown decomposition(H,C, R) in a graphG = (V, E) is a parti-
tioning of the vertices of the graph into three setsH, C, andR that have the following
properties:

8.5 INDEPENDENTSET STRUCTURE 58

1. H (the head)is a separator inG such that there are no edges inG between vertices
in C and vertices inR.

2. C = Cu ∪ Cm (the crown)is an independent set inG.

3. |Cm| = |H|, and there is a perfect matching betweenCm andH.

Although being a recently introduced idea, some theory about the existence of crowns can
be found in literature.

The following theorem can be deduced from [CFJ03, page 7], and [F03, page 8].

Theorem 8.5.1 Any graphG with an independent setI, where|I| ≥ n/2, has a crown
decomposition(H,C,R), whereH ⊆ N(I) andC ⊆ I, and this crown decomposition
can be found in timeO(|V |+ |E|), givenI.

In [FHRST04] the following is observed:

Lemma 8.5.2 If a bipartite graphG = (V ∪ V ′, E) has two crown decompositions
(H, C, R) and (H ′, C ′, R′) whereH ⊆ V and H ′ ⊆ V , thenG has a crown decom-
position(H ′′ = H ∪H ′, C ′′ = C ∪ C ′, R′′ = R ∩R′).

From these two results we can deduce that if the independent set is sufficiently large then
there exists a crown-decomposition whereCu 6= ∅.

Theorem 8.5.2 Any graphG with an independent setI, where|I| ≥ 2n/3, has a crown
decomposition(H, C, R), whereH ⊆ N(I), C ⊆ I andCu 6= ∅, that can be found in
timeO(|V ||E|) givenI.

Proof. First observe that|Cm| ≤ |N(I)|. By Theorem 8.5.1,G has a crown decom-
position (H, C, R), whereH ⊆ N(I). If |C| ≥ n

3
then |C| > N(I) and the result

follows, otherwise|I \ C| ≥ n/3 and by Theorem 8.5.1G \ C has a crown decompo-
sition (H ′′, C ′, R′). By Lemma 8.5.2 these crown-decompositions can be combined to
a crown-decomposition(H ′′, C ′′, R′′). This process can be repeated until the combined
crown-decomposition(Ĥ, Ĉ, R̂) no longer satisfies|I \ Ĉ| > n

3
, thus|Ĉ| > |N(I)| and

the result follows. The algorithm in Theorem 8.5.1 is executed at mostn times, giving the
bound ofO(|V ||E|). 2

Using an approach similar to the one in [FHRST04], we create an auxiliary graph model
where a crown decomposition in the auxiliary graph infer reductions in the original graph.

8.5 INDEPENDENTSET STRUCTURE 59

Observe that vertices in the independent setB can only participate in a spanning tree
in two ways. Either they are leaves, or they are internal vertices between two or more
vertices inA.

We will define the model as the bipartite graphGI = (A′ ∪ B, EI) where: A′ = A ∪
(A × A), i.e., A and a vertexvv′ for every pairv andv′ in A. The edges ofGI are the
original edgesE and an edge between a vertexb ∈ B and a pair vertex ifb has edges to
both vertices of the pair.EI = E ∪ {(vv′)b | vv′ ∈ A′, b ∈ B, {vb, v′b} ⊆ E}.
We now prove the following reduction rule.

Reduction Rule 3 If GI has a crown decomposition(H, Cm ∪ Cu, R) whereH ⊆ A′

thenG has ak-internal spanning tree if and only ifG\Cu has ak-internal spanning tree.

Proof. One direction is trivial, ifG \ Cu has ak-internal spanning tree thenG obviously
has one, as we cannot get fewer internals by adding vertices to the graph.

We prove the other direction by construction. LetS∗ be ak-internal spanning tree inG.
S∗−C is a forestF . We will show that we can construct ak-internal spanning tree fromF
by using vertices fromCm to connect the components inF , showing thatCu is redundant.

Let Q be the components ofF . Observe that at most|Q| − 1 vertices fromC connected
the components inS∗ and that all these vertices are internal.

Let Qi andQj be two arbitrary components inQ that were connected by a vertexc ∈ C.
Let ui anduj be the vertices inQi andQj respectively of whichc is a neighbor inS∗.
Connect these vertices using the vertex inCm matched to the pair-vertexuiuj. Because
of the matching in the crown decomposition, this vertex is uniquely determined and never
used elsewhere in the construction. The number of components have decreased by one.
Repeat this process until all components inQ are connected. Note that we added|Q| − 1
internal vertices, thus we used at least as many vertices to connectF as the optimal
solution did.F is now a tree.

For every leafui in F which is not a leaf inS∗, append the vertex matched toui ∈ Cm.
As above, the vertex matched toui is uniquely determined and not used elsewhere in the
construction.

Note that the construction of thek-internal spanning tree never depends onCu, thusCu is
redundant. 2

Lemma 8.5.3 If G is reduced and|V (G)| > k2 + 2k thenG has ak-Internal Spanning
Tree.

8.6 ANALYSIS OF THE RUNNING TIME 60

Proof. Assume in contradiction to the stated lemma thatG is reduced and|V (G)| >
k2 + 2k, but thatG has nok-Internal Spanning Tree.

By assumption|A| < k, otherwise the tree produced in Lemma 8.5.1 would havek
internal vertices. Hence,|B| = |V (G) − A| > k2 + k. In GI we have that is|A′| <
k(k + 1)/2, i.e., |B| > 2|A′|. Thus by Lemma 9.4.3,GI has a crown with at least one
vertex inCu, contradicting the assumption thatG was reduced.

2

8.6 ANALYSIS OF THE RUNNING TIME

Our algorithm is similar to that found in [PS03] and works in several stages. It first calls
a regular spanning tree algorithm and then modifies it to make the leaves independent.
Then, if the spanning tree does not contain enough internals, we know that the spanning
tree’s leaves form an independent set. We use our crown reduction rule to reduce the
independent set, after which the graph is reduced in size toO(k2). Finally, we employ a
brute-force spanning tree algorithm to find an optimal solution for the reduced instance.

We can use a simple breadth-first search algorithm to obtain any spanning tree inG. This
spanning tree can thus be obtained in timeO(|V |+ |E|) [CLR90]. The conflicts (i.e., the
leaves in the tree which are not independent) can be detected in timeO(|E|) and repaired
in timeO(|V |).
Given a large independent set, a crown can be found in linear time. A maximal crown can
be found in timeO(|V ||E|). We have then identified the redundant vertices and we can
reduce the graph to aO(k2) kernel.

We now want to findk vertices in the kernel that can form the internals of a spanning tree.
We will in a brute force manner test every suchk-set, there are at most

(
k2

k

)
such sets. By

Stirling’s observation thatn
n
2 < n! < nn we have that

(
k2

k

)
is less thank

3
2
k. Note that

this can be rewritten as21.5k log k. We now have to verify if thesek vertices can be used as
the internal vertices of a spanning tree. To do this we try every possible construction of a
treeT with thesek vertices, by Cayley’s formula there are no more thankk−2 such trees.
This, again, can be rewritten as(2k log k−2 log k). Then we test whether or not each leaf in
T can be assigned at least one vertex in the remaining kernel as its leaf. This is equivalent
to testing if the leaves and the remaining kernel have a perfect bipartite matching, which
can be done in timeO(

√
|V | · |E|). In this particular bipartite subset there are not more

thanO(k3) edges giving us a total ofO(k4) for the matching. Thus for eachk-set we can
verify if it is a valid solution in2k log k · k2 time.

The total running time of the algorithm isO(22.5k log kk2 + |V ||E|).

8.7 ANOTHER PATH(WIDTH) TO SUCCESS 61

8.7 ANOTHER PATH (WIDTH) TO SUCCESS

If we cannot use crown-decompositions to reduce the graph efficiently, we can sometimes
make use of the fact that the independent structure allows an easy path-decomposition as
well. The notion of pathwidth was introduced by Robertson and Seymour [RS83].

Definition 8.7.1 Apath decompositionof a graphG = (V, E) is a sequence(X1, X2, . . . , Xr)
of subsets ofV such that:

1.
⋃

1≤i≤r Xi = V .

2. For all vw ∈ E, there is ani such that1 ≤ i ≤ r andv, w ∈ Xi.

3. For all 1 ≤ i0 ≤ i1 ≤ i2 ≤ r, we haveXi0 ∩Xi2 ⊆ Xi1.

Thewidth of a path decomposition(X1, X2, . . . , Xr) is max1≤i≤r |Xi|−1. Thepathwidth
of a graph is the minimum width over its path decompositions.

If we have an independent setI of sizen− g(k) we can create a path decomposition with
width g(k) in the following manner. LetI1, I2, . . . be an arbitrary ordering ofI. The path
decomposition is then the sequence of subsetsBj = I ∪ Ij. It is easy to convince oneself
that this construction satisfies the requirements of a path decomposition.

To give an example where this is useful, consider the parametric dual ofk-DOMINATING

SET, namelyk-NONBLOCKER. (DoesG = (V, E) have a subsetV ′ of sizek, such that
every element ofV ′ has at least one neighbor inV \ V ′ ?).

Lemma 8.7.1 k-NONBLOCKER can be solved in timeO(3k + nO(1)).

To show this observation, we first compute amaximalindependent set I. The complement
of I, I = V \I is a nonblocking set. Thus either|I| < k or G has ak-NONBLOCKER. We
can then compute a path decomposition with pathwidthk. Now, using the algorithm intro-
duced by Telle and Proskurowski [PT93] and further improved by Alber and Niedermeier
[AN02] we can compute a minimum dominating set (and thus maximal nonblocking set)
in timeO(3k +nα). The above algorithm actually solves the problem for the more general
treewidth decomposition in timeO(4k + nα), but since this is a path decomposition we
can avoid the costly functions combining subtrees of the decompositions. This result im-
proves on the running time of McCartin’s algorithm [McC03], which obtains aO(4k+nα)
algorithm by using a very different technique.

8.8 CONCLUSIONS ANDFURTHER APPLICATIONS TOINDEPENDENTSET

STRUCTURES 62

8.8 CONCLUSIONS AND FURTHER APPLICATIONS TO

I NDEPENDENT SET STRUCTURES

In this paper we have given a fixed parameter algorithm fork-INTERNAL SPANNING

TREE. The algorithm runs in timeO(22.5k log k · k2 + |V ||E|), which is the best currently
known for this problem. A natural question is whether or not the there is a2O(k) algorithm
for the problem.

We also give a 2-approximation algorithm for the problem. This could be further im-
proved, and the same idea could be used to find more approximation algorithms for other
related problems. We would like to note that a limited number of experiments suggest
that this algorithm is a very good heuristic.

We have shown the remarkable structural bindings betweenk-INTERNAL SPANNING

TREE and(n − k)-INDEPENDENT SET in Corollaries 8.5.2 and 8.5.3. We believe that
similar structural bindings exist betweenINDEPENDENTSET/VERTEX COVER (k-Vertex
Cover is of course equivalent to(n − k)-INDEPENDENTSET) and other fixed-parameter
tractable problems. We are confident that this inherent structure can be used to design po-
tent algorithms for these problems, especially when combined with constructive polyno-
mial time algorithms that produce either an independent set or a solution for the problem
in question. Crown decompositions seem to be a natural companion as it has shown it-
self useful in reducing independent sets in a range of problem [FHRST04, PS04, MPS04,
DFRS04, CFJ04].

We also show how the independent set structure allows an easy path decomposition and
show that this is useful fork-NONBLOCKER where we improve upon the existing FPT-
algorithms.

If large independent sets are the targets, but no such polynomialeither/oralgorithm can
be found, we may still use the quite practical FPTVERTEX COVER-algorithm to find
the vertex cover structure. The current state of the art algorithm forVERTEX COVER

runs in timeO(1.286k + n) [CKJ01] and has been proven useful in implementations by
groups at Carleton University in Ottawa and the University of Tennessee in Knoxville for
exact solutions for values ofn andk up to 2,500 [L03]. We believe that exploiting vertex
cover/independent set structure may be a powerful tool for designing algorithms for other
fixed parameter tractable problems for which structural bindings withINDEPENDENTSET

exist. For example, we suspect that the parameterized versions ofMAX LEAF SPANNING

TREE, M INIMUM INDEPENDENT DOMINATING SET and M INIMUM PERFECT CODE

are very likely to fall into this class of problems.

BIBLIOGRAPHY

[A03] F. Abu-Khzam. Private communication.

[ACFL04] F. Abu-Khzam, R. Collins, M. Fellows and M. Langston. Kernelization Al-
gorithms for the Vertex Cover Problem: Theory and Experiments.Proceedings
ALENEX 2004, Springer-Verlag,Lecture Notes in Computer Science(2004), to ap-
pear.

[AN02] J. Alber and R. Niedermeier. Improved tree decomposition based algorithms for
domination-like problems.Proceedings of the 5th Latin American Theoretical IN-
formatics (LATIN 2002), number 2286 in Lecture Notes in Computer Science, pages
613–627, Springer (2002).

[B98] S. Buss,listed as private communication in the book Parameterized Complexity

[CFJ03] B. Chor, M. Fellows, D. Juedes. Private communication concerning manuscript
in preparation.

[CFJ04] B. Chor, M. Fellows, D. Juedes. Linear Kernels in Linear Time, or How to Save
k Colors inO(n2) steps. To appear in proceedings 30th Workshop on Graph Theo-
retic Concepts in Computer Science (WG ’04), Springer Lecture Notes in Computer
Science, (2004).

[CCDF97] Liming Cai, J. Chen, R. Downey and M. Fellows. The parameterized com-
plexity of short computation and factorization.Archive for Mathematical Logic36
(1997), 321-338.

[CKJ01] J. Chen, I. Kanj, and W. Jia. Vertex cover: Further Observations and Further
Improvements.Journal of AlgorithmsVolume 41, 280-301 (2001).

[CLR90] T.H.Cormen, C.E.Leierson, R.L.Rivest,Introduction to Algorithms, MIT Press.

[DF98] R. Downey and M. Fellows.Parameterized ComplexitySpringer-Verlag (1998).

[DFRS04] F. Dehne, M. Fellows, F. Rosamond, P.Shaw. Greedy Localization, Iterative
Compression and Modeled Crown Reductions: New FPT Techniques and Improved
Algorithms for Max Set Splitting and Vertex Cover.To Appear at IWPEC04Springer
Lecture Notes in Computer Science, (2004).

BIBLIOGRAPHY 64

[DFS99] R. Downey, M. Fellows and U. Stege. Parameterized complexity: a framework
for systematically confronting computational intractability.Contemporary Trends in
Discrete Mathematics(R. Graham, J. Kratochvil, J. Nesetril and F. Roberts, eds.),
AMS-DIMACS Series in Discrete Mathematics and Theoretical Computer Science
49 (1999), 49-99.

[F03] M.Fellows. Blow-ups, Win/Wins and Crown Rules: Some New Directions inFPT.
Proceedings WG 2003, Springer Verlag LNCS 2880, pages 1-12, 2003.

[FHRST04] M.Fellows, P.Heggernes, F.Rosamond, C. Sloper, J.A.Telle, Finding k dis-
joint triangles in an arbitrary graph. To appear in proceedings30th Workshop on
Graph Theoretic Concepts in Computer Science (WG ’04), Springer Lecture Notes
in Computer Science, (2004).

[FMRS01] M. Fellows, C. McCartin. F. Rosamond and U. Stege. Spanning Trees with
Few and Many Leaves.To appear

[GMM94] G. Galbiati, F. Maffioli, and A. Morzenti. A Short Note on the Approximabil-
ity of the Maximum Leaves Spanning Tree Problem.Information Processing Letters
52 (1994), 45–49.

[GMM97] G. Galbiati, A. Morzenti and F. Maffioli. On the Approximability of some
Maximum Spanning Tree Problems.Theoretical Computer Science181 (1997),
107–118.

[GJ79] M. Garey and D. Johnson.Computers and Intractability: A Guide to the Theory
of NP-Completeness.W.H. Freeman, San Francisco, 1979.

[KR00] Subhash Khot and Venkatesh Raman.Parameterized Complexity of Finding
Hereditary Properties. Proceedings of COCOON. Theoretical Computer Science
(COCOON 2000 special issue)

[L03] M. Langston. Private communication.

[LR98] H.-I. Lu and R. Ravi. Approximating Maximum Leaf Spanning Trees in Almost
Linear Time.Journal of Algorithms29 (1998), 132–141.

[MPS04] L. Mathieson, E. Prieto, P. Shaw. Packing Edge Disjoint Triangles: A Parame-
terized View.To Appear IWPEC 04, Springer Lecture Notes in Computer Science,
(2004).

[McC03] Catherine McCartin. Ph.D. dissertation in Computer Science, Victoria Univer-
sity, Wellington, New Zealand, (2003).

[NR99b] R. Niedermeier and P. Rossmanith. Upper Bounds for Vertex Cover Further Im-
proved. In C. Meinel and S. Tison, editors,Proceedings of the 16th Symposium on
Theoretical Aspects of Computer Science, number 1563 in Lecture Notes in Com-
puter Science, Springer-Verlag (1999), 561–570.

