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FIXED PARAMETER SET SPLITTING

Fixed Parameter Set Splitting, Linear Kernel and Improved Running Time!
Daniel Lokshtanov  Christian Sloper
Abstract

We study the problem ISET SPLITTING in fixed parameter complexity. We
show that the problem can be solved in tifi&(2.6494%), improving on the
best currently known running time @*(8*). This is done by showing that
a non-trivial instance must have a small minirgar COVER, and using this
to reduce the problem to a series of small instancéd X SAT.

We also give a linear kernel containigg elements andk sets. This is done

by reducing the problem to a bipartite graph problem where we use crown
decomposition to reduce the graph. We show that this result also gives a
good kernel foMax CuT.

11.1 INTRODUCTION

The problem we study in this short noteNsaAXiIMUM SET SPLITTING. The transforma-
tion fromMAXIMUM SET SPLITTING to MAX CUT preserves the parameter and thus our
kernel applies for this problem as well.

k-SET SPLITTING

INSTANCE: A tuple (X, F, k) whereF is a collection of subsets of a finite
setX, and a positive integer

PARAMETER: k

1This paper appeared at the conference 'Algorithms and Complexity in Durham’, 2005 and has later
been invited to a special issue of Journal of Discrete Algorithms [LS05].
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QUESTION: Is there a subfamily¥’ C F, |F'| > k, and a partition ofX into
disjoint subsets{, and X; such that for every € F’, we haveS N X, # ()
andS N X; # 0?

SET SPLITTING, or HYPERGRAPHCOLORING as it is named in some sources, is a well
studied problem. A decision version of the problem appears in [GJ79] as problem [SP4].
It is APX-complete [Pe94] and there have been several approximation algorithms pub-
lished. The most notable are Anderson and Engebretsen [AE97] with a factai2a0,

and Zhang and Ling [ZL01] with a factor 6f7499.

In the area of parameterized algorithms there have been several results published. The
first by Dehne, Fellows, and Rosamond [DFR03] who giv@'d72*) FPT algorithm.
Dehne, Fellows, Rosamond, and Shaw [DFRS04] then improved on this result giving a
O*(8F) algorithm using a combination of the techniqugeedy localizatiorand crown
decomposition

To improve the running time we show that any non-trivial solutio®®f SPLITTING has
aSET COVER of size at most. We can then reduce the problentoinstances oMAx

SAT with k clauses each. By using Chen and Kanj’'s [CK04] exact algorithm with running
time O*(1.3247%) on each instance, we get a total running timeof2.6494%).

We will also show how we can use crown decomposition to obtain a linear kernel. We
do this by reducing the problem to a bipartite graph probl8mwARTITE COLORFUL
NEIGHBORHOOD We will use crown decomposition to reduce the graph; then show that
a simple greedy algorithm decides instances wlefe |F|/2. Together the two results
give a linear kernel with at mo&t elements and at mo3t: sets.

11.2 PRELIMINARIES

We assume that in 8ET SPLITTING instance every set contains at least two elements of
X. This is a natural assumption as sets of size one cannot be split in any case.

We employ theO* notation introduced in [WO03], which suppresses the polynomials in
the running time and focus on the exponentials. Thus for @*) algorithm, there exists
a constant such that the running time ©(2"n¢).

Throughout the text we will use lower case letters for elements, edges and vertices, capi-
tals for sets, and caligraphy for sets of sets, ieX, X, respectively.

In graphs, the set of neighbors of a verteis denotedV (v), and the neighbors of a set
S C Vis denotedV(S) = [J,cg N(v) — S.
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11.3 UsING SET COVER TO IMPROVE RUNNING TIME

Let a set cover be a subsetC X such that for every sdt € F, we haveP N S # (). We

will prove that an instance either has a set cover of sipe it has ak-SET SPLITTING.

As we will show, obtaining a small set cover allows us to reduce the problem to a series
of MAX SAT problems.

Lemma 11.3.1 Any instance X, F, k) of Set Splitting that has einimal set covers,
has a partitioning ofX into disjoint subsetsY, and X; such that at leastS| sets are
split.

Proof. Let S = {sy,s9, s3,...,5s,} be a minimal set cover i(X, F, k). By minimality
of S, we have that for alk; € S there is a seP, € F such thatS N P, = {s;}. Since
every set is of size at least two we can obtain a split of each of thesg,dstpartitioning
Xo=SandX, =X - S. O

We will now show that we can solve the problem of set splitting by creating at post
small instances (at mostclauses) oMAX SAT.

MAX SAT

INSTANCE: A collectionC of clauses over a set of variabl&s

QUESTION: What is the truth assignment that satisfies the maximum number
of clauses?

A recent paper by Chen and Kanj [CK04] give®a(1.3247™) algorithm forMAX SAT
wherem is the number of clauses in the formula. We will use this algorithm to solve our
MAX SAT instances.

Theorem 11.3.1Set Splitting can be solved in tind# (2.6494%)

Proof. We obtain a minimal set covérf by greedily selecting vertices to cover all sets. By
Lemma 11.3.1 we know thét has size less thak otherwise we can immediatly answer
'Yes'. LetP = {P | P € F,P ¢ S}. ltis clear thatP| < k, otherwise the partition
(S, X\ S) splits at least: sets. The remaining sets are only affected by how we partition
S.

Observe that if5 was already partitioned into disjoint subsét§ X every set irP has
at least one member i or in X].

Assume we have a partitionir{d(/, X) of S. For each seR € P, whereR is not split
by X{, and.X{, create a claus€’. If R contains an element i, add literalsz; for each
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elementz; € R — S to C. If R contains an element i, then add literalg;, for each
elementy; € R — S to Cp.

Adding an element: to X/, now corresponds to setting variablealse, and vice versa.
Observe that a sgt € P is split if and only if its clause’ is satisfied. We can now
employ Chen and Kanj's exact algorithm flskax SAT. There are2* different partitions
of the set covef, for each we construct an instanceMdAXx SAT with at mostk clauses.
Thus we get a total running time 6F (2% - 1.3247%) = 0*(2.6494%). O

11.4 REDUCING TO A GRAPH PROBLEM

The running time of the algorithm in the previous section is multiplicative, i.e., of the
form O(f(k) - n®). Itis often advantagous to have the exponential function as an additive
term of the formO( f (k) + n¢). We can achieve this by reducing, in polynomial time, the
problem to a kernel. Aernelis a smaller instance of the same problem where the size of
the instance is bounded by a functigfk). If g(k) is a linear function we call the kernel
alinear kernel Having a linear kernel is often advantagous when designing brute force
algorithms for a problem. In this section we show how a linear kernel can be achieved
usingcrown decompositan

Recently the fixed parameter kernels for many problems have been improved using crown
decompositions. Itis a common technique [FHRSTO04, PS04] to create an auxiliary graph
model from the problem instance and then show that a reduction (using crown decom-
position) in the graph model leads to reduction of the problem instance. This technique
would apply to this problem, but we will instead reduce our problem to a problem on
bipartite graphs.

We reformulate the problem as a problem on bipartite graphs.GI(&¥}-, Vy, E) be a
bipartite graph, wher&’z is a set of vertices with a vertex, for each set\/ € F, and
Vx is a set of vertices with a vertex, for each element € X and let(v,,vy) € F be
an edge ifr € M.

The problem is now reduced to color the $&t black and white such that at lealst
vertices ofl/z have acolorful neighborhoodli.e., at least one neighbor of each color. Itis
easy to see that this problem is equivalemt48ET SPLITTING.

k-BIPARTITE COLORFUL NEIGHBORHOOD(k-BCN)

INSTANCE: A bipartite graphG = (Vg, Vx, E), and a positive integer
PARAMETER: k

QUESTION: Is there a two-coloring oF’x such that there exists a setC Vx
of size at leask where each element 6f has a colorful neighborhood?

As mentioned we will use crown decomposition to reduce the problem. Crown decompo-
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sition is particularly well suited for use in bipartite graphs, as Lemma 11.4.1 ensures us
the existence of a crown decomposition in any bipartite graph.

Definition 11.4.1 A crown decompositiofH, C, R) in a graphG = (V, E) is a par-
titioning of the vertices of the graph into three séfs C', and R where H and C' are
nonempty such that they have the following properties:

1. H (the head)s a vertex separator id-, such that there are no edges@hbetween
vertices belonging t¢' and vertices belonging t&.

2. C'=C,Uc,, (the crown)is an independent set @.

3. There is a bijective mapping: H — C,,, wheref(v) = u = (u,v) € E (i.e., a
perfect matching).

We can find the following lemma in [CFJ04].

Lemma 11.4.1If a graph G = (V. E) has an independent sét C V(G) such that
|N(I)| < |I] then a crown decompositiof, C, R) with C' C [ for G can be found in
timeO(|V| + |E|).

Our main reduction rule is the following lemma that states that any crown decomposition
can be transformed to a crown decomposition where the head and crown can be removed
from the graph.

Lemma 11.4.2 Given a bipartite graplG = (Vx, Vx, E) where|Vz| < |Vx|, there exists
a nontrivial crown decompositio(H, C, R) such thatG is a "Yes'’-instance fok-BCN
— G' = (Vg \ H,Vx —C,E)is a’Yes'-instance fotk — |H|)-BCN

Proof. Since|Vz| < |Vx| there exists a componehty: C Vz, Vi C Vx where|Vy| <

|[Vx|'. By Lemma 11.4.1 we know that this component has a crown decomposition
(H',C'", R") whereH' C V. We now use this crown to identify another cro\, C, R)

with the desired properties.

We assume? # (), if this is not the case we can move a vertex fréfito R. If C,UR = ()
then|V%| = |V, contradicting V| < |V|.

We iteratively compute this new crown in the following manner. gt C H' be the
set of vertices of’ that have a neighbor iivy — C. The setH, is nonempty since
R # 0 and H' is a vertex separator. Lé&f, be the vertices o’ that are matched to
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Hy. Let H;,y = N(C;) andC;4, be the vertices matched #,,,. Run iteratively until
H;.y = H;thenletH = H;,C = {v |v € Vx, N(v) C H} andR be the remainder.

From the construction ofH, C, R) it is clear that this is a crown decomposition. We
proceed to show that is a Yes-instance fot-BCN if and only if G’ = (Vi — H, Vx —
C, F) is a YES instance fofk — |H|)-BCN.

In one direction assume on the contrary thats a Yes- instance fok-BCN, but that
G' = (Vg — H,Vx — C,E) is a No instance fo(k — |H|)-BCN. Then the removed
elements” must have participated in a colorful neighborhood for more tl#&jnvertices
in Vz. This is clearly impossible a¥ (C') C H.

In the other direction we have th&t' = (Vx — H,Vx — C, E) is a Yes-instance for
(k — |H|)-BCN. We can assume that every verteX/in — C' has been colored. We can
now colorC' such that every vertex il has a colorful neighborhood. For every vertex
h € H, we can color the vertex matched kodifferent from’s neighbor inVx — C.
Observe that after coloring’;, all vertices inf;, — H; have a neighbor ir€';. Thus
we can obtain a colorful neighborhood for each veriex H;., — H; by coloring its
matched vertex appropriately. Thus every verteX/ihas a colorful neighborhood arg

Is a YES instance fok-BCN. O

We say that a bipartite graph iseducible if we cannot apply the reduction in Lemma
11.4.2. The following corollary follows directly.

Corollary 11.4.1 In an irreducible bipartite graplG = (|Vr|, |[Vx|, E), we always have
Vx| < [VE|.

We have obtained the inequalityx| < [Vz|. We now show that we can obtain a sim-
ilar relationship betweehl’=| and & by analyzing the effectiveness of a simple greedy
algorithm for the problem.

Greedy algorithms foSET SPLITTING seem to do quite well, and it is indeed possible to
prove that there is a polynomial time algorithm that splits at least half of the sets. For our
graph problem this is the equivalent of proving that it is always possible to two-gglor
such that at least half df+ has a colorful neighborhood.

Lemma 11.4.3 1t is always possible to find a partitionin@, V') of Vx such that at least
half of the vertices i/ have a colorful neighborhood.

Proof. For a subseVy, C Vx we defineM (V) = {va | var € Ve, N(vpr) C Vi }. We
proceed by induction on the size & .
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Base caself |Vi| = 1, thenM (V) = 0. Thus the statement is trivially true.

Inductive Hypothesis: We assume that for all seis, C Vy of sizen, we can find
a partitioningB’, W’ of V such that at least half of the verticesii(V ) has a
colorful neighborhood.

Inductive Step: Assume any set’y C Vx where|V{| = no + 1. Letv, € V{ be an
arbitrary vertex inV’{, and letM’ = M (V{ — v,) . By the inductive hypothesis
we can find a partitionings’, W'’ such that half of the vertices i/’ have a color-
ful neighborhood. Since every vertex Wr has degree at least 2, every vertex in
M(VY) — M’ has at least one neighbor B U W’. We can assume without loss of
generality that half of the vertices éff (X"”) — M’ have a neighbor i3’. Hence
the partitioningB’, W’ U {v, } ensures that at least half of the verticesVir{V’y)
have a colorful neighborhood.

|

The following corollary follows directly from the above lemma. It is easy to design
a greedy algorithm that mimic the inductive procedure in the proof and produces the
necessary partitioning.

Corollary 11.4.2 All instances wheré < |Vx|/2 are trivially 'Yes'-instances.

Theorem 11.4.1k-BCN has a linear kernel whet®’x| < |Vz| < 2k.

Proof. By Corollary 11.4.2 we have that for a nontrivial instari¢g k), k > |Vx|/2. By
Corollary 11.4.1 we have th&vx| < |V| after reducing the graph. Thus the inequality
Vx| < |VF| < 2k holds for the kernel. 0

The following corollary then follows by a transformation of the kernel back+8eT
SPLITTING.

Corollary 11.4.3 k-SET SPLITTING has a linear kernel o2k sets and®k elements.

11.5 AN APPLICATIONTO MAX CuT

In this section we mention that our kernelization result also applies to the more known
MAXx CuT, which can be encoded usiiS8FT SPLITTING.
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MAx CuTt

INSTANCE: A graphG = (V, E), and a positive integér

PARAMETER: k

QUESTION: Is there a partitioning of/ into two setsV’, V" such that the
number of edges betweéff andV’” is at least k?

Let the set of elementX’ = V and for every edgév,u) € E create a sefv,u}. A
splitting of a setvu now corresponds to placingandwv in different partitions inM AX
CuT. The results ofSET SPLITTING thus apply taViAx CuT.

Observation 11.5.1k-MAX CuT has a linear kernel o2k vertices andk edges.

Using the best known exact algorithm for this problem¢2iii2/#1/4) algorithm by Fedin
and Kulikov [FK02], we get a running time ad*(2*/2) which is equivalent to Prieto’s
algorithm in [PO4] where she used thkethod of Extremal Structuranother well known
FPT technique, to reach a kernel lofvertices and2k edges. Earlier Mahajan, Raman
[MR99] has used yet another technique to reach the same number of edges.

11.6 CONCLUSION

We have improved the current best algorithm$am SPLITTING of O*(8%) to O*(2.6494%)
using an observation about the size and structure of the minimal set covers in any set split-
ting instance.

We also obtained a linear kernel by using modelled crown decomposition. Our model
is different from the one seen in [DFRS04]. This shows how crown decompositions can
often be applied in many ways to a single problem, with varying results. This kernel also
applies to Max Cut equalling the best known kernels for this problem, but with a different
approach.

Having achieved a linear kernel for Set Splitting we believe that it is now possible to
improve the running time even further. Applying a variation of the transformation seen in
the proof of Theorem 11.3.1 it is possible to transform an instan@e0fSPLITTING to

an instance of Max Sat. Add two clauses for each set, with one literal for each variable.
In one clause all literals are positive and in the other all negative. The set is now split if
and only if both clauses are satisfied. WitB/aset instance we have at ledssets split

if and only if we have at least% clauses satisfied. With our kernel, this direct approach
would be better than the method described in this paper if the Max Sat running time could
be improved belovwD(2™/3), wherem is the number of clauses.

We would like to acknowledge Daniel Kral for insightful remarks.
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