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FIXED PARAMETER SET SPLITTING

Fixed Parameter Set Splitting, Linear Kernel and Improved Running Time1

Daniel Lokshtanov Christian Sloper

Abstract

We study the problem k-SET SPLITTING in fixed parameter complexity. We
show that the problem can be solved in timeO∗(2.6494k), improving on the
best currently known running time ofO∗(8k). This is done by showing that
a non-trivial instance must have a small minimalSET COVER, and using this
to reduce the problem to a series of small instances ofMAX SAT.

We also give a linear kernel containing2k elements and2k sets. This is done
by reducing the problem to a bipartite graph problem where we use crown
decomposition to reduce the graph. We show that this result also gives a
good kernel forMAX CUT.

11.1 INTRODUCTION

The problem we study in this short note isMAXIMUM SET SPLITTING. The transforma-
tion fromMAXIMUM SET SPLITTING to MAX CUT preserves the parameter and thus our
kernel applies for this problem as well.

k-SET SPLITTING

INSTANCE: A tuple (X,F , k) whereF is a collection of subsets of a finite
setX, and a positive integerk
PARAMETER: k

1This paper appeared at the conference ’Algorithms and Complexity in Durham’, 2005 and has later
been invited to a special issue of Journal of Discrete Algorithms [LS05].
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QUESTION: Is there a subfamilyF ′ ⊆ F , |F ′| ≥ k, and a partition ofX into
disjoint subsetsX0 andX1 such that for everyS ∈ F ′, we haveS ∩X0 6= ∅
andS ∩X1 6= ∅?

SET SPLITTING, or HYPERGRAPHCOLORING as it is named in some sources, is a well
studied problem. A decision version of the problem appears in [GJ79] as problem [SP4].
It is APX-complete [Pe94] and there have been several approximation algorithms pub-
lished. The most notable are Anderson and Engebretsen [AE97] with a factor of0.7240,
and Zhang and Ling [ZL01] with a factor of0.7499.

In the area of parameterized algorithms there have been several results published. The
first by Dehne, Fellows, and Rosamond [DFR03] who give aO∗(72k) FPT algorithm.
Dehne, Fellows, Rosamond, and Shaw [DFRS04] then improved on this result giving a
O∗(8k) algorithm using a combination of the techniquesgreedy localizationandcrown
decomposition.

To improve the running time we show that any non-trivial solution ofSET SPLITTING has
a SET COVER of size at mostk. We can then reduce the problem to2k instances ofMAX

SAT with k clauses each. By using Chen and Kanj’s [CK04] exact algorithm with running
timeO∗(1.3247k) on each instance, we get a total running time ofO∗(2.6494k).

We will also show how we can use crown decomposition to obtain a linear kernel. We
do this by reducing the problem to a bipartite graph problem,BIPARTITE COLORFUL

NEIGHBORHOOD. We will use crown decomposition to reduce the graph; then show that
a simple greedy algorithm decides instances wherek ≤ |F|/2. Together the two results
give a linear kernel with at most2k elements and at most2k sets.

11.2 PRELIMINARIES

We assume that in aSET SPLITTING instance every set contains at least two elements of
X. This is a natural assumption as sets of size one cannot be split in any case.

We employ theO∗ notation introduced in [W03], which suppresses the polynomials in
the running time and focus on the exponentials. Thus for aO∗(2k) algorithm, there exists
a constantc such that the running time isO(2knc).

Throughout the text we will use lower case letters for elements, edges and vertices, capi-
tals for sets, and caligraphy for sets of sets, i.e.,x,X,X , respectively.

In graphs, the set of neighbors of a vertexv is denotedN(v), and the neighbors of a set
S ⊆ V is denotedN(S) =

⋃
v∈S N(v)− S.
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11.3 USING SET COVER TO IMPROVE RUNNING TIME

Let a set cover be a subsetS ⊆ X such that for every setP ∈ F , we haveP ∩S 6= ∅. We
will prove that an instance either has a set cover of sizek or it has ak-SET SPLITTING.
As we will show, obtaining a small set cover allows us to reduce the problem to a series
of MAX SAT problems.

Lemma 11.3.1 Any instance(X,F , k) of Set Splitting that has aminimal set coverS,
has a partitioning ofX into disjoint subsetsX0 and X1 such that at least|S| sets are
split.

Proof. Let S = {s1, s2, s3, . . . , sn} be a minimal set cover in(X,F , k). By minimality
of S, we have that for allsi ∈ S there is a setPi ∈ F such thatS ∩ Pi = {si}. Since
every set is of size at least two we can obtain a split of each of these setsPi by partitioning
X0 = S andX1 = X − S. 2

We will now show that we can solve the problem of set splitting by creating at most2k

small instances (at mostk clauses) ofMAX SAT.

MAX SAT

INSTANCE: A collectionC of clauses over a set of variablesX
QUESTION: What is the truth assignment that satisfies the maximum number
of clauses?

A recent paper by Chen and Kanj [CK04] gives aO∗(1.3247m) algorithm forMAX SAT

wherem is the number of clauses in the formula. We will use this algorithm to solve our
MAX SAT instances.

Theorem 11.3.1Set Splitting can be solved in timeO∗(2.6494k)

Proof. We obtain a minimal set coverS by greedily selecting vertices to cover all sets. By
Lemma 11.3.1 we know thatS has size less thank, otherwise we can immediatly answer
’Yes’. Let P = {P | P ∈ F , P 6⊆ S}. It is clear that|P| < k, otherwise the partition
(S, X \ S) splits at leastk sets. The remaining sets are only affected by how we partition
S.

Observe that ifS was already partitioned into disjoint subsetsX ′
0, X

′
1 every set inP has

at least one member inX ′
0 or in X ′

1.

Assume we have a partitioning(X ′
0, X

′
1) of S. For each setR ∈ P, whereR is not split

by X ′
0, andX ′

1, create a clauseCR. If R contains an element inX ′
0 add literalsxi for each
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elementxi ∈ R − S to CR. If R contains an element inX ′
1, then add literalsxi, for each

elementxi ∈ R− S to CR.

Adding an elementx to X ′
0 now corresponds to setting variablex false, and vice versa.

Observe that a setR ∈ P is split if and only if its clauseCR is satisfied. We can now
employ Chen and Kanj’s exact algorithm forMAX SAT. There are2k different partitions
of the set coverS, for each we construct an instance ofMAX SAT with at mostk clauses.
Thus we get a total running time ofO∗(2k · 1.3247k) = O∗(2.6494k). 2

11.4 REDUCING TO A GRAPH PROBLEM

The running time of the algorithm in the previous section is multiplicative, i.e., of the
formO(f(k) · nc). It is often advantagous to have the exponential function as an additive
term of the formO(f(k) + nc). We can achieve this by reducing, in polynomial time, the
problem to a kernel. Akernelis a smaller instance of the same problem where the size of
the instance is bounded by a functiong(k). If g(k) is a linear function we call the kernel
a linear kernel. Having a linear kernel is often advantagous when designing brute force
algorithms for a problem. In this section we show how a linear kernel can be achieved
usingcrown decompositon.

Recently the fixed parameter kernels for many problems have been improved using crown
decompositions. It is a common technique [FHRST04, PS04] to create an auxiliary graph
model from the problem instance and then show that a reduction (using crown decom-
position) in the graph model leads to reduction of the problem instance. This technique
would apply to this problem, but we will instead reduce our problem to a problem on
bipartite graphs.

We reformulate the problem as a problem on bipartite graphs. LetG(VF , VX , E) be a
bipartite graph, whereVF is a set of vertices with a vertexvM for each setM ∈ F , and
VX is a set of vertices with a vertexvx for each elementx ∈ X and let(vx, vM) ∈ E be
an edge ifx ∈ M .

The problem is now reduced to color the setVX black and white such that at leastk
vertices ofVF have acolorful neighborhood, i.e., at least one neighbor of each color. It is
easy to see that this problem is equivalent tok-SET SPLITTING.

k-BIPARTITE COLORFUL NEIGHBORHOOD(k-BCN)
INSTANCE: A bipartite graphG = (VF , VX , E), and a positive integerk
PARAMETER: k
QUESTION: Is there a two-coloring ofVX such that there exists a setS ⊆ VF
of size at leastk where each element ofS has a colorful neighborhood?

As mentioned we will use crown decomposition to reduce the problem. Crown decompo-
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sition is particularly well suited for use in bipartite graphs, as Lemma 11.4.1 ensures us
the existence of a crown decomposition in any bipartite graph.

Definition 11.4.1 A crown decomposition(H, C, R) in a graphG = (V, E) is a par-
titioning of the vertices of the graph into three setsH, C, and R whereH and C are
nonempty such that they have the following properties:

1. H (the head)is a vertex separator inG, such that there are no edges inG between
vertices belonging toC and vertices belonging toR.

2. C = Cu ∪ Cm (the crown)is an independent set inG.

3. There is a bijective mappingf : H → Cm, wheref(v) = u ⇒ (u, v) ∈ E (i.e., a
perfect matching).

We can find the following lemma in [CFJ04].

Lemma 11.4.1 If a graph G = (V, E) has an independent setI ⊆ V (G) such that
|N(I)| < |I| then a crown decomposition(H,C,R) with C ⊆ I for G can be found in
timeO(|V |+ |E|).

Our main reduction rule is the following lemma that states that any crown decomposition
can be transformed to a crown decomposition where the head and crown can be removed
from the graph.

Lemma 11.4.2 Given a bipartite graphG = (VF , VX , E) where|VF | < |VX |, there exists
a nontrivial crown decomposition(H, C, R) such thatG is a ’Yes’-instance fork-BCN
⇐⇒ G′ = (VF \H,VX − C,E) is a ’Yes’-instance for(k − |H|)-BCN

Proof. Since|VF | < |VX | there exists a componentV ′
F ⊆ VF , V ′

X ⊆ VX where|V ′
F | <

|VX |′. By Lemma 11.4.1 we know that this component has a crown decomposition
(H ′, C ′, R′) whereH ′ ⊆ V ′

F . We now use this crown to identify another crown(H, C,R)
with the desired properties.

We assumeR 6= ∅, if this is not the case we can move a vertex fromCu toR. If Cu∪R = ∅
then|V ′

F | = |V ′
X |, contradicting|V ′

F | < |V ′
X |.

We iteratively compute this new crown in the following manner. LetH0 ⊆ H ′ be the
set of vertices ofH ′ that have a neighbor inVX − C. The setH0 is nonempty since
R 6= ∅ andH ′ is a vertex separator. LetC0 be the vertices ofC that are matched to
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H0. Let Hi+1 = N(Ci) andCi+1 be the vertices matched toHi+1. Run iteratively until
Hi+1 = Hi then letH = Hi, C = {v | v ∈ VX , N(v) ⊆ H} andR be the remainder.

From the construction of(H,C,R) it is clear that this is a crown decomposition. We
proceed to show thatG is a Yes-instance fork-BCN if and only if G′ = (VF −H, VX −
C, E) is a YES instance for(k − |H|)-BCN.

In one direction assume on the contrary thatG is a Yes- instance fork-BCN, but that
G′ = (VF − H, VX − C,E) is a No instance for(k − |H|)-BCN. Then the removed
elementsC must have participated in a colorful neighborhood for more than|H| vertices
in VF . This is clearly impossible asN(C) ⊆ H.

In the other direction we have thatG′ = (VF − H, VX − C,E) is a Yes-instance for
(k − |H|)-BCN. We can assume that every vertex inVX − C has been colored. We can
now colorC such that every vertex inH has a colorful neighborhood. For every vertex
h ∈ H0 we can color the vertex matched toh different fromh’s neighbor inVX − C.
Observe that after coloringCj, all vertices inHj+1 − Hj have a neighbor inCj. Thus
we can obtain a colorful neighborhood for each vertexh ⊆ Hj+1 − Hj by coloring its
matched vertex appropriately. Thus every vertex inH has a colorful neighborhood andG
is a YES instance fork-BCN. 2

We say that a bipartite graph isirreducible if we cannot apply the reduction in Lemma
11.4.2. The following corollary follows directly.

Corollary 11.4.1 In an irreducible bipartite graphG = (|VF |, |VX |, E), we always have
|VX | ≤ |VF |.

We have obtained the inequality|VX | ≤ |VF |. We now show that we can obtain a sim-
ilar relationship between|VF | andk by analyzing the effectiveness of a simple greedy
algorithm for the problem.

Greedy algorithms forSET SPLITTING seem to do quite well, and it is indeed possible to
prove that there is a polynomial time algorithm that splits at least half of the sets. For our
graph problem this is the equivalent of proving that it is always possible to two-colorVX

such that at least half ofVF has a colorful neighborhood.

Lemma 11.4.3 It is always possible to find a partitioning(B, W ) of VX such that at least
half of the vertices inVF have a colorful neighborhood.

Proof. For a subsetV ′
X ⊆ VX we defineM(V ′

X) = {vM | vM ∈ VF , N(vM) ⊆ V ′
X}. We

proceed by induction on the size ofV ′
X .
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Base case:If |V ′
X | = 1, thenM(V ′

X) = ∅. Thus the statement is trivially true.

Inductive Hypothesis: We assume that for all setsV ′
X ⊆ VX of sizen0 we can find

a partitioningB′,W ′ of V ′
X such that at least half of the vertices inM(V ′

X) has a
colorful neighborhood.

Inductive Step: Assume any setV ′′
X ⊆ VX where|V ′′

X | = n0 + 1. Let vx ∈ V ′′
X be an

arbitrary vertex inV ′′
X , and letM ′ = M(V ′′

X − vx) . By the inductive hypothesis
we can find a partitioningB′,W ′ such that half of the vertices inM ′ have a color-
ful neighborhood. Since every vertex inVF has degree at least 2, every vertex in
M(V ′′

X)−M ′ has at least one neighbor inB′ ∪W ′. We can assume without loss of
generality that half of the vertices ofM(X ′′) −M ′ have a neighbor inB′. Hence
the partitioningB′,W ′ ∪ {vx} ensures that at least half of the vertices inM(V ′′

X)
have a colorful neighborhood.

2

The following corollary follows directly from the above lemma. It is easy to design
a greedy algorithm that mimic the inductive procedure in the proof and produces the
necessary partitioning.

Corollary 11.4.2 All instances wherek ≤ |VF |/2 are trivially ’Yes’-instances.

Theorem 11.4.1k-BCN has a linear kernel where|VX | ≤ |VF | < 2k.

Proof. By Corollary 11.4.2 we have that for a nontrivial instance(G, k), k > |VF |/2. By
Corollary 11.4.1 we have that|VX | ≤ |VF | after reducing the graph. Thus the inequality
|VX | ≤ |VF | < 2k holds for the kernel. 2

The following corollary then follows by a transformation of the kernel back tok-SET

SPLITTING.

Corollary 11.4.3 k-SET SPLITTING has a linear kernel of2k sets and2k elements.

11.5 AN APPLICATION TO M AX CUT

In this section we mention that our kernelization result also applies to the more known
MAX CUT, which can be encoded usingSET SPLITTING.
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MAX CUT

INSTANCE: A graphG = (V,E), and a positive integerk
PARAMETER: k
QUESTION: Is there a partitioning ofV into two setsV ′, V ′′ such that the
number of edges betweenV ′ andV ′′ is at least k?

Let the set of elementsX = V and for every edge(v, u) ∈ E create a set{v, u}. A
splitting of a setvu now corresponds to placingu andv in different partitions inMAX

CUT. The results onSET SPLITTING thus apply toMAX CUT.

Observation 11.5.1k-MAX CUT has a linear kernel of2k vertices and2k edges.

Using the best known exact algorithm for this problem, anO∗(2|E|/4) algorithm by Fedin
and Kulikov [FK02], we get a running time ofO∗(2k/2) which is equivalent to Prieto’s
algorithm in [P04] where she used theMethod of Extremal Structure, another well known
FPT technique, to reach a kernel ofk vertices and2k edges. Earlier Mahajan, Raman
[MR99] has used yet another technique to reach the same number of edges.

11.6 CONCLUSION

We have improved the current best algorithm forSET SPLITTING ofO∗(8k) toO∗(2.6494k)
using an observation about the size and structure of the minimal set covers in any set split-
ting instance.

We also obtained a linear kernel by using modelled crown decomposition. Our model
is different from the one seen in [DFRS04]. This shows how crown decompositions can
often be applied in many ways to a single problem, with varying results. This kernel also
applies to Max Cut equalling the best known kernels for this problem, but with a different
approach.

Having achieved a linear kernel for Set Splitting we believe that it is now possible to
improve the running time even further. Applying a variation of the transformation seen in
the proof of Theorem 11.3.1 it is possible to transform an instance ofSET SPLITTING to
an instance of Max Sat. Add two clauses for each set, with one literal for each variable.
In one clause all literals are positive and in the other all negative. The set is now split if
and only if both clauses are satisfied. With a2k set instance we have at leastk sets split
if and only if we have at least3k clauses satisfied. With our kernel, this direct approach
would be better than the method described in this paper if the Max Sat running time could
be improved belowO(2m/3), wherem is the number of clauses.

We would like to acknowledge Daniel Kral for insightful remarks.
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