38

MAX INTERNAL SPANNING TREE

Reducing to Independent Set Structure — the Case df-INTERNAL SPANNING
TREE!

Elena Prieto Christian Sloper
Abstract

Thek-INTERNAL SPANNING TREE problem asks whether a certain gragh

has a spanning tree with at ledsinternal vertices. Basing our work on the
results presented in [PS03], we show that there exists a set of reduction rules
that modify an arbitrary spanning tree of a graph into a spanning tree with no
induced edges between the leaves. Thus, the rules either produce a tree with
many internal vertices, effectively deciding the problem, or they identify a
large independent set, the leaves, in the graph. Having a large independent set
is beneficial, because then the graph allows both ‘crown decompositions’ and
path decompositions. We show how this crown decomposition can be used
to obtain aO(k?) kernel for thek-INTERNAL SPANNING TREE problem,
improving on theD(k?) kernel presented in [PS03].

8.1 INTRODUCTION

The subject of Parameterized Complexity is motivated by an abundance of NP-complete
problems that have very different behavior when parameterized. These problems in-
cludes well-known problems likBOMINATING SET, BANDWIDTH, SET SPLITTING,

and INDEPENDENT SET (for definitions the reader may refer to [GJ79]). Some of the
NP-complete are tractable when parameterized and admits very good parameterized al-
gorithms. A formal definition of the class of problems which are tractable when parame-
terized is defined as follows:

1This paper has been accepted to Nordic Journal of Computing and is due to appear.

BIBLIOGRAPHY 65

[PS03] E. Prieto, C. Sloper. Either/Or: Using Vertex Cover Structure in designing FPT-
algorithms - the case of k-Internal Spanning Treepceedings of WADS 2003
LNCS vol 2748, pp 465-483.

[PS04] E. Prieto, C. Sloper. Looking at the Stais Appear in proceedings of IWPEC04
Springer Lecture Notes in Computer Science, (2004).

[PT93] J.A.Telle and A.Proskurowski. Practical algorithms on paktimees with an ap-
plication to domination-like problem&roceedings WADS’93 - Third Workshop on
Algorithms and Data Structure§pringer Verlag, Lecture Notes in Computer Sci-
ence vol.709 (1993) 610-621.

[RS83] N. Robertson and P. D. Seymour, Graph minors. I. Excluding a fareSgmb.
Theory Series B35 (1983), pp. 39-61.

[RS99] N. Robertson, PD. Seymor. Graph Minors. XX Wagner’s conjecliarappear

8.2 USING REDUCTION RULES 53

Definition 8.1.1 (Fixed Parameter Tractability) A parameterized probléntT ¥* x >*
is fixed-parameter tractabitthere is an algorithm that correctly decides, in tirfigc) n®,
for input (z,y) € ¥* x ¥* whether or not(x,y) € L, wheren is the size of the input
x, |z| = n, k is the parametery is a constant (independent bf and f is an arbitrary
function.

The class of fixed-parameter tractable problems is denoted FPT.

It is not believed that alNP-complete problems are Fixed Parameter Tractable, the class
is split into a hierarchy of classes FEW[1]CW[2]C --- CWI[P]. Here the classes
W[1]CW][2]C - .- CWI[P] are intractable and we justify this by a completeness-result not
unlike classical complexity. In [CCDF97] Cai, Chen, Downey, and Fellows proved that
k-SHORT NONDETERMISTIC TURING MACHINE ACcCEPTANCE(Will a Nondetermistic
Turing Machine halt ink or less steps?) is W[1]-complete thus giving strong natural
evidence that'PT" # W1].

Further background on parameterized complexity can be found in [DF98].

The problem we address in this paper concerns spanning trees, nafhelyERNAL
SPANNING TREE (DoesG have a spanning tree with at mest & leaves?). The problem
is NP-complete aBlAMILTONIAN PATH can be considered a special casg-0NTERNAL
SPANNING TREEby makingk = |V| — 2, andHAMILTONIAN PATH is NP-complete.

In Section 8.4 we use standard techniques to showitHatTERNAL SPANNING TREE

is in FPT. In Section 8.5 we describe how to use the boumagependent set structure

to design an FPT algorithm fdr-INTERNAL SPANNING TREE. We give an analysis of

the running time of the algorithm generated by the method in Section 8.6. In Section 8.7
we show how the independent structure allows a pathwidth decomposition which can be
useful for some problems, we illustrate thisONBLOCKER, the dual ofDOMINATING

SET. We conclude with some remarks about future research. Also, as a consequence
of the preprocessing of the graph necessary to create our fixed-parameter algorithm, we
easily obtain a polynomial time 2-approximation algorithm#eFNTERNAL SPANNING

TREE

8.2 USING REDUCTION RULES

Currently, the main practical methods of FPT algorithm design are badestoelization
and bounded search treesThe idea of kernelization is relatively simple, and can be
quickly illustrated for theV ERTEX COVER problem.

In kernelization we seek to bound the size of the input instance to a function of the pa-
rameter. To achieve this we preprocess the graph using reduction rules. Two examples
of reduction rules fo ERTEX COVER are theleaf-ruleand theBuss-rule The leaf-rule

8.2 USING REDUCTION RULES 54

states that given an instan@&, k) whereG has a pendant vertexof degree 1 connected
to vertexu, then it is never wrong to include in the vertex cover instead of, as the
edgeuv must be covered and possibly covers other edges as well. THGS k) can
be reduced t4G’, k — 1), whereG' = G — {u,v}. Another rule, the Buss-rule [B98],
states that if the instancé;, k) has a vertex. of degree greater than thenu must be in
everyk-vertex cover of7, since otherwise all its more thameighbors would have to be
included. Thus(G, k) can be reduced t@&', k — 1) whereG' = G — u.

The term ‘Reduction rule’ is somewhat unfortunate as it seems to imply a rule that reduces
the graph in size. Although a reduction in size is a consequence, it is wrong to consider
this the goal. Reduction rules should not be viewed as a ‘reduction in size’ but rather as
a ‘reduction to structure In parameterized complexity the goal of the reduction process

is to prove that the problem is after preprocessing trivially decidable for any ‘large’ in-
stance, i.e., irreducible instances larger than a funcfidn, our kernel size. It is here

that reduction rules provide us with the necessary information about the structure of the
instance. In a sense, reduction rules are used to impose structure that allow us to make
claims about irreducible graphs.

Itis easy to be led astray by reduction rules that only offer a reduction in size, since if they
do not also convey some useful structural information, then the rule is ultimately useless
from the point of view of kernelization. However, such a rule could of course be very
useful in practice as a preprocessing tool or in search tree algorithms.

To illustrate what we mean we again consider the leaf-rule and the Buss-rule for vertex

cover. After repeated application of both we reach a graph where neither rule can be

applied. We say that this graphiigeduciblefor our reduction rules. From the knowledge

that the rules do not apply we can conclude that the graph has two properties. First, from
the leaf-rule, we know that every vertex has degree at least 2. Second, from the Buss-rule,
we know that every vertex has degree at niost

Knowing that the minimum degree of the graph is at least two is important for ruling out
cases in the search tree analysis, but it does not provide any ‘useful’ structural information
as we both have arbitrarily large graphs with minimum degree at least two that have a
Vertex Cover, and others that do not havie-Yertex Cover. However, with the Buss-rule

the situation is different. Knowing that every vertex has degree at mosmbined with

the fact that we can select at mdsbf them is enough to conclude that no irreducible
yes-instance fok-Vertex Cover has more thdt{k + 1) vertices. Thus we can trivially
decide any irreducible instance of size greater th@n = k(k + 1). We have a quadratic
kernel for vertex cover.

In this paper we show that we can learn something about the structure of the graph on
a global level without reducing the graph in size. We show that there exists a set of
reduction rules that modify an arbitrary spanning tree of a graph into a spanning tree with
no induced edges between the leaves. Thus, the rules either produce a tree with many

8.3 PRELIMINARIES 55

internal vertices, effectively deciding the problem, or they identify a large independent
set, the leaves, in the graph. Having a large independent set is beneficial, because then the
graph allows a ‘crown decomposition’. We show how this crown decomposition can be
used to obtain &(k?) kernel for thek-INTERNAL SPANNING TREE problem, improving

on theO(k?) kernel presented in [PS03].

8.3 PRELIMINARIES

We assume simple, undirected, connected graphs (V, E) where|V| = n. The
set of neighbors of a vertex is denotedN (v), and the neighbors of a sét C V' is
N(S) =Upes N(v) = S.

We use the simplef \ v to denoteG[V \ v] andG \ e to denoteG = (V, E \ e) where
v ande is a vertex and an edge respectively. Likewise for $&ts,V’ denotes7 [V \ V']
andG \ £’ denotegs = (V, E'\ E’) whereV" is a set of vertices an#’ is a set of edges.

We say that &-internal treeT’ is a subgraph of/, whereT is a tree with at leagt internal
vertices. IfV(T') = V(G) we say thafl" is ak-internal spanning treef G.

8.4 k-INTERNAL SPANNING TREE IS FPT

Using Robertson and Seymour’s Graph Minor Theorem it is straightforward to prove the
following membership iFPT.

Lemma 8.4.1 Thek-INTERNAL SPANNING TREE problem is inFPT.

Proof. Let 7, denote the family of graphs that do not have spanning trees with atdeast
internal vertices. It is easy to observe that for eathis family is a lower ideal in the mi-

nor order. Less formally, |GG, k) be aNo-instance oft-INTERNAL SPANNING TREE,

that is a grapld for which there is no spanning tree with at leashternal vertices. The

local operations which configure the minor order (i.e., edge contractions, edge deletions
and vertex deletions) will always transform thi-instance into anotheXo-instance.

By the Graph Minor Theorem of Robertson and Seymour and its companion result that
order testing in the minor order EP T[RS99] we can conclude thatINTERNAL SPAN-

NING TREEIs alsoFPT. (An exposition of well-quasiordering as a method=®&f T algo-

rithm design can be found in [DF98].) O

Unfortunately, thid=PT proof technique suffers from being nonuniform and nonconstruc-
tive, and gives ad(f (k)n?) algorithm with a very fast-growing parameter function com-
pared to the one we obtain in Section 8.5.

8.5 INDEPENDENTSET STRUCTURE 56

We remark that it can be shown that all fixed graphs with a vertex cover of simewell-

quasi ordered by ordinary subgraphs and have linear time order tests [FO3]. The proof of
this is substantially shorter than the Graph Minor Project and could be used to simplify
Lemma 8.4.1.

8.5 INDEPENDENT SET STRUCTURE

In this section we show how to obtain a quadratic kernellfdNTERNAL SPANNING
TREE. We first give a set of reduction rules that either produces a spanning tree with the
desired number of internal vertices or shows that the graph has a large independent set.

We will then show that this structural information is enough to prove that any irreducible
instance has size at ma®8{k?), improving the result obtained in [PS03]. Usingrawn
decompositiorwe are able to prove that any graph with a large independent set contain
redundant vertices that can be removed, reaching the desired kernel size.

Lemma 8.5.1 Any graphG has a spanning tre@ such that all the leaves df are inde-
pendent vertices ity or G has a spanning tre@” with only two leaves.

Proof. Given a spanning tre# of a graphG, we say that two leaves, v € T arein
conflictif wv € E(G). We now show that given a spanning tree witbonflicts it is
possible to obtain a spanning tree with less thaanflicts using one of the rules below:

1. If z andy are in conflict and, the parent ofc has degre& or more, then a new
spanning tre€” could be constructed using the edggein the spanning tree instead
of zz.

2. If x andy are in conflict and both their parents have degrgben letz’ be the first
vertex on a path from: to y that has degree different from 2. If there is no such
vertexz’ we know that the spanning tree is a Hamiltonian path and has only two
leaves. Otherwise we create a new spanning tree disconnecting the path toom
2’ (leavingz’) and connecting: to y, repairing the conflict betweenandy. Since
2’ is now of degree at leagtwe have not created any new conflicts.

The validity of the rules is easy to verify and it is obvious that they can be executed in
polynomial time. Lemma 8.5.1 then follows by recursively applying the rules until no
conflicts exist. O

Observe that any application of the rules on a spanning tree produces a spanning tree with
more internal vertices, thus the reduction rules above are used legstinzes.

8.5 INDEPENDENTSET STRUCTURE 57

For the remainder of the paper we assume that we obtained a spannifigvitesre the
leaves are independent and we define thedsas the internal vertices af and B as the
leaves ofl". Observe thatl is a connected set arigl an independent set.

Several corollaries follow easily from this Lemma. One of them gives an approxima-
tion for £-INTERNAL SPANNING TREE, the others relate the problem to the well-studied
INDEPENDENT SET

Corollary 8.5.1 k-INTERNAL SPANNING TREE has a 2-approximation algorithm.

Proof. Note that sinceB is an independent set it is impossible to include more than
|A| elements ofB as internals in the optimal spanning tree, as otherwise the spanning
tree would contain a loop. The maximum number of internal vertices is at 2nast

and since the spanning tree generated by the algorithm in Lemma 8.5/.4|haternal
vertices, it is a 2-approximation far-INTERNAL SPANNING TREE. O

Corollary 8.5.2 IfagraphG = (V, E) is aNo-instance for{n — k)-INDEPENDENTSET
thenG is a YES-instance fork-INTERNAL SPANNING TREE.

Proof. If a graph does not have an independent set of size greater(ithent), then
|B| < (n — k) and|A| > k, aYEs-instance ofc-INTERNAL SPANNING TREE. O

Corollary 8.5.3 If a graph G = (V, E) is a YES-instance for(n — k)-INDEPENDENT
SET thenG is a No-instance for(2k + 1)-INTERNAL SPANNING TREE.

Proof. If G has ann—k)-INDEPENDENTSET [then for each vertex i that we include
as an internal in the spanning tree we must include at least one other veitexinThus
at most2k vertices can be internal in the spanning tree and theréfasea No-instance
for (2k + 1)-INTERNAL SPANNING TREE. a

We now know that if a graph does not have (@an— k)-INDEPENDENTSET then it is a

Y Es-instance fork-INTERNAL SPANNING TREE. We will now show how we can use

this structural information to give a bound on the size of the kernel. To reduce the large
independent set we will use the crown-reduction technique seen in [CFJ03, FHRSTO04,
FO3, ACFLO04] to reduce the size of the independence set.

Definition 8.5.1 A crown decompositioi/,C, R) in a graphG = (V, E) is a parti-
tioning of the vertices of the graph into three sétsC, and R that have the following
properties:

8.5 INDEPENDENTSET STRUCTURE 58

1. H (the head)s a separator in7 such that there are no edgesGhbetween vertices
in C' and vertices inR.

2. C'=C,Uc,, (the crown)is an independent set @.

3. |Cl = |H

, and there is a perfect matching betwe@n and H.

Although being a recently introduced idea, some theory about the existence of crowns can
be found in literature.

The following theorem can be deduced from [CFJ03, page 7], and [FO3, page 8].

Theorem 8.5.1 Any graphG with an independent sét where|I| > n/2, has a crown
decompositio H, C, R), whereH C N(I) andC C I, and this crown decomposition
can be found in tim&(|V| + | E|), givenl.

In [FHRSTO04] the following is observed:

Lemma 8.5.2 If a bipartite graphG = (V U V', F) has two crown decompositions
(H,C,R) and (H',C",R') whereH C V and H' C V, thenG has a crown decom-
positon(H" = HUH'.C"=CUC' R"=RNR).

From these two results we can deduce that if the independent set is sufficiently large then
there exists a crown-decomposition whéte+# ().

Theorem 8.5.2 Any graphG with an independent sét where|I| > 2n/3, has a crown
decomposition H, C, R), whereH C N(I), C C I andC, # 0, that can be found in
timeO(|V||E|) givenl.

Proof. First observe thatC,,| < |N(I)|. By Theorem 8.5.1(3 has a crown decom-
position (H,C, R), whereH C N(I). If [C] > % then|C| > N(I) and the result
follows, otherwisg/ \ C| > n/3 and by Theorem 8.5.& \ C' has a crown decompo-
sition (H”,C", R’). By Lemma 8.5.2 these crown-decompositions can be combined to
a crown-decompositiofH”, C”, R"). This process can be repeated until the combined
crown-decompositioriFl, C, R) no longer satisfie§ \ C| > 2, thus|C| > |N(I)| and

the result follows. The algorithm in Theorem 8.5.1 is executed at mbstes, giving the
bound ofO(|V || E|). O

Using an approach similar to the one in [FHRSTO04], we create an auxiliary graph model
where a crown decomposition in the auxiliary graph infer reductions in the original graph.

8.5 INDEPENDENTSET STRUCTURE 59

Observe that vertices in the independent Betan only participate in a spanning tree
in two ways. Either they are leaves, or they are internal vertices between two or more
vertices inA.

We will define the model as the bipartite graph = (A’ U B, E;) where: A’ = AU
(A x A),ie., Aand a vertexv' for every pairv andv’ in A. The edges of7; are the
original edges® and an edge between a vertex B and a pair vertex ib has edges to
both vertices of the pai; = E'U {(vv')b | vv' € A", b € B, {vb,v'b} C E}.

We now prove the following reduction rule.

Reduction Rule 3 If G; has a crown decompositiofH, C,, U C,, R) whereH C A’
thenG has ak-internal spanning tree if and only @ \ C,, has ak-internal spanning tree.

Proof. One direction is trivial, ifG \ C, has ak-internal spanning tree the® obviously
has one, as we cannot get fewer internals by adding vertices to the graph.

We prove the other direction by construction. I$tbe ak-internal spanning tree i&.
S*—C'is aforestF'. We will show that we can construckainternal spanning tree fromh
by using vertices frond’,, to connect the components ify showing that’, is redundant.

Let @ be the components df. Observe that at mosf)| — 1 vertices fromC' connected
the components i8* and that all these vertices are internal.

Let); and(; be two arbitrary components g that were connected by a vertex C.

Let u;, andu; be the vertices irf); and (), respectively of whiche is a neighbor inS*.
Connect these vertices using the vertexip matched to the pair-vertexu;. Because

of the matching in the crown decomposition, this vertex is uniquely determined and never
used elsewhere in the construction. The number of components have decreased by one.
Repeat this process until all componentg)mre connected. Note that we addéd — 1

internal vertices, thus we used at least as many vertices to cohhastthe optimal
solution did. F’ is now a tree.

For every leafu; in F which is not a leaf inS*, append the vertex matcheddp € C,,.
As above, the vertex matched#pis uniquely determined and not used elsewhere in the
construction.

Note that the construction of theinternal spanning tree never dependsgnthusC,, is
redundant. O

Lemma 8.5.3 If G is reduced andV' (G)| > k? + 2k thenG has ak-Internal Spanning
Tree.

8.6 ANALYSIS OF THE RUNNING TIME 60

Proof. Assume in contradiction to the stated lemma tais reduced andV (G)| >
k? + 2k, but thatG has nok-Internal Spanning Tree.

By assumption A| < k, otherwise the tree produced in Lemma 8.5.1 would have
internal vertices. HenceB| = |V(G) — A| > k* + k. In G; we have that igA’| <
k(k+1)/2,i.e.,|B| > 2|A’|. Thus by Lemma 9.4.37,; has a crown with at least one
vertex inC,,, contradicting the assumption th@twas reduced.

8.6 ANALYSIS OF THE RUNNING TIME

Our algorithm is similar to that found in [PS03] and works in several stages. It first calls
a regular spanning tree algorithm and then modifies it to make the leaves independent.
Then, if the spanning tree does not contain enough internals, we know that the spanning
tree’s leaves form an independent set. We use our crown reduction rule to reduce the
independent set, after which the graph is reduced in sizZ&(t3). Finally, we employ a
brute-force spanning tree algorithm to find an optimal solution for the reduced instance.

We can use a simple breadth-first search algorithm to obtain any spanning&e&is
spanning tree can thus be obtained in tith@V'| + | E|) [CLR90]. The conflicts (i.e., the
leaves in the tree which are not independent) can be detected idtini#) and repaired
intime O(|V]).

Given a large independent set, a crown can be found in linear time. A maximal crown can
be found in timeO(|V||E|). We have then identified the redundant vertices and we can
reduce the graph to@(k?) kernel.

We now want to find: vertices in the kernel that can form the internals of a spanning tree.
gy e 2
We will in a brute force manner test every suelset, there are at mo@’;) such sets. By

Stirling’s observation thatz < n! < n" we have that(’f) is less tharkz*. Note that

this can be rewritten &&-5*!°¢* We now have to verify if thesk vertices can be used as

the internal vertices of a spanning tree. To do this we try every possible construction of a
treeT with thesek vertices, by Cayley’s formula there are no more tha&r? such trees.

This, again, can be rewritten &&+'°s*=2l°s*) Then we test whether or not each leaf in

T can be assigned at least one vertex in the remaining kernel as its leaf. This is equivalent
to testing if the leaves and the remaining kernel have a perfect bipartite matching, which
can be done in imé&(+/|V] - | E|). In this particular bipartite subset there are not more
thanO(k?) edges giving us a total @ (k*) for the matching. Thus for eadhset we can

verify if it is a valid solution in2*1°e* . k2 time.

The total running time of the algorithm @(225 6% k2 + |V || E)).

8.7 ANOTHER PATH(WIDTH) TO SUCCESS 61

8.7 ANOTHER PATH (WIDTH) TO SUCCESS

If we cannot use crown-decompositions to reduce the graph efficiently, we can sometimes
make use of the fact that the independent structure allows an easy path-decomposition as
well. The notion of pathwidth was introduced by Robertson and Seymour [RS83].

Definition 8.7.1 A path decompositioaf a graphG = (V, E) is a sequenceXy, Xs, ..., X,)
of subsets oV such that:

1. UlSiST X, =V.
2. Forallvw € E, there is ani such thatl < < randv,w € X;.

3. Forall 1 < iy < i < i, <r, we haveX,, N X;, C Xi,.

Thewidth of a path decompositiofiX;, X, ..., X,) ismax; <;<, | X;| — 1. Thepathwidth
of a graph is the minimum width over its path decompositions.

If we have an independent sebf sizen — g(k) we can create a path decomposition with
width g(k) in the following manner. Lef;, I, ... be an arbitrary ordering df. The path
decomposition is then the sequence of subBets: T U [;. Itis easy to convince oneself
that this construction satisfies the requirements of a path decomposition.

To give an example where this is useful, consider the parametric déaDafMINATING
SET, namelyk-NONBLOCKER. (DoesG = (V, E) have a subsét” of sizek, such that
every element of/’ has at least one neighborin\ V' ?).

Lemma 8.7.1 k-NONBLOCKER can be solved in timé& (3 + n®W),

To show this observation, we first computmaximalindependent set |. The complement

of I, I = V'\ I is a nonblocking set. Thus eithgl < k or G has a-NONBLOCKER. We

can then compute a path decomposition with pathwidiNow, using the algorithm intro-
duced by Telle and Proskurowski [PT93] and further improved by Alber and Niedermeier
[ANO2] we can compute a minimum dominating set (and thus maximal nonblocking set)
intime O(3*+n%). The above algorithm actually solves the problem for the more general
treewidth decomposition in timé(4* + n®), but since this is a path decomposition we
can avoid the costly functions combining subtrees of the decompositions. This result im-
proves on the running time of McCartin’s algorithm [McCO03], which obtaidy &* +n®)
algorithm by using a very different technique.

8.8 CONCLUSIONS ANDFURTHER APPLICATIONS TOINDEPENDENTSET
STRUCTURES 62

8.8 CONCLUSIONS AND FURTHER APPLICATIONS TO
| NDEPENDENT SET STRUCTURES

In this paper we have given a fixed parameter algorithmifdNTERNAL SPANNING
TREE. The algorithm runs in timé(225%leek . ;2 V|| E]), which is the best currently
known for this problem. A natural question is whether or not the there#*a algorithm
for the problem.

We also give a 2-approximation algorithm for the problem. This could be further im-
proved, and the same idea could be used to find more approximation algorithms for other
related problems. We would like to note that a limited number of experiments suggest
that this algorithm is a very good heuristic.

We have shown the remarkable structural bindings betwe&RTERNAL SPANNING
TREEand(n — k)-INDEPENDENT SET in Corollaries 8.5.2 and 8.5.3. We believe that
similar structural bindings exist betwe&DEPENDENTSET/V ERTEX COVER (k-Vertex

Cover is of course equivalent fa — %)-INDEPENDENTSET) and other fixed-parameter
tractable problems. We are confident that this inherent structure can be used to design po-
tent algorithms for these problems, especially when combined with constructive polyno-
mial time algorithms that produce either an independent set or a solution for the problem
in question. Crown decompositions seem to be a natural companion as it has shown it-
self useful in reducing independent sets in a range of problem [FHRSTO04, PS04, MPS04,
DFRS04, CFJ04].

We also show how the independent set structure allows an easy path decomposition and
show that this is useful fok-NONBLOCKER where we improve upon the existing FPT-
algorithms.

If large independent sets are the targets, but no such polyneithel/oralgorithm can

be found, we may still use the quite practical FFERTEX CoVvER-algorithm to find

the vertex cover structure. The current state of the art algorithnV#RTEX COVER

runs in timeO(1.286* + n) [CKJO1] and has been proven useful in implementations by
groups at Carleton University in Ottawa and the University of Tennessee in Knoxville for
exact solutions for values efandk up to 2,500 [LO3]. We believe that exploiting vertex
cover/independent set structure may be a powerful tool for designing algorithms for other
fixed parameter tractable problems for which structural bindingsSMWItHEPENDENTSET

exist. For example, we suspect that the parameterized versidhafL EAF SPANNING
TREE, MINIMUM INDEPENDENT DOMINATING SET and MINIMUM PERFECT CODE

are very likely to fall into this class of problems.

BIBLIOGRAPHY

[AO3] F. Abu-Khzam. Private communication.

[ACFLO4] F. Abu-Khzam, R. Collins, M. Fellows and M. Langston. Kernelization Al-
gorithms for the Vertex Cover Problem: Theory and ExperimeRteceedings
ALENEX 2004 Springer-Verlaglecture Notes in Computer Scien@904), to ap-
pear.

[ANO2] J. Alber and R. Niedermeier. Improved tree decomposition based algorithms for
domination-like problemsProceedings of the 5th Latin American Theoretical IN-
formatics (LATIN 2002)number 2286 in Lecture Notes in Computer Science, pages
613-627, Springer (2002).

[B98] S. Busslisted as private communication in the book Parameterized Complexity

[CFJO3] B. Chor, M. Fellows, D. Juedes. Private communication concerning manuscript
in preparation.

[CFJ04] B. Chor, M. Fellows, D. Juedes. Linear Kernels in Linear Time, or How to Save
k Colors inO(n?) steps. To appear in proceedings 30th Workshop on Graph Theo-
retic Concepts in Computer Science (WG '04), Springer Lecture Notes in Computer
Science, (2004).

[CCDF97] Liming Cai, J. Chen, R. Downey and M. Fellows. The parameterized com-
plexity of short computation and factorizatiofcchive for Mathematical Logi86
(1997), 321-338.

[CKJO1] J. Chen, I. Kanj, and W. Jia. Vertex cover: Further Observations and Further
ImprovementsJournal of Algorithms/olume 41, 280-301 (2001).

[CLR90] T.H.Cormen, C.E.Leierson, R.L.RiveBtfroduction to AlgorithmsMIT Press.
[DF98] R. Downey and M. Fellowsarameterized Complexifypringer-Verlag (1998).

[DFRS04] F. Dehne, M. Fellows, F. Rosamond, P.Shaw. Greedy Localization, Iterative
Compression and Modeled Crown Reductions: New FPT Techniques and Improved
Algorithms for Max Set Splitting and Vertex Cové@o Appear at IWPECO08&pringer
Lecture Notes in Computer Science, (2004).

BIBLIOGRAPHY 64

[DFS99] R. Downey, M. Fellows and U. Stege. Parameterized complexity: a framework
for systematically confronting computational intractabil@®pntemporary Trends in
Discrete MathematicgR. Graham, J. Kratochvil, J. Nesetril and F. Roberts, eds.),
AMS-DIMACS Series in Discrete Mathematics and Theoretical Computer Science
49 (1999), 49-99.

[FO3] M.Fellows. Blow-ups, Win/Wins and Crown Rules: Some New DirectiortH.
Proceedings WG 2003&pringer Verlag LNCS 2880, pages 1-12, 2003.

[FHRSTO04] M.Fellows, P.Heggernes, F.Rosamond, C. Sloper, J.A.Telle, Finding k dis-
joint triangles in an arbitrary graph. To appear in proceedB@h Workshop on
Graph Theoretic Concepts in Computer Science (WG, '8gyinger Lecture Notes
in Computer Science, (2004).

[FMRSO01] M. Fellows, C. McCartin. F. Rosamond and U. Stege. Spanning Trees with
Few and Many LeavedJo appear

[GMM94] G. Galbiati, F. Maffioli, and A. Morzenti. A Short Note on the Approximabil-
ity of the Maximum Leaves Spanning Tree Problénfiormation Processing Letters
52 (1994), 45-49.

[GMM97] G. Galbiati, A. Morzenti and F. Maffioli. On the Approximability of some
Maximum Spanning Tree Problem$heoretical Computer Scienc81 (1997),
107-118.

[GJ79] M. Garey and D. Johnso@omputers and Intractability: A Guide to the Theory
of NP-Completenedd/H. Freeman, San Francisco, 1979.

[KROO] Subhash Khot and Venkatesh Ram&arameterized Complexity of Finding
Hereditary Properties Proceedings of COCOON. Theoretical Computer Science
(COCOON 2000 special issue)

[LO3] M. Langston. Private communication.

[LR98] H.-I. Lu and R. Ravi. Approximating Maximum Leaf Spanning Trees in Almost
Linear Time.Journal of Algorithm<9 (1998), 132-141.

[MPSO04] L. Mathieson, E. Prieto, P. Shaw. Packing Edge Disjoint Triangles: A Parame-
terized View.To Appear IWPEC 04Springer Lecture Notes in Computer Science,
(2004).

[McCO03] Catherine McCartin. Ph.D. dissertation in Computer Science, Victoria Univer-
sity, Wellington, New Zealand, (2003).

[NR99b] R. Niedermeier and P. Rossmanith. Upper Bounds for Vertex Cover Further Im-
proved. In C. Meinel and S. Tison, editoRroceedings of the 16th Symposium on
Theoretical Aspects of Computer Scigneember 1563 in Lecture Notes in Com-
puter Science, Springer-Verlag (1999), 561-570.

