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Preface

This thesis is submitted in partial fulfillment for the degree of Doctor Scientiarum
at the University of Bergen. The thesis consists of an introduction, followed by
four papers. The doctorate study was initiated in August 2000 and the work has
been carried out at the Department of Chemistry, University of Bergen. Courses
and contributions at conferences has been fulfilled according to requirements of the
study. The Norwegian Research Council has funded the project.

Earlier studies include a bachelor degree in analytical chemistry from Agder
University College (1996), and a Candidata Scientiarum degree in chemometrics
from the University of Bergen (1999). In the Cand. Scient. study, chemometric
techniques were used in combination with near-infrared spectroscopy to investigate
chemical reactions.

Near-infrared spectroscopy is a fast and non-destructive technique, requiring
little or no sample preparation. The technique is therefore suitable for auto-
matic monitoring of chemical processes. An engagement to test near-infrared spec-
troscopy for monitoring a synthesis of contrast agent was carried out at Nycomed
Imaging (present Amersham Health AS). The study revealed several artefacts in
the spectroscopic data. A Dr. Scient. project to investigate multivariate modelling
of near-infrared spectroscopy data from the complex industrial process was applied
for, and was approved by the Norwegian Research Council.

High collinearity in spectroscopic data necessitates the need of multivariate
techniques. Several methods to model data for quantitative purposes exist. Which
method to choose depends on the chemical system. In this thesis, emphasis has
been put on assessment of modelling techniques to near-infrared data. Another
important issue when modelling is how to preprocess data to diminish the influence
from noise or irregularities. Removal of multiplicative and additive effects, and how
to model nonlinear data, have also been investigated.

The first paper is based on results achieved during the Cand. Scient. study,
where a procedure to resolve near-infrared spectra was proposed. A synthesis of
contrast agent at Amersham Health AS has been used as a case study in the
other papers. The system is complex, making curve resolution a difficult task. If
reference measurements of interesting variables are available, regression techniques
that relate near infrared spectra to the responses are preferred. A feasibility study
of near-infrared spectroscopy was performed in paper II. The study included testing
of different preprocessing techniques. The process data were shown to have a
curvature that is well described by a second order polynomial. Different techniques
that account for the non-linear behaviour was tested in paper III. In the last paper,
multiway techniques were tested for their ability to model near-infrared data.
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Notation

Scalars are indicated by italics, e.g. a and A, and vectors by bold lower-case letters,
e.g. x. Bold-face capitals, e.g. X, are used for matrices, and underlined bold-face
capitals, e.g. X, for three-way arrays. The size of two-way data is given as I × J ,
i.e. I objects and J variables, while for three-way data the size is given as I×J×K,
i.e. I batches, J objects and K variables. XT is the transpose of the matrix. X+

denotes the pseudoinverse of a matrix that can be calculated by (XTX)−1XT or in
a numerically more stable manner by using the singular value decomposition of X.
The symbol ⊗ is the Kronecker product;

U ⊗ V =







u11V . . . u1JV
...

. . .
...

uI1V . . . uIJV







while the symbol � is the columnwise Kronecker product (also denoted the Khatri-
Rao product); U � V = (u1 ⊗ v1| . . . |uJ ⊗ vJ).

Abbreviations

EFA Evolving factor analysis
ETA Eigenstructure tracking analysis
HPLC High performance liquid chromatography
ITTFA Iterative target transformation factor analysis
LPG Latent projection graphs
MLR Multiple linear regression
MSC Multiplicative scattering correction
N-PLS Multi-way PLS regression
NIR Near infrared
OP Orthogonal projection
OS-2 Optimized scaling method
OSC Orthogonal signal correction
PARAFAC Parallel factor analysis
PCA Principal component analysis
PCR Principal component regression
PLS Partial least squares regression
PV Principal variables
RMSEP Root mean square error of prediction
RMSECV Root mean square error of cross validation
SEP Standard error of prediction
SVD Singular value decomposition
QPLS Quadratic partial least squares regression



Chapter 1

Introduction

”.., today significant opportunities exist for improving the efficiency of
pharmaceutical manufacturing and quality assurance through the inno-
vative application of novel product and process development, process
control, and modern process analytical chemistry tools.”

U.S. Food and Drug Administration [1]

Many industrial processes are run under non-optimal conditions with regards
to quality and yield. Hesitation towards new techniques may have hindered full
understanding and control of critical process parameters. Recently, guidelines for
use of process analytical technology in industry were proposed by the U.S. Food
and Drug Administration [1]. The guidance document is a request to the industry
to replace conventional laboratory testing methods with more efficient quality as-
surance techniques. Over time, the goal is to improve the quality, the safety and
the efficiency of the processes.

In order to utilize new techniques, proper measuring devices and data-analytical
methods providing high sensitivity are required. Near-infrared (NIR) spectroscopy
is a sensitive technique that has the ability to monitor quality before and during
processes, and thereby to provide useful information for process control. Processes
are often carried out in hazardous environments making the lifetime of analytical
instrumentation short. An advantage of the NIR spectrophotometer is that it
can be equipped with fiber-optic cables sending radiation to the process while the
spectrophotometer is stored in a safe environment. However, the complexity of
the technique requires advanced data-analytical methods for reliable prediction of
product characteristics and for chemical interpretation.

Chemometrics can be defined as the application of statistical and mathematical
procedures to extract information from chemical data [2]. The consensus is that
chemometrics started around the early 1970s due to increased use of instrumenta-
tion generating large data sets and the need of multivariate techniques to model
these data sets [3]. Since then, new chemometric techniques and applications have
increased steadily. A review of chemometrics and spectroscopy has been given in
[4, 5, 6].

The major aim of this thesis is to investigate NIR spectroscopy for monitoring
processes by means of chemometric techniques. Vibrational spectra acquired in the

1



2 Introduction

NIR-region are characterized by broad and highly overlapping bands. In addition,
they have often problems with noise from instrumental parts or are affected by
physical effects from light scattering. To use the spectra for process monitoring,
preprocessing of data to reduce these effects prior to modelling is often required.
There are several ways to model data for quantitative purposes. In this thesis,
curve resolution has been applied along with two-way and three-way regression
techniques. The type of preprocessing and modelling technique to use depends
on the chemical system to be analysed. Based upon results given in this thesis,
strategies for robust multivariate modelling of NIR-spectra are proposed.

1.1 Outline of the thesis

This thesis includes four papers. In paper I a procedure is given for curve resolution
on near-infrared spectra to investigate self-association of alcohols. By means of
curve resolution the spectral and concentration profiles of the different association
species are resolved. The profiles are used for qualitative and quantitative studies
of the system. The results are followed by a discussion of the curve resolution
problem of NIR spectra.

The strength of curve-resolution techniques is their ability to find pure spec-
tral and concentration profiles, without any a priori information. For regression
purposes the spectral profiles of all components must be known. In the future,
knowing all spectral profiles, their corresponding concentrations profiles can be
found directly.

In paper I it is shown that even when resolving a simple system in a non-
absorbing solvent, problems due to baseline and highly overlapping bands are ex-
perienced. With access to reference methods for the components of interest, partial
least squares (PLS) is easier and more reliable to use.

Paper II is a feasibility study of NIR spectroscopy for measuring the content
of chemical compounds in a complex process solution, using reference data from
high performance liquid chromatography. The work is focused on how to obtain
calibration models with high predictive ability and includes testing of different
preprocessing and variable selection methods reported in the literature.

A curvature that was well described by a second order polynomial was revealed
between process data and the reference values modelled in paper II. In paper III
different techniques that account for the non-linear behaviour were tested. These
included use of transformations, splitting of data into few close-to-linear models and
of a PLS technique taking in the second order relationship between the predictor
and response. The result was simpler models with better predictive ability.

In paper IV multiway methods were tested for their ability to explore and model
NIR spectra. It was revealed that blocking of data having a non-linear behaviour
from two-way into three-way can improve the predictive ability. Use of N-way
techniques lead to certain problems related to variable selection and how to fill in
for missing values. These issues have also been discussed in paper IV.

The NIR data analysed in paper I-IV were acquired manually. During the
study it was planned to use automatically acquired FT-NIR data from this process.
However, automatical acquisition resulted in severe noise and artefacts in data, and
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reliable spectra were not acquired until recently. Chapter 6 in this thesis describes
the problems and gives a further outlook for automatical acquisition of NIR spectra.

1.2 Pharmaceutical process

In this thesis the pharmaceutical production of a contrast agent for X-ray diag-
nostics is used as a case study. The synthesis is given in Figure 1.1. The main

Figure 1.1: Reaction mechanisms in the process solution.

reactant is dissolved in an alkaline 2-methoxy-ethanol solution. When the initiating
compound is added, the alkylating agent forms, and the transformation from the
main reactant into the wanted product starts. When the product concentration
gets high, it reacts with the alkylating agent forming impurity (see Figure 1.2). At
termination of the reaction the goal is to have transferred as much as possible of the
main reactant into product, with the formation of impurity suppressed. Therefore
the synthesis is controlled empirically during reaction. The synthesis takes about
26 hours to complete. During the run there are three control points, where the area
percent of the main reactant and the impurity are measured by high performance
liquid chromatograpy (HPLC). If the reaction goes too fast or too slowly, analytes
have to be added to adjust the reaction rate.

HPLC is a destructive and manual technique that requires operational per-
sonnel for sample collection and QC-personnel in the laboratory for the analysis.
Near-infrared spectroscopy is a fast and automatic technique that is suitable for



4 Introduction

Figure 1.2: A sketch of concentration changes of the main reactant (- · - · -), the
product (· · ·) and the impurity (- - -) during the synthesis of contrast agent. t1, t2

and t3 refer to the three control points.

continuous monitoring. The process can be adjusted at an early stage and one
may thereby prevent rejects or re-processing. The aim of using NIR spectroscopy
in the process is to replace the HPLC technique with NIR technology. This is a
calibration problem that is complicated due to the highly correlated variables in
the NIR spectra, and due to that the spectra are noisy and show a non-linear be-
haviour. Different multivariate techniques and preprocessing techniques have been
investigated on NIR data from the process.

NIR spectroscopy applied to the process described here is patented [7].

1.3 Process analysis

Process analysis techniques have been categorized into several groups, such as off-
line, at-line, on-line, in-line, in situ, near-line, open-path, automatic, real-time and
noninvasive techniques [8, 9, 10]. There are small differences between some of
the categories. This makes naming the analyzer condition a confusing task. In-
stead a simpler division is used in this thesis. The categories used are depending
upon whether the sampling is performed manually or automatically, and whether
the technique is destructive or non-destructive. A non-destructive technique that
acquires process data automatically is most desirable for process monitoring. Vi-
brational spectroscopy in the mid-IR and near-IR ranges, as well as Raman spec-
troscopy, fulfill these requirements.

The mid-IR region provides narrower bands, and spectra from this region are
therefore more suited for quantitative and qualitative purposes compared to NIR
spectra. However, in the mid-IR regions there are high transmission losses in fiber
optics necessitate short fiber lengths. The use of fiber optic is highly desirable for
applications of vibrational techniques to processes in corrosive environments. This
restricts the use of mid-IR spectroscopy in many process applications. For NIR and
Raman the radiation can be transmitted through fiber optics for long distances, and
the instrumentation can be placed in a dry and temperature-controlled room. In
addition to it is working well with long fiber optics, Raman spectroscopy provides a
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high level of spectral information with highly resolved bands. The result is robust
models requiring less maintenance than models from near-IR spectroscopy. While
IR absorbances are stronger for vibrations which involve a large dipole moment
change, Raman bands are stronger for large changes in polarizability. Raman spec-
troscopy is therefore complementary to IR since materials with weak IR features
often produce good Raman spectra. Raman spectroscopy is especially suitable for
aqueous solutions since water is a weak Raman scatterer. A disadvantage with Ra-
man spectroscopy is that the method has sensitivity problems in process analysis.
Better instrumentation, i.e. laser diode and fiber probes, with equal sensitivity to
mid-IR and near-IR is under development. For the moment NIR spectroscopy is
assumed to be the best suited technique for vibrational process monitoring. For
more information regarding vibrational process analysis, see [9, 10].

1.4 Principles of near-infrared spectroscopy

Infrared radiation was discovered by the astronomen William Herschel in 1800 when
he investigated the distribution of heat in sunlight. He measured the temperature
of the different colours in light, but it was not until he placed the thermometer
below the red end of the visible spectrum that the temperature began to rise. The
region was named infrared, with the Latin prefix infra meaning below [8].

Infrared spectroscopy is used to investigate the vibrational properties of a sam-
ple. Chemical bonds in a molecule vibrate with different frequencies. If the vibra-
tions have the same frequency or energy as the light passed through a sample, and
if the dipole moment of the molecule changes during the vibration, energy would
be absorbed from the light and converted into vibrational energy. The absorptions
at different frequencies are measured by a spectrometer, generating a spectrum.

Molecular vibrations give rise to absorption bands generally located in the mid-
infrared range (2500 to 25000 nm). The near-infrared region is located in between
the mid-infrared and the visible part of the electromagnetic spectrum and covers
the interval between approximately 800 and 2500 nm. Absorptions in this region
include overtones and combination bands of the fundamental bands observed in
the mid-infrared region.

While overtones are restricted to the first, second and third overtone, there is no
theoretical limit to the number of absorptions that can be involved in combining
bands from the mid-IR region. The effects on near-IR spectra is that one finds
absorptions at unexpected positions and broad peaks caused by the overlapping
of a multitude of different absorptions. However, the absorptions due to overtones
and combinations of bands are much weaker than those of the fundamentals, i.e. 10
to 100 times weaker for each higher transition. This restricts absorption to the
strongly absorbing functional groups O-H, N-H and C-H.
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1.5 Beer’s law

Beer’s law states that the absorption of light is proportional to concentration, c, if
the path length, l, is kept at a constant level;

Abs = εlc (1.1)

ε is the molar extinction coefficient. For a system following this law, regression
can be performed by plotting concentration versus absorption. For near-infrared
spectroscopy several species, A, absorb light at the same wavelength, λ. The light
absorption is said to be additive;

Absλ =
A

∑

a=1

εalca (1.2)

Absorption spectra of a number of samples over a number of wavelengths can be
arranged in a matrix, X (Isamples × Jwavelengths), with one spectrum in each row;

X =
A

∑

a=1

cas
T
a = CST (1.3)

The molar absorptivity, sa, is the product of εa and l. Each column in the matrix
C (I ×A) corresponds to a concentration profile, while each column in the matrix
S (J × A) corresponds to a spectral profile.



Chapter 2

Multivariate analysis

”Although NIR spectra are very complex, the fact that the same atoms
are involved in many different absorptions means that these absorp-
tions can be utilized, via complex mathematical analysis, to provide
analytical information on specific functional groups.”

T. Næs et al. [2]

2.1 Data reduction by PCA and SVD

An NIR spectrophotometer produces spectra of several hundred variables, and
acquiring spectra over time generates large data sets. A data set can be reduced
by principal component analysis (PCA) [11, 12] or singular value decomposition
(SVD) [13, 14]. The centered matrix X is decomposed onto an A-dimensional
subspace by using the least squares criterion;

X =
A

∑

a=1

tap
T
a + E = TPT + E (2.1)

X =

A
∑

a=1

uaσav
T
a + E = UΣVT + E (2.2)

For PCA the terms ta are called score vectors while pa are the loading vectors. In
SVD, ua are called the left singular vectors and va the right singular vectors. Σ is
a diagonal matrix of singular values in descending order. These are the lengths of
the new principal axis in the A-dimensional subspace. T is equal to the product of
U and Σ, and P is equal to V. PCA is therefore theoretically equivalent to SVD.
The columns in matrix T are orthogonal, while the columns in P, U and V are
orthonormal. E is the variance in X not explained by the A-dimensional subspace,
and is often referred to as noise. SVD can be computed by eigenvalue decomposition
of the symmetric matrices XXT and XTX giving U and V, respectively [13]. The
eigenvalue decomposition method decomposes onto one basis, called eigenvectors.
For example, XTX can be decomposed onto the eigenvectors V; XT X = VΛVT +E,
Λ is the eigenvalues. The singular values are the square root of the eigenvalues.

7



8 Multivariate analysis

2.2 Curve resolution

A system where no a priori information about the chemical components is available
is classified as a black system [15]. A technique for resolving spectra of a black
analytical two-component systems was given by Lawton and Sylvestre as early as
in 1971 [16]. They named it self-modeling curve resolution (SMCR), where the
self-modeling refers to that no assumptions are made concerning the shapes of the
unknown. Often the curve resolution is highly supervised and the ”self-modeling”
term is therefore omitted here. The aim of performing curve resolution on NIR
systems is twofold; (i) estimate spectra (qualitative analysis) and (ii) concentration
profiles (quantitative analysis) of all the chemical species present in the system.
This can be written as the decomposition of data matrix X into concentration
profiles C and spectral profiles S;

X = CST + E (2.3)

Many techniques have been proposed for solving Equation 2.3. The two most
important assumptions are that the profiles in C and S must be non-negative, and
that there are no embedded peaks [17].

2.2.1 Rank analysis

For a black system a good start is to determine the rank of the system. A matrix X

of size Isamples× Jwavelengths has maximum rank equal to the smaller of the numbers
I and J. The chemical rank, A, is equal to number of chemical compounds causing
variation in data. Due to collinearity in spectroscopic data, A is often smaller than
I or J. In Equation 2.1 A latent variables are extracted. The product of T and
PT is a matrix with equal dimensionality as X, but the rank is equal to A. The
dimension of the new matrices T and PT is I × A and A × J , respectively.

There are several ways to determine the rank of a system. In curve resolution,
PCA and evolving factor analysis (EFA) [18] are frequently used methods. In
PCA the rank is set equal to the number of significant eigenvalues. As the name
implies, EFA is an evolving factor analysis of sub matrices of X. First, an eigenvalue
decomposition is performed on a small sub matrix consisting of the two first objects
(or variables), thereafter the sub matrix is enlarged with the third object and a
new eigenvalue decomposition is performed, etc. to all the I objects are included.
By plotting the eigenvalues versus objects, the number of components and when
they evolve can be detected.

PCA for rank analysis can be improved by smoothing noise structure in data
[19]. In PCA the eigenvalues are found by solving Equation 2.4;

XTXv = λv (2.4)

v is the eigenvector and λ is the eigenvalue. This equation can be expanded with
a smoothing factor (I + kGTG)+;

(I + kGTG)+XTXv = λv (2.5)
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I is the identity matrix, G is a second-order differentiation matrix, and k is the
degree of smoothing. If the rank is equal to A, the logarithm of the ratio between
eigenvalues from Equation 2.4 and 2.5 results in a significant increase at the A+1th

eigenvalue. Plotting these values versus number of eigenvalues gives a tool to
evaluate the rank visually. The idea is that the eigenvalues remain the same after
smoothing while the noise residuals decrease. It is this change that is reflected in
the plot. The method is in this thesis referred to as smooth PCA. To set the rank
in paper I, smooth PCA was used along with PCA and EFA.

2.2.2 Detection of selective regions

Selective regions are consecutive points in the spectral or concentration direction
where only one component contributes to the signal. Selective regions can be
detected by latent projection graphs (LPG) [20] or eigenstructure tracking analysis
(ETA) [21].

The LPG method uses the fact that vectors in a selective interval are propor-
tional, and that their end points will map a straight line in space. Furthermore,
a selective region being projected onto two arbitrarily chosen orthogonal axes, but
non-orthogonal to the straight-line segment, fits as a straight line passing through
the origin into the bivariate plot defined by the two axes. The result is that selec-
tive concentration and wavelength regions can be visually detected by inspection
of score and loading plots (see Figure 2.1).

Figure 2.1: Performance of the LPG and the ETA method. a) Concentration
profiles of a simulated data set, and the corresponding b) LPG plot and c) ETA
plot. I and III are one-component regions, while II is a two-component region.
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If the overlapping between spectral bands is severe, LPG may not be sensitive
enough for the visual detection of selective regions. Instead, ETA can be used to
find selective regions. To make an ETA plot, eigenvalue decomposition is performed
on sub matrices of a fixed size, from start to the end of the spectra. By plotting the
logarithm of the eigenvalues versus wavelengths a measure of number of components
at the different wavelengths arises (see Figure 2.1). ETA is closely related to fixed-
size-moving-window evolving factor analysis (FSMW-EFA) [22]. The difference is
that in FSMW-EFA one chooses one window size, while ETA starts with a window-
size of two up to maximum size of overlapping components, making it easier to
detect when a new component evolves.

2.2.3 Resolution in the presence of selective regions

If selective regions can be found for all the significant components, for example
in the concentration direction, then it is possible to calculate the concentration
profiles directly;

C = XSs(S
T
s S)−1 (2.6)

The matrix Ss is the spectra from selective regions. In paper I, PCA performed
on each selective region provided an estimate of the spectrum as the first loading
vector, p. The spectra Ss are then equal to [p1p2 . . .pA]. In the same way, the first
score vectors calculated from selective regions detected in the spectral direction,
Cs, can be used to estimate the unique spectral profiles by least squares; ST =
(CT

s Cs)
−1CT

s X.

2.2.4 Resolution in the absence of selective regions

Frequently, not all the components have selective regions. Iterative target trans-
formation factor analysis (ITTFA) [23, 24] is a method where selective regions are
not essential. The loadings from PCA are abstract spectral profiles. In ITTFA
these are transformed by rotation into the true profiles; CST = TRR−1PT . R

is the invertible rotation matrix. A start vector is rotated into the eigenvector
space defined by the first eigenvectors in such a way that the squared sum of the
residuals between rotated start vector and start vector is minimal. A common
start vector is [0 0. . . 0 1 0. . . 0 0] where the number one gives the position of the
variable/target to be tested. The solution can be iterated by using constraints. For
spectra the constraint of non-negativity is very useful. For every iteration the vec-
tor is approaching the true solution. Iterations are performed until a stop criterion
is fulfilled, e.g. max iterations or the difference between two consecutive iterations
is small.

Another useful method in the absence of selective regions is orthogonal projec-
tions (OP) introduced by Lorber [25]. He showed that the net analytical signal for
a component is equal to the part of the spectrum that is orthogonal to the spectra
of the other components. The part of a matrix XA that is orthogonal to a reduced
rank region, XA−1, can be found by;

Xop = [I − XT
A−1(X

T
A−1)

+]XA (2.7)
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The result is a matrix Xop where each row contains the contribution from the
spectrum that is not a part of the reduced matrix XA−1. By summing each row
in the concentration direction an estimate of the concentration profile for the last
component is obtained. OP has two functions; i) the method confirms if the re-
duced matrix has rank reduced by one component, and ii) a profile calculated by
e.g. ITTFA can be compared with OP to check if the profile is the true solution.

2.3 Two-way regression

The purpose of regression is to relate variables in X to concentrations y, i.e. esti-
mate the regression coefficients, b, in;

y = Xb + f (2.8)

X and y are mean centered, while f denotes a vector of noise. If the columns in X

are linearly independent, multiple linear regression (MLR) can be performed;

b = (XTX)−1XTy (2.9)

The variables in NIR spectra possess a high degree of collinearity and there-
fore ordinary least squares may not be satisfactory due to the requirement that
XTX should be invertible. Instead, principal component regression (PCR) can
be performed where X in Equation 2.8 is replaced with the linearly independent
score vectors T from PCA. Another commonly used method is partial least squares
(PLS) [26]. PLS decomposes X and y using the criterion of maximum covariance
explained. The PLS/NIPALS [27] algorithm is given in Table 2.1. Since PLS si-
multaneously model X and y, the LV’s have usually a higher correlation with the
response variable and thus provides a more parsimonious model than PCR.

Table 2.1: Principles of the PLS/NIPALS algorithm. The regression coefficients
are equal to; b = W(PTW)−1.
G is the column centered X, and h is the column centered y.
for factor a = 1, 2, . . . , A

ua = h

wT
a = uT

a G Loading weights
wa = wa/(wT

a wa)
1/2 Scale to length one

ta = Gwa Scores for X

qa = hT ta/(tT
a ta) Loadings for y

pa = GT ta/(tT
a ta) Loadings for X

G = G − tap
T
a Remove the effect from factor a in G

h = h− taq
T
a Remove the effect from facor a in h

a = a + 1 Start with next factor

2.3.1 Determination of significant components

The determination of the number of significant components is an important step in
regression. One technique is to place all data available in one data set and perform
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cross validation, while another commonly used method is to split the data set into
two, i.e. a calibration set to make a model and a validation set to test the predictive
ability .

In cross validation [28] one or several samples are left out. Thereafter PLS
models with 1, 2, . . ., up to a given number of components, k, are calculated and
predictions of the left-out samples are performed using these models. New samples
are left out and new models calculated, etc. The prediction errors of the left out
samples utilizing different number of components in the model are summarized,
i.e. predicted residual error sum of squares (PRESS). The PRESS values can be
plotted against number of components. The lowest PRESS value indicates number
of significant components. Xu and Liang [29] showed that leave-one-out cross
validation may lead to overfitting. Instead, they proposed to leave out about 50
% of the samples for validation each time. The samples are chosen randomly and
the selection is performed, e.g. 500 times. The name of the method is Monte Carlo
cross validation.

If the data set is split into a calibration and a validation set, explained variance
of the responses of samples in an external validation set can be used to determine
significant components. Models using 1, 2, . . ., k components are made of samples
in the calibration set. The number of significant components is based on the
criterion of maximal explained variance of the responses of the validation samples.
A randomized t-test is another method that can be used to evaluate the number
of significant components based on the models predictive ability of samples in a
validation set [30]. The method is a general distribution-free test for the equality
of two distributions using paired data. The difference in the squared prediction
errors of two conditions, A and B, is calculated as di,AB = e2

Ai − e2
Bi, i=1, 2,

. . . , I. The mean of differences between all samples is calculated, thereafter the
level of significance is found by assigning random signs to di several times. The
significance level is estimated by counting how many of the randomized signs of
the differences have a higher mean than the differences between the two conditions;
p = (sum + 1)/(total + 1). For determination of significant values, condition A
is the predicted values for the model with lowest prediction errors consisting of a
components, while condition B is the predicted values obtained for models using
1, 2, . . . , a−1 components. If p is less than 0.05 the conditions A and B are different
within a 95 % confidence interval, and a is the significant number of components
to use in a model. If p is equal to or greater than 0.05 the conditions A and B
cannot be said to be different.

2.3.2 Variable selection

Variable selection means finding a smaller number of variables having important
information for modelling the response. Several variable selection methods exist.
One possibility is to set small PLS loading values to zero [31]. A similar technique
is interactive variable selection [32] and the modified interactive variable selection
PLS [33, 34] that involves selective removal of single elements in the PLS weight
vector. Another method proposed extends the matrix with artificial noise vari-
ables and delete the variables that are less important than the artificial variables
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[35]. Stepwise deletion of variables using the uncertainty variance of the regression
coefficients estimated by jack-knifing is another method [36].

In paper II and III interval PLS (iPLS) [37] and principal variables (PV) [38]
were used for variable selection. For iPLS the variable region is split into many
small equidistant regions, thereafter the root-mean-square error of cross validation
(RMSECV) is calculated between every region and the response. The region with
lowest RMSECV is chosen. PV finds the variable with greatest covariance to the
response, this is called the first PV. Thereafter the data matrix is orthogonalized
to the first PV, removing information related to this variable. The second PV
is the variable in the orthogonalized matrix with greatest covariance with the re-
sponse. The reduced data matrix is orthogonalized to the second PV. This process
is continued until the data is exhausted for systematic variation.

2.4 N-way modelling

When performing standard chemometric analysis as PCA and PLS, data are ar-
ranged in a two-way structure, e.g. samples × wavelengths. Analytical data can
often be structured into higher order arrays. For batch process data, the samples
can be sorted into batch and time according to when the spectrum was acquired.
The result is a three-way array of batch × time × wavelength (see Figure 2.2).

For modelling third or higher order arrays, multi-way techniques are necessary.
The first techniques for decomposing N-way arrays were proposed by psychometri-
cians already in the 1960s. Applications of N-way techniques for solving chemical
problems is on the other hand relatively new. N-way techniques as Tucker3 [39] and
parallel factor analysis (PARAFAC) [40] from psychometrics have been adopted to
explore and model chemical systems. These are decomposition methods like PCA.
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Figure 2.2: Spectra acquired at specific time intervals of a batch process can be
stacked as a three-dimensional array (batch×time×wavelength).
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For regression, a PLS algorithm for three-way data was developed by St̊ahle [41].
Later Bro [42] developed a general multi-way PLS (N-PLS) for third or higher order
arrays. During the last decade these and related techniques have received much
attention for solving chemical systems. Successful applications have been given in
curve resolution [43, 44], exploratory analysis [45] and calibration [46].

2.4.1 Multi-way decomposition methods

In PARAFAC the three-way array X is decomposed into one score matrix, A

(I × R), and two loading matrices, B (J × R) and C (K × R), by alternating
least squares. R is the number of components (see Figure 2.3). First the three-way
array, X (I×J ×K), is matricized to a two-way matrix, X (I×JK). The loadings
in B and C are set as e.g. random numbers;

XI×JK = A(C � B)T + EI×JK (2.10)

where � is the the columnwise Kronecker product [47]. Setting (C�B)T equal to
D, the columnwise loadings in A can be estimated by alternating least squares;
A = XI×JKDT (DDT )−1. The loadings B and C are estimated likewise, starting
by unfolding the three-way array to a matrix of size (J×IK) and (K×IJ), respec-
tively. New loadings are calculated until convergence. Since no extra constraints
such as orthogonality are needed to decompose the three-way array as for PCA,
the parameters can be determined uniquely. PARAFAC is therefore suitable for
curve resolution.

Contrary to PARAFAC, Tucker3 allows for extraction of different number of
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Figure 2.3: Three-way decomposition by PARAFAC and Tucker3.
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factors in each direction. A core array G, of size (P × Q × R), is employed (see
Figure 2.3);

XI×JK = AGP×QR(C ⊗B)T + EI×JK (2.11)

The ⊗ is the Kronecker product [47]. Several Tucker3 algorithms exist [48]. In
paper IV, the columns in A, B and C are constrained to be orthogonal. A is
initialized by; [A, Σ,V] = SV D(XI×JK(C⊗B), P ). P is the number of components
to be extracted in mode A. B and C are determined in the same way. Iteration
is performed until relative change in fit is small. Thereafter the core array G can
be determined by a simple regression of X onto A, B and C. The core gives a
summary of all interactions present in the three-way data and is therefore useful
for exploration of data. Due to the rotational freedom the Tucker3 model is not
structurally unique as the PARAFAC model.

2.4.2 Multi-way calibration

For calibration of N-way arrays there are several approaches. As for principal
component regression (PCR) the data can first be decomposed by PARAFAC or
Tucker3, thereafter the score matrix A can be related to a response y as in Equation
2.8.

N-PLS seeks in accordance with PLS to decompose data into a few significant
components that simultaneously describe the variation in X and y. For bilinear
PLS the intention is to find a weight vector, w, that yields a score vector, t,
with maximal covariance with y (see Table 2.1). For trilinear PLS the goal is
to decompose X into two weight vectors, wJ and wK , corresponding to second
and third mode, that produces a score vector with maximal covariance with y.
While the weights in PLS can be determined by calculating the covariance between
X and y directly, the three-way array needs to be matricized before calculating
the weights. The result is a vector, z = X(I×JK)T y. z1×JK is matricized to Z

(J × K). wJ and wK are equal to the first left and right singular vectors of this
matrix, respectively. The scores can now be found by; t = Xw, w is the Kronecker
product between wJ and wK .

More details on theory and applications of multi-way analysis can be found in
[49, 50].

2.4.3 Missing data

For on-line monitoring of a batch process, use of three-way techniques require data
to be available for the entire duration of the batch. For multivariate statistical
process control (MSPC) various strategies have been proposed [51]. In this thesis
two approaches have been used; (i) Assume that future observations are in perfect
accordance with historical data, i.e. for spectroscopic data the mean spectrum of
samples in calibration set can be used to fill in for missing data, and (ii) use the
ability of decomposition methods to handle missing data. For PARAFAC, the
scores for a new batch up to current time point j can be calculated as;

aj = xnew,1:jD
T
1:j(D1:jD

T
1:j)

−1 (2.12)
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xnew,1:j is the vectorized Xj×K, and D1:j is the reduced columnwise Kronecker
product product of (B1:j �C)T . To estimate the process measurements from j+1:J
the product of the scores and the loading matrix corresponding to the time period
j+1:J is used;

xnew,j+1:J = ajDj+1:J (2.13)

A combination of the already known observations up to j and the estimated values
from j+1:J can be combined;

xnew = [xnew,1:j|xnew,j+1:J ] (2.14)

x1×JK
new is matricized to a matrix of size J × K with no missing values. Use of

projection method to fill in for missing values can also be performed for Tucker3
and N-PLS.

Meng et al. [52] used PARAFAC for MSPC. In the paper they presented a
methodology where the unknown observations are calculated as a weighted combi-
nation of the scores up to the current time point, aj, in the new batch and those
previously computed from a calibration data set, amean;

aweight,j = λjamean + (1 − λj)aj , λj =
J − j

J − 1
(2.15)

Thereafter estimates of missing spectra are determined by calculating the steps
in Equation 2.13 and 2.14. In the paper of Meng the method was shown to give
smoother scores avoiding spurious alarms in control charts.

In paper IV the projection method is tested, both for unweighted and weighted
scores along with mean spectra.

2.5 Validation of regression models

The predictive ability of a model can be evaluated by root mean square error of
prediction (RMSEP) [2];

RMSEP =

√

∑I
i=1(ŷi − yi)2

I
(2.16)

I is number of samples. The same formula applies to root mean square error of cross
validation (RMSECV). If a long time has passed or small differences in components
between the different instruments are present, correction of the predictor offset bo

for bias may sometimes be useful [31].

Bias =
I

∑

i=1

(ŷi − yi)/I (2.17)

The predicted values, ŷi are bias corrected and the resulting prediction error is then
expressed by the standard error of prediction (SEP);

SEP =

√

∑I
i=1(ŷi,biascorr. − yi)2

I − 1
(2.18)

To evaluate if there is a significant difference between models, the randomized t-test
[30] described in section 2.3.1 can be employed.



Chapter 3

Techniques for preprocessing data

Noise will always be present in spectra, and to reflect a real chemical system an
extra noise matrix E should be added to Equation 1.3 ;

X =

A
∑

a=1

cas
T
a = CST + E (3.1)

Noise originates from instrument errors and from physical effects such as light scat-
tering. For successful modelling, noise or irregular patterns in data not reflecting
the chemical composition of the sample should be removed or left unmodelled.
Noise and unwanted effects are often removed by mathematical transformations
prior to the data analysis. The two main reasons for preprocessing spectra are
either to remove noise and irrelevant features in the data, or to take care of irreg-
ularities such as non-linearity in the data [53].

3.1 Removal of multiplicative and additive ef-

fects

One classification of noise removal techniques is after their ability to remove addi-
tive or multiplicative effects [27]. Additive effects are differences in baseline between
samples, while multiplicative effects occur when the pathlength differs from sample
to sample.

3.1.1 Additive corrections or baseline corrections

A background is often present in near infrared spectra. It originates from reflection
at the cell wall and from scattering of light by the solvent. A baseline can be
expressed as a polynomial [27];

e(j) = bo1 + b1x + b2x
2 + . . . + bnx

n (3.2)

An offset or flat baseline is expressed using bo1, a baseline with offset and slope
with bo1 + b1x, a curved baseline with bo1 + b1x + b2x

2 etc. One latent variable is
needed to explain each term in Equation 3.2. A correct baseline correction reduces
the number of significant factors in a singular value decomposition.

17
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Figure 3.1: Baseline correction of a spectrum a) before and b) after removal of a
straight line through two ”zero-component” regions.

The baseline is often corrected prior to curve resolution since a baseline will
complicate the detection of selective and other regions. Liang et al. have devel-
oped a baseline correction method for two-way chromatography-spectroscopy data
[54]. The method defines a zero-component region before and after the elution of
a multi-component region. A simple least-squares fit is made of a straight line
through all the elements between the two zero-component regions. An estimate
of the baseline is calculated for all the variables and the baseline is removed by
subtraction. For spectroscopic data, the number of bands, their shape and their
width changes with concentrations. It is therefore difficult to define fixed zero-
concentration regions over a large concentration scale. Baseline removal of spectra
can instead be performed one spectrum at the time, choosing the minima before
and after the interesting region as the ”zero-concentration” regions (see Figure 3.1).

Numerical differentiation is often used for baseline corrections of near infrared
spectra. First order differentiation removes the offset and second order differ-
entiation removes the offset and slope etc. in Equation 3.2. If differentiation is
performed directly, the noise increases. Therefore, the calculation of derivatives is
usually combined with a smoothing procedure. The Savitzky-Golay procedure [55]
combines smoothing and differentiation into one single step. A polynomial is fitted
to the data in a window. The middle point of the window is interchanged with
the value of the polynomial, thereafter the window is moved one step and a new
value is calculated and so on through all points in the spectrum. For curve reso-
lution, differentiation may cause problem since it introduces negative absorbances.
Iterative curve resolution methods uses often non-negativity constraint, which of
course cannot be used for negative data. A way to solve this is to invert the sign
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of second order differentiated data and thereafter set negative values equal to zero
[56]. The method gives a decrease in the signal-to-noise ratio and a part of the
band will be removed. For the curve resolution problem in paper I, the method of
Liang et al. was chosen instead of numerical differentiation. Negative signs is not
a problem when performing regression, and differentation was chosen as baseline
correction method in paper II, III and IV.

3.1.2 Multiplicative corrections or normalization

Multiplicative effects occur when the pathlength varies from sample to sample.
The absorbance and concentration are therefore not directly related to each other.
If one is only interested in the relative amounts of the chemical components, the
effect of total sample quantity can be removed from the data. The correction is
called normalization or multiplicative correction.

The aim of normalization is to make spectra acquired from samples of equal
composition comparable. Such samples may exhibit different spectra because differ-
ent light paths were used during the acquisition. There are two ways of performing
normalization, either by making use of an internal standard, or by normalization
to a constant sum or length. Normalization to length one is performed by dividing
each spectra by their norm. In paper II and III the spectra were normalized to
length one.

Optimized scaling, introduced by Karstang and Manne [57], introduces scale
factors for the individual samples. Two variants of the method were introduced,
OS-1 and OS-2. While OS-1 requires all the constituent concentrations to be
known, OS-2 was developed for the more common case where the reference values
for only one constituent is modelled. OS-2 calculates the scaling vector, c, and
regression coefficients, b, for object i over the variables j, in one step;

yi =

∑

j xijbj
∑

j xijcj
(3.3)

When solving this equation by least squares, the trivial solution is avoided using
an auxiliary condition, setting the scale of one sample, numbered 0, equal to 1;
∑

j x0jcj = 1. This is introduced by the Lagrangian multiplier, λ. The equation
for determination of c and b is equal to;
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and zij is equal to yixij . The equation is solved by least squares. Since the matrix
to the left must be non-singular, it is beneficial to replace the raw data X by
the significant principal component scores. For almost noiseless data the choice of
reference sample is not important, but for noisy data the model can be tested for
all possible reference samples. In paper II and III, OS-2 is used on noisy spectral
data from a process and a search through all samples was carried out.



20 Techniques for preprocessing data

3.1.3 Combined methods

Multiplicative scattering correction (MSC) [58] combines a spectral normalization
procedure with baseline correction. A linear regression is performed between a ref-
erence spectrum xref and the ith spectrum in the matrix. Thereafter the intercept
b is subtracted and the spectrum divided by the slope a, one spectrum at the time;

xi = axref + b (3.4)

xi,corrected = (xi − b)/a (3.5)

The intention when MSC was developed was to choose ranges with no chemical
information. NIR-spectra have few or no regions with no chemical information.
Instead a larger spectral region can be used where the mean spectrum functions as
the reference spectrum.

Orthogonal signal correction (OSC) removes information that is orthogonal,
and therefore irrelevant, to the response. The method was introduced by Wold
et al. [59]. Several methods based on the same idea has been introduced, e.g. a
faster algorithm by Fearn [60], direct orthogonalization by Andersson [61] and a
method loosening the orthogonality constraints by Westerhuis et al. [62]. The
method has obtained a great deal of attention but has so far not been shown to
give convincing results. Orthogonal projections have instead been found to be
beneficial for interpretation purposes [63].

3.2 Modelling non-linear behaviour

The most common regression techniques assume a linear relationship between the
data to be modelled and the response. For real systems this is not always the
case. Sources to non-linearities in data may be [31, 64]; (i) instrumental effects,
i.e. saturation of detector at high analyte concentration, or spectral shifts, (ii)
physical effects from scattering of particles or temperature changes with time, (iii)
chemical effects, i.e. the signal originates from another analyte not linearly related
to the analyte to be modelled, and (iv) mathematical effects, i.e. spectroscopic
measurements are measured in transmittance instead of absorbance [A=-log(T)].

The system investigated in paper III has a curved relation between the response
and the predictors. The easiest way to model data of this kind is by adding more
LVs. However, this makes the model more vulnerable towards changes and a more
parsimonious model is wanted. A number of non-linear methods to deal with
curvature have been developed. Reviews of these can be found in [65, 66]. In
paper III several non-linear variants of PCR and PLS have been tested. The paper
includes (i) transformation of data by introducing non-linear terms, both of original
data and of latent variables, (ii) local modelling/splitting of data and (iii) non-linear
calibration techniques that introduce a quadratic term in the PLS-algorithm.

3.2.1 Transformation of data

A nonlinear behaviour in the predictors can be accounted for by enlarging the ma-
trix with squared variables; Xnew = [xj |x

2
j ], j = 1, 2, . . . , J [64, 67, 68]. Cross-terms
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may also be beneficial, however, for large matrices this is not recommended since
taking all possible combinations results in huge matrices requiring large compu-
tational capacity. Instead, the matrix can be decomposed by PCA or PLS and
subsequently a new matrix can be formed consisting of scores and their squares
and cross-terms. In order to avoid overfitting, irrelevant variables should be re-
moved. Blanco et al. [69] employed a stepwise addition of variables, i.e. new LV’s
and their quadratic and cross-correlated terms are added if they result in improved
correlation coefficient in an multiple linear regression model. The method is called
stepwise polynomial PCR (SWP-PCR) and stepwise polynomial PLS (SWP-PLS)
according to decomposition method used. Stepwise deletion of variables utiliz-
ing the uncertainty of regression coefficients estimated by jack-knifing has been
proposed by Westad et al. [36]. The ±2× estimated standard deviation for each
regression coefficient is compared with the regression coefficient from the global
model. If the standard deviation is greater than the regression coefficient from the
global model, the variable is deleted.

For data with curvature, adding squared predicted response is another way
of handling the non-linear problem. Two models are needed; a PLS model of the
original matrix, and a PLS model where the predicted response and the transformed
response are added to the original matrix.

3.2.2 Local modelling

The problem of curvature in data can be solved by splitting the data into a few
approximately linear regions. The process investigated in paper II-IV has three
control points. The data set can be assumed to behave linearly close to each
control point, and one model can be made for each control point. The method
is referred to as time dependent splitting. Another possibility is to use locally
weighted regression (LWR) [70]. In LWR the q closest samples to a sample to be
predicted, xi, are selected and a model made. Prior to regression the samples are
weighted with a constant wk, k = 1, 2, . . . , q, after increasing Mahalanobis distance
(ϕ) to xi;

wk(xi) = W
(ϕ(xk,xi)

d(xi)

)

= W (u),

{

W (u) = (1 − u3)3 if u ≤ 1
W (u) = 0 if u > 1

The function d(xi) is the maximum of ϕ(xk,xi) over the q points used in each
regression. As a function of k, the weight, wk(xi), is large for xk close to xi and
small for xk far from xi. Local regression (LR) without weighting and utilizing the
q closest points in Mahalanobis distance is another possibility.

3.2.3 Quadratic PLS

A polynomial quadratic PLS (QPLS) algorithm has been proposed by Wold et
al. [71]. The idea of QPLS is to perform PLS, and at the same time fulfil a
quadratic inner relation between the scores t and u of X and y, respectively;

u = c01 + c1t + c2t
2 (3.6)

= c01 + c1Xw + c2Xw2 (3.7)
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The start is a PLS weight vector w which is updated iteratively. Equation 3.6 can
be rewritten as; û = f(X, c,w) and differentiated with respect to the unknown
parameters, c and w;

û = f00 +
∂f

∂c
|00 ∆c +

∂f

∂w
|00 ∆w (3.8)

The result is a vector ∆w used for updating w; w+∆w. Baffi et al. have developed
a simpler algorithm where ∆c is omitted [72]. An improvement of the error based
updating procedure of Baffi et al. has been suggested in [73]. In this method ∆w is
calculated from the regression coefficient of a separate inner PLS algorithm where
the number of latent variables is selected using cross validation. In paper III the
error-based QPLS of Baffi et al. was tested along with QPLS using cross validation,
later referred to as QPLScv.



Chapter 4

Effects of preprocessing NIR

spectra

NIR spectra are characterized by broad and highly overlapping bands. In addi-
tion, they often have problems with noise from instrumental or physical effects.
Preprocessing is performed to reduce the contribution from noise and to enhance
the chemical signal of interest. The choice of preprocessing procedures depends
on the noise pattern in data and on the modelling technique to be used. In the
sections below some examples of preprocessing of NIR spectra for curve resolution
and regression purposes are given.

The first system is a simple chemical system in a non-absorbing solvent. The
spectra are intended to be used for curve resolution. A method developed for base-
line removal in chromatographic data is here adapted to NIR spectra. While the
chemical systems used for curve resolution in paper I are clear solutions, the process
solution described in section 1.2 is a viscous yellowish solution containing particles.
Light scattering due to particles in the solution results in very noisy spectra. The
process is controlled by HPLC, and the intention is to model important process
parameters by NIR spectroscopy instead of by the time-consuming HPLC method.
The modelling technique used is regression, and NIR data is regressed on the HPLC
responses. The NIR data contain multiplicative and additive effects. Different pre-
processing techniques for handling these effects are tested on the process data. In
addition to additive and multiplicative effects, a curvature was present in the data.
Results from non-linear methods to deal with this curvature are given in section
4.3.

4.1 Baseline correction prior to curve resolution

Paper I gives a procedure for resolution of NIR spectra. Solutions of alcohols were
used as a case-study to investigate the self-association phenomenon of molecules.
The study included several straight-chain and branched-chain alcohol solutions in
the concentration range from 0.01 to 1.00 M. Two difficulties of performing curve
resolution on NIR spectra were found. Both were related to the important task
to reveal selective regions. One of the disadvantages of the NIR technique is that
the bands are broad and highly overlapping. This makes it difficult to find regions
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Figure 4.1: Spectra of 0.1M and 0.5M 1-pentanol (−) and n-pentane (· · ·), nor-
malized after the band at the 2nd overtone of OH-stretch.

of low rank, and thereby diminishes the possibility of detecting selective regions.
The other problem is the presence of baseline in the spectra, masking the selective
regions. A linear baseline correction is performed on data investigated here [54].

4.1.1 Inspection of data and removal of baseline

The start of modelling should always be a thorough inspection of wavelength regions
where interesting bands are expected to originate. The near-infrared region has two
interesting regions for studying the self-association of alcohols. These are the region
of the first overtone of OH-stretch, and the region of combinations of OH-stretch
and OH-deformations (see Figure 4.1). Inspection of spectra of 1-pentanol and
n-pentane in the near-infrared region revealed that CH-stretch absorbs strongly in
the first overtone of OH-stretch. Many of the curve-resolution techniques require
selective regions, and the contribution from CH-stretch must be removed before
further analysis of data. Removal of CH-stretch utilizing n-alkane and general
background subtraction (GBS) [74] failed.

CH-stretch does not absorb in the OH-combination region. However, upon in-
spection of Figure 4.1 a baseline was revealed. This was removed by linear baseline
correction [54] (see section 3.1.1). The spectra and LPG plot, before and after
baseline correction, are shown in Figure 4.2. The LPG plot gives the coordinates
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Figure 4.2: Results baseline correction of 1-heptanol; a) spectra and b) LPG-plot
of data before baseline correction, and c) spectra and d) LPG-plot after baseline
correction.

of the different wavelengths projected at the first and second principal components.
For raw data the scores in the LPG plot start and end in different coordinates, and
none of them in the origin. An offset and a slope is therefore present. After removal
of baseline the scores starts and ends in the origin. Thus, the baseline is removed.

4.1.2 A discussion of baseline correction

The linear baseline correction of Liang et al. [54] requires wavelength regions where
no compounds absorb radiation, both before and after interesting region. This is
not likely to happen since the bands in the near infrared region are broad. The
baseline correction is therefore expected to remove some absorbance due to OH-
stretch vibrations.

General background subtraction [74] was tested for removal of the CH-stretch
contribution in the first overtone of OH-stretch region, by utilizing n-pentane for
1-pentanol. After the subtraction negative regions were observed in the CH-stretch
region. The reason for this may be that the number of methyl-, methylene and
methin groups are not exactly the same, and that the presence of hydroxyl groups
influence on the force constant to neighbouring atoms. A shift can therefore be
expected comparing the absorbance of CH-stretch origin from alcohols and similar
n-alkanes.

A possibility is to use compounds in which the hydrogen of the hydroxyl group
is replaced by deuterium [75]. The oxygen-deuterium bond is not expected to give
absorptions in the first overtone of the OH-stretch region, whereas the CH-stretch
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in the deuterated alcohol is expected to have force constants closely related to the
CH-stretch in the alcohol having the same carbon skeleton. This could be tested
using the subtraction method for the first overtone of OH-stretch, and for the
OH-combination region.

A summary of the performance of the baseline correction methods tested on
NIR spectra is given in Table 4.1.

Table 4.1: A summary of baseline correction methods tested on NIR spectra.

Linear baseline removal No contribution from other compounds than the
one to be modelled must be present.
÷ Method is brutal. Fitting of a polynomial
may improve the results [76].

General background Removal of contribution from other compounds.
subtraction ÷ A spectrum having the same physical properties

and all bands, except for the one of interest,
must be available.

4.2 Additive and multiplicative correction of pro-

cess data

There are several techniques for reducing additive and multiplicative effects. A few
techniques are broadly used, while others techniques proposed have gained little
attention. In paper II a feasibility study of NIR for monitoring a pharmaceuti-
cal process was performed. The study included testing of different preprocessing
techniques. The results are presented here.

Samples from 20 batches were scanned manually on a FOSS NIRSystems 6500
spectrophotometer. Spectra were recorded in the region from 1100 to 2500 nm,
with a resolution of 2 nm, using a transflectance probe attached by fiber optics
to the spectrophotometer. For each sample an HPLC analysis was carried out to
determine the content of main reactant and impurity. The samples were divided
into a calibration set of 45 samples to make calibration models, and a validation
set of 43 samples to test the performance of the models.

Inspecting the raw data in Figure 4.3 reveals a severe baseline problem. In
addition, particles are present in solution which results in differences in light path
from sample to sample. Therefore, both additive and multiplicative effects can be
expected. Normalization and optimized scaling remove multiplicative effects, while
differentiation removes additive effects. MSC and OSC are expected to deal with
both additive effects and multiplicative effects. Since the data must be closed before
the removal of multiplicative effects [27], only the results obtained performing mul-
tiplicative correction after additive correction, along with only additive correction
and only multiplicative correction, are given in Table 4.2.
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Figure 4.3: Spectra of raw data.

For the main reactant first-order differentiation provides better models than
second-order differentiation. Second-order differentiation adds more noise than
first-order differentiation. The spectra consist of highly overlapping bands, and
higher-order differentiation increases the selectivity. Second-order differentiation
provides more parsimonious models compared to other preprocessing techniques.
Performing differentiation is therefore a trade-off between increased selectivity and
increased noise level.

Small improvements were observed when combining differentiation with nor-
malization. These result support that both additive and multiplicative effects are
present in spectra. In a paper of de Noord [77], MSC on differentiated data was
shown to perform better than using only MSC. This was not obtained here, in fact
combining MSC with differentiation performed worse than using only MSC.

Table 4.2: Predictive ability of models using different preprocessing techniques for
main reactant and impurity. The p-values were found using the predictions from
optimized scaling on first order differentiated data.

MAIN REACTANT IMPURITY
Preprocessing + followed by No. comp. RMSEP p-value No. comp. RMSEP p-value
None 9 0.62 0.005 5 0.041 0.005
Normalization 8 0.67 0.010 6 0.040 0.005
1st derivative 7 0.54 0.075 4 0.043 0.005
1st derivative + norm. 7 0.50 0.095 5 0.043 0.005
2nd derivative 5 0.67 0.010 2 0.045 0.005
2nd derivative + norm. 5 0.59 0.005 2 0.046 0.005
OS-2 9 0.51 0.075 7 0.045 0.155
1st derivative + OS-2 10 0.41 1.000 6 0.034 1.000
2nd derivative + OS-2 8 0.50 0.035 5 0.037 0.045
MSC 8 0.45 0.005 5 0.043 0.005
2nd derivative + MSC 5 0.59 0.010 2 0.046 0.015
OSC (1 OSC) 8 0.58 0.010 6 0.041 0.070
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The best model was obtained with optimized scaling on first-order differentiated
data. For MSC preprocessed data the RMSEP value is close to the value obtained
for the best model. However, inspecting the p-value reveals that the two methods
differ in precision. Since the p-values are small, the residuals obtained for first-
order differentiated data followed by optimized scaling are expected to be smaller
than for MSC. A histogram showed that MSC had a few very large residuals.
This method is therefore less reliable for the data investigated here. According to
the p-value, first-order differentiation followed by normalization is the second best
alternative. Also for the impurity, optimized scaling on first-order differentiated
data gave the model with lowest prediction errors. However, OS-2 and orthogonal
signal correction (OSC) cannot be said to be different from the best model. Due to
the low prediction error using OS-2 on first order differentiated data, this method
is favoured. Note that second order differentiation gave a model of low complexity
and moderate error for impurity.

Two different methods of OSC were tested in paper II. The methods of Wold
et al. [59] and Fearn [60] gave the same results. It was observed that removal of
one OSC component decreases the number of significant components in the PLS
model by one; one OSC component approximates one LV. OSC removes systematic
information in X orthogonal to y. The scores, loadings and weights orthogonal to
y in the calibration set it used to remove irrelevant information in the validation
set. The problem is that OSC removes systematic patterns, not random noise.
Regression methods such as PLS, model also systematic patterns in data. Utilizing
OSC seems only to be a detour to the same solution.

The predictive ability using OS-2 on differentiated data is significantly better
than no preprocessing of data. For most of the other techniques this is not so. It is
therefore appropriate to ask whether preprocessing is necessary. When modelling
a new chemical system, different preprocessing techniques should always be tested
along with no preprocessing.

A summary of the performance of the different preprocessing methods is given
in Table 4.3. In the process data investigated here both multiplicative and additive
effects are present. For preprocessing data where these effects are expected to be

Table 4.3: Performance of multiplicative and additive correction methods.

Differentiation + Performs well. ÷ Requires testing of numbers of
consecutive points to utilise.

Normalization + Simple to use, performs well.
OS-2 + Best results. ÷ The method combines poorly with

internal validation since a reference spectrum is needed.
Gives a complex model.

MSC + Simple to use. ÷ Results in a few large residuals,
i.e. unstable.

OSC Performs equally to no preprocessing.
÷ 1 OSC ≈ 1 LV.
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present, differentiation and normalization should be tested along with OS-2 and
raw spectra. If there are small differences between the best model and a model
of lower complexity, the more parsimonious model should be chosen for future
modelling.

4.3 A comparison of techniques for modelling non-

linear structure

The aim of paper III was to investigate different techniques for modelling data
having a slight non-linear relationship between predictors and the responses. The
alkylation process described in section 1.2 was used as a case study. An ANOVA
test [78] revealed the process data to have a curvature that is well described by a
second degree polynomial (see Figure 4.4).
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Figure 4.4: Measured vs. predicted response. PLS1 model, two LV’s, using the
spectral region from 1100-1900 nm; a) main reactant, 1st order differentiated data
followed by normalisation, b) impurity, 2nd order differentiated data. Solid line is
fitted 2nd degree polynomial.

The reason for the curvature was investigated. Spectra of pure compounds in
process solution were acquired along with spectra of process solution before and
after the addition of the initiating agent (see Figure 1.2). The alkylating agent
was found to have the highest covariance with the responses for main reactant
and impurity. The alkylating agent takes part in at least two reactions that differ
in the reaction rates. In addition, the synthesis is controlled emprically by adding
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initiating compound or NaOH. A non-linear relationship between the predictor and
the main reactant or impurity can therefore be expected.

Different techniques were tested for managing the curvature. They include (i)
transformation of original variables [64, 67] and scores (both stepwise addition [69]
and deletion [36]) and incorporation of squared predicted response, and (ii) two
different approaches of local modelling; one model per control point and locally
weighted regression (LWR) [70], and (iii) quadratic PLS (QPLS) [71, 72, 73].

The data set used in paper III is the same as in paper II. In addition, an
extended test was performed of the models predictive abilitities on data recorded
one year later on another NIRSystems spectrophotometer. This test set included 34
samples. For preprocessing, some of the non-linear techniques combine poorly with
optimized scaling due to the requirement of finding a reference object. Instead, first
derivative followed by normalization to length one was chosen for main reactant,
while for impurity the data was second order differentiated. A summary of the best
results are given in Table 4.4.

Transformation of original variables, i.e. adding squared variables, using prin-
cipal variables (PV) and the region from 1616 to 1656 nm gave models of better
predictive ability compared to original data. Including interaction terms in addi-
tion to squared terms may improve the model further. All possible combinations of

Table 4.4: Summary of the best results obtained for the different nonlinear tech-
niques. SEP is the Standard Error of Prediction of a test set acquired one year
after. The p-values are calculated to compare the residuals of the method with
lowest SEP (p = 1.00) with the residuals obtained from the other methods.

# LV SEP p-value
orig.var.* test set rand. t-test

MAIN REACTANT
Transformed principal variables 12* 0.97 < 0.05
Transformed variables, 1616-1656 nm 3 0.76 0.23
Incorporation of ŷ, ŷ2 6 0.73 0.30
SWP-PLS 9 1.04 < 0.05
LR, 1616-1656 nm 3 0.84 0.11
QPLScv 1 0.67 1.00
Linear PLS 7 1.04 < 0.05
Linear PCR, OS-2 10 0.91 < 0.05
IMPURITY
Tansformed principal variables 2* 0.057 1.00
Tansformed variables, 1616-1656 nm 2 0.060 < 0.05
Incorporation of ŷ, ŷ2 2 0.059 0.26
SWP-PLS 2 0.068 < 0.05
LR, 1616-1656 nm 2 0.075 < 0.05
QPLScv 1 0.077 < 0.05
Linear PLS 2 0.075 < 0.05
Linear PCR, OS-2 6 0.059 0.36
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interaction terms between original variables would result in an enormous matrix.
Therefore, data was decomposed into a few LVs. Scores, squared scores and inter-
action terms of the scores were used for modelling. Stepwise deletion of variables by
jack-knifing gave complex models with poor predictive ability. Stepwise addition
of variables by polynomial PCR and PLS performed better. SWP-PLS gave better
or equally performing models to SWP-PCR. SWP-PLS was therefore chosen as the
best way for modelling with transformed scores. Incorporating predicted response
and its squared, [x|ŷ|ŷ2], gave models with good predictive ability.

Splitting data according to the three control points into a few approximately lin-
ear models resulted in complex models of equal or lower predictive ability compared
to linear PLS. In local regression (LR) and locally weighted regression (LWR), the
closest samples in Mahalanobis distance of the first important scores are used to
model the new sample. LR without weighting of samples provided better results
than LWR. When weighting, samples closest to the sample to be predicted are
weighted up while the samples furthest away are weighted down. The assumption
is based on that the absorbance is proportional to concentration. The score plot of
a sample taken at control point two showed that the 20 closest samples could cover
the concentration region from the first to the the third control point. Weighting of
data having a non-linear structure is therefore expected to introduce more distur-
bances into data. The results in Table 4.4 show that other techniques gave better
models than LR. The reason is expected to originates from the methods possibility
of selecting a few samples covering a large concentration region. By so doing, fewer
samples are used to model systematic variation in data.

The last technique tested was quadratic PLS (QPLS). The error-based QPLS
technique of Baffi et al. [72] gave one LV that captured 100 % variance of the
response. The QPLS-algorithm without cross-validation re-estimates the weights
until it explains all information in y, and the result is an enormous overfit. Instead

Table 4.5: Performance of non-linear methods.

Transformation

Orig. variables; 1616-1656 nm + Simple to use, improve model.
Orig. variables; PV + Simple to use, improve model.
Scores, Jack-knifing ÷ Complex models of poor predictive ability.
Scores, SWP-PLS/PCR + Best way to choose variables of transformed scores.
[x|ŷ|ŷ2] + Simple to use. Best non-linear method.
Splitting data

Time dependent splitting ÷ Complex models of equal predictive ability
to linear models.

LR/LWR LWR; ÷ Weighting may introduce more disturbance into data.
LR is therefore favoured over LWR. ÷ Risk of finding few
samples covering a large concentration region.

Quadratic PLS

QPLS ÷ Danger in overfitting.
QPLScv ÷ Unstable? Perform best for main reactant and

worst for impurity. More testing is required.



32 Effect of preprocessing NIR spectra

QPLS with cross-validation (QPLScv) [73] was used. Comparing the results from
QPLScv with PLS shows that while the linear PLS explains close to 100 % variance
in both X and y, QPLScv explains less than 40 % variance of X, but close to 100 %
variance of y. For QPLScv only one LV is needed in the model. One of the reason
for incorporating the curvature of the predictor having a non-linear behaviour was
the demand for a more parsimonious model. This requirement is fulfilled using
QPLScv. Inspecting the score u1 vs. t1 showed a close to perfect fit for QPLScv,
while the deviations were large for linear PLS. The disadvantage is the danger of
overfitting, and it was doubted whether this would give problems when modelling
future samples. The predictive ability of the model showed that the QPLScv was
robust for the main reactant. However, for the impurity QPLScv gave the worst
result of all the methods tested. The differences in predictive ability between
the two compounds my indicate that the method is unstable. Further testing is
necessary.

A summary of the performance of different non-linear methods is given in Table
4.5. Incorporation of a squared predicted response is the best way to incorporate
curvature into the model. It gives low prediction errors and it is also a simple
mathematically transformations so that it can be employed in commercial software
without additional implementations of algorithms.



Chapter 5

Assessment of modelling

techniques

The variables in near-infrared data are highly collinear. This necessitates use of
multivariate techniques. Different ways to model data for quantitative purpose
exist. In this chapter, curve resolution has been applied along with two-way and
three-way regression techniques for modelling NIR spectra.

In a dynamic system species are transformed into one or several other species.
Acquiring spectra at different stages of the process provide a matrix of concentra-
tion composite in one direction and spectra of the different species in the other
direction. The idea of performing curve resolution on a matrix of an evolving sys-
tem is to obtain the pure spectral profiles of each species and their corresponding
concentration profiles without any a priori information. A procedure to resolve
near-infrared data from a chemical system is given below.

The system used as a case study for curve resolution is simple. Even then the
curve resolution techniques showed sensitivity problems due to broad overlapping
bands and presence of baseline. If the purpose is process monitoring and a refer-
ence method is available, methods as PLS is expected to be easier to carry out.
A feasibility study of NIR spectroscopy for modelling process variables has been
performed. The goal is to find robust calibration models of process variables that
are used to control a chemical process empirically. Another important task is to
obtain an estimate of the error in a model based on NIR spectroscopy compared
to the reference technique. This is to obtain more information of the model and to
check if the introduction of a new and faster technique can be supported.

NIR data acquired from a batch process can be arranged in a three-way struc-
ture (see Figure 2.2). To decompose data of three- or higher order arrays N-way
techniques are necessary. In this thesis N-way decomposition techniques are tested
for their ability to decompose data and to model NIR data for quantitative pur-
poses. A problem using three-way regression for process variables is that all data
from a batch must be available. Different ways to fill in for missing values have
been tested.

Which modelling technique to choose depends on the chemical system. The
requirements for using these techniques on NIR data are summed at the end of this
chapter.

33
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5.1 Curve resolution for quantitative measure-

ments

Paper I gives a procedure for resolving NIR spectra of alcohols. The aim is two-
fold; (i) to perform a qualitative and quantitative study of the self-association
phenomena, and (ii) to test the performance of curve-resolution of NIR spectra
and thereby emphasize the benefits and obstacles on use of curve resolution for the
purpose of reaction monitoring.

5.1.1 Background of the system

The self-association of alcohols has been investigated for several decades by tech-
niques such as dielectric [79, 80], mid-infrared [81, 82, 83] and near-infrared spec-
troscopy [75, 84, 85]. The studies suggest that the alcohols exist in a ”free” unbound
form at very low concentrations, and that they form larger aggregates of different
sizes and shapes at higher concentrations. Controversy exists about the sizes and
shapes of the aggregates. Curve resolution studies of alcohols solutions in the mid-
infrared region [82, 83] suggested a three-component system of monomers, linear
and cyclic aggregates.

Most of the near-infrared studies of self-association of alcohols have used 2D-
correlation techniques for band assignments. However, these techniques provide no
quantitative information. A quantitative NIR study was performed by Iwahashi et
al. [75]. They suggested use of one frequency under the monomer peak to quantify
the association degree of alcohols. A disadvantage is that the method is only able
to quantify the monomer and polymer species. The literature study above states
that more than two generic structures of alcohol species exist. Curve resolution
techniques may find the concentration and spectral profiles of all different species
in the systems.

5.1.2 Rank analysis

The curve resolution was carried out on baseline-corrected data (see section 4.1.1).
A thorough rank analysis on each of the alcohol systems was performed prior to
curve resolution. This gave important information for resolving the spectral data.
In paper I, the results from 1-heptanol is used as an example. Inspecting the
eigenvalues gave no unique rank of the system. Inspecting scores from PCA in
concentration direction indicated a two- or three-component system, while EFA
indicated a three-component system. Correlated noise was removed prior to rank
analysis by differentiation in spectral direction. Inspecting the loading vectors
revealed structure in the first three components. The performance of smooth PCA
(see section 2.2.1) in the concentration and in the spectral direction is shown in
Figure 5.1. A jump is observed from the third to the fourth eigenvalue in both
directions. Based on these results the rank was set to three.
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Figure 5.1: Smooth PCA in a) the
concentration and in b) spectral di-
rection of differentiated data of 1-
heptanol from 0.01 to 0.92 M. (∗) is
the degree of smoothing.

Figure 5.2: Two-component region
revealed by EFA of 1-heptanol solu-
tions from 0.006 to 0.113 M.

5.1.3 The resolution of spectra

EFA revealed a two-component region at low concentrations (see Figure 5.2). Six
selective regions were found in the ETA plot in spectral direction of this region.
Cross-correlating the scores from the selective regions gave two groups. These are
estimates of the concentration profiles of the two species at low concentration. The
spectral profiles of component one and two were calculated by least squares. The
resolved profiles are shown in Figure 5.3.

The monomers are expected to dominate at low concentration. In addition,
the free OH-stretch has the strongest force constant, therefore the monomer band
appears at the highest frequency. The profiles having a dotted line is therefore the
monomer species. The spectral profile of component two is asymmetric. This is
expected to be due to that at higher frequencies many small, linear species exist,
whereas a lower intensity at lower frequency is caused by the presence of fewer but
longer linear aggregates [82]. Component two is therefore assigned to the linear
species, i.e. the profiles having a dotted line.

The curve resolution was expanded to the concentration range from 0.01 to 1.00
M, i.e. the three-component region. The third component is expected to be from
cyclic aggregates. The OH-stretch of cyclic aggregates absorbs at a lower frequency
than the linear aggregates. This information was used in combination with ITTFA
to resolve the third component. Several initial estimates were chosen at a frequency
slightly lower than the band maximum of the second component. For every start
estimate, a least-squares procedure was performed 15 times, setting the regions of
negative intensity to zero after each iteration. The different start estimates gave
resolved spectra of the same shape and of almost same maximum. The shape of
the third resolved profile was checked by means of OP. Having the spectral profiles
of all three components, the concentration profiles of the large concentration region
were estimated by least squares, i.e. C = XS(STS)−1. The profiles are given in
Figure 5.3.
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Figure 5.3: Resolved a) spectral and b) concentration profiles of 1-heptanol. First
(· · ·), second (−·−) and third component (—). (++) are the concentration profiles
estimated from the two-component region, (−◦−) is the third component checked
by OP.

5.1.4 Quantitative study based on the resolved profiles

In paper I it has been shown that it is possible to resolve spectra in the near infrared
region. The resolved profiles obtained were used to increase the understanding of
the self-association of alcohols. The spectral profiles confirm earlier results that
free alcohol species are present in majority at low concentrations and that they
tend to associate into linear and thereafter cyclic or higher associated species with
increasing concentration.

In order to perform quantitative studies, i.e. to find estimates of association
numbers and equilibrium constants, the absolute concentration profiles have to be
calculated. When the total concentration is known, absolute concentration profiles
can be calculated using the assumption that the sum of the concentrations of
different species is equal to total concentration;

ctotal =

A
∑

a=1

caba = Cb (5.1)

b is the scaling coefficient of the resolved concentration profiles. The association
number was determined by plotting c

1/n
associated versus cfree and the association num-

ber, n, is found when the fitted straight line passes through the origin [82, 83]. The
association numbers and the equilibrium constants are given in Table 5.1.

The linear aggregates have smaller aggregates sizes and equilibrium constants
than the cyclic aggregates. In addition it is observed that the branched alcohols
have smaller equilibrium constants than the linear alcohols. This is expected since
branched alcohols have greater difficulty in aggregating compared to linear alcohols.

The results in Table 5.1 differentiate well between linear and sterical hindered
alcohols. However, the method was not sensitive enough to differentiate within
these two groups. For example, the linear alcohols show a relatively large range
of association numbers that cannot be explained by structural differences. The
method used to determine the aggregate size is expected to partly contribute to the
differences observed, since a strong extrapolation makes one data point influence a
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Table 5.1: Association numbers and equilibrium constants calculated for the given
concentration regions.

linear aggregates cyclic aggregates
size equilibrium size equilibrium concentration

alcohol (n) constant (K ) (n) constant (K ) (M )
1-propanol 3 109.9 8 8.1× 106 0.30-0.70
1-butanol 3 13.5 6 7.7× 103 0.40-1.03
1-pentanol 3 9.6 10 2.5× 108 0.20-1.10
1-hexanol 2 13.4 11 3.4× 1010 0.23-0.65
1-heptanol 3 44.9 8 9.0× 105 0.41-0.92
2-propanol 2 0.9 6 2.6× 103 0.38-1.04
2-methyl-1-propanol 3 1.7 6 2.1× 103 0.42-1.17
2-methyl-2-propanol 2 1.1 5 211 0.40-1.11

lot on the physical constants given in Table 5.1. The main reason for the variation
in the constants is however expected to be caused by the rough baseline correction
and the absence of pure one component regions.

5.1.5 A summary on resolving NIR spectra

A way to perform curve resolution of highly overlapped NIR-spectra has been
provided in this thesis. The performance of the different methods is given in Table
5.2.

Table 5.2: A summation of methods used to resolve NIR-spectra.

Rank analysis

Eigenvalues ÷ Problems of detecting rank.
Score/loadings Manual inspection of noisy pattern. Can be difficult to

detect rank since some noise may be present
even in the significant scores/loadings.

smooth PCA + Visual interpretation.
EFA + A map over evolving species.

÷ Not as clear in rank determination as smooth PCA.
Curve resolution

ETA + reveal selective regions in spectral direction.
ITTFA + No selective region is required.
OP + Indirect rank map since only noise is present after

projection if a too large region embracing all species
are used. Indicate also the form of the profile.
÷ profile is to uncertain and is only used to check
profile from ITTFA.

Several applications of curve resolution in the mid-IR region have been given
[86, 87, 88, 89]. The applications have two things in common. Prior to curve reso-
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lution a baseline correction is performed. In addition the system is of low rank, or
is divided into several low-rank regions (two or three). The important issues when
performing curve resolution of spectral data can be summarized as; (i) baseline
correction, and (ii) rank mapping, that is finding regions of low rank. The great-
est difference between spectra acquired in the mid-IR and near-IR region is that
bands in the near-IR region are broader, making it difficult to find regions of low
rank. A possibility could be to use a subtraction method like general background
subtraction [74]. The problem of finding low rank regions and baseline removal can
therefore be reduced to removing the spectrum of a compound/solution that is very
similar to the system investigated, except for the functional group of interest. Fur-
thermore, the problem can be reduced to finding the proper component/solution
to use for each chemical system to be resolved.

5.2 Performance of two-way regression methods

Paper II includes a feasibility study of NIR for monitoring a pharmaceutical pro-
cess. The process solution is chemically complex, and the study focuses on how
to improve the predictive ability of regression models. The paper includes test-
ing of different preprocessing techniques. These results were given in section 4.2.
The purpose of the current chapter is to discuss important issues related to regres-
sion and includes; (i) how to select significant components, (ii) an investigation of
how models of small, informative wavelength regions perform compared to models
using all wavelengths available, and (iii) an inspection of the difference between
prediction errors in the models and the deviations in HPLC-values.

5.2.1 Number of significant components

The optimal number of components to use in a model can be found using cross
validation or explained variance of responses in a validation set. Leave-one-out
and Monte Carlo cross validation were examined, along with explained variance of
validation set. In addition, manual inspection versus statistical tests were inves-
tigated. The results from the determination of significant components in models
using different preprocessing techniques are given in Table 5.3.

Leave-one-out and Monte Carlo cross validation give similar numbers of sig-
nificant components. The correspondence between cross validation and the use of
explained variance of responses in a validation set was also high. For the data
inspected here, choosing between cross validation and validation set is therefore a
matter of taste. However, some methods may have problems with cross validation.
Optimized scaling 2 (OS-2) is difficult to combine with cross validation owing to
its calculation intensity, and the difficulty of finding an internal automatic criterion
for determining the object to use as reference.

The results from the F -tests differ in several cases from manual inspection of
cross-validation plots. Better control of the number of components is obtained with
manual inspection. Manual inspection is therefore favoured. Explained variance
of responses and random t-test use the validation set to determine the number
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Table 5.3: Determination of significant components for the impurity.

Cross-validation Test set Number of
Leave-one-out Monte Carlo Explained Random significant

Preprocessing (F -test) (F -test) variance t -test components
None 6 (5) 6 (3) 5 10 5
Normalization 6 (6) 6 (3) 7 6 6
1st derivative 3 (2) 2 (2) 4 or 10 10 4
1st derivative + norm. 3 (2) 3 (2) 5 10 5
2nd derivative 2 (2) 2 (2) 2 2 2
2nd derivative + norm. 2 (1) 2 (1) 2 2 2
OS-2 - - 7 7 7
1st derivative + OS-2 - - 6 6 6
2nd derivative + OS-2 - - 5 5 5
MSC 5 (5) 5 or 6 (2) 5 9 5
2nd derivative + MSC 2 (1) 2 (1) 2 2 2
OSC (1 OSC) 6 (6) 6 (3) 6 9 6

of significant components. The t-test gives too many significant components for
several cases, and is therefore not reliable.

5.2.2 Variable selection

The predictive ability of models based on a few principal variables (PVs) is com-
pared to models using larger informative regions, and the large wavelength regions
from 1100 to 1900 nm. For variable selection, interval PLS (iPLS) and PVs were
used. Matlab files for iPLS are given at the KVL homepage [90]. Interval PLS
[37] splits the data into several equidistant regions. The RMSECV is calculated for
every region. The region with the lowest RMSECV is optimized by expanding and
contracting it, symmetrically and asymmetrically. This is time-consuming. Often,
the combination of several regions may lead to better results than what one achieves
with any single region. This complicates the search for the optimal region(s) even
more. A solution to this problem, called synergy iPLS, has also been given at the
KVL homepage. The method examines all possible combinations of regions. Be-
cause of the increasing amount of calculations that has to be performed, synergy
iPLS is limited to combinations of two, three and four regions. Since synergy iPLS
makes it difficult to establish narrow variable regions, small modifications of iPLS
were performed. The variables were split into many small intervals, and the inter-
vals were ranked according to increasing RMSECV. The region of lowest RMSECV
was expanded with the region of second lowest RMSEV. PLS was performed on the
increased matrix, and the prediction error of the expanded region was compared
to the prediction error of the region of lowest RMSECV. If the prediction error
has decreased when expanding the region, further expanding with the region of
third lowest RMSECV is performed and a new PLS model made, etc. The opti-
mal variable region is obtained when no or only insignificant improvement in the
model is observed. Interval PLS and optimized scaling, here referred to as iOS-2,
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Table 5.4: Results variable selection.

Method Preprocessing λ (nm) No. of var. No. of LVs RMSEP
MAIN REACTANT
PLS None 1100-1900 401 9 0.62
iPLS None 1124-1170 48 5 0.66
40 int. 1628-1674
OS2 1st der. + scaling 1100-1900 401 10 0.41
iOS2 1st der. + scaling 1148-1170 84 9 0.48
40 int. 1604-1722
PV 2nd der. + norm. 1644, 1878, 6 MLR 0.70

1424, 1734,
1888, 1704

IMPURITY
PLS None 1100-1900 401 5 0.041
iPLS None 1628-1650 12 3 0.044
40 int.
OS2 1st der. + scaling 1100-1900 401 6 0.034
iOS2 1st der. + scaling 1604-1674 48 5 0.035
40 int. 1700-1722
PV 2nd derivative 1644 1 MLR 0.047

was carried out using a validation set. A new reference object was found for each
variable region.

The results from variable selection for the model of the main reactant and the
impurity are given in Table 5.4. For iPLS only the results from no preprocessing
and optimized scaling on first order differentiated data are given. For principal
variables the best preprocessing method was second-order differentiation. Interval
PLS found two interesting regions, 1100 to 1200 nm and 1600 to 1720 nm, for
both compounds. These regions correspond to the second and first overtone of
CH-stretch. Six variables were detected as PVs for the main reactant, while only
one was detected for the impurity. Use of one or few variables detected as PVs
gave the highest prediction error. Utilizing the larger region detected by interval
PLS improved the model. However, the best models were obtained using the large
region from 1100 to 1900 nm.

Prior to the data analysis, a manual inspection of the spectra revealed a noisy
region from 1900 to 2500 nm. This region was removed. When testing different
variable selection techniques of the remaining region, it was found that the large
region from 1100 to 1900 nm gave a more stable model than using a narrower region.
It seems that as long as noisy regions are removed before modelling, further variable
selection is not required to improve models.

5.2.3 Comparison of predictive ability of models with de-

viation in reference values

The models with lowest prediction errors were obtained using optimized scaling on
first order differentiated data in the region from 1100 to 1900 nm. These models
gave an RMSEP-value of 0.41 and 0.034 area percent (HPLC-values) for the main
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reactant and impurity, respectively. Note that the RMSEP in a relative sense is
higher for the impurity, relative deviation (RD) ≈ 9, than for the main reactant,
RD ≈ 5. RD is equal to; (deviation/meanHPLC)×100.

The contribution to the prediction errors in a partial least squares originates
from the uncertainty in estimated model parameters, the unmodelled part of the
response and from the uncertainty in the measurement in the predictor vector for
the unknown object [91]. Here an inspection of the uncertainty in the response
measurements has been carried out. Three different HPLC-instruments were used
to determine the area percent of the main reactant and the impurity in the process.
The average deviation in replicate runs on HPLC-instrumentation is given in Table
5.5.

Table 5.5: Deviation of highest and lowest value of replicate runs on different
HPLC-instruments.

Control point 1 Control point 2 Control point 3
Compound Deviation RD Deviation RD Deviation RD
Main reactant 0.22 1.55 0.09 1.17 0.06 4.07
Impurity 0.03 12.54 0.03 8.37 0.03 5.67

There is a decrease in deviation from control point one to control point three.
The amount of main reactant in the process solution decreases from about 10-15
area percent to 1-2 area percent at the last control point. The decrease is therefore
expected, since deviation between replicates is related to concentration. For impu-
rity the average deviation is the same at all control points since the concentration
is in the same order of magnitude throughout the process.

For the impurity the highest deviation is 0.03 area percent. The RMSEP value
is close to this value, and a reliable model for surveillance of the impurity in the
process using NIR is feasible. For the main reactant the highest deviation is equal to
0.22 area percent, while the lowest RMSEP achieved is equal to 0.41 area percent.
These deviations cannot be attributed only to the HPLC-measurements. Some
noise will always be present in spectra due to spectrometer hardware, light scatter
in solution or interaction of compounds, e.g. hydrogen bonding [92]. However, the
impurity deviation agrees well with the HPLC deviations, and the reason for the
higher deviations between modelled and HPLC values must be attributed to NIR
data having greater problems of modelling this compound. In order to improve
the model the cause for the high prediction error for main reactant should be
investigated.

5.2.4 Origin of the band used to model the responses

The difference between the predicted and measured responses were too large to be
attributed to the variation in the HPLC measurements alone. An investigation of
observed bands in the near infrared region was therefore performed.

Bands from O-H, N-H and C-H stretches are strongly absorbing in the near
infrared region. These are all present in the reactants involved. The bands from
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the solvent, CH3OCH2CH2OH, absorb strongly in the entire near-infrared region.
The result is that the solvent seems to mask interesting bands. However, upon
inspection of differentiated spectra a narrow region in the region around 1644 nm
was observed to relate well to the responses. This band was shown in paper III to
originate from the alkylating agent. This observation explains the errors between
predicted values and the HPLC-measurements. The impurity has low concentration
and the expectation for successful modelling of this compound was low. However,
the results in paper II showed that this compound is well modelled by NIR spec-
troscopy. This indicates strongly that the content of alkylating agent is highly
correlated to the content of impurity. For the main reactant a greater difficulty in
relating the NIR-spectra and the HPLC-responses is obtained, requiring more LVs.

Why do we not observe changes in the concentration of other bands? The
initiating compound is expected to react almost completely when caustic soda is
added. When the main reactant dissolves in the alkaline environment, the hydrogen
atom of the N-H stretch reacts with OH−, forming water. The strongly absorbing
N-H bond is converted to N−, and absorptions due to the N-H bond is therefore
not expected. The R-group of the main reactant and of the product is expected
to give close to the same absorptions, and the changes in the spectra are too small
to be observed. For the impurity, a C-H stretch frequency different from the main
reactant and the product is expected. Due to small concentration changes in the
process solution, the absorption differences cannot be observed. Because of water
formation, band shifting is expected. In addition, the strongly absorbing solvent
masks severely the bands from other absorbing species in the spectra.

5.2.5 Summary of feasibility study

A summary of the different methods used in the feasibility study is given in Table
5.2.5. There has been a disagreement between chemometricians of whether to
use internal cross validation (CV) or an external validation set when choosing
the optimal number of components. For the data investigated here they perform
equally, and the choice between internal or external validation is more a matter
of taste. For variable selection, PV and iPLS gave information of spectral region.
However, for linear modelling use of the large region from 1100 to 1900 nm gave
models of lowest prediction errors.

In a feasibility study, an estimate of the errors from response-measurements
should be found. A large difference between errors originating from the response-
measurements and the obtained RMSEP value indicates that NIR spectra obey
some problems of modelling this compound. To be able to improve the model,
more research is needed to find the cause.
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Table 5.6: A summary of methods used in the feasibility study.
Determination of significant components

Leave-one-out CV Performs well.
Monte Carlo CV Performs equally to leave-one-out CV.
F -test on results from CV + Automatic selection. ÷ Deviates somewhat

from manual selection.
Explained variance of test set Performs equally to CV. + Able to test model

on an independent data set. ÷ Requires more
samples to be available than CV.

Random t-test, test set ÷ Risk for overfitting.
Variable selection

PV + Ranking of important variables.
÷ Similar variables that could stabilise model,
will not be detected.

iPLS + Visual method for detecting the most
informative regions.

Large region, 1100-1900 nm + Use of the large region gives models of
lowest prediction errors.

5.3 Performance of three-way regression meth-

ods

Little research has been carried out combining multiway techniques with NIR spec-
troscopy. For process analysis there are two main problems. While PARAFAC has
been shown to be successful to resolve profiles from fluorescence data, this is difficult
for NIR spectra due to broad overlapping bands and baseline variations [93, 94].
Another difficulty is that when predicting responses from a new spectrum, data
from the entire duration of the batch must be available . For on-line analysis quick
and reliable methods dealing with missing data are therefore needed.

Despite these difficulties, decomposing NIR data by N-way techniques has been
shown to be suitable, both for classification purposes [95], and to increase under-
standing of chemical reactions [93, 94]. No applications of NIR spectra in com-
bination with N-way regression techniques are found in the literature. However,
three-way PLS have been tested on fluorescence and UV/Visible-spectroscopy with
better results than two-way PLS [46, 96].

The use of N-way techniques on the process data investigated in this thesis
is especially appealing since a curvature was observed between predictor and re-
sponses, and that scatter effects are observed in the NIR spectra. In paper IV it
was tested if these problems could be diminished by stacking samples into higher
order arrays. The objectives included testing of N-way decomposition techniques
for exploration and regression of NIR-data, and to find a suitable technique to fill
in for missing values.
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5.3.1 Inspection of data

This study is based on manually collected NIR spectra. The data set comprises 17
batches where a spectrum has been collected at each control point. To investigate
the data, the wavelength region from 1100 to 1900 nm was utilized. The data was
arranged in a three-way array of size 17 batches × 3 time points × 401 wavelengths.
9 batches were included in a calibration set, while the remaining 8 batches were
included in a validation set. An additional 16 batches were used to test the per-
formance of the regression models. The data were preprocessed by second-order
differentiation. Data analysis was carried out using MATLAB (The MathWorks,
Inc., version 6.5) and the N-way Toolbox [97] for MATLAB, version 2.10.

N-PLS and two-way PLS were tested for interesting wavelength regions. The
results showed the region from 1638 to 1650 nm to be important for modelling
the main reactant (see Table 5.7). Poor models were obtained for N-PLS making
use of the large wavelength region from 1100 to 1900 nm. This is different from
two-way PLS. Inspecting the weights from N-PLS revealed that they were small in
the important region around 1644 nm, while for two-way PLS the regression co-
efficients were large. Since N-PLS blocks data, centering of data removes distinct

Table 5.7: Predictive ability of main reactant for different wavelength regions using
N-PLS and PLS1, full cross-validation.

Wavelength N-PLS PLS1

(nm) No. LVs RMSEP No. LVs RMSEP
1100-1900 nm 9 1.63 6 0.72
1622-1660 nm 3 0.71 3 0.76
1638-1650 nm 3 0.59 1 0.78

concentration differences between control points. When calculating the covariance
between the spectra and the response, N-PLS is more vulnerable to wavelengths
regions changing in intensity when the process evolves, and the response is er-
roneously registered as beeing dependent on these variables. The result is poor
models that fail to predict new samples. This is not obtained for PLS1 where all
control points are centered simultaneously, giving three distinct bands. Variable
selection is therefore more important for N-PLS than for two-way PLS.

The region from 1638 to 1650 nm was chosen for a further analysis of data.
Prior to multiway analysis, a test is required to see if there is enough variation to
perform multiway analysis. For the process data, the correlations between the first
score of the NIR spectra and the belonging responses were equal to 0.9, 0.8 and
0.6 for control point one, two and three, respectively. It is therefore appropriate to
run multiway decomposition of the process data.

PARAFAC and Tucker3 were used to explore the process data. Dimensionality
tests for PARAFAC, i.e. sum of squares (SSQ) and CORCONDIA [98], gave two
significant factors. A split-half test [40] using two components gave different pro-
files. The rank of the system is therefore different from two. While PARAFAC is
restricted to decompose data into same number of factors in all modes, Tucker3
does not have this limitation. A dimensionality test, plotting SSQ vs. number of
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factors, gave [2 2 1] factors to be significant. In paper III it was revealed that the
band used to model the main reactant and the impurity most likely stems from the
alkylating agent. This explains a rank equal to one in the spectral direction. In
addition, the profiles obtained in the concentration direction resembled the concen-
tration profiles of the main reactant and the impurity. One may ask whether the
two significant factors in the time direction correspond to the main reactant and
impurity. To check this, simulated data resembling the real data set were made.
Three data sets were made of different concentration profiles multiplied with the
alkylating band. The results of the dimensionality tests are given in Table 5.8.
They show that only one component contributes to the signal. Since the system

Table 5.8: Dimensionality test of simulated data set.
Response multiplied Tucker3

with ”alkylating band”
Main reactant + impurity [2 2 1]
Main reactant [2 2 1]
Impurity [0 0 0]

investigated is complex, the rank is not expected to be [2 2 1] as obtained for
Tucker3. The profiles obtained from PARAFAC or other N-way decomposition
techniques are therefore not expected to be pure. N-way decomposition techniques
provides instead information of number of significant components needed to explain
most of the variance in the system. This information can be used for regression
purposes.

5.3.2 Multiway regression

The second issue addressed in paper IV was to test the performance of N-way
calibration techniques for the modelling of the main reactant. The results from
N-way techniques are given along with two-way regression techniques in Table 5.9.
PARAFAC, Tucker3 and N-PLS perform equally well. In addition, N-way regres-
sion techniques were shown to model process data better than two-way techniques.
This applies especially to control point three where two-way regression fails. The
predictions of new samples using N-PLS and PLS1 are shown in Figure 5.4. The
residuals locate close to the perfect fit line for N-PLS, while for two-way PLS the

Table 5.9: Results from off-line monitoring. RMSEP of validation set using two-
way and three-way regression methods.

Control point PARAFAC Tucker3 N-PLS PLS1 PLS1
per control point

1 0.32 0.33 0.33 0.90 0.74
2 0.47 0.47 0.47 0.77 0.78
3 0.23 0.24 0.23 1.15 1.19
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Figure 5.4: Predicted vs. measured for validation samples calculated using a) N-
PLS, and b) two-way PLS. Dashed line is 1st order polynomial fit of residuals at
each control point.

residuals are large and obey a systematic pattern. For control point one and three
most of the objects plot beneath the perfect line of fit. In addition it is observed
that the slope of fit line at each control point differ more from perfect fit for the
two-way PLS results. The behaviour in Figure 5.4 b) is due to the non-linear
behaviour in data discussed in paper III.

When decomposing three-way data the data array is projected onto the loadings
in the time and spectral directions. The result is scores that explain the behaviour
of the batch. The score from one batch is used to model the response at all control
points for the given batch. For N-PLS the regression coefficients are used to weight
scores for a batch. The same regression coefficients are used for all control points;

Ŷ = TBQT (5.2)

The differences in concentration are given by the loadings for the responses, Q. By
organizing data in a box, i.e. stacking data per control point, the size of the signal
variation at each control point is removed due to centering of data. The result is
that the signals at the different control points do not need to be linearly related,
however, they must be linearly related within the control point. This is opposite to
two-way PLS where the signals need to be linearly correlated at all control points.
The results is that N-way regression may be a good alternative for other calibration
techniques handling data with a slight nonlinear behaviour such as for the process



47

data here. Note: Division of data into too narrow concentration regions may result
in false positive results, since the response weight, Q, forces the score to have a
value within or close to the concentration range. Therefore, it is very important
that the data are checked for correlation before modelling, e.g. that one performs
a correlation test as described in section 5.3.1.

5.3.3 N-way calibration for on-line monitoring: How to

handle missing values

For on-line prediction of new batches, data are missing from the control points
not yet monitored. Filling in with random variables gave terrible predictions (see
Table 5.10). The N-way models predictive ability do therefore rely upon the values
chosen. Different ways to fill in for the missing values were tested. These included
mean spectra, scores and weighted scores. The results are given in Table 5.10.

Table 5.10: Results on-line monitoring. Data for the entire duration of the batch
process is missing in control point I and II. The predictive ability (RMSEP) is
given for different ways to in-fill yet unknown data.

Validation set Test set

Control point 1 2 1 2

PARAFAC

Random 8.64 5.23 8.63 5.27
Mean 0.77 0.59 0.93 0.73
Scores 0.74 0.58 0.88 0.72
Weighted - 0.59 - 0.72
Tucker

Random 9.05 4.60 10.18 5.49
Mean 0.77 0.59 0.92 0.73
Scores 0.74 0.61 0.93 0.87
Weighted - 0.58 - 0.76
N-PLS

Random 9.56 5.87 9.86 5.97
Mean 0.78 0.60 0.93 0.73
Scores 0.73 0.59 0.92 0.73
Weighted - 0.59 - 0.73

Small differences are observed between the different techniques. However, a few
things should be noted. Use of scores performed best for all N-way techniques in
control point one for the batches in the validation set. This indicates that scores
might be a good way to fill in for missing values. Weighted scores in control point
one gives results equal to utilizing the mean spectrum of calibration samples, while
in control point two a half weight is given to the mean spectrum and another half to
spectra estimated from scores. Therefore only control point two is inspected. The
results are close to the results obtained using the mean spectrum of calibration
samples. In the future, automatical acquisition of spectra by fiber optic cables
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makes it possible to scan spectra more frequently. More reliable estimates of scores
(and thereby missing spectra) are then expected. More tests employing scores and
weighted scores should be performed in the future.

The prediction errors of the samples acquired on a later moment have in average
increased with 0.15 area percent. Updating of calibration models with new samples
is therefore recommended.

5.4 Summary of multivariate modelling

In this chapter, curve resolution, two-way and three-way regression techniques have
been tested on NIR data for the purpose of quantitative analysis. Based on the
results, a scheme giving the requirements of the different techniques is proposed in
Table 5.4.

Table 5.11: Requirements of multivariate techniques for process monitoring.
Curve resolution + No response needs to be available.

÷ Baseline correction is required.
÷ The system must be simple, rank 2-3 is desirable.

Two-way regression + Simple to use. Works well even for highly
scattering solutions.

Three-way regression + Non-linear data.
÷ Methods to fill in for missing values
are required for on-line monitoring.

No reference method is required for curve resolution techniques. This makes it
possible to bring out studies of chemical systems as in paper I. The disadvantages
is that a proper way to perform baseline correction must be found, and that the
system must be simple.

The synthesis of contrast agent used as a case study in papers II-IV is a com-
plex system. The rank is expected to be high, since several of the compounds in
the process solution have functional groups that are highly absorbing in the near
infrared region. Since a technique to measure the required responses is available,
regression techniques relating NIR-spectra to those responses are preferred.

Two-way regression techniques were used in paper II. The methods are simple
to use and work well even for highly scattering solutions. In paper IV process data
was stacked in a box of batch×control point×wavelength and N-way regression was
carried out. The N-way decomposition techniques model samples in each control
point separately, making it suitable for non-linear data. A problem using the N-way
techniques is that a way to fill in for values not yet monitored is needed.
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Conclusions and future outlook

In this thesis various strategies for handling noise and irregularities in NIR-spectroscopy
data have been proposed and tested. In addition, different ways to model data for
quantitative purposes have been assessed.

A procedure for resolving NIR spectra to investigate the self-association phe-
nomenon of alcohols was presented in paper I. The resolved spectral profiles confirm
earlier results. Free species dominate at low concentrations. They associate into
linear and cyclic species with increasing concentration. Physical constants were
calculated from the resolved concentration profiles. These discriminated well be-
tween linear and sterical hindered alcohols. However, the method was not sensitive
enough to discriminate between the linear alcohols of different molecular size and
of different sterially hindered alcohols tested. This is expected to be due to the
problems of finding low-rank regions and a sensitive baseline correction method.
For future research, subtraction methods providing regions of low rank (selective
regions) should be investigated. For nonhazardous and simple chemical processes
other techniques, such as mid-IR region combined with an ATR cell, are expected
to provide narrower bands. This makes it easier to perform curve resolution for
quantitative purposes.

The advantage of curve resolution techniques is the possibility of performing
quantitative and qualitative studies in the absence of reference methods. When
the purpose is process monitoring of a chemically complex system of high rank and
a technique to measure interesting responses is available, regression methods such
as PLS are easier and more reliable to use.

Paper II is a feasibility study of NIR spectroscopy for surveillance of the produc-
tion of contrast agent. Different ways to determine model complexity and different
variable selection methods were tested. Automatical determination of model com-
plexity by statistical tests such as t-tests and F -tests are unstable. Instead, manual
inspection of cross-validation plots or explained-variance plots of responses in an
external validation set, is recommended. Variable selection showed that use of a
large wavelength region provided the best models. Errors in the response measure-
ments were compared to errors in the NIR models. A greater deviation than can
be attributed only to the response measurements was observed. It remains to be
seen if this knowledge can be used to obtain better models. The feasibility study
also included testing of different techniques to handle additive and multiplicative
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effects in the NIR data. The most surprising result was that the little used method
of optimized scaling, proposed by Karstang and Manne in 1992 [57], gave the best
results. The more popular technique orthogonal signal correction (OSC) [59, 60]
gave little or no improvements from the use of raw data. An OSC component
removes systematic noise, in a way which is similar to the addition of one extra
LV using raw data. For process data where multiplicative and additive effects are
expected, differentiation and normalization should be tested along with OS-2 and
no preprocessing.

The process data in paper II showed a curvature well described by a second-
order polynomial. In paper III several methods for handling the curvature when
building calibration models were tested. These included transformations, local
regression and quadratic PLS. Simple mathematical transformations were shown
to be the best way to deal with non-linearities in data. Quadratic PLS is a new
interesting technique, but contradicting results were obtained. More studies of the
method are therefore required.

NIR data acquired from a batch process can be arranged in a three-way struc-
ture. No applications of N-way regression in combination with NIR spectra have
so far been found in the literature. For monitoring chemical processes, the N-way
techniques are appealing in the presence of curvature and scatter effects in data. In
paper IV the performance of N-way decomposition techniques was tested. Variable
selection was shown to be of the utmost importance for N-way modelling when
many irrelevant variables are measured. N-way regression techniques provided cal-
ibration models of better predictive ability than two-way PLS. The residuals were
found to be nonlinear for two-way PLS while for N-PLS they were random and
small. The process data are nonlinear and when stacking data in a box, each time
point and thereby concentration range is treated separately. If the data are close
to linear within each time point, N-way regression seems to be a good option for
handling non-linear data. To be able to use N-way techniques for on-line monitor-
ing, data missing at the control points not yet monitored must be filled in. The
results obtained in paper IV indicated that the use of scores could be a good way.
However, frequent measurements are required to find a score describing the present
monitored batch in the best possible way. How to deal with these missing values
needs further investigations. Continuous monitoring, e.g. frequent acquisition of a
spectrum, may be requested. Note that for two-way regression one model can be
used to predict models from the start to the end of the process. On the contrary,
for N-way techniques only samples acquired at the three control points are shown
to work. Further investigations of how a slice in a box can be extrapolated and
how to deal with this problem are required.

The process data investigated in papers II-IV were scanned manually using a
monochromator instrument. An FT-NIR spectrophotometer enabling automatical
acquisition of spectra has been installed in the process. A multiplexer is connected
to the instrument. This makes it possible to scan spectra at different sites in the
production line.

Several reactors are used to alkylate the main reactant. A score plot of the
preprocessed data revealed that spectra scanned at one of the reactors do not group
with the spectra scanned at the other reactors. The differences cannot be removed
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by techniques handling multiplicative and additive effects. The differences between
reactors have been assigned to the fiber optics. A possibility is to replace the fiber
with a new one. However, finding fibers of equal quality may be a problem. Instead,
two models can be made; one for the reactors giving similar spectra and one for
the other reactor. Another possibility is to use calibration transfer techniques [99]
to convert spectra in the reactors to behave in a similar manner (shifts and peak
intensity). In the future, having suitable calibration transfer techniques available
may also be required if a new lamp or other spare parts replaced alter the spectra in
a minor way. The issue of calibration transfer is therefore important. Calibration
techniques requiring no standards is especially requested. For the process used as a
case study in this thesis no stable reference sample of process solution is available,
complicating the calibration transfer even more.

The correlation between each control point and corresponding HPLC value of
main reactant revealed the data to be very noisy. The problems were assigned
to instrumentation and physical effects. While mathematical transformations were
shown to deal with noise and irregularities well in Chapter 4, the noise in these data
was too severe to be handled simply by preprocessing techniques. Improvements in
the sampling construction and technical devices were required. Noise is generated
from turbulent flow in the pipe [8]. The noise was reduced by stopping the flow
when acquiring data. Technical devices diminishing noise should be looked for in
the future, e.g. use of bundle vs. single fiber, testing of fiber lengths and sampling
devices, among others.

Continuous process monitoring is the goal. Surveillance of a process using pa-
rameters such as temperature, pressure and flow rate, has been used for multivariate
statistical process control [51, 100, 101]. In the future it would be interesting to
relate vibrational spectroscopy data to other process parameters, including raw-
material quality, to detect which parameters that disturb the process. Being able
to control this and thereby obtain same high yield and good quality in every batch,
is the ultimate goal.
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