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ABSTRACT  

The salmon louse (Lepeophtheirus salmonis) is a parasite living on mucus, skin and blood of 

salmonids fishes. L. salmonis causes lesions and infections on fish fins and skins and such 

physical damages often lead to other diseases. The global salmon farming industry faces huge 

economic losses caused by the prevalence of salmon lice and is struggling to contain frequent 

salmon lice outbreaks. Chemical treatments have been a traditional way to combat salmon lice 

problem, but increased resistance of salmon lice to currently available chemicals leave the 

salmon aquaculture communities with fewer options. Therefore, it is warranted to search for 

new, efficient and environment-friendly drugs which are based on molecular studies of 

nuclear receptors of salmon lice. Investigation of ecdysone receptor (EcR), which acts as a 

receptor for the ecdosteroid hormone, is one of such molecule-based new drug searches. The 

ecdosteroid hormone plays an important role during molting, maturation and reproduction 

processes of crustaceans. Ecdysteroid agonists for EcR that disrupt these processes could be 

novel pesticides to control salmon lice.  

In this study, expression constructs of L. salmonis ecdysone receptor (EcR) and ultraspiracle 

(USP), which forms a heterodimer with EcR, were made and they were expressed in E. coli. 

The EcR constructs (both ligand-binding domain and full-length) were expressed well, but the 

full-length USP construct was not expressed. Immobilised metal ion affinity chromatography 

(IMAC) was used to purify EcR proteins. The two EcR proteins, i.e., ligand-binding domain 

(LBD) and full-length EcR, bound very poorly to the Ni-resin. The reason can be that the 6x 

His tag was buried inside of the MBP-attached EcR protein, thus it was not available to the 

Ni-resin. To circumvent this challenge, ion-exchange chromatography (IEC) was employed. 

At a very low salt concentration (6.7 mM NaCl), the EcR proteins were eluted as 

flowthrough, whereas much of impurities remained in the column, hence achieving substantial 

purification. As the last step of purification, size exclusion chromatography (SEC) was used. 

The proteins were eluted at near the void volume, suggesting they are in a form of aggregates 

under the experimental conditions. With partially purified EcR-LBD, a binding study between 

EcR-LBD using isothermal titration calorimetry (ITC) was attempted. 
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1 INTRODUCTION 

1.1 Background 

Currently most of commercially available salmon come from salmon farming, which is 

dominated by just a few countries including Norway and Canada, and total world-wide 

farmed salmonids production was around two million tonnes (HOG) in 2013 (Salmon 

Farming Industry Handbook, 2014). One of the major threats to salmon farming is the sea 

louse Lepeophtheirus salmonis, which belongs to marine copepods of Caligidae family 

(Johnson et al., 1991). They are natural ectoparasites and commonly found in farmed (but also 

in wild) salmonids. The presence of sea lice was first recorded in 17th century and zoologist 

Henrik Nikolai Krøye in 1837 first named them. With the introduction of cage farming system 

in 1970, the spread of sea lice has recently become a major threat to salmon farming with 

frequent and economically devastating outbreaks. For example, around £305 millions in 2006 

alone were spent world-wide for sea lice treatment (Costello, 2009). Norway, which is a 

major aquaculture (especially salmon farming) country, bears significant loss due to sea lice, 

with direct economic loss of more than 500 million NOK (Institute of Marine Research, 

Norway-2013). The sea lice problem has exacerbated further recently. Recent estimation by 

Giskeodegard and Tonnessen shows that sea lice-related cost (mainly management and 

disease control) per kg of salmon in Norway has increased 4 NOK in last 4 years 

(Undercurrentnews, 2015).  

However, despite that sea lice cause a major problem to farmed salmonids, the effective drugs 

against sea lice are very limited. Furthermore, excessive use of these drugs has rapidly 

increased the resistance against them among sea lice and reduced drugs‟ sensitivity. This 

obvious dilemma has led to a search for new approaches against sea lice. One is a molecular 

approach, which aims to find novel risk-free and environment-friendly drugs. The other is a 

biological approach using predators. Among fishes eating sea lice are lumpfish and wrasse 

while wrasse has recently become more popular among fish farmers. The aforementioned sea 

lice problems are not limited to farmed fish. In fact, wide infestation of sea lice in farmed 

salmon also affects wild salmonid population and causes ecological imbalance (Bjorn et al., 

2001; Krkosek et al., 2013).  
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1.2 Salmon louse (Lepeophtheirus salmonis)  

Salmon louse is the member of phylum Arthropoda, sub-phylum Crustacea, subclass 

Copepod, order Siphonostomatoida and family Caligidae. Salt-sensitive salmon lice use 

salmonids as their host and survive in high-salinity sea water (Hahnenkamp et al., 1985; 

Tucker et al., 2000). They have 8 stages (Fig 1.2.1) in their life cycle and each stage is 

separated by moulting (Hamre et al., 2013). The entry stage of life cycle begins when matured 

female release egg-strings. Matured female L. salmonis can release on average ten pairs of 

egg strings during their life cycle and the egg numbers per string can be one hundred to 

several hundred (Heuch et al., 2000). The life cycle begins when planktonic Naupli hatch 

from egg-strings. Naupli stage consists of 2 stages nauplius 1 and 2. Nuaplius 1 persist for 9 h 

to 52 h and duration of Nuaplius 2 is 170 h to 36 h. From nauplius they enter into infective 

copepodid stage and this stage persist for 2 to 14 days depending on the temperature. At this 

stage, salmon louse searches for the host and depends on the fat reservoir for survival. When 

they get the host, attach themselves on the fins of the fish or the scales and enter into chalimus 

stages. At chalimus stages (Chalimus stages 1 and 2), louse attach to the host with frontal 

filament and then followed by stage pre-adult 1 and 2. Genital development occurs during the 

pre-adult stage (Johnson and Albright, 1991; Schram, 1993). After pre-adult stage, they 

transform into adult. During pre-adult and adult stage louse can move freely on the host 

surface but more commonly found on the head and fins. The mean length of matured sea 

louse is around 6-7 mm and female is bit larger than male. 
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Figure 1.2.1 Salmon louse lifecycle. The approximate length is in millimetre (MM) and each 

transition state is indicated by arrow (Maran et al., 2013, originally taken from Schram, 1993). 

 

1.3 Infection by salmon louse and host response 

As previously mentioned, copepodid attach themselves with host via second antennae and 

first maxilla. Chalimus start to consume skin and mucus from the frontal filament region of 

the host. With the time, salmon louse becomes adult and start moving freely on surface of 

host using their maxilla and cephalothorax. Adult louse can also move to a new host 

especially when the host density is high. To get a host, louse use positional and chemical cues 

(Mordue and Birkett, 2009). During infectious stage, they normally cause skin erosion to the 

host and the damage depends on the level of infection (Johnson and Albright, 1991). If the 

infection level is high, skin erosion turn into large open wound and cranial bones become 

visible (Wootten et al., 1982). This large open wound often leads to pathway for other 

secondary pathogen like bacterial or fungal (Egidius, 1985). During pre-adult and adult stage 

when lice attached and feed on host, some clinical signs appear like Edema, hyperplasia, 

inflammation, damage of epidermal cell etc. (Jonsdottir et al., 1992). 
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At adult stage, for survival, lice consume mucus, skin tissue and blood of salmonids. During 

feeding they secret low molecular weight proteins and some other molecules like trypsin, 

prostaglandin E2 (PGE2) etc. Trypsin is digestive peptidases which serve for digestion of 

food and some cases to avoid immune response of host (Fast et al., 2005; Wagner et al., 

2008). PGE2 inhibits interleukin-2 expression in the host which is a signalling molecule in the 

immune system. PGE2 may also acts as anti-hemostatic, anti-inflammatory (Riveiro et al., 

1985; Aljamali et al., 2002). 

Salmon louse infected host immediately responses to infection by changing mucus 

consistency, electrolyte balance, cortisol release, epithelium damage etc. As a result immune 

response decreases and make susceptible to other diseases. Physical activities of host like 

reproduction, homeostasis are also deeply affected in the host (Johnson and Albright, 1992; 

Ross et al., 2000). Some study has shown that salmon louse may also act as carrier to salmon 

for other infectious bacteria and virus like Aeromonas salmonicida, Salmon anemia virus etc 

(Nylund et al., 1993). 

1.4 Chemical treatment 

Chemical treatment to the infected fish is given either as bath treatment or medicated food. 

Chemicals that are delivered to the fish as bath treatment are known as pesticides and those 

that are delivered as medicated food known as drugs (Department of Fisheries and Oceans, 

2013). Commonly used pesticides during bath treatment are organophosphates, pyrethroids, 

hydrogen peroxide, chitin synthesis inhibitors etc. In bath treatment all fish get exposed to the 

pesticides equally. Simultaneously non-target species can also be affected when these 

pesticides get release to the environment which is the important drawback of bath treatment. 

(Haya et al., 2005). In medicated food, drugs are delivered to the fish with food. Most widely 

used drugs are emamectin benzoate, benzoyl ureas, dichlorvos etc. As the drugs are given 

with food, some fish may have over dose of drugs due to consuming more food and other 

fishes may have under dose of drugs due to consuming less food (Grant, 2002; Norwegian 

Food Safety Authrority, 2013). Dependence on chemical treatments and excessive uses are 

reducing their sensitivity among sea lice.  
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1.5 Salmon louse management  

To control salmon louse, integrated pest management programs have been recommended in 

several countries. Using of cleaner fish is a widely adopted biological control method to 

combat salmon louse infection. Cleaner fish develops symbiotic relationship with other fish 

where both partner become benefitted. In 1987, Asmund Bjordal first observed the cleaning of 

Atlantic salmon by wrasse (Costello and Bjordal, 1990).  Wrasse is a small carnivore marine 

fish. They can efficiently eat and remove dead skins and ectoparasites from the surface of 

other fish. Sometimes they also feed on healthy tissue and mucus of symbiotic partner which 

brings health hazard for partner. During winter season, mortality rate of wrasse increases 

which makes problem for maintenance of them for next year use (Torrissen et al., 2013; 

Imsland et al., 2014). 

Biological control is environmental friendly but it has maintenance problems and high 

economic cost. On contrast, chemical treatment is effective but resistance to chemical 

treatment is increasing alarmingly. That‟s why researchers are trying to develop new medicine 

against salmon louse specially inhibiting developmental process of insects. Some nuclear 

receptors play important regulatory role in sea lice development. Designing of drug targeting 

these specific nuclear receptors may open new era in controlling salmon louse. 

1.6 Nuclear receptor 

Nuclear receptors are transcription factors. When a ligand binds to the receptor, specific genes 

are expressed and regulate important physiological activities of organism like development, 

homeostasis, and metabolism etc. (Solt et al., 2011). For the nuclear receptor, ligands are 

steroid hormones, vitamin D, ecdysone, retinoic acids and thyroid hormones. According to 

recent studies, there are also some other ligands for nuclear receptor like fatty acids, 

oxysterols, farnesolmetabolites, leukotriene B4 and prostaglandin J2 (Forman et al., 1995; 

Kliewer et al., 1995; Devchand et al., 1996; Janowski et al., 1996; Serhan, 1996). A nuclear 

receptor can also be without any ligand which is known as orphan receptor. It is not yet 

confirmed by the researcher whether orphan receptors have undiscovered ligand or not 

(Moore, 1990; Laudet et al., 1992; O‟Malley & Conneely, 1992; Enmark &Gustafsson, 1996). 

Depending on the structure, function and phylogenetic analysis, nuclear receptor superfamily 

has been classified into six subfamilies (Table 1.6.1). Receptors for known ligand are found in 

first 3 subfamilies, but orphan receptors can be found in any of the subfamilies. There is 

another subfamily which is different from the other six as this family member does not have 
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the common nuclear receptor structure in 4-5 functional domains (Laudet et al., 1992; Escriva 

et al., 1997; Laudet, 1997; Auwerx et al., 1999). Nuclear receptors are present in animals and 

absent in protists, algae and fungi (Escriva et al., 1998). Humans have 48 nuclear receptors 

(Zhang et al., 2004) while Nematode C. elegans contains large number of nuclear receptors 

which is around 270 (Bridgham et al., 2010). 

Table 1.6.1 Nuclear receptor superfamily with selected members. Adopted from Table of 

Nuclear Receptors (NRs) - http://nrresource.org/general_information/nrs.html. Cited 

15.04.2015. 

NR 

Superfamily 

 

Subfamily Name NR 

Superfamily 

Subfamily Name 

1 A TRα 3 

 

A ERa 

B RAR ERb 

C PPAR B ERR 

D HZF2 C 

 

GR 

F ROR MR 

H UR PR 

I VDR AR 

2 A HNF4 4 

 

A 

 

NURR1 

B RXR NGFIB 

C TR2 5 A SF1 

E TLL 6 A RTR 

F COUP-TFI 0 B SHP 

 

 

 

1.7 Structure and function of nuclear receptor 

Nuclear receptors have 4-5 common structural domains (Fig 1.7.1) (Martín, 2010). The N-

terminal region (A/B domain) is poorly conserved and contains activation function-1 (AF-1) 

domain. The AF-1 acts as ligand independent transcriptional activator. The DNA binding 

domain (C domain) is highly conserved which works to recognize specific sequence in 

promoter/enhancer regions of target gene. A short motif named P-box present in DBD gives 

the specificity of binding. Flexible domain D is present in between DBD and LBD domain 

and connects them together. Domain D has role in nuclear localization. The largest domain of 

http://nrresource.org/general_information/nrs.html
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nuclear receptor is ligand binding domain (LBD, E) which sequence is comparatively less 

conserved but secondary structure is highly conserved. It contains ligand dependent activation 

function 2 (AF-2) which is a transcriptional activator. Some nuclear receptor may have highly 

variable F domain at the C-terminus of the E domain. Function of F domain has not yet 

clarified by the researcher (Mangelsdorf et al., 1995; Glass et al., 1997). 

 

 

Figure1.7.1 General structure of nuclear receptor. Common domains of NR and their 

function with secondary structure of DBD(C) and LBD (E/F) are depicted. Adapted from 

Nuclear receptor resource: “Structure of NRs” - http://nrresource.org/_Media/structure-of-

nrs-2.png. Cited 02.04.2015. 

 

 

1.8 Ligand dependent activation of nuclear receptor 

There are 12 α-helices (H1-H12) and a short two-stranded antiparallel β-sheet (S1 and S2) in 

crystal structures of retinoid receptor LBD (Fig 1.8.1). These α-helices and β-sheets are 

arranged in a three-layered sandwich like structure and a ligand-binding pocket (LBP) is 

present in the lower part of domain. When inducing ligand (ATRA; 9-cis retinoic acid) is 

bound to the LBP, helix H12 changes in the ligand-binding cavity and allows the recruitment 

of transcription coactivator (CoA). Nevertheless, if antagonists bound to the LBP, H12 

become displaced. Then instead of transcription CoA, transcription corepressor (CoR) is 

recruited. Depending on the ligand biding, LBD maintains active or repressive state (Nagy 

and Schwabe, 2004; Bourguet et al., 2010). 
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Figure1.8.1 Crystal structures of LBD (RAR α). (A) Ligand induces LBD and H12 allows 

incorporation of coactivator (CoA, green). (B) Antagonists displace H12 and allow the 

recruitment of corepressor (CoR, violet) (Adopted from Bourguet et al., 2010). 

 

 

1.9 Ecdysone in arthropods 

The ecdysone receptor present in arthropods is a member of nuclear receptor superfamily. It 

operates as a heterodimer protein of ecdysone receptor (EcR) protein and ultraspiracle protein 

The USP is homolog of the vertebrate retinoid X receptor. The ligand for ecdysone receptor is 

ecdysteroid which regulates moulting event in crustaceans and insects (Nakagawa et al., 

2009). Ecdysone, 25-deoxyecdysone, 20-hydroxyecdysone (20-E) and Ponasterone A (25-

deoxy-20-hydroxyecdysone, Pon A) are the most common hormones of this steroid (Figure 

1.9.1.). A ligand binding pocket is formed within the LBD of EcR when EcR and USP 

heteromized. Several ligands such as 20-E, PonA can bind to this pocket (Billas et al., 2003; 

Carmichael et al., 2005; Browning et al., 2007; Iwema et al., 2007). Although ligands can 

directly bind to EcR receptor, binding is greatly enhanced by the addition of USP. In the 

presence of ligand, heterodimer EcR/USP complex become more stabilized and binding 

affinity for ecdysone response elements in the promoter region is also increased. 

 

 

CoA 

CoR 

H11 

H3 

H12 

H3 

H1 H1 
H9 H9 

H10 H10 

S3 β 1 

A 
B 
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                Ecdysone                                                           25-deoxyecdysone 

 

                             

20-hydroxyecdysone (20E)                         25-deoxy-20-hydroxyecdysone (PonA). 

Figure 1.9.1 Chemical structure of four ecdysteroids (Ecdysone, 25-deoxyecdysone, 20-

hydroxyecdysone & 25-deoxy-20-hydroxyecdysone). Structure from ChEBI: 

http://www.ebi.ac.uk/chebi/init.do. Cited 13.04.2015. 

 

 

1.10 Secretion of ecdysteroids  

In insects, ecdysteroid pathway begins with the secretion of prothoracicotropic hormone. This 

hormone makes ring gland to synthesize and release the steroid hormone ecdysone (E) 

(Gilbert et al., 2002). Then, cytochrome P-450 enzyme ecdysone-20-monooxygenase 

catalyses the conversion of E into biologically active metabolites Pon A and 20-E (Gilbert, 

2004). Researchers also reported that ecdysteroids can also be produced in Y-organs by some 

crustaceans. Y-organs secrete ecdysteroids into peripheral tissues where these ecdysteroids 
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are also modified into active metabolites (Mykles, 2011). As Y-organs are not present in L. 

salmonis, it is assumed that hypodermis may act as main source of ecdysteroids (Hopkins, 

2009) 

1.11 Ecdysone pathway in arthropods 

Ecdysteroids control target gene transcription by binding to EcR receptor which 

heterodimerizes to USP. In the absence of bound ecdysteroid, EcR/USP complex may also 

bind with hormone response elements (HREs) and repress the target gene expression by 

interacting with co-repressors (Hu et al., 2003). Ligand binding to receptor promotes the 

release of these co-repressors (Schubiger and Truman 2000; Tsai et al., 1999) and also 

contributes to the formation of binding site for coactivators in EcR/USP complex. Following 

ligand binding, EcR/USP complex binds to its HREs in a repeat sequence of reverse position 

containing a single intervening nucleotide. EcR/USP complex is placed in the promoter region 

of the ecdysteroid responsive genes by response element. Many of these ecdysteroid 

responsive genes represent transcription factors NRs which play important role in complex 

signalling pathway (Reviewed by King-Jones and Thummel, 2005). 

1.12 Ecdysone receptors as targets for insecticides and pesticides 

The ecdysteroid signalling pathway in arthropod species regulates important cellular events 

and also natural targets for pesticides. Researchers have found that some plants induce 

premature molting in insects by Pon A to protect themselves (Browning et al., 2007). 

Premature molting to insect leads to death and this principle has inspired to develop synthetic 

ecdysteroid molting accelerating compounds like tebufenozide, methoxyfenozide, 

chromafenozide and halofenozide to control various insect species (Dhadialla et al., 1998). 

The effects of synthetic ecdysteroid molting accelerating compounds on non-target arthropods 

are not clear yet (Kato et al., 2007). Study of the receptor system by cloning LBD of EcR, 

EcR and USP can help to develop more efficient and safe insecticides to control insects. 
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1.13 Protein expression 

Advancement in recombinant DNA technology and cloning has made it easier to express and 

isolate the target protein. For different purpose like medicine and food, large amount of 

protein production is desired (Biotechnology learning hub, 2014). There are many expression 

systems to produce the target protein in large amount. Some of the most widely used 

expression systems are bacteria, yeast, insect or mammalian system. The choice of expression 

system depends on time to be spent for expression, required amount of protein, where 

expressed protein will be secreted, type of post-translational modifications, how easy to 

handle the expression system etc.  Among different expression systems, gram-negative 

bacterium Escherichia coli (E. coli) is the most commonly used system for protein 

production. Bio-physical feature of E. coli allow themselves to adjust at different temperature 

and easy to manipulate genetically (Storz and Hengge-Aronis., 2000). E. coli is more suitable 

because it can be grown easily, low culture cost, and rapid biomass accumulation (Baneyx 

and Mujacic, 2004). 

E. coli provides different strains to produce protein. Among different strains, BL21 is more 

popular because it causes less protein degradation during purification as it does not contains 

outer membrane (OmpT) proteases. Within BL21 strain, T7 RNA polymerase containing 

system like BL21(DE3) is more commonly used for protein production (Baneyx, 2004; 

Sanderson and Skelly, 2007). BL21(DE3) provides high-level expression of non-toxic 

recombinant protein from T7 promoter-based expression system. For toxic recombinant 

protein, BL21(DE3)pLysS is preferable as it has T7 lysozyme gene to reduce basal level 

expression and allow to produce more toxic protein (Studier, 1991). E. coli BL21(DE3) has 

T7 RNA polymerase controlled by lacUV5 promoter (Bashiri et al., 2015). In pET vector, 

target gene is controlled by T7 promoter. To express the target protein, expression of 

T7RNAP has to be induced which can be done using non-metabolisable lactose analog IPTG 

(Isopropyl β-D-1-thiogalactopyranoside). IPTG will turn on lac operon and then protein 

expression will be induced (Bashiri et al., 2015). 

There are some major challenges of protein expression in bacterial expression system like 

over or very poor expression of protein, insoluble aggregation etc. Over expression gives the 

protein inactive, misfolded form and they accumulated through non-covalent hydrophobic or 

ionic interactions or a combination of both which is known as inclusion bodies. Inclusion 
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bodies can be solubilized using detergents and denaturants, like urea or guanidinium and then 

can be refold into the native and active conformation of the protein. Changing experimental 

conditions like temperature, cell strains, media condition or using the fusion partner, solubility 

of expressed protein can be improved (Mogk et al., 2002). In some cases, protein expressed as 

inclusion body is desired to obtain functional and active form of protein (Sorensen and 

Mortensen, 2005). 

1.14 The pET expression system 

Expression system carry the desired gene in a host and make thousands copy of that gene. For 

successful protein production, expression system needs a promoter compatible with host cell 

and ribosome binding site. Most commonly used expression system for protein production is 

T7 based pET expression system (Novagen, 2003). Number of commercially available 

different pET plasmids are around 40. These types of plasmids possess multiple cloning sites, 

promoters, protease cleavage sites, lacI gene which codes for the lac repressor protein, lac 

operator, an f1 origin of replication, antibiotic resistance gene etc. (Blaber, 1998).When target 

gene is incorporated into the vector and transformed into a host E. coli strain, T7 RNA 

polymerase starts to transcribe if lac operator is not repressed. 

1.15 Fusion partner  

In expression system, different fusion partner may be used with target gene. This fusion 

partner makes the purification and expression of recombinant proteins simpler. For rapid and 

efficient purification of proteins some commonly used fusion partners are His-tag (6-10 

histidine), GST (glutathione-s-transferase-211 aa), MBP (Maltose binding protein-396 aa) etc. 

Due to small size and almost no effect on target protein, His-tag is more widely used as fusion 

partner for rapid purification (Carson et al., 2007). A His-tag is fused with desired protein 

either in N or C terminus. Although His-tag can be short or long, generally six histidine 

residues are widely used which provides optimal interaction with matrix. 

To get soluble form of expressed protein in bacterial expression system is one of the major 

challenges. There are different fusion partners available with different characteristics to 

enhance the solubility of target protein. Some of the widely used fusion partner for improve 

solubility are MBP, NusA, GB1, Trx etc. MBP is a large fusion partner (43 kD), its efficiency 

to improve solubility is competitively higher than other tags. Although GB1 is a small in size 
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(56 residues) it is also a strong solubility enhancer (Dyson et al., 2004; Kataeva et al., 2005 

and Zhou et al., 2010). 

1.16 Position of fusion partner 

The position of tag can be either at N or C terminus of a target protein. More than one tag can 

also be used for improved purification and solubility. Some tag can be used for both 

purification and solubility purpose like glutathione-s-transferase (GST) tag, maltose binding 

protein (MBP). There are some positive sides of placing the tag at the N terminus site. 

Protease can remove the tag form N terminus more efficiently and some solubility enhancing 

tags like MBP, Trx, and NusA are more efficient when they are at N terminus (Sachdev and 

Chirgwin, 1998). 

1.17 Removal of the fusion partner 

A small linker connects the fusion partner to the target gene. This linker contains recognition 

site for specific endoprotease enzyme. TEV (tobacco etch virus) protease is commonly used 

to remove the fusion partner from target protein due to its high specificity. Fusion partner can 

also be removed chemically using cyanogen bromide (CNBr), hydroxylamine etc. But 

chemical cleavage requires solvents and denaturing condition which is harmful that‟s why this 

type of cleavage is not highly preferable (Dobeli et al., 1998; Fairlie et al., 2002). 

1.18 Protein purification 

Isolation of desired protein from complex mixtures as pure protein by different techniques is 

known as protein purification. The degree of desired purity depends on where protein is going 

to be used. If protein is going to be used for medical or food purpose it has to be highly 

purified. There is no certain technique to purify protein. Depending on the protein properties 

like solubility, charge, size etc. purification techniques are selected. 

Immobilized metal ion affinity chromatography (IMAC) is a widely used and reliable protein 

purification method which is based on the interaction between proteins and metal ions. The 

imidazole ring of histidin acts as electron donor and exhibits the strong interaction with metal 

ion (Co
2+

, Ni
2+

) on matrix. When protein solution is passed through the column, His-tag 

containing proteins are retained in column matrices which can be eluted later either changing 

pH or using high concentred imidazole to the column buffer (Porath, 1992; Cutler, 2004). 
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Depending on the reversible interaction between charged proteins and oppositely charged 

column materials, protein can be separated which is known as ion exchange chromatography. 

Protein samples are applied to an oppositely charged matrix in a column and then the proteins 

containing the opposite charge of matrix are bound to the matrix. The matrix of column can 

be either positively charged (anion exchange chromatography) or negatively charged (cation 

exchange chromatography). When the net charge of protein is negative then positively 

charged matrix is used in the column and if the net charge of protein is positive then 

negatively charged matrix is used. The net charge of protein is surrounding pH dependent. 

Bound proteins can be eluted by increasing the ionic strength or varying the pH of the elution 

buffer (Roe, 2001). 

In a gel filtration column, proteins are separated based on their sizes. Column is packed with 

porous matrix and then protein sample are run on the column. Large molecule will be eluted 

quickly from the column but small molecule will be eluted later as the small molecule can 

diffuse into the porous matrix (Porath and Flodin, 1959; Cutler, 2004). 

 

1.19 Study ligand analyte interaction by Isothermal Titration Calorimetry (ITC) 

Isothermal titration calorimetry (ITC) is a technique that allows the direct measurement of the 

binding affinity, Gibbs free energy of binding, enthalpy and entropy of binding interaction 

between two molecules depending on the heat changes (Perozzo et al., 2004). When binding 

occurs between two molecules either heat is released to the surroundings or absorbed from the 

surroundings depending on the bond type. During protein-ligand interaction generally non-

covalent interaction like hydrogen bonds and van der Waals occur (Freyer et al., 2008). 

In an ITC machine, there are two cells- a reaction cell and a reference cell. The reaction cell 

contains sample solution (analyte) and the reference cell contains either water or buffer. When 

ligands are added from the injection syringe to the sample solution, interaction between ligand 

and analyte occurs which accompanied by heat changes. In constant temperature this heat 

change can be monitored through power compensation. Depending on the power 

compensation, signal will be generated by ITC instrument as peak. Generated data through 

power compensation are used to study the interaction between ligand and analyte using 

different binding models (Freyer et al., 2008; Duff et al., 2011). 
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Besides ligand- analyte interaction, there are some other non-specific sources of heat change 

during ITC experiments which are avoided by performing control experiment (Bronowska, 

2011). 

 

1.20 Aim of the study 

The functional ecdysone receptor is formed by heterodimeraztion of EcR and USP and 

regulates several physiological processes. The ligand for this receptor are ecdosteroids for 

example, 20-hydroxyecdysone (20-E) and ponasterone A (25-deoxy-20-hydroxyecdysone, 

PonA) etc. Interaction patterns between ligand and L. salmonis ecdysone receptor are not 

resolved clearly yet. To better understand the mechanism of ligand binding and specifically to 

identify new possible ligands for ecdysone receptor from sea lice, the ecdysone receptor will 

be expressed, purified and used in ligand interaction assays. The aims of this project are: 

 

1. Cloning of EcR-LBD, full length EcR (LBD+DBD) and full length USP 

(LBD+DBD). 

2. Expression in suitable expression vector 

3. Optimization of protein purification. 

4. Interaction study of ligand e.g. Pon A with EcR-LBD and with heterodimer EcR/USP 

complex in ITC experiment. 

5. Structure modelling and structure determination of EcR as an ultimate goal. 
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2. MATERIALS 

2.1. Chemicals 

2.1.1. General chemicals 

Chemical Name               Formula             Supplier            . 

DEAE (Diethylaminoethyl) cellulose            Sigma 

Ethanol (96%)                 C2H6O           Kemetyl 

Ethidium bromide                         EtBr           Sigma-Aldrich    

                Norway                                                                                                                     

Glycerol                         C3H8O3               VWR 

HiLoad 16/600 Superdex             GE Healthcare 

200 prep grade column                    Life Sciences                                                                  

Magnesium Chloride x 6H2O           MgCl2 x 6H2O                                 Merck 

Magnesiumsulfate-7-hydrate            MgSO4 x 7H2O                                Riedel-deHaen.  

                 LABOGLASS   

Ni-resin                                                                                                       Sigma 

Sodium chloride             NaCl            Merck 

Sodium hydroxide              NaOH             Merck 

Trisma®base              C4H11NO3           Sigma® Life  

                 Science 

Protease inhibitor cocktail                                                                          Sigmafast               . 

 

 

2.1.2. Solutions and compounds 

 Name                                         Supplier                           .                                  

Advantage® 2 PCR buffer (10x)                 Clontech 

Advantage ® 2 polymerase mix (50x)              Clontech 

Agar-Agar                     MERCK 

Agarose                  Sigma® Life Science 

Bacto™ trypton      Bacton, Dickinson and Company  

Bacto™ yeast extracts                                                            Bacton, Dickinson and Company  

Bovine Serum Albumin (BSA)    New England Biolabs 

Gel Loading Dye Blue 6x                                                       New England Biolabs 

Nucleotides (dATP, dTTP, dCTP, dGTP)                              TaKaRa BIO INC. 

Triton-X-100                                                                           Sigma-Aldrich                            . 
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2.1.3. Antibiotics 

  Name                               Supplier                    .  

Ampicillin                                                                Bristol-Meyers Squibb 

Kanamycin                         Bristol-Meyers Squibb          . 

 

2.2. Commercial kits 

Name                                                                                                                Supplier          . 

Advantage® cDNA PCR Kit                                Clontech 

GoTaq® Flexi DNA polymerase kit (MgCl solution, 5x Green          Macherey-Nagel    

PromegaGoTaq® Flexi buffer, GoTaq® DNA polymerase)                                 

NucleicBond® Xtra Midi. Nucleic Acid and Protein purification kit        Macherey -Nagel                                                                                                                   

NucleoSpin® Gel and PCR Clean-up kit              Macherey -Nagel 

NucleoSpin® Plasmid. Nucleic Acid and protein purification kit              Macherey- Nagel 

TOPO TA Cloning® Kit for Sequencing                                                    Invitrogen™ by 

                   life technologies™  

 

2.3. Buffers and solutions used for protein purification 

2.3.1 Buffer for EcR-LBD, EcR and USP protein purification 

2.3.1.1 Lysis buffer (pH 7.5)                                                                                                                                                                                                                                                                                                  . 

50 mM Tris HCl 

150 mM NaCl 

1.5 mM MgCl2 

1% glycerol 

1X EDTA free protease inhibitor                                                                                        

.            1 mM DTT                                                                                                                       . 

 

 

2.3.1.2 Buffer for immobilized metal ion affinity chromatography                                        .                                                                                       

. 
      Elusion 1: 50 mM Tris HCl (pH 7.5), 10 mM Imidazole and 150 mM NaCl 

      Elusion 2: 50 mM Tris HCl (pH 7.5), 20 mM Imidazole and 150 mM NaCl 

      Elusion 3: 50 mM Tris HCl (pH 7.5), 40 mM Imidazole and 150 mM NaCl 

      Elusion 4: 50 mM Tris HCl (pH 7.5), 100 mM Imidazole and 150 mM NaCl 

      Elution  5: 50 mM Tris HCl (pH 7.5), 350 mM Imidazole and 150 mM NaCl                       .             
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2.3.1.3 Buffer for ion exchange chromatography                                                             .                                                                                    
. 
       Elusion 1: 0.01 M Tris-HCL (pH 7.5) 

       Elusion 2: 0.01 M Tris-HCL (pH 7.5), 0.02 M NaCl 

       Elusion 3: 0.01 M Tris-HCL (pH 7.5), 0.1 M NaCl 

       Elusion 4: 0.01 M Tris-HCL (pH 7.5), 0.5 M NaCl                                                     . 

 

2.3.1.4 Buffer for SEC column                                                                                            . . .    .       

.          50 mM Tris and 150 mM NaCl (pH 7.5)                                                                       . 

 

 

 

 

2.3.2 Buffer for TEV protease purification                                                                       . 

Lysis buffer 

50 mM NaPi, 300 mM NaCl, pH 7.0. 

Wash buffer 

50 mM NaPi, 300 mM NaCl, 20 mM imidazole, pH 7.0. 

Elusion buffer 

.            50 mM NaPi,300 mM NaCl, 20 mM imidazole, pH 7.0                                                . 

 

2.4 Ligand 

           Name                           Supplier             .     

25-deoxy-20-hydroxyecdysone (Ponasterone A - Pon A)            Santa Cruz  

.                                                                                                                Biotechnology, Inc 

 

 

2.5 Growth medium, agar plate and other solution 

Luria-Bertani (LB) medium                            LB-Agar plates                                . 

1 % Bacto trypton                1 % Bacto trypton 

0.5 % Bacto yeast extracts               0.5 % Bacto yeast extract 

0.5 % NaCl                 0.5 % NaCl 

                  1.5 % agar 

         Autoclaved before adding antibiotic 

            100 μg/ml ampicillin or 

            50 μg/ml kanamycin 

 

     SOB        SOC 

2 % Bacto trypton    10 mM MgCl2 

0.5 % Bacto yeast extracts              10 mM MgSO4 

10 mM NaCl     20 mM Glucose 

.            2.5 mM KCl        In SOB                                                   .                                                   

. 
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2.6 Enzymes 

General enzyme                            Supplier                                               . 

           Shrimp Alkaline Phosphatase (SAP)                 TaKaRa 

.              T4 Ligase + buffer       TaKaRa                                               .      

 

                                            

Restriction Endonuclease                 Recognition site                      Supplier                        . 

BamHI                                   5' - G↓GATCC- 3'  TaKaRa 

                                               3' - CCTAG↑G- 5' 

Nco1              5' - C↓CATGG- 3'  TaKaRa 

                                                           5' - GGATC↑C- 3'                                                             . 

 

2.7 Primers  

2.7.1 Primers used for amplification of DNA 

Primer name               Used for                                       Sequence (5’-3’)                            .                                

EcR-FullFwd           EcR full-length                ATAGCCATGGTGGAAAATG 

LBD-Fwd           EcR-LBD                          ATAGCCATGGCTTCTTTTCCTAAAAGAC 

LBD-Bwd       EcR full-length & EcR-LBD     TATGGATCC TCAGAT GTCCCAAATTTC   

        CATGAG 

USP-fullFwd            USP full-length                 TGA GTT GGC GCC ATG GAT CCC AC                                 

USP-fullBwd            USP full-length                TATGGATCCTCAGCAGCACTCTTCCAG               
. 
 

2.7.2 Primers used for sequencing 

Primer name                                                                                Sequence (5’-3’)                   .    

T7 primer (Used for pETGB1)                            TACGACTCACTATAGGGGAATTG 

pETMBP forward (Used for pETMBP)                        GATCCACGTATTGCCGCCAC           

pET reverse (Used for pETMBP and pETGB1)           GTTATTGCTCAGCGGTGGC         .                                 

 

                        All primers were from Sigma® Life Science                  

                           

2.8 Agarose gels for electrophoresis of nucleic acids    

 
                                                           . 
5x TBE                             1 % agarose                  Loading buffer (6X) 

0.45 M Trisma® base    1 % agarose in 0.5x TBE               0.25 %  

0.45 M boric acid                            EtBr                                                    bromophenol blue             

0.01 M EDTA      40 % sucrose                     ddH2O          . 
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2.9 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) gel 

 

2.9.1 12% running gel and 5% stacking gel for protein gel electrophoresis 

 

Name 12% running gel (For two 

minigels) 

5% stacking gel (For two 

minigels) 

dH2O (ml) 4.98  4.54 

30% Acrylamide mix (ml) 6  1.3 

1.5 M Tris, pH8.8 (ml) 2.5  

0.5 M Tris, pH6.8 (ml)  2 

10% SDS (µl) 75 40 

10% APS (µl) 150 80 

TEMED (µl) 4 8 

                       

2.9.2 SDS-PAGE sample buffer (2X)                                                                                         . 

       Tris-HCl (100 mM, pH 6.8) 

       Bromophenol blue (0.02%) 

       DTT (200 mM) 

       Glycerol (20%) 

.                     SDS (4%)                                                                                                                  . 

 

 

 

2.9.3 SDS-PAGE gel staining reagent   

 

                        Name                                                         Supplier                                          .           

                 Imperial Protein Stain                                  Thermo SCIENTIFIC                          . 

 

2.10 Molecular weight marker 

 

Name                                                                Marker Range                         Supplier          . 

2-log DNA ladder                                                  0.1 - 10.0 Kb                          TaKaRa   
               . 
Precision Plus Protein Dual Color Standards        10 - 250 kD            BIO-RAD       . 

 

 

2.11 plasmid vectors 

             Name           Supplier                             . 

        pETMBP                  Novagen 

        pETGB1       Novagen                                 . 
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2.12 Bacterial strain                                                                                                                  .   .             

Escherichia coli XL-1-Blue                                                                                                         . 

 

2.13 Consumables                           

 Name                                                                                                       Supplier                     . 

1.5 ml Eppendorf-tube                                                                       Eppendorf            

15 ml reaction tube                  Cellstar ® greiner bio-one  

50 ml reaction tube                  Sarstedt 

Petri dish (100 ml)                                                                             Sarstedt 

Pipette tips                  Axygen Scientific 

Tissue                                                                                                 KIMTECH Science           .  

 

2.14 Apparatus 

 Apparatus Category                     Name                                   Supplier                  . 

Block heaters                            DRI-BLOCK® DB•2A                          Techne 

Centrifuges                               Avanti™ J-25 centrifuge + rotors                Bechman  

                                         (JA 14 and JA 25.50)                          Coulter™  

 

                                       Mini centrifuge C-1200               NATIONAL 

                                               220V/50 Hz                                     LABNET CO 

     

                                                   HERAEUS FRESCO 21                           Thermo 

              Centrifuge                SCIENTIFIC 

                                                       

Electroporation machine            Gene Pulser ™ and pulse controller             BIO-RAD 

Homoginzer                                Frencepess 

Imager                              Gel Doc™ EZ imager Gel Doc™               BIO-RAD 

                                        EZ imager    

PCR                                          GeneAmp® PCR system 2700                    Applied  

                        Biosystems 

Power-source electrophoresis      Powerpac 300                                BIO-RAD  

Printer                                           Gel image printer                                       Mitsubishi P93D  

Incubators                               37°C                                                   Termaks  

                                         18°C 250 rpm. HT INFORS                       Tamro MED-LAB 

                                         37°C 250 rpm. HT INFORS                       Tamro MED-LAB 

 

Spectrophotometer                      NanoDrop® ND-1000 Spectrophotometer   Fisher Scientific 

                 

Vortexer                                      Whirlmixer                                                    Fisons Scientific  

             equipment 

Water-distiller                              Milli-Q Advantage A10, Milli-Q Q-POD,   MILLIPORE

          0.22 μm MILLIPAK®40 sterile                 lab-tec       .
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2.15 Computer software 

.           Software                                                                    Purpose                                        . 

BLAST      Sequence analysis    

ClustalW2      Sequence alignment 

ClustalX2      Phylogenetic tree 

ExPASy proteomics tool                                 Sequence characterization/translation         

Image-lab™ Software                                     Gel imaging 

NanoAnalyze Software v3.4.0                        ITC experiment set up 

.            TreeviewX                                                        Processing of phylogenetic trees           . 

 
.                                                                                                                                                            
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3. METHODS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Figure 3.1 Outline of methods used in this study. 

 

 

 

pETMBP or pETGB1 EcR-LBD or full length EcR or USP 

Transformation PCR and gel purification of PCR products 
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    Protein expression 

Protein purification 

Interaction study by ITC 
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3.1.1 Polymerase Chain Reaction 

Polymerase Chain reaction is a technique to amplify specific DNA fragment. It was 

developed by Kary Mullis in 1983 where sequence specific primer binds to the end of specific 

DNA sequence and by repeating cycles of heating and cooling it generates thousands of 

copies of that sequence (Bartlett and Stirling, 2003). 

For PCR, two types of kits were used depending on the requirements. The Advantage® 

cDNA PCR kit was used when PCR products would be used for sequencing and to generate 

probes because of its proof reading capability. GoTaq® flexi DNA polymerase kit was used 

during colony selection to check the desired DNA fragments. 

Advantage® cDNA PCR kit                                 GoTaq® flexi DNA polymerase kit 

   1x Advantage polymerase buffer                                1x green Go Taq Flexi Buffer 

   0.2 mM dNTP                                                              2.5 mM MgCl2 

   0.2 µM forward primer                                                0.4 mM dNTP                                                   

   0.2 µM reverse primer                                                 0.4 µM forward primer 

   1 µl plasmid DNA                                                       0.4 µM reverse primer   

   1 µl Advantage® cDNA polymerase mix                    0.2 µl Go Taq polymerase 

   Mili-Q H2O to desired volume                                     1 colony 

                                                                                       Mili-Q H2O to desired volume   

 

 

                  The PCR reactions volume was between 10 μl to 50 μl. 

 

PCR thermo-profile (Advantage® cDNA PCR kit)      PCR thermo-profile (GoTaq®  

        flexi DNA polymerase kit   

Denaturation: 94°C - 5 min                                                  Denaturation: 94°C - 2 min 

Denaturation: 94°C - 30 sec                                                 Denaturation: 94°C - 30 sec 

Annealing: X°C - 30 sec            X 25 cycles                        Annealing: X°C - 30 sec            X 25 cycles               

Elongation: 72°C - Y sec                                                      Elongation: 72°C - Y sec 

Elongation: 72°C - 7 min                                                      Elongation: 72°C - 7 min 

∞               : 4°C                                                                     ∞               : 4°C  

 

The annealing temperature was calculated using the following equation: 

T annealing = T melting – 4°C, with T melting = 2°C x (n adenine bases + n thymine bases) + 

4°C (n guanine bases+ n cytosine bases) – Equation 1 

The elongation time was set at 1 min per 1000 bp PCR product            
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3.1.2 Agarose gel electrophoresis 

To analyze the DNA fragments and PCR products, ethidium bromide containing 1% agarose 

gel in 0.5X TBE buffer was used. When an external electric field is applied to the gel, DNA 

molecules are separated according to their size in the agarose gel matrix. Ethidium bromide 

interacts with DNA and exhibits fluorescence activities under ultraviolet light which allow 

detection of DNA (Brody and Kern, 2004). The agarose gel electrophoresis was run at 80V 

and continued until loading buffer dye reached two thirds of the gel. The gel pictures were 

taken using Gel Doc™ EZ imager. 

3.1.3 Extraction and Purification of DNA from agarose gel  

Using NucleoSpin® Gel and PCR Clean-up kit, DNA was extracted and purified from 

agarose gel. In this method, when DNA with other impurities are added into a column 

(provided with NucleoSpin® Gel and PCR Clean-up kit), DNA binds to the silica membrane 

of column. After several washing steps, DNA was eluted with 30 μl elution buffer (NE). All 

centrifugations steps were done at 12,000×g (Heraesus Biofuge pico centrifuge). The 

concentration of eluted DNA was measured using nanodrop and also checked with gel-

electrophoresis. 

3.2 Topo cloning 

To check the PCR products, TOPO cloning was done. The protocol of TOPO TA cloning® 

kit from Invitrogen was used. This kit contains special type of linearized plasmid vector 

(pCR™4-TOPO®) which has single overhanging 3´ deoxythymidine (T). In TOPO cloning, 

Taq polymerase adds a single deoxyadenosine (A) to the 3'-end of the PCR products which 

allow ligation with vector and this vector construct then can be transformed by heat shock into 

competent bacterial cells (Untergasser, 2006). For the TOPO cloning, reaction mixture 

components were 4 µl gel purified PCR product, 1 µl salt solution and 1 µl TOPO vector. 

3.3. Mini-prep 

The protocol of NucleoSpin® Plasmid Nucleic Acid and protein purification kit was used for 

small scale plasmid DNA purification from bacterial culture. One colony was inoculated in 5 

ml LB medium containing appropriate antibiotic at 37°C and 250 rpm overnight. From the 

overnight bacterial culture, 3 ml was used to isolate plasmid DNA from the bacteria. All 

centrifugation was done at 12,000 x g speed with HeraesusFresco 21 centrifuge and elusion 
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was done with 50 ml AE buffer provided with kit. Concentration of extracted plasmid was 

measured in nanodrop and also checked by running on 1% agarose gel. 

3.4.1 Digestion of DNA with restriction enzymes 

Restriction endonucleases digest the double standard DNA at specific point and create either 

"blunt" or "sticky end. To make recombinant construct, plasmid and insert were cut with same 

two sticky-end restriction endonucleases ( BamHI and NcoI ) at 37°C for overnight. 

Insert digestion reaction mix                           Plasmid digestion reaction mix                                                      

1 μg insert (x μl)                                                      10 μg plasmid (x μl) 

2 μl 10 x TaKaRa buffer (K buffer)                        2 μl 10 x TaKaRa buffer (K buffer) 

2 μl 10 x BSA                                                          5 μl 10 x BSA  

4.5 U BamHI                                                           15 U BamHI 

4.5 U NcoI                                                               15 U NcoI 

dH2O to 20 μl                                                          dH2O to 50 µl 

 

Digestion was checked by running on 1% Agarose gel. After digestion, plasmid DNA was 

dephosphorylated to prevent re-ligation by adding 1 U shrimp alkaline phosphatase into 

reaction mix followed by incubation at 37°C for 30 minutes. Then heat-shock was given to 

both insert and plasmid reaction mix by placing in heating block at 65°C for 15 minutes to 

deactivate enzymes. DNA gel purification was done with NucleoSpin® Gel and PCR Clean-

up kit and protocol. 

3.4.2 Insert and Plasmid ligation 

T4 DNA Ligase catalyse ligation by forming phosphodiester bond between insert and 

plasmid. Total 150 ng plasmid (Nano drop concentration) was used for ligation. Depending on 

the requirements, vector and insert ratio for ligation reaction was either 1:3 and 1:8 or both. 

The reaction was carried out at RT (19°C) for overnight. 

Ligation reaction mix 

150 ng vector (x μl) 

 x ng insert (y μl) 

1 μl 10x ligation buffer 

1 μl T4 DNA ligase (350 U/μl) 

dH2O to 10 μl 
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3.4.3 Transformation by Electroporation  

In electroporation, high voltage electric pulse transiently changes the cell membrane structure 

of host by disturbing phospholipid bilayer and creates temporary pores. Foreign DNA can 

enter into the host by this pore (Shigekawa and Dower, 1988). Plasmid was diluted 1:100 in 

ddH2O and 2 µl was added to 40 µl of competent cells (E. coli XL-1- Blue) then placed in ice 

for 1 minute. Solution was transferred to a 0.2 cm cuvette which was placed in an 

electroporator. GenePulserTM and Pulse controller were set to 2.5 kV, 200 Ω and 25 μF. The 

electric pulse was carried out for few seconds through the sample. Then 1 ml SOC medium 

was added to the sample into the cuvette. Solution was transferred to an eppendorf tube and 

incubated at 37°C and 250 rpm for 45 minutes. After incubation, 100 µl of this sample was 

plated out on agar-plates containing an appropriate antibiotic and incubated at 37°C 

overnight. Then colony shaking was done to select the right colony using GoTaq PCR. 

Selected colonies were further processed by midi-prep. 

3.5 Midi-prep 

For midi-prep, pre-culture was done by taking one colony in 20 ml LB medium containing 

appropriate antibiotic and then incubated at 37ºC and 250 rpm for 8 h. 5 ml of the pre-culture 

was added to the 200 ml LB containing appropriate antibiotic and then incubated overnight at 

37°C and 250 rpm for overnight. To extract plasmid DNA from cell pellet, NucleicBond® 

Xtra Midi Nucleic Acid and Protein purification kit and protocol was used. All centrifugations 

were done at 15 000 g, 4°C with AvantiTM J-25 centrifuge (JA-14 and JA-25.50 rotor) from 

Beckman Coulter. Extraxted DNA was resuspended in 300 μl of dH2O. The DNA quality was 

checked on 1 % agarose gel and the concentration was determined with nanodrop. 

3.6 Sequencing reaction 

To determine the sequence, DNA sequencing was done using Sanger method. In this method, 

DNA polymerase selectively incorporates chain terminating fluorescently labelled 

dideoxynucleotides (ddNTPs). These modified ddNTPs lack 3'-OH group which is required 

for the formation of a phosphodiester bond to extend the PCR fragment (Sanger et al., 1977). 

For each template, two reactions were made where one contained forward primer and other 

contained reverse primer.  

 



29 
 

Components for each sequencing reaction 

Big Dye                                                                    1 µl 

Sequencing buffer                                                    1 µl 

Forward or Reverse primer (1 µM)                          3.2 µl 

Plasmid (200-400 ng, Nanodrop concentration)      X µl 

Milli-Q dH2O                                                    to   10 µl. 

 

PCR thermo-profile 

94°C for 5 minute 

94°C for 10 second    

50°C for 5 second            X 27 cycles 

60°C for 4 minute  

 ∞            4°C                                 

 

                                   

After sequencing reaction, in each PCR tube 10 µl ddH2O was added and the final volume 

was 20 µl. Then remaining part of sequencing was performed at sequencing lab of Institute of 

Molecular Biology at the University of Bergen. The nucleotide sequences obtained from the 

sequencing lab were translated by using ExPASy. From the Basic Logical Alignment Search 

Tool (BLAST) of National Centre for Biotechnology Information (NCBI), related sequences 

were found. Selected sequences were aligned using ClustalW2 (Larkin et al., 2007) and 

phylogenetic tree called Bootstrap Neighbour-joining (N-J) trees were made using ClustalX2 

(Larkin et al., 2007). The trees were edited using TreeViewX (Page, 1996). 

3.7 Transformation into protein expression system 

Vector (Fig 3.7.1) containing desired gene was transformed into Escherichia coli strain 

BL21Star(DE3) by heat shock. For heat-shock, 10 µl competent cells were taken out from the 

-80°C freezer and placed in ice. Cells were allowed to thaw in ice. 2 µl of plasmid DNA 

(Total 16 ng) was transferred into tube containing competent cells and then incubated in ice 

for 30 minutes. Heat shock was done at 42°C for 33 seconds and tube was placed in ice for 2 

minutes. Then 60 µl SOC medium was added to the tube which followed by incubation for 60 

minute at 37°C.  Cells were plated on LB-kanamycin plate and incubated for overnight at 

37°C. After overnight incubation, colonies on the plate were counted. 
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 Figure 3.7.1 pETMBP and pETGB1 vector maps. Structure from:  

http://babel.ucmp.umu.se/cpep/web_content/pdf/vector%20maps/. Cited 10.02.2015. 

                        

3.8 Protein expression 

Around 60-70 colonies containing the desired gene were inoculated in kanamycin containing 

5 ml LB medium at 37°C and 250 rpm for overnight. After overnight incubation, 2.5 ml of 

culture was added to the kanamycin containing 1 liter LB medium and incubated  at 37°C and 

250 rpm shaking (around 2-4 hours) until OD (at 600nm) was 0.8 to 1. When OD was around 

0.8 then 500 µl IPTG (1 M) was added to flask to induce the protein expression and incubated 

at 18°C and 250 rpm shaking for overnight (16h). Samples were collected at different hours 

(at 0h, 1h, 2h, 3h, 4h and 16h) after IPTG induction. After overnight incubation, cells were 

harvested by centrifugation (JLA 9, 1000) at 5180 X G for 15 min. Supernatant was removed 

and pellet was resuspended in same flask using around 7 ml LB medium. Then, centrifugation 

T7 Promoter His tag MBP or GB1 TEV site EcR-LBD or full length EcR or USP 

Kan

® 

ori 
lacI 

T7/lacO     His tag 

ori 

Kan  

T7/lacO 

  His tag 

lacI 

    pETMBP 

      7181bp   pETGB1 

   6245bp 
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was done at 3700 rpm (JA 25.50 rotor) for 15 minutes. Supernatant was removed and the 

pellet was frozen at -80°C for further use.  

3.9 Cell lysis  

3.9.1 Lysis by French press  

Expressed protein in bacterial cell can be extracted either by enzymatic method or physical 

method. Enzymatic method includes use of different enzymes, detergent, solvents etc. and 

physical methods are French press, sonication etc. In French press, cell suspension is placed 

within the cylinder and an external hydraulic pump drives a piston within the cylinder. As a 

result, sample comes out through a outlet valve and cell breakage occur due to shear stress 

(Ludmil and Al-Ibraheem, 2002). 

First, cell pellets (2-3 gram) from -80° C were resuspended in lysis buffer (10 ml lysis buffer 

for 1 gram pellet). Then, French press was performed at 1000 psi for 2 times and followed by 

addition of 0.2 % Triton-X 100 to the solution and incubation in a giroshaker for 30 minute at 

room temperature. 

3.9.2 Lysis by sonication 

Another physical method is sonication that uses ultrasonic frequencies (>20 kHz) to 

breakdown the bacterial cells. When the cells are subjected to high-frequency sound waves 

with a vibrating probe, vibrations are generated which cause mechanical shearing of the cell 

wall. As a result, proteins come out from the cell inside. (Benov and Al-Ibraheem, 2002). 

After resuspension of cells, lysozyme was added to a final concentration 1 mg/ml of lysate 

and followed by incubation in ice for 20 minutes. Then sonication was performed at 60 % 

intensity for total 2 minutes. Each time sonication continued for 15 second and then 30 second 

interval to avoid overheating.  

After French press or sonication, lysate was centrifuged at 20000 rpm (JA 25.50 rotor) and 

4°C for 30 minutes. Then supernatant was collected and purified using metal ion affinity 

chromatography column, ion exchange chromatography column and size-exclusion 

chromatography column. 
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3.10 Protein purification 

3.10.1 Immobilized Metal Ion Affinity Chromatography (IMAC) 

2 ml of Ni-resin (binding capacity 15 mg/ml) was taken into a column containing 45 µm 

filter. After resin sedimentation, the column was equilibrated with buffer and then the 

supernatant was loaded on the column. Several elusion steps were carried out in column with 

2x column volume elution buffers containing sequentially increasing concentration of 

imidazole. (All buffer compositions in materials section).  

3.10.2 Ion exchange chromatograph (IEC) 

For ion exchange chromatograph purification, 6 ml DEAE (Diethylaminoethyl) cellulose resin 

slurry was taken into a column containing 45 µm filter. After resin sedimentation, the column 

was equilibrated with buffer and then the supernatant was loaded on the column. Several 

elusion steps were performed to sequentially increase the concentration of NaCl. To check 

which ionic strength gives better purification for proteins, using different concentrations of 

NaCl in lysate buffer, IEC were repeated several times. 

3.10.3 Size Exclusion Chromatography (SEC) 

HiLoad 16/600 Superdex 200 prep grade column (Column volume 120 ml) was equilibrated 

with buffer. Then protein sample was loaded into the column and the protein sample volume 

was 2% of the column volume. Fraction was collected at 1 ml/min rate and in 1 ml aliquots. 

3.11 Sodium dodecyl sulphate-Polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE is a widely used technique to characterize protein. In SDS-PAGE, anionic 

detergent sodium dodecyl sulphate (SDS) is used to linearize protein by breaking secondary 

and non-disulphide linked tertiary structure of the protein. To break disulphide linked tertiary 

structure a reducing agent (like dithiothreitol (DTT) or 2-mercaptoethanol) is used. SDS also 

gives negative charges to linearized proteins and these negative charges on protein are equally 

distributed per unit mass. As a result, during electrophoresis protein will move to the anode 

according to their size and relative molecular weight. During gel formation, acrylamide is 

polymerized by ammonium persulfate (APS).  APS acts as source of free radicals and initiate 

the gel formation. N, N, N', N' tetramethylethylenediamine (TEMED) stabilizes free radicals 

and better polymerization. Polymerized acrylamide are cross-linked by bisacrylamide 

(Shapiro et al., 1967). 
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A gel chamber of 10-well comb was prepared where a 12% running gel and a 5% stacking gel 

were used. To prepare 12% running gel and 5% stacking gel dH2O, acrylamide mix, SDS, 

APS and TEMED and Tris were used (Used amount in each gel are in the materials section). 

5 µl of precision plus protein dual color standards from BIO-RAD was used as Marker. 

3.12 Expression and purification of TEV protease and TEV digestion 

The TEV protease was expressed and purified following the procedures by Berg et al. (2006). 

Berg et al. (2006) used mutant TEV protease gene as starting material and Gateway system 

(Invitrogen) for recombinant cloning where pTH24 and pTH31 were vectors. Clones 

containing mutant TEV protease gene were transformed into Rosetta(DE3)pLysS and protein 

production was induced by adding IPTG (Final concentration 1mM) when OD (at 600nm) 

was 0.6. After overnight (16h) incubation at 20ºC, TEV protease proteins were purified by 

IMAC. The eluates TEV from IMAC were desalted and added glycerol to a final 

concentration of 10%. The aliquot of 0.2 ml was stored at -80
o
C until use. For TEV digestion, 

only fresh aliquots were used. MBP-fused EcR-LBD was digested with the TEV protease for 

overnight (16h). For 10 ml protein samples 30 µl TEV protease (Nanodrop concentration 

2ng/µl) were used.  

3.13 Isothermal Titration Calorimetry (ITC) 

ITC experiments were done on a Nano ITC low volume from TA instruments. Sample cell 

and injection syringe were cleaned several times with distilled water and degassed buffer. The 

sample cell was filled with 300 µl of IEC purified MBP-EcR-LBD protein with a 

concentration of 2 µM. The injection syringe was filled with 50 µl of Pon A solved in ethanol 

with a concentration of 8.6 µM, the syringe was then placed in the burette handle and inserted 

in the machine.  

The experiment was set up using the ITC run software (NanoAnalyze Software v3.4.0). 

During the experiment a stirring rate of 250 rpm and a temperature of 25°C were used, and a 

total of 20 injection of 2.03 µl with and interval of 180 seconds were completed. A control 

experiment where Pon A was injected into buffer using the same parameters was also done. 
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4. RESULTS   

The result section consists of four parts. Sequence analyses and phylogenies of L. salmonis 

ecdysone receptors and ultraspiracle protein from representative species including L. salmonis 

are presented at the first segment. The second part describes the protein expression studies of 

EcR (both EcR-LBD and full-length EcR) and USP. The purification of EcR-LBD and EcR 

proteins using different techniques are presented at the third segment and the last part presents 

the interaction study between EcR-LBD and Pon A using ITC.  

4.1 Sequence analysis and phylogeny 

The L. salmonis cDNAs containing EcR-LBD, EcR (LBD+DBD) and USP (LBD+DBD) 

were PCR-amplified using respective primer sets. The amplified products were gel purified, 

cloned and sequenced. Shown are nucleotides and deduced amino acid sequences of L. 

salmonis EcR-LBD, EcR and USP (Fig 4.1.1.1 and 4.1.2.1). The BLAST alignment was 

performed to compare various sequences and multiple sequence alignments were used to 

make phylogenetic trees. 

4.1.1 Sequence analysis and phylogeny of EcR 

EcR amino acid sequences from six selected species were aligned (Table 4.1.1.1). All species 

showed high degrees of conservation for DBD (Fig 4.1.1.2), but less conservation for LBD 

(Fig 4.1.1.3). Among the species aligned, the copepod Tigriopus japonicas showed the 

highest (69%) amino acid sequence identity. A neighbour-joining (N-J) tree confirmed that L. 

salmonis is most closely related to the copepod T. japonicas (Fig 4.1.1.4).  
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atggtggaaaatgagaggaaaaagaaaggatcttcctctcgccctgccgaagagttatgt 

 M  V  E  N  E  R  K  K  K  G  S  S  S  R  P  A  E  E  L  C                                            

cttgtctgtggagatcgagcatcgggttatcattataatgcattggcatgtgagggatgc 

 L  V  C  G  D  R  A  S  G  Y  H  Y  N  A  L  A  C  E  G  C 

aaagggttctttcgacgttctattaccaaaaactctaactatacttgcaaatggaatggg 

 K  G  F  F  R  R  S  I  T  K  N  S  N  Y  T  C  K  W  N  G  

gattgtgaaattgatatgtatatgaggcgaaaatgtcaggcgtgtagactaaaaaaatgt 

 D  C  E  I  D  M  Y  M  R  R  K  C  Q  A  C  R  L  K  K  C 

tatgccacgggtatgagggcagagtgtgttgtgccagaaaggacttgcattcagaaaaga 

 Y  A  T  G  M  R  A  E  C  V  V  P  E  R  T  C  I  Q  K  R 

caagctaaagctgcagccgctgccgcagctgcagccgacacaactgtagatcctaagtcc 

 Q  A  K  A  A  A  A  A  A  A  A  A  D  T  T  V  D  P  K  S 

aataacaacggtaaaaatggaagcatatccatagatatggcttcttttcctaaaagactt 

 N  N  N  G  K  N  G  S  I  S  I  D  M  A  S  F  P  K  R  L 

tcatccaccaaacctttaaagccagaagaagaggagctaattaatcgtttggtatatttt 

 S  S  T  K  P  L  K  P  E  E  E  E  L  I  N  R  L  V  Y  F 

caagaagaatacgagcatccatctgaagcggaccttaaccgtgtttaccatgttcctatg 

 Q  E  E  Y  E  H  P  S  E  A  D  L  N  R  V  Y  H  V  P  M 

cacagtactaattcatccgaatccgagtctgaccgtttattccgtcatatgacagagatg 

 H  S  T  N  S  S  E  S  E  S  D  R  L  F  R  H  M  T  E  M 

actattcttacagttcaattaatagttgagttctccaagcacctgccgggcttccagaat 

 T  I  L  T  V  Q  L  I  V  E  F  S  K  H  L  P  G  F  Q  N 

ctttgcagagacgatcaaattaatttacttaaaggctgttcctcagaagtgatgatgctg 

 L  C  R  D  D  Q  I  N  L  L  K  G  C  S  S  E  V  M  M  L 

aggggagcccgtcgttatgatgccgagtcagactctattgtttatgcaacgaactatcct 

 R  G  A  R  R  Y  D  A  E  S  D  S  I  V  Y  A  T  N  Y  P 

tttacgaaagaaaattacgctaaggcggggcttggcaatgacgagctctttcgtttctgc 

 F  T  K  E  N  Y  A  K  A  G  L  G  N  D  E  L  F  R  F  C 

agggccatgtctcgaatgaaagtagataacgcagaatacgctctcataacagctattgtc 

 R  A  M  S  R  M  K  V  D  N  A  E  Y  A  L  I  T  A  I  V   

atttttagtgatagaaactccttaaaggaacctaaaagagttgaaaagattcaagagatt 

 I  F  S  D  R  N  S  L  K  E  P  K  R  V  E  K  I  Q  E  I  

tatgtagatgctctacaagcctacgtaatggcaaatcggaaaaagaatcaaatggttacc 

 Y  V  D  A  L  Q  A  Y  V  M  A  N  R  K  K  N  Q  M  V  T 

tttgcgaagttgttatatgtccttactgagcttcgatccttagggatcaacaactcagaa 

 F  A  K  L  L  Y  V  L  T  E  L  R  S  L  G  I  N  N  S  E 

ctttgcttctctcttaagcttaaaaaccgaaaattgcccccatttctcatggaaatttgg 

 L  C  F  S  L  K  L  K  N  R  K  L  P  P  F  L  M  E  I  W 

gacatcgaaaccaacttaattcattcgatttcaacacaaggattcttctcatga 

 D  I  E  T  N  L  I  H  S  I  S  T  Q  G  F  F  S  * 

 
 

 

 

Figure 4.1.1.1 Nucleotide and deduced amino acid sequences of L. salmonis EcR. DNA-

binding domain (DBD) is marked in light green and ligand-binding domain (LBD) is marked 

in yellow. Cysteine residues (C) in DBD where zinc-ion binds are highlighted (Red). The 

unshaded region between DBD and LBD is the D-domain. The position of primers used to 

create full-length EcR (LBD+DBD) and EcR-LBD constructs are marked by black arrows 

 

 

 

LBD-Fwd 

LongFwd 

EcR-FullFwd 

LBD-Bwd 
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Table 4.1.1.1 EcR sequences from different species used in amino acid alignment 

 

 

 

 

Figure 4.1.1.2 Multiple alignment of L. salmonis EcR-DBD with EcR-DBD from 

different species. NCBI BLAST search for EcR-DBD sequence was used for selection of 

comparable protein sequences. ClustalW2 multiple alignment was performed with obtained 

EcR-DBD sequences from NCBI BLAST. The alignment was edited in Jalview (Waterhouse 

et al., 2009) and coloured. Similar amino acids are shown with same background colour. 

Sequence of L. salmonis (L.S) was aligned to Tigriopus japonicas (T.J.), Trichuris trichiura 

(T.T.), Toxocara canis (T.C.), Locusta migratoria (L.M.) and Crassostrea gigas (C.G.). The 

sequence of the nematoda T.C. differed from the other compared species in that it contained 

10 extra residues (red box). 

 

 

Classification Species (common name) NCBI 

Accession 

number 

Sequence 

Identity 

(LBD+DBD) 

Size (aa) 

Crustacea Lepeophtheirus salmonis, 

L.S.  (salmon louse) 

AIZ04022.1  536 

Tigriopus japonicas, T.J.  

(copepod) 

ADD82902.1 69% 546  

Nematoda: Adenophorea Trichuris trichiura, T.T. 

(whipworm) 

CDW58186.1 48% 754  

Nematoda: Secernentea Toxocara canis, T.C. 

(dog roundworm) 

KHN78537.1 48%  465  

Arthropoda: Insecta Locusta migratoria, L.M. 

(migratory locust) 

AAD19828.1 62% 541  

Mollusca: Bivalvia Crassostrea gigas, C.G. 

(pacific oyster) 

EKC19773.1 39% 471  
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Figure 4.1.1.3 Multiple alignment of L. salmonis EcR-LBD with EcR-LBD from different 

species. NCBI BLAST search for EcR-LBD sequence was used for selection of comparable 

protein sequences. ClustalW2 multiple alignment was performed with obtained EcR-LBD 

sequences from NCBI BLAST.The alignment was edited in Jalview (Waterhouse et al., 2009) 

and coloured. Similar amino acids are shown with same background colour. Sequence of L. 

salmonis (L.S) was aligned to Tigriopus japonicas (T.J.), Trichuris trichiura (T.T.), Toxocara 

canis (T.C.), Locusta migratoria (L.M.) and Crassostrea gigas (C.G.). Most diverged region 

throughout the ligand-binding domain among different species is marked (red box).  
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Figure 4.1.1.4 Phylogenetic relationship of L. salmonis EcR and other species. Related 

sequences were selected from NCBI BLAST against L. salmonis EcR (LBD+DBD).  

ClustalX2 (Larkin et al., 2007) was used to align selected sequences and create a Bootstrap N-

J tree excluding positions with gaps at 1000 bootstrap trials. The tree was edited using 

TreeViewX (Page, 1996). Selected species were Trichuris trichiura (whipworm), Crassostrea 

gigas (pacific oyster), Tigriopus japonicas (copepod), Toxocara canis (dog roundworm), 

Lepeophtheirus salmonis (salmon louse), Locusta migratoria (migratory locust) and Sogatella 

furcifera (whitebacked planthopper). Full overview of selected species, their classification 

and accession numbers are presented in Appendix A. 

 

 

4.1.2 Sequence analysis and phylogeny of USP 

USP amino acid sequences from five selected species were aligned (Table 4.1.2.1). All 

species showed high degrees of conservation for DBD (Fig 4.1.2.2), but less conservation for 

LBD (Fig 4.1.2.3). Among the species aligned, the copepod Tigriopus japonicas showed the 

highest (58%) amino acid sequence identity. A neighbour-joining (N-J) tree was made from 

multiple sequence alignments (Fig 4.1.2.4). 
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1000

Trichuris trichiura
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TRICHOTOMY
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Nematoda: Adenophorea 
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    M  D  P  T  P  P  T  P  N  H  L  L  N  P  G  Y  M  P  Q  S 

 atggatcccaccccgccaacccccaaccatctattgaatcccgggtatatgccacaatcc 
  P  V  D  L  K  P  D  A  S  L  L  L  T  T  L  S  N  P  Q  S  

 cccgtggatctgaaaccggatgcttccctcctactcacaacactctctaaccctcagtcc 

  T  P  P  S  S  A  Y  P  V  G  E  S  M  Y  G  S  Q  A  P  H 

 actcccccctcctctgcctatcccgtgggtgagtctatgtacggatcgcaggctcctcac 

  P  G  V  H  G  H  A  R  S  T  Q  S  P  P  N  N  T  Y  P  P 

 cctggagtgcacggacatgctcgaagcacgcagtctccgccaaataatacataccctcca       

  N  H  P  L  S  G  S  K  H  F  C  S  I  C  G  D  R  A  S  G 

 aaccaccccttgtcaggctccaaacacttttgttccatatgcggggatcgcgcctctggg        

  K  H  Y  G  V  Y  S  C  E  G  C  K  G  F  F  K  R  T  V  R 

 aagcactatggggtctactcctgcgagggctgcaagggcttcttcaagcgaacggtgcgc       

  K  E  L  T  Y  A  C  R  E  N  R  D  C  V  I  D  K  R  Q  R 

 aaggagctgacgtatgcatgcagagaaaatcgggattgtgtgattgataagcgacagagg        

  N  R  C  Q  Y  C  R  Y  M  K  C  L  D  T  G  M  K  R  E  A 

 aatcgctgtcagtactgtcgctatatgaaatgtctcgatacgggaatgaagagagaagcc        

  V  Q  E  E  R  H  R  G  S  N  G  P  N  H  N  N  N  N  N  N 

 gtccaggaagaacgacatcgaggctctaatggtcctaatcacaacaacaacaacaataat 

  N  N  N  N  S  R  N  S  E  E  V  E  S  S  T  S  G  G  G  G 

 aataataataactcacgcaatagtgaggaagtggagtcctctacaagcggagggggcggg           

  D  M  P  I  E  R  I  I  E  A  E  D  V  G  E  M  K  Q  D  T 

 gatatgcccatcgagaggatcattgaggcagaagatgtgggggaaatgaaacaagatacg 

  S  E  F  L  L  L  D  N  N  S  S  M  S  G  G  G  S  I  G  D 

 agtgagttccttctcttggacaacaatagcagcatgagtggagggggttctattggggat 

  M  E  I  Q  R  F  G  L  A  K  K  R  I  I  H  Q  L  I  E  W 

 atggaaatacaaaggtttggattggccaagaaaagaattattcaccaactcattgaatgg       

  A  K  L  V  P  H  F  S  E  L  K  V  E  D  Q  V  T  L  I  R 

 gctaaacttgtacctcacttctcagagcttaaagttgaagatcaggtaacacttattcgt      

  G  G  W  N  E  L  L  V  A  G  L  A  F  R  S  I  K  L  N  D 

 gggggttggaacgagttgctagttgcgggtttagcttttcgctcgattaaattaaatgat      

  G  I  L  L  G  N  G  T  I  V  T  R  E  N  A  H  E  A  G  V 

 ggtattcttttgggaaacggtactattgttactcgggaaaatgcgcatgaagcgggtgtt       

  G  H  I  F  D  R  V  L  V  E  L  I  A  K  M  K  E  M  Q  M  

 ggacatatattcgatcgtgtcctagttgaactcatcgccaaaatgaaggaaatgcaaatg    

  D  K  A  E  L  G  C  L  R  A  I  I  L  F  N  P  D  A  K  G  

 gacaaagcggaattgggatgtctacgagccatcatactcttcaatcctgatgctaaagga       

  L  S  D  V  T  K  V  E  N  L  R  E  K  V  Y  A  T  L  E  E  

 ctctcagatgttactaaagttgaaaatttaagagaaaaggtatatgcgactctcgaagaa 

  Y  T  R  S  V  H  E  N  E  P  S  R  F  A  K  L  L  L  R  L  

 tatacccgttctgttcatgagaatgagccaagtcgatttgctaaacttcttttgcggtta 

  P  A  L  R  S  I  G  L  K  C  L  E  H  L  F  F  Y  K  L  V 

 cctgctctaagatctattggactaaaatgcttagaacatctatttttttacaaattggtg 

  G  D  Y  L  N  D  G  N  P  L  E  K  F  I  Q  S  L  L  E  E                                                                                                                                                        

 ggtgactatttaaatgatgggaatccattagaaaagtttattcaatctttactggaagag 

  C  C  * 

 tgctgctga     

 

 

 

Figure 4.1.2.1 Nucleotide sequence and deduced amino acid sequences of L. salmonis 

USP.  DNA-binding domain (DBD) is marked in light green and ligand-binding domain 

(LBD) is marked in yellow. Cysteine residues (C) in DBD where zinc-ion binds are 

highlighted (Red). The unshaded region between DBD and LBD is the D-domain. The 

position of primers used to create full-length USP (LBD+DBD) construct are marked by 

black arrows 

 

USP-fullFwd  

USP-fullBwd 
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Table 4.1.2.1 USP sequences from NCBI BLAST of different species used in amino acid 

alignment 

 Species with common name NCBI 

Accession 

number 

Sequence 

Identity 

Size (aa) 

Crustacea Lepeophtheirus salmonis, L.S. 

(salmon louse) 

AIE45497.1 

 

 

 

442 

 

Tigriopus japonicas, T.J. 

(copepod) 

AID52845.1 58% 449    

Hexapoda Tribolium castaneum, T.C. 

(red flour beetle) 

CAL25729.1 54% 407     

Chelicerata Liocheles australasiae, L.A. 

(wood scorpion) 

BAF85823.1 56% 410    

Mollusca Reishia clavigera, R.C. 

(sea snail) 

AAU12572.1 53% 431    

 

 

Figure 4.1.2.2 Multiple alignment of L. salmonis USP-DBD with DBD from different 

species. NCBI BLAST search for DBD sequence was used for selection of comparable 

protein sequences. ClustalW2 multiple alignment was performed with obtained DBD 

sequences from NCBI BLAST. The alignment was edited in Jalview (Waterhouse et al., 

2009) and coloured. Similar amino acids are shown with same background colour. Sequence 

of L. salmonis (L.S) was aligned to Tigriopus japonicas (T.J.), Tribolium castaneum (T.C.), 

Liocheles australasiae (L.A.) and Reishia clavigera (R.C.)  

 

 

 

 

 



41 
 

  

   

   

Figure 4.1.2.3 Multiple alignment of L. salmonis USP-LBD with USP-LBD from 

different species. NCBI BLAST search against L. salmonis USP-LBD sequence was run and 

selected comparable protein sequences.ClustalW2 (Larkin et al., 2007) multiple alignment 

was performed with obtained LBD sequences from NCBI BLAST. The alignment was edited 

in Jalview (Waterhouse et al., 2009) and coloured. Similar amino acids are shown with same 

background colour. Sequence of L. salmonis (L.S) was aligned to Tigriopus japonicas (T.J.), 

Tribolium castaneum (T.C.), Liocheles australasiae (L.A.) and Reishia clavigera (R.C.). Most 

diverged region throughout the ligand-binding domain among different species is marked (red 

box) 
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Figure 4.1.2.4 Phylogenetic relationship of USP sequences from L. salmonis and other 

species. Related sequences were selected from NCBI BLAST against L. salmonis USP. 

ClustalX2 (Larkin et al., 2007) was used to align selected sequences and create a Bootstrap N-

J tree excluding positions with gaps at 1000 bootstrap trials. The tree was edited using 

TreeView X (Page, 1996). Selected species were Tribolium castaneum (red flour beetle), 

Liocheles australasiae (wood scorpion), Reishia clavigera (sea snail), Haliotis diversicolor 

(abalone), Gryllus firmus (sand field cricket) and Melipona scutellaris (stingless bees). Full 

overview of selected species, their classification and accession numbers are presented in 

Appendix B. 
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4.2 PROTEIN EXPRESSION  

4.2.1 Expression of EcR-LBD, EcR and USP  

The expression constructs containing EcR-LBD (both in pETMBP and in pETGB1), EcR (in 

pETMBP) and USP (in pETMBP) were transformed into the E. coli strain BL21(DE3). 

Desired proteins were induced by adding IPTG to the bacterial cultures of optical density of 

0.8 to 1 and the protein production was monitored at different time points (Figs. 4.2.1). Both 

GB1-fused EcR-LBD (expected size 38 kD; Fig. 4.2.1.1) and MBP-fused EcR-LBD (expected 

size 72 kD; Fig. 4.2.1.2) were clearly detectable after 3 hours induction with IPTG and the 

levels of expression increased and peaked at 16 hours after the induction. The expression 

profile of MBP-fused EcR (86 kD, containing both DBD and LBD) was also similar to the 

EcR-LBD constructs, although MBP-EcR was not as strongly expressed as MBP-EcR-LBD 

(Fig. 4.2.1.3). Meanwhile, MBP-fused USP (93 kD) did not expressed at all under the same 

experimental conditions (Fig 4.2.1.4).  

            1        2        3       4        5       6          7        1  2         3       4        5       6         7 

                 

 

  

 

 

Figure 4.2.1.1 SDS-PAGE analysis of 

expression of GB1-fused EcR-LBD 

protein (38 kD). Gel was stained with 

Imperial Protein Stain. 5 µl sample + 5 

µl 2x loading buffer were loaded on 

lanes 2-7. Lane 1, protein ladder. Lanes 

2, 3, 4, 5, 6 and 7: samples at 0h, 1h, 2h, 

3h, 4h and overnight (16h) after adding 

IPTG, respectively. The arrow indicates 

the GB1-fused EcR-LBD. 

Figure 4.2.1.2 SDS-PAGE analysis of 

expression of MBP-fused EcR-LBD 

protein (72 kD).  Gel was stained with 

Imperial Protein Stain. 5 µl sample + 5 

µl 2x loading buffer were loaded on 

lanes 2-7. Lane 1, protein ladder. Lanes 

2, 3,4,5,6 and 7: samples at 0h, 1h, 2h, 

3h, 4h and overnight (16h) after adding 

IPTG, respectively. The arrow indicates 

the MBP-fused EcR-LBD. 
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Figure 4.2.1.3 SDS-

PAGE analysis of 

expression of MBP-fused 

EcR protein (86 kD) at 

16h after IPTG 

induction. Gel was 

stained with Imperial 

Protein Stain. 5 µl sample 

+ 5 µl 2x loading buffer 

was loaded on the lane. 

The arrow indicates the 

MBP-fused EcR. 

 

Figure 4.2.1.4 SDS-PAGE analysis of expression of 

MBP-fused USP protein (93 kD). Gel was stained 

with Imperial Protein Stain. 5 µl sample + 5 µl 2x 

loading buffer were loaded on lanes 2-5. There was 

no visible expression of USP protein. Lane 1, protein 

ladder. Lanes 2, 3, 4 and 5: samples at 0h, 2h, 4h and 

overnight (16h) respectively after IPTG induction, 

respectively. 
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4.3 Purification of L. salmonis EcR-LBD, EcR and USP  

4.3.1 Purification of EcR-LBD by immobilized metal ion affinity chromatography  

E. coli cells expressing MBP-fused EcR-LBD protein was harvested by centrifugation and the 

pellet was lysed and supernatant was subjected to IMAC (Fig 4.3.1.1). (The GB1-fused 

protein was mostly found in pellets, thus not further used (Fig 4.3.1.2). The binding of His-tag 

to the Ni-resin was very poor and most MBP-fused EcR-LBD was eluted as a flowthrough 

and the remaining protein was eluted during the elusion step using low imidazole containing 

buffers (Fig 4.3.1.1). 
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Figure 4.3.1.2 SDS-PAGE 

analysis of lysis of GB1-fused 

EcR-LBD protein. Gel was 

stained with Imperial Protein 

Stain. 5 µl sample + 5 µl 2x 

loading buffer were loaded on 

lanes 2-4. Lane 1, protein ladder. 

Lane 2, lysate. Lane 3, 

supernatant. Lane 4, pellet. 

Figure 4.3.1.1 SDS-PAGE analysis of MBP-

fused EcR-LBD protein purification by 

IMAC. Gel was stained with Imperial Protein 

Stain. 5 µl sample + 5 µl 2x loading buffer were 

loaded on lanes 2-9. Lane 1, protein ladder.  

Lane 2, lysate. Lane 3, supernatant. Lane 4, 

pellet. Lane 5, flowthrough. Lanes 6-9: elusion 

at 20 mM, 40 mM, 100 mM and 350 mM 

imidazole, respectively. 
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4.3.2 Purification of MBP-fused EcR by immobilized metal ion affinity chromatography 

The MBP-fused EcR protein was subjected to IMAC, and like MBP-fused EcR-LBD, MBP-

fused EcR also did not bind to the Ni-resin (data not shown).  

4.3.3 Expression and purification of TEV protease and TEV digestion of MBP-EcR-LBD   

The TEV protease was expressed and purified following the procedures by Berg et al. (2006) 

(Fig 4.3.3.1). A strong, single band of around 32 kD was eluted with from the IMAC (Fig 

4.3.3.1, lane 9). MBP-fused EcR-LBD was digested with the TEV protease, and further 

purified by IMAC (Fig 4.3.3.2). After overnight incubation, the digestion has proceeded about 

50% (Fig 4.3.3.2, lane 5). The digestion mixture was subjected to IMAC. EcR-LBD without 

MBP (Fig 4.3.3.2, lane 6, lower arrow) along with undigested i.e. MBP-EcR-LBD (Fig 

4.3.3.2, lane 6, upper arrow) was eluted as flowthrough (Fig 4.3.3.2, lane 6), whereas most of 

freed MBP (Fig 4.3.3.2, lane 8), was eluted with 350 mM imidazole. However, after TEV 

digestion MBP-less EcR-LBD precipitated (data not shown). 

 

                             1      2      3      4     5      6      7      8      9                              

                         

 

  

                   

Figure 4.3.3.1 SDS-PAGE 

analysis of TEV (around 

32 kD) purification by 

IMAC. Gel was stained 

with Imperial Protein Stain. 

5 µl sample + 5 µl 2x 

loading buffer were loaded 

on lanes 2-9. Lane 1, 

protein ladder. Lane 2, 

lysate. Lane 3, supernatant. 

Lane 4, pellet. Lane 5, 

flowthrough. Lanes 6-9: 

elusion at 20 mM, 40 mM, 

100 mM and 350 mM 

Imidazole , respectively. 
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4.3.4 Purification of MBP-fused EcR-LBD by ion exchange chromatography 

Since both MBP-fused EcR-LBD and EcR bound very poorly to the Ni-resin and most of 

EcR-LBD and EcR proteins were eluted as flowthrough in IMAC, IEC was chosen instead to 

purify the MBP-fused EcR-LBD protein. At 150 mM NaCl, which was the salt concentration 

of cell lysis, MBP-EcR-LBD eluted as flowthrough without any binding to the DEAE matrix 

(data not shown). Also, most of MBP-EcR-LBD was eluted as flowthrough at much lower salt 

concentration of 20 mM NaCl (Fig 4.3.4.1), although some binding of MBP-fused EcR-LBD 

did occur, and this was accompanied by removing much of impurities from the MBP-fused 

EcR-LBD containing fraction (Fig 4.3.4.1, lanes 7 and 8). However, MBP-fused EcR-LBD 

bound to the DEAE matrix well at 6.7 mM NaCl (Fig 4.3.4.2) and it was eluted with the 

buffer containing 100 mM NaCl (Fig 4.3.4.2, lane 7). 

 

 

 

 

Figure 4.3.3.2 SDS-PAGE 

analysis of MBP-fused EcR-

LBD protein purification by 

IMAC after TEV digestion. 
Gel was stained with Imperial 

Protein Stain. 8 µl sample + 8 µl 

2x loading buffer were loaded 

on lanes 2-8. Lane 1, protein 

ladder. Lanes 2-5: samples at 0h, 

1h, 2h, and overnight (16h) after 

adding TEV protease to MBP-

fused EcR-LBD protein, 

respectively. Lane 6, 

flowthrough. Lanes 7-8: elusion 

at 20 mM and 350 mM 

Imidazole, respectively. 
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Figure 4.3.4.1 SDS-PAGE analysis of MBP-fused EcR-LBD protein purification by 

IEC (2
nd

 IEC column and NaCl was 20 mM). Gel was stained with Imperial Protein 

Stain. Lysate was run on IEC column (Lysate buffer contains 150 mM NaCl). 

Flowthrough from first IEC column was diluted from 150 mM to 20 mM NaCl and re-

run on IEC column. In gel picture, lane 3 should have come first and then lane 2. 

Accidently interchange happened during sample loading into gel. 10 µl sample + 10 µl 

2x loading buffer were loaded on lanes 2-8.  Lane 1, protein ladder. Lane 2, dilution of 

first IEC column flowthrough at 20 mM NaCl. Lane 3, flowthrough from first IEC 

column at 150 mM NaCl. Lane 4, flowthrough from second IEC column at 20 mM 

NaCl. Lanes 5-8: elusion at 20 mM, 50 mM, 100 mM and  500 mM NaCl of second IEC 

column purification, respectively.  
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4.3.5 Purification of MBP fused EcR-LBD by size exclusion chromatography 

SEC, which separates proteins according to their apparent size, was chosen as the last step of 

purification. A Superdex-packed SEC column was equilibrated with a buffer containing 150 

mM NaCl and then IEC-purified MBP-EcR-LBD protein was loaded on the column. The 

MBP-EcR-LBD was eluted right after the void volume (Figs 4.3.5.1 and 4.3.5.2), indicating 

the protein was aggregated. High salt column equilibration buffers (i.e., 0.5 M or 1 M NaCl) 

did not affect the elution profile (data not shown). 

 

Figure 4.3.4.2 SDS-PAGE analysis of MBP-fused EcR-LBD protein purification by 

IEC column (3
rd

 IEC column and NaCl was 6.7 mM). Gel was stained with Imperial 

Protein Stain. Flowthrough from second IEC column was diluted from 20 mM to 6.7 mM 

NaCl and again loaded on IEC column. 15 µl sample + 15 µl 2x loading buffer were 

loaded on lanes 2-8. Lane 1, protein ladder. Lane 2, flowthrough from second IEC 

column (20 mM NaCl). Lane 3, dilution of second IEC column flowthrough at 6.7 mM 

NaCl. Lane 4, flowthrough from third IEC column. Lanes 5-8: elusion at 20 mM, 50 

mM, 100 mM and 500 mM NaCl of third IEC column purification, respectively.  
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Figure 4.3.5.1 Chromatogram of MBP-fused EcR-LBD protein from SEC using HiLoad 

16/600 Superdex 200 prep grade.  
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Figure 4.3.5.2 SDS-PAGE analysis of purification of MBP-fused EcR-LBD protein by 

SEC using HiLoad 16/600 Superdex 200 prep grade. Gel was stained with Imperial Protein 

Stain. 7 µl sample + 7 µl 2x loading buffer were loaded on lanes 2-8. Lane 1, protein ladder. 

Lanes 2-7: sequential samples of fraction number 4-9, respectively. Lane 8, supernatant. 
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4.4. Interaction study between MBP-EcR-LBD and Pon A using isothermal titration 

Calorimetry 

The IEC-purified MBP fused EcR-LBD was used for interaction studies with Pon A. The 

sensogram (Fig 4.4.1) shows the heat developed with successive injections of Pon A into 

either buffer or MBP-EcR-LBD. The experiment shows that the heat generation is higher for 

Pon A injected into buffer alone compared to Pon A injected into MBP-EcR-LBD. This data 

suggest that there is no detectable interaction between MBP-EcR-LBD and its potential ligand 

Pon A. 

 

 

 

Figure 4.4.1 ITC analysis of Pon A (ligand) and MBP-EcR-LBD (analyte). ITC heat 

transfer curves of Pon A injections into either MBP-EcR-LBD or buffer alone. 20 injections 

of 8.6 µM Pon A into 2 µM MBP-EcR-LBD blue line. 20 injections of 8.6 µM Pon A into 

buffer alone red line. 
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5. DISCUSSION 

The aims of this study were cloning of L. salmonis EcR-LBD,  full length EcR (LBD+DBD) 

and full length USP (LBD+DBD) and then express them at optimum level using suitable 

expression vector, purification of expressed protein using different techniques and finally 

study the interaction with Pon A. The cloning of all three constructs was verified by 

sequencing. In this study, the expression vectors pETMBP and pETGB1 were used. From the 

previous experience of working with these vectors, protein production was induced at 18°C 

and the expression level for EcR-LBD and EcR was quite good. The process of protein 

purification technique selection is based primarily on trial and error. Several techniques were 

used with different parameters and this step took comparatively longer time. In IMAC, both 

EcR-LBD and EcR protein had similar problem. The binding between 6X-His and Ni-resin 

was very poor as His tag probably was hidden inside the protein. Assuming that EcR-LBD 

and EcR proteins behave almost in same way during purification as like as IMAC 

purification, only MBP-fused EcR-LBD protein was subjected further purification study. In 

ITC interaction study, there was no effective interaction between EcR-LBD and Pon A under 

experimental condition.  

5.1 Sequence and Phylogenetic analyses  

Sequence alignments of EcR and USP sequences from L. salmonis and other species showed 

that ligand-binding domains of both EcR and USP are less conserved than the respective 

DNA-binding domains (Figs. 4.1.1.3 and 4.1.2.3). The sequence divergence of LBD may 

open a way to design highly specific drugs targeting ligand-binding domains of each species, 

since any drug targeting the LBD of a species will be specific to the targeted species and may 

give minimal side-effect, if any, to other no-target species (Dhadialla et al., 1998, 2005). 

5.2.1 Expression of EcR  

The use of carrier proteins (such as MBP, GB1, GST) in protein expression constructs helps 

the desired protein to express better and to make it more stable and soluble (Kapust et al., 

1999). In addition, they often provide efficient purification tags. In this study we used both 

MBP and GB1 to express EcR-LBD (and MBP for EcR „full-length‟). Both GB1- and MBP-

fused EcR proteins were expressed strongly at 18
o
C overnight (Figs. 4.2.1); however, since 

MBP-fused EcR proteins were more soluble than GB1-fused proteins, the former were used 

for further purification and binding studies. Our results on the function of MBP concurred 
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with earlier studies which showed that MBP provides better expression and yields more 

soluble proteins compare to other carriers due to its relatively large size and stability and the 

effect of using MBP is more pronounced with proteins expressed in bacterial systems (Kapust 

and Waugh, 1999; Fox et al., 2003). 

5.2.2 Expression of USP  

The USP expression construct did not yield a MBP-fused USP protein of expected size 92 kD 

(Fig 4.2.1.4), although under the same experimental conditions EcR proteins expressed very 

strongly (Figs 4.2.1.1, 4.2.1.3; also see Section 5.2).  

In general, the instability of the mRNA, proteolysis of the target protein, improper protein 

folding, presence of rare codon in open reading frame, formation of hairpin at the 5'-side of 

the mRNA may inhibit the expression or very low expression of target protein in the E. coli 

strain (Kim et al., 2008). For L. salmonis USP, one could consider following two reasons. 

One is that the protein synthesis has stopped early on or the synthesis never has started, 

though we do not know what may have cause the stoppage. The other is that synthesised 

protein was degraded by the internal system, possibly due to faulty folding or to avoid the 

toxic effect of the newly synthesised protein. However, since USP proteins from other species 

have been expressed well in similar bacterial expression systems, these notions seem difficult 

to hold. The SDS-PAGE analysis of USP expression profile (Fig 4.2.1.4) reveals that the 

protein profiles are essentially the same between before and after IPTG induction. Especially, 

the same protein profiles of zero hour and 4 hours after induction (Lanes 2 and 4 in Fig 

4.2.1.4) indicates no protein synthesis has occurred (or alternatively newly synthesised protein 

was degraded right after the synthesis).  

Regardless of the causes of failed expression of USP in the bacterial system we employed, 

other ways of protein expression such as using insect cell-based system or cell-free in vitro 

system should be exploited.  
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5.3 PROTEIN PURIFICATION 

5.3.1 EcR protein purification by IMAC  

MBP-fused EcR proteins, which have 6X-His tag in the N-terninus of MBP, did not bind to 

the Ni-agarose resin and was instead eluted as a flowthrough fraction during IMAC-based 

purification (Fig. 4.3.1.1). Most likely reason for this seemed that the 6X-His tag was buried 

inside the protein and could not bind to the Ni-agarose resin. To test this possibility, we 

digested the fusion protein with the TEV protease and ran the digestion mixture on IMAC 

again under the same condition. As expected, now liberated MBP was bound to the Ni-resin 

and only eluted with very high (350 mM) imidazole (Fig 4.3.3.2, lane 8). The folding (or 

aggregation), which has prevented His-tag from binding to the Ni-resin, must have been very 

tight, as this did not loosen up neither at high salts (upto 1 M NaCl) nor with detergent (1.2% 

TX-100) (data not shown). Furthermore the overnight TEV digestion has completed only 50% 

(Fig 4.3.3.2, lane 5).  

If the N-terminus His-tag was the cause of purification, one could make the fusion protein 

with a C-terminus His-tag. In this case, the fusion protein would be subjected to IMAC and 

eluted with a buffer containing high imidazole. (Later the MBP carrier could be cleaved with 

TEV and separated away from EcR by repeated IMAC.) However, the present aggregation 

problem is most likely due to extremely high hydrophobicity of the EcR protein (Fig. 5.1) 

hence changing the position of the His-tag may not solve the problem.  

It is known that the size of protein directly influence the efficiency of His-tag binding to the 

Ni-resin, meaning the smaller protein is the tighter (or the more) binding occurs (Frangioni 

and Neel, 1993). However, neither the GBI-EcR-LBD fusion (size 38 kD) nor the two MBP 

fusions (EcR-LBD, size 72 kD; EcR-full, size 92 kD) had any differences and all eluted as 

flowthrough in IMAC. Therefore the size of EcR fusion proteins was not a factor in IMAC 

separation.  
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    Position of amino acid  

 

Figure 5.1 Hydrophobic plot of L. salmonis EcR using Kyte-Doolittle scale (1982). 

Positive value represents the hydrophobic region.  

 

5.3.2 EcR protein purification by IEC using DEAE-cellulose 

Anion exchange chromatography using weak positively charged DEAE cellulose gave thus 

far the only reliable mean to purify the aggregation-plagued MBP-EcR fusion protein. The 

procedures we employed were to run IEC at low salt (20 mM NaCl) first, at which MBP-EcR 

would elute as flowthrough whereas other impurities remain bound to the matrix. This 

flowthrough was further diluted to 6.7 mM NaCl and subjected another round of IEC with 

fresh DEAE-cellulose. At this very low salt condition, MBP-EcR did bind to DEAE-cellulose 

and the fusion protein was eluted with a buffer containing 100 mM NaCl. Using the 

successive IEC steps impurities could be removed first (at 20 mM NaCl) as bound form in 

DEAE, and second (at 6.7 mM NaCl) as flowthrough. 

5.3.3 EcR protein purification by SEC  

The size exclusion chromatography (SEC) is usually employed as the final step of 

recombinant protein purification where the affinity chromatography is often the first step. Our 

attempts to use SEC were not successful because the MBP-EcR fusion protein was eluted as 

high molecular aggregates without noticeable removal of impurities (Figs. 4.3.5.1, 4.3.5.2). 

Since these aggregates failed to loosen up or dissolved even in high salt buffer (1 M NaCl), 
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SEC could not be employed as a reliable mean for further purification of IEC-purified MBP-

EcR fusion proteins. However, the fact that MBP-EcR elutes as very high molecular weight 

aggregates could be used to remove impurities with smaller molecular weight (likely 50 kD or 

less) and, if successful, this could yield MBP-EcR proteins with an acceptable level of purity.  

5.3.4 Digestion of EcR-LBD protein with TEV 

When MBP-EcR-LBD fusion protein was digested with the TEV protease and the MBP part 

including 6X His-tag was removed from the EcR-LBD protein (see Results; Fig 4.3.3.2), the 

EcR-LBD part was aggregated and became insoluble, which did not loosen up even at high 

salt of 1 M NaCl. Together with the fact that the digestion was completed only 50% made 

TEV digestion, thus removing the MBP carrier part for the eventual ligand-receptor binding 

studies, unachievable.  

5.3.5 Interaction Study of EcR-LBD with Pon A  

Under our experimental conditions EcR-LBD did not interact with its potential ligand Pon A 

(Fig. 4.4.1). One obvious possibility could be that the carrier protein MBP, which was fused 

to EcR-LBD, might have hindered the interaction. (The use of MBP-fused EcR-LBD, not 

MBP-less EcR-LBD, was necessary because without MBP the EcR-LBD protein 

precipitates.) Although we cannot rule out this possibility because the MBP only control assay 

has not been done, it is not likely that MBP was the reason for the non-interaction between 

EcR and Pon A. Other carrier proteins such as GST have shown that they had no influence on 

ligand binding to Chironomus EcR-LBD (Grebe and Spindler-Barth, 2002). More likely 

reason could be that purified EcR-LBD was either denatured or aggregated, thus the ligand 

was not able to bind it. This proposition is supported by a Kyte-Doolittle hydrophobicity plot 

(Fig 5.1), which shows that hydrophobic regions dominate over hydrophilic regions in most 

part of the protein. The excessive nature of hydrophobicity could not only make the 

purification very difficult, but also make purified protein more aggregation prone.  

The use of USP in both purification and binding studies of EcR could be a way to overcome 

the challenges caused by the extraordinary hydrophobic nature of EcR proteins. Previous 

studies have shown that USP, which forms stable heterodimers with EcR, makes EcR more 

soluble and less aggregating upon purification of EcR (Li et al., 1997). Mammalian two-

hybrid assay also showed that binding of ligand to the L. salmonis EcR is USP-dependent 

(Tolas, 2014). However, it should be noted that in Drosophila EcR could bind its ligands in 
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the absence of USP, albeit the binding affinities were lower than that of in the presence of 

USP (Grebe et al., 2003; Lezzi et al., 2002).  

6. CONCLUSION AND FUTURE PERSPECTIVES  

Expression constructs of the ecdysone nuclear receptor (EcR) from the salmon louse L. 

salmonis were made and expressed in a bacterial system. The expression level was very high 

for both MBP and GB1 constructs, with MBP-fused EcR proteins being more soluble, hence 

used in further studies. Both of MBP-fused EcR proteins (i.e., EcR-LBD and EcR „full-

length‟), which had 6X His purification tag, did not bind to the Ni-resin upon separation using 

IMAC. The most likely reason could be that the His tag was hidden inside of the protein. The 

EcR proteins also seemed aggregated due to its very high hydrophobic nature and were eluted 

as a high molecular weight „aggregates‟ in SEC. High salts (up to 1 M NaCl) failed to loosen 

them up. Unlike IMAC and SEC, IEC using DEAE under a very low salt concentration (6.7 

mM NaCl) was able to remove most of impurities from the MBP-fused EcR proteins. 

Therefore, an IEC-based purification approach could be utilised for the purification of salmon 

louse EcR proteins or other highly hydrophobic proteins.  

Another approach to purify and study EcR could be using USP. USP has been shown already 

to form stable heterodimers with EcR and they could be co-purified from the bacterial 

cultures. The EcR-USP dimers then can be subjected various studies including measuring 

interactions with potential ligands. One challenge to this approach is that the expression and 

purification of USP may require other expression system such as insect cells, which is not as 

facile as bacterial system. Nonetheless, using of insect cell-base expression system could be 

necessary as EcR (and USP) proteins expressed and purified from bacterial systems tended to 

be non-functional. 

Besides ITC, Surface Plasmon Resonance (SPR) technique could also be used to study the 

interaction between ligand and analyte which allows to monitor the interaction between two 

molecules in real time. 
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Appendix  

A. Species used in phylogenetic analysis of EcR 

 

 

 

 

 

 

 

 

B. Species used in phylogenetic analysis of USP 

 Species  NCBI Accession 

number 

Size (aa) 

Crustacea Lepeophtheirus salmonis AIE45497.1 442 

Hexapoda Tribolium castaneum CAL25729.1 407     

Gryllus firmus ADT64884.1 403 

Melipona scutellaris AAW02952.1 427 

Chelicerata Liocheles australasiae BAF85823.1 410    

Mollusca Reishia clavigera AAU12572.1 431    

Haliotis diversicolor ADK60866.1 441 

 

 

 

Classification Species  NCBI Accession 

number 

Size (aa) 

Crustacea Lepeophtheirus salmonis AIZ04022.1 536 

Tigriopus japonicas  ADD82902.1 546  

Nematoda: Adenophorea Trichuris trichiura CDW58186.1 754  

Nematoda: Secernentea Toxocara canis KHN78537.1 465  

Hexapoda Locusta migratoria AAD19828.1 541  

Sogatella furcifera AFC61183.1 569 

Mollusca: Bivalvia Crassostrea gigas EKC19773.1 471  


