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I think everyone should learn how to
program a computer

because it teaches you how to think

- Steve Jobs
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Chapter 1

Introduction

Figure 1.1: Feels so good to be king.

Imagine this scenario: You are the monarch in
a country with several small towns scattered
throughout the lands. The neighboring towns
are connected by roads, which can be used to
drive efficiently between them. Your people
think you are an outstanding monarch, and you
want to keep it that way, because it just feels
so good being worshipped, as shown in Figure
1.1. Everything seems to be going smoothly, but
suddenly the towns start having problems with
occasional fires, and for some reason the houses
burn to the ground quite fast. You decide to
place fire stations in some of the towns, such
that every town either has its own fire station,
or a neighboring town with one. In that way
you make sure that in case of fire, there’s a fire
truck ready in the town, or a savior can come
from an adjacent town. However, building fire stations is expensive, and you need to save a good
chunk of your taxpayers’ money so you can build a new castle, in case you should need one. What
is the minimum number of fire stations you can build to get rid of your problem?

An example of an instance of this problem is shown on the left in Figure 1.2. How hard can this
be? You quickly realize that there are no obvious positions to place your fire stations, so you sort
of need to try different placements, and convince yourself that your placement is optimal. On the
right a solution is shown, proving that you can solve the problem using only 3 fire stations. In this
particular case you can prove with relative ease that no smaller solution is possible, but this is not
always that easy.
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Figure 1.2: A graph and its minimal Dominating Set colored in green.

A bulletproof way to find the optimal solution is to try all possible placements of fire stations, and
pick the smallest solution found. The problem with this approach is that the number of possible
placements we have to try becomes astronomically big if the number of towns is large. This is what
is known as a brute-force approach, and it is generally considered very bad for all other than small
problem instances.

This particular problem is known as the Dominating Set problem, and has been heavily studied,
both for its many practical applications and its theoretical aspects. The Dominating Set problem
is important in many industries; a telephone operator placing radio towers at random hoping to
achieve good coverage would quickly run out of money; in social network theory solving the problem
can lead to insight in peoples’ influence on each other[26]; and many problems in logistics, distribution
and transportation can be modeled in this way.

Despite the great efforts of many people since the Dominating Set problem was first formalized
in the 1950’s[15] no efficient algorithm for solving it has been found. The reason for this was found
in the 70’s, when several researchers published papers on the theory on NP-completeness[7, 20, 18].
It turns out that Dominating Set is among these NP-complete problems, and it is believed that
no efficient algorithms exist to solve them.

Even though we believe that it is not possible to solve the problem efficiently in the general case,
many real-life instances of the problems have a structure that can make the problem more tractable.
Looking back at the fire station example, we can observe that the instance in this case is a map
showing the towns drawn in the plane, with no roads crossing each other. This information can be
used to improve on our algorithms when trying to find a solution. As we shall see, the planar version
of the problem, Planar Dominating Set, is considered easier than the general problem.

In some cases we can discover parts of the input instance that are easier to solve than the rest, and
we can remove these parts efficiently from the instance. We will show that for a large instance to
the Planar Dominating Set problem we can always reduce the instance to a size just depending
on the size of the optimal Dominating Set. This remaining part we are left with is called the kernel
of the instance.

1.1 Background and Thesis Overview

In this section, we will provide a brief overview of the thesis, including some background and results.
This overview makes use of a few basic concepts from Parameterized Complexity. These concepts
are explained in the preliminaries part.
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In 2004, Alber, Fellows, and Niedermeier[2] presented a kernelization algorithm for Planar Domi-
nating Set, and came up with the concept of Region Decomposition for planar graphs. This is a
way of dividing planar graphs into regions, and several papers following theirs have made use of this
particular technique for showing kernels for problems on planar graphs [1, 6, 11, 12, 13, 21, 23].

Unfortunately there are some ambiguities in the definitions of the core concepts of the Region
Decomposition of Alber et al., and we do not see a way to resolve these ambiguities such that the
proof of the lemma as published in [2, Lemma 6] is correct. For this reason, there has been some
uncertainty [17] as to whether the statements made using Region Decomposition and its theorems
are true, or whether they, and the results building on them, should be reconsidered. The first
main contribution of this thesis is to show that minor modifications to the definitions, theorem
statements and proofs of Alber et al. is enough to make their theorems and results go through. Our
modifications are consistent with the use of the Region Decomposition technique in other work we
are aware of, giving these results a solid foundation.

Our modified definition of Region Decomposition together with the proofs of Alber et al. show
that if a planar graph has a dominating set of size k, then there exists a Region Decomposition of
the graph having at most 3k regions. Together with the bounds of at most 55 vertices inside each
region and 170k vertices in total outside regions from Alber et al., this results in a kernel on 335k
vertices.

One of the papers that based their proofs on the Region Decomposition technique of Alber et al.,
was the 2007 paper by Chen, Fernau, Kanj, and Xia[6]. They introduce some additional reduction
rules and by an improved analysis upper bound the number of vertices in every region by 16 and
the vertices outside regions to 19k. This yields a 67k kernel for Planar Dominating Set. Our
second main contribution is to improve this result by introducing one extra reduction rule and by
modifying the embedding of the graph. Doing this we are able to bound the number vertices outside
regions to 7k in total, resulting in a 55k kernel.

Chen et al. were able to bound the size of the regions to 16 by using several reduction rules
and an extensive case analysis. We automate this case analysis process by the use of a computer
program that designs reduction rules by exhaustively searching for ”reduced” regions, and proves
the correctness of the generated reduction rules as it runs. In the process it keeps track of the biggest
non-reducible regions found, arriving at the result that any region can be reduced to an equivalent
region of size 12 or less. This gives rise to a 43k kernel. Be sure to read the Words of Warning
at the start of Part III, as we finished the coding of the computer program a bit too close to the
submission date.

Note that the search for reduced regions could have been done by näıvely enumerating all regions
up to the size of 16, and keeping the reduced ones. But since this will take years, if not decades,
even on a super-computer, we do an extensive analysis to speed up the process, making it possible
to arrive at the result in a few days on a semi-powerful parallel computer.

Chapters 1-2 introduce the Dominating Set problem and necessary notation. In Chapters 3-5 we
prove our Region Decomposition theorems and arrive at the 335k kernel. In Chapter 6 we improve
this to 55k. Finally, in Chapter 7 and out we describe our process for doing computer-aided reduction
of regions, further improving the kernel to 43k.

1.2 Terminology and Preliminaries

In this section we will introduce the reader to most of the core concepts we are touching on through-
out the thesis. Many of the concepts can be found described in any good introductory books to
Discrete Mathematics and Algorithms [25, 9] so we will only briefly explain the most basic ones,
and spend most of our time describing those more particularly relevant for our discussion of the
Planar Dominating Set problem.
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1.2.1 Mathematical Notation

We will freely make use of standard set notation, as found in Rosen[25]. For the sake of convenience
we will restate the most common ones here, defined tailored to our use.

Definition 1.1 (Multiset). A multiset is an unordered collection of elements.

Definition 1.2 (Set). A set is a multiset where each element appears only once.

Definition 1.3 (Universe). A universe is the set that contains all the elements under consideration
in a given situation.

As an example, if we are looking at operations on sets of positive integers, the universe in this
situation will precisely be the set of all positive integers.

Let A,B be two sets from some universe. We have the following definitions

Member of set If the element x is in the set A, we say that x is a member of A, and denote this
by x ∈ A. A non-member y is denoted y ̸∈ A.

Cardinality The number of members of A is called the cardinality of A, denoted |A|.

Empty set A = ∅ if |A| = 0.

Subset A ⊆ B, if for every x ∈ A, we have x ∈ B.

Equality A = B, if A ⊆ B and B ⊆ A.

Proper subset A ⊂ B if A ⊆ B and A ̸= B.

Union A ∪B = {x | x ∈ A ∨ x ∈ B}

Intersection A ∩B = {x | x ∈ A ∧ x ∈ B}

We will need the definitions for infimum and supremum on the set of real numbers:

Definition 1.4 (Infimum). Let S ⊆ R. The infimum of S, denoted inf(S), is a greatest element
in R that is not greater than any element in S, if such an element exists.

For instance, let S = (0, 10]. Then inf(S) = 0. The definition of supremum is similar, but this one
we will only need for the natural numbers:

Definition 1.5 (Supremum). Let S ⊆ N. The supremum of S, denoted sup(S), is a smallest
element in N that is not smaller than any element in S, if such an element exists.

1.2.2 Points in the Plane

To be able to talk about planarity of graphs later, we will need notation regarding points in the plane.

Definition 1.6 (Cartesian coordinate system R2). We say that R2 is the set of all pairs (x, y) where
x, y ∈ R. R2 is commonly referred to as the plane. The members of R2 are called points.

Note that we often will denote a set of points simply as a point set.

Definition 1.7 (Point-to-point distance). Let p1 = (x1, y1) and p2 = (x2, y2) be two points from
R2. The Eucledian distance, or simply distance, between the two points is dist(p1, p2) =√

(x1 − x2)2 + (y1 − y2)2.

Definition 1.8 (Point set-to-point set distance). Let A,B ⊆ R2 be two point sets. The distance
between the sets is dist(A,B) = inf{dist(a, b) | a ∈ A, b ∈ B}. We say that A and B are
separated by the distance dist(A,B).
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The reason we are using infimum for this definition is so we can say that two point sets that are
infinitely close in R2, but not intersecting, are separated by a distance of 0.

Figure 1.3: The distance between two point sets is the smallest distance between any two points,
one from each set.

When doing addition and scalar multiplication on points, we treat them as regular vectors, and
perform the operations as defined in Lay[19].

Definition 1.9 (Line segment). Let p1, p2 be two points in R2. The linesegment between p1 and
p2 is the set of points L(p1, p2) = {λp1 + (1 − λ)p2 | 0 ≤ λ ≤ 1}. p1 and p2 are called the endpoints
of the linesegment.

p1

p2

Figure 1.4: A linesegment is the set of all points on the line between the two endpoints p1 and p2.

Definition 1.10 (Simple polygon line). A simple polygon line P is a point set

P = L(p1, p2) ∪ L(p2, p3), . . . , L(pt−1, pt)

such that the following properties are satisfied:

• p1, p2, . . . , pt is a finite sequence of points where pi ̸= pj for all i ̸= j

• for 1 < i < j < t we have L(pi−1, pi) ∩ L(pj , pj+1) = ∅

• for 1 < i < t we have L(pi−1, pi) ∩ L(pi, pi+1) = {pi}

p1 and pt are called the endpoints of P , and we write P = P (p1, pt).

a

b
c

d

e
f

Figure 1.5: The simple polygon line is made up of line segments between the points a through f . a
and f are the endpoints of the simple polygon line.
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Definition 1.11 (Connected points). We say that a pair of points p1, p2 is connected in a point
set S if there exists a simple polygon line P ⊆ S such that p1, p2 ∈ P .

Definition 1.12 (Connected pointset). A point set S is connected if every pair p1, p2 ∈ S is
connected in S.

Definition 1.13 (Simple polygon). A simple polygon P is a set of points s.t. there exists a simple
polygon line P ′ with endpoints p1, pt, and a linesegment L(p1, pt) s.t. L(p1, pt) ∩ P ′ = {p1, pt}, and
we have

P = P ′ ∪ L(p1, pt)

p1

p2

p3

p4

p5

p6

Figure 1.6: A simple polygon.

For convenience, when we say just polygon line or polygon, we will refer to the definitions above,
meaning simple polygon line and simple polygon.

Definition 1.14 (Face). Let P be a simple polygon. The inclusion-wise maximal connected point
sets of R2 \P are called faces. The infinite one is called the exterior face of P , while the finite one
is called the interior face of the polygon.

Definition 1.15 (Unit size disk). A unit size disk with center p ∈ R2 is the set of points

{p′ ∈ R2 | dist(p, p′) ≤ 1}

1.2.3 Graphs

Definition 1.16 (Vertex). A vertex v is a single element from some universe of elements U .

Definition 1.17 (Edge). An edge e is an unordered pair of two vertices u, v, written e = (u, v). We
say that e is incident to u and v, also that e goes between u and v. u and v are the endpoints
of e.

Definition 1.18 (Simple graph). A simple graph G is a pair V,E, often written G = (V,E). V
is a set of vertices, and is called the vertices of G. E is a set of edges between vertices in V , and is
called the edges of G. More specifically, E ⊆ {(u, v) | u, v ∈ V, u ̸= v}. V and E are often written
V (G) and E(G) respectively, when it is ambiguous which graph they belong to.

Definition 1.19 (Multigraph). We say a graph G = (V,E) is a multigraph if we allow E to be a
multiset.

As we will mostly work with multigraphs from this point forwards, we might sometimes just write
graph, meaning multigraph. Note that our definition of multigraph does not allow self-loops (i. e.
an edge (u, v) s.t. u = v).

Definition 1.20 (Adjacent vertices). Let G = (V,E) be a graph, and let u, v ∈ V be two vertices
in G. We say that u and v are adjacent if there is an edge in G incident to them both. That is, if
(u, v) ∈ E.
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Definition 1.21 (Neighborhood of a vertex). Let G = (V,E) be a graph, and let v ∈ V be a vertex
in G. We denote the neighborhood of v as N(v), and it consists of all the vertices adjacent to v
in G. The closed neighborhood of v is denoted by N [v] = {v} ∪N(v).

Definition 1.22 (Neighborhood of a set of vertices). Let G = (V,E) be a graph, and let S ⊆ V
be a set of vertices in G. As for a single vertex, we denote the closed neighborhood of S as
N [S] =

∪
s∈S

N [s] and the neighborhood of S as N(S) = N [S] \ S.

Definition 1.23 (Degree of a vertex). Let G = (V,E) be a graph, and let v ∈ V be a vertex in this
graph. The degree of v is the number of edges from E incident to v, and we denote it by deg(v).

Note that since we in some cases will allow multiple edges, the degree of a vertex is not always the
same as the number of neighbors it has, as is the case for simple graphs.

Definition 1.24 (Induced subgraph). Let G = (V,E) be a graph, and let S ⊆ V be a set of
vertices in G. The subgraph induced by S is the graph having vertices V ′ = S and edges
E′ = {(u, v) ∈ E | u, v ∈ S}, and is denoted G[S] = (V ′, E′).

Definition 1.25 (Deleting vertices of graph). Let G = (V,E) be a graph, and let S ⊆ V . The graph
G− S is the graph G′ = (V ′, E′), where V = V \ S and E′ = {(v1, v2) ∈ E | v1 ̸∈ S ∧ v2 ̸∈ S}.

Definition 1.26 (Disjoint union of graphs). Let G1 = (V1, E2), G2 = (V2, E2) be two graphs
such that V1 ∩ V2 = ∅. The disjoint union of G1 and G2, denoted G1 + G2, is the graph G =
(V1 ∪ V2, E1 ∪ E2).

Definition 1.27 (Adding edges to graph). Let G = (V,E) be a graph and let E1 ⊆ {(u, v) | u, v ∈
V, u ̸= v} be a set of edges. The graph G′ obtained by adding the edges E1 to G is the graph
G′ = G + E1 = (V,E ∪ E1).

Definition 1.28 (Supergraph). Let G = (V,E) be a graph. A graph G′ = (V ′, E′) is a supergraph
of G if V = V ′ and E ⊆ E′.

Definition 1.29 (Walk). Let G = (V,E) be a graph. A walk W of length k in G is a sequence
(v1, e1, v2, e2, . . . , vk, ek, vk+1) where vi ∈ V , ej ∈ E, such that ∀j ∈ {1, . . . , k}, ej = (vj , vj+1).

Definition 1.30 (Simple walk). A simple walk is a walk where all the vertices in the sequence are
distinct. This is commonly know as a path.

Definition 1.31 (Cyclic walk). A cyclic walk C is a walk W = (v1, e1, . . . , vk, ek, vk+1) such that
v1 = vk+1.

Definition 1.32 (Clique). Let G = (V,E) be a graph, and let C ⊆ V be a set of vertices in G. We
say that C is a clique if all vertices in C are adjacent, that is ∀u ∈ C, ∀v ∈ C, (u, v) ∈ E. A clique
on n vertices is denoted Kn.

Definition 1.33 (Independent set). Let G = (V,E) be a graph, and let I ⊆ V be a set of vertices
in G. We say that I is an independent set if no vertex in I is adjacent to any other vertex in I,
i. e. ∀u ∈ I, ∀v ∈ I, (u, v) ̸∈ E.

Definition 1.34 (Partition of a graph). Let G = (V,E) be a graph, and let A ⊆ V and B = V \A
be two disjoint subsets of the vertices of G. We say that (A,B) is a partition of the graph.

Definition 1.35 (Bipartite graph). Let G = (V,E) be a graph. We say that G is bipartite if there
exists a partition (A,B) of V (G) such that A is an independent set, and B is an independent set in
G. (A,B) is called a bipartite partition of G.

Definition 1.36 (Complete bipartite graph). Let G = (V,E) be a bipartite graph with bipartite
partition (A,B). We say that G is a complete bipartite graph if every vertex in A is adjacent
to every vertex in B, i. e. ∀a ∈ A,∀b ∈ B, (a, b) ∈ E. A complete bipartite graph having partition
(A,B) where |A| = n and |B| = m is denoted Kn,m.

9



≥ ε

Figure 1.7: A planar graph can always be drawn with edges separated by a distance ≥ ϵ > 0.

1.2.4 Plane Graphs

The set of planar graphs is the type of graphs we’ll turn most of our focus to in this thesis. We will
now state some definitions regarding planar graphs that will be useful for the rest of the discussion.

Definition 1.37 (Plane embedding). A plane embedding of a graph G = (V,E) is a four-tuple
E = (UE ,PE , fE , gE), where UE is set of unit size disks, PE is a set of polygon lines, fE : V → UE is
a map that maps any vertex of V to a unit size disk in the plane, and gE : E → PE is a map that
maps any edge in E to a polygon line in the plane, such that there exists an ϵ > 0 and the following
conditions are satisfied:

1. For every pair of distinct vertices v1, v2 ∈ V their unit disks are separated by ϵ, i. e.

dist(fE(v1), fE(v2)) ≥ ϵ

2. For every pair of distinct edges e1, e2 ∈ E, their polygon lines are separated by ϵ, i. e.

dist(gE(e1), gE(e2)) ≥ ϵ

3. For every edge e ∈ E and for every vertex v ∈ V not incident to e, the unit disk of v and the
polygon line of e is separated by ϵ, i. e.

dist(fE(v), gE(e)) ≥ ϵ

4. For every edge e ∈ E and for every vertex v ∈ V incident to e, the unit disk of v and the
the polygon line of e will touch exactly in the point p, where p is one of the endpoints of the
polygon line of e, i. e.

fE(v) ∩ gE(e) = {p}

In simple terms the first condition says that no two vertices should be drawn intersecting in the
plane, the second that no edges should cross in the drawing, and the last two that an edge should
touch only the unit disks of its endpoints in the drawing.

Note that the definition of a plane embedding is tailored to our use later in the thesis, and might
look a bit different from the standard way of defining it. Very often in the literature, vertices maps
to points in the plane, and edges to straight lines or curves. It is however possible to show that these
definitions are equivalent, but we’ll omit the proofs, and refer to Mohar and Thomassen[22] for the
standard way of defining graphs on surfaces.

Definition 1.38 (Planar graph). A graph is planar if it has a plane embedding.

Definition 1.39 (Plane graph). A plane graph G is a graph G together with a plane embedding
E of G: G = (G, E).
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Definition 1.40 (Drawing of plane graph). Let G = (V,E) be a planar graph, and E = (UE ,PE , fE , gE)
an embedding of G. The set of points E(G) = (

∪
v∈V

fE(v)) ∪ (
∪

e∈E

gE(e)) is called the drawing of G.

Definition 1.41 (Plane supergraph). Let G = (G, E) be a plane graph. A plane supergraph of G
is a supergraph G′ of G and an embedding E ′ of G′ such that for all u ∈ V (G), fE(u) = fE′(u) and
for all e ∈ E(G), gE(e) = gE′(e).

Definition 1.42 (Face in plane graph). The faces of a plane graph (G, E) are the maximal
connected sets of points of R2 \ E(G).

The infinite face of a plane graph is called the external face or outer face.

Definition 1.43 (Vertex incident to face). Let G be a graph with plane embedding E = (UE ,PE , fE , gE),
and let f be a face in this graph. A vertex v ∈ E is incident to the face f if dist(f, fE(v)) = 0.

Definition 1.44 (Edge incident to face). Let G be a graph with plane embedding E = (UE ,PE , fE , gE),
and let f be a face in this graph. An edge e ∈ E is incident to the face f if dist(f, gE(e)) = 0.

Observe that an edge can be incident to at most two faces.

Definition 1.45 (Size of face). The size of a face f in a plane graph is |f | =
∑
e∈E

wf (e), where

wf (e) =


0, if e not incident to f

1, if e is incident to f and some face other than f

2, otherwise

Observe that each edge in the graph will contribute 2 to the sum of the size of all faces in the graph,
and we have that ∑

f∈F

|f | = 2|E|

where F is the set of faces in the embedding.

A well-known theorem that will be useful is the following.

Theorem 1.46 (Euler’s formula [3, Thm 3.7]). Let (G = (V,E), E) be a connected plane graph, and
let F be the set of faces in the embedding. We have that

|V | + |F | − |E| = 2

Using the above theorem we can derive another useful one:

Theorem 1.47 (Bipartite Planar Graph Lemma). Let G be a simple planar graph with bipartition
(A,B) where ∀b ∈ B, deg(b) ≥ 3. Then |B| ≤ 2|A|.

Proof. Let n = |V (G)| = |A| + |B| be the number of vertices, let m = |E| ≥ 3|B| be the number
of edges, and let f = |F | be the number of faces in G. Since the graph is simple and bipartite,
a face in the graph must have a size of at least 4, meaning 4 · f ≤ 2m or f ≤ m

2 . Using this
together with Euler’s formula yields: m = n + f − 2 ≤ n + m

2 − 2 or m ≤ 2n. From before we have
3|B| ≤ m ≤ 2n = 2|A| + 2|B| =⇒ |B| ≤ 2|A|.

The famous theorem of Kuratowski says that a graph is planar if and only if it doesn’t contain a
subdivision of the clique on 5 vertices, K5, or the complete bipartite graph K3,3 as a subgraph. We
won’t define subdivisions here, and refer to Anderson[3] for this. The important fact is that this
makes planarity checking relatively easy, and a number of efficient algorithms for checking planarity
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exist[16, 5]. This will be useful for us when we later want to generate many planar graphs on a
computer, as we efficiently can check whether the generated graphs are planar.

A theorem we will use later is one very similar to Kuratowski’s, regarding outerplanarity :

Definition 1.48 (Outerplanar graph). A graph is outerplanar if it is has a plane embedding where
every vertex is incident to the external face.

Theorem 1.49. A graph G is outerplanar if and only if it has no subdivision of K4 or K2,3 as a
subgraph.

We refer to Diestel[10] for the proof.

1.2.5 Decision Problems

Definition 1.50 (Decision Problem). A decision problem L is a subset L ⊆ Σ∗, where Σ is a
fixed size alphabet, and Σ∗ denotes the the set of all finite strings over Σ. A decision problem is also
called a language.

Given an instance I ∈ Σ∗, what we want an algorithm to do is to decide whether I ∈ L or I ̸∈ L.

Definition 1.51 (Yes/no instances). Let L ⊆ Σ∗ be a language. An instance I1 ⊆ Σ∗ such that
I1 ∈ L is called a yes instance of L. An instance I2 ⊆ Σ∗ such that I2 ̸∈ L is called a no instance
of L.

In other words, an algorithm that solves a decision problem P will for a given instance I output yes
if I ∈ P and no otherwise.

Definition 1.52 (Instance size). The size of an instance I ⊆ Σ∗ is |I| · log |Σ|, i. e. the number of
bits needed to encode I.

When dealing with problems on graphs it is more convenient to denote the size of an instance graph
G = (V,E) as |V | + |E|. For general graphs this will be equivalent to Definition 1.52 up to a small
polynomial factor and for planar graphs up to a constant factor[28] . Very often we will only consider
the number of vertices when talking about the size of a graph, and for planar graphs this will again
be equivalent up to a constant factor.

Decision problems are often related to what we call optimization problems, but as we don’t need
that definition for our discussion here, we refer to Sipser[27, p. 393] for more info on this.

1.2.6 Algorithms and Runtime

Definition 1.53 (Big-O notation). Let f : N → N and g : N → N be computable functions. We say
that f is O(g) if f(n) ≤ c · g(n), for some constant c.

This is like saying that f will never get much bigger than g, and is useful for describing runtimes of
algorithms.

Definition 1.54 (Runtime). Let A be an algorithm that determines whether a given instance I is
a yes or no instance to a problem P . Let |I| = n, and let the number of steps A uses to determine
if I ∈ P be bounded by a function f(n). We then say that the runtime of A is O(f(n)).

Algorithms having a runtime O(nc), where c is a constant, we say are polynomial time algorithms.
When we write poly(n) or nO(1) it is equivalent to O(nc). Algorithms having a runtime O(cn) we call
exponential time algorithms. When we talk about efficient algorithms, we are talking about
polynomial time algorithms. Sometimes we’ll write polynomial algorithms and exponential
algorithms, meaning polynomial time and exponential time algorithms.
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1.2.7 Dominating Set

Now let’s turn back to the Dominating Set problem we introduced earlier. We start out by defin-
ing it formally:

Definition 1.55 (Dominating Set). A Dominating Set D of a graph G = (V,E) is a subset of
vertices D ⊆ V such that N [D] = V .

In other words, every vertex in G must either be in D or have a neighbor in D for D to be a
Dominating Set of the graph. The decision problem now becomes

Dominating Set (DS)
Input: Graph G, and integer k.
Question: Is there a Dominating Set D of G of size at most k?

In terms of the definition of decision problems (Definition 1.50), this means we have a language
Dominating Set where every yes instance is of the form (G, k), where G is a graph having a
Dominating Set of size at most k.

We will often call the vertices in a given dominating set of G for dominators.

The problem statement is pretty straightforward, but to find the solution in the general case is
known to be hard. Dominating Set is one of the fundamental NP-complete problems. We’ll have
a look at what that means in the next section.

1.2.8 Efficient Algorithms and NP-hardness

When we design an algorithm we would naturally like it to be as fast, or efficient, as possible. We
don’t want to wait forever for the algorithm to output an answer to our question. In complexity
theory, algorithms with a polynomial runtime is usually considered efficient. Algorithms with an
exponential runtime are less desirable. The running time of these exponential algorithms increases
very fast when the input size is increased.

Decision problems for which there exist polynomial time algorithms we say are in the complexity
class P. All decision problems for which we can in polynomial time check if a given solution to the
problem is valid or not, we say are in the class NP. Note that all problems in P are also in NP, but
not necessarily the other way around. And some problems can be shown to be NP-hard, meaning
that all problems in NP can be reduced to them [27, p. 304]. That is, if you can find an efficient
algorithm for these problems, then all problems in NP can be solved efficiently. If such an NP-hard
problem itself is in NP, it is called NP-complete and is considered among the hardest problems in
NP. It is believed, but not proven, that P ̸= NP, and therefore that these NP-complete problems
only have exponential time algorithms. For more on this, see Sipser[27].

1.2.9 Coping with NP-hardness

Even though we might have given up on finding polynomial time algorithms for NP-hard problems,
we still want to solve them as fast as possible. Many of the NP-hard problems have a lot of practical
applications (as the fire stations example for the Dominating Set problem), and we would like
to be able to handle instances with special properties, or when the solution size in question (the
parameter k) is small. Approximation algorithms that run in polynomial time is a common way of
finding an answer that might be ”good enough” in many practical cases. Next, we will look at one
class of problems that can be solved quite efficiently when the parameter to the problem is small.
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The parameter is a relevant secondary measurement k to the instance size, and for these problems
we can find algorithms where the exponential factor no longer depends on n, but rather on k.
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Chapter 2

Fixed Parameter Tractability and Ker-
nelization

In the field of Parameterized Complexity we describe the running time of an algorithm in terms of
a parameter to the problem, in addition to the size of a problem instance. We get the following
definitions from Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk and Saurabh [8]:

Definition 2.1 (Parameterized problem). [8, Def 1.1] A parameterized problem is a language
L ⊆ Σ∗ × N, where Σ is a fixed size alphabet. Given an instance (x, k) ∈ Σ∗ × N, k is called the
parameter of the instance.

Definition 2.2 (Instance size). The size of an instance (x, k) of a parameterized problem is
|(x, k)| = |x| + k.

Definition 2.3 (Fixed Parameter Tractable problem). [8, Def 1.2] Let L be a parameterized problem,
and (x, k) ∈ Σ∗ × N. L is called Fixed Parameter Tractable (FPT) if there exists a computable
function f : N → N, a constant c, and an algorithm that can determine if (x, k) ∈ L in time bounded
by f(k) · |(x, k)|c.

Observe that we give no bound on how fast the function f(k) can grow, and it will in most cases be
an exponential function. The upside is that the function is exponential in the parameter k, which
very often can be small, while the total runtime is polynomial in n.

Analogous to the classes P and NP, the class of problems that are Fixed Parameter Tractable is
called FPT. In the next section we will present a simple algorithm for the problem Vertex Cover
that runs in FPT time.

2.1 Fixed Parameter Tractable Algorithm for Vertex Cover

Vertex Cover is an example of a problem that is known to be FPT, and actually can be solved
quite efficiently if the parameter is small.

Definition 2.4 (Vertex Cover). A Vertex Cover S of a graph G = (V,E) is a subset of vertices
S ⊆ V s.t. G− S has no edges.
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Vertex Cover (VC)
Input: Graph G, and integer k.
Question: Is there a Vertex Cover S of G of size at most k?

The Vertex Cover problem is known to be NP-hard [18], but luckily it is also known to be Fixed
Parameter Tractable. We’ll now show a simple FPT algorithm for determining the answer to the
VC decision problem.

The one key observation we need for the algorithm is this:

Observation 2.5. For any vertex cover of a graph G, and for every edge of G, at least one of its
endpoints must be in the vertex cover.

Figure 2.1: At least one of the red edge’s endpoints must be in the vertex cover, so we try both
choices.

This is the basic idea behind Algorithm 2.1.

Algorithm 2.1 Fixed Parameter Tractable algorithm forVertex Cover

Input: Graph G and integer k ∈ N.
Output: yes if G has a vertex cover of size ≤ k, no otherwise.

1: procedure solveV C(G, k)
2: if E(G) = ∅ then
3: return yes
4: else if k = 0 then
5: return no
6: else
7: Pick any (u, v) ∈ E(G)
8: return solveV C(G− u, k − 1) ∨ solveV C(G− v, k − 1)
9: end if

10: end procedure

As we can see, the algorithm picks any remaining edge in graph G of instance (G, k), and tries to
remove one of it’s endpoints, obtaining the graph G′. The resulting instance (G′, k − 1) is smaller,
so it recursively invokes itself on this instance. If this call finds a solution to (G′, k − 1), we know
there’s also a solution to (G, k). If it is not, the algorithm tries removing the other endpoint instead,
and if it again fails to find a solution, it can conclude there’s no solution to (G, k).

We can find the runtime of the algorithm by observing that in the worst case every invocation will
branch into two new invocations. Since we for every invocation decrease the parameter by 1, the
recursion tree can become at most k levels deep. The rest of the work is all polynomial, and the
resulting runtime is 2knO(1), which is on the form f(k) · poly(n) and hence is FPT.
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2.2 Kernels

Kernelization is a technique that leads to FPT running times for parameterized problems. Here a
given input instance is reduced to an equivalent instance having a size bounded by the given para-
meter. The following definitions are adapted from Cygan et al[8, 2.1].

Definition 2.6 (Equivalent instances). Let L be a parameterized problem. Two instances (x, k), (x′, k′) ∈
Σ∗ × N are called equivalent if (x, k) ∈ L ⇐⇒ (x′, k′) ∈ L.

A preprocessing algorithm is an algorithm that given an instance (I, k) to a problem modifies this
instance and output an equivalent instance (I ′, k′).

Definition 2.7 (Output size of preprocessing algorithm). The size of the output from a preprocessing
algorithm A is a function sizeA : N → N ∪∞:

sizeA(k) = sup{|I ′| + k′ : (I ′, k′) = A(I, k), I ∈ Σ∗}

In other words we look at all possible instances with fixed parameter k to the algorithm, and measure
the output size as the size of the largest output. The size is considered infinite if the size cannot be
bounded by a function of k.

Definition 2.8 (Kernalization algorithm, kernel). Let L be a parameterized problem. A kerneliza-
tion algorithm, or simply a kernel, is an algorithm A that takes as input a problem instance (I, k)
of L, and in polynomial time creates a new equivalent instance (I ′, k′) such that |(I ′, k′)| ≤ f(k),
where f : N → N is a computable function not dependent on |I|. sizeA(k) is called the size of the
kernel.

Such kernelization algorithms very often proceed by applying reduction rules to the input instance.
An example in our fire station case could be a town with no roads to neighboring towns. Of course
we would have to put a fire station in this town, so we could ignore that town and decrease the
number of fire stations to put by 1, resulting in an equivalent, smaller instance. Another simple
observation is shown in Figure 2.2, where a town having at least one neighbor of degree 1, always
is a good choice for a dominator. Therefore it is safe to remove all but one of these degree 1 towns
from the instance.

Figure 2.2: The degree 1 vertices forces the green vertex to be in a good dominating set. This is
regardless of how many such degree 1 vertices there are, and we can remove all but one.

A problem having a kernelization algorithm is equivalent to the problem being fixed-parameter
tractable, as the next two lemmas will show.
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Lemma 2.9. If a parameterized problem P is decidable and admits a kernel, then it can be solved
in FPT time.

Proof. Assume P is decidable in time g(n) by using some algorithm A, and let (x, k) be an instance of
size n to P . Apply the polynomial time kernelization algorithm that outputs an equivalent instance
(x′, k′) having a size bounded by some f(k). We can now apply A, which in time O(g(f(k))) =
O(f ′(k)) outputs an answer to the equivalent instance, and hence to the original instance. The total
runtime is O(f ′(k) + poly(n)), which is FPT.

Using this approach we can find FPT algorithms for all problems that have a kernelization algorithm.
Surprisingly, the converse is also true:

Lemma 2.10. If a parameterized problem P is solvable in FPT time, then it admits a kernel.

The proof of Lemma 2.10 is out of scope and not necessary for this discussion, so we refer to Cygan
et al.[8]. The two lemmas together gives us the following useful theorem.

Theorem 2.11. A problem P is FPT if and only if it admits a kernel.

The size of the kernel is important when we want to achieve efficient algorithms for solving a problem.
If we can bound the size of the kernel to some linear function f(k) = O(k), we say that the problem
admits a linear kernel. Similarly, if we can bound the size to some polynomial function g(k) = O(kc)
for some constant c, we say the problem admits a polynomial kernel. Some problems are harder
to find small kernels for, and we might not be able to find any kernels better that exponential ones,

h(k) = 2O(k), or even an exponential tower, i(k) = 22
···2

O(k)

. The goal for any problem is to find as
small kernels as possible.

2.2.1 Reduction Rules

A kernelization very often invoke small, polynomial time subroutines called reduction rules. We
will use these several times throughout the thesis. The following definitions are from Cygan et al.[8,
p.18].

Definition 2.12 (Reduction rule). A reduction rule is a function ϕ : Σ∗×N → Σ∗×N that maps
an instance (x, k) to an equivalent instance (x′, k′) such that ϕ is computable in time polynomial in
|x| and k.

Definition 2.13 (Soundness of rule). The property of a reduction rule that it translates an instance
to an equivalent one, is called the soundness of the rule.

When we create reduction rules, we will also prove their soundness, that is to show that the rules
will produce equivalent instances.
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Part II

A Linear Kernel for Planar
Dominating Set
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Chapter 3

Planar Dominating Set

We know Dominating Set is an NP-complete problem, so the next natural question to ask might
be if it is FPT. In the general case it’s unlikely to be, as that would imply a complexity theoretic
result considered almost as unlikely as P = NP. We refer to Cygan et al.[8, ch.13] for more on this.
But on planar graphs it is known to be FPT. It even admits a linear kernel.

In [2] Alber, Fellows & Niedermeier introduced the novel technique of Region Decomposition for
giving kernels for problems on planar graphs. Using a set of reduction rules and this technique they
achieved a kernel for Planar Dominating Set with 335k vertices. Later Chen, Fernau, Kanj, and
Xia[6] improved on the reduction rules by Alber et al., and were able to show a kernel upper bounded
by 67k, which is the current smallest kernel known for this problem. In the following section we give
definitions that classify the vertices inside the neighborhood of a vertex, as this is something we will
make use of frequently.

3.1 Neighborhood of a Vertex

The following definitions are adopted from Alber et al.[2], and we will use them throughout the
paper. Let G = (V,E) be a graph.

Definition 3.1 (Neighborhood of a vertex). Let v ∈ V . We divide the neighborhood of v into 3
disjoint sets:

• N1(v) = {u ∈ N(v) | N(u) \N [v] ̸= ∅}

• N2(v) = {u ∈ N(v) \N1(v) | N(u) ∩N1(v) ̸= ∅}

• N3(v) = N(v) \ (N1(v) ∪N2(v)))

In other words, the vertices N1(v) ⊆ N(v) are those vertices having at least one neighbor outside the
neighborhood of v, N2(v) ⊆ N(v) are those having at least one neighbor in N1(v), and N3(v) ⊆ N(v)
are the rest of v’s neighbors.
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v

Figure 3.1: The neighborhood of a vertex v. Vertices from N1(v) are colored green, N2(v) are colored
red, and N3(v) are colored blue.

3.2 Reduction Rules

Alber et al introduced two reduction rules in their paper. We won’t need them in our discussion, so
we refer to their paper for a description and proof of soundness [2, Rule 1, Rule 2].

However, we present two simple reduction rules here, inspired by their first rule. Let G = (V,E):

Reduction Rule 3.1. Let x, y ∈ N2(v)∪N3(v) for some vertex v ∈ V and (x, y) ∈ E, then remove
the edge (x, y).

v

x

y

v

x

y

Figure 3.2: We can make N2(v) ∪N3(v) vertices independent.

In this situation v is obviously a better choice for dominating the vertices in its neighborhood than
x and y. This is why we can remove the edge between x and y, since none of them will be chosen
as dominators. We now prove the soundness of this rule.

Lemma 3.2. Reduction Rule 3.1 is sound.

Proof. Let D be a dominating set of size k in G, and let G′ be the graph obtained after performing the
reduction rule. By the definition of N2(v) and N3(v), we know that N [x] ⊆ N [v] and N [y] ⊆ N [v],
and hence v would always be a dominator at least as good as either of x, y. Therefore we can safely
assume that neither x nor y is in D. Now D is also a dominating set of size k in G′.

For the other direction, let D′ be a dominating set of size k in G′. D′ will also be a dominating set
of size k in G, since adding an edge to the graph cannot make D′ non-dominating.
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Reduction Rule 3.1 makes N2(v)∪N3(v) an independent set, which us useful for later analysis. Also
note that the rule can be carried out in polynomial time.

Reduction Rule 3.2. Let x, y ∈ N2(v) ∪ N3(v) for some vertex v ∈ V and N(x) ⊂ N(y), then
remove y from the graph.

v

x

y

v

x

Figure 3.3: We can make remove vertices from N2(v) ∪N3(v) that only serve the function of being
dominated.

The intuition behind Rule 3.2 is that none of x, y will be useful as dominators, and therefore that
the only way they affect the size of the dominating set is that they need to be dominated. But since
y is dominated the moment x is, we can remove y.

Lemma 3.3. Reduction Rule 3.2 is sound.

Proof. Let D be a dominating set of size k in G, and let G′ be the graph obtained after performing
the reduction rule. We can assume (see the proof of Lemma 3.3) that neither x nor y is in D. Now
D is also a dominating set of size k in G′.

For the other direction, let D′ be a dominating set of size k in G′. D′ will dominate x, and since
N [x] ⊆ N [v], we can assume x ̸∈ D′ (if it was, putting v in instead would be at least as good). In
G we know that N(x) ⊆ N(y), and D′ will also be a dominating set of size k in G.

The effect of the two reduction rules is that N2(v) ∪N3(v) will be independent, and that no vertex
from this set will have a neighborhood that is a superset of another vertex’ from the set. Note that
in the case we have at least one N3(v) vertex, Rule 3.1 will reduce this to a degree 1 vertex, and any
other vertex from the N2(v) ∪N3(v) will be removed by Rule 3.2.

3.3 Regions and Region Decomposition as Treated by Alber
et al.

After performing the reduction rules on the input instance, we want to upper bound the size of
the resulting, equivalent, instance. This is where Region Decomposition comes in, by dividing
the graph into several regions and then upper bounding the number of vertices outside the regions,
upper bounding the number of such regions, and at last upper bounding the number of vertices
inside such a region.

In this section we will describe regions and region decomposition as defined by Alber et al. [2], and
point out the problem with these definitions. This should give an insight into why we want to redefine
these concepts, and which special cases we must make sure to handle in our new definitions.
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Given a reduced graph G, let k = |D| be the size of a Dominating Set D in this graph. Alber et al.
define Regions and Region Decomposition as follows:

Definition 3.4 ([2, Definition 2]). Let G = (V,E) be a plane graph. A region R(v, w) between two
vertices v, w is a closed subset of the plane with the following properties:

1. the boundary of R(v, w) is formed by two simple paths P1 and P2 in V which connect v and w,
and the length of each path is at most three (edges), and

2. all vertices which are strictly inside (i. e. lying in the region, but not sitting on the boundary)
the region R(v, w) are from N(v, w).

For a region R = R(v, w), let V (R) denote the vertices belonging to R, i. e.,

V (R) := {u ∈ V | u sits inside or on the boundary of R}

Definition 3.5 ([2, Definition 3]). Let G = (V,E) be a plane graph and D ⊆ V . A D-region
decomposition of G is a set R of regions between pairs of vertices in D such that

1. for R(v, w) ∈ R no vertex from D (except for v, w) lies in V (R(v, w)) and

2. no two regions R1, R2 ∈ R do intersect (however, they may touch each other by having common
boundaries).

For a D-region decomposition R we define V (R) :=
∪

R∈R V (R). A D-region decomposition is called
maximal if there is no region R ̸∈ R such that R′ := R ∪ {R} is a D-region decomposition with
V (R) ⊊ V (R′).

Definition 3.6 ([2, Definition 4]). The induced graph GR = (VR, ER) of a D-region decomposition
R of G is the graph with possible multiple edges which is defined by VR := D and ER := {{v, w} |
there is a region R(v, w) ∈ R between v, w ∈ D}.

Proposition 3.7 ([2, Proposition 1]). For a reduced plane graph G with dominating set D, there
exists a maximal D-region decomposition R such that GR is thin.

We don’t state their definition of thin here, but for a graph to be thin, it has to be planar, among
other things.

Alber et al. also show how to find such a maximal D-region decomposition of a plane graph, and they
use this together with Definition 3.6 and Proposition 3.7 to prove that such a decomposition will
have at most 3k regions. This require the decomposition graph GR to be planar, if not Proposition
3.7 would not hold. For GR to be planar, two regions can not be allowed to cross in the region
decomposition, that is their drawing in the plane can’t cross. This must also hold even when both
are degenerated. Here a degenerated region R(v, w) means a region where the paths P1 and P2

share at least one common vertex in addition to v, w.

Together with proofs bounding the number of vertices inside and outside of regions in a maximal
D-region decomposition, this gives rise to a kernel of linear size.

However, there is a problem with the proof bounding the number of vertices outside regions. In the
proof of [2, Lemma 6], the authors use that there are no crossing regions in a region decomposition
to prove that all vertices from N1(v) are inside regions. But to accomplish this they say that for
the degenerated region R = {v, u, u′, w} to cross in R without u already being in a region, the edge
{u′, w} must cross a region R(x, y) ∈ R, which implies that w is on the boundary or inside the
crossing region. But consider the case where R(x, y) is the degenerated region {x, u′, y}, as shown
in Figure 3.4. From Definition 3.5 it is hard to extract whether two such degenerated regions are
considered crossing in this case. If we consider them crossing then R(x, y) can cross R without w
being inside or on the boundary of R(x, y), making the proof of [2, Lemma 6] invalid. If the regions
are not considered crossing then the decomposition graph from Definition 3.6 is no longer planar,
which is crucial for Proposition 3.7.
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v

u

u′

w

x

y

Figure 3.4: The degenerated region R(x, y) can cross the degenerated region R(v, w) without w
being on the boundary of R(x, y).

We will show that their decomposition of the graph into regions is correct up to minor modifications.
These modifications are inconsequential for the use of the decomposition for later proofs. This means
that the kernel size eventually obtained by Alber et al. is correct, which we will conclude in the next
chapters.
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Chapter 4

Decomposing the Graph

We will now make new definitions necessary for the discussion to follow. In Chapter 5 we will show
that minor modifications to the theorems stated by Alber et al. are sufficient to resolve the errors
in the proofs as discussed in Chapter 3. In Chapter 6 we will further lower the kernel size upper
bound of Chen et al.[6] by an improved analysis.

4.1 Edges in Plane Embeddings

Definition 4.1 (Edge distance). Let (G, E) be a plane graph, let v ∈ V (G), and e1, e2 ∈ E(G) be
two edges both incident to v. Starting from the point where the polygon line of e1 intersects the unit
disk of v in the embedding, move clockwise along the disk. Let k be the number of polygon lines
encountered before encountering the polygon line of e2. Do the same, now starting from e2 instead,
let l be the number of polygon lines encountered before encountering e1. The edge distance with
respect to v of the two edges e1, e2, is denoted distv(e1, e2) = min(k, l).

a

bu

Figure 4.1: The edge distance of edges a and b with respect to u is 1.

Definition 4.2 (Consecutive edges). Edges having an edge distance of 0 with respect to v ∈ V , are
said to be consecutive at v.

a

ce

d

b

u

Figure 4.2: Consecutive pairs of edges at u are (a, b), (b, c), (c, d), (d, e) and (e, a).
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Definition 4.3 (Parallel edges). We say that two edges e1, en ∈ E between vertices v, w ∈ V (G) in
a multigraph G are parallel if there exists a sequence of edges e1, . . . , en such that ei and ei+1 are
consecutive at both u and v for all i ∈ {1, . . . , n− 1}.

v1

v2

Figure 4.3: The red edges are parallel edges. So are the blue edges. Observe that the green edge is
not parallel to the red edges since they are not consecutive at v2.

4.2 Walks in Plane Embeddings

In the following definitions, let (G = (V,E), E = (U ,P, f, g)) be a plane graph.

Definition 4.4 (Join of edges). Let e1, e2 ∈ E be two edges both incident to the vertex v ∈ V , and
let a = f(v) ∩ g(e1), b = f(v) ∩ g(e2) be the two points where the edges intersect with the vertex in
the embedding. The join of e1 and e2 at v, is the linesegment L(a, b). We write join(e1, v, e2)

a
b

e1

e2

v a
b

Figure 4.4: Edges e1 and e2 are both incident to some vertex v, and intersect with the unit disk of
v in points a and b, marked with red on the left figure. join(e1, v, e2) is the linesegment between a
and b, colored in red on the right figure.

Definition 4.5 (Drawing of walk). Let W = (v1, e1, v2, e2, . . . , vk, ek, vk+1) be a walk in G. We
obtain the drawing of W , denoted draw(W ), by taking the union of the points in g(e) for every
e ∈ {e1, . . . , ek}, together with the join of every ei, ei+1 at vi+1, i. e.

draw(W ) = g(e1)
∪

i∈{2,...,k}

(
g(ei) ∪ join(ei−1, vi, ei)

)
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Figure 4.5: A graph (left), and a walk in this graph shown in red (right).

Definition 4.6 (Crossing walks). We say that two walks W1,W2 in G cross if draw(W1) ∩
draw(W2) ̸= ∅.

Definition 4.7 (Simple cyclic walk). A simple cyclic walk C is a cyclic walk W = (v1, e1, . . . , vk, ek, v1)
in a plane graph such draw(C) = draw(W )∪join(e1, v1, ek) is a simple polygon. We refer to draw(C)
as the drawing of C.

Since we will only care about simple cyclic walks, we will often just refer to them as cyclic walks.

Definition 4.8 (Interior of a cyclic walk). Let C be a cyclic walk in a plane graph. The interior face
of draw(C) is called the interior of the cyclic walk, while the exterior face is called the exterior
of the cyclic walk.

Definition 4.9 (Vertices in a cyclic walk). The vertices represented by unit disks being strictly in
the interior of a cyclic walk, are called internal vertices of the walk. The vertices represented by
unit disks being strictly in the exterior of a cyclic walk, are called external vertices. The rest,
having their unit disks intersect with the drawing of the walk, are called vertices on the walk.

Observe that by Definition 4.9, the vertices on the walk C = (v1, e1, . . . , vk, ek, v1) are exactly the
vertices {v1, . . . , vk}.
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ha

bc

d

e

f g

Figure 4.6: The drawing of a cyclic walk shown in red. h is the only internal vertex of the walk,
while f is the only external vertex. a, b, c, d, e, g are vertices on the walk.

Definition 4.10 (Area of cyclic walk). The area of a cyclic walk C, denoted area(C) is the
union of the points on the walk and all points in the interior.

Definition 4.11 (Crossing cyclic walks). We say that two cyclic walks C1, C2 cross if their areas
intersect, i. e. area(C1) ∩ area(C2) ̸= ∅.

ha

bc

d

e

f g

Figure 4.7: The two cyclic walks shown in red and yellow cross since their areas intersect.

Definition 4.12 (Cross at vertex). We say that two cyclic walks C1, C2 cross at a vertex v if
draw(C1) ∩ draw(C2) ∩ f(v) ̸= ∅.

Definition 4.13 (Cross at edge). We say that two cyclic walks C1, C2 cross at an edge e if
draw(C1) ∩ draw(C2) ∩ g(e) ̸= ∅.

We will use the next well-known fact without proof:

Fact 4.14. Let P1 and P2 be two simple polygons, and let A1 and A2 be their interior faces, respec-
tively. If A1 ∩A2 ̸= ∅, then P1 ∩ P2 ̸= ∅.

Lemma 4.15. Let C1, C2 be two cyclic walks that cross. Then, either
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• area(C1) ⊆ area(C2)

• area(C2) ⊆ area(C1)

• C1 and C2 cross at some vertex v

Proof. Since C1 and C2 cross, then by definition area(C1)∩area(C2) ̸= ∅. This can happen if either
cycle’s area is the subset of the other, as in the first two cases. For the third case, assume that
neither of the first two cases apply. In that case we must have draw(C1) ∩ draw(C2) ̸= ∅ by Fact
4.14, which means they either cross at an edge, or cross at some vertex. Assume that they cross
at an edge e = (v1, v2). Then by definition of a cyclic walk, v1 and v2 will be vertices on both
walks, and the two walks will cross at a point in both of these vertices, namely g(e) ∩ f(v1) and
g(e) ∩ f(v2).

Observation 4.16. If area(C1) ∩ area(C2) ∩ g(e) ̸= ∅, where C1 and C2 are cyclic walks and
e = (v1, v2), then area(C1) ∩ area(C2) ∩ f(v1) ̸= ∅ and area(C1) ∩ area(C2) ∩ f(v2) ̸= ∅ as well.

Lemma 4.17. Let C1 = (v1, e1, . . . , vi, ei, vi+1, ei+1, vi . . . , vk, ek, v1) and C2 be cyclic walks such
that ei and ei+1 are parallel edges going between vi and vi+1, and C1 and C2 don’t cross at vi. Then
C1 and C2 cannot cross at vi+1.

Proof. Since C1 and C2 don’t cross at vi, area(C1)∩area(C2)∩g(ei) = ∅ and area(C1)∩area(C2)∩
g(ei+1) = ∅. By Observation 4.16 this means that for C1 and C2 to cross at vi+1, J = join(ei, vi+1, ei+1)
would need to cross C2 at vi+1. For this to happen there would need to exist a join J ′ =
join(e′1, vi+1, e

′
2) s.t. J ′ ∩ J ̸= ∅, where e′1 ̸= ei, e

′
2 ̸= ei, e

′
1 ̸= ei+1, e

′
2 ̸= ei+1. Let the lineseg-

ments representing the joins be L(a, b) = J and L(a′, b′) = J ′. For J ′ to intersect J , a′ and b′ would
need to separate a and b on the border of f(vi+1), which contradicts that ei and ei+1 are consecutive,
see Figure 4.8.

ei

ei+1vi vi+1
Figure 4.8: Two joins crossing contradicts that ei and ei+1 is consecutive at vi+1.

Definition 4.18 (Concatenation of simple walks). Let W1 = (v11 , e
1
1, . . . , e

1
k−1, v

1
k) and W2 =

(v21 , e
2
1, . . . , e

2
l−1, v

2
l ) be two simple walks in G such that draw(W1) ∩ draw(W2) = ∅, and v11 = v21

and v1k = v2l . We say the concatenation of W1 and W2 is the cyclic walk having the drawing
draw(W1) ∪ draw(W2) ∪ join(e11, v

1
1 , e

2
1) ∪ join(e1k−1, v

1
k, e

2
l−1).
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Figure 4.9: Concatenation of two simple walks that results in a cyclic walk.

4.3 Regions

Definition 4.19 (Region). Let (G, E) be a plane graph, and let v, w ∈ V (G) be two vertices in G.
A region R = R(v, w) between v and w is defined by two simple, non-crossing walks W1,W2 of
length at most 3 between v and w, and a set V (R) ⊆ V (G) such that

• The concatenation CR of W1 and W2 is a simple cyclic walk

• The vertices on CR are denoted δ(R)

• The internal vertices of CR are denoted I(R)

• V (R) = I(R) ∪ δ(R) \ {v, w}

• V (R) ⊆ N(v, w)

CR is called the boundary of R. δ(R) are the boundary vertices of R. I(R) are called the
internal vertices of R. V (R) are called the vertices belonging to R. v, w are called the
endpoints of the region.

Notice that the two walks W1,W2 uniquely define which vertices are in δ(R) and I(R), and hence
V (R).

v

w

Figure 4.10: The region R = R(v, w) has the endpoints v and w. The vertices δ(R) \ {v, w} are
colored blue, and the internal vertices I(R) yellow. These five vertices define the set V (R).

Definition 4.20 (Area of a region). The area of a region R, area(R), is the area of its boundary,
area(CR).

Definition 4.21 (Crossing regions). We say that two regions R1, R2 cross if their areas intersect,
that is area(R1) ∩ area(R2) ̸= ∅.
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Since the area of a region is defined by its cyclic walk, we will use Definition 4.12, Definition 4.13,
Lemma 4.15 and Lemma 4.17 on regions later, referring to their boundary.

By definition, regions as those seen Figure 4.11a will be considered crossing. That is also the case
for Figure 4.11b, as the two regions share an edge. However, in the latter case we would like regions
to be able to ”touch” each other in this way without crossing, without allowing the regions in a) to
do that. This is the motivation for introducing graph enrichments, which we will look at in the
following section.

Figure 4.11: Crossing regions a) and b).

4.4 Graph Enrichment

Definition 4.22 (Copying an edge). Having a plane multigraph G = (G = (V,E), E), we define
copying an edge e ∈ E as the operation of adding a new edge e′ to the graph, such that e and e′

are parallel. When copying the edge e ∈ E to e′, we set ϵ′ = ϵ/2, and G′ = (V,E ∪ {e′}) can have
the same embedding as G, only adding the polygon line of e′ in a distance ϵ′ from the polygon line of
e. The result is a new plane graph G′ = (G′, E ′) being structurally equal to G, but having one extra
edge.

Definition 4.23 (Graph enrichment). Let G be a plane graph. We call the graph Ge an enrichment
of G if it can be obtained from G only using the operation of copying edges.

G Ge

Figure 4.12: Ge is an enrichment of G.

4.5 Region Decomposition

With the concept of graph enrichments in place, we can define a region decomposition of a plane
graph.

33



Definition 4.24 (D-region decomposition). A D-region decomposition of a plane graph G = (G, E)
is pair (Ge,R), where Ge = (Ge, Ee) is an enrichment of (G, E), and R is a set of regions in Ge

between pairs of vertices in D ⊆ V (Ge) such that

1. for every R ∈ R no vertex from D is in V (R)

2. no two regions R1, R2 ∈ R cross in Ge.

We say that R is realized on Ge.

Definition 4.25 (Vertices in regions). For a D-region decomposition (Ge,R), we denote the vertices
in regions as the set V (R) =

∪
R∈R V (R). We also say that R covers the vertices V (R).

Figure 4.13: For a plane graph and a subset D of its vertices a possible D-region decomposition
is pictured. The vertices of D are colored green, and the colors show the five chosen regions with
boundary and area colored. Note that the decomposition is realized on an enrichment of G.

We will now show that a D-region decomposition (Ge,R) of a plane graph (G, E) gives rise to a
planar graph GR in a natural way.

Definition 4.26. For a given D-region decomposition (Ge,R) of the plane graph (G = (V,E), E),
let

VR = D

ER = {(v, w) | there is a region R(v, w) ∈ R between v, w ∈ D}

The graph GR = (VR, ER) is called the decomposition graph of (Ge,R).

Lemma 4.27. The decomposition graph GR of a D-region decomposition (Ge,R) has a plane em-
bedding ER, thus is planar.

Proof. We construct a plane embedding ER of GR as follows. Look at the embedding of the enrich-
ment Ge = (Ge, Ee) where R is realized. Now draw GR in the plane by letting VR = D have the
same positions as in the drawing of Ge, and draw the edges ER as the drawing of one of the walks
of every region between the endpoints of that region. Since there are no two regions crossing each
other in the D-region decomposition of Ge, the drawing of the edges will not cross, which means
that ER is a plane embedding of GR.
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Figure 4.14: The decomposition graph for the D-region decomposition from Figure 4.13.

Figure 4.14 shows an embedding of the decomposition graph for the D-region decomposition from
Figure 4.13.

Definition 4.28 (Co-areas of a decomposition). Let G = (V,E) be a graph with embedding E, and
let (Ge,R) be a D-region decomposition of (G, E), where Ge = (Ge, Ee = (Ue,Pe, fe, ge). The family A
of inclusion-wise maximal connected point sets in R2\(

∪
d∈D

fE(d)
∪

R∈R
area(R)) is called the co-areas

of the decomposition, and each point set of A is called a co-area.

Note that there is a one-to-one correspondence between the co-areas of a decomposition and the
faces of the decomposition graph, meaning that for each face in the decomposition graph, there is a
co-area in the decomposition, and vice versa.

Definition 4.29. Let A be a co-area in a D-region decomposition (Ge,R) of (G, E). We say that a
vertex v ∈ V (G) is incident to A if dist(A, fE(v)) = 0. We say v is in A if fE(v) ⊆ A.

4.5.1 Maximal Region Decomposition

Definition 4.30 (0-maximal D-region decomposition). A 0-maximal D-region decomposition
is a decomposition (Ge,R) of G such that there does not exist an enrichment G′

e of Ge and a region
R in G′

e s.t. (G′
e,R∪R) is a D-region decomposition covering more vertices than (Ge,R).

Definition 4.31 (Maximal D-region decomposition). A maximal D-region decomposition is a
0-maximal decomposition (Ge,R) of G such that there does not exist an enrichment G′

e of Ge and a
region R in G′

e and two regions R1, R2 ∈ R s.t. R′ = (R \ {R1, R2}) ∪R and (G′
e,R′) is a D-region

decomposition covering at least as many vertices as (Ge,R).

In other words, a D-region decomposition is maximal if one cannot add more regions containing
new vertices, and one cannot find two regions to remove such that one can insert a new region that
covers at least as many vertices.

Lemma 4.32. Given a planar graph G and a set D ⊆ V (G), there exists a maximal D-region
decomposition (not necessarily unique), and we can find it in polynomial time.

Proof. The algorithm will build a D-region decomposition in a greedy way. It picks a pair of vertices
v, w ∈ D and checks if there is a way to make a region between v, w such that it doesn’t cross regions
already found. This can be done in polynomial time by trying every possible pair of two simple,
non-crossing walks of length at most 3 between the two vertices, and checking if the region made
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from these walks can be added to the region decomposition, copying edges if necessary, such that
the number of vertices in regions increases. When this cannot be done anymore, the algorithm will
look at every pair of regions in the decomposition, and check if they can be replaced with a single
region covering at least as many vertices. When neither of these two operations can be performed,
the found D-region decomposition is maximal, by definition.

To bound the number of edges in the decomposition graph of a maximal D-region decomposition
(Ge,R), we will need Definition 1.45 for size of a face in a plane graph together with the following:

Definition 4.33 (Thin graph). A plane graph (G, E) is thin if all the faces in the embedding have
size at least 3.

The next lemma is a strengthening of Lemma 5 from Alber et al [2, Lemma 5].

Lemma 4.34. Let (G = (V,E), E) be a connected, plane, thin graph, and let F be the set of faces
in this graph. We have |E| = 3|V | − 6 −

∑
f∈F (|f | − 3).

Proof. We know that
∑
f∈F

|f | = 2|E|, and since each face in a thin graph has size at least 3, we can

rearrange the sum to become

2|E| =
∑
f∈F

|f | = 3|F | +
∑
f∈F

(|f | − 3)

Further reorganization yields

|F | =
2

3
|E| −

∑
f∈F

(
|f |
3

− 1) (4.1)

We now use Euler’s formula (1.46)

|E| = |V | + |F | − 2

Insert (4.1) to get

|E| = |V | +
2

3
|E| −

∑
f∈F

(
|f |
3

− 1) − 2

|E| = 3|V | − 6 −
∑
f∈F

(|f | − 3)

In particular, we see that in a thin graph we always have |E| ≤ 3|V | − 6

Lemma 4.35. If all faces in a plane graph have size 3, then |F | = 2|V | − 4.

Proof. By Lemma 4.34 we have that

|E| = 3|V | − 6 −
∑
f∈F

(|f | − 3) = 3|V | − 6

if all faces are of size 3. Then by Euler’s formula we have that

|F | = |E| − |V | + 2 = 2|V | − 4
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Theorem 4.36. Let D be a dominating set of the plane graph G, and let (Ge,R) be a maximal
D-region decomposition of G. Then there exists a plane supergraph G′

R of the decomposition graph
GR s.t. G′

R is connected and thin.

Proof. We build G′
R from GR. Let G′

R = GR to begin with. Then as long as G′
R is not connected,

add an edge between two different components without violating planarity.

We claim G′
R is thin. If not, there must be a face f of size ≤ 2 in the graph. Since G′

R cannot have
self-loops, f is of size 2 and is made from two edges between a pair of vertices v, w ∈ D. Note that f
corresponds to a co-area A between two regions R1(v, w), R2(v, w) ∈ R in Ge, because neither of the
two edges could have been added by us connecting the graph. There cannot be another vertex d ∈ D
incident to f , since the graph is connected it would need to be adjacent to v or w, contradicting
that the face had size 2.

v

w

d

f

v

w

d

f

Figure 4.15: If there was a vertex d ∈ D incident to the face between the two edges between v and
w, it would need to be connected to v or w, and the face would have size ≥ 3.

Consider the case where there are no other vertices in the face f in G′
R. Since there are no vertices

in f it means that there’s either no vertices in the corresponding area A of Ge, or that all vertices
in this area are adjacent to v or w (since D is a dominating set, and v, w are the only vertices
from D incident to this face). In either case we see that we could remove R1 and R2, adding one
bigger region covering all their combined vertices together with any vertices in A, contradicting the
maximality of (Ge,R).

R1 R2

v

w

v

w

Figure 4.16: If there is no vertex d ∈ D in the area between two regions between v and w, we can
make a new, bigger region that combines the two and the vertices in the area.

This shows that the resulting graph G′
R is connected and thin, and since we carefully added edges

while still keeping the graph planar it will be a plane supergraph of GR.

Note that all faces in the decomposition graph GR is of size at least 3.

Theorem 4.36 together with Lemma 4.34 gives us the following two corollaries:

Corollary 4.37. The number of edges in GR is upper bounded by 3|V | − 6−
∑

f∈F (|f | − 3), where
F is the set of faces in GR.
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Corollary 4.38. The number of regions in a maximal D-region decompositions R is upper bounded
by 3|D| − 6, that is |R| < 3|D|.

Using the bound on the number of regions in a maximal D-region decomposition, we will in the next
chapter arrive at a linear kernel for Planar Dominating Set.
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Chapter 5

A Linear Kernel

Using the definitions and lemmas from the previous section, we will now prove a lemma correspond-
ing to [2, Lemma 6] of Alber et al., as discussed in Section 3.3.

Lemma 5.1. Let (G, E) be a plane graph with a dominating set D and let (Ge,R) be a maximal
D-region decomposition of G. If u ∈ N1(v) \D for some vertex v ∈ D then u ∈ V (R).

Proof. Let u ∈ N1(v) for some v ∈ D, and assume that u ̸∈ V (R). Since u ∈ N1(v), it must be
adjacent to a vertex u′ ̸∈ N(v). We now have two cases to consider:

• u′ ∈ D. Look at the region R = R(v, u′) created by the two walks W1 = (v, e1, u, e2, u
′) and

W2 = (u′, e′2, u, e
′
1, v) in Ge, using only copied edges such that e1 and e′1 are consecutive at v and

u, and e2 and e′2 are consecutive at u and u′. Note that this implies that R doesn’t cross any
other region at an edge. Since by assumption (Ge,R) is a maximal D-region decomposition, R
cannot be added to the D-region decomposition of some enrichment G′

e of Ge, and hence must
cross a region in R. If not (G′

e,R∪ {R}) would be a D-region decomposition containing more
vertices than (Ge,R), contradicting that (Ge,R) was maximal. Since by assumption u ̸∈ V (R),
no region can cross R at u, and by Lemma 4.17 R cannot cross any other region in v or u′,
since the edges are consecutive. Then by Lemma 4.15 there must be a crossing region R′ such
that area(R′) ⊆ area(R) or area(R) ⊆ area(R′), and this cannot be the case since R and R′

cannot cross at an edge.

v

u

u′

e1 e′1

e2 e′2

Figure 5.1: The only possible reason this region cannot be added to the D-region decomposition is
if it would cross a region in u, but u is not in V (R), a contradiction.

• u′ ̸∈ D. This means that there must be a vertex w ∈ D that dominates u′, where w ̸= v.
Now consider at the region R = R(v, w) created by the walks W1 = (v, e1, u, e2, u

′, e3, w) and
W2 = (w, e′3, u

′, e′2, u, e
′
1, v) in Ge, using only copied edges such that e1 and e′1 are consecutive
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at v and u, e2 and e′2 are consecutive at u and u′, and e3 and e′3 are consecutive at u′ and w.
Again, by assumption R must cross at least one region R′ in (Ge,R). By the assumption that
v ̸∈ V (R), R and R′ don’t cross at u. We claim that R and R′ cross at u′. Suppose not, and
then by Lemma 4.17 they neither cross at v or w, contradicting that R and R′ cross.

v

u

u′

w

e1 e′1

e2 e′2

e3 e′3

Figure 5.2: The region must cross an existing region at u′.

Let R′′ = R(x, y) be the region crossing at u′ that has the edge with the smallest edge distance
to edge e2 = (u, u′). Observe that this is the region crossing at u′ with the smallest edge
distance to e2 both clockwise and counterclockwise. Note that u′ must be adjacent to x
or y since it is in the region R′′. Without loss of generality, u′ is adjacent to x. Assume
x ̸= w and look at the region R∗ = R(v, x) defined by the paths (v, e1, u, e2, u

′, e4, x) and
(x, e′4, u

′, e′2, u, e
′
1, v) in an enrichment G′

e of Ge. This region can be added to R such that
(G′

e,R∪R∗) is a D-region decomposition of G, contradicting the maximality of (Ge,R).

v

u

u′

w

x

e1 e′1

e2 e′2

v

u

u′

w

x

e1 e′1

e2 e′2

e4

e′4

Figure 5.3: If we cannot add R = R(v, w) because of a crossing region R′ = R(x, y), we can add
R∗ = R(v, x) instead.

If x = w we can add parallel edges creating an enrichment G′
e of Ge such that R(v, w) and R′′

do not cross in G′
e, again contradicting the maximality of (Ge,R), see Figure 5.4.
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v

u

u′

w

v

u

u′

w

Figure 5.4: Adding edges to make the regions not cross.

5.1 The Kernel of Alber et al.

Alber et al. introduce two Reduction Rules [2, Rule 1, Rule 2], and in the rest of this section a
reduced graph is a plane graph were neither of the two rules can be applied. Together with our
definition of maximal D-region decompositions we obtain:

Proposition 5.2 ([2, Prop. 2]). Let G = (V,E) be a planar reduced graph and let D be a dominating
set of G. If (Ge,R) is a maximal D-region decomposition of G then |V \ V (R)| ≤ 2|D| + 56|R|.

Proposition 5.3 ([2, Prop. 3]). A region R of a plane reduced graph contains at most 55 vertices,
i.e., |V (R)| ≤ 55.

This leads to the reduced graph G = (V,E) being a linear kernel:

Theorem 5.4 ([2, Theorem 2]). For a reduced planar graph G = (V,E) we get |V | ≤ 355k, where
k is the size of a dominating set D in G. In other words, the Dominating Set problem on planar
graphs admits a linear kernel.

Proof. By combining Proposition 5.2, Proposition 5.3 and Corollary 4.38 we get

|V | = |V (R)| + |V \ V (R)|

=
∑
R∈R

|V (R)| + |V \ V (R)|

≤ 55|R| + 2|D| + 56|R|
= 2|D| + 111|R|
≤ 2|D| + 111 · 3|D|
= 335|D|

If the graph has more than 335k vertices after the rules are applied, we know there cannot be a
dominating set of size at most k in the graph, and we can return a trivial no instance. If not we see
that |V | ≤ 355k.
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Chapter 6

A Smaller Kernel

In this chapter we will show that by allowing the kernelizaion algorithm to modify the plane embed-
ding of the input graph, it is possible to achieve a smaller kernel.

6.1 Vertex Flipping

Definition 6.1 (Boundary adjacent). Let (Ge,R) be a region decomposition of the plane graph
(G, E). We say that u, v ∈ V (Ge) are boundary adjacent if there is a region R ∈ R with boundary CR

such that (u, v) is an edge in the walk CR. The vertices boundary adjacent to v is denoted N∗(v).

Let (Ge,R) be a maximal D-region decomposition of a graph G where Reduction Rule 3.1 and 3.2
are exhaustively applied, together with its embedding E . We want to bound the number of vertices
in G. To achieve this we will modify the embedding E . Performing the Embedding Rules and run-
ning the algorithm from Lemma 4.32 on the resulting embedding exhaustively, will leave us with a
decomposition (Ge,R) that is maximal and reduced with respect to the Embedding Rules.

Definition 6.2 (Outside vertices). Vertices not in V (R) or D are called outside vertices.

Embedding Rule 6.1. Let v ∈ D, and let u ∈ N∗(v) be a vertex boundary adjacent to v. If there
is a vertex v′ ∈ N2(v) \ V (R) having neighborhood N(v′) = {v, u}, then change the embedding E
such that v′ is drawn on the opposite side of the edge (v, u), resulting in v′ being in V (R).

v

u
v′

v

u

v′

Figure 6.1: An N2(v) vertex of degree 2 will be flipped inside the region.

Claim 6.3. Embedding Rule 6.1 is sound.

Proof. Since the rule doesn’t change the structure of the graph, what we must show is that the
embedding is still plane after the change. Since u is boundary adjacent to v, there is an edge (v, u)
in the embedding used by a region R. By definition this edge separates the interior of R from the
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exterior, and we can change E in such a way that v′ and the edges (v, v′), (v′, u) are drawn sufficiently
close to this edge in the interior of R, keeping the embedding plane.

Embedding Rule 6.2. If there is a vertex v′ ∈ N3(v) for some v ∈ D, and v is the endpoint of a
region R, then flip v′ inside R by modifying E .

Claim 6.4. Embedding Rule 6.2 is sound.

Proof. Since Reduction Rule 3.1 is exhaustively applied, we know v′ must be of degree 1. The
embedding is still plane after the change, since a vertex of degree 1 can be drawn sufficiently close
to its neighbor in such a way that the edge between them doesn’t cross anything.

6.2 Upper Bound Outside Regions

Let D be a dominating set in the planar graph G, and consider the decomposition graph GR of
D-region decomposition (Ge,R) of G. Let f be a face in GR, and let v ∈ D be one of the vertices
incident to the face f . Let A be the co-area in Ge corresponding to f . We will now upper bound
the number of vertices in the neighborhood of v we may find in this co-area.

Lemma 6.5. There are no vertices from N1(v) in A.

Proof. This follows from Lemma 5.1, which states that any vertex u ∈ N1(v) is in a V (R).

Lemma 6.6. There are no vertices from N3(v) in A.

Proof. This follows from Rule 6.2, where we flipped every vertex from N3(v) inside a region.

It remains to bound the number of vertices from N2(v) found in A. We’ll look at that next.

Lemma 6.7. Let v, w ∈ D. Any vertex u ∈ N(v) in A cannot be adjacent to a vertex from
N∗(w) ∪ w.

Proof. Assume for sake of contradiction that u is adjacent to a vertex a ∈ N∗(w)∪w. Consider the re-
gion defined by the two walks (v, e1, u, e2, a, e3, u) (or (v, e1, u, e2, u) if a = w) and (u, e′3, a, e

′
2, u, e

′
1, v)

((u, e′2, u, e
′
1, v)), made possible in an enrichment of G. This region can be added to the D-region

decomposition, contradicting its maximality.

v

a

v′′

w

u

v

a

v′′

w

u

e1 e′1

e2

e′2

e3

e′3

Figure 6.2: A vertex u ∈ N2(v) outside a region cannot be adjacent to any vertices from N∗(w)∪w
in a maximal region decomposition.

Corollary 6.8. For a vertex u ∈ N(v) in A we have N(u) ⊆ N∗(v) ∪ v.
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Proof. By Lemma 6.5 and Lemma 6.6 we know that u ∈ N2(v), which by definition means that its
neighborhood is a subset of N1(v) ∪N2(v) ∪N3(v) ∪ {v}. By Rule 3.1 we know that u cannot have
neighbors in N3(v) or N2(v), which means that all its neighbors are from N1(v) ∪ {v} ⊆ V (R) ∪D,
by Lemma 5.1. Since the only vertices it can possibly be adjacent to are on the boundary of some
region, we know that N(u) ⊆

∪
w∈D

N∗(w) ∪ w, and by Lemma 6.7 we have N(u) ⊆ N∗(v) ∪ v.

Lemma 6.9. There is no vertex u ∈ N2(v) of degree 2 in A.

Proof. For sake of contradiction, assume u ∈ N2(v) is in A and has degree 2. By Corollary 6.8 we
know all of u’s neighbors are from N∗(v) ∪ v, and since it is of degree 2, it neighborhood must be
exactly {v, v′} for some vertex v′ ∈ N∗(v). By Rule 6.1 we know that such a vertex u is in V (R).

Lemma 6.10. Let f be a face of size 3 in GR, and v ∈ D a vertex incident to this face. Then the
maximum number of vertices from N2(v) in A is 1.

Proof. Take a vertex u ∈ N2(v) in A. By Corollary 6.8, all of u’s neighbors come from N∗(v) ∪ v.
Since f is of size 3, there are at most two possible neighbors to u other than v, and they are the
two vertices boundary adjacent to v and incident to A. And since u by Lemma 6.9 must have at
least two neighbors other than v, we see it must be adjacent to both. And now we can have no more
vertices from N2(v) in this face.

v

u

w

w′
A

Figure 6.3: A vertex u ∈ N2(v) in an area corresponding to a face of size 3 must be adjacent to the
two boundary adjacent vertices of v incident to this area.

Lemma 6.11. Let f be a face of size > 3. The maximum number of vertices from N2 =
∪

v∈D N2(v)
in the corresponding area A is 6|f |.

Proof. The face f is made from edges in GR going between vertices of D. These edges corresponds
to regions from the region decomposition (Ge,R), which makes up the area A. Observe that there
are at most 2 nodes on the boundary of such a region in addition to vertices from D, meaning there
are at most 3|f | vertices from V (R) ∪ D incident to this area. By Lemma 6.9 vertices in A must
have a degree of 3 or more, and then by Lemma 1.47 we know there can be at most 6|f | of them.

6.3 Bounding Region Size

Chen et al.[6] showed that we can apply a set of reduction rules in time O(n3) to the planar graph G,
such that the resulting planar graph admits a D-region decomposition where the number of vertices
inside a region R of the decomposition is upper bounded by |V (R)| ≤ 16. This lets us state the
following lemma:
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Lemma 6.12. There exists a polynomial time algorithm that given a region decomposition (Ge,R)
and a region R ∈ R where |V (R)| > 16 returns an equivalent region decomposition (G′

e,R′) where
|V (G′

e)| < |V (Ge)|.

To achieve this result, they use a superset of the reduction rules we have used so far, so applying
their additional rules will make sure we also can bound the size of the regions to 16.

6.4 An Improved Kernel Upper Bound

Using the results from the previous sections, we now arrive at the following results:

Lemma 6.13. Let G = (G, E) be a plane graph reduced with respect to Reduction Rule 3.1 and 3.2
that has a dominating set D of size k. Let (Ge,R) be a maximal D-region decomposition of G where
∀R ∈ R, |V (R)| ≤ r, and r ≥ 6. Then |V (G)| ≤ 7k + 3rk − 6r + 12.

Proof. Let F3 be the set of faces of size 3, and let F>3 be the set of faces of size > 3 in the
decomposition graph GR of (Ge,R). Since (Ge,R) is maximal, we know that by Corollary 4.37 GR
has at most 3k − 6 −

∑
f∈F>3

(|f | − 3) edges. By definition the number of edges in the decomposition

graph is equal to the number of regions in the decomposition. Since (G, E) is reduced, we can bound
the number of vertices outside regions and in areas corresponding to faces of size 3 in GR to 3|F3| by
Lemma 6.10, and in areas corresponding to bigger faces to

∑
f∈F>3

6|f | by Lemma 6.11. Given that

each region contains at most r vertices, we have the total number of vertices bounded by

|D| + r · |R| + 3|F3| +
∑

f∈F>3

6|f |

≤ k + r · (3k − 6 −
∑

f∈F>3

(|f | − 3)) + 3|F3| +
∑

f∈F>3

6|f |

= k + 3rk − 6r − r
∑

f∈F>3

|f | −
∑

f∈F>3

3r + 3|F3| + 6
∑

f∈F>3

|f |

= k + 3rk − 6r + 3|F3| + 6
∑

f∈F>3

|f | − r
∑

f∈F>3

|f | −
∑

f∈F>3

3r

= k + 3rk − 6r + 3|F3| −
∑

f∈F>3

(
(r − 6)|f | + 3r

)
≤ k + 3rk − 6r + 3|F3|

We see that the number of vertices is maximum when all the faces have size 3, and by Lemma 4.35
that |F | = |F3| = 2|V | + 4 = 2k + 4, which gives us

|V (G)| ≤ k + 3rk − 6r + 3|F3| = k + 3rk − 6r + 3(2k + 4) = 7k + 3rk − 6r + 12

In the following theorem, a graph being reduced means that Reduction Rules 3.1, 3.2 and the Re-
duction Rules from Chen et al.[6] are exhaustively applied.

Theorem 6.14. Let G be a reduced plane graph having a dominating set D of size k. The number
of vertices in G is upper bounded by 55k.
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Proof. If k ≤ 1, solve the problem in polynomial time and output a trivial kernel of constant size.
If k ≥ 2 then since the graph is reduced, we know by Lemma 6.12 that all regions have size at most
16. Set r = 16, and then by Lemma 6.13 the number of vertices in G is upper bounded by:

7k + 3rk − 6r + 12 = 7k + 3 · 16 · k − 6 · 16 + 12 = 55k − 84 < 55k
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Part III

Computer-Aided Reduction of
Regions
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WORDS OF WARNING

The following part of the thesis explains a Computer-Aided technique for reducing the size of the
planar graph instance. Unfortunately, we did finish the coding a bit late, and consider the concepts
and proofs of correctness a bit lacking. We are confident the achieved results, the 43k kernel in
particular, are correct, and we also arrived at the same results using a different technique. Especially
Chapter 9-11 were written close up to the deadline for submission, and has not been vetted, corrected
and cleaned up as much as we would have hoped before submission.
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Chapter 7

A 43k kernel for Planar Dominating
Set

So far we have arrived at kernels for Planar Dominating Set by performing reduction rules
and upper bounding the number of vertices inside and outside regions in a maximal Region De-
composition of the resulting graph. Bodlander et al.[4] showed that for many problems, including
Dominating Set, for parts of the graph that only have a constant set of vertices in common with
the rest of the graph, there exists a finite set of ways this part can affect the solution for the whole
graph. This means that all such small portions of the graph can be grouped into a finite set of equiv-
alence classes. In each equivalence class there must be a smallest graph, in terms of the number of
vertices, that can represent all graphs in that class.

Bodlander et al. don’t give any specific constants or representatives for the problems they explore.
In the case of Region Decomposition of plane graphs we have a natural boundary that separates
a region from the rest of the graph, and we know the size of that boundary is a small constant,
≤ 6 in our case. This means that there must exist a small finite set of equivalent classes, and
that each class must have a smallest representative. If we can find such a representative for each
equivalence class, we can create a kernelization algorithm by changing all the regions in the graph
by the representative of the equivalence class they belong to, and thereby creating an equivalent
graph with as small regions as possible.

In this part of the thesis we analyze such regions, and describe how we use a computer program to
search for small representatives for each equivalence class.

7.1 Definitions

Up until now, regions have just been parts of a bigger plane graph. To be able to look for reduced
instances, we want to be able to talk about them as standalone objects. The next definitions let
us do that. We will define quasi-regions as a sort of region where the boundary vertices don’t have
to be adjacent, as this will be useful in the analysis in later chapters. Quasi-regions are regions
found in a graph. Detached quasi-regions are stand-alone graphs. Note that since a detached
quasi-region is a graph, we might find quasi regions in a detached quasi-region.

Definition 7.1 (Noose). Let (G, E) be a plane graph, and let v, w ∈ V (G). A noose between v
and w is a polygon line N = P (a, b) such that

• N ∩ fE(v) = {a} and N ∩ fE(w) = {b}

• For all e ∈ E(G) we have N ∩ gE(e) = ∅
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This means that a noose is a curve that can be drawn from v to w such that it only intersects with
vertices, and not with edges.

Definition 7.2 (Vertices on a noose). We say the vertices on a noose N , denoted V (N) is the
vertices it intersects.

We often write N = (n1, n2, . . . , nk) to denote a noose intersecting vertices n1 to nk.

Definition 7.3 (Disjoint nooses). Let (G, E) be a plane graph, and let N1 = (a, n1, . . . , nk, b), N2 =
(c,m1, . . . ,ml, d) be two nooses in this region. We say that N1 and N2 are disjoint if

• N1 ∩N2 = ∅

• for all 1 ≤ i ≤ k and 1 ≤ j ≤ l, ni ̸= mj.

In other words, two disjoint nooses can start and end in the same vertex, but not in any other vertices.

Definition 7.4 (Length of a noose). The length of a noose N is |V (N)| − 1.

The reason for the −1 in the definition of length of noose, is to the familiarity of the length of a
path being the number of edges on the path.

Definition 7.5 (Area of nooses). Let (G, E) be a plane graph, and let N1 = (a, n1 . . . , nk, b), N2 =
(a,m1 . . . ,mkl, b) be two disjoint nooses such that they start in the same vertex, and end in the same
vertex. Let a1 = fE(a)∩N1

and a2 = fE(a)∩N2
be the points where their polygon lines start, and let

b1 = fE(b)∩N1
and b2 = fE(b)∩N2

be where they end. We say the area of the nooses is all the points
in the interior of the simple polygon N1 ∪N2 ∪ L(b1, b2) ∪ L(a1, a2), denoted area(N1, N2).

Note that the area of nooses is analogous to the area of a cyclic walk.

Definition 7.6 (Quasi-region). Let (G, E) be a plane graph. Let v, w ∈ V (G), and let Nt, Nb be
disjoint nooses of length at most 3 from v to w. The nooses define a quasi-region in G, denoted
(Rq = (Vq, Eq), Eq) if the following holds:

• A = area(Nt, Nb), δ(Rq) = V (Nt) ∪ V (Nb)

• Vq = {v ∈ V (G) | fE(v) ∩A ̸= ∅

• Eq = {e ∈ E(G) | gE(e) ∩A ̸= ∅

• for all v ∈ Vq \ δ(R), fEq (v) ⊆ A

• for all v ∈ Vq, v ∈ N [v, w]

A quasi-region is very similar to the definitions we have used for a region before, but now the ”path”
between the endpoint no longer need to have edges. A regular region as we have defined it earlier is
therefore a special case of a quasi-region.

Definition 7.7 (Naming of quasi-region). We denote a quasi-region R where |Nt| = n and |Nb| = m
for a (n,m)q-region. The vertices on the nooses, δ(R), are called boundary vertices of R. The
vertices I(R) = V \ δ(R) are called the internal vertices of R. If we want to emphasize that there are
edges between consecutive vertices on the Nt or Nb nooses, we denote this by (n,m)q(a1,a2,...)(b1,b2,...)

-

region, ai, bi ∈ {i, ī}, ai = i meaning there is an edge between vertex i and i + 1 on Nt, and ai = ī
meaning there is no edge. It is similar for bi.

For shorthand, we say (n,m)-region for a quasi-region where all boundary edges are present.
Definition 7.8 (Detached quasi-region). A detached quasi-region is a planar simple graph R =
(V,E) having endpoints v, w ∈ V and an embedding E such that

• there are two simple, disjoint nooses Nt, Nb of length at most 3 from v to w
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• A = area(Nt, Nb), δ(Rq) = V (Nt) ∪ V (Nb)

• for all e ∈ E, gE(e) ⊆ A

• for all v ∈ V \ δ(R), fE(v) ⊆ A

• N [v, w] = V

• all vertices of δ(R) is incident to the exterior face in the embedding

We see that a quasi-region in a graph defines a corresponding detached quasi-region.

Definition 7.9 (Detached quasi-region of quasi-region). Let R be a quasi-region with nooses Nt, Nb

in the plane graph (G, E). We say the corresponding detached quasi-region of R is the detached
quasi-region obtained from Nt, Nb, removing vertices and edges that does not intersect area(Nt, Nb),
and removing any multi-edges.

Observe that if there are edges among boundary vertices of a quasi-region that does not go ”inside”
the area of the quasi-region, then they are not present in the corresponding detached quasi-region.

Definition 7.10 (Equal boundaries). Let R1 be a detached quasi-region with endpoints v1, w1 and
nooses N1

t = (t11, . . . , t
1
k) and N1

b = (b11, . . . , b
1
l ) such that v1 = t11 = b11 and w1 = t1k = b1l . Let R2

be a detached quasi-region with endpoints v2, w2 and nooses N2
t = (t21, . . . , t

2
k) and N2

b = (b21, . . . , b
2
l )

such that v2 = t21 = b21 and w2 = t2k = b2l . We say that R1 and R2 have equal boundaries, or are
boundary equal, if there exists a bijective function f : δ(R1) → δ(R2) such that

• For all 1 ≤ i ≤ k, f(t1i ) = t2i

• For all 1 ≤ i ≤ l, f(b1i ) = b2i

• For all 1 ≤ i < k, (t1i , t
1
i+1) ∈ E(R1) iff (t2i , t

2
i+1) ∈ E(R2)

• For all 1 ≤ i < l, (b1i , b
1
i+1) ∈ E(R1) iff (b2i , t

2
b+1) ∈ E(R2)

We call f for the boundary bijection between R1 and R2, and say that R1 and R2 are
boundary equal with boundary bijection f .

We will later use the boundary bijection f on both single vertices and sets of vertices, so when we
say S′ = f(S) for some set S, we mean S′ = {f(s) | s ∈ S}.

Definition 7.11 (Type of detached quasi-regions). A type of detached quasi-regions is a set
of detached quasi-regions being boundary equivalent.

Definition 7.12 (Signature). Let R = (V,E) be a detached quasi-region. We define the signature
ζR of R as:

ζR : 2δ(R) × 2δ(R) → N
ζR(X,S) = min

D⊆V
|D| − |X|

s.t. V \ S ⊆ N [D], X ⊆ D, X,S ⊆ δ(R) and X ∩ S = ∅.

In other words, the signature encodes what the size of a minimum dominating set D of the detached
quasi region is, such that the vertices of X are part of the dominating set, and the vertices of S don’t
have to be dominated by D. The intuition behind this is that if R is part of a bigger graph instance,
then the boundary δ(R) of the region are the only vertices that can have neighbors outside the
region. This means that two regions having the same signature will affect the minimum dominating
set of the whole graph in the exact same way, and can be interchanged while keeping the problem
instance equivalent!
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Definition 7.13 (Valid input to signature). let R be a detached quasi-region. Two sets X,S ⊆ V
are called valid inputs to the signature of R, or simply valid inputs, if X,S ⊆ δ(R) and
X ∩ S = ∅.

Definition 7.14 (Satisfying set). Let R = (V,E) be a detached quasi-region having signature ζR.
Given valid inputs X,S let D be a set such that V \ S ⊆ N [D], X ⊆ D and |D| = ζR(X,S) + |X|.
We say that D is a set satisfying ζR(X,S), and we denote it by ζ̂R(X,S) = D. We sometimes

write R(X,S), meaning ζ̂R(X,S).

Definition 7.15 (Equal signatures). Let R1, R2 be detached quasi-regions with equal boundaries
and boundary bijection f : δ(R1) → δ(R2). We say that R1 and R2 have the same signature,
denoted R1 =ζ R2, or are signature equivalent, if for all valid inputs X,S to the signature of R1,
ζR1(X,S) = ζR2(f(X), f(S)).

Note that for all valid inputs X,S to the signature of R1, f(X), f(S) will be valid inputs to the
signature of R2 when R1 and R2 is boundary equivalent with boundary bijection f .

Definition 7.16 (Partial ordering of detached quasi-regions). Let R1, R2 be two detached quasi-
regions. We say that R1 is smaller than or equal to R2, denoted R1 ≤ R2, if R1 =ζ R2 and
|V (R1)| ≤ |V (R2)|.

Definition 7.17. A detached quasi-region R is signature minimal if for all regions R′ such that
R =ζ R′, R ≤ R′.

For simplicity, we make this definition:

Definition 7.18 (Detached region). A detached region is a detached quasi-regions where all
boundary edges are present.

All detached quasi-regions can be put into different equivalence classes according to their signature.
Since there is a finite set of different signatures, there is a finite number of such equivalence classes.
Each equivalence class has one or more smallest representative, and these are exactly the signature
minimal detached quasi-regions. Our goal will be to find one such representative for each type of
detached regions. A signature minimal detached region is the ”most reduced” region of a particular
signature.

Note that we might say signature of a quasi-region, meaning the signature of the corresponding
detached region of R.

Now we look back at our first definition of a region, the ones we can find in a region decomposition.
As noted earlier, non-degenerate regions are also valid quasi-regions with all boundary edges present,
hence we can find a corresponding detached region.

Definition 7.19 (Replacing a non-degenerate region with a detached region). Let G be a plane
graph and let R be a non-degenerate region in G. Let R2 be a detached region boundary equal to
R1 with boundary bijection f : δ(R1) → δ(R2), where R1 is the detached region corresponding
to R. The graph obtained by replacing R with R2 in G is the plane graph G′ = (G′, E ′), where
G′ = ([G−V (R1)]+R2)+Eδ +Eb with Eδ = {(x, y) | x ∈ V \V (R1), y ∈ δ(R2), (x, f−1(y)) ∈ E(G)}
and Eb = {(x, y) | x, y ∈ delta(R2), (x, y) ̸∈ E(R2) ∧ (f−1(x), f−1(x)) ∈ E(R)}. We get the
embedding E ′ of G′ by noting that by definition R1 and R2 have embeddings such that their boundary
vertices are drawn incident to the external face, and we can create E ′ by the union of the embedding
E and the embedding of R2, by mapping the unit disks of δ(R2) to the unit disks of δ(R1).

Note that replacing a region R in G by its corresponding detached region doesn’t do anything to
a dominating set in the graph, since it is just removing multi-edges. This fact we will now use to
show that replacing R with any signature equal detached region doesn’t do anything to the size of
a dominating set in the graph.
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Lemma 7.20. Let G = (G, E) be a plane graph having dominating set D. Let R be a region in G,
and let R1 be the detached region corresponding to R. Let R2 be a detached region that is signature
equal to R1 with boundary bijection f : δ(R1) → δ(R2). Replacing R with R2 results in a graph
G′ = (G′, E ′) such that G′ has a dominating set of size k if and only if G has a dominating set of
size k.

Proof. Let D be a dominating set of size k in G, and let

Dboundary = D ∩ δ(R)

Dinner = D ∩ I(R)

DR = Dboundary ∪Dinner

Doutside = D \DR

Now set

X = Dboundary

S = (δ(R) ∩N(Doutside ∪X)) \X

Set X ′ = f(X), S′ = f(S). We claim that D′ = Doutside ∪X ′ ∪ ζ̂R2(X ′, S′) is a dominating set of
size |D′| ≤ k.

Note that D = Doutside ∪X ∪Dinner.

First, observe that |D| ≤ k, since |X ′| = |X| and |ζ̂R2(X ′, S′)| = ζR2(X ′, S′) = ζR1(X,S) = |Dinner|
since R1 and R2 are signature equal.

Second, we show that D′ is indeed a dominating set in G′.

• Let v ∈ V (G′) \ V (R2). Note that v is also in V (G) \ V (R1). In G v is either in Doutside,
adjacent to a vertex in Doutside, or adjacent to a vertex in X. If v was in Doutside, then it is
also in D′. If it was adjacent to a vertex in Doutside, then it is also adjacent to a vertex in
D′. If is was adjacent to to a vertex in X, then it is adjacent to a vertex in X ′ in G′ by the
definition of Eδ.

• v ∈ δ(R2). If v ∈ X ′ then it is also in D′. If v is not in X ′ and not in S′, then it is dominated

(either by being in the set or being adjacent to a vertex in the set) by ζ̂R2(X ′, S′). Last, if v
is in S′ then it is adjacent to a vertex in Doutside ∪X since all vertices in S were adjacent to
a vertex in Doutside, and by the definition of Eδ v will also be.

• v ∈ I(R2). By definition this vertex is dominated by ζ̂R2(X ′, S′) ⊆ D′.

For the other direction let D′ be a dominating set of size k in G′. Using the embedding E ′ of G′, we
see that we can create a region R′ in an enrichment (G′

e, E ′
e) of G′ such that D′ is still a dominating

set. Using the exact same arguments, we can show that we can replace R′ with R1 in (G′
e, E ′

e), to
get a graph (Ĝ, Ê), and find a dominating set D of size ≤ k in this graph. D is therefore also a
dominating set in G.

7.2 A 43k Kernel

We will later prove the following two lemmas:

Lemma 7.21. For any detached region R, we can in time O(1) find a signature minimal detached
region having the same signature as R.
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Lemma 7.22. The biggest signature minimal detached regions consist of 12 region vertices and 2
endpoints.

Aimed with these lemmas and the results from previous chapters, we give a kernelization algorithm
as follows:

Theorem 7.23. Planar Dominating Set admits a kernel of size 43k.

Proof. If the graph contains more than 43k vertices, then find a region R in the graph having more
than 12 region vertices. We calculate the signature of R, and find a signature minimal detached
region with the same signature as R by Lemma 7.21. By Lemma 7.20 we can replace R by the
equivalent signature minimal region creating an equivalent graph G′ of smaller size than G. After
this is done exhaustively we know that the size of every region is upper bounded by r ≤ 12, and by
using Lemma 6.13 this yields a kernel size of:

7k + 3rk − 6r + 12 ≤ 7k + 3 · 12 · k − 6 · 12 + 12 = 43k − 60 < 43k
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Chapter 8

Computer-Aided Reduction of De-
tached Regions

We will use the next chapters to prove Lemma 7.21 and Lemma 7.22.

8.1 More Definitions

Definition 8.1 (Vertex types). Let R = (V,E) be a detached quasi-region with endpoints v, w.
Define N1(R) = δ(R) \ {v, w}, N2(R) = I(R) ∩N(N1) and N3(R) = I(R) \N2.

Definition 8.2 (Outward pushed set). Let R = (V,E) be a detached quasi-region, Si be a family
of sets of size i s.t. ∀S ∈ Si, S ⊆ V and |S| = i. A set S ∈ Si is called outward pushed in Si if
there is no other set S′ ∈ Si such that |S ∩ δ(R)| < |S′ ∩ δ(R)|.

Definition 8.3. Let R be a detached quasi-region with signature ζR. Let D be the family of sets that
satisfy ζR(X,S). ζ̂+R (X,S) denotes an outward pushed set D ∈ D. We sometimes write R+(X,S),

meaning ζ̂+R (X,S).

Definition 8.4 (Sub quasi-regions). Let (R, E) be a detached quasi-region and let R′ be a quasi-
region in (R, E). R′ is called a sub quasi-region of R.

Definition 8.5 (Replacing a sub quasi-region). R be a detached quasi-region with embedding E and
with sub quasi-region R′

1. Let R1 be the detached quasi-region corresponding to R′
1. Let R2 be a

detached quasi-region boundary equal to R1 with boundary bijection f : δ(R1) → δ(R2). The graph
obtained by replacing R1 with R2 in R is the detached quasi-region R′ = ([R − V (R1)] + R2) +
Eδ + Eb with Eδ = {(x, y) | x ∈ V \ V (R1), y ∈ δ(R2), (x, f−1(y)) ∈ E(R)} and Eb = {(x, y) | x, y ∈
delta(R2), (x, y) ̸∈ E(R2) ∧ (f−1(x), f−1(x)) ∈ E(R)}. We get the embedding E ′ of R′ by noting
that by definition R1 and R2 have embeddings such that their boundary vertices are drawn incident
to the external face, and we can create E ′ by the union of the embedding E and the embedding of R2,
by mapping the unit disks of δ(R2) to the unit disks of δ(R1).

Lemma 8.6. Let R be a detached quasi-region, and let R′
1 be a sub quasi-region of R with corre-

sponding detached region R1. Let R2 be a detached quasi-region having the same signature as R1.
Replacing R1 with R2 doesn’t change the signature of R.

Proof. Let R′ be the detached quasi-region obtained by replacing R1 with R2.

For given sets X,S ⊆ δ(R), let D = ζ̂R(X,S) have size k = |D|. Set
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Dboundary = D ∩ δ(R1)

Dinner = D ∩ I(R1)

DR1 = Dboundary ∪Dinner

Doutside = D \DR1

Now set

X1 = Dboundary

S1 = (δ(R) ∩N(Doutside ∪X1)) \X1

Set X2 = f(X1), S2 = f(S1). We claim that D′ = Doutside ∪ X2 ∪ ζ̂R2(X2, S2) is a set satisfying
ζR(X,S).

Note that D = Doutside ∪X1 ∪Dinner.

First, observe that |D′| ≤ k, since |X2| = |X1| and |ζ̂R2(X2, S2)| = ζR2(X1, S1) = ζR1(X1, S1) =
|Dinner| since R1 and R2 are signature equal.

Second, we show that D′ is a set satisfying ζR(X,S).

• Let v ∈ V (R′) \ V (R2). Note that v is also in V (R) \ V (R1). In R v is either in Doutside,
adjacent to a vertex in Doutside, or adjacent to a vertex in X1. If v was in Doutside, then it
is also in D′. If it was adjacent to a vertex in Doutside, then it is also adjacent to a vertex in
D′. If is was adjacent to to a vertex in X1, then it is adjacent to a vertex in X2 in R′ by the
definition of Eδ.

• v ∈ δ(R2). If v ∈ X2 then it is also in D′. If v is not in X2 and not in S2, then it is dominated

(either by being in the set or being adjacent to a vertex in the set) by ζ̂R2(X2, S2). Last, if v
is in S2 then it is adjacent to a vertex in Doutside ∪X2 since all vertices in S1 were adjacent
to a vertex in Doutside ∪X1, and by the definition of Eδ and Eb v will also be.

• v ∈ I(R2). By definition this vertex is dominated by ζ̂R2(X2, S2) ⊆ D′.

For the other direction let D′ be a set satisfying ζR′(X,S) of size k. Doing the same replacement in
the other direction, using the exact same arguments, we can find a set D satisfying ζR(X,S) of size
≤ k. R and R′ must therefore have the same signature.

Lemma 8.7. Let R be a detached quasi-region with signature ζ, and let D = ζ̂+(X,S). We have
that |D ∩ I(R)| ≤ 1.

Proof. Assume that |D ∩ I| ≥ 2 and let x, y ∈ D ∩ I. Now x, y ̸∈ X, and D′ = (D \ {x, y}) ∪ {v, w}
satisfies ζ(X,S), has size |D′| ≤ |D|, and X ⊆ D′, contradicting that D was outward pushed.

Lemma 8.8. Let R be a detached quasi-region with signature ζ, and let D = ζ̂+(X,S). If |D ∩
I(R)| = 1, then |D ∩ {v, w}| = 0.

Proof. Assume for sake of contradiction that |D ∩ {v, w}| ≥ 1, and without loss of generality that
v ∈ D. Let x ∈ D ∩ I. Now D′ = (D \ {x}) ∪ {w} still satisfies ζ(X,S), and X ⊆ D′, contradicting
that D was outward pushed.

The following class of internal vertices will be useful in further discussion:
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Definition 8.9 (Possible dominators). Let R be a detached quasi-region. The set P ⊆ I(R) is the

set of internal vertices where ∀p ∈ P, ∃X,S ⊆ δ(R) s.t. p ∈ ζ̂R
+

(X,S). The set P is called possible
dominators on R.

Lemma 8.10. Let R(v, w) be a detached quasi-region, and let P be the set of possible dominators
in R. A vertex p ∈ P must meet the following criteria:

1. N3(R) ⊆ N [p]

2. ∃u ∈ N(p) s.t. u ̸∈ N(v) ∨ u ̸∈ N(w)

Proof. We will show a proof for each criteria.

1. Assume a vertex p ∈ P that doesn’t dominate all vertices in N3(R) is in the outward pushed

set D = ζ̂R
+

(X,S) for some X,S ⊆ δ(R). This means there must be at least one more
vertex u ∈ D to dominate N3. The only vertices that can dominate vertices from N3 are from
{v, w} ∪ I, but any vertex being in D together with p would violate Lemma 8.7 or Lemma 8.8.

2. Assume a vertex p ∈ P is in the outward pushed set D = ζ̂R
+

(X,S) for some X,S ⊆ δ(R),
such that there’s no u ∈ N(p) where u ̸∈ N(v) ∨ u ̸∈ N(w). This means that N(p) ⊆ N(v)
and N(p) ⊆ N(w). By Lemma 8.8, v and w cannot be in D. Since p is a vertex in the
region, it must be adjacent to v or w. Without loss of generality, say it is adjacent to v. Now
(D \ {p}) ∪ {v} still satisfies ζR(X,S), contradicting that D was outward pushed.

The reason the vertices in P are called possible dominators, is because they might actually be the
best choice for dominating N3(R) given sets X,S, while this will never be the case for internal
vertices not in P .

8.2 Reduction Rules Inside a Region

We will now show the reduction rules we will need to use inside a detached quasi-region. In the
context of detached quasi-regions, a the soundness of a reduction rule means that the resulting de-
tached quasi-region is signature equivalent to the original one. Note that these rules are not to be
used with any kernelization algorithm. They are only to be used in analysis of signature minimal
detached quasi-regions, since such detached quasi-regions have to be reduced.

Reduction Rule 8.1. Let R(v, w) be a detached quasi-region, and let u ∈ N3. If there are two
vertices x, y ∈ I such that u ̸∈ N [x] and u ̸∈ N [y], and N(x) ⊆ N(y), then delete y.

v w
x

y

u

v w
x

u

Figure 8.1: Reduction Rule 3.2 says we can remove y, since it will never be used as a dominator.

The intuition behind the reduction rule is that since there is a vertex u that cannot be dominated
by x or y, neither of x, y will be possible dominators. Their only role is therefore to be dominated,
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but since the moment x is dominated y also is, y can be removed. Note the similarities between
this rule and Reduction Rule 3.2. This rule is a bit stronger inside detached quasi-regions, since it
will help us get rid of some vertices that wouldn’t be taken care of by Reduction Rule 3.2. We now
prove the soundness of this rule.

Lemma 8.11. Reduction Rule 8.1 is sound.

Proof. Let R′ be the detached quasi-region obtained after performing the reduction rule.

For given sets X,S ⊆ δ(R), let D = ζ̂+R (X,S). Since x, y ̸∈ P , by definition x, y ̸∈ D. D would
therefore satisfy ζR′(X,S) also, and we have ζR′(X,S) ≤ ζR(X,S).

For the other direction, let D′ = ζ̂+R′(X,S). x ̸∈ P and x ̸∈ D′, and must be dominated by D′.
Since N(x) ⊆ N(y), D′ will also satisfy ζR(X,S) and ζR(X,S) ≤ ζR′(X,S).

Reduction Rule 8.2. Let x, y ∈ I \ P . If (x, y) is an edge, remove it.

v wx
y

v wx
y

Figure 8.2: By Reduction Rule 8.2 we can remove the edge (x, y), none of them are possible domi-
nators.

Again, note that this is a variant of Reduction Rule 3.1 tailored for our use inside a region.

Lemma 8.12. Reduction Rule 8.2 is sound.

Proof. Let R′ be the region obtained after performing the reduction rule.

For given sets X,S ⊆ δ(R), let D = ζ̂+R (X,S). Since x, y ̸∈ P , we know they are not in D.
Therefore D will also satisfy ζR′(X,S). The other direction is similar.
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Chapter 9

Bound Inside Inner and Single Re-
gions

The strategy we choose for enumerating signature minimal detached regions, is to split them up into
smaller parts, and building from these parts. We will now look at some of these parts, which all are
sub quasi-regions.

9.1 Inner regions

Definition 9.1 (Inner noose). Let (R, E) be a quasi-region, and let a, b ∈ V (R). An inner noose
from a to b is a noose N from a to b such that N ⊆ area(R), and ∀d ∈ δ(R) \ {a, b}, d ̸∈ V (N).

In other words a noose that goes between vertices of the quasi-region, but doesn’t touch boundary
vertices except for its start and end vertex.

The next lemma follows from[24, 22] , so we will omit the formal proof:

Lemma 9.2. Let R(v, w) be a detached quasi-region with nooses Nt, Nb. Let T and B be the set of
vertices on Nt and Nb (except v, w), respectively. The following are true:

• There is an inner noose from v to w in R if and only if there is no edge (t, b) ∈ E(R), where
t ∈ T and b ∈ B

• There is two disjoint inner nooses from v to w in R if and only if there is no path (t, u, b) in
R, where t ∈ T , b ∈ B and u ∈ I(R)

Lemma 9.2 will be helpful since it tells us that we can either find two inner nooses in a detached
quasi-region, or there must be an edge or path dividing the detached quasi-region into smaller parts.

Lemma 9.3. If there are two disjoint inner nooses from v to w in R, then there are also two disjoint
inner nooses of length at most 2 from v to w in R.

Proof. Assume there are no two disjoint inner nooses of length at most 2, and let N be the shortest
noose of length more than 2. N must be of length 3 or more, which means that there are 3 or
more vertices intersecting N . By definition of a detached quasi-region, all of these vertices must
be adjacent to v or w. Let u be one such vertex such that it is not the first or last non-endpoint
intersecting the noose, i. e. N = (v, a, . . . , u, . . . , b, w), and assume without loss of generality that it
is adjacent to v. Then (v, u, . . . , b, w) is also a noose in R of length less than N , contradicting that
N was the shortest one. Also note that this shorter noose cannot intersect with any noose that N
didn’t intersect with, since the edge (v, u) is present and cannot intersect with any noose.
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Definition 9.4 (Inner region). Let N1, N2 be two inner nooses of length at most 3 in the interior
of R, going between v and w. They define a quasi-region iR, called inner quasi-region of R, such
that the boundary δ(iR) of iR are the vertices that intersects the nooses, and the internal vertices of
iR are the vertices strictly inside the closed area defined by the nooses.

Note that if you follow one of the inner nooses from v to w you can encounter up to two vertices
different from v, w, and there may be actual edges between these vertices, but not necessarily. The
important part is that there cannot be edges crossing these nooses, making the boundary of the
inner region separate the internal vertices of iR from the rest of R.

Observation 9.5. All the internal vertices of an inner quasi-regions are from N3(R), and the
boundary nodes, except v, w, are from N2(R) ∪N3(R).

Definition 9.6 (Maximal inner region). An inner region iR of R is inclusion-wise maximal
if there is no other inner region iR′ of R such that E(iR) ⊆ E(iR′) and V (iR) ⊂ V (iR′), or
E(iR) ⊂ E(iR′) and V (iR) ⊆ V (iR′).

In other words an inner quasi-region is maximal if you cannot ”push” the inner nooses outwards to
include more vertices or edges in the inner quasi-region.

v w

Figure 9.1: Two nooses that define a maximal inner region.

Let iR be a maximal inner quasi-region of R. How does the part of R outside iR now look like? It
turns out that there is always an edge from every vertex in δ(iR)\{v, w} to a vertex in δ(R)\{v, w},
as the next lemma shows.

Lemma 9.7. Let R be a detached quasi-region having a maximal inner quasi-region iR. A vertex
b ∈ δ(iR) \ {v, w} will be adjacent to at least one vertex from δ(R) \ {v, w}.

Proof. Assume this is not the case, and that there is a vertex b ∈ δ(iR) \ {v, w} that is not adjacent
to any vertex from δ(R) \ {v, w}, see Figure 9.2. Let N1 = (v, b, c, w) be the noose of the inner
region that b is a part of, and let N2 be the other noose of the iR. Since iR is maximal, this means
that there cannot be a noose (v, c, w) that would make up a bigger inner region together with N2.
It must therefore be a path from b to a vertex in δ(R) \ {v, w}. By assumption this path must be
of length 2 or more. Let P be the path that has a vertex u that is incident to a face that c also is
incident to. Such a vertex must exist, since if not there would need to be an edge from b to vertices
in δ(R) \ {v, w}. u must be adjacent to v or w, which means that either (v, u, c, w) or (v, b, u, w) is
a noose in R, and it can be drawn on the outside of N1, contradicting the maximality of iR. In the
case N1 = (v, b, w) we see that any path from b to a vertex in δ(R) \ {v, w} would have a vertex u
adjacent to b, and (v, b, u, w) or (v, u, b, w) would be a noose contradicting the maximality of iR.
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v

u

wb c v

u

wb c

Figure 9.2: If a vertex b on the boundary of the inner region has no edge up to the boundary vertices
of R, then the inner region cannot be maximal.

Lemma 9.8. Let R be a detached quasi-region having top noose Nt, such that there are no edges
between non-consecutive vertices on the noose, except maybe the start and end vertex. Let iR be a
maximal inner quasi-region of R having top noose N of length ≤ 2. Then there is no vertices strictly
in the area between N and Nt, area(N,Nt).

Proof. Assume that there is at least one vertex in this part, and look at a vertex u in this part that
is incident to a face that N is incident to. Such a vertex must exist since there are no edges between
any non-consecutive vertices on Pt (except maybe (u, v), that edge would be on the inside of the
inner region). Without loss of generality assume u is adjacent to v. If N = (v, w), then (v, u, w) is a
noose contradicting that iR was maximal. If N = (v, a, w), then (v, u, a, w) is a noose contradicting
the maximality of iR.

This means that we know a whole lot about how the parts in a detached quasi-region outside a
maximal inner quasi-region look like. We know it is empty (no vertices, there can be edges) if the
inner quasi-region has a noose of length ≤ 2, and that there must be an edge from each vertex on the
boundary of the inner quasi-region to the boundary of the detached quasi-region. The edge between
the boundary of R and the boundary of iR divides the outer part into small quasi-regions that we
call outer regions. They have a boundary size of either 3 or 4, and all their internal vertices must
be dominated by a single endpoint, see Figure 9.3. These regions are a special case of what we call
single regions, which can have boundary size up to 6. We will look at single regions in Section 9.2.
To speed up the computer program generating region, we will also look at how such single regions
look like in signature minimal detached quasi-regions look inner quasi-regions are non-empty. This
we do in Section 9.3.

v wb c

Figure 9.3: The vertices between the boundary of the maximal inner region have edges to vertices
on the boundary of the region. This divides the part outside the inner region into small parts, (outer
regions, colored in the figure) each having all their internal vertices dominated by a single endpoint.
Note that the part between the two outer regions is empty.

9.1.1 Bounding the Size of an Inner Quasi-Region

Lemma 9.9. An inner quasi-region of a signature minimal detached quasi-region has at most 4
internal vertices.
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Proof. Let R = R(v, w) be a signature minimal detached quasi-region, and iR an inner quasi-region
of R having at least one internal vertex. We’ll look at several different cases. Let S be the set of
internal vertices of iR that dominates all internal vertices of iR, called internal dominators. Let B
be the vertices of δ(iR) \ {v, w} that dominates all internal vertices. Notice that vertices not in S
or B cannot be in P , where P is the set of possible dominators of R.

• |S| = 0: Since there are no internal dominators, we can assume all internal vertices are
independent by Reduction Rule 8.2. Also, we know that if there are vertices in B, then these
must be adjacent to all internal vertices. All other vertices from δ(iR) \ {v, w} can be made
non-adjacent to I by Rule 8.2. We can invoke Reduction Rule 8.1. Now all internal vertices
are neighbors of the same vertices in δ(iR) \ {v, w}, and either v or w, or both. There can be
at most 2 such vertices after Rule 8.1 is exhaustively applied.

• |S| = 1:

– |B| ≥ 1: Let b ∈ B. There can be at most 3 internal vertices, as shown in Figure 9.4.

v

b

ws

Figure 9.4: Any other vertex adjacent to both b and s would create a K2,3, which is not outerplanar.

– |B| = 0: Again we can remove all edges between I \ S and vertices in δ(iR) \ {v, w}, and
invoke Reduction Rule 3.2. Now all vertices in I \ S are adjacent to S, and to one or
both in {v, w}, so there can be at most 2 of them after Rule 8.1 is exhaustively applied,
resulting in at most 3 internal vertices.

• |S| = 2: In this case there can be at most 4 internal vertices, as shown in Figure 9.5.

v ws1 s2

Figure 9.5: Any other vertex adjacent to s1 and s2 would create a K2,3, which is not outerplanar.

• |S| = 3: These 3 internal dominators are the only possible internal vertices, because more
internal vertices would create a K4, which is not outerplanar, as shown in Figure 9.6.
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v ws1 s2

s3

Figure 9.6: Any other vertex adjacent to the three internal vertices would create a K4, which is not
outerplanar.

• |S| ≥ 4: Impossible because this would create a K4.

9.2 Single Quasi-Regions

Definition 9.10 (Single region). Let R be a quasi-region with endpoints v, w. R is a single region
if I(R) ⊆ N(v). We denote a single (n,m)q-region by (n,m)s.

As usual, a single region has a corresponding detached quasi-region, called a detached single
quasi-region.

As we will use these as building blocks later, it will be useful to be able to enumerate them easily.
The next lemmas will be helpful for that purpose.

Lemma 9.11. Let R be a detached (2, 1)s(2,1)(∗)-region having internal vertices I and nooses Nt =

(a, b, c), Nb = (a, c). If there is a vertex p ∈ P (R), then I ⊆ N [p].

Proof. Let D = R(X,S), and assume p is not adjacent to all the internal vertices of R. This means
that if p ∈ D, there will be at least one more vertex from A(R) in D. Call this vertex p′. If p′ = a
or p′ = b, we see that D′ = {a, b} satisfies ζR(X,S), contradicting that D was outward pushed. If
p′ = c or p′ ∈ I, then D′′ = {a, c} contradicts that D was outward pushed.

So we know a possible dominator must dominate all internal vertices in the detached single quasi-
region by Lemma 9.11, and that it must be adjacent to c by Lemma 8.10, as this is the only vertex of
the region a may not be adjacent to (if (a, c) is not present). We use this to prove the following lemma.

Lemma 9.12. A signature minimal detached (2, 1)s(2,1)(∗)-region has at most 4 internal vertices.

Proof. Let P = P (R). Look at the case where we have |P | ≥ 2. This is shown in Figure 9.7. There
cannot be more than two such universal vertices adjacent to c. And it is only possible to add one
more vertex to the region such that they both still are universal.

a

b

c a

b

c

Figure 9.7: |P | ≥ 2.
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The case where |P | = 1 is shown in Figure 9.8. We see that we cannot add more vertices than this
(4) without violating planarity or making the region reducible by Reduction Rule 8.1 or 8.2.

a

b

c

Figure 9.8: |P | = 1.

In the case |P | = 0 we can assume all internal vertices are independent by Reduction Rule 8.2, and
Figure 9.9 shows the possible vertices. But note that if the internal degree 1 vertex is present, then
we can remove the degree 3 vertex by Reduction Rule 8.1, so the maximum number of internal
vertices in this case is also bounded by 4.

a

b

c

Figure 9.9: |P | = 0.

9.3 Outer Regions Without Possible Dominators

In the case of the inner quasi-region of a detached quasi-region being non-empty, we can simplify the
structure of the area outside the inner quasi-region significantly. This is beneficial since it reduces
the number of building blocks we have to put together and makes our computer program run much
faster.

These ”outer regions” is a special case of the single quasi-regions with boundary (2, 1) and (2, 2),
and as for single quasi-regions we will look at cases where the boundary edges are present, and cases
where some of them are not.

We denote these single regions by (n,m)n.

This version of the outer regions is to be used together with a non-empty inner quasi-region. This let
us apply Reduction Rule 8.2 and 8.1 to all internal vertices, since there is always an N3(R)-vertex
that’s not adjacent to the internal vertices of the outer region. We can therefore assume that all
internal vertices are independent, and that no internal vertex has a neighborhood that is a subset
of the neighborhood of another internal vertex. Also, note that we can flip degree 1 vertices and
degree 2 vertices between vertices on the boundary of the inner region, inside the inner region, so
we can assume they are not in the outer region.
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Consider the case of boundary size 3, shown in Figure 9.10. The only vertices we can have is one
of degree 2 between a and b, or one of degree 3. Notice that both of these cannot be there in a
signature minimal region by Reduction Rule 8.1.

a

b

c

Figure 9.10: Outer 3-region.

We state that observation as a lemma:

Lemma 9.13. A sub (2, 1)n(1,2)(∗)-region of signature minimal region can have most 2 internal ver-
tices.

For the case of boundary size 4, we have some more options, as shown in Figure 9.11. But observe
that many of these cannot be there at once because of planarity constraints, and again some cannot
appear together in a signature minimal region by Reduction Rule 8.1. Note that we omit the cases
where the (a, c) edge or (b, d) edge are present, since when we will use these regions later, those
edges cannot be there.

a

b
c

d

Figure 9.11: Outer 4-region.

Lemma 9.14. A sub (2, 2)n(1,2)(∗,2)-region of signature minimal region can have most 4 internal
vertices.

9.4 Boundary Sizes and Vertices 2

Definition 9.15 (Sub quasi-region). Let R be a quasi-region with nooses Nt and Nb from v to w. A
sub quasi-region R′ of R is a quasi-region with nooses N ′

t and N ′
b such that area(R′) ⊆ area(R)

and R′ has at least one endpoint from {v, w}.
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Chapter 10

Splitting Regions Into Smaller Parts

We will in this chapter lay out the theory needed to see how we can combine small parts together
to build bigger regions. In the next chapter we will set this theory into action, by explaining how
our computer program that actually builds the detached quasi-regions work.

The goal is to enumerate signature minimal detached regions of different types, but to get there we
will also need to enumerate some types of detached quasi-regions.

10.1 Fully Enumerated Representative Sets

We will for each type of detached quasi-regions find a fully enumerated representative set.

Definition 10.1 (Fully enumerated representative set). Let T be a detached quasi-region type. We
say a set R of detached quasi-regions is fully enumerated for T if for every R of type T , there is
an R′ ∈ R s.t. R′ ≤ R.

We say a detached quasi-region type is fully enumerated if we can find a fully enumerated repre-
sentative set for that type.

The next definition will be very important when we start to talk about figures, as it is much easier
to explain how we decompose detached quasi-regions by a figure, than by words. Example of such
figures can be seen starting from Figure 11.1

Definition 10.2 (Decomposing according to figure). Let R = (V,E) be a detached quasi-region and
let X be a figure. We say that R can be decomposed according to figure X if there is a bijection
f between vertices on the figure and vertices in R such that

• if there is a vertex vX on the figure, then f(vX) ∈ V

• if there is an edge eX = (vX , v′X) on the figure, then (f(vX), f(v′X)) ∈ E

• for all dashed edges ẽX = (vX , v′X) on the figure, there is either an edge (f(vX), f(v′X)) ∈ E,
or it would be possible to add that edge without violating planarity. Let the set of edges Ẽ =
{(x, y) ∈ E | (f−1(x), f−1(x)) is a dashed edge on the figure}

• if there is a sub quasi-region with Nt = (n1, n2, . . . , nn) and Nb = (m1,m2, . . . ,mm) of type
T on the figure, then the corresponding sub quasi-region made from (f(n1), . . . , f(nn)) and
(f(m1), . . . , f(mm)) in R is of type T , and the edges are consistent with those in Ẽ
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Note that we use a shorthand notation on the actual figures. Sub quasi-regions having boundary
(2, 1) will be denoted 3 (since the total size of the boundary is 3), (2, 2) for 4 and so on. Single
regions will be given the ˆ mark, as in 5̂. Inner quasi-regions are given the prefix ”i”. The edges
present or not around the boundary can be seen on the figure by looking at the dashed edges. Parts
of the region that have no vertices are marked ”empty”, or colored white. Single quasi-regions of
the type used together with non-empty inner quasi-regions are marked with the suffix ”nd” (for
non-dominator). The empty inner quasi-regions are given the suffix ”empty”.

The definition of decomposing according to figure is not as complicated when looking at a figure. It
basically says that it you are given detached quasi-region R and a figure X, R can be decomposed
according to X if it is possible to draw R over the figure such that the sub quasi-region types, edges
an vertices corresponds. Figure 11.3 shows the setup.

Definition 10.3 (Symmetry of a detached quasi-region). A symmetry sym of a detached quasi-
region is a function that given a detached quasi-region outputs an isomorphic quasi-region where the
names of the endpoints might have been interchanged, and the vertices on the noose Nt might have
been renamed to the names on Nb, and vice versa.

You can think of the symmetry of a quasi-region as drawing the detached quasi-region the plane and
”flipping” it over one of its axis, see Figure 10.1 and 10.2. Notice how the direction of the nooses (the
vertex names) changes. Each detached quasi-region will have up to 4 different symmetries.

a

b c

d

ef

→ a

b c

d

ef

Figure 10.1: Symmetry around horizontal axis

a

b c

d

ef

→ a

b c

d

ef

Figure 10.2: Symmetry around vertical axis

Fact 10.4 (Signatures of symmetries). Let R1, R2 be two detached quasi-regions being signature
equivalent, and let sym be a symmetry on the regions. Let R′

1 = sym(R1) and R′
2 = sym(R2).
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Then R′
1 and R′

2 are signature equivalent.

Definition 10.5 (Symmetric closure). Let R be a set of detached quasi-regions. The symmetric
closure of R, denoted sym(R) is the set containing all possible symmetries of regions in R.

Note that the identity is also considered a symmetry.

Definition 10.6 (Set enumerated by figure). We say that the set R of detached quasi-regions
enumerated by a figure X, is the symmetric closure of exactly those detached quasi-regions R that
can be decomposed according to figure X such that for each sub quasi-region R̃ of type T on the figure,
R[R̃] is in the fully enumerated representative set of T .

Definition 10.7 (Reduced set). Let R be a set of detached quasi-regions. The reduced set of R
is the set R′ ⊆ R where for each R ∈ R, there is an R′ ∈ R′ such that

• R′ ≤ R

• for all R′′ ∈ R′ \R′, R′′ ̸=ζ R

Definition 10.8 (Reduced set enumerated by figures). Let X be a set of figures. The reduced
set enumerated by X , denoted enum(X ), is the reduced set of R, where R is the union of sets
enumerated by the figures in X .

Lemma 10.9. Let X be a set of figures, and let R be the reduced set enumerated by X . Let R be a
detached quasi-region that can be decomposed according to some figure X ∈ X . Then there exists a
quasi-region R′ ∈ R such that R′ ≤ R.

Proof. Assume that this is not the case, and that there is no such R′ ∈ R such that R′ ≤ R. Consider
the figure X that R can be decomposed according to. For each sub quasi-region R̃ of X, look at the
detached quasi-region R1 of R̃, having type T . According to Lemma 8.6 this sub quasi-region can
be replaced in R with a quasi-region R2 ∈ enum(T ) where R2 ≤ R1 such that the resulting graph
R∗ is a quasi-region with R∗ ≤ R. After this is done for all sub quasi-regions R̃ of X, the detached
quasi-region R∗

1 of R̃ of type T is R∗
1 ∈ enum(T ), meaning that R∗ is a region enumerated by figure

X, and hence there exists some R′ ∈ R such that R′ ≤ R∗ ≤ R, a contradiction.

Lemma 10.10. Let X be a set of figures, and let R be the reduced set enumerated by X . Let R be
a detached quasi-region that can’t be decomposed according to some figure X . If there exists some
R′ ≤ R that can be decomposed according to some figure X ∈ X , then there exists a quasi-region
R′′ ∈ R such that R′′ ≤ R.

Proof. Since R′ can be decomposed by Lemma 10.9 there is some R′′ ∈ R such that R′′ ≤ R′ ≤ R,
which proves the lemma.

For a type T , what we want to find is a set of figures that enumerates a signature minimal represen-
tative for all equivalence classes of T . The previous two lemmas show that if we can find a set of
figures such that all regions of that type either can be decomposed according to one of those figures,
or we can reduce it such that it can be decomposed according to one of the figures, the set of figures
will enumerate a fully enumerated reduced set for that type. We sum this up in the last lemma of
this section:

Theorem 10.11. Let T be a quasi-region type and let X be a set of figures. If there for all detached
quasi-regions R of type T exists an R′ ≤ R such that R′ can be decomposed according to a figure
X ∈ X such, then enum(X ) is a fully enumerated representative set for T .

Proof. Since R′ can be decomposed according to a figure X ∈ X there exists some R′′ ∈ enum(X )
such that R′′ ≤ R′ by Lemma 10.9. We must then have R′′ ≤ R′ ≤ R, and the lemma follows.
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10.2 Order of Enumeration

In the last chapter we will explain how we actually enumerate these detached quasi-regions, by
showing figures. Each type of detached quasi-regions will use fully enumerated representative sets
of other types in their enumeration, so it will require them to already by enumerated. To give an
overview, this will be the order we enumerate them in:

We will find fully enumerated representative sets for quasi-region types in the order

inner of types (n,m)i(∗)(∗) for 1 ≤ n,m ≤ 3

single inner of types (1, 1)i,s(∗)(∗), (2, 1)i,s(1,∗)(∗), (2, 2)i,s(1,∗)(1,∗)

single of types (2, 1)s(1,2)(∗), (2, 2)s(1,∗)(∗,2), (3, 2)s(1,2,3)(1,∗), (3, 3)s(1,2,3)(1,2,3)

single non-dominator of types (2, 1)s,n(1,2)(∗), (2, 2)s,n(1,2)(∗,2)

detached regions of types (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)
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Chapter 11

Enumeration of Fully Enumerated
Representative Sets

11.1 Inner regions

We will start with finding the fully enumerated representative set for detached inner quasi-regions
of at most 4 internal vertices, as they don’t require the fully enumerated sets of any other type. By
Lemma 9.9 we know those are all the detached inner quasi-regions we need for signature minimal
detached quasi-regions.

Let In,m(∗)(∗) be the reduced set of all inner regions that have at most 4 internal vertices. Now In,m(∗)(∗)
is a fully enumerated representative set for (n,m)i by definition of a reduced set.

11.2 Enumerating Single Regions

We will now find fully enumerated representative sets for single regions.

11.2.1 (2, 1)s-regions

By Lemma 9.12 a signature minimal (2, 1)s(1,2)(∗)-region can have at most 4 internal vertices. Let

S2,1
(1,2)(∗) be the reduced set of (2, 1)s(1,2)(∗)-regions that have at most 4 internal vertices, and it is a

fully enumerated representative set by definition.
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11.2.2 (2, 2)s-regions

11.2.2.1 (2, 2)s(1,∗)(∗,2)-regions

a

b
c

d

3̂

empty

Figure 11.1

a

b
c

d

3̂

3̂

empty

empty

Figure 11.2
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d

3̂

3̂

i4̂

empty

empty

Figure 11.3
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b
c

d

3̂

i3̂

empty

empty

Figure 11.4

a

b
c

d
3̂

i3̂

empty

empty

Figure 11.5

a

b
c

d

i2̂

empty

empty

Figure 11.6

Lemma 11.1. The reduced set S2,2
(1,∗)(∗,2) enumerated by the figures X ={11.1, 11.2, 11.3, 11.5,

11.4, 11.6} is a fully enumerated representative set for (2, 2)s(1,∗)(∗,2).

Proof. Let R be a detached quasi-region of type (2, 2)s(1,∗)(∗,2), and let Nt = (a, b, c), Nb = (a, d, c).

If there is a (b, d)-edge present, then it can be decomposed according to Figure 11.1. If there is a
(b, d) path on two edges present, then it can be decomposed according to Figure 11.2.

If there is no (b, d)-edge or (b, d)-path present we can find two disjoint nooses from a to c by Lemma
9.2, defining an inner region. Because R is a single detached quasi-region, it is adjacent to any vertex
on these nooses, except maybe c, so if any of the nooses is of length ≥ 3, we can also find a noose
of length ≤ 2. Look at a maximal such inner region R̃ made from nooses of length ≤ 2:
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• If R̃ is of (2, 2)i(1)(1)-type, let the vertices on the inner nooses be Ñt = (a, b̃, c) and Ñb = (a, d̃, c).

By Lemma 9.7 there must be edges (b, b̃) and (d, d̃) present. In this case R can be decomposed
according to Figure 11.3.

• If R̃ is of (2, 1)i(1)()-type, let the vertices on the inner nooses be Ñt = (a, b̃, c) and Ñb = (a, c).

By Lemma 9.7 there must be an edge (b, b̃) present, and by Lemma 9.8 there cannot be vertices
in the face made by Ñb and Nb. In this case R can be decomposed according to Figure 11.4.

• If R̃ is of (1, 2)i()(1)-type, symmetric arguments show it can be decomposed according to Figure
11.5.

• If R̃ is of (2, 1)i(1)()-type, let the the inner nooses be Ñt and Ñb. By Lemma 9.8 there is no

vertices in the face made by Nt and Ñt, and no vertices in the face made by Nb and Ñb. R
can therefore be decomposed according to Figure 11.6.

This means that any quasi-region of type (2, 2)s(1,2)(1,2) can be decomposed by a figure in X , and by

Lemma 10.11 enum(X ) is a fully enumerated representative set for (2, 2)s(1,2)(1,2).

11.3 (3, 2)s-regions

11.3.1 (3, 2)s(1,2,3)(1,∗)-regions
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Figure 11.7
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Figure 11.12

Lemma 11.2. The reduced set S3,2
(1,2,3)(1,∗) enumerated by the figures X ={11.7, 11.8, 11.9, 11.10,

11.11, 11.12} is a fully enumerated representative set for (3, 2)s(1,2,3)(1,∗).

Proof. Let R be a quasi-region of type (3, 2)s(1,2,3)(1,∗), and let Nt = (a, b, c, d), Nb = (a, e, d). If there

is an (c, e)-edge present, it can be decomposed according to Figure 11.7, if there is an (b, d)-edge
present, it can be decomposed according to Figure 11.8, and if there is an (b, e)-edge present, it can
be decomposed according to Figure 11.9.
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If (b, d) and (b, e) edges are not present, then we know by Lemma 9.2 that we can find a noose from
a to c. Notice that since a is adjacent to all internal vertices, if there is an (a, c)-noose, then there
is also one of length ≤ 2. Consider the bottommost such noose. If this noose is of length 1, the
region can be decomposed according to Figure 11.10. If the noose is of length 2, let this noose be
Ñ = (a, d̃, c). d̃ must be adjacent to d or e, if not Ñ would not be the bottommost noose. If the
edge ( ˜d, d) is present, the R can be decomposed according to Figure 11.11, while if that is not the
case then the edge (d̃, e) must be present, and R can be decomposed according to Figure 11.12

This means that any quasi-region of type (3, 2)s(1,2,3)(1,2) can be decomposed by a figure in X , and

by Lemma 10.11 enum(X ) is a fully enumerated representative set for (3, 2)s(1,2,3)(1,2).

11.3.2 (3, 3)s(1,2,3)(1,2,3)-regions
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Lemma 11.3. The reduced set S3,3 enumerated by the figures X ={11.13, 11.14, 11.15, 11.16,
11.17, 11.18} is a fully enumerated representative set for (3, 3)s.

Proof. Let R be a quasi-region of type (3, 3)s, and let Nt = (a, b, c, d), Nb = (a, f, e, d). If there
is an (c, e)-edge present, it can be decomposed according to Figure 11.13, if there is an (b, d)-edge
present, it can be decomposed according to Figure 11.14, if there is an (b, e)-edge present, it can be
decomposed according to Figure 11.15, and if there is an (b, f)-edge present, it can be decomposed
according to Figure 11.16.

If there are no (c, e), (b, d), (b, e) and (b, f) edges present, then by Lemma 9.2 we can find a noose
from a to d. Since a is adjacent to every internal vertex of R, if there is such a noose then there’s
also a noose of length ≤ 2. Consider on such noose of length ≤ 2. If it has length 1, then R can be
decomposed according to Figure 11.17. If it has length 2, then R can be decomposed according to
Figure 11.18.

This means that any quasi-region of type (3, 3)s can be decomposed by a figure in X , and by Lemma
10.11 enum(X ) is a fully enumerated representative set for (3, 3)s.
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11.4 (2, 1)n-regions

By Lemma 9.13 these regions can have at most 2 internal vertices. Let N2,1
(1,2)(∗) be the reduced set of

(2, 1)n(1,2)(∗)-regions that have at most 2 internal vertices. The set is a fully enumerated representative
set by definition.

11.5 (2, 2)s,n-regions

By Lemma 9.14 these regions can have at most 4 internal vertices. Let N2,2
(1,2)(∗,2) be the reduced

set of (2, 2)n(1,2)(∗,2)-regions that have at most 4 internal vertices. The set is a fully enumerated
representative set by definition.

11.6 (2, 1)-regions
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Lemma 11.4. The reduced set R2,1 enumerated by the figures X ={11.21, 11.20, 11.19} is a fully
enumerated representative set for (2, 1).

Proof. Let R be a quasi-region of type (2, 1). Notice that there will always be two a − c nooses
Ñt, Ñb, defining an inner region. Consider an maximal inner region:

• In the case of |Ñt| = 3, let Ñt = (a, b̃, c̃, c), Ñb = (a, c). By Lemma 9.2 edges (b, b̃) and (b, c̃)
must be present, and R can be decomposed according to Figure 11.19.

• In the case of |Ñt| = 2, let Ñt = (a, b̃, c), Ñb = (a, c). By Lemma 9.2 edge (b, b̃) must be
present, and by Lemma 9.8 there cannot be vertices in the face made up by Nt and Ñt. In
that case R can be decomposed according to Figure 11.20.

• In the case of |Ñt| = 1, let Ñt = (a, c), Ñb = (a, c). By Lemma 9.8 there cannot be vertices in
the face made up by Nt and Ñt. In that case R can be decomposed according to Figure 11.21.
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11.7 (2, 2)-regions
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Lemma 11.5. The reduced set R2,2 enumerated by the figures X ={11.22, 11.23, 11.24, 11.25,
11.26, 11.27, 11.28, 11.29} is a fully enumerated representative set for (2, 2).

Proof. Let R be a quasi-region of type (2, 2), and Nt = (a, b, c) and Nb = (a, d, c). If there is an
(b, d)-edge present it can be decomposed according to Figure 11.22. If there is an (b, d)-path of length
2 present R can be decomposed according to Figure 11.23.

If there is no (b, d)-edge or (b, d)-path present we can find two disjoint nooses Ñt and Ñb from a to
c by Lemma 9.2, defining an inner region. Consider a maximal such inner region:

• If |Ñt| = 3 let Ñt = (a, b̃, c̃, c). By Lemma 9.7 the edges (b, b̃) and (b, c̃) must be present.

– If |Ñb| = 3 let Ñb = (a, f̃ , ẽ, c). By Lemma 9.7 the edges (d, f̃) and (d, ẽ) must be present,
and R can be decomposed according to Figure 11.24.

– If |Ñb| = 2 let Ñb = (a, ẽ, c). By Lemma 9.7 the edge (d, ẽ) must be present, and the
face made up by Ñb and Nb must be empty by Lemma 9.8 and R can be decomposed
according to Figure 11.25.

– If If |Ñb| = 1 let Ñb = (a, c). By Lemma 9.8 the face made up by Ñb and Nb can contain
no vertices. R can be decomposed according to Figure 11.27.

80



• If |Ñt| = 2 let Ñt = (a, b̃, c). By Lemma 9.7 the edge (b, b̃) must be present, and the face made
up by Ñb and Nb must be empty by Lemma 9.8.

– If |Ñb| = 2 let Ñb = (a, ẽ, c). By Lemma 9.7 the edge (d, ẽ) must be present, and the
face made up by Ñt and Nt can contain no vertices by Lemma 9.8. Then and R can be
decomposed according to Figure 11.26.

– If If |Ñb| = 1 let Ñb = (a, c). By Lemma 9.8 the face made up by Ñt and Nt can contain
no vertices. R can be decomposed according to Figure 11.28.

• If |Ñt| = 1 let Ñt = (a, c). The face made up by Ñb and Nb must be empty by Lemma 9.8.

– If If |Ñb| = 1 let Ñb = (a, c). By Lemma 9.8 the face made up by Ñt and Nt can contain
no vertices. R can be decomposed according to Figure 11.29.

This means that any quasi-region of type (2, 2) can be decomposed by a figure in X , and by Lemma
10.11 enum(X ) is a fully enumerated representative set for (2, 2).

11.8 (3, 1)-regions
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Lemma 11.6. The reduced set R3,1 enumerated by the figures X ={11.30, 11.31, 11.32, 11.33,
11.34} is a fully enumerated representative set for (3, 1).

Proof. Let R be a quasi-region of type (3, 1), and Nt = (a, b, c, d) and Nb = (a, d). If there is a
(a, c)-edge present, then R can be decomposed according to Figure 11.33.

If there is no (a, c)-edge, notice that there will always be two a− d nooses Ñt, Ñb, defining an inner
region. Consider an maximal inner region:

• If |Ñt| = 3, let Ñt = (a, b̃, c̃, d). By Lemma 9.7 the edge (b, b̃) must be present, and at least
one of (b, c̃) and (c, c̃). If (b, c̃) is present, then R ca be decomposed according to Figure 11.30.
If not, then (c, c̃) must be present and R ca be decomposed according to Figure 11.31.

• If |Ñt| = 2, let Ñt = (a, b̃, d). By Lemma 9.7 the edge (b, b̃) must be present, and by Lemma
9.8 the face made up by Nt and Ñt can contain no vertices. There might be an (c, b̃)-edge, and
R ca be decomposed according to Figure 11.32.

• If |Ñt| = 1, let Ñt = (a, d). By Lemma 9.8 the face made up by Nt and Ñt can contain no
vertices, and R ca be decomposed according to Figure 11.34.
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This means that any quasi-region of type (3, 1) can be decomposed by a figure in X , and by Lemma
10.11 enum(X ) is a fully enumerated representative set for (3, 1).

11.9 (3, 2)-regions
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Lemma 11.7. The reduced set R3,2 enumerated by the figures X ={11.35,. . ., 11.51} is a fully
enumerated representative set for (3, 2).

Proof. Let R′ be a detached quasi-region of type (3, 2), and let R be signature minimal such that
R ≤ R′. Note that if the inner quasi-regions are non-empty, then the outer single regions in such
a signature minimal region is of the non-dominator type by the arguments in Section 9.3. Let
Nt = (a, b, c, d) and Nb = (a, e, d) be the nooses of R. If there is an (b, d)-edge present (or by
symmetry an (a, c)-edge) it can be decomposed according to Figure 11.35. If there is an (c, e)-edge
present (or by symmetry an (b, e)-edge) it can be decomposed according to Figure 11.36. If there is
an (c, e)-path of length 2 present (or by symmetry an (c, e)-path) R can be decomposed according
to Figure 11.37.

If there is no (b, d)-edge, (c, e)-edge or (c, e)-path (or symmetries) present we can find two disjoint
nooses Ñt and Ñb from a to d by Lemma 9.2, defining an inner region. Consider a maximal such
inner quasi-region:

• If |Ñt| = 3 and |Ñb| = 3, let Ñt = (a, b̃, c̃, d) and Ñb = (a, f̃ , ẽ, c). By Lemma 9.7 the edges
(b, b̃) (or by symmetry (c, c̃)) , (e, f̃) and (e, ẽ) must be present, and at least one of (b, c̃) and
(c, c̃) must be present.

– If (c, c̃) is present then there are two options:

∗ If the inner region contains no vertices, the (b, c̃)-edge might be there, and R can be
decomposed according to Figure 11.50.

∗ If the inner region contains vertices, the (b, c̃)-edge might be there, then R can be
decomposed according to Figure 11.39.

– If (c, c̃) is not present then there are two options:

∗ If the inner region contains no vertices, the (b, c̃)-edge must be there, and R can be
decomposed according to Figure 11.51.

∗ If the inner region contains vertices, the (b, c̃)-edge must be there, then R can be
decomposed according to Figure 11.38.

• If |Ñt| = 3 and |Ñb| = 2, let Ñt = (a, b̃, c̃, d) and Ñb = (a, ẽ, c). By Lemma 9.7 the edges (b, b̃)
and (e, ẽ) must be present, and at least one of (b, c̃) and (c, c̃) must be present. The face made
up by Nb and Ñb cannot contain vertices by Lemma 9.8.
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– If (b, c̃) is present then R can be decomposed according to Figure 11.40.

– If (b, c̃) is not present then (c, c̃) must be present, and R can be decomposed according
to Figure 11.41.

• If |Ñt| = 3 and |Ñb| = 1, let Ñt = (a, b̃, c̃, d) and Ñb = (a, c). By Lemma 9.7 the edge (b, b̃)
must be present, and at least one of (b, c̃) and (c, c̃) must be present. The face made up by Nb

and Ñb cannot contain vertices by Lemma 9.8.

– If (b, c̃) is present then R can be decomposed according to Figure 11.42.

– If (b, c̃) is not present then (c, c̃) must be present, and R can be decomposed according
to Figure 11.43.

• If |Ñt| = 2 and |Ñb| = 3, let Ñt = (a, b̃, d) and Ñb = (a, ẽ, d̃, d). By Lemma 9.7 the edges (b, b̃),
(e, ẽ) and (e, d̃) must be present, and (c, b̃) might be present. R can be decomposed according
to Figure 11.44.

• If |Ñt| = 2 and |Ñb| = 2, let Ñt = (a, b̃, d) and Ñb = (a, d̃, d). By Lemma 9.7 the edges (b, b̃)
and (e, d̃) must be present, and (c, b̃) might be present. R can be decomposed according to
Figure 11.46.

• If |Ñt| = 2 and |Ñb| = 1, let Ñt = (a, b̃, d) and Ñb = (a, d). By Lemma 9.7 the edge (b, b̃) must
be present, and (c, b̃) might be present. R can be decomposed according to Figure 11.47.

• If |Ñt| = 1 and |Ñb| = 3, let Ñt = (a, d) and Ñb = (a, d̃, c̃, d). By Lemma 9.7 the edges (e, d̃)
and (e, c̃) must be present, and R can be decomposed according to Figure 11.45.

• If |Ñt| = 1 and |Ñb| = 2, let Ñt = (a, d) and Ñb = (a, c̃, d). By Lemma 9.7 the edge (e, c̃) must
be present, and R can be decomposed according to Figure 11.48.

• If |Ñt| = 1 and |Ñb| = 1, let Ñt = (a, d) and Ñb = (a, d). By Lemma 9.8 the face made up
by Nt and Ñt and the face made up by Nt and Ñt can neither contain vertices, and R can be
decomposed according to Figure 11.49.

Since we could find a region R ≤ R′ that was decomposable by a figure in X , by Lemma 10.11 R3,2

is fully enumerated representative set for (3, 2).

11.10 (3, 3)-regions
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Lemma 11.8. The reduced set R3,3 enumerated by the figures X =[FIGURES] is a fully enumerated
representative set for (3, 2).

Proof. Let R′ be a detached quasi-region of type (3, 3), and let R be signature minimal such that
R ≤ R′. Note that if the inner quasi-regions are non-empty, then the outer single regions in such
a signature minimal region is of the non-dominator type by the arguments in Section 9.3. Let
Nt = (a, b, c, d) and Nb = (a, f, e, d) be the nooses of R. If there is a (b, d)-edge present (or by
symmetry a (a, c)-, (d, f)- or (a, e)-edge), then R can be decomposed according to 11.52. If there is
a (c, e)-edge present (or a (b, f)-edge by symmetry) then R can be decomposed according to 11.53.
If there is a (b, e)-edge present (or by symmetry a (c, f)-edge), then R can be decomposed according
to 11.54.

If there is a path from c to e of length 2 (or from b to f by symmetry), then R can be decomposed
according to 11.55. If there is a path from b to e of length 2 (or from c to f by symmetry), then R
can be decomposed according to 11.56.

If none of the above are present we can find two disjoint nooses Ñt and Ñb from a to d by Lemma
9.2, defining an inner region. Consider a maximal such inner quasi-region. We will look at the area
between Nt and Ñt first. We can consider all symmetries here.

• |Ñt| = 3, let Ñt = (a, b̃, c̃, d). By Lemma 9.7 the edge (b, b̃) (or by symmetry (c, c̃)) must be
present, and at least one of (b, c̃) and (c, c̃) must be present.

– If (c, c̃) is present, the edge (b, c̃) might be present. Either the inner quasi-region is
empty, denote this case as CASE3-TOP-33-EMPTY, or it is non-empty, denote this case
as CASE3-TOP-33-NONEMPTY.

– If (c, c̃) is not present, the edge (b, c̃) must be present. Either the inner quasi-region is
empty, denote this case as CASE3-TOP-34-EMPTY, or it is non-empty, denote this case
as CASE3-TOP-34-NONEMPTY.

• |Ñt| = 2, let Ñt = (a, b̃, d). The edge (b, b̃) (or (c, b̃) by symmetry) must be present, and (c, b̃)
might be. By Lemma 9.8 there are no edges in area(Nt, Ñt). Denote this CASE2-TOP.

• |Ñt| = 1, let Ñt = (a, d). By Lemma 9.8 there are no edges in area(Nt, Ñt). Denote this case
as CASE1-TOP.

Now we do the same for the area between Nb and Ñb. This time we cannot rely on symmetry
arguments, since we did that for the top part.
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• |Ñb| = 3, let Ñb = (a, f̃ , ẽ, d). By Lemma 9.7 at least one of the edges (f, f̃) and e, f̃) must be
present.

– If (f, f̃) is present, at least one of (f, ẽ) and (e, ẽ) must be present.

∗ If (e, ẽ) is present, one of the edges (f, ẽ) and (e, f̃) might be present. Either the
inner quasi-region is empty, denote this case as CASE3-BOT-33-EMPTY, or it is
non-empty, denote this case as CASE3-BOT-33-NONEMPTY.

∗ If (e, ẽ) is not present, then (f, ẽ) must be present. Either the inner quasi-region is
empty, denote this case as CASE3-BOT-34-EMPTY, or it is non-empty, denote this
case as CASE3-BOT-34-NONEMPTY.

– If (f, f̃) is not present, then (f, ẽ) and (e, ẽ) must be present. Either the inner quasi-region
is empty, denote this case as CASE3-BOT-43-EMPTY, or it is non-empty, denote this
case as CASE3-BOT-43-NONEMPTY.

• |Ñb| = 2, let Ñb = (a, ẽ, d). At least one of the edges (f, ẽ) and e, ẽ) must be present. And the
area between Nb and Ñb cannot contain any vertices.

– If (f, ẽ) is present, the edge (e, ẽ) might be present. Denote this case as CASE2-BOT-fe.

– If (e, ẽ) is present, the edge (f, ẽ) might be present. Denote this case as CASE2-BOT-ee.

• |Ñb| = 1, let Ñb = (a, d). The area between Nb and Ñb cannot contain any vertices. CASE1-
BOT.

Now we can combine the compatible top and bottom cases into all possible ways of decomposing R.
Top cases with empty inner quasi-region are {CASE3-TOP-33-EMPTY, CASE3-TOP-34-EMPTY},
and for bottom cases we have {CASE3-BOT-33-EMPTY, CASE3-BOT-34-EMPTY, CASE3-BOT-
43-EMPTY}. The combinations and figure that decompose R in that case are:

• CASE3-TOP-33-EMPTY + CASE3-BOT-33-EMPTY = Figure 11.72

• CASE3-TOP-33-EMPTY + CASE3-BOT-34-EMPTY = Figure 11.71

• CASE3-TOP-33-EMPTY + CASE3-BOT-43-EMPTY = Figure 11.71

• CASE3-TOP-34-EMPTY + CASE3-BOT-33-EMPTY = Figure 11.71

• CASE3-TOP-34-EMPTY + CASE3-BOT-34-EMPTY = Figure 11.73

• CASE3-TOP-34-EMPTY + CASE3-BOT-43-EMPTY = Figure 11.70

Cases where we use a general inner quasi-region (since it turned out to be fast enough for our program)
are for top cases {CASE3-TOP-33-NONEMPTY, CASE3-TOP-34-NONEMPTY, CASE2-TOP-33,
CASE1-TOP}. Bottom cases are {CASE3-BOT-33-NONEMPTY, CASE3-BOT-43-NONEMPTY,
CASE3-BOT-34-NONEMPTY, CASE2-BOT-fe, CASE2-BOT-ee, CASE1-BOT}. This combines
into

• CASE3-TOP-33-NONEMPTY + CASE3-BOT-33-NONEMPTY = Figure 11.60

• CASE3-TOP-33-NONEMPTY + CASE3-BOT-43-NONEMPTY = Figure 11.59

• CASE3-TOP-33-NONEMPTY + CASE3-BOT-34-NONEMPTY = Figure 11.59

• CASE3-TOP-33-NONEMPTY + CASE2-BOT-fe = Figure 11.61

• CASE3-TOP-33-NONEMPTY + CASE2-BOT-ee = Figure 11.61

• CASE3-TOP-33-NONEMPTY + CASE1-BOT = Figure 11.67

• CASE3-TOP-34-NONEMPTY + CASE3-BOT-33-NONEMPTY = Figure 11.59

• CASE3-TOP-34-NONEMPTY + CASE3-BOT-43-NONEMPTY = Figure 11.58
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• CASE3-TOP-34-NONEMPTY + CASE3-BOT-34-NONEMPTY = Figure 11.57

• CASE3-TOP-34-NONEMPTY + CASE2-BOT-fe = Figure 11.62

• CASE3-TOP-34-NONEMPTY + CASE2-BOT-ee = Figure 11.63

• CASE3-TOP-34-NONEMPTY + CASE1-BOT = Figure 11.66

• CASE2-TOP + CASE2-BOT-fe = Figure 11.64

• CASE2-TOP + CASE2-BOT-ee = Figure 11.65

• CASE2-TOP + CASE1-BOT = Figure 11.68

• CASE1-TOP + CASE1-BOT = Figure 11.69

The rest of the combinations are symmetric to the above. Since we could find a region R ≤ R′ that
was decomposable by a figure in X , by Lemma 10.11 R3,3 is fully enumerated representative set for
(3, 3).
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Chapter 12

Implementation and Results

The program performing the enumeration as described was implemented in C++ and is available
on GitHub [14]. The program starts by enumerating the small regions and gradually build bigger
regions. It will also save one signature minimal detached region for each signature found. Note that
it is a parallel program, and should be run on a computer supporting many simultaneous threads to
speed it up. In our case it was run on a 72 core computer, using about 4 days to find a signature
minimal representative for the signatures of all detached region types.

An alternative implementation was also done by my supervisor Daniel Lokshtanov, using a different
approach to finding signature minimal detached regions. This implementation gave the same results,
that is the same set of signatures, and the same size of the signature minimal detached region
corresponding to a given signature. Note that the two implementations don’t necessarily find the
exact same representative for a given signature, as there might be more than one signature minimal
representative corresponding to the signature. The implementation done in this thesis keeps the
first one found. Since it is parallel this even means that this particular implementation may find
different signature minimal representatives each time it’s run!

After running the signature generator and inspecting the results, the biggest signature minimal
detached regions have size 14 vertices (including the two endpoints). There are 7 of them (not
counting symmetric regions), and they are shown in Figure 12.1. In the case of single regions, the
biggest ones of boundary size 4 are 7 (including the two endpoints). This is the proof for Lemma
7.22. For Lemma 7.21, note that the program takes no input, and by definition runs in constant,
O(1) time. In practical cases, note that one would save the results of the program to a file, and load
it each time it is invoked, instead of actually running the whole enumeration each time.
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Figure 12.1: The largest signature minimal regions (symmetries not shown).
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Chapter 13

Conclusions

In this thesis we explored the technique of Region Decomposition for finding kernels for Planar
Dominating Set. We first redefined some concepts used in earlier work, fixing some ambiguities
on the way. From those concepts we ended up at the 335k kernel upper bound from Alber et al[2].
We then built on the results of Chen et al.[6] to improve this upper bound to 55k.

In the last part of the thesis we made use of a computer program to exhaustively search for reduced
instances of regions, to be used together with the Region Decomposition technique. From the
results from the computer program we were able to conclude that any region used in a Region
Decomposition always can be reduced to an equivalent region having 12 vertices or less, in addition
to its to endpoints. This let us arrive at a 43k kernel for Planar Dominating Set, but take into
account the Words of Warning at the beginning of Part III.

13.1 Open Problems

How much smaller can the Planar Dominating Set kernel get? It has been shown a 2k lower
bound on how small problem kernels one can hope to possibly find for Planar Dominating Set[6].
It would be interesting to see how close one could get the lower and upper bounds, and maybe even
find tight bounds.

We showed that the worst-case size for fully reduced regions is 12, which means they cannot be
made smaller than this without analyzing them together with the structure of the graph outside the
region. A possible approach could be to instead of looking at pairs of dominating vertices making
up a region, look at triples of dominators and make a decomposition where more vertices than those
shared by a pair of dominators can be analyzed together.

The computer-aided reduction technique should be applicable to other problems on planar graphs as
well. This approach should be possible to adapt as long as the problem instance can be decomposed
into regions, and a region signature that encodes how the region interact with the rest of the graph
can be defined.
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