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Abstract 
 

The Sunnyside Member is part of the Blackhawk Formation and consists of shallow-marine 
and estuarine deposits reflecting high-frequency changes in sea level. Detailed mapping of the 
unit reveals an intra parasequence architecture which is comparable to that of similar 
successions in the Blackhawk Formation. However, the Sunnyside Member comprises a 
unique set of coarsening upward sandstone packages, termed bedsets, which are bounded by 
non-depositional discontinuity surfaces and which were deposited during normal coastal 
progradation, expressing a sub-horizontal shoreline trajectory. In a palaeolandward direction, 
these bedset boundaries pinch-out into the lower shoreface. The surfaces are characterized by 
a landward shift of facies and an abrupt decrease in sediment supply. 
 
Excellent 3D exposure in the study area allows careful down-dip correlation of the shallow-
marine and estuarine units. The majority of successions are composed of interbedded 
mudstones and hummocky cross-stratified sandstones, representing a wave-dominated 
coastline; comprising uniform and basinward thickening wedges which can be traced for 5-10 
km down-dip. However, one bedset demonstrates both wave and current-induced sedimentary 
structures in an overall basinward thinning wedge, indicating changes into a more mixed, 
fluvial and wave-influenced depositional environment, which has been interpreted to result 
from lateral migration of the river mouth. 
 
Previous investigations of intra parasequence discontinuity surfaces in the Blackhawk 
Formation have suggested that they may form in response to high-frequency changes in sea 
level, wave base or sediment supply. The results from modelling obtained in this study 
indicates that non-depositional discontinuity surfaces similar to the ones observed in the 
Sunnyside Member form during a combined low in both sediment supply and wave base. A 
comparison between these data and field observations suggests a connection between 
reorientation of the shoreline resulting from river mouth migration, and a relatively abrupt 
decrease in sediment supply and wave base. The bedsets in the study area are therefore 
interpreted to result from reconfiguration of the coastal morphology, sediment starvation, and 
localized relative deepening due to loading and compaction. This interpretation implies first-
order sand body connectivity both up depositional dip and along-strike between adjacent 
bedsets. Good understanding of the formation and pinch-out style of these units is of great 
importance in an exploration perspective as discontinuities will control fluid flow within a 
reservoir of parasequence scale. 
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Chapter One – Introduction, History and Stratigraphy 

 

1.1 Introduction 

 
This thesis presents a sedimentological interpretation and mapping of shallow-marine and 

estuarine deposits in the medial to distal part of the Sunnyside Member. It also presents a 

comparison between field observations and output data derived from a 2D simulation program, 

along with a model for the formation of non-depositional discontinuity surfaces examined in 

the study area. 

The Sunnyside Member represents a series of stacked wave-dominated, shallow-

marine parasequences, which were deposited on the western margin of the Late Cretaceous, 

Western Interior Seaway. Long-term collision between the North American plate and oceanic 

crust resulted in thrusting from the west and the formation of a major, north-south trending 

mountain chain, termed the Sevier Mountains, and an associated foreland basin. Throughout 

the Later Cretaceous and Early Tertiary, sediments were shed into the basin, depositing as an 

eastward thinning wedge. This deposition was mainly controlled by the relationship between 

thrusting, tectonics, subsidence and eustatic sea level. Superimposed cycles of relative sea 

level changes resulted in an intricate spatial distribution of both continental and shallow-

marine sediments, which can be studied on various scales. The parasequences are regional 

extensive sandstone units reflecting high sedimentation relative to accommodation, and are 

bounded by surfaces representing an abrupt increase in accommodation and flooding in the 

marine environment (Van Wagoner et al., 1990). Internally, these units comprise 

discontinuity surfaces (clinoforms) which are interpreted to represent palaeosurfaces on the 

ancient shoreface-shelf (Hampson, 2000). The study of these internal packages along-strike 

and down-dip may reveal high-frequency changes of the ancient, wave-dominated 

depositional environment. This study will deal with some of these most high-frequency cycles 

encountered within shallow-marine deposits.  

The first chapter in this thesis will focus upon the depositional and structural history of 

the Western Interior Seaway and its stratigraphy. An introduction to basic sequence 

stratigraphic history and terminology is also given, along with its appliance to the Sunnyside 

Member and the Blackhawk Formation. This chapter will also give a brief introduction to 

previous work in this subject area and discuss the methods which were used during fieldwork 

as part of this study, and in addition, address some of the uncertainties related to logging and 
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correlation. Chapter Two will give a detailed facies description and interpretation of the 

depositional environments encountered in the study area. Chapter Three will provide a brief 

introduction to shallow-marine, wave-dominated depositional environments, followed by a 

thorough description of the stratigraphical elements observed in the Sunnyside Member. It 

will also present a correlation panel, relating logged sections to each other, and further discuss 

the internal parasequence architecture and the palaeogeographical setting. Chapter Four will 

give a brief introduction to estuarine depositional environments, followed by a description 

and interpretation of the estuarine deposits encountered in the study area, as well as a detailed 

definition of the palaeogeographical setting. Chapter Five will give an introduction to the 

process-response modelling software used during simulations, and describe five different 

scenarios of shoreline progradation. Chapter Six will discuss the effects of changing sea level, 

wave climate and sediment supply on the shoreface-shelf profiles, and the potential 

mechanisms for the formation of non-depositional discontinuity surfaces. It will also compare 

the modelling result with field observations, and propose a model for bedset formation as seen 

in the Sunnyside Member. Chapter Seven will provide a summary and conclude the study.      

 

1.2 Project aims 

 
The main aim for this thesis was to document the sedimentological and stratigraphical 

elements of the shallow-marine and estuarine Sunnyside Member in the study area between 

Woodside Canyon and Gray Canyon (Figure 1.1). The architectural elements have previously 

been described proximally and distally of the study area by Howell et al. (in review). The 

outcrops which are exposed within the area allow a detailed description and interpretation of 

the pinch-out style of parasequences, bedsets and incised valley deposits. The aim was 

therefore to recognize the main characteristics associated with bedset boundaries, and to 

identify potential mechanisms responsible for their formation. Process-response modelling of 

discontinuity surfaces has previously been carried out by Storms and Hampson (2005), who 

presented a series of end-member scenarios and compared them to their observed results. The 

aim in this study is to reverse this methodology, and change the input variables to make the 

model respond in accordance with data gathered in the field.  

Identification of the mechanisms responsible for bedset formation is very important to 

the understanding of coastal response to imposed changes in the depositional environment. 

Understanding of these features is also very important in hydrocarbon exploration, as wave-
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dominated, shallow-marine deposits form important reservoirs worldwide. Due to bedsets 

here being separated by low-permeable zones of more distal facies, they will act as barriers to 

fluid flow, both vertically and horizontally. Good understanding of pinch out styles up and 

down-dip, and along-strike may therefore improve the knowledge of reservoirs and fluid 

behaviour. It may also be of great importance during well-correlation, allowing one to 

differentiate between bedset boundaries and parasequence boundaries within subsurface 

reservoirs (Hampson et al., in review).         

 

1.3 Study area 

 
The study area is located 250 km southeast of Salt Lake City, and approximately 30 km north 

of the town of Green River (Figure 1.1). The Sunnyside Member crops out in Woodside 

Canyon and Long Canyon, which is cut into the northwest-southeast trending Book Cliffs and 

defines the Beckwith Plateau. The Book Cliffs stretches from the town of Helper in the north, 

towards Grand Junction , Colorado, approximately 250 km southeast. Trail Canyon and Gray 

Canyon (a distance of approximately 15 km) and in the eastern 10 km of Long Canyon 1 (see 

Figure 1.8 for detailed map). 
 

 
 

Figure 1.1. The study area is located in the south eastern part of Utah, USA.  The main sections are in Woodside 
Canyon and Long Canyon. The outline of the Book Cliffs is marked by the white, broken line. Maps from 
NASA World Wind.  
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The Beckwith Plateau is elevated to 1500 m above sea-level, the regional climate is 

semi-desert, which therefore results in there being very little vegetation covering the outcrops 

(Howell and Flint, 2003). The region is generally not disturbed by tectonics,  and was only 

mildly affected by the Late Paleocene San Rafael Swell (Hintze, 1988) to the west, resulting 

in an eastward dip of the bedding of 3-7° (Howell and Flint, 2003). However, the area 

underwent regional uplift and fluvial incision together with the Colorado Plateau during the 

Late Cenozoic (Hintze, 1988). This fluvial incision resulted in excellent 3D exposure of the 

cliffs and their internal stratigraphy.  

 

1.4 Regional history and stratigraphy 

 

In the Early Cretaceous, break-up of the supercontinent of Pangea was associated with 

westward drift of the North American continental plate, and the subsequent formation of a 

major thrust ridge along the western plate margin (Figure 1.2); this occurred in response to 

plate collision and subsidence of a dense oceanic crust (Burchfiel and Davis, 1975). This 

continuous thrusting from the west created the major, north-south trending, Cordilleran thrust 

belt and the associated Sevier mountain system; stretching from Canada and Alaska in the 

north, to the Gulf of Mexico in the south (Kauffman, 1984). As the mountain chain grew, 

flexural bulging of the lithosphere resulted in the development of a foreland basin (foredeep), 

which was bounded in the west by a forebulge; these are both oriented parallel to the main 

mountain chain (Decelles and Giles, 1996; Howell and Flint, 2003). Isostatic rebound of the 

lithosphere led to regional basement uplift 1000-1500 km east of the plate margin (Burchfiel 

and Davis, 1975). The foreland basin, termed the Western Interior Seaway, was progressively 

flooded from the north during the Aptian due to continuous subsidence and an overall high 

eustatic sea-level during the Late Cretaceous (Kauffman, 1984; Haq et al., 1988; Hintze, 

1988). Throughout the entire period of basin development, the epicontinental seaway was 

controlled by tectonic activity, eustatic sea level variations and intensity, and timing of 

thrusting and subsidence along the western coastline (Kauffman, 1984).  

Collision between the oceanic and the continental plates, microcontinents and island 

arcs continued throughout the basin’s history, and several phases of thrusting have been 

recognized (Burchfiel and Davis, 1975; Kauffman, 1984; Hintze, 1988).
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These pulses directly affected the depositional pattern in the basin, and increased thrusting 

and uplift was accompanied by periods of rapid sedimentation and subsidence. This is evident 

from numerous volcanic ash layers which can be directly correlated with episodes of 

transgression and relative sea level rise (Kauffman, 1984).  

Both subsidence and basin bathymetry was highly asymmetrical in the Western 

Interior Seaway, resulting in a highly asymmetrical depositional pattern (Kauffman, 1984). In 

the western part of the basin, proximal to the main Cordilleran thrustbelt where regional 

subsidence was high, thick sequences of coarse-grained, continental sandstones, 

conglomerates and marsh deposits along with marginal marine and shallow-marine clastics 

were laid down (Kauffman, 1984; Hintze, 1988). Farther east, in the deepest axial part of the 

basin, more fine-grained, calcareous and silty shales, and pelagic carbonates were deposited 

(Kauffman, 1984). In the eastern part of the basin, sedimentation was characterized by fine-

grained, marine deposits composed of silty and calcareous shales, and shallow-water 

carbonates. In the Late Cretaceous, when the Sevier orogony was at its peak, the depositional 

pattern changed from being mainly aggradational in the early stages of the basin development, 

to being more progradational as the eustatic sea level ceased rising, and a considerable 

amount of sediments were shed into the basin from the west (Hintze, 1988). Superimposed on 

the overall aggradational and progradational stacking pattern, was several high-frequency 

cycles of transgression and regression, reflecting an intricate relationship between thrusting, 

tectonism, volcanism, subsidence, deposition and eustatic sea level (e.g. Burchfiel and Davis, 

1975; Kauffman, 1984; Haq et al., 1988; Weimer, 1988)   

Figure 1.2. Palaeogeography of the central parts of present day USA during the (A) Middle Cretaceous and (B) 
Late Cretacous respectively. Utah is outlined in black. The approximate location of the study area is marked by a 
black dot. Maps are from http://jan.ucc.nau.edu/~rcb7/crepaleo.html.    
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In Late Cretaceous-Early Tertiary,  the decreasing Western Interior Seaway was 

uplifted and split into several minor depositional basins as the thrustfront moved eastward and 

the angle of subduction decreased, resulting in more regional subsidence (Hintze, 1988; 

Krystinik and Dejarnett, 1995; Van Wagoner, 1995; Howell and Flint, 2003). The Uinta and 

the Paradox Basin are two of the minor basins and structural elements of the Western Interior 

Seaway during this period, and arelocated in the eastern part of present day Utah (Krystinik 

and Dejarnett, 1995; Van Wagoner, 1995). These basins captured a considerable amount of 

the sediments eroded from the western highlands, which today is observed as a mixture of 

interfingering continental and shallow-marine sediments along the western basin margin 

(Figure 1.3). The shallow-marine sediments of this north-south trending basin are known as 

the Mesa Verde Group (Spieker and Reeside, 1925; Howell and Flint, 2003). In the Book

  

 

 

                       
 

Cliffs of eastern Utah, this group is further split up into the Star Point Formation, Blackhawk 

Formation and Price River Formation, reflecting an overall progradational unit largely 

composed of continental, marginal marine and shallow-marine deposits (Spieker and Reeside, 

1925; Spieker, 1946; Young, 1955). Eastwards of these deposits, sandstone tongues 

interfinger with the grey and slightly bluish Mancos shale, which is 1500 m thick in central 

Utah (Spieker and Reeside, 1925; Spieker, 1946; Young, 1955). The Blackhawk Formation 

and Star Point Formation is interpreted to have been deposited during the latest part of 

Santonian to the middle part of Campanian (84-79.5 Ma) (Howell and Flint, 2003); however, 

Figure 1.3. Depositional environments and selected 
stratigraphical units of the Western Interior Seaway. Gr = group, 
Fm = formation, Mb = member, Sst = sandstone. Modified from 
Hintze  (1988) and Howell and Flint (2003). 
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the timing depends on which set of dates is used (Obradovich, 1993; Van Wagoner, 1995; 

Howell and Flint, 2003). 

According to Young (1955) , the Blackhawk Formation is up to 300 m thick, and 

consists of “six prominent littoral marine sandstone tongues and many lesser ones, all 

projecting eastward into the Mancos, where they loose their identity and grade into shale” 

(Figure 1.4). Each sandstone tongue is also overlain by lagoonal sandstone, shale and coal 

developed behind barrier bars, and overlain by white-capped sandstone. The six tongues are: 

the Spring Canyon Member, the Aberdeen Member, the Kenilworth Member, the Sunnyside 

Member, the Grassy Member and, the Desert Member, ordered from the stratigraphic base to 

the top. The six members of the Blackhawk Formation represent an overall upward 

shallowing succession, deposited during infilling and progradation of the shoreline into the 

basin. The interfingering between successive sandstone tongues and Mancos shale 

corresponds to alternating, high-frequency, changes in relative sea level in response to 

tectonism, subsidence, sedimentation and eustatic sea level (Young, 1955; Kauffman, 1984).   

 

 

 
 

The Sunnyside Member is composed of three main sandstone tongues which are 

separated by continental, marginal marine, shallow-marine and offshore deposits of varying 

thickness, and which pinch out basinwards (east) into the Mancos shale (Young, 1955; 

Howell and Flint, 2003). These three units represents three different stages of shoreline 

development, each reflecting 10-15 km of basinward progradation (Howell and Flint, 2003). 

Figure 1.4. Lithostratigraphy of the Book Cliffs. The Sunnyside Member is outlined in red. Broken line below 
the Castlegate Sandstone represents a major erosional hiatus. Modified from Howell and Flint  (2003).   
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A typical succession displays an upward coarsening and upward shallowing unit, reflecting 

progradation of the shoreline. The tongues may also be truncated by an erosional surface, 

which represents a high-frequency fall in relative sea level, or by extensive coal beds (Davies 

et al., 2005). Both the internal architecture and the depositional environments of the 

Sunnyside Member will be discussed in detail throughout the forthcoming sections and 

chapters.      

 

1.5 Sequence Stratigraphy 

 
The concept of sequence stratigraphy was originally based upon seismic stratigraphy, and has 

been constantly developing from the late 70’s, to the present day (e.g. Mitchum, 1977; Jervey, 

1988; Posamentier et al., 1988; Posamentier and Vail, 1988; Van Wagoner et al., 1988; Van 

Wagoner et al., 1990; Mitchum and Van Wagoner, 1991; Hunt and Tucker, 1992; Kamola and 

Van Wagoner, 1995; Van Wagoner, 1995). It is defined as “the study of rock relationships 

within a chronostratigraphic framework wherein the succession of rocks is cyclic and 

composed of genetically related stratal units” (Mitchum, 1977). The concept has been widely 

used as a basis to understand and predict stratigraphic patterns in both modern and ancient 

deposition systems, both in response to sea level changes and deposition. Cycles of eustatic 

and relative sea level are usually superimposed upon each other to form a composite curve, 

these are divided into different time scales: first-order cycles (100-200 My), second-order 

cycles (10-100 My), third-order cycles (1-10 My), forth-order cycles (0.1-1 My) and fifth-

order cycles (10-100 thousand years); this terminology is recognized by Mitchum (1977), Van 

Wagoner et al. (1990) and Mitchum and Van Wagoner (1991). Such composite sea level 

curves gives rise to a hierarchy of stratigraphical elements that reflects the various frequencies 

of sea level change. Composite sequences reflects third-order cycles, and are composed of 

several sequence sets, stacked in a progradational, aggradational or retrogradational pattern 

(Mitchum and Van Wagoner, 1991). These are again composed of higher-frequency 

sequences (Figure 1.5), reflecting fourth-order sea level cycles, and which are further 

composed of: systems tracts, parasequence sets, parasequences and bedsets, representing 

fifth-order cycles (Van Wagoner et al., 1990; Mitchum and Van Wagoner, 1991). In addition, 

some even recognize sixth-order cycles (thousand to tens of thousands of years) (e.g. 

Hampson and Storms, 2003). 
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The basic building block of sequence stratigraphy is the fourth or fifth-order, high-

frequency sequence, which is composed of parasequence sets and parasequences (Van 

Wagoner et al., 1990). The sequence is defined as “a relatively conformable succession of 

genetically related strata bounded at its top and base by unconformities” (Mitchum, 1977; 

Van Wagoner et al., 1988; Van Wagoner et al., 1990). The bounding unconformity is 

described as “a surfaces separating younger from older strata along which there is evidence of 

subaerial erosional truncation and, in some areas, correlative submarine erosion, or subaerial 

exposure, with a significant hiatus indicated (Van Wagoner et al., 1988). Parasequence sets 

may be either progradational, aggradational or retrogradational (Figure 1.5), and are arranged 

into four systems tracts according to their stacking pattern. In the original sequence model 

there were three system tracts, these are the lowstand (LST), the transgressive systems tract 

(TST), and the highstand systems tract (HST). (Posamentier and Vail, 1988). More recent 

studies have also recognized the importance of deposition during falling sea level and defined 

an additional falling stage or forced regressive systems tract (Hunt and Tucker, 1992).  

Two different types of high-frequency sequences are recognized (type I and type II). 

The most common (type I) is formed when the amount of sea level fall is greater than the rate 

of basin subsidence, whereas type II is formed when the rate of eustatic sea level fall is less or 

equal to the rate of basin subsidence (Posamentier and Vail, 1988). The type I sequence is 

bounded by below by a type I sequence boundary (SB), which is “characterized by subaerial 

exposure and concurrent subaerial erosion associated with stream rejuvenation, a basinward 

shift of facies, a downward shift in coastal onlap, and onlap over overlying strata” (Van 

Wagoner et al., 1988). A type II sequence is bounded by a type II sequence boundary and 

therefore is “marked by subaerial exposure and a downward shift in coastal onlap”, but which 

lacks subaerial erosion due to stream rejuvenation and basinward shift in facies, in these cases 

the deposits above the SB are termed the shelf margin system tract  (Van Wagoner et al., 

1988). Both types of sequences described above are also bounded above by a type I or II SB.  

Type I sequences are composed of three out of the four identified systems tracts (LST, 

the TST and the HST). The LST is formed during relative sea level fall and during subsequent 

slow rise of relative sea level (Posamentier and Vail, 1988). The lowstand fan is composed of 

fine-grained material, deposited as submarine fans during periods of incision and sediment 

by-pass in the proximal part of the basin. The lowstand wedge is deposited during stable or 

slowly rising sea level and is composed of finer-grained slope deposits or a relatively coarse- 
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Figure 1.5. Internal architecture of an ideal ramp margin sequence which are bounded by a type I sequence boundary; from (Van Wagoner et al., 1990). In contrast to shelf-
break margin sequences, ramp margin sequences lack a pronoundsed shelf-slope-basin floor topography, and there are no abrupt transition from shallow to deeper water. A 
result of this gently dipping topography is the general lack of muddy lowstand deposits, such as lowstand wedges or basin floor fans. Lowstand deposits in ramp margin 
sequences are therefore considered to consist of incised valley deposits and associated sandy deltaic deposits (Van Wagoner et al., 1988; Van Wagoner et al., 1990).  
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grained, basin restricted wedge, dependent on the shelf and slope geometries (Posamentier 

and Vail, 1988). The TST is deposited during sea level rise and is composed of a 

retrogradational parasequence set, which overlay the transgressive surface (flooding surface 

which may combine with the sequence boundary), which is itself overlain by the maximum 

flooding surface (MFS); this represents the maximum landward position of the shoreline (Van 

Wagoner et al., 1988). The subsequent HST is commonly composed of an aggradational and 

progradational parasequence set and is bounded above by the SB (Posamentier and Vail, 

1988). 

Parasequences are the main building blocks of high-frequency sequences and are 

defined as “a relatively conformable succession of genetically related beds or bedsets 

bounded by marine flooding surfaces and their correlative surfaces” (Van Wagoner et al., 

1988). These flooding surfaces, or parasequence boundaries (PSB), “separate younger from 

older strata, across which there is evidence of an abrupt increase in water depth”, and 

represent a landward dislocation of the shoreline (Van Wagoner et al., 1988). Most 

silisiclastic, shallow-marine parasequences are upward coarsening and upward shallowing, 

reflecting shoreline progradation (Van Wagoner et al., 1990). The main parasequence 

characteristics are: an overall upward thickening and coarsening of sandstone beds, an upward 

increase in sandstone/mudstone ratio, and an upward decrease in bioturbation (e.g. Van 

Wagoner et al., 1990; Boyd et al., 1992; Reading and Collinson, 1996). Farther landwards, 

parasequences can be identified in tidal, estuarine or fluvial environments; however, these are 

more difficult to identify (Van Wagoner et al., 1990). The PSB is characterised by a change in 

bed thickness, a landward shift of facies, a change in lithology from sandstone to mudstone or 

from coal to sandstone, and possibly by an erosional truncation (Van Wagoner et al., 1990). 

Parasequences are generally considered to be cycles of fourth or fifth-order, presumably one 

order higher than the high-frequency sequences they define (Mitchum and Van Wagoner, 

1991). 

The building blocks of parasequences are bedsets, which are defined as “a relatively 

conformable succession of genetically related beds bounded by surfaces (called bedset 

surfaces) of erosion, non-deposition or their correlative conformities” (Van Wagoner et al., 

1990). The bedset surfaces, or bedset boundaries, are less extensive than the PSB, but 

demonstrates a similar upward increase in sandbed thickness and grain-size, and a decrease in 

bioturbation (Van Wagoner et al., 1990; Howell et al., in review). The main contrast, however, 

is that bedset boundaries are not flooding surfaces and are not associated with a landward 
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dislocation of the shoreline. Bedsets are generally considered as fifth or sixth-order cycles 

(Van Wagoner et al., 1990; Mitchum and Van Wagoner, 1991; Hampson and Storms, 2003).              

The Blackhawk Formation represents a third-order, highstand sequence set (Mitchum 

and Van Wagoner, 1991; Howell and Flint, 2003), which reflect aggradation in the earliest 

and lowermost part of the formation, and more progradation towards the top during late 

highstand deposition (Figure 1.6). The sequence set is bounded by the Castlegate sequence 

boundary in the upper part. The six members identified by Young (1955) within the 

Blackhawk sequence set are composed of nine, high-frequency, fourth-order, sequences 

(Mitchum and Van Wagoner, 1991). 

 

 

 
 

The Sunnyside Member comprises parts of two of these nine, high-frequency 

sequences (Figure 1.6), and is represented by three parasequences, stacked in progradational 

parasequence sets (Van Wagoner et al., 1990; Howell and Flint, 2003). The lowermost 

Sunnyside Parasequence (S1), constitutes the lowermost unit in the HST, and is part of a 

high-frequency sequence where the TST and LST are located in the underlying Kenilworth 

Member (Figure 1.6) (Pattison, 1995; Taylor et al., 1995); the bounding surface between the 

two members is therefore a MFS. S1 is not present in the study area as it pinches out farther 

west (in the area close to B’ Canyon) (Howell et al., in review). The second parasequence in 

the Sunnyside Member (S2), constitutes the uppermost unit of the same HST and is separated 

by the underlying S1 by a PSB, reflecting a relative sea level rise of approximately 10 m, and 

is bounded on top by the (lower Sunnyside) SB, reflecting a sea level fall of up to 20 m 

(Howell et al., in review). In the study area, the SB on top of S2 is a correlative SB as it is part 

Figure 1.6. Cross-section showing selected sequence stratigraphical units in the Book Cliffs. The sequences 
exposed in the study area are encircled. Modified from Howell and Flint  (2003).  
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of the interfluve formed during incision (Figure 1.6). S2 is thicker (up to 45 m) than most of 

the parasequences in the Blackhawk Formation (Howell et al., in review). This is related to 

the limited basinward progradation of the two underlying parasequences, where the excess 

accommodation space created basinward of the shoreline  prior to progradation of S2 was 

filled (Howell et al., in review). S2 is also capped by a thick coal bed (the “Sunnyside Coal”, 

up to 5.5 m thick), which is split between South Lila Canyon and Woodside Canyon (a few 

kilometres west of the study area) into two minor beds, by a wedge of shallow-marine 

sandstone; this represents the maximum landward extent of the uppermost parasequence in 

the Sunnyside Member (S3) (Howell and Flint, 2003; Davies et al., 2005). The LST 

associated with the lowermost sequence is located somewhere east of the study area, but this 

has not been identified during this research as it is removed by later Cenozoic uplift and 

erosion. The TST is represented by the incised valley fill (exposed northeast of the study area,) 

and by a thin transgressive unit overlying the correlative SB in Woodside Canyon and Long 

Canyon 1 (see section 3.6). The following parasequence (S3) is the only parasequence in the 

subsequent HST, and it is bounded below by the MFS, and above by the next SB belonging to 

the lower most Grassy sequence (Figure 1.7), reflecting fall in relative sea level and 

subsequent fluvial incision (Howell et al., in review).  

 

 

 
 

The LST within this sequence is also located somewhere east of the study area, but 

this one has also not been identified in this field study. The TST is represented by the incised 

Figure 1.7. Stratigraphy in the proximal part of Woodside Canyon. Most of these units have been traced to their 
basinward extension, 10-15 km east of this locality. See text for more detailed description of the units. The 
heterolithic unit above the lowermost Grassy parasequence is non-marine coastal plain deposit, and the grey mud 
below S2.4 is the Mancos Shale. The Sunnyside Member is approximately 70 m thick at this locality. 
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valley fill exposed in Woodside Canyon and Long Canyon 2 (Chapter Four); no transgressive, 

shallow-marine unit has been identified in this sequence. S3 is bounded by a MFS, 

representing the transition into the overlying Grassy Member and the subsequent TST and 

HST of the same sequence (Figure 1.7 and  Figure 1.6). 

Both S2 and S3 also contain several high-frequency, fifth or sixth-order bedsets 

(Mitchum and Van Wagoner, 1991; Hampson and Storms, 2003; Howell et al., in review). S2 

contains seven bedsets (S2.1-S2.7) stacked in an overall progradational pattern (see section 

3.5.), where the uppermost four (S2.4-S2.7) are present in the study area (Figure 1.7). S3 is 

composed of another three bedsets, termed S3.1-S3.3, which are stacked in a similar 

progradational pattern. These bedsets are bounded by boundaries of non-deposition (described 

above) demonstrating a landward shift of facies (Howell et al., in review).  

Throughout the thesis, the sequence stratigraphic terminology (defined above) of 

Mitchum (1977), Posamentier et al.(1988), Posamentier and Vail (1988), Van Wagoner et 

al.(1988), Van Wagoner (1990) and Mitchum and Van Wagoner (1991) will be used.              

 

1.6 Previous Work 
 

As the Blackhawk Formation is virtually unaffected by tectonism and faulting, and because of 

its excellent 3D exposure, it has become a type example of foreland basin deposition, ancient 

wave-dominated shorelines and high-resolution sequence stratigraphy. Thus, most of the 

studies conducted in the area are related to the identification of shallow-marine and marginal 

marine depositional environments and their position within the sequence stratigraphic 

hierarchy; this is especially true for the parasequence concepts (e.g. Kamola and Van 

Wagoner, 1995).  

The area has also been thoroughly explored in the search for hydrocarbons, and the 

coastal plain deposits contains several thick commercial coal deposits which have been mined 

extensively throughout the past century; this is especially true for the “Sunnyside Coal”. This 

industry has greatly increased our 3D understanding of the area through well logs and cores. 

Regional mapping and correlation of the Blackhawk Formation, and the over and 

underlying stratigraphic units, was conducted in the 1920’s to the 1950’s, and a brief 

lithological interpretation of the Blackhawk Formation, including the Sunnyside Member, was 

complete by Spieker and Reeside (1925), Spieker (1946) and Young (1955). The detailed 

investigations on sedimentological and sequence stratigraphical aspects of the minor units, 
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initiated with examples from the Spring Canyon Member (Van Wagoner et al., 1990; Kamola 

and Van Wagoner, 1995), and has been followed by detailed interpretations of the Kenilworth 

Member (Pattison, 1995; Taylor et al., 1995; Hampson et al., 2001; Hampson and Storms, 

2003), the Grassy Member (O’Byrne and Flint, 1995), and the Desert Member and the 

overlying Castlegate Sandstone (Van Wagoner, 1995). The Kenilworth Member has also been 

used as an analog for comparison between computer simulated, internal parasequences 

architecture, and outcrop examples, to identify potential mechanisms for bedset formation 

(Storms and Hampson, 2005). The sedimentology and sequence stratigraphy of the Sunnyside 

Member has been described in detail by Howell et al. (in review). 

 

1.7 Methodology 
 

A total of 25 sections were logged and measured in the study area; 16 in Woodside Canyon, 2 

in Long Canyon 2, 1 in Jenny Canyon and 6 in Long Canyon 1 (Figure 1.8). The thickness of 

the sections varied between 8 and 132 m. The difference in thickness is related to the 

thickness of accessible outcrop, although most sections cover the entire Sunnyside Member. 

Some logs are restricted to the incised valley, and some also captures the lowermost part of 

the overlying Grassy parasequence. In addition, four logs (W1-W4) from the most proximal 

part of Woodside Canyon (Howell et al., in review), have been used to correlate west of the 

study area. See appendix for complete logs. 

The logs used here have a resolution of 1:40 which gives a good representation of the 

relative homogenous shallow-marine deposits. Individual beds can usually be traced for tens 

to hundred of meters laterally and are usually thicker than 5 cm, which is the lowermost limit 

of unit thickness represented by the log. Incised valley strata are more heterolithic, therefore 

there are significant change in lithology within a few meters both laterally and vertically, 

making these deposits harder to represent within log-data. 

The distances to the top of Grassy Parasequence 1 and 2 (G1 and G2) has also 

measured. The top of theseparasequences are bounded by gently (approximately 0.02°)  

basinward dipping flooding surfaces which represents a rise in relative sea level (Van 

Wagoner et al., 1990; O’Byrne and Flint, 1995; Hampson et al., 2001). These surfaces are 

used as datum as they are interpreted to be regional extensive and have a very gentle gradient. 

G1 bounding surface changes down-dip from foreshore and upper shoreface deposits in the 

western part, to lower shoreface and offshore transition zone in the eastern part of the study 
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area, resulting in a basinward increasing gradient (O’Byrne and Flint, 1995). G2 is 

represented by coastal plain deposition in the western part, and foreshore and upper shoreface 

strata in the eastern part of the study area. The easily recognizable, bleached foreshore and 

upper shoreface in G1 and G2 (O’Byrne and Flint, 1995), overlap in the central part of the 

study area and are both used as datum in the western and eastern part respectively.  

Down-dip correlation diagrams   were created from the measured log sections and 

positioned relative to the datum. Parasequence boundaries and bedset boundaries were walked 

out in the field for their lateral extent, providing good confidence of the correlations. Only in 

the proximal part of Woodside Canyon did the Sunnyside Member disappear into the 

subsurface at two locations, decreasing the potential for accurate correlation between log-

sections. However, both Long Canyon 2 and the distal part of Woodside Canyon, along with 

the entire Long Canyon 1, were successfully correlated with a very high certainty, allowing 

for extrapolation along-strike. It is important to recognize that the three main cross-sections 

are positioned oblique to true dip, which is considered to be west-east (Howell and Flint, 2003; 

Howell et al., in review). 

The main Woodside Canyon and 

Long Canyon 1 section represents a 

northwest-southeast profile, whereas 

Long Canyon 2 represents a 

southwest-northeast profile. The 

short Jenny Canyon cross-section 

represents a north northeast-south 

southwest, strike section.  

Thicknesses and dip-

gradients presented in this study are 

all based on the measured 

successions. The 1.5 m long Jacob’s 

staff used during the field work has 

a potential for errors during logging 

and it is therefore important to 

measure the “true thickness” of the 

exposed succession. This is straight                                             

forward in vertical, well exposed outcrops as the successions are undisturbed by tectonics etc. 

In poorly exposed outcrops, on the other hand, there is a potential for erroneous thicknesses, 

Figure 1.8. The main study area in Woodside Canyon and 
Long Canyon 1. Log sections are marked by black dots. 
W1-W4 are from Howell et al. (in review). 
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especially if the outcrop is sloping and covered in scree and vegetation. In general, the 

uncertainties related to measuring and logging increase with the thickness of the succession 

and the decrease in outcrop quality. In some locations, especially in the proximal part, the 

Grassy Parasequence is very steep and inaccessible, and distances to the top of G1 and G2 

have not been measured directly. In these locations, distances were calculated with the use of 

images and the known thicknesses calculated from the underlying S2 and S3.  

In addition to uncertainties related to measurements, the estimated thicknesses and 

dip-gradient may deviate from true values due to post-depositional compaction and the nature 

of the oblique strike of the correlation panels. The amount of compaction is difficult to 

estimate and no evidence related to post-depositional compaction has been observed, but it is 

reasonable to believe that the muddy distal part has been more compacted than the more 

sandy proximal part. The overall effect of post-depositional compaction is to decrease the 

thickness of the stratigraphical units, and increase their dip-gradients.  The effect of 

correlating oblique to dip has the opposite effect, resulting in too low dip-gradients. 

Combined, these effects may influence the overall stratigraphy differently as they cancel each 

other out or amplify each other. 
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Chapter Two – Facies association: Description and Interpretation 
 

2.1 Introduction 

 

This study of the Sunnyside Member along two (10-15 km long) down-dip sections involves 

correlation of shoreface-shelf and incised valley deposits on a relatively large scale. It is 

therefore appropriate to consider the deposits in the context of facies and facies associations 

(Reading and Levell, 1996). Within this study, the term facies association is used to describe 

sediments laid down in the same depositional environment. The aim of this study is not to 

give a detailed and careful description and interpretation of all sedimentary structures and the 

processes under which they were formed, but rather to group and interpret similar units which 

were deposited in similar settings and environments. Several of the interpreted facies 

associations comprise alternating sand and mud which have different properties (porosity, 

permeability etc.) and composition. These would under other circumstances be considered as 

separate facies, but since they reflect a given depositional environment and a set of 

depositional conditions, they are treated as facies associations. 

  The successions encountered in the Sunnyside Member have been divided into eleven 

facies associations FA1-11 (Table 2.1). FA1-6 reflects an upward shallowing and upward 

coarsening, progradational, highstand shoreface-shelf succession (Howell et al., in review) 

and constitutes the majority of described successions within the study area. FA7-10 have been 

interpreted to represent the filling of an incised valley by estuarine deposits during lowstand 

and transgression (Howell et al., in review). These facies associations are only present in the 

northern and most proximal part of the study area. 

As described in Chapter One, the two shallow-marine parasequences represented in 

the study area are bounded by a SB and/or a PSB (Howell et al., in review). A SB is 

associated with a number of attributes which separates the surface from other erosional 

surfaces which are related to shallow and marginal marine environments (e.g. fluvial channels 

and delta mouth scouring during normal regression) (Van Wagoner et al., 1990). These 

include: distinct basinward shift of facies, abnormal subaerial exposure, truncation and 

incision, onlapping, and the presence of a Glossifungites firm-ground (Van Wagoner et al., 

1990). An upward increase in marine influence reflecting a gradual landward shift of facies 

(during transgression) is also associated with SBs (Van Wagoner et al., 1990). In addition, 
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SBs have a more regional extent than fluvial channels. A detailed description of the internal 

geometries and the outline of the valley is given in Chapter Four. 

 

 

 

2.2. Shoreface-shelf facies associations 
 

The shoreface-shelf successions range in thickness from 1 to 20 meters and are laterally 

extensive over 10’s km, allowing detailed correlation throughout most of the study area. This 

continuity combined with excellent outcrop exposure makes it possible to observe lateral and 

vertical changes between proximal and distal parts of the field area. The shoreface-shelf 

environments (Table 2.1) can be divided into six facies associations. 

2.2.1 Facies association 1: Offshore deposits 

 
Description: The most distal parts of this facies association commonly consist of bluish, light 

and dark grey mudstone. On a fresh surface the deposits are homogenous and massive, 

lacking sedimentary structures (Figure 2.1, A and B). In a weathered outcrop, the facies 

association usually looks more greyish and light brown and has a nodular texture (Figure 2.1, 

Table 2.1.  Summary of the eleven facies associations recognized in the study area. 
. 

Description 

  
Interpretation Facies 

association 

1 Offshore Grey mudstone with occasional thin sandstone beds 

2 distal Offshore  
Transition Zone 

Bioturbated mudstone with relatively thin, hummocky cross stratified, sandstone interbeds 

3 proximal Offshore  
Transition Zone 

Bioturbated mudstone with relatively thick, hummocky cross stratified, sandstone 
interbeds 

4 Lower Shoreface Amalgamated, hummocky cross stratified sandstone 

5 Middle Shoreface Heavily bioturbated, fine-grained sandstone 

6 Upper Shoreface Well sorted, planar- and trough cross stratified sandstone 

8 Tidally influenced 
meandering channel 

Inclined heterolithic strata (IHS), interbedded, fine- to medium grained sandstone beds 
and grey siltstone beds 

9 Tidal bars  

 
Planar- and trough cross stratified (sometimes bidirectional), structureless, very fine- to 
medium-grained sandstone with rip-up clasts and rare root structures 

10 Lagoonal and tidal flat 
deposit  

 

Fine laminated mudstone with occasional fine- to coarse-grained sandstone interbeds 

 

7 Tidal reworked 
fluvial deposits  

Structureless or trough cross-stratified, fine- to coarse-grained sandstone with abundant 
rip-up clasts 

11 Transgressive lag 

 
Poorly sorted, medium- to coarse grained sandstone with abundant shell fragments 
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C). The nodules do not seem to possess any noticeably changes in composition relative to the 

surrounding rocks. These distal, relatively massive mudstones do not contain any evidence of 

bioturbation.  

 

 
 

 

 

A typical succession becomes more silty and sandy upward. The lowest sands in the 

succession contain light grey and brown spots, thin lenses and discontinuous lamina (Figure 

2.1, C). In contrast to the distal deposits described above, these silty mudstones are 

completely bioturbated (Taylor and Goldring, 1993). The amount of light grey silt and sand 

Figure 2.1. (A and B), Homogenous grey siltstone and mudstone of the distal parts of FA1. (C and D), very fine-
grained, sandy and silty mudstone of the proximal parts of the FA1. (C) shows Helminthopsis bioturbation. Staff 
is 1.5 m long. 
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increases upward but vary slightly locally within a succession. Burrows are generally small, a 

few mm wide with a dark lining, and filled with dark mud. Less bioturbated intervals may 

also contain very fine, planar and undulating lamination within the silt and mudstone. The 

amount of light brown, silt and sandstone interbeds is generally less than 5%, and where 

present, these beds are commonly heavily bioturbated but may contain vague planar and 

undulating lamination. The bed boundaries are usually very diffuse and disturbed by 

bioturbation and the sand is mixed with the surrounding mud. 

The thickness of this facies association varies between 1 and 20 m, and it is only 

present in the lowermost parts of the logs, and in the eastern part of the study area. The 

deposits commonly overlie and are overlain by FA2, but in the proximal areas, they may 

overlie FA3 and FA4 and be overlain by FA3. 

Interpretation: Thick, homogenous, upward coarsening mudstone units which indicates 

extensive marine bioturbation suggest deposition within an open marine environment below 

storm wave base (Walker and Plint, 1992). The gradual upward transition into wave 

influenced, sand- and mudstones of FA2 also support this interpretation.  

During major, high-energy storm events, the nearshore area is eroded and reworked by 

waves (e.g. Inman and Bagnold, 1963; Niedoroda et al., 1984; Walker and Plint, 1992).  Fine-

grained material is transported seaward in suspension by waves and currents (e.g. geostrophic 

currents, longshore currents, rip-currents, delta plumes) (Figure 2.2). As these basinward 

directed currents loose their transport capacity, very fine-grained silt and sand is deposited as 

thin, sandy laminas or beds within the overall mud prone environment (Johnson and Baldwin, 

1996). During fair-weather periods, this offshore environment receives pelagic and/or 

hemipelagic material from suspension (Stow et al., 1996). The offshore mudstones reflect 

relatively constant deposition over an extended period of time.  

Lack of evidence for bioturbation in the lower (most distal) part of the facies 

association may relate to the homogenous, muddy nature of the deposits. The additional lack 

of lamination and stratification within the mudstones suggest intense burrowing and 

reworking of the muddy deposits, leaving no traces of the original sedimentary structures 

(Pemberton et al., 1992b). Evidence for high to intense burrowing becomes noticeable further 

up where the contrasts between brown silt and dark grey mud are very pronounced.     

The coarsening upward succession reflects a gradual transition from a deep, quiet part 

of the shelf into shallower areas which were more influenced by storms induced as well as 

bottom currents. Although below storm wave base, currents are strong enough to produce 

planar-parallel and undulating lamination in the silty and sandy mudstone (Dott and 
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Bourgeois, 1982; Swift et al., 1983; Johnson and Baldwin, 1996). The boundary between FA1 

and the overlying facies association is usually gradual and is picked at the lowermost 

sandstone bed showing hummocky cross-stratification.    

 

 

                  
 

2.2.2 Facies association 2: Distal offshore transition zone (dOTZ) deposits 
 

Description: This facies is typically heterolithic containing interbedded sandstones and 

mudstone. Sandstones beds are fine-grained, 20-30 cm (maximum 70 cm) thick, with planar- 

and undulating lamination as well as hummocky cross-stratification (HCS) (Figure 2.3 and 

Figure 2.4). Wave ripples are common in the upper part (Figure 2.4, C). The boundary 

between the sandstone and mudstone beds may be disturbed and is not always sharp due to 

high to intense bioturbation (Figure 2.4, A). The thickness and frequency of sandstone beds 

increases upwards as the amount of bioturbation decrease. As a consequence, sandstone beds 

and boundaries between sandstone and mudstone become more pronounced upwards.   

The thickness of the FA2 units varies between 1 and 20 m. In the distal (eastern) part 

of the study area, the succession commonly overlies muddy FA1 strata and is overlain by 

more sandy FA3 strata. In more proximal areas, the units may also overlie FA3 and FA4. The 

transition between the underlying FA1 and the overlying FA3 is gradual and there are no 

distinct boundaries between them. The base of FA2 is picked by the lowermost HCS bed, and 

the top where the amount of sandstone beds is generally above 25%.  

 

 

Figure 2.2. Sand and silt is transported to the shoreface-shelf by storm surges 
(thick black arrows), rip-currents (white arrows) or delta plumes (thin black 
arrow). Modified from Howell and Flint (2003). 
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The uppermost part of Log 11 – Log 17 and in 

Log 23 – Log 25, FA2 has a somewhat different 

expression. In these sections it is more fine-grained, has 

sparse to low bioturbation, and has better defined 

sandstone beds (Figure 2.5). This alternative expression 

of the facies occurs in units between 5 and 7 m thick 

within which each sandstone-mudstone interbed is 

between 0,5 and 20 cm thick. The silty and very fine-

grained sandstones commonly display combined ripples 

         

                       

(Figure 2.5, C) with crests going north-south and mm thick lamination ranging from being 

light and dark grey to black, green, red and brown (Figure 2.5, B). These deposits can be 

correlated with units belonging to FA3 when traced laterally in a palaeolandward direction 

(west). 

 

 

 
 

Figure 2.4. Interbedded, highly bioturbated (A), very fine-grained, HCS (B and D) sandstone and mudstone of 
FA2. Note large-scale wave ripples in the sandstone bed (C) and small, undulating “hummocks and swales” (D). 

Figure 2.3. Idealized hummocky 
sequence. Modified from Dott 
and Bourgeois (1982). 
. 
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Interpretation: HCS sandstone in FA2 represents storm event beds in an overall muddy, 

distal offshore transition zone (dOTZ) environment, deposited between fair-weather wave 

base (FWWB) and storm wave base (SWB) (e.g. Dott and Bourgeois, 1982; Swift et al., 1983; 

Howell et al., in review). During fair-weather conditions, this area experience relatively quiet 

conditions with continuous deposition of mud from suspension. 

 

 
 

 
 

Periods of intense storm activity resulted in an abrupt increase in wave energy and the 

deposition of HCS, planar-laminated, and wave rippled sandbeds in an overall muddy 

environment. These event-beds represent less time than adjacent mudstone beds of similar 

thickness. As an effect of the relatively slow sedimentation rates, burrowing animals mixed 

the HCS sands with the hemipelagic muds, resulting in the diffuse boundaries between 

individual beds (Dott and Bourgeois, 1982; Taylor and Goldring, 1993). Differences in the 

Figure 2.5. (A) Transition from FA3 and FA4 in the lower part into a compacted FA2 unit. Very fine laminated 
mudstone (B) is interbedded with many, closely spaced, very fine-grained sand- and silt beds with wave ripples 
and planar-lamination (C and D). Some of the sand- and mudbeds are mildly bioturbated. The symmetrical 
wave-ripples are oriented north-south. Staff is 1,5 m, pencil is 15 cm. 
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amounts of bioturbation and preserved sedimentary structures between sandstone beds may 

relate to the time and duration of event-bed deposition (Johnson and Baldwin, 1996; Taylor et 

al., 2003). Rapid deposition and high sediment inputs will result in better preservation of the 

primary sedimentary structures. The wave-rippled sandstones lacking prevalent HCS and 

bioturbation (Log 11 – Log 17 and Log 23- Log 25) have symmetrical crests reflecting 

oscillary waves as well as internal trough-cross-lamination, indicating unidirectional currents. 

These sandbeds suggest primary deposition by currents during periods of high 

sediment input, followed by periods of more quiet conditions where the upper part of the 

sandbed became reworked by waves. This is characteristic for shallow-marine environments 

experiencing pulses of increased sediment input (Collinson and Thompson, 1989; 

Bhattacharya and Walker, 1992; Walker and Plint, 1992). A decrease in the amount of 

bioturbation and an increase in current induced sedimentary structures suggests more high- 

energy, hostile conditions for burrowing animals (Pemberton et al., 1992a; Taylor et al., 2003). 

Such changes indicate mixed wave and fluvial conditions in the offshore transitions zone, 

possibly related to increased proximity to a fluvial source. A north-south orientation of the 

wave ripples indicate wave action slightly oblique to the palaeoshoreline which is interpreted 

to be north-northeast (Balsely, 1980; Howell and Flint, 2003).  

 

2.2.3 Facies association 3: Proximal offshore transition zone (pOTZ) deposits 

 
Description: Like FA2, FA3 is also comprised of heterolithic and bioturbated sandstones and 

mudstones. The upward transition from FA2 to FA3 is gradual and arbitrarily picked at an 

increase in the proportion of sandstone beds to greater than 25%. The sandstone is very fine to 

fine-grained and contains HCS, wave-ripples, undulating and planar-lamination (Figure 2.6). 

The amount of bioturbation within the sandstone varies between moderate and intense, and 

includes Ophiomorphar, Thalassiniodes and Chondrites of the Skolithos-Cruziana ichnofacies 

(Pemberton et al., 1992b).  Many of the sandstone beds lack well defined boundaries (as in 

FA2) and are mixed with the surrounding, heterolithic sandy and silty mudstone. There is an 

upward increase in both sandstone thickness and in sandstone bed definition. 

The facies association varies in thickness from 1 and 12 m, and it typically overlies 

FA2 and is overlain FA4 or FA2 deposits.   
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Interpretation: FA3 was deposited between SWB and FWWB in the proximal part of 

the offshore transition zone (pOTZ). The depositional environment is related to the dOTZ and 

the transition between them is gradational. The depositional mechanisms are similar and the 

key difference is the higher proportion of sandstone, the greater sandstone bed thickness and 

the increased preservation of sedimentary structures, along with a decrease in bioturbation. 

All of these observations indicate a transition into environments characterized by an 

increase in the effects of wave action which results in a lower preservation potential for mud 

deposited during fair-weather periods (e.g. Dott and Bourgeois, 1982; Walker and Plint, 1992; 

Howell and Flint, 2003). This increase in wave energy is attributed to a shallowing of the 

water depth.   

 

2.2.4 Facies association 4: Lower shoreface (LSF) deposits 

 
Description: FA4 consists of very fine- to fine-grained, 0,3 to 5 m thick, amalgamated HCS 

sandstone beds (Figure 2.7) with wave-ripples, planar-lamination and occasional undulating 

lamination (Figure 2.8). These relatively thick sandstone units are interbedded with relatively 

thin, fine laminated, very fine-grained sandstones, siltstones and mudstones that comprise less 

than 15% of the association. The laminated and low to moderately bioturbated, heterolithic 

Figure 2.6. (A) HCS and Ophiomorpha burrow in fine-grained sandstone. (B) Well defined sandstone with 
relatively thin mudstone interbeds representing the upper part of FA3. The staff is 1.5 m.  
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interbeds commonly pinch and swell, and are often laterally truncated by overlaying 

sandstone beds. 

The heterolithic interbeds are burrowed with 

Ophiomorpha, Chondrites and Thalassinoides of the 

Skolithos ichnofacies (Pemberton et al., 1992b), in addition 

to unidentified burrows. The amalgamated sandstones are 

sparsely bioturbated with monotonous, sub-vertical 

Ophiomorpha burrows. Also Teredolites burrows and wood 

fragments/imprints were observed. The thick amalgamated 

sandstones beds are usually wave-rippled in the upper parts, 

but may also have zones of ripples and/or undulating 

lamination in the middle.  

The extension of HCS varies between each sand-  

                                                                                                                              

stone bed. Some of the gently undulating laminas can be traced laterally several meters. Small 

scaled hummocks and swales less than 10 cm in length were also observed (Figure 2.4). 

Amalgamation surfaces were recognized where overlying beds erode and partially truncate 

the mud rich heterolithic unit. Such boundaries can also be recognized where opportunistic 

trace fossils are truncated by HCS beds. The transition from pOTZ to LSF is relatively sharp, 

going from overall muddy, heavily bioturbated, heterolithic sediments below, to more sandy, 

mildly bioturbated, and homogenous sediments above.  

 

 

 
 

Figure 2.8. Amalgamated HCS sandstone (A) with laminated, mud- and sandstone interbeds (B). The 
heterolithic interbeds commonly pinch out laterally, suggesting varying degree of sandstone amalgamation. The 
staff is 1.5 m and the pencil is 15 cm.     
 

Figure 2.7. One common type 
of amalgamated HCS. 
Modified from Dott and 
Bourgeois (1982).  
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The facies association commonly overlie pOTZ (FA3) and is overlain by middle or 

upper shoreface deposits of FA5 or FA6 (see description below). The units was traceable for 

several hundred meters in the proximal part of the study area (west), and pinch-out towards 

the east where they grade into deposits of the pOTZ.    

Interpretation: The amalgamated HCS sandstones of FA4 were deposited above mean 

FWWB and represents deposition in the LSF which was frequently reworked by storm and 

fair-weather waves (e.g. Dott and Bourgeois, 1982; Walker and Plint, 1992; Howell et al., in 

review). Most of the fine-grained material deposited during quiet, fair-weather periods was 

eroded and reworked during storm periods and redeposited farther out in the basin (Niedoroda 

et al., 1984; Walker and Plint, 1992; Larson and Kraus, 1994; Reading and Collinson, 1996). 

This constant erosion and reworking resulted in amalgamation of well sorted HCS sandstone 

beds (Figure 2.7 and Figure 2.8). Heterolithic beds are the non-eroded fair-weather deposits. 

The low abundance of burrows indicates a higher energy environment than the underlying 

pOTZ (Pemberton et al., 1992b). 

 

2.2.5 Facies association 5: Middle shoreface (MSF) deposits 

 

Description: FA5 consists of 

lower fine-grained sandstone with 

vague planar-stratification and 

rare shell fragments (Figure 2.9). 

The unit is intensely to 

completely bioturbated, and only 

rare sedimentary structures and 

burrows are visible. The colour is 

more greenish grey than the 

overlying and underlying deposits. 

FA5 was only observed in Log 19 

and Log 26 where it was    

approximately 3 meters thick. In both localities the units overlie LSF amalgamated HCS 

sandstones and are overlain by FA6 deposits.       

Interpretation: The stratigraphic occurrence of this facies between LSF, amalgamated 

HCS beds and upper shoreface trough cross-stratified sandstone (see below) indicates a 

Figure 2.9. Intensely bioturbated, very fine-grained, green and 
grey sandstone of FA5. The staff is 1.5 m.  
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middle shoreface setting. The prevalent bioturbation and the lack of primary depositional 

structures indicates a locally sheltered setting, potentially in the lee side of large, low relief 

bar forms (Pemberton et al., 1992a; Howell and Flint, 2003) 

 

2.2.6 Facies association 6:  Upper shoreface (USF) deposits 

                                                                                                                               

Description: FA5 consists of fine 

to medium-grained, well sorted,  

trough- and tabular stratified 

sandstone, rare shell fragments 

and sparse to absent bioturbation                                                                                                                                                                                                                  

(Figure 2.10). In the outcrops 

these units are often recognized 

by the distinctive light grey to 

white colour, but they may also be 

light brown. These deposits are 

only present in the proximal (west) 

part of the study area in the upper- 

      

 

rmost parts of the measured succession where they have been traced for several hundred 

meters laterally. 

Interpretation: Trough and tabular cross-stratification represent migration of dunes and 

bars along the shoreline due to littoral currents (rip currents, longshore currents etc.) in the 

upper shoreface (USF) (e.g. Clifton et al., 1971; Reineck and Singh, 1980; Collinson and 

Thompson, 1989; Howell et al., in review). The medium-grained sandstones along with the 

lack of bioturbation also suggest deposition within a high-energy environment (Pemberton et 

al., 1992a). The light grey and white color reflects bleaching of the sandstone by organic acids 

which originated from plant material once growing on top the beach (Collinson, 1996; Howell 

et al., in review). 

   

2.3 Depositional environments within the mixed tidal and wave-dominated estuary 
 

Facies association 7 to 11 (Table 2.1) are generally more heterolithic with a more complicated 

and more laterally restricted distribution than the shoreface deposits described above. Incised 

Figure 2.10. Trough, tabular- and planar-stratified sandstone 
of FA5. The exposed unit is approximately 5 m thick.  
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valley strata are recognized in the proximal part of the study are in Woodside Canyon where 

the succession is up to 28 m thick (Howell and Flint, 2003). The unit then becomes thinner 

towards the east and disappears between Log 12 and Log 13.    

 

2.3.1 Facies association 7: Partially reworked fluvial deposits  
 

Description: FA7 is comprised of fine- to medium-grained, moderately to poorly sorted 

sandstone. The sandbed thickness varies between 30 and 300 cm. Examples commonly 

consist of several stacked sets of tabular and trough cross-stratified (Figure 2.11, B) sandstone 

with abundant bone fragments, wood fragments, clay and organic rip-up clasts. Clasts are 

especially concentrated in the lowermost part of the beds which also have erosive bases 

(Figure 2.11, A). Rarely, the lower beds also contain extra-basinal pebbles (up to 2 cm in 

diameter). The facies association is only present in the lowermost part of the incised valley, 

and in the most proximal part of the study area where it is underlain by the SB and overlain 

by FA8. 

 

 
 

Interpretation: The presence of trough cross-stratified and abundant rip-up clasts and 

rare pebbles suggests a fluvial origin (Figure 2.12) (Miall, 1992; Zaitlin et al., 1994; Collinson, 

1996; Howell et al., in review). This is supported further by the palaeocurrent directions 

which indicate flow perpendicular or slightly oblique to the ancient shoreline (north-south), 

along with the position of the unit above the SB and below the overlying IHS   

Figure 2.11. (A) Poorly sorted, medium- and coarse-grained sandstone with abundant rip-up clasts of FA7 
erodes into well sorted, fine-grained planar and HCS sandstone of FA1 and 2. (B) Medium-grained, trough 
cross-bedded sandstone of FA7 overlain by IHS of FA8. The boundary between the two has been interpreted as a 
transgressive surface (see section 4.3). The staff is 1.5 m long. 
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(FA8), representing an abrupt basinward shift of facies 

relative to the underlying shallow-marine deposits (Zaitlin et 

al., 1994). No distinct channel geometries were observed and 

some of the cross-bedded units are interpreted as minor bar 

forms positioned within a relatively wide channel system. 

However, double mud-drapes and shell fragments suggest 

that the deposits are not totally fluvial and that some of the 

sediments have been reworked by tidal currents (Thomas et 

al., 1987; Nio and Yang, 1991; Dalrymple, 1992), although 

the amount of reworking is hard to estimate.  

 Some of these tidally reworked fluvial deposits may 

also represent bars or dunes within the channel thalweg of a 

tidal influenced meandering river system (Thomas et al., 

1987), and would then be associated with FA8. Tidal 

influences in channel-floor cross-bedding would be 

represented by shell fragments and double mud-drapes as 

describes above (Thomas et al., 1987). These deposits are 

discussed further in FA8.  

 

                                                                                                                                                 

2.3.2 Facies association 8: Tidal influenced meandering channel deposits (IHS) 

 

Description: FA8 comprise inclined heterolithic strata which consist of lower very fine- to 

lower medium-grained sandstone and grey mudstone (Figure 2.13). The sandstone beds are 

generally between 5 and 100 cm thick and are inclined relative to the palaeo-horizontal. Some 

of the sandstone beds, generally the thickest ones, have a constant thickness and can be traced 

a few hundred meters laterally within the incised valley. The inclined sandstone beds are 

commonly truncated in the upper part by the flooding surface and downlap onto the sequence 

boundary in the lower part of the succession (Figure 2.13). The thin sandbeds are more 

discontinuous and have varying thickness laterally. They often pinch out or become truncated, 

both in an upward and downward direction.  

There is a general fining upward trend within the IHS units, where the sandbeds 

become both thinner and more fine-grained upward. However, there are exceptions where the  

Figure 2.12. Braided river 
channels are characterized by 
numerous bars and islands 
reflecting high sediment 
transport, variable discharge 
and a generally high gradient 
(Miall, 1992). 
 



Facies association: Description and Interpretation 

 33 

 

 
 

thickest and coarsest beds occur in the middle of the sets. Within individual sandstone beds 

there are generally no internal grading within each sandbed, although some beds demonstrate 

an upward decrease in grain-size (usually in the base of a sandstone unit), and others 

represents an upward coarsening. Sandstones are generally well sorted although some beds 

are poorly sorted and contains organic and clay rip-up clasts and shell fragments.  

Sedimentary structures within the sandstone beds include trough cross-stratification 

(occasional bidirectional), wave ripple cross-stratification, planar-stratification, soft sediment 

deformation and water escape structures. Wave ripple orientation indicate wave approach 

from the northeast, whereas troughs suggest palaeocurrent mainly towards the north and the 

northeast, and bidirectional troughs indicates current towards north and south. Bioturbation is 

Figure 2.13. Different expressions of the IHS facies (FA8). (A) Interbedded mudbeds and sandbeds of various 
thickness. (B) Large, sandy inclined beds (middle of picture) underlain by S3 and overlain by mud of FA10 and 
G1. The inclined beds dip towards the right. IHS unit is approximately 8 m thick. (C) Muddy IHS truncated by 
G1b. The sandstone overlying the sub-horizontal flooding surface is the lowermost part of Grassy parasequence 
1. (D) Discontinuous, interbedded sandstone and mudstone of varying thickness. The staff is 1.5 m long. 
 



Chapter Two 

34 

low to absent, but Ophiomorpha and Teredolites have been identified along with possible 

Arenicolites. Shell fragments have been observed in Log 4, 8, 11, 12, 19 and 26. 

Dip-angle and progradation direction of the IHS varies between the localities. Dip 

generally increase with decreasing sandbed thickness and is commonly between 2 and 12°. 

Bar form migration direction of the inclined beds also varies greatly, especially in the 

proximal (western) part of the study area, where the direction shifts from northeast to 

southwest and back to northeast within a few kilometres. Farther basinwards, the main 

migration direction is toward the southeast and northeast.  

 Interbedded mudstone constitutes distinct beds of varying color and texture. Where 

the interbedded sandstones are thin and discontinuous, chaotic and unstratified mudstone fills 

the space around the sandstone lenses (Figure 2.13, D). These beds are commonly grey and 

brown and are either fine laminated or structureless. Locally, several meters in the upper part 

of an IHS unit are comprised entirely of inclined mud with thin sandy interbeds, thus 

resembling FA11 (Figure 2.13, C). 

Interpretation: Inclined heterolithic strata is recognized in a variety of depositional 

environments, but the most common is as lateral accreted point-bars deposits of freshwater 

meandering rivers and intertidal meandering cannels (Figure 2.14) (Thomas et al., 1987). The 

main criteria used to differentiate tidal channels from freshwater ones is the presence of 

reversed flow (bidirectional current ripples, herring bone cross-stratification, reactivation 

surfaces), trace fossils, and rhythmic variations in thickness and the frequency of sand and 

mudbeds (Thomas et al., 1987). 

Several of these criteria have been 

recognized in the IHS strata observed within 

the incised valley. Both Ophiomorpha and 

Arenicolites are associated with the Skolithos 

ichnofacies and are common in tidal and 

brackish environments (Pemberton et al., 

1992b). In addition, Teredolites burrows 

indicate at least partially marine intrusion 

(Reineck and Singh, 1980; Bromley et al., 

1984; Howell and Flint, 2003). This is further  

   

supported by the presence of shell fragments. Bidirectional ripples indicate reversed flow in at 

least some parts of the system.  

 

Figure 2.14. Idealized tidal influenced 
meandering river. Migration of the point bar 
results in an overall fining upward unit, 
composed of trough cross-stratified sandstone in 
the base, overlain by IHS and mudstone. 
Increased rhythmic appearance suggest increased 
tidal influence. Modified from Thomas et al. 
(1987). 
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Trough cross-stratification in the lowermost part of the facies association may 

represent minor bars or dunes migrating in the tidal influenced river channel (Miall, 1992). 

Where they are overlain by bidirectional cross-bedding and interbedded mudstones and 

sandstones further up, the succession is interpreted to represent a typical upward fining, tidal 

influenced meandering channel unit (Log 19 and Log 26, ) (Thomas et al., 1987). The tidal 

range has been interpreted to be approximately 2 m, which is lower meso-tidal (Howell et al., 

in review). 

Upward fining trends or proximal-distal fining trends within point bars are expected in 

a fluvial or tidal influenced meandering channel (Thomas et al., 1987). Such trends are 

evident in Log 19 and Log 26 where fine and medium-grained, trough cross-stratified 

sandstone fine upwards into fine-grained bidirectional cross-stratified sandstone, and further 

up into laminated siltstone and mudstone with sandstone interbeds. Upward fining 

successions are interpreted to reflect lateral point bar migration (Figure 2.15), bounded on top 

by coastal plain mud (Thomas et al., 1987; Dalrymple, 1992).  The units may also represent 

lateral migration and abandonment of the active channel and its subsequent filling with mud 

and silt. Following abandonment, sand with shell fragments and rip-up clasts was washed in 

during major storms and flood events and became interbedded with the background mud and 

still what was otherwise deposited. 

Trends related to the thickness and dip-angle of 

the inclined beds suggests that the thickest sandbeds 

have the lowest dip-angle and thus can be traced over 

longer distances than thinner, more mud-rich beds. 

These differences may be related to the original width 

and depth of the meandering channel, where the main 

channel(s) are expected to be sandier and have a lower 

dip-angle than muddy, more steeply inclined 

distributary channels. Variations in the dip of the 

inclined heteroliths may also relate to differences in 

the cohesive forces of sand and mud, allowing more 

steeply dipping mudbeds. 

 

     
 

 

Figure 2.15. Various expressions of 
IHS along-strike. The dip-
orientation of IHS indicates 
direction of point bar migration. 
Modified from Thomas et al. 
(1987).  
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2.3.3 Facies association 9: Tidal bars 
 

Description: FA9 is comprised of lower fine to lower medium-grained, light brown to grey 

and white, planar and trough cross-stratified (sometimes bidirectional) sandstone (Figure 

2.16). The sorting varies from poor to very good and generally improve upward within the 

succession. Individual sandstone bed thicknesses vary from a few tens of centimetres and up 

to several meters. The thick beds are commonly amalgamated and are comprised of several 

sets and cosets of trough and tabular cross-stratified sandstone, each set up to one meter in 

thickness. Some troughs have organic draped foresets (Figure 2.16, E). 

Sedimentary structures include rare wave ripple cross-stratification and undulating 

lamination. Sets of trough cross-bedded sandstone are interbedded with discontinuous beds of 

grey mudstone and sandstone with mm thick organic lamination and mud-drapes, which are 

sometimes double. Orientation of trough cross-bedding indicates palaeocurrent in several 

directions; the most dominant is towards the west, southwest and northeast, although almost 

every direction is represented. The mudstone beds are generally structureless but some have 

minor lenses or laminas of fine-grained sandstone. Claystone rip-up clasts (up to 8 cm long), 

organic fragments and log imprints are also common. 

In the area close to Log 5 and Log 6, the amalgamated, trough cross-stratified units are 

capped with a ca 50 cm thick unit of planar-stratified, bleached, well sorted sandstone with 

abundant root structures (Figure 2.16, B). In one locality, this grey and white sand unit is 

overlain by 30 cm of silty coal. Bioturbation is sparse to absent, and Ophiomorpha and 

Teredolites burrows have been observed. 

In Log 6 (Figure 2.16, A and C), the lowermost 2 m is comprised of very poorly sorted 

and chaotic, coarse and fine to medium-grained, trough and planar cross-stratified sandstone. 

Coal fragments, clay rip-up clasts, pebbles, wood imprints, shell fragments, teeth and 

Teredolites burrows are abundant in the lower 30-50 cm, whereas rare clay rip-up clasts, 

organic fragments and organic drapes are observed in the upper, cross-stratified part. Troughs 

indicate palaeocurrent towards the northwest and southeast. 

           Interpretation: Large scale trough cross-bedding (up to one meter thick) containing 

evidence of intertidal and subtidal influence, suggests deposited as (sub)tidal bars and/or 

dunes (Figure 2.16 and Figure 2.17)(Reineck and Singh, 1980; Thomas et al., 1987; Nio and 

Yang, 1991; Dalrymple, 1992). Teredolites burrows also indicates that the depositional 

environment was at least periodically brackish (Bromley et al., 1984), and the presence of 
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coal and roots suggests that some of the units even were subaerially exposed for prolonged 

periods.  

 
 

 

 

 

Large scale cross-bedding indicating palaeocurrent towards the west (Log 9 and Log 18) is 

interpreted to be of floodtidal origin (Figure 2.16, D and E), as they predict flow in a 

Figure 2.16. Different expressions of FA9. (A) Bleached, large scale, trough cross-bedded sandstone (white unit 
in the middle of the picture). Troughs indicate paleoflow towards the right. Unit is approximately 9 m thick. (B) 
Planar stratification and root structures in the upper part of the cross-beds in (A). (C and D) Large scale, 
commonly bidirectional cross-bedding with wood imprints, (E) rip-clasts and mud drapes. 
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palaeolandward direction. Abundant mud-drapes (including some doubles) indicate that at 

least some of these units were deposited in a subtidal environment (Thomas et al., 1987; Nio 

and Yang, 1991). The chaotic and coarse-grained unit in base of Log 6 (Figure 2.16, C) is 

interpreted to be the base of a tidal channel, as it demonstrates extensive erosional truncation 

of the underlying IHS deposits. The unit also contains very poorly sorted sandstone in the 

base overlain by bidirectional cross-stratification, indication deposition within a high-energy 

environment. 

The area close to Log 5 and Log 6 (Figure 2.16, A) 

is more sandstone dominated than elsewhere in the incised 

valley complex, and it is interpreted to represents a very 

sandy part of the system, possible close to the main or to 

one of the main channels. The amalgamated trough cross-

stratified sandbeds represent sandbars stacked into a 

sandwave within the tidal channel, indicating migration 

towards the northeast and southwest. Planar-stratified 

sandstone on top of the unit along with root structures and a 

poorly developed coal, indicate that the top set beds of the 

sandwave which became subaerially exposed for some time, 

allowing colonisation and vegetation. The facies observed 

in Log 5 and Log 6 may also represent a barrier complex, as 

the trough and planar-stratified white sand resembles a 

foreshore as seen elsewhere in the study area. However, 

such a feature should be regional extensive, and recognized 

in log sections and outcrops along-strike (Boyd et al., 1992; 

Reading and Collinson, 1996). Also a transgressive barrier 

island would separate marine deposits on the seaward side  

 

from non-marine deposits in the landward side; immediately basinward of the unit is IHS, 

lagoonal and tidal flat deposits. Consequently as the unit is confined to the area surrounding 

Log 5 and Log 6 it is interpreted as an emergent bar in the middle of the tidal channel 

complex, rather than a continuous beach parallel to the palaeoshoreline. 

 

 

  

Figure 2.17. Inter and subtidal 
bars and tidal flats. Tidal 
channels reflect varying 
depositional energy and are 
sourced from both the 
landward and basinward side. 
Mud is deposited in sheltered 
areas such as bays and 
abandoned channels.  
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2.3.4 Facies association 10: Restricted bay/lagoon and tidal flat deposits 
 

Description: Facies association 10 consists of mixed parallel and planar-laminated, undulating 

and wavy-laminated, light and dark grey, brown, red, green and black mudstone with fine to 

medium-grained sandstone interbeds (Figure 2.18). The unit may appear very heterolithic or 

relatively homogenous depending upon the proportion of sandy interbeds. Internally, the 

mudstone is laminated, vaguely wave rippled, lenticular bedded or structureless. Bioturbation 

is absent. The sandstone beds display vague cross-stratification and contain abundant rip-up 

clasts, organic fragments, shell fragments and coal fragments. Some of these chaotic sandbeds 

can be traced laterally whereas others become truncated and eroded within few meters 

laterally. In Log 9, the interbedded sand is well sorted and thickens laterally into a meter thick 

unit of trough cross-stratified sandstone with rip-up clasts and organic drapes. The thickness 

of these mudstone units varies from two to eight meters and they are over and underlain by 

IHS and tidal bars of FA8 and FA9.  

 

 

 
 

Interpretation: Millimetre laminated, dark grey, brown and red muddy deposits 

indicate deposition within a quiet, low energy environment (Reineck and Singh, 1980; Nio 

and Yang, 1991; Dalrymple, 1992). The color, lack of rooting and bioturbation suggest that 

the conditions were anoxic or at least relatively inhospitable to burrowing animals and plants 

(Pemberton et al., 1992a). Undulating and vague wavy lamination and rare lenticular bedding 

indicates that the units have been deposited in a confined body of water, or somewhere away 

from high-energetic currents or waves; such as a inter estuarine lagoon or bay, or within the 

Figure 2.18. (A) Fine planar-laminated mudstone of FA10 onlapping IHS. Coarse-grained, chaotic sandstone 
bed in the middle. (B) Wavy and undulating lamination in mudstone and very fine-grained sandstone of FA10. 
The staff is 1.5 m and the pencil is 15 cm long. 
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intertidal zone where alternating mud and silty sand is deposited by everyday flood and ebb 

currents (Reineck and Singh, 1980; Collinson and Thompson, 1989; Dalrymple, 1992). This 

low-energy estuarine environment was disturbed by major flood or storm events, which 

deposited sandbeds throughout the area, and minor channels and creeks which deposited thin 

sandsheets in the intertidal ponds or lagoons. 

 

2.3.5 Facies association 11: Transgressive lag deposits 

 

Description: This facies association is between 10 and 50 cm thick and is composed of very 

poorly sorted, medium to coarse-grained sandstone with abundant shell fragments and sharks 

teeth (Figure 2.19). The unit is homogenous in the lower part, and sharply overlies sediments 

of FA8, FA9 or FA10 within the incised valley. The boundary is commonly associated with 

an abrupt increase in biogenic activity, demonstrating high to intense bioturbation. In the unit 

below, the presence of large, vertical and sub-vertical, unlined burrows filled with coarse sand 

from the unit above. Arenicolites and Thalassinoides burrows of the Glossifungites 

ichnofacies are abundant (Pemberton et al., 1992b; Pemberton, 1998). The sediments 

generally demonstrate increased sorting and fining upward into HCS, very fine and fine-

grained sand or interbedded, bioturbated mud of FA3 and FA4. One succession also contain 

tabular cross-bedding in the lower part followed by a gradual transition into HCS further up. 

The facies association is only located in the upper part of S3, above the incised valley. 

 

 
 

 

 

 

Figure 2.19. (A) Intensely bioturbated, medium-grained, poorly sorted sandstone of FA11 sharply overlying 
estuarine sand and mud of FA10. U-shaped burrows penetrate down into the muddy substrate and are filled with 
medium-grained sand from the overlying unit. Bioturbation decrease upward as sorting increase, and the unit 
gradually turns into HCS sand. (B) Sharp based, poorly sorted sandstone with abundant shell fragments and 
sharks teeth overlies FA8. The unit becomes better sorted upward and turns into HCS sand of FA3 within the 
Grassy Member. The pencil is 15 cm long.   
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Interpretation: Poorly sorted, medium- and coarse-grained sand with teeth and shell 

fragments suggests reworking within a high-energy environment (Van Wagoner et al., 1990). 

The Glossifungites ichnofacies is associated with firm-grounds and reflects erosion and 

exhumation of older, compacted and partially consolidated sediments (Pemberton et al., 

1992b; Pemberton, 1998). The unit is interpreted as an erosional transgressive lag, deposited 

at the base of a high-energy upper shoreface (Van Wagoner et al., 1990). During the lowstand 

and early part of the transgressive systems tract, the old shoreface-shelf was subaerially 

exposed and the shoreline was located seaward of the study area (see section 3.7). As the 

shoreface migrated landwards during continuous sea level rise, the high-energy shoreface 

reworked some of the coarse-grained, estuarine sediments into a chaotic, discontinuous lag. 

The lag became gradually amalgamated with the overlying HCS sandstone as the sea level 

rose, and the specific area was positioned farther distally on the shoreface.  

 

2.4 Summary of depositional environments 
 

Based on the interpretations of FA1-FA6, these stacked units represent successions of wave- 

dominated, shallow-marine sandstones and mudstones (Figure 2.20); deposited on a gently 

dipping shoreface-shelf (e.g. Bhattacharya and Giosan, 2003; Howell and Flint, 2003; Howell 

et al., in review). Combined wave and current induced sedimentary structures and an abrupt 

decrease in bioturbation is interpreted to reflect increased proximity to a fluvial source and a 

more stressed environment (e.g. Bhattacharya and Walker, 1992; Taylor et al., 2003). A 

detailed interpretation of these stratigraphical units will be given in Chapter Three. 

 

 
        

 
Figure 2.20. Shoreface-shelf depositional environment for facies 
association 1-6. See appendix for key. Modified from Howell and 
Flint (2003). 
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FA7-FA10 are interpreted to represent the filling of an incised valley by estuarine deposits 

(Figure 2.21)(Howell and Flint, 2003; Howell et al., in review). Tidal influenced fluvial 

deposits, IHS, tidal bars, lagoons and tidal flat deposits represent an abrupt basinward shift of 

facies unconformably overlying the shallow-marine sandstones and mudstones. This is 

followed by a gradual landward shift of estuarine deposits in response to the gradual filling 

and the landward dislocation of the shoreline (Dalrymple et al., 1992; Zaitlin et al., 1994). 

The depositional history of the incised valley will be discussed in Chapter Four. 

 

 

 

          

Figure 2.21 Estuarine depositional environment for facies association 7-10. See 
appendix for key. Modified from Howell and Flint (2003). 
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Chapter Three – Internal Architecture and Palaeogeography of the 

Wave-dominated Sunnyside Shorelines 

 
 

3.1 Introduction  

 

A delta is defined as “a discrete shoreline protuberance formed at a point where a river enters 

an ocean or other large body of water” (Bhattacharya and Walker, 1992). A ternary diagram 

(Figure 3.1) is often used to classify such deltas, emphasizing the role off different 

depositional processes being diagnostic for each type (Boyd et al., 1992; Bhattacharya and 

Giosan, 2003). These three end members of these ternary systems are fluvial-dominated, tidal 

dominated and wave-dominated deltas. However, most deltas systems are influenced by a 

combination of these and both recent and ancient deltaic deposits contain evidence for a 

variety of depositional processes (Bhattacharya and Walker, 1992; Reading and Collinson, 

1996).  

Wave-dominated deltas, such as the Blackhawk Formation shorelines in the Book 

Cliffs are usually made up of several prograding beach ridge complexes which are nourished 

by littoral and fluvial sediments (Bhattacharya and Giosan, 2003).  

 

      

Figure 3.1 

 Classification of clastic coastal 
depositional systems, after Boyd 
(1992). Both transgressive and 
regressive systems are shown. 
Amount of tidal power increase 
towards the left and wave power 
increase towards the right. The 
regressive Sunnyside coastline 
is represented by the lower right 
part of the figure, whereas the 
transgressive estuary (Chapter 
Four) is represented by the 
central and upper part.     
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The degree of symmetry depends on the angle, strength and direction of incoming waves and 

the induced longshore current (Dominguez et al., 1987; Bhattacharya and Giosan, 2003). 

Processes and development of wave-dominated shorelines and deltas will be discussed further 

in Chapter Six. 

 In a vertical section, wave-dominated deltas 

are characterized by a relative continuous coarsening 

upward succession (Figure 3.2) recording the 

influence of wave and storm processes (e.g. 

Bhattacharya and Walker, 1992; Bhattacharya and 

Giosan, 2003). Mixed fluvial- and wave-dominated 

deltaic successions may in addition contain current 

ripples, soft sediment deformation and brackish 

water fauna close to the river outlet (Bhattacharya 

and Walker, 1992; Reading and Collinson, 1996). 

The amount of fluvial dominance will decrease up 

and down strike of the river mouth, indicating a 

transition from an environment characterized by 

varying and rapid deposition, to an environment 

dominated by storm reworking and more continuous 

deposition. Examples of modern wave-dominated 

deltas displaying various degrees of wave influence 

and symmetry, include the São Francisco, Rhone, 

Danube, Senegal and Paraíba do Sul deltas 

(Dominguez (Dominguez et al., 1987; Bhattacharya 

and Giosan, 2003). 

  

  

 

 
 

Strandplains are similar in geometry and internal structure to wave-dominated deltas 

and are commonly comprised of prograding beach-ridge sets. However, strandplains receive 

their sediments from marine sources whereas wave-dominated deltas are mainly fed by fluvial 

a source (Reading and Collinson, 1996). Strandplains (Figure 3.1) are characterised by wave 

and storm dominance, and a progradational unit typically consists of a continuous coarsening 

upward succession, similar to the ones of wave-dominated deltas. It may therefore very 

difficult in the rock record to differentiate between wave-dominated deltas and strandplains, 

particularly because the transition between the two may be gradual and the marine source of 

sediment to a strandplain may be longshore drift from a wave-dominated delta on the same 

Figure 3.2. Idealized log section 
through a wave-dominated deltaic 
shoreline See appendix for key. 
Modified from Howell and Flint (2003). 
. 
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shoreline. This is occurring today in the modern Caravelas and the Nayarit strandplains 

(Curray et al., 1969; Dominguez et al., 1987). The wave-dominated, coarsening upward units 

studied in the Sunnyside Member are referred to as wave-dominated shorelines, as they 

feature evidence of both environments. 

 

3.2 Internal geometry of Sunnyside Parasequence 2 
 

Sunnyside Parasequence 1 (S1) pinches out approximately 60 km northwest of Woodside 

Canyon  (Figure 3.3) (Hampson and Howell, 2005) and there is no trace of this unit in the 

study area. In the western and proximal part of Woodside Canyon, the lowermost part of the 

studied section is comprised of four coarsening upward units. These are 3,5 to 25 m thick and 

belong to Sunnyside Parasequence 2 (S2) (Figure 1.7) (Howell et al., in review). These units 

form  “a relatively conformable 

succession of genetically related 

beds bounded by surfaces (called 

bedset surfaces) of erosion, non-

deposition, or their correlative 

conformities”, and are interpreted 

as bedsets (Van Wagoner et al., 

1990; Howell et al., in review). 

These stacked bedsets also 

demonstrate an overall 

coarsening upward trend, where 

each bedset has a more 

basinward extension than the one 

below (Figure 3.4 and Figure 

3.5). The identification of these 

upward shoaling units as bedset, 

rather than parasequences is 

important and will be discussed 

in detail later in this section. 

 

 

Figure 3.3. Map of the study area in the Beckwith Plateau, north 
of the town of Green River. Log sections are represented as black 
dots. 
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3.2.1 Sunnyside Bedset 2.4 (S2.4) 
 

The lowermost bedset, S2.4,  is up to 25 m thick and represents a transition from LSF deposits 

in the proximal part ( Log W1, Figure 3.3)to dOTZ deposits  in the eastern part (close to Log 

9 in Woodside Canyon). The unit can also be traced in Long Canyon 2 where it is 15 m thick 

(Figure 3.4).  

The base of S2.4 is a gradual transition from the underlying offshore deposits. The top 

of S2.4 is a non-depositional discontinuity surface which demonstrates an abrupt decrease in 

grain-size, sandbed thickness and frequency of HCS beds, along with an increase in the 

proportion of mudstone beds and the amount of bioturbation. This surface can be traced up 

depositional dip for several kilometres where it is lost in an amalgamated package of LSF 

deposits. The non-depositional discontinuity surface marking the top of the bedset (S2.5b) can 

be traced westwards from the study area for approximately 5 km (Howell and Flint, 2003) and 

eastwards for approximately 10 kilometres, to the area surrounding Jenny Canyon (Figure 

3.3), where it gradually becomes thinner and pinches out. S2.5b has a gradient of  0.2° 

relative to the Grassy Parasequence 2 (G2) datum. 

 

 

  
 

Figure 3.6. Orientation of the facies association belts at the time of formation of S2.5b. (A) The position was 
north-south prior to formation of the surface, with minor undulations of the facies belts. (B) A landward facies 
shift of approximately 5 km is associated with the bedset boundary, resulting in straight, north-south striking 
facies belts.   
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Farther south, in Long Canyon 1, the S2.4 is rarely exposed, but observations suggest that it is 

present some meters below S2.5, where it is locally visible as a light brown sandstone beds 

surrounded by grey mudstone (Figure 3.5). 

Figure 3.6 illustrates a palaeogeographic map of the study area at the time of 

formation of S2.5b. The palaeogeography at the time immediately before the development of 

the discontinuity surface consisted of a set of north-south striking, undulating facies belts 

which indicates a minor basinward extension of the facies associations in Long Canyon 2. 

Immediately after the formation of the discontinuity surface, the facies belts shifted 

approximately 5 kilometres up-dip and had a relatively straight, north-south orientation.   

 

3.2.2 Sunnyside Bedset 2.5 (S2.5) 
 

Continued progradation of the shoreline resulted in the deposition of the next bedset (S2.5). 

S2.5 is thinner than the underlying bedset and has a thickness ranging between 17 m in the 

proximal part to 12 m in the distal part of Woodside Canyon. This bedset prograded slightly 

farther eastward than the previous one, and have been recognized 12 km down-dip, in the 

vicinity of Log 14 (Figure 3.4). In Long Canyon 1, the unit can be traced for approximately 5 

km before it thins and become poorly exposed (Figure 3.4). S2.5 contains similar facies to 

S2.4, and represents a basinward transition from LSF deposits in the western part to dOTZ 

and offshore deposits towards the east.  

The upper boundary of the bedset (S2.6b) amalgamates into the LSF facies near the 

entrance to Woodside Canyon (Log W1) (Howell et al., in review) This surface can be traced 

down-dip for approximately 14 km. In Long Canyon 1, the unit can be traced for 

approximately 8 km before it pinches out and becomes unexposed in the vicinity of Log 24 

(Figure 3.4 and Figure 3.5). There are also some traces of the unit farther basinward, but 

because it has become so muddy and bioturbated, it is only visible as poorly defined, brown 

beds in the muddy slopes along the canyon walls. The dip-gradient of the bedset boundary is 

0.16° and 0.21° in Woodside and Long Canyon 1 respectively. Figure 3.7 illustrates the 

distribution of the facies association belts at the time of formation of S2.6b. The situation is 

very similar to the one associated with S2.5b, however, S2.5 prograded farther basinward than 

S2.4. As with S2.4, there is still an undulating trend in the north-south striking facies belts 

prior to bedset formation with more basinward progradation in the northern part of the study 

area. During the formation of the discontinuity surface, the facies belts shifted up to 5 km 
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westwards in Woodside Canyon, whereas the shift in Long Canyon 1 seems to have been 

more subtle.  

 

 

  

3.2.3 Sunnyside Bedset 2.6 (S2.6) 
 

S2.6 is also very similar to the previous bedsets (Figure 3.4 and Figure 3.5). This unit is 

between 4 and 9 m thick and increases in thickness in a down-dip direction in Woodside 

Canyon but remains constant in Long Canyon 1. Up-dip, this bedset amalgamates into the 

LSF in Log W1 at the entrance of Woodside Canyon (Howell et al., in review). Sunnyside 

bedset boundary 7 (S2.7b) can be traced for 8 km in the southern part of the area, and 

approximately 15 km in northern part of the study area, and has a dip relative to the datum of 

approximately 0.15° and 0.19° in Woodside and Long Canyon 1, respectively. The facies 

belts associated with the S2.7b are illustrated in Figure 3.8. These have a relatively straight 

north-south trend, very similar to that of the underlying units. A landward shift of facies of 

approximately 4 km is also consistent with the previous bedset boundaries. 

Figure 3.7. Orientation of the facies association belts at the time of formation of S2.6b. (A) Relatively straight, 
north-south trending LSF and OTZ facies belts deposited prior to the formation of the discontinuity surface (B). 
These are overlain by similar, parallel belts, reflecting a landward shift of facies of approximately 5 km.  
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3.2.4 Sunnyside Bedset 2.7 (S2.7) 
 

The uppermost bedset in S2 (S2.7) has a thickness of approximately 3 m in the proximal part, 

where it amalgamates into the LSF near Log W1 (Howell et al., in review). This unit then 

increases to 12 m in Log W4, and decrease to 5 m farther basinwards of this location. Except 

for the thickening and thinning in the vicinity of Log W4, and a heavily to intensely 

bioturbated zone close to Log W2, there are no major lateral differences within the unit, and it 

is bounded by Sunnyside Parasequence boundary 3, which is described below. 

 

3.2.5 Sunnyside Parasequence Boundary 3 (S3b) 
 

The four bedsets described above are bounded by a major flooding surface which is identified 

by a decrease in grain-size and sandbed amalgamation and an increase in bioturbation. This 

surface is interpreted as a parasequence boundary, representing a rise in relative sea level and 

a landward dislocation of the shoreline (Figure 3.9); it is traceable landward of the foreshore 

and USF, and into the non-marine realm where the boundary is represented by a coal seem 

split (Howell and Flint, 2003; Davies et al., 2005; Howell et al., in review). In Woodside 

Canyon and Long Canyon 1 and 2, S3b represents a landward shift of facies of at least 6-8 km, 

Figure 3.8. Orientation of the facies association belts at the time of formation of S2.7b. The facies belts are 
relatively straight and parallel both before (A) and after (B) the formation of the discontinuity surface, reflecting 
a landward shift of facies of approximately 4 km. 
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which is represented in the strata by OTZ deposits overlying LSF deposits (Figure 3.4). This 

flooding surface is laterally persistent and extends over the entire study area. The profile of 

the underlying S2 shoreface is revealed by studying the flooding surface. In the proximal part 

where the flooding surface sits on USF/LSF deposits, the surface has a dip between 0.26° and 

0.36° whereas in the more distal OTZ and offshore, the surface dips more gentle between 

0.13° and 0.15°.An average dip-gradient of 0.19° has been calculated for Woodside and Long 

Canyon 1 (relative to the datum).  

 

 

  
 

In addition to being a flooding surface reflecting a rise in relative sea level, this 

boundary is also an interfluve sequence boundary and a transgressive surface (Van Wagoner 

et al., 1990; Howell and Flint, 2003; Davies et al., 2005). A fall in relative sea level ended the 

progradation of S2, resulting in incision into the shoreface-shelf unit a few tens kilometres 

northwest of the study area. During the incision and the following lowstand systems tract, the 

shoreface-shelf deposits in S2.7 became subaerial exposed, suggesting that this surface 

represents a considerable amount of time, equal to incision and transgressive infilling of the 

incised valley in the northwest of the study area. Very little direct evidence for this sequence 

Figure 3.9. Orientation of the facies association belts at the time of formation of S3b. The parasequence 
boundary is related to a relative rise in sea level and a landward dislocation of the entire shoreline of at least 6-
8 km. (A) The facies belts were parallel and north-south oriented prior to the sea level rise. (B) In the central 
part of Woodside Canyon, dOTZ deposits are overlain by more proximal strata of the pOTZ, indicating that 
this is also a sequence boundary and that the shoreline was situated farther basinwards of this point during 
lowstand. The repositioned facies belts are more undulating and indicate a basinward extension of the OTZ 
facies around Woodside Canyon (B). 
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boundary was observed in the study area. The significance of this surface will be discussed in 

the forthcoming sections.  

 

3.3 Internal geometry of Sunnyside Parasequence 3 
 

Following the transgression and the landward dislocation of the shoreline (associated with 

S3b), the shoreface-shelf prograded eastward and seaward again as the rate of sediment input 

was higher than the rate of sea level rise. At the time of the onset of progradation, the 

shoreline was located approximately 15 km northwest of the study area (Hampson and 

Howell, 2005). Several upward fining units, up to 5 m thick, are present in the lowermost part 

of S3, directly above the parasequence boundary, where they consists of interbedded HCS 

sandstone and bioturbated mudstone. They will be discussed further in section 3.6. 

 

3.3.1 Sunnyside Bedset 3.1 (S3.1) 
 

As S2, S3 is also comprised of several upward coarsening units bounded by non-depositional 

discontinuity surfaces. The lowermost one (S3.1) is only present in Woodside Canyon, Long 

Canyon 2 and Jenny Canyon (Figure 3.3). The unit is absent in Long Canyon 1 to the south, 

and given the lack of exposure between the sections, the nature of the pinch-out there is 

unknown. The bedset thickens from 13 m in the proximal part (in the vicinity of Log 4), to 

approximately 20 m farther east, near Log 14, where its bounding surface becomes very 

poorly-defined and merges with the overlying unit (S3.2). The Sunnyside bedset boundary 3.2  

 

 
 

 

 

 

Figure 3.10. Up-dip pinch-out of S3.2b close to Log 4. The discontinuity surface is represented by a thin, 
laminated sand and mud bed between amalgamated HCS LSF deposits. The canyon wall is approximately 200 m 
long. The location of bedset pinch-out is indicated on the map. 
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(S3.2b) can be traced proximally into the LSF where it becomes amalgamated and disappears. 

In Woodside Canyon, this amalgamation occur between Log 3 and Log 4 (Figure 3.10 and 

Figure 3.4). In Long Canyon 2 the amalgamation occurs between Log 19 and Log 8. The 

bedset boundary has an average dip-angle of 0.16° relative to the datum. 

Figure 3.11 illustrates the distribution of facies belts at the time of formation of S3.2b. 

Prior to the formation of the boundary, the facies belts were relatively parallel in a north-south 

direction. A very bioturbated, middle shoreface unit is locally present in Long Canyon 2, (Log 

19 and Log 26), and landward of the up-dip pinch-out of the bedset boundary. The westward 

and southern extension of this unit is unknown; however, it is not present in Long Canyon 1.  

 

 

  
 

As the bedset boundary is absent in Long Canyon 1, the position of the LSF is the same on 

either side of the boundary. In Woodside Canyon, the discontinuity surface is related to a 5 

km landward shift of facies where the pOTZ overlies the LSF. This resulted in an asymmetry 

of the facies belts, indicating increased relative deepening, accompanied by a landward shift 

of facies in Woodside Canyon. 

 

Figure 3.11. Orientation of the facies association belts at the time of formation of S3.2b. (A) Before the 
formation of S3.2b, the maximum seaward position of the LSF was near the central part of Woodside Canyon  
forming a relatively straight, parallel belt southwards to Long Canyon 1. (B) Localised relative deepening 
resulted in a landward shift of the facies in Woodside Canyon of approximately 5 km. Southwards, the 
boundary pinch out into S3.2 and the succession in Long Canyon is continuous at this level.  Localised MSF 
deposits are present in Long Canyon 2, but the lateral extension of these are unknown.    
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3.3.2 Sunnyside Bedset 3.2 (S3.2) 

 
The overlying bedset, S3.2, is truncated by the incised valley in the central part of Woodside 

Canyon, and it is not possible to locate its up-dip amalgamation into the LSF (Figure 3.4). In 

Long Canyon 1 and 2, however, this unit is traceable throughout the entire area (Figure 3.5). 

The bedset is between 5 and 10 m thick and is relatively continuous down-dip without any 

major changes. In Long Canyon 1, the equivalent to S3.1 and S3.2 is a combined S3.2. 

Although S3.1 is not present in Long Canyon 1, the total thickness is between 12 and 29 m 

from east to west, indicating a continuous thickening basinward. For comparison, the 

thickness of S3.1 and S3.2 in Woodside Canyon varies less (between 15 and 26 m), indicating 

very similar thicknesses for both units. The discontinuity surface bounding the bedset has an 

average dip-gradient of 0.21° in Woodside Canyon, whereas the same surface in Long 

Canyon 1 only has a dip of 0.08° relative to the datum. In two locations (Log 11 and Log 27), 

this boundary is associated with nodules or concretions, resembling a lag deposit.  

 

 

  
 

Figure 3.12 illustrates the position of the facies association belts below and above 

Sunnyside bedset boundary 3.3 (S3.3b). Immediately before the discontinuity surface was 

formed, the facies belts were oriented north-south. The time equivalent position of the 

Figure 3.12. Orientation of the facies association belts at the time of formation of S3.3b. (A) Prior to the 
formation of the bedset boundary, the facies belts were relatively parallel and had a north-south strike . (B) The 
discontinuity surface is associated with a landward shift of the facies belts of approximately 7-8 km in 
Woodside Canyon and Long Canyon 1, leaving OTZ deposits on top of LSF deposits in the central parts of the 
study area.  
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proximal facies is unknown because the incised valley has removed the uppermost 10-15 m of 

S3 in central parts of Woodside Canyon and Long Canyon 2. In the distal part of the study

area, the bedset boundary is 

associated with a landward 

shift of faces of approximately 

7 km in Woodside Canyon, 

and at least 8 km in Long 

Canyon 1, where pOTZ 

deposits overlie LSF deposits 

(Figure 3.13). There is a 

decreased amount of landward 

displacement of the shoreline 

in the north which has resulted 

in an oblique orientation of the 

pOTZ facies belts in this area. 

 

  

       

3.3.3 Sunnyside Bedset 3.3 (S3.3) 

 

The uppermost bedset in Parasequence 3 (S3.3) is somewhat different from the others in S2 

and S3 both in internal geometry and lithology. As described in Chapter Two, this unit is 

more compact and demonstrates both an increase in current induced structures and a decrease 

in the amount of bioturbation. In Woodside Canyon, the bedset is also truncated by the 

incised valley but reappears eastward as the valley becomes thinner between Log 9 and Log 

11 (Figure 3.4 and Figure 3.5). In Long Canyon 1, the unit can be traced throughout the area, 

a distance of approximately 10 km at its maximum observed extent. In the proximal part, the 

bedset is similar to the other bedsets in S2 and S3, hence composed of interbedded HCS 

sandstone and bioturbated mudstone of the OTZ passing upward into the amalgamated HCS 

sandstone of the LSF facies association. The distal part of the bedset demonstrates an upward 

deepening trend, followed by an upward shallowing trend in both Woodside Canton and Long 

Canyon. This pattern is not, however, observed anywhere else in the study area. In addition, 

this uppermost bedset is the only bedset that becomes much thinner basinward and eastward; 

this unit’s thickness also decreases from 14 m in the proximal part of Long Canyon 1 to 5 m 

in the distal part, near Gray Canyon. A similar decrease in thickness is also present in 

Figure 3.13. S3.3b in Long Canyon 1 (Log 21). LSF deposits are 
overlain by OTZ deposits, indicating a landward shift of facies. 
Hammer for scale. 
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Woodside Canyon. Figure 3.14 indicates the position of the facies belts associated with the 

uppermost discontinuity surface. As this unit is truncated by the incised valley in the central 

part of Woodside Canyon, the orientation remains unclear. The uppermost part of the bedset 

in Woodside Canyon is positioned more landwards relative to the southern Long Canyon 1, 

which gives a curved orientation to the facies belts.  

I 

 

  
 

3.3.4 Grassy Parasequence Boundary 1 (G1b) 

 

The unconformity overlying S3.3 is interpreted as a combined parasequence boundary and a 

sequence boundary, representing a period with a fall in relative sea level, incision and 

subsequent transgression (Howell and Flint, 2003). As the relative sea level fell and the 

shoreline migrated basinwards, the shoreface-shelf deposits became subaerially exposed. The 

following relative sea level rise and transgression resulted in flooding of the incised valley. 

Wave ravinement associated with the transgression is interpreted to have removed all the 

evidence of subaerial exposure, as there are no signs of palaeosol formation on the interfluve 

sequence boundary in Woodside and Long Canyon 1 and 2. A coarse-grained transgressive 

lag is present in Woodside Canyon (close to and on the top of the incised valley), indicating 

Figure 3.14. Position of the facies association belts at the time of falling sea level, incision and truncation of 
S3.3. (A) USF facies is located in the proximal part of Woodside Canyon and Long Canyon, suggesting a 
relatively straight north northwest-south southeast position of the shoreline. (B) As the sea level fell, at least two 
branches were cut into the underlying shoreface-shelf deposits and subsequently filled with transgressive, 
estuarine deposits.   
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that at least some of the coarse-grained material was derived from the underlying estuarine 

deposits. As flooding continued, the shoreline migrated landwards and westwards of the study 

area, and a new shoreline was established. This shoreline is the lowermost parasequence in 

the Grassy Member termed G1 (GPS 1, O’Byrne and Flint, 1995) This surface and the 

associated transgressive erosion will be discussed later in more detail.   

 

3.4 Depositional evolution of the Sunnyside Member 
 

Figure 3.15 illustrates the stratigraphical development of S1, S2 and S3, as described by 

Howell and Flint  (2003) and Hampson and Howell (2005). According to the studies, the 

maximum seaward position of the S1 shoreline is located around Bear Canyon, westward of 

the most basinward position of the underlying parasequence in the Kenilworth Member. The 

limited progradation of the Kenilworth TST (Pattison, 1995; Taylor et al., 1995) and the S1 

left a considerable amount of accommodation in front of the prograding S2. This has resulted 

in S2 being unusually thick. Consequently, at least four bedsets were formed as S2 prograded 

basinwards. The shoreline of S2 prograded as far as Trail Canyon through normal regression. 

Deposition was then punctuated by a fall in relative sea level and incision into the underlying 

shoreface-shelf deposits (Howell et al., in review). The incised valleys associated with S2 are 

located to the north and west of the study area (Howell and Flint, 2003). As relative sea level 

rose, transgressive ravinement removed all evidence of subaerial erosion in both Woodside 

Canyon and Long Canyon 1. During the flooding, the transgressive shoreline migrated 

landwards of the maximum seaward position of the underlying S2 shoreline, resulting in an 

overall landward displacement of the shoreline. This landward displacement of the shoreline 

was limited by the position of a raised coal mire to the west (Howell and Flint, 2003; Davies 

et al., 2005). Similar processes were described from the Kaiparowits Plateau by (Shanley and 

Mccabe (1995). This transgression resulted in the OTZ deposits (which were associated with 

the transgressing shoreline) to become deposited above the LSF deposits of S2, represented 

by an upward fining unit. These relatively thin units are interpreted as being part of a 

transgressive unit and will also be discussed in more detail later in this section. Renewed 

progradation led to the deposition of S3, which is composed of three bedset. The maximum 

seaward position of S3’s USF and foreshore deposits is located between Log 20 and Log 21 in 

Long Canyon 1 (Figure 3.3), indicating that during the maximum progradational extent, the 

highstand shoreline was located in this area. In Woodside Canyon, USF and foreshore
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 Figure 3.15. Conceptual sequence stratigraphic evolution of the Sunnyside Member. Modified from 
Howell et al. (in review). 



Chapter Three 

58 

deposits have been removed by a fall in relative sea level following the deposition of S3. This 

fall resulted in extensive fluvial incision in Woodside Canyon, eroding up to 28 m of 

stratigraphy and resulting in a seaward shift of the shoreline. The valley system fed sediments 

to a detached lowstand shoreline (sensu Ainsworth and Pattison, 1994) east of the study area, 

and the shoreface-shelf deposits of S3 were subaerially exposed. Details of the incised valley 

are discussed more thoroughly in Chapter Four. The nature of the lowstand shoreline would 

have depended on the duration of the stillstand which occurred after the sea level had stopped 

falling (Posamentier et al., 1992). As with the lower Sunnyside sequence boundary at the top 

of S2, transgressive erosion is interpreted to have removed all evidence of subaerial exposure 

on the interfluve. Sea level rise then flooded the entire shoreface-shelf and the incised valley, 

resulting in a renewed landward dislocation of the shoreline west of the study area which was 

followed by the progradation of G1. 

 

3.5 Bedset stacking pattern and shoreline trajectories 

 

In the northern part of the study area, the bedsets in S2 demonstrate a progradational trend in 

the lower part, followed by a more aggradational trend in the upper part. This is evident in 

both Woodside Canyon and Long Canyon 2, where the basinward extent of the LSF deposits 

in S2.5 are located between Log W2 and Log W3 and between Log 26 and Log 19 

respectively (Figure 3.4 and Figure 3.3). The basinward extent of the LSF deposits in S2.5-

S2.7 is located close to Log 7 in Woodside Canyon, approximately 5 km farther basinward of 

S2.4. This suggests an aggradational pattern of the lowermost bedset in S2, whereas S2.5-S2.7 

in Long Canyon terminate somewhere between Log 20 and Log 21 (Figure 3.4), indicating a 

more progradational pattern in this area. The basinward termination of the uppermost bedset 

in S2 may also be related to the amount of transgressive ravinement during the subsequent sea 

level rise.    

In S3, the bedsets display a continuous progradational stacking pattern in both 

Woodside Canyon and Long Canyon 1 (Figure 3.4). The pinch-out of the LSF deposits in 

S3.2 occurs 3-4 km east of the most basinward extension of the underlying S3.1 LSF deposits. 

The basinward extension of the uppermost bedset in S3 (S3.3) occurs at approximately the 

same place (or landwards of) S3.2 in Woodside Canyon and Long Canyon 1. This may be 

related to transgressive erosion and removal of the most basinward part of the bedset; similar 

to the situation in the uppermost part of S2.  
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According to the study of the Sunnyside Member completed by Howell et al. (in 

review), the four bedsets which are recognized within S2 (S2.4-S2.7) constitute only the most 

basinward half of the parasequence, and at least three bedset are present farther west of the 

study area. Recent models for the formation of parasequences in the Book Cliffs, based on the 

work by Kamola and Van Wagoner (1995), suggests that they may form with an initial phase 

of aggradation (relative steep shoreline trajectory sensu  Helland-Hansen and Martinsen, 1996) 

followed by near horizontal progradation (Howell and Flint, 2003; Howell et al., in review). 

This overall pattern of a steep shoreline trajectory in the proximal part, west of the study area, 

followed by a gentler trajectory farther east, suggest that the minor variations observed in 

Woodside Canyon and Long Canyon are related to local changes in progradation rate, 

sediment supply or bathymetry rather than changes in sea level and accommodation space.  

 

3.6 Transgressive deposition 
 

Due to the landward shift of the shoreline associated with a rise in relative sea level and the 

presence of an incised valleys northwest of the study area, S3b is both a parasequence 

boundary and an interfluve sequence boundary (Figure 3.15 and Figure 3.5), indicating that a 

considerable amount of time is represented by this surface (Howell et al., in review). 

Following the progradation of S2, the relative sea level fell and an incised valley was cut into 

the underlying shoreface-shelf parasequence. Later, as sea level rose, the incised valleys that 

were located northwest of the study area were filled, and the “Sunnyside Sandstone” was 

deposited (Howell and Flint, 2003; Howell et al., in review). As the transgressive shoreline 

reached the most basinward position of the old S2 shoreline it continued to retreat, and the old 

S2 shoreface-shelf became flooded. The shoreface deposits of S2 were overlain by a set of 

OTZ deposits related to the landward migration of the S3 shoreline. These transgressive units 

are present in the central part of both Woodside Canyon (Log 10-Log 16) and Long Canyon 1 

(Log 22 and Log 23), where they can be traced up to 6 km down-dip (Figure 3.16 and Figure 

3.4). Towards the west (palaeolandwards), these units become thicker and more sandy, and 

pass into a continuous coarsening upward OTZ succession in the vicinity of Log 9 and Log 21. 

Eastwards, these transgressive units become thinner and more shaly, pinching out close to 

Log 16 and Log 23 in Woodside Canyon and Long Canyon 1, respectively. Although these 

upward fining units are present in both canyons, the thicknesses and distributions varies 

slightly. In Long Canyon 1, the transgressive unit is up to 3.5 m thick and can be traced for 
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approximately 3 km in a basinward direction, whereas in Woodside Canyon, the unit is up to 

5 m thick and can be traced for at least 6 km. The unit is also more sandy and has thicker, and 

more pronounced, sandstone beds in Woodside Canyon. 

 

 
 

 
 

As the sea level continued to rise, more distal facies were deposited successively until 

the sediment input was higher than the sea level rise and the shoreline started to prograde 

basinwards again, resulting in the overall upward coarsening S3. Both the incised valley fill 

and the upward fining unit above the parasequence boundary are interpreted to belong to the 

transgressive package (Figure 3.17), whereas the underlying S2 and the following S3 belong 

to the highstand system tract (e.g. Van Wagoner et al., 1990; Howell et al., in review). The 

maximum flooding surface that represents the change from a retrogradational regime to a 

progradational regime, and which reflects the most landward position of the S3 shoreline, is 

Figure 3.16. Minor upward fining units in Woodside Canyon are represented by a decrease in sandstone content 
and thickness of HCS beds between the (A) proximal near Log 13 and the (B) distal part close to Log 16. In 
Long Canyon 1, the unit is thinner and less sandy and the difference between (C) proximal and (D) distal is less 
pronounced compared to Woodside Canyon. Exposed units in A, B and C are approximately 15 m, 16 m and 20 
m respectively. 1.5 m long staff for scale in D. 
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located in the uppermost part of the upward fining unit. The thickness variation between 

Woodside Canyon and Long Canyon 1 may be related to variations in sediment input as 

described on a larger scale from the Holocene of the Texas Gulf coast (Suter and Berryhill, 

1984) thus indicating that the north of the study area was closer to the sediment source at the 

time of deposition, hence a more proximal deposit.  

 

 

 

3.7 Transgressive erosion  
 

There are several indications of transgressive erosion in the uppermost part of S2 and S3. 

These include: truncation of the incised valley deposits and variations in bedset thickness in 

Woodside Canyon. The lack of evidence of subaerial exposure, such as roots and soil profiles, 

and the lacking evidence for any lowstand shoreline are also indirect evidence for significant 

erosion. Transgressive ravinement surfaces are commonly accompanied by a firm ground, 

Glossifungites tracefossil suite (Pemberton, 1998) and transgressive lags (see section 2.3.5). 

Figure 3.17. Transgressive unit exposed in the central parts of Long Canyon 1. S2.5-S2.7 are coarsening 
upward units within the overall upward shallowing S2. The parasequence constitutes a highstand systems tract 
(HST) which is bounded by a combined sequence boundary (SB) and a parasequence boundary representing 
relative fall and rise in sea level. Subsequent sea level rise resulted in deposition of a relatively thin, upward 
fining, transgressive unit, laying unconformably on the SB. The transition from transgressive conditions and 
relative deepening to regressive conditions and relative shallowing is marked by a maximum flooding surface 
(MFS, broken line) which represents the most landward position of the shoreline. The exposed section is 
approximately 20 m thick.  
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In the Sunnyside member, lag deposits were only observed on G1b in proximity of the incised 

valley, suggesting the reworking of fluvial and estuarine deposits. More regional mapping of 

S2 also suggest that the landward equivalents of the LSF, USF and the foreshore of S2.6 and 

of the entire succession of S2.7, has been eroded by transgressive erosion (Howell et al., in 

review).  More detailed evidence for transgressive erosion is discussed below. 

 

3.7.1 Subaerial exposure and transgressive erosion 
 

Estimates of sea level fall associated with the formation of the two sequence boundaries the 

Sunnyside Member are >20 m and >28 m for the lower and upper respectively. These 

estimates are taken from the thickness/depth of documented incised valleys (Howell and Flint, 

2003). Using and average Sunnyside shoreface-shelf gradient of approximately 0.2° (which is 

the average dip-angle for S2.5b-S2.7b), a base level fall of 20 m will result in a basinward 

shift of the shoreline of 6 km. If the gradient is even gentler, for example 0.1°, the basinward 

shift of the shoreline will increase to 11 km. This gradient is representative for the proximal 

part of the Sunnyside shoreface-shelf profile, but the angle will probably decrease to 

approximately 0.01-0.03° in the offshore area, similar to what has been observed in the 

underlying Kenilworth Member  (Hampson and Storms, 2003), resulting in an increased shift 

of the shoreline as the gradient decrease further. The position of the S3 shoreline prior to sea 

level fall was eastward of Log 20 in Long Canyon 1 Figure 3.3), and probably between Log 

W3 and Log W4 in Woodside Canyon. Assuming the average shoreface-shelf gradient was 

less than 0.1°, the position of the lowstand shoreline would be east of the study area, 

indicating that the entire G1b and at least parts of S3b was subaerial exposed during lowstand.  

Given some time, subaerial exposure of the shoreface and shelf would have resulted in 

the formation of palaeosols (Collinson, 1996). Alteration of the sediments during the 

formation of a palaeosol includes chemical changes and discoloration, along with physical 

changes such as biogenic reworking and rooting (Collinson, 1996). None of these features 

have been recognized, neither along S3b or G1b. Instead, well developed trace fossils of the 

Glossifungites ichnofacies are associated with the boundaries, suggesting a degree of erosion 

at the surfaces within a shallow-marine realm (Pemberton, 1998). The absence of evidence for 

subaerial exposure can be explained in two ways, either the area was never exposed, or, more 

likely, the evidence has been removed by later erosion  



Wave-Dominated Sunnyside Shorelines 

 63 

Given the presence of the incised valleys and the stratal evidence for sea level fall, it is 

reasonable to assume that the lowstand shorelines was positioned east of the study area, and 

that the entire dip-section of S3b and G1b was subaerially exposed.  The lack of evidence 

supporting subaerial exposure must be related to later erosion and the removal of a palaeosol. 

The presence of a locally developed  transgressive lag in several of the logged sections, 

indicating erosion and reworking of the underlying unit during sea level rise, maybe as far 

east as Log 14 in Woodside Canyon. Such lag deposits usually coincide with sequence 

boundaries, and are composed of coarse-grained material, shell fragments and rip-up clasts 

derived from the underlying incised valley (Van Wagoner et al., 1990). Tracefossil 

assemblages consisting of Diplocraterion and Thalassinoides are related to the firmground 

Glossifungites ichnofacies (Pemberton, 1998) and with the erosional surface. Exhumation of 

partially compacted shoreface-shelf sediments along with the transgressive lag therefore 

indicates considerable transgressive ravinement, and may explain the total lack of evidence 

for subaerial exposure.  

 

3.7.2 Attached/detached lowstand shorelines and transgressive erosion 
 

An eastward dislocation of the shoreline during sea level fall would result in either an 

attached or a detached lowstand shoreline (Figure 3.18) (e.g. Posamentier et al., 1992; 

Ainsworth and Pattison, 1994). Forced regressive shorelines have previously been recognized 

in the underlying Kenilworth Member where they are associated with sharp-based, LSF 

successions bounded by regressive surfaces of marine erosion (Pattison, 1995; Storms and 

Hampson, 2005). These surfaces were formed as the facies belts shifted downwards and 

seawards as the sea level fell, successively eroding the underlying OTZ deposits. The sharp-

based LSFs indicate that the sediment input was high enough to keep up with the rate of 

falling sea level, resulting in an accretionary forced regressive shoreline (Helland-Hansen and 

Martinsen, 1996). However, if the rate of sea level fall outpaced the amount sediment input, a 

detached, non-accretionary forced regressive shoreline would form, resulting in exposure of 

parts of the shoreface-shelf profile. Detached forced regression can also be formed by the 

transgressive erosion of part of a previously attached falling stage deposit (Ainsworth et al., 

2000).   
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The basinward extent of foreshore and USF deposits in S3 and S2 is located in the 

middle, and western part of the study area, respectively. None of the parasequences present 

any evidence of sharp-based shorefaces and all log sections suggests a continuous succession 

through dOTZ into LSF or USF deposits. This lack of evidence suggests a detached shoreline, 

which can be attributed to rapid sea level fall or detachment during extensive transgressive 

erosion.  Subsequent detachment was discussed by Ainsworth et al (2000) and has been 

reported by Walker (1992) where transgressive ravinement separated an attached shoreline 

from a highstand shoreline, leaving a single lowstand sandstone unit encased in mudstone, 

tens of kilometres offshore. In that case, the only evidence suggesting extensive transgressive 

ravinement was a lag surrounded by offshore mudstone. A similar scenario has been 

described by Posamentier (1992), suggesting removal of up to 10-20 m of proximal 

shoreface-shelf deposits during transgression. As long as no such lag deposits have been 

observed seaward of the incised valley (east of Log 13), and no sharp-based LSFs have been 

observed, neither in Woodside Canyon or in Long Canyon 1, it is very difficult to determine 

the shoreline geometries associated with the lowstand; in this case it is most likely that 

Figure 3.18.  Cross-section of a wave-dominated shoreline during a cycle of relative sea level fall and rise. (A) 
Falling sea level results in forced regression during the late HST and the LST. The basinward stepping, lower 
shoreface erodes into underlying OTZ and offshore deposits, forming a regressive surface of marine erosion 
(RSME) which may be associated with a pebble lag. During deposition of the LST, the lowstand shoreline is 
attached, indicating that the sediment supply to the shoreline was high enough to keep-up with the falling sea 
level. If the sediment supply to the shoreline was insufficient to maintain a continuous falling shoreline, the 
lowstand would be detached. (B) Sea level rise results in transgressive erosion and the formation of a ravinement 
surface, removing parts of the lowstand shoreline and the evidence of attachment. The only indication of the 
lowstand is the presence of a transgressive lag which is over and underlain by offshore deposits. No RSME has 
been observed in the study area, and no transgressive lag has been observed in the offshore deposits, suggesting 
that the lowstand shoreline was detached, or that the transgressive erosion was very extensive and removed 
major parts of the late HST and the LST. Modified from (Walker and Plint, 1992). 
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transgressive ravinement has removed all the evidence of such a process. However, total 

removal of an attached lowstand shoreline would imply a considerable amount of erosion as 

the entire foreshore, USF and sharp-based LSF succession would have to be removed. 

Erosion of a detached lowstand unit, reflecting a rapid fall in sea level followed by an abrupt 

basinward dislocation of the shoreline, on the other hand, would require much less erosion; 

making this a more likely scenario.    

 

3.7.3 Incised valleys and transgressive erosion 
 

Another indication of extensive transgressive erosion is the presence of a local exposure of 

incised valley strata in Log 22, located in Long Canyon 1 (Figure 3.4 and Figure 3.5). This 

unit is four meters thick and can be traced for approximately 50-100 m along the canyon wall. 

Except for this single cross-section, there is no sign of the unit along-strike or dip, and, as will 

be discussed in Chapter Four, the unit is interpreted to be a minor branch of the incised valley, 

associated with the G1 sequence boundary. The absence of this unit elsewhere in Long 

Canyon 1 may be related to transgressive erosion. Incised valley systems may have variable 

bottom relief due to differential erosion by the lowstand river (Schumm and Ethridge, 1994). 

Such changes have been recognized in the main valley system in Woodside Canyon, where 

the estuarine successions vary in thickness (Figure 3.4). A subsequent sea level rise and the 

associated transgressive erosion may have cut off the uppermost part of the valley fill 

succession and the subaerially exposed hinterland, only leaving behind the topographic low 

areas as “bowls” of estuarine deposits, which are encased in shallow-marine sandstones and 

mudstones. 

 

3.7.4 Varying bedset thickness and transgressive erosion 
 

Significant transgressive erosion may also explain some of the thickness variations in the 

underlying bedsets, especially in Woodside Canyon. In the area between Log W2 and Log 3, 

S2.7 demonstrates a considerable change in its thickness (from 2,5 m to 12 m and back to 7 m 

within 3 km down depositional dip, Figure 3.4). These thickness variations are not observed 

in Long Canyon 1 and may therefore be related to differential erosion during transgression. 

However, bathymetric variations along the shoreline, possibly associated with the presence of 

a river outlet, may have resulted in increased or decreased wave action and shoreface erosion. 
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Also, the uppermost bedset in S3 (S3.3) has an abnormal geometry as it becomes thinner 

basinwards. Although this bedset differs from all the others in terms of its internal 

composition and stacking of HCS beds, the basinward thinning of the unit in both Woodside 

Canyon and Long Canyon 1 may be related to transgressive ravinement at the time of 

flooding of S3. Except for the lack of evidence for subaerial exposure, there is no direct 

evidence that support this interpretation, and the difference between this bedset and the other 

bedsets in the Sunnyside Member may be related to other controlling factors. These will 

discussed below.     

 

3.8 Bedsets and depositional environments 
 

As described in Chapter Two, two different kinds of offshore transition zone deposits are 

recognized in the Sunnyside Member. The most common (type I) is composed of intensely 

bioturbated, interbedded HCS sandstone and mudstone, whereas the other kind (type II), is 

more compact, and is represented by reworked current ripples and sparse to low bioturbation. 

Bedsets with type I OTZ deposits (S2.4-S2.7 and S3.1-S3.2) have relatively continuous 

thickness basinwards, and are interpreted to represent a wave-dominated shoreface-shelf, 

where major storms reworked and redeposited sand into lateral extensive sandsheets across 

the basin floor (e.g. Niedoroda et al., 1984; Boyd et al., 1992; Howell, 2004). A decrease in 

the amount of bioturbation and the presence of current induced structures in the OTZ suggests 

increased fluvial influence and a closer proximity to a river mouth in S3.3 (Bhattacharya and 

Walker, 1992; Pemberton et al., 1992a; Reading and Collinson, 1996). This package also 

demonstrates considerable thinning in a down-dip direction. Palaeocurrent measurements 

suggest flow towards the northeast. The transition from wave dominance to a mixed energy 

environment may be related to changes in the depositional mechanisms, these include: 

increased/decreased fluvial discharge, delta lobe shifting or changing wave influence. Similar 

changes from wave-dominated shoreface deposits to fluvial-dominated delta front deposits 

have also been observed in the Spring Canyon Member (Kamola and Van Wagoner, 1995). 

Although these changes occurred laterally within the same parasequence, increased proximity 

to the river mouth is interpreted to be the main reason for the changes in the facies.   

Combined ripples or wave-modified current ripples indicate relatively rapid deposition 

by currents followed by partially reworking by waves close to a river mouth. A major 

decrease in the amount of bioturbation indicates a change to poorer living conditions for the 
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burrowing animals (Pemberton et al., 1992a). Such changes may reflect a decrease in food 

supply, an increase in energy, or changes water salinity, all which can be related to the 

proximity of river outlets and brackish water. This is supported by the presence of syneresis 

cracks which suggests changes in salinity (Reineck and Singh, 1980).  In addition, an 

erosional, channel-like unit with trough cross-stratification and rip-up clasts is present in S3.3 

in Log 12 (Figure 3.19). This unit is interpreted as a storm scour or a minor distributing 

channel in the proximal part if the OTZ, suggesting a mixed fluvial and storm-dominated 

environment, influenced by short-time, high-energy events, such as storm scours or pulses of 

increased fluvial discharge along the shoreline. 

 

 

 
 

The bedset boundary separating the fluvial influenced bedset from the wave 

influenced bedset below, is also somewhat different from the other bedset boundaries in the 

study area. Whereas the other discontinuity surfaces are very sharp, indicating an abrupt 

decrease in thickness and amount of HCS stormbeds and an increase in bioturbation, S3.3b is 

more gradual, displaying an upward coarsening in S3.2 and commonly an upward fining into 

S3.3, making the definition of the contact problematic (Figure 3.20). This difference in the 

bedset boundary expression might indicate that there are different mechanisms responsible for 

the formation of bedset, or that the transition from a wave-dominated to a mixed energy 

depositional environment (forming the bedsets) is related to other depositional processes. 

Mechanisms for formation of bedsets and bedset boundaries will be discussed further in 

Chapter Six.  

Figure 3.19. Storm scour channel/distributary channel in the pOTZ. The channel is up to 2.5 m thick and 
approximately 10 m wide and truncates the underlying interbedded HCS sandstones and bioturbated mudstones. 
Note loading structures in the base of the sandstone unit. The exposed canyon wall is oriented approximately 
east-west. The staff is 1.5 m long. 
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In contrast to the other bedsets in S2 and S3, S3.3 is the only bedset which 

demonstrates a distinct basinward thinning. In Long Canyon 1, this unit can be traced for 

approximately 9 km oblique to dip, where it also thins from 14.5 m in the proximal part to 5,5 

m in the distal part; similar thinning is also observed in Woodside Canyon. Assuming a 

continuous sediment supply, such changes indicate that less material was transported to the 

offshore transition zone and the offshore area, and that more material was trapped close to 

shore. Where fresh water is mixed with sea water, the capacity needed for keeping sediments 

in suspension decreases rapidly, and sand is deposited relatively close to the river mouth, 

forming a basinward thinning sediment wedge (Wright, 1977; Bhattacharya and Walker, 1992; 

Reading and Collinson, 1996). The amount of fluvial influence will decrease along-strike 

resulting in dominating wave action, and more sediments will therefore be reworked and 

redeposited into deeper water.  Modern studies of North American wave-dominated 

shorelines has demonstrated a similar basinward thinning of the sediment wedge close to the 

Figure 3.20. Gradual change from storm influenced S3.2 to the overlying, more fluvial influenced S3.3, close to 
Log 24 in Long Canyon 1. The expression of the bedset boundary is different from the other discontinuity 
surfaces in the study area which indicate a very abrupt decrease in amount and thickness of sandstone beds. S3.3 
is bounded in the top by G1b marking flooding and the transition into the G1. S3.3 is 6 m thick at this location. 
 



Wave-Dominated Sunnyside Shorelines 

 69 

river mouths, suggesting that the amount of sediment deposited by the river close to shore, 

exceeded the wave potential of reworking and redepositing sediments on the shoreface-shelf 

(Larson and Kraus, 1994).   

 

3.9 Palaeogeography of the wave-dominated shoreface-shelf 
 

The majority of shallow-marine systems in the study area were dominated by waves and are 

therefore represented by HCS in the LSF and OTZ deposits. The sub-parallel, north-south 

trending facies belts also suggests wave dominance by reworking and redepositing of 

sediments along the shoreline. This parallel alignment of facies, and the shape of the shoreline, 

depends on the amount of sediments deposited by the river, and also on the reworking 

potential of the waves (Bhattacharya and Walker, 1992; Bhattacharya and Giosan, 2003). If 

the waves are able to rework and redeposit all sediments introduced by the fluvial source, the 

shoreline and facies belts will be relatively straight. However, if they are not able to rework 

the sediments, the shoreline around the river mouth will be more cuspate, arcuate or lobate 

dependent on the amount of fluvial input (Reading and Collinson, 1996; Bhattacharya and 

Giosan, 2003). Furthermore, river mouth morphology is also dependent on the angle of the 

approaching waves (Dominguez, 1996). For example, if the wave approach is perpendicular 

to the shoreline a symmetrical wave-dominated delta will form as longshore currents, induced 

by the on-shore waves, are deflected and redeposit sediments along the shoreline on both 

sides of the river mouth. This situation is very rare and commonly the waves will approach 

the shoreline at an angle, resulting in a groyne effect in the updrift area where sediments 

transported by longshore currents becomes trapped close to the river mouth (Dominguez, 

1996). In the modern São Francisco strandplain, the updrift part of the shoreline progrades as 

longshore driven sediments are incorporated into prograding beachridges (Dominguez, 1996). 

Downdrift of the river mouth, the shoreline progrades as reworked fluvial material, 

represented by mouth bars and spits, are accreted onto the shoreline, resulting in advancement.  

Distribution of facies belts presented in sections 3.2-3.3 illustrates a relatively straight 

north-south orientation similar to what can be expected in a wave-dominated system. Despite 

this trend, the transition across most bedset boundaries is associated with minor undulations 

or bulges in the facies belts. These undulations may relate to geomorphological changes in the 

shoreline resulting from uneven distribution of sediments transported by the river and 

longshore drift. The pattern associated with S3b displays no differences along-strike, and 
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unlike the bedset boundaries, the parasequence boundary does not represent a palaeosurface 

on the shoreface-shelf as it has been reshaped by the transgressive ravinement (Van Wagoner 

et al., 1990; Howell et al., in review). The distributions of facies associations represented in 

Figure 3.9 demonstrates that the transgressive succession immediately overlying the 

parasequence boundary is better developed in Woodside Canyon, suggesting increased 

sediment input in this area. The changes associated with S3.2b (Figure 3.4 and Figure 3.5) 

represent a major difference from Woodside Canyon to Long Canyon 1, as the bedset 

boundary pinch out and disappears between the two locations. This indicates that the area in 

Woodside Canyon experienced a relative deepening and a landward shift of facies during the 

development of this surface, whereas in Long Canyon 1 the system continued to prograde. 

Moreover, this suggests that the area around Long Canyon 1 experienced continuous or 

increased sediment supply, whereas the supply was cut off to the area around Woodside 

Canyon. Possible mechanisms responsible for such changes include: high-frequency changes 

in climate, channel avulsion and delta lobe shifting, changes in wave climate and changes in 

sediment supply (Curray et al., 1969; Dominguez et al., 1987; Bhattacharya and Giosan, 2003; 

Hampson et al., in review; Rodriguez and Meyer, in review). These mechanisms are discussed 

further in Chapter Six.  

At the time of formation of S3.2, the facies belts were again relatively parallel and 

north-south orientated, reflecting a straight shoreline. This bedset boundary is different from 

the other boundaries in that it is gradual rather than sharp. This also represents the transition 

into mixed fluvial and wave influenced deposits, suggesting a change in the deposition 

environment. The distribution of the facies belts prior to incision and relative sea level fall 

indicates a slightly more oblique shoreline orientation, although S3 is associated with 

significant transgressive ravinement, which may affect the present day distribution of facies 

belts, similar to S3b. 

The orientation of wave ripples in S2 and S3 indicates a wave approach from east and 

northeast (Figure 3.21). The average orientation of facies association belts is north-south, 

indicating a similar orientation of the shoreline. Ripple orientations therefore suggests oblique 

wave approach and potential longshore current direction from the north. Within the 23 logged 

sections, there is only one shallow-marine unit that contains evidence of being deposited by 

currents (Log 8). This unit is composed of a locally restricted, tangential trough cross 

stratified sandstone which is truncated by HCS sandstone laterally (Figure 3.22).  
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The cross-stratification suggests a palaeocurrent direction towards the south. Although one 

measurement is insufficient to draw any conclusions concerning the palaeocurrent pattern, 

and the fact the cross bedding may not relate to longshore currents at all, the main flow 

direction fits well with the interpretation of a southerly directed sediment transport. A similar 

palaeocurrent direction has also been reported from the underlying Spring Canyon and 

Kenilworth Member (Hampson and Howell, 2005).  

As can be seen in (Figure 3.14), the incised valley that is associated with S3 is mapped 

in the western and central part of the study area, suggesting an eastern and northeastern 

orientation of the estuary during deposition. At the time of incipient incision, rivers tend to 

follow the existing channels as lowering of the base level inhibits lateral erosion (Schumm 

and Ethridge, 1994).  

In the western part of the study area, the valley is orientated relatively east-west. 

However, in the central and eastern part, the valley is deflected northwards into a northeastern 

direction. This suggests that the river had a similar course, going east and northeast, feeding a 

new shoreline north of the study area. 

Figure 3.21. Palaeogeographical map of the late S3 shoreline and S3.3. The position of the incised valley along 
with palaeocurrent directions, thickness relationships between parasequences and bedsets suggests that the river 
mouth was positioned north of the study area and that longshore drift was towards the south. The appearance of 
S3.3 in Woodside Canyon and Long Canyon1 suggests that the river mouth shifted down-drift, resulting in 
increased current influence on the bedset in the study area.  Black and white arrows indicate fluvial and 
longshore transported sediments respectively.  Main wave approach is from the northwest.   
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Changes in bedset and 

parasequence thicknesses along-

strike are another indication of 

the proximity of a sediment 

source north of the study area. 

One would expect a 

parasequence to become thicker 

and more sandy towards the 

main sediment source, and to  

 

thin along-strike as the amount of sandy material decreases. Although there are some 

measurements variations, such a thickness comparison between log sections positioned along-

strike (north-south), suggests that S3 is slightly thicker in Woodside Canyon than it is in Long 

Canyon 1. This may be an indication of increased sediment input in the northern part, but 

could also reflect differential transgressive erosion or compaction (discussed above). There 

are also lateral thickness variations between the individual bedsets which indicate the same 

interpreted relationship.  

 

 

 
 

Although there is no direct evidence of a river mouth in, or north of the study area, 

there is clear evidence of such a fluvial system in the overlying G1, which lies 

stratigraphically above S3 in Woodside Canyon (Figure 1.7). In this parasequence, fluvial 

channels (represented by tabular and sometimes bidirectional cross-stratification) cut into the 

Figure 3.23. Tabular (occasionally bidirectional) cross bedding in overlying Grassy Member (Log 9). The 
deposits are interpreted as fluvial and tidal influenced USF deposits, suggesting a nearby river mouth feeding the 
Grassy shoreline. Similar deposits have not been observed in the Sunnyside Member. The staff is 1.5 m long. 
 

Figure 3.22.Tangential cross bedding in Log 8. The bed is 
truncated laterally by amalgamated  HCS sandstone. Direction of 
palaeoflow is towards the south.  
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shoreface indicating the proximity of a river mouth (Figure 3.23). These features are 

interpreted to be the remnants of a river feeding the younger Grassy shoreline. Similar 

features in the non-marine part of the Sunnyside Member are probably removed by the incised 

valley.  
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Chapter Four – Internal Facies Distribution and Palaeogeography of 

the Mixed Wave and Tidal-Dominated Sunnyside Estuary 

 

4.1 Introduction 

 
An estuary is defined as “the seaward portion of a drowned valley which receives sediment 

from both fluvial and marine sources, and which contains facies influenced by tide, wave and 

fluvial processes; the estuary is considered to extend from the landward limit of tidal facies at 

its head to the seaward limit of coastal facies at its mouth”(Figure 4.1) (Boyd et al., 1992; 

Dalrymple et al., 1992). The Sunnyside succession in Woodside Canyon includes an interval 

that has previously been interpreted as the estuarine fill of an incised valley (Howell and Flint, 

2003). Within this present study, this interval has been mapped and logged east from the 

location of the work presented by Howell and Flint (2003) and their model has been critically 

assessed and expanded upon. Understanding the facies and distribution of the valley fill has 

important implications for understanding the sea-level history of the Sunnyside Member. 

A typical wave-dominated estuarine succession is composed of fluvial sediments in 

the lower part, overlain by inter-valley fluvial deltas, muddy lagoons, flood deltas and barrier 

islands deposited as the estuary filled during transgression; demonstrating a distinct tripartite 

facies distribution (Dalrymple et al., 1992). In contrast, a typical tidal-dominated estuarine 

succession is composed of fluvial sediments in the lower part, overlain by tidal-influenced 

meandering channels, tidal bars, marshes and sandflats. Tidal-dominated estuaries lack the 

characteristic tripartite facies distribution which is characteristic of wave-dominated estuaries 

(Dalrymple et al., 1992). This is because tidal energy penetrates farther landward than wave 

energy, resulting in redistribution of sandy material along the estuarine dip-axis by tidal 

currents (Dalrymple et al., 1992). Figure 4.1 illustrates the idealized facies distribution in a 

tidal influenced estuary (Dalrymple et al., 1992). In the distal, marine dominated zone, 

sandflats and mudflats prevail along with large, shoreline perpendicular sandbars. Farther 

landwards, in the mixed energy zone, meandering channels, marshes and mudflats dominates. 

This represents the part of the estuary where tidal and fluvial forces are equivalent, and where 

the net energy is the lowest. A decrease in current energy results in a decrease of the transport 

capacity, deposition and meandering of which the river (Dalrymple, 1992; Dalrymple et al., 

1992). In the most landward and fluvial-dominated part of the estuary, the idealistic facies 
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model predicts straight fluvial channels and marshes. The amount of tidal influence will 

decrease upward and landward in the estuary due to increased friction and fluvial energy.  

 

 

 

 

4.2 Internal geometries of the incised valley deposits  
 

Figure 4.2 illustrates the distribution of estuarine facies which have been observed in the 

upper Sunnyside incised valley. The most proximal part of the section demonstrates an overall 

upward transition from tidal-influenced fluvial deposits into meandering channel deposits. 

Farther basinward, meandering channels also juxtapose tidal bar deposits, lagoonal and tidal 

 

 

Figure 4.2. Correlation of logsections containing incised valley strata in Long Canyon 2 and Woodside Canyon. The 
facies distribution is relatively complicated, but there is a general trend of increased marine influence upward in the 
succession. Localized tidal influenced, fluvial deposits are present in the proximal part of Woodside Canyon overlying 
the SB. IHS dominates, but also large tidal bars are present. Subaerially exposed bars in the central part of the study 
area reflect a sandy and high-energy zone within the estuary. Lagoonal and tidal flat deposits commonly occupy the 
uppermost part of the valley fill, representing progradation, drowning and abandonment of the river channels. The 
valley fill is bounded in the upper part by a flooding surface (G1b) which represents a major landward dislocation of 
the shoreline, and the transition into the overlying Grassy Member. The flooding surface is commonly associated with a 
Glossifungites firmground and a transgressive lag, indicating significant erosion during sea level rise. See appendix for 
key and complete logs. 

Figure 4.1. Idealized tidal-dominated estuary. The facies will be less tidal influenced and more fluvial 
influenced landwards, going from sandy bars and flats in the tidal-dominated zone, into heterolithic sand and 
mud in the mixed zone. In the upper part of the estuary, the facies will be sandy and dominated by river currents.  
Modified from (Dalrymple et al., 1992). 
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flat deposits (Figure 4.3). In the central part of the exposed valley fill (in the area close to Log 

5 and Log 6, Figure 4.2), large tidal bars contain evidence of subaerial exposure. Several units 

within the tidal bar successions are bleached and white in color, containing sub-vertical root 

structures indicating colonization by plants. Low angle, planar parallel stratified sandstone 

resembling foreshore beach deposits also suggest subaerial exposure and wave reworking of 

the bars.  

 

 

  
 

Figure 4.3. Estuarine deposits in the main incised valley section in Woodside Canyon. (A) Large, subaerially 
exposed tidal bars (approximately 8 m thick) truncates (B) underlying IHS. Main progradational direction is to 
the right, and out of the picture.(C) The bars also demonstrate small sets of (sometimes bidirectional) tabular 
and sigmoidal cross-stratification. (D) Several sets of large, subtidal bars are also locally present (flow is 
towards the right). Commonly, their bases contain mud-drapes and (E) large clay rip-up clasts. The staff is 1.5 
m long. 
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Palaeocurrent measurements indicate a relatively complicated current pattern, where 

meandering channel deposits (IHS) indicate dominant flow towards the north and south, 

whereas bar deposits suggest flow towards the east and west.There are also significant 

variations in the orientation of the IHS, but most inclined beds reflects point bar migration

  

 

 
  

Figure 4.4. Incised valley deposits in Long Canyon 1 (Log 22). (A) The outcrop was traced for 50 m along the 
canyon wall, where the margin is marked by a distinct erosional surface. (B) The succession is upward fining 
and marked by three sandstone channels in the lower part, and (C) interbedded, heterolithic sandstone and 
mudstone in the upper part. Rip-up clasts and (D) load casts are abundant. The unit is up to 4 m thick. The pencil 
is 15 cm long. 
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towards the northeast, southwest and southeast (normal to the overall palaeocurrent directions 

in the area). Wave ripples are oriented in a similar direction as those observed in the shallow-

marine deposits, suggesting wave approach from the east and northeast. 

Incised valley strata are recognized in all proximal log-sections in Woodside Canyon, 

in Long Canyon 2, Jenny Canyon and in one section in Long Canyon 1 (Figure 4.2 and Figure 

3.3). The thickness of the incised valley succession observed in the study varies between 0 

and 16 m, and the general pattern is a continuous thinning basinwards and eastwards where 

the valley pinches out between Log 13 and Log 14 (Figure 4.2). The incised valley is close to 

6 km wide in the western part of the Beckwith Plateau and widens eastward, approximately 8 

km in the central part of the study area. The presence of estuarine deposits in Long Canyon 1 

is restricted to one locality (Log 22, Figure 4.4). This section is 4 m thick and was traced 

laterally for approximately 50 m. No palaeocurrent readings were obtained, and the 

succession consists of interbedded sandstone and mudstone. The unit demonstrates a distinct 

upward fining trend represented by channel sandstones with abundant rip-up clasts in the 

lower part, and interbedded discontinuous sandstones and mudstones further up. Coal 

fragments, Teredolites burrows and loadcasts are abundant in the interbedded, heterolithic 

part of the succession (Reineck and Singh, 1980; Collinson and Thompson, 1989). 

 

4.3 Palaeogeography of the mixed wave and tidal-dominated estuary 

 

Trough cross-stratified sandstone of fluvial origin (FA7) has been observed in several 

locations within the study area (Figure 4.2) and are interpreted as falling stage, or early 

transgressive stage deposits (Dalrymple et al., 1992; Zaitlin et al., 1994). The sandstone is 

interpreted to be remnants of a braided river (Figure 2.11 and Figure 2.12) (Collinson, 1996) 

which has been preserved in low areas during periods when the incised valley was mainly 

bypassing sediment to the lowstand shoreline (Figure 4.5). Palaeocurrent measurements 

indicate flow towards the southeast, which is slightly oblique to the main dip-direction of the 

incised valley (west southwest-east northeast). Shell fragments and mud-drapes towards the 

top suggest that these fluvial deposits have been tidally reworked during later transgression. 

Because no distinct boundary separating purely fluvial from IHS deposits have been observed, 

it is difficult to recognize any transgressive surface within the estuarine deposits, although it 

should be located in the lowermost part of the succession (Zaitlin et al., 1994). The 

transgressive surface defines the transition from the LST to the overlying TST (Van Wagoner 
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et al., 1990). The lack of thick fluvial lowstand units in the base of the incised valley indicates 

that the time of lowstand progradation was relatively short.  

 

 
  

 
 

 

 

 

Figure 4.5. Palaeogeographic history of the incised valley in response to relative sea level change. (A) During the
lowstand, the incised valley mainly experienced sediment bypass, although some fluvial sediments were 
preserved in low areas. (B) As sea level rose, these fluvial deposits became reworked by tidal currents and the 
estuary was filled with IHS deposits. The inclined heteroliths observed in the field (B) represents the approximate 
orientation and migration direction of the meandering pointbars. (C) Tidal bars were deposited in the meandering 
river, and as the shoreline migrated landwards, high-energy, sandy tidal channels (representative of the more 
distal and tidal-dominated part of the estuary) deposited large bars in the present day central part of Woodside 
Canyon. The interfluve and an alternative positioning of the valley margin is indicated close to Log 10 (see 
section 4.4 for further discussion). 
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A rise in relative sea level subsequent to the lowstand conditions resulted in rapid 

landward shoreline migration and marine intrusion into the incised valley. A sharp facies 

boundary between tidal influenced fluvial deposits and tidal influenced meandering deposits 

(of FA7 and FA8), is locally present. This boundary marks the transition from fluvial to 

estuarine deposits and is represented by the initial flooding surface (Zaitlin et al., 1994). As 

the sea level continued to rise, the distal part of the estuary was flooded and tidal influence 

extended up the meandering channels (Figure 4.5). This is evident from abundant Teredolites 

borings (Figure 4.6), suggesting partially marine influence (Bromley et al., 1984; Pemberton 

et al., 1992a). Teredolites are wood-boring bivalves which commonly occur in log jams and 

compacted organic material, such as peat (Bromley et al., 1984). In addition, Arenicolites 

burrows of the Skolithos inchnofacies, which are also common in intertidal environments 

(Pemberton et al., 1992b; Maceachern and Pemberton, 1994), have been observed in one 

section (Log 18, Figure 4.2).  

 

 

 
The tidally influenced meandering channel deposits (FA 8) commonly overlie 

reworked fluvial deposits and represents an upward transition into a more distal facies 

association. This facies is normally very heterolithic, and variations in the sandstone and 

mudstone content along with differences in the dip of the inclined beds, probably reflect 

various types of channels within the estuary (Thomas et al., 1987). The successions 

represented by the IHS coincide with the mixed energy zone of a tidal-dominated estuary 

(Figure 4.1), as described by Dalrymple et al. (1992). 

Figure 4.7 illustrates three different end-members of IHS observed in the study area. 

The muddiest unit (A) is inclined relative to the underlying beds which are truncated, and to 

Figure 4.6. (A) Teredolites in coalified wood and (B) Arenicolites  within the inclined heterlolithic deposits 
suggests brackish conditions. 
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the overlaying flooding surface at the base of G1.These inclined beds have a dip-gradient up 

to 10-12°. This unit is interpreted to represent a low-energy, meandering, estuarine channel 

which was sheltered from high-energy flood events. Some of the units may also reflect 

abandonment and passive filling of the same channels. More heterolithic meandering deposits 

(B) are composed of alternating sandstones and mudstones, and indicate similar dip-gradients 

as the muddy units. As individual IHS beds were traced from the top of the incised valley to 

the valley floor, they demonstrated a decrease in the dip-angle towards the base, indicating 

flattening towards the channel thalweg as expected within a meandering channel point bar 

(Thomas et al., 1987; Collinson, 1996). The sand dominated IHS (C) contains more gently 

dipping sandstone beds (of approximately 2-10°), indicating deposition in a wider, more high-

energy channel. Similarly to the muddy units, the dip-gradient of the inclined beds is also 

lower towards the base of the unit, suggesting a transition into deeper water (Thomas et al., 

1987). Ideally, these meandering point bar deposits could be traced from the uppermost part 

of the point bar (and the subaerially exposed part of the estuary) to the middle part of the 

channel, demonstrating a sigmoidal shape (Thomas et al., 1987). But because the uppermost 

part of the IHS probably was removed by significant transgressive erosion during sea level 

rise, only the foresets and bottomsets have been preserved.  

The dip-direction of IHS beds indicates point bar migration in a variety of directions, 

commonly normal or oblique to the palaeocurrent in the area (Figure 4.2). Both muddy and 

sandy meandering channel successions illustrate this pattern, suggesting that a variety of tidal 

influenced channels migrated back and forth within the estuary. 

FA8, 9 and 10 are interpreted to be juxtaposed within the estuary, reflecting the 

heterolithic nature and variety of these depositional environments (Figure 4.2 and Figure 4.5). 

Tidal bars overlying IHS suggests deposition within the meandering channel. In the western 

part of the study area (Log 18, Figure 3.3) large scale, trough cross-bedding (FA9) shows 

landward directed palaeocurrents (west). Similar, large scale, landward directed cross-bedding 

with organic-draped foresets are also present farther east in the study area, indicating a 

dominant flood current towards the west. These units are interpreted to represent large tidal 

bars, laid down in a sandy, high-energy part of the estuarine channel.  

In the central part of Woodside Canyon (close to Log 5 and Log 6, Figure 3.3), 

stacked sets of large scale, cross-stratified sandstone (FA9) indicate a different palaeocurrent 

direction, although a main component is directed towards the southeast, indicating dominating 
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ebb currents. Chaotic and erosive based sandstone beds indicate deposition within a major 

channel (Figure 2.16, C). The upper part of the unit is bleached and penetrated by roots. A 

poorly developed coal is present on the uppermost part of the succession, suggesting that this 

sandy unit was subaerially exposed for a considerable amount of time (Miall, 1992; Collinson, 

1996). This accumulation of sand is interpreted as a sandwave in the central part of the 

estuary, and a landward shift of the facies representing a transition into a higher-energy 

environment in the outer, marine influenced part of the estuary (Figure 4.5) (Dalrymple et al., 

1992; Zaitlin et al., 1994). The partially subaerially exposed sandwave reflects high sediment 

input and possibly minor periods of paused sea level rise and stillstand.  

The extensive tidal influence in this overall wave-dominated system is probably 

related to amplification of the lower meso-tidal (Howell et al., in review) environment within 

the estuary. The funnel-shaped estuary results in increased tidal currents landwards, as the 

width of the valley decreases. Farther up-dip, frictional forces and fluvial currents compensate 

and neutralize the landward directed tidal influence (Figure 4.1) (Dalrymple et al., 1992).  

Muddy channels, tidal flats and small lagoons/ponds (FA10) reflect low-energy, inter 

and supra-tidal parts of the estuary. IHS is commonly overlain by very fine-laminated, 

mudstone successions indicating a decrease in current energy. Upward fining successions in 

Log 19 and Log 26 (Figure 4.2 and Figure 4.8) represents a typical transition from erosive, 

tidal influenced channel deposits in the lower part, into interbedded heteroliths and muddy 

channel deposits in the upper part, typical of a migrating point bar succession (Thomas et al., 

1987). Log 8 (Figure 4.2) illustrates a similar transition from IHS to laminated mudstone 

deposits, reflecting abandonment and passive filling of the meandering channel. Coarse-

grained beds containing shell fragments are interpreted to result from high-energy events, 

such as storms or major floods. 

Although though the estuarine facies associations in the incised valley show a 

somewhat complicated distribution laterally, the successions demonstrate increased marine 

influence upwards. This reflects continuous sea level rise and flooding of the distal pars of the 

estuary (Figure 4.5). As the transgressive shoreline reached the position of the old S3 

shoreline, the gradient decreased abruptly from the shoreface-shelf to the coastal plain. This 

Figure 4.7.  IHS within the study area has a variety of expressions, reflecting the diversity of depositional 
environments within the estuary. Muddy (A) and mixed muddy and sandy (B) units have generally steeper 
dipping beds compared to sandy units (C). The dip-angle and orientation of the IHS reflects the width and 
progradational direction of the meandering river, suggesting a complicated pattern of rivers within the estuary. 
Staff for scale in A and B is 1.5 m long. The exposed canyon wall in C is approximately 300 m long.  
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resulted in a rapid landward shift of the shoreline and drowning of the distal part of the 

estuary. The valley fill is overlain by G1 which represents renewed shoreline progradation.  

 

 

 
.   

4.4 Incised valley topography 
 

Incised valley deposits have been observed in all logsections west of Log 13, except for Log 

10 (Figure 4.2).  Figure 4.9 illustrates a down-dip correlation of Log 9, 10 and 11 in the 

central part of Woodside Canyon. The most proximal section (Log 9) represents a 13,5 m 

thick succession of incised valley strata cutting into, and eroding the entire S3.3. In Log 10, 

S3.3 is fully preserved and displays wave influenced, locally intensely bioturbated OTZ 

deposits overlain by amalgamated HCS of the LSF; typical of the shoreface-shelf 

environment.  Farther east (in Log 11), the same bedset is truncated by another, 4 m thick 

incised valley unit. The lack of incised valley strata in Log 10 may be explained by three 

scenarios: i) differential incision resulted in the area surrounding Log 10 being exposed as an 

island in the middle of the estuary, ii) the area near Log 10 was located outside the incised 

valley and was part of the interfluve during incision, or, iii) the area only experienced shallow 

incision and the valley fill was later removed by transgressive erosion.  

 

Figure 4.8.  Upward fining estuarine succession in Long Canyon 2 (Log 19). Lower half is composed of sandy, 
gently dipping IHS, whilst the upper part is muddy and dips more steeply. The sharp transition between the two 
units may represent partially channel abandonment during transgression and infilling of the estuary, a transition 
into more muddy point bar deposits, or, alternatively, truncation and amalgamation of two separate point bars. 
The incised valley succession is 8 m thick, and is bounded by a transgressive ravinement surface (G1b), and is 
overlain by G1. 
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Intravalley highs have previously been reported from the overlying Grassy Member, 

where they are orientated parallel to the incised valley; being less than 1 km wide and 

approximately 4 km long  (O’Byrne and Flint, 1995). Except for local occurrences of siderite 

nodules and roots, transgressive erosion has also removed all evidence for subaerial exposure 

in the this unit (O’Byrne and Flint, 1995).  

Due to limited access to the outcrops near Log 10, it is not possible to trace the 

sequence boundary to the south side of the canyon, and it is therefore difficult to determine 

the lateral extension of the unaffected succession in Log 10. But assuming an intra valley high 

was orientated parallel to the incised valley, similar to the interfluves in the Grassy Member 

(O’Byrne and Flint, 1995), it may extend for several kilometres in this direction. The width of 

the interfluve, on the other hand, can not have been more than approximately 1 km, assuming 

Figure 4.9. Log 9 is located 1,1 km west of Log 10 and represents approximately 14 m of incised valley strata 
cutting into S3.3 and LSF strata of S3.2. Between the two locations, the incised valley disappears, leaving Log 10 
apparently unaffected by the incision, and the SB coincide with the G1b. At this location, S3.2 is overlain by S3.3 
which represents interbedded HCS sandstone and commonly intensely bioturbated mudstone typical of the OTZ 
and LSF (pictures). No evidence of subaerial exposure has been observed in the section. Log 11 is located 1 km 
farther east, representing 4 m of valley fill cutting into fluvial and wave influenced OTZ deposits of S3.3. The 
correlated section is indicated in black on the map. See appendix for key, and Figure 3.4 for position in the down-
dip correlation panel. 
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the valley margins terminate half way between Log 9 and 10, and between Log 10 and 11. In 

contrast to the interfluves reported from the Grassy Member, no nodules or roots have been 

observed in the upper part of Log 10, and there is no other evidence suggesting subaerial 

exposure; although these may have been removed by later erosion. 

Alternatively, the area represented by Log 10 may have been part of the surrounding 

interfluve rather then an intra-valley high (Figure 4.10). In this case, a tributary valley may 

have connected with the main valley in the vicinity of Log 11 and Log 12, leaving the 

surrounding Log 10 squeezed between the tributary and the main valley. The interpretation of 

the estuarine valley fill located in Log 22 being a tributary, draining towards the north and 

northeast, supports this theory. However, because of the remote location of the incised valley 

fill (approximately 7 km south of Woodside Canyon, Figure 3.3) and its restricted lateral 

extent, no positive connection can be established between the two systems.  

 

 

 
 

A third explanation for the relationships observed in Woodside Canyon, which would 

also explain the localized exposure of valley fill in Long Canyon 1, is removal of a significant 

amount of incised valley fill by transgressive erosion. Relatively thick transgressive lag 

deposits and well developed Glossifungites firmgrounds (Pemberton et al., 1992b; 

Figure 4.10. The lack of incised valley strata in Log 10 may relate to (A) a tributary draining from the south, 
which was connected with the laterally restricted incised valley unit present in Log 22, resulting in the area close 
to Log 10 being a part of the surrounding interfluve. Or, alternatively, (B) the area represented by Log 10 is an 
intra valley interfluve positioned parallel to the main incised valley. Lack of valley fill may also be explained by 
extensive transgressive erosion.  
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Maceachern and Pemberton, 1994; Pemberton, 1998), together with the lack of evidence for 

lowstand shorelines and subaerial exposures, supports this interpretation (see section 3.7 for a 

more detailed discussion on transgressive erosion). Further detailed mapping of the valley fill 

and the sequence boundary close to Log 10 and on the south side of the canyon may reveal 

the true outline of the incised valley in this area.   

 

4.5 Implications for the position of the lowstand shoreline 
 

In the previous sections, it has been argued that the estuarine deposits which outcrops in 

Woodside Canyon represents the central and distal part of a mixed wave and tidal-dominated 

estuary, as described by Dalrymple et al. (1992), Zaitlin et al. (1994), Howell et al. (in review) 

and Howell and Flint (2003). According to this interpretation, a considerable amount of the 

estuary should be located basinward (east) of the area represented by Woodside Canyon, as 

the facies associations shift landwards during sea level rise and infilling of the estuary (Zaitlin 

et al., 1994). Woodside Canyon estuarine deposits represents tidal influenced meandering 

channels and tidal bars in the mixed-energy zone, indicating that the marine influenced, 

basinward part of the estuary (Dalrymple et al., 1992) was situated farther east of the study 

area. The gently thinning incised valley unit which pinch-out between Log 12 and 13 (Figure 

4.2 and Figure 3.5) is therefore interpreted to represent the southern valley margin, and not its 

maximum basinward extent.  

 

 

 
 

Figure 4.11.  The pinch-out of the incised valley between Log 12 and Log 13 is represented by sandstone bar 
deposits (A) inside the valley, and a transgressive lag (B) a few hundred meters farther southeast, outside the 
valley. The pencil in A is 15 cm long. The spacing between tape measures is 10 cm.  
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This transition between the estuary and the interfluve was reworked during subsequent 

transgressive ravinement. This is evident from a partly erosive,10-40 cm thick, poorly sorted 

unit on top of S3.3, which has been interpreted as a transgressive lag (FA11), rather then a 

shallow part of the incised valley (Figure 4.11). This relationship suggests that the lowstand 

shoreline was situated farther towards the northeast, and that tidal channels and sandy tidal 

bar deposits of the most distal estuarine zone, was deposited somewhere between Woodside 

Canyon and the lowstand shoreline.            

 

 



 

 91 

Chapter Five – 2D Modelling of Internal Shoreface – Shelf 

Parasequence Architecture 

 

5.1 Introduction 

 

Numerical modelling of shallow-marine depositional environments presents an excellent 

opportunity to study the development and distribution of intra parasequence architecture 

within a prograding shoreface-shelf unit, and the output data provided by this type of 

simulations may be used directly for comparison with field observations (Storms and 

Hampson, 2005). The data also presents information concerning the origin and relationship 

between observed stratigraphic units (such as bedsets) and their bounding surfaces. An event-

based stratigraphic modelling software (BARSIM, Storms, 2003) was used to obtain such data, 

and the model was subsequently applied as a comparison to the internal geometries observed 

in the Sunnyside Member. The main aim with this 2D modelling was to investigate the effects 

of changing depositional conditions within the shoreface-shelf, and search for connections 

between annual deposition rates, profile curvatures and the formation of non-depositional 

discontinuity surfaces. 

  Process-response models are dynamic models which are based on simplified rules of 

sediment transport and distribution over long time intervals, and will thus give an 

approximate representation of the depositional system (Storms, 2003). BARSIM is a two-

dimensional modelling software which simulates shoreface-shelf progradation during specific 

depositional conditions. Because the wave-dominated shoreface-shelf environments is 

characterized by alternating depositional energy, this model distinguishes between fair-

weather and storm deposits stochastically to provide a more realistic representation of the 

shallow-marine system (Storms, 2003). In the model, erosion varies with depth and is 

restricted to the area basinward of the shoreline and landward of the wave base (Figure 5.1). 

All the eroded sediments are redeposited according to the principle of mass conservation 

(Storms et al., 2002; Storms, 2003; Storms and Swift, 2003). Deposition, on the other hand, is 

dependent on the grain-size and event magnitude, and occurs along the entire profile, 

including the back barrier area and the shelf below wave base (Storms and Swift, 2003). All 

initial modelling conditions, such as shoreface-shelf gradient, fair-weather wave base, grain-

size distribution, as well as time varying parameters like sediment input and sea level, can be 
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changed to meet specific depositional conditions (Storms et al., 2002; Storms, 2003; Storms 

and Swift, 2003). Output data includes lithologic cross-sections, lithologic wells, annual 

deposition rates and shoreface-shelf profiles. 

 

 

 
 

The shoreface-shelf profile is considered to be an equilibrium profile within geological 

time scales (>10³ years), and will adapt to changes in sea level, sediment input and wave base 

(Bruun, 1962; Storms et al., 2002). However, the profile will not respond to imposed short-

time changes in the depositional conditions by a simple translation of the profile, as 

postulated by the Bruun Rule (Bruun, 1962), but rather by a long-time interaction between the 

proximal and distal parts of the profile (e.g. Larson and Kraus, 1994; Stive and De Vriend, 

1995; Hampson and Storms, 2003). In contrast to the assumptions used to validate the Bruun 

Rule (e.g. closed depositional system), BARSIM models sediment loss and gain to both the 

backshore area and the area seaward of the “closure depth” (storm wave base) (Storms et al., 

2002; Storms, 2003). In addition, longshore drift is simulated as sediment influx, thus 

allowing net sediment gain and loss by littoral currents (Storms et al., 2002).  

A limited amount of input variables accompanied by short computer running time 

makes this software suitable for modelling high-frequency changes in the depositional 

environment similar to those observed in the Sunnyside Member. Although modelling tools 

may be very useful in predicting and increasing our understanding of intra parasequence 

architecture and discontinuity surfaces, such information should be used with care as it only 

provides a simplified representation of the depositional system.  

Figure 5.1.  Schematic cross-section of a wave-dominated coastal system as used in BARSIM. Erosion is 
restricted to the shoreface whereas deposition may occur in the backbarrier area as well as along the entire 
shoreface-shelf profile. From Storms and Swift (2003).  
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See Storms et al (2002), Storms (2003) and Storms and Swift (2003) for a detailed 

description of BARSIM, including its assumptions and limitations. 

 

5.2 Previous 2D modelling of discontinuity surfaces in the Blackhawk Formation 

 

Storms and Hampson (2005) presents a study on the (underlying) wave-dominated 

Kenilworth Parasequence 4 (K4, Figure 1.6), which shares many similarities with S2. Both 

parasequences are considered to be unusual thick reflecting considerable accommodation 

space due to limited basinward progradation of the previous and underlying parasequences 

(Howell et al., in review). The two units can also be closely compared in terms of depositional 

environment, both reflecting a relatively straight, north-south oriented shoreline along a ramp 

margin basin. The most striking difference between the two parasequences is the depositional 

history and their internal architecture. The Sunnyside parasequences are interpreted to reflect 

relatively simple progradation within a normal regressive system (Howell et al., in review). 

The bedset boundaries encountered in the Sunnyside Member are therefore non-depositional 

discontinuity surfaces reflecting normal regression with a sub-horizontal shoreline trajectory 

(Helland-Hansen and Martinsen, 1996; Hampson, 2000; Howell et al., in review). The 

depositional history of the K4 is more complicated, suggesting both “positive” and “negative” 

shoreline trajectories (sensu Helland-Hansen and Martinsen, 1996) throughout its 

progradational history, reflecting periods of both normal regression and forced regression 

(Pattison, 1995; Hampson, 2000; Hampson and Storms, 2003). The study performed by 

Storms and Hampson (2005) suggests that whereas non-depositional discontinuity surfaces 

are related to periods of normal regression and relative sea level rise (similar to S2 and S3), 

erosional discontinuity surfaces are commonly related to periods of forced regression. This 

implies that the S2 and S3 only can be directly compared to the normally regressive part of 

the K4.  

The non-depositional discontinuity surfaces in the K4 have similar properties to the 

ones observed in S2 and S3, representing upward coarsening units with thicknesses between 1 

and 18 m, which demonstrates an upward increase in thickness and amalgamation of HCS 

event  beds (Hampson, 2000). The bedset boundaries have been traced for 0.8 to 6 km down-

dip where they slope between 0.02° and 0.58° (Hampson, 2000), which is comparable the 

ones in the Sunnyside Member (having an average slope of 0.21°). Storms and Hampson 
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(2005) performed several simulations using the BARSIM process-response model where they 

differentiated between the proposed mechanisms for bedset boundary formation (changes in 

sea level, sediment input and wave climate) by presenting several end-member scenarios. Fall 

and rise in relative sea level resulted in the formation of erosional and non-depositional 

discontinuity surfaces close to the LSF which were accompanied by a basinward and 

landward shift of facies respectively; these erosional surfaces were interpreted as regressive 

surfaces of marine erosion (RSME) (Storms and Hampson, 2005). Changes in wave climate 

also resulted in the formation of discontinuity surfaces close to the LSF. Differences in 

deposition rate along the entire profile suggested that these changes affected the entire 

shoreface and the inner part of the shelf (Storms and Hampson, 2005). A decrease in wave 

regime was accompanied by a 2 km landward shift of facies, which was of similar magnitude 

across the entire shoreface-shelf. According to the study, gradual changes in sediment supply 

also resulted in the formation of discontinuity surfaces when the rate of progradation was low, 

but in contrast to changes in wave climate, the surfaces were not associated with a landward 

shift of facies or distinct changes in amount of amalgamated event beds (Storms and 

Hampson, 2005). Instead, low sediment supply resulted in increased reworking and sorting of 

the sediments, and a steepening of the shoreface-shelf profile. Neither abrupt changes in 

sedimentation rate produced well developed discontinuity surfaces, because a continuous fall-

out of fine-grained sediments compensated for periods of low sediment input, resulting in a 

relatively uniform deposition rate in the distal part of the shoreface-shelf (Storms and 

Hampson, 2005). The study concluded that discontinuity surfaces are formed as sea level falls, 

as sediment supply decreases, and when wave climate changes, but only the latter produce 

discontinuity surfaces which are associated with a distinct landwards shift of facies (Storms 

and Hampson, 2005).  

 

5.3 Input variables and modelling conditions 

 

The basic input variables for the simulations were the same as for the K4 study described 

above (Storms and Hampson, 2005) as they are interpreted to be representative for modern 

storm-dominated shorelines, and as the K4 is comparable to any of the Sunnyside 

parasequences. Four grain-size classes were used: 10 µm (15 %), 100 µm (25%), 200 µm (35 

%), 350 µm (25%), in addition to a simulated fall-out, or background sedimentation (10 µm) 

rate of 0.2 mm/y. A minimum fair-weather period of 10 years, and a wave height of 4 m were 
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also assumed during each simulation, which was set to last for 25 ky. The initial shoreface-

shelf slope was set to 0.09° (Storms and Hampson, 2005). 

The grain-size classes correspond to the following spectrum of mud and sand: <62.5 

µm - mud, 62.5-125 µm - very fine (vf) sand, 125-250 µm - fine (f) sand and >250 µm - 

medium (m) sand (Boggs, 2001). By using the granulometric facies diagram presented in 

Storms and Hampson  (2005, their Figure 9) plotting the mean and standard variation of 

grain-sizes within a 1 m vertical interval, and by examining the physical characteristics of the 

grain-size variations in the wells, three facies associations were recognized: Amalgamated 

mud (AM) has been defined as successions demonstrating an average grain-size less than 62.5 

µm and a low standard deviation (Storms and Hampson, 2005). This facies has been 

interpreted to represent background deposition of mud from suspension, occasionally 

interbedded by thin sandbeds below storm wave base, and is therefore equivalent to the 

offshore facies association in the Sunnyside Member (Storms and Hampson, 2005; Howell et 

al., in review). An interbedded sand and mud facies association (ISM) is represented by high 

grain-size variety, ranging between 62.5 and 125 µm (Storms and Hampson, 2005). The 

variety in grain-size and standard deviation is interpreted to represent interbedded storm event 

beds and fair-weather beds (equivalent to the OTZ) positioned between the storm wave base 

and the fair-weather wave base (Storms and Hampson, 2005; Howell et al., in review). 

Amalgamated sand (AS) facies association is represented by a variety of grain-sizes classes 

(between 62.5 and 300 µm), and a low standard deviation (Storms and Hampson, 2005). The 

facies has been interpreted as amalgamated sand, equivalent to LSF, USF and foreshore 

deposits in the Sunnyside Member. The AS facies represents deposition above fair-weather 

wave base where every day waves continuously rework sediments and prevents preservation 

of fair-weather deposits (Storms and Hampson, 2005; Howell et al., in review).    

Figure 5.2 presents the “base case” shoreface-shelf cross-section after 25 ky of 

progradation. The steep proximal part of the profile (red) is equivalent to the high-energy 

USF and foreshore. In the panels illustrating the annual deposition rate (Figure 5.4), this zone 

is commonly represented by an abrupt decrease in deposition rate, seen as a (sometimes 

negative) peak which represents the surf-zone (Storms, personal communication, 2005). 

Farther basinwards, a negative “bump” in the profile (yellow and green, Figure 5.2) represents 

the LSF, which is characterised by fair-weather and storm scour (Storms and Hampson, 2005). 

In the annual deposition rate panels, this is represented by the low in deposition positioned 6 

km offshore. Even farther basinwards, deposition is higher due to decreased erosion seaward 

of the LSF and the wave base (Storms and Hampson, 2005). This increased deposition is 
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represented by the minor positive “bump” in both the cross-section (light and dark blue, 

Figure 5.2) and in the annual deposition rate panel (approximately 9 km from the shoreline). 

The dark blue in the most distal part represents the offshore which only experience steady 

fall-out sedimentation.   

 

5.4 Base Case 

 

To simulate continuous, normal progradation of a wave-dominated shoreline, constant 

sediment supply, sea level and wave base was imposed on the shoreface-shelf. During 25 ky 

of progradation with a sediment supply of 15m²/y, this reference shoreline migrates 

approximately 12 km basinwards (Figure 5.2), with an average progradation rate of ca 0.5 

m/y. Well A and B are positioned 15 and 20 km off the shoreline during incipient 

progradation, respectively (Figure 5.3), and represents a continuous upward coarsening unit 

containing interbedded sand and mud in the lower and distal part, and amalgamated sand in 

the upper part.  

 

 

 
 

During progradation, the shoreface-shelf profile steepenes from 0.09° to 0.14° as the 

shoreline progrades into deeper water (Figure 5.4). This steepening of the profile is only 

noticeable basinwards of the LSF, where it continuously increases basinwards. The effect of 

increased accommodation is therefore not detectable in the foreshore and USF. This 

permanent configuration of the proximal part of the profile suggests that wave action is the

Figure 5.2. Litholigic, shoreface-shelf cross-section, representing 25 ky of simulated progradation with 
continuous sediment supply, sea level and wave base. Approximate positions of the main depositional 
environments are indicated. Wells A and B are positioned 15 and 20 km basinward of the original shoreline, 
respectively.  
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main dominant force shaping this part of the shoreface-shelf. Deepening of the distal parts of 

the profile results in a slight compression of the facies belts as the wave base moves closer to 

the shoreline. During the onset of progradation, the wave base is situated approximately 14 

km basinwards of the shoreline whereas the wave base is located only 10 km from the 

shoreline in the end of the 25 ky period. 

 

 

 

Figure 5.4. Left panel: Annual deposition rate along the shoreface-shelf profile during normal progradation. The 
low in deposition after 1 km represents the surfzone. A low in deposition is located approximately 6 km offshore 
where wave erosion is high relative to deposition. This is equivalent to the position of the LSF. Farther 
basinward, the deposition rate increases as wave erosion decrease. Right panel: The distal part of the shoreface-
shelf profile increase as the shoreline progrades into deeper water and the accommodation space increases. The 
black line represents the shoreface-shelf during incipient progradation whereas the grey line represents the profile 
after 25 ky of progradation.   
 

Figure 5.3. Well A and B illustrate a relatively continuous, upward coarsening unit characterized by an upward 
increase in grain-size and sandbed thickness. The facies are comprised of interbedded mud and silt and 
amalgamated sand.  
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The annual sediment supply rate varies along the shoreface-shelf profile during 

progradation (Figure 5.4). In the upper part of the foreshore, deposition is approximately 7.5 

mm²/y. The annual sediment supply decreases relatively rapidly towards 1 mm²/y, ca 6 km 

offshore (close to the fair-weather wave base and the LSF). Farther basinwards, the sediment 

supply increases in the OTZ, ca 8-12 km offshore, before it decreases basinwards of the storm 

wave base and approaches the fall out rate of 0.2 mm²/y. 

 

5.5 Changes in sea level  

 

To simulate high-frequency changes in sea level, 2 m cycles of eustatic sea level rise and fall 

was imposed on the prograding shoreline. The length of one cycle was 8300 years, resulting 

in two periods of simulated forced regression and transgression. Sediment supply and wave 

base was kept continuous throughout the simulation. The shoreline progrades approximately 

10 km basinward during the 25 ky interval, 4 km less than the base case scenario.   

Progradation occurs exclusively during periods of relative sea level fall (Figure 5.7). 

This indicates that the sediments which are continuously added to the shoreface-shelf are 

accumulated and stored in the non-marine realm during transgression, and that little or no 

sediments are added to the distal parts of the profile at the time.   

Well A and B (Figure 5.6), indicate that the distal part of the prograding shoreface-

shelf is composed of three upward coarsening units which are bounded by non-depositional

  

 

 

Figure 5.5.  Lithologic, shoreface-shelf cross-section representing 25 ky of simulated progradation with 
continuous sediment supply and wave base, and cyclic changes in relative sea level of 2 m. Amalgamation of 
timelines indicates discontinuity surfaces. Well A and B are positioned 15 and 20 km from the original shoreline 
respectively. 
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discontinuity surfaces (represented by amalgamated time lines), indicating a decrease in 

sediment supply and relative deepening. When traced landwards, the two lowermost surfaces 

correlate with two similar surfaces which are marked by a decrease in grain-size and sand bed 

amalgamation. The uppermost discontinuity surface correlates landward with an erosional 

surface, suggesting truncation of the surface during subsequent sea level fall and erosion of 

the LSF. This indicates that the distinct, upward coarsening units which are associated with 

changes in sea level are formed during a decrease in sediment supply accompanied by a 

relative deepening of the profile, and that they are most pronounced in the distal parts of the 

shoreface-shelf profile.  

The discontinuity surfaces are also associated with a landward shift of facies, resulting 

in offshore deposits overlying OTZ deposits (Figure 5.5 and Figure 5.6). Landwards of the 

LSF, the discontinuity surfaces are truncated by more proximal strata deposited during 

subsequent periods of sea level fall. This shift of facies (of approximately 2 km) is related to a 

landward dislocation of the shoreline. 

 

 

 
 

Falling sea level results in forced regression and flattening of the shoreface-shelf 

profile as the both the proximal and distal part becomes shallower (Figure 5.8). This effect is 

most prominent in the proximal part, landward of the LSF. The effect of relative sea level rise, 

Figure 5.6. Cyclic changes in relative sea level results in the formation of both erosional and non-depositional 
discontinuity surfaces in Well A and B. The erosional surfaces are only present in the proximal part where they 
truncate the underlying non-depositional discontinuities. The surfaces represent an abrupt increase in grain-size
and sandbed amalgamation, and are associated with a basinward shift of facies. Non-depositional discontinuity 
surfaces represent a relatively abrupt decrease in grain-size and sandbed amalgamation, and are associated with a 
landward shift in facies (and the shoreline).  
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on the other hand, is an overall deepening of the profile accompanied by increased curvature 

as both the proximal and distal parts become steeper. 

Mean annual deposition rates 

during transgression reflect low sediment 

supply to the shoreface-shelf as most of the 

material is deposited in the backshore area 

(Figure 5.8). The deposition rate decreases 

continuously with a low at 8 km (close to 

the position of the fair-weather wave base). 

In contrast, during sea level rise the 

average sediment supply is higher as no 

accommodation space is available in the 

backshore area. However, net erosion 

occurs between 5 and 11 km as the LSF          

 

 

erodes underlying deposits during forced regression. Basinward of the LSF, deposition 

increases as erosion only occurs during occasional storm events. Farther seawards, the 

deposition rate decreases towards the fall out rate as waves and currents are less capable of 

transporting sediments. Annual deposition rates during rise and fall in relative sea level are 

different across the entire shoreface-shelf profile, suggesting that the discontinuity surfaces 

which are associated with the rise in sea level should be distinguished across the entire profile.

 

 

 
 

Figure 5.7. Cyclic changes in relative sea level 
(grey line) results in a stepwise shoreline migration 
(black line). During relative sea level rise, most the 
sediment is trapped in the backshore area and the 
shoreface-shelf is sediment starved. 
 

Figure 5.8. Left panel: The annual deposition rate suggests erosion in the USF and LSF during sea level fall 
(black line). Basinward of the average wave base (which is located at approximately 12 km), deposition increases
as wave erosion decreases. During rising relative sea level, annual deposition is low and relatively continuous 
across the entire shoreface-shelf as most sediments are trapped in the backshore area. Right panel: The effect of 
relative sea level fall is steepening of the shoreface-shelf profile as the proximal part becomes shallower and the 
distal part becomes deeper (black line). Relative sea level rise has the opposite effect (grey line). 
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5.6 Changes in wave climate 
 

To simulate high-frequency changes in wave climate due to changes in wind direction, 

shoreline topography, bathymetry etc, mean fair-weather wave height was set to 4 m with 

imposed amplitude of 0.75 m (Figure 5.9 and Figure 5.11). This forces the mean fair-weather 

wave base to change 1.5 m, (between 3.25 and 4.75 m), in an 8300 year cycle. Deepening of 

the mean fair-weather wave base results in increasing LSF erosion and the formation of 

erosional discontinuity surfaces (Figure 5.9 and Figure 5.10). These surfaces can be traced 

from the USF where they are marked by an abrupt increase in grain-size and sandbeds 

thicknesses, to the OTZ where they are marked by a more gradual increase in grain-size and 

the amount of sandbeds. The discontinuity surface becomes less pronounced seaward and 

seems to disappear in the distal parts of the OTZ.  

 

 

 
 

The erosional discontinuity surfaces are also associated with a 2-3 km basinward shift of 

facies (Figure 5.9). Similar to the discontinuity surfaces, these shifts of facies are most 

pronounced in the proximal part of the shoreface-shelf, and are less distinct farther 

basinwards. Beyond the OTZ, there are no apparent facies shifts, indicating that the effect of 

changes in wave base decreases continuously seawards. Similar landward shifts of facies are 

recognized during shallowing of the wave base, but these are not associated with any distinct 

discontinuity surfaces in the wells (Figure 5.10).    

Figure 5.9. Litholigic, shoreface-shelf cross-section representing 25 ky of simulated progradation with 
continuous sediment supply and sea level, with cyclic changes in wave climate of 1.5 m. Facies shifts are most 
pronounced during periods of increased wave climate. Amalgamation of timelines indicates discontinuity 
surfaces. Well A and B are positioned 15 and 20 km from the original shoreline respectively. 
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During 25 ky of simulation, the shoreline progrades approximately 12 km basinwards. 

Progradation does not occur linearly but increases and decreases relative to the fair-weather 

wave height (Figure 5.11). During periods of rapid progradation and high wave climate, the 

annual sediment supply rate decreases rapidly in the LSF, close to the position of the fair-

weather wave base, which is positioned approximately 6 km off the shoreline (Figure 5.12). 

Basinward of the average wave base and the LSF, the deposition rate increases as erosion 

decrease, and the high annual deposition rate basinward of the LSF indicate that more 

material was transported to the distal parts of the basin during periods of increased wave 

climate. During periods of increasing, decreasing or more constant low fair-weather wave 

climate, shoreline progradation is relatively slow. The annual deposition rate is relatively 

linear suggesting less erosion in the LSF (close to the fair-weather wave base) compared to 

periods of high wave climate.  

Comparison between annual deposition rates during alternating periods of changing 

wave base demonstrates minor differences in the OTZ and offshore area, suggesting that 

associated discontinuity surfaces are formed in the proximal part of the profile where the 

Figure 5.10. Changes in wave climate results in the formation of erosional discontinuity surfaces which are
represented by an abrupt increase in grain-size and sand bed amalgamation in Well A and B. These surfaces can 
be correlated basinward into more poorly developed discontinuity surfaces illustrating the same facies 
relationships. No distinct discontinuity surfaces are formed during decreasing wave climate. Change in wave 
climate is also associated with shifts of facies of at least 2-3 km.  
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curves deviate (Figure 5.12). Basinward of the wave base, the effect of changes in wave 

climate decreases continuously.     

The shoreface-shelf gradient also 

varies between periods of high and low 

wave climate (Figure 5.12). Low energy 

conditions result in steepening of the 

profile as the proximal part becomes 

shallower and the distal part becomes 

deeper. During high-energy conditions, 

on the other hand, the proximal part is 

deeper and the distal part is shallower 

resulting in flattening of the profile. 

 

 

 

 
   

5.7 Abrupt change in sediment supply  
 

To simulate abrupt changes in sediment supply in response to e.g. delta lobe shifts, the 

sediment supply was varied abruptly between 15 m²/y and 0 m²/y in cycles of 8300 years. 

These abrupt changes results in the formation of discontinuity surfaces which are marked by a 

pause in deposition and amalgamation of time lines across the entire shoreface-shelf profile 

(Figure 5.13 and Figure 5.15). Subsequent rapid increase in sediment supply results in the  

Figure 5.12. Left panel: Annual deposition rates during high wave climate (grey line) suggest a distinct low close 
to 6 km (at the position of the average wave base and the LSF). High wave climate also results in increased 
deposition in the OTZ due to increased storm induced currents. During low wave climate deposition is more 
continuous even though a low is recognized at 6 km, close to the wave base. A decrease in wave climate also 
results in less deposition basinward of the LSF compared to periods of high wave climate conditions (black line). 
Right panel: High wave climate results in flattening of the shoreface-shelf profile as sediment are eroded from the 
USF and foreshore and redeposited in the OTZ (black line). Low wave climate results in increased curvature and 
steepening of the profile as the net sediment transport direction is landwards (grey line). 

Figure 5.11. Shoreline progradation is governed by 
wave climate. Rapid migration (grey line) occurs 
during high wave climate (black line), whereas the 
shoreline migrates more slowly during periods of 
low wave climate.  
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formation of an erosional discontinuity surfaces in the proximal area, which truncates the 

underlying non-depositional discontinuity surface approximately 5 km down-dip. The non-

depositional discontinuity surfaces are not as distinct as those formed by changes in sea level. 

However, they are recognized by a relatively rapid decrease in grain-size and amalgamation 

of storm event beds (Figure 5.14).  The discontinuity surfaces that form during abrupt 

decrease in sediment supply are not associated with a landward shift of facies.  

 

 

 
 

Figure 5.14. Abrupt changes in sediment supply results in the formation of non-depositional discontinuity 
surface in the distal part of the shoreface-shelf profile, whereas erosional discontinuity surfaces are formed in the 
proximal part. The non-depositional surfaces which are formed in response to low sediment supply are marked by 
a decrease in grain-size and sandbed amalgamation, but they are not associated with a distinct shift of facies.  
 

Figure 5.13. Litholigic, shoreface-shelf cross-section representing 25 ky of simulated progradation with 
continuous wave base and sea level, and abrupt changes in sediment supply between 0 and 15 mm/y. 
Amalgamation of timelines indicates discontinuity surfaces. Well A and B are positioned 15 and 20 km from the 
original shoreline respectively.  
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During 25 ky of progradation, the shoreline migrates approximately 9 km basinwards. 

Periods of high sediment input results in rapid progradation, whereas periods of no sediment 

supply prevents the shoreline from migrating (Figure 5.15). The cyclic pattern of decreasing 

and increasing progradation is somewhat similar to the pattern formed by changes in relative 

sea level, although more gradual.  

Annual deposition rates across the shoreface-shelf during periods of low sediment 

input indicates erosion in the most proximal part as waves rework the older sediments, 

followed by a gradual increase towards the position of the average wave base (approximately 

10 km offshore, Figure 5.16). During peri- 

ods of high sediment input, the average 

deposition rate decreases slowly 

basinwards with a low close to the fair-

weather wave base.Even farther 

basinwards (in the OTZ), the deposition 

rate decreases towards the fallout rate in 

the same rate as during low sediment 

input.This indicates that the depositional 

pattern is very similar seawards of the LSF 

during periods of alternating sediment 

supply, and that the distribution is only  

 

 

 

 
 

Figure 5.16. Left panel: Annual deposition rates during periods of low sediment supply (grey line) suggest 
erosion of the proximal part of the shoreface-shelf profile and redeposition in the distal part. The sedimentation 
rate during increasing sediment supply (black line) suggests more continuous deposition across the entire profile. 
The separation between the curves suggests that the non-depositional discontinuity surfaces can be correlated 
along most of the profile, although they becomes less pronounced basinwards. Right panel: The effect of low 
sediment supply is a marginal flattening of the shoreface-shelf profile as the proximal part deepens and the distal 
part becomes shallower (grey line). The effect of increased sediment supply is a marginal steepening of the 
profile (black line).  
 

Figure 5.15. Changes in sediment supply (black 
line) results in stepwise progradation of the 
shoreline (grey line). Rapid progradation occurs 
during periods of high sediment supply, whereas 
migration decreases as the sediment input is 
reduced.  
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related to the amount of sediment supply. This variation in deposition rate suggests that the 

non-depositional discontinuity surfaces can be recognized across most of the shoreface-shelf 

profile. 

A decrease in sediment supply forces the shoreface-shelf profile to flatten as the 

proximal part deepens and the distal part becomes shallower (Figure 5.16). High sediment 

input has the opposite effect, forcing the profile to steepen as the proximal part becomes 

shallower and the distal part becomes deeper. This relationship is similar to the one formed by 

changes in relative sea level, only more pronounced. 

 

5.8 Gradual and asymmetrical change in sediment supply 

 

To simulate long-term, allocyclic changes in sediment supply due to alterations in the current 

patterns, fluvial drainage area, climate etc, the sediment supply was changed gradually and 

asymmetrically between 5 and 15 m²/y. These changes result in relatively continuous 

shoreline progradation, although the rate varies with the amount of available sediments 

(Figure 5.17 and Figure 5.19). As a result, poorly defined discontinuity surfaces are formed 

both in the proximal and the distal part of the shoreface-shelf profile (Figure 5.18). These 

surfaces are similar to those formed during abrupt changes in sediment supply, although less 

pronounced. Periods of high sediment supply are associated with the formation of erosional 

discontinuity surfaces in the proximal part of the shoreface.  

 

 

 

Figure 5.17. Litholigic, shoreface-shelf cross-section representing 25 ky of simulated progradation with 
continuous wave base and sea level, and gradual, asymmetric changes in sediment supply between 5 and 15 
mm/y. Amalgamation of timelines indicate discontinuity surfaces. Well A and B are positioned 15 and 20 km 
from the original shoreline respectively. 
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Periods of low sediment supply are represented by zones of lower grain-size and sand bed 

frequency; however, they are not associated with sharp boundaries in the wells. No distinct 

shifts in facies are recognized across the discontinuity surfaces, and the distal succession 

(Well B) represents varying types of interbedded sand and mud, typical of the OTZ.  

 

 

 
 

The discontinuity surfaces associated with gradual and asymmetrical changes in 

sediment supply are more restricted down-dip compared to those formed during abrupt 

changes in sediment supply. Time-lines are only amalgamated in the LSF, and both the 

foreshore and offshore area demonstrates relatively continuous progradation. Low sediment 

supply result in low annual deposition rate  

in the USF and LSF (Figure 5.20), 

followed by an increase basin- ward of the 

fair-weather wave base (approximately 10 

km offshore). During periods of high 

sediment input, deposition is high in the 

LSF, and decreases relatively continuously 

basinwards. Seaward of the LSF, both 

curves are relatively equal, suggesting no 

major differences in deposition rate during 

alternating sediment supply. 

  

 

 

Figure 5.19. Gradual changes in sediment supply 
(black line) results in relatively continuous 
shoreline progradation (grey line). Progradation 
rate increases as the sediment input increases.  
 

Figure 5.18. Gradual, asymmetric changes in sediment supply results in the formation of poorly pronounced 
discontinuity surfaces, similar to the ones associated with abrupt changes in sediment supply. The boundaries are 
marked by a decrease in grain-size and sandbed amalgamation. Up-dip, the surfaces are truncated by erosional 
discontinuity surfaces formed during increasing sediment supply.  
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The shoreface-shelf response to gradual changes in the sediment supply is a marginal 

(Figure 5.20), flattening the profile as the sediment supply decreases (similar to the effects of 

abrupt changes). This is represented by shallowing of the proximal and distal part, although 

the most proximal USF and foreshore is continuous. During increased sedimentation, the 

curvature increase as both the proximal and the distal part becomes marginally deeper.  

 

 

 

 

5.9 Combined changes in wave climate and sediment supply 

 

To simulate the combined effects of changes in sediment supply and wave climate due to 

high-frequency alterations in wind pattern, topography/bathymetry etc., 8300 year cycles of 

changing sediment supply and wave base was imposed on the prograding shoreline. As a 

result, both erosional and non-depositional discontinuity surfaces are formed (Figure 5.21 and 

Figure 5.22). An increase in sediment supply combined with an increase in wave base results 

in the formation of erosional discontinuity surfaces in the proximal part of the shoreface shelf 

profile which truncates underlying non-deposition discontinuity surfaces. Basinwards, these 

surfaces become less pronounced as wave action decreases. The distinct non-depositional 

discontinuity surfaces in the distal part of the profile are marked by a decrease in grain-size 

and sandbed amalgamation.  

 

Figure 5.20. Left panel: Annual deposition rate during periods of low sediment supply (grey line) suggest 
gradually increasing deposition in the LSF. Maximum deposition occur approximately 10-12 km offshore 
(basinward of the LSF and the position of the average wave bases). Deposition is higher in the proximal part of 
the profile during periods of high sediment supply. Basinwards of the LSF, the deposition rate is the same as 
during low sediment supply, suggesting that changes in sediment supply will not affect deposition basinward of 
the LSF. Right panel: The effect of gradual decrease in sediment supply is the same as for abrupt changes, 
resulting in marginal flattening of the profile (grey line). Increased sediment supply has the opposite effect (black 
line).  
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The combination of low and high sediment supply and wave base results in lateral 

shifts in the position of the average wave base of approximately 3 km. These shifts in facies 

seem to be most pronounced in the distal part of the profile, and decrease up-dip as the 

surfaces disappear close to the USF.  

 

 

 
 

Figure 5.22. Cyclic changes in both sediment supply and wave base results in the formation of non-depositional 
discontinuity surfaces and erosional discontinuities in Well A and B. The non-depositional discontinuities are 
formed as sediment supply decreases and wave climate decreases, and are marked by a decrease in grain-size and 
amalgamation of sandbeds. The surface are also associated with a landward shift of facies of at least 3 km. Poorly 
developed discontinuity surfaces are formed in the proximal part as sediment supply increases. These truncate 
underlying non-depositional surfaces and becomes less pronounced basinwards.   
 

Figure 5.21.  Litholigic, shoreface-shelf cross-section representing 25 ky of simulated progradation with 
continuous sea level and cyclic changes in both sediment supply and wave base. Two zones of dark blue offshore 
and OTZ deposit pinch-out into the LSF. No facies shifts are recognized farther landwards. Amalgamation of 
timelines indicates discontinuity surfaces. Well A and B are positioned 15 and 20 km from the original shoreline
respectively. 
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  During periods of low sediment supply and wave climate, the proximal part of the 

shoreface-shelf experience erosion as waves rework the shoreface-shelf. This forces shoreline 

progradation to stop for a period of time as the sediment supply and wave climate is at its 

lowest (Figure 5.23). At the time, deposition only occur basinward of the LSF (and the mean 

wave base) where less wave scouring favors preservation of storm event beds (Figure 5.24). 

During subsequent periods of high 

sediment supply and wave base, deposition 

is relatively high in the proximal part, and 

decreases towards the mean wave base as 

wave erosion increases. Basinwards of the 

LSF (which is positioned approximately 6 

km offshore), the deposition rate increases 

slightly towards the OTZ. The annual 

deposition rate during periods of high 

sediment supply and wave base is 

noticeably higher compared to low periods, 

suggesting that the discontinuity surfaces 

are present throughout most of the profile.  

 

 

 

The effect of decreasing sediment supply and wave climate is flattening of the LSF 

and a marginal deepening of the distal part of the profile (Figure 5.24). An increase in 

sediment supply and wave climate has the opposite effect, resulting in deepening of the 

proximal part along with marginal shallowing of the distal part. There are no changes if the 

profile curvature proximal of the LSF, or in the most distal part (basinward of 20 km). 

 
 

 

Figure 5.23. Changes in sediment supply (dark 
grey line) and wave base (black line) results in 
stepwise progradation of the shoreline (light grey 
line). During periods of low sediment supply and 
wave base, progradation is reduced to a minimum. 
As sediment supply and wave base increases, the 
shoreline progrades rapidly.  
 

Figure 5.24. Left panel. A combination of low sediment supply and low wave base results in net erosion of the 
proximal part of the shoreface-shelf profile and relatively low, continuous deposition in the OTZ (grey line). 
During subsequent periods of high sediment supply and wave base, the annual deposition rate is higher across the 
entire profile (black line). A low is present close to the LSF and the deposition rate decreases towards the fall out 
rate. Right panel. The effect of decreasing sediment supply and wave base is an overall flattening of the profile 
curvature as the proximal part deepens and the distal part becomes shallower (grey line). The effect of increased 
sediment supply and wave base is the opposite (black line). 
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Chapter Six – Potential Mechanism for the Formation of Non-

Depositional Discontinuity Surface: Comparison between Model 

Results and Field Observations 

 

6.1 Introduction  

 

The shoreface-shelf profile is commonly interpreted to be an equilibrium profile which 

gradually adapts to continuous changes in relative sea level (Bruun, 1962). This theory, 

known as the Bruun Rule, states that during a sea level rise, the shoreface-shelf profile shifts 

upwards and landwards, resulting in erosion of the USF and foreshore, and deposition in the 

LSF and OTZ as accommodation space is being created (Figure 6.1) (Bruun, 1962). This 

theory assumes that all sediments on the shoreface-shelf are transported by waves, and that no 

sediments will be transported seaward of the “closure depth”, which is the basinward limit of 

wave influence. The theory also assumes a closed system, where no sediments are lost to the 

backshore area, and where no sediments are lost or gained by longshore drift processes in the 

littoral zone. Although this rule is originally thought off as a general approximation to predict 

the erosional effects of sea level rise within a relatively short time interval (hundreds of years) 

(Bruun, 1962), it has also been applied to various types of transgressive and regressive 

systems to explain coastal behaviour and evolution of the shoreface-shelf profile within 

longer-term (geological) time-scales (e.g. Dominguez and Wanless, 1991; Thorne and Swift, 

1991a; Nummedal et al., 1993; Zhang et al., 2004). However, other studies claim that the 

Bruun Rule has limited validity because of its restricted applicability to modern and ancient 

shoreline systems, and that various parts of the shoreface-shelf profile will respond differently 

to changes in the depositional environment (Niedoroda et al., 1995; Stive and De Vriend, 

1995; Hampson and Storms, 2003; Cooper and Pilkey, 2004).   

There are several reasons why this simple equilibrium model cannot be adapted as 

basis for the study of discontinuity surfaces in the Sunnyside Member. The discontinuity 

surfaces (bedset boundaries) in the study area are interpreted to be palaeosurfaces of the 

ancient shoreface-shelf (Hampson, 2000), that amalgamate into the LSF and indicate that the 

system was in disequilibrium at the time of, or immediately after, the formation of the 

boundaries, as predicted by Stive and De Vriend (1995). This amalgamation suggest that the
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Figure 6.1. Theoretical shoreface-shelf profile response to changes in relative sea level, sediment supply and 
wave climate. The Bruun Rule predicts an upward and landward displacement of this profile in response to sea 
level rise and a similar down stepping in response to sea level fall. However, modelling suggests disequilibrium 
and flattening of the shoreface-shelf profil during sea level fall, resulting in a landward dislocation of the 
shoreline which is associated with parasequence boundaries (not bedset boundaries). Abrupt (autocyclic) 
decreases in sediment input due to shifts in delta lobe or fluvial discharge will result in a relative deepening in 
the distal parts of the profile, whereas the proximal part adapt to the imposed changes more rapidly. A gradual 
decrease (allocyclic) will result in a more continuous deepening across the profile. Also, the distal parts of the 
profile have time to adapt as sediment input gradually decreases. The flexible USF and foreshore changes 
continuously as the sediment input decreases. A decrease in wave climate will result in steepening of the entire 
profile as more material is added close to the shoreline by net landward sediment transport. The distal part of the 
profile will experience relative deepening.  
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proximal part of the profile  (the USF and the foreshore) reacts more quickly to the imposed 

changes than the distal part, where there is a time lag for the profile to adapt (Stive and De 

Vriend, 1995). Imposed changes in depositional environment along the shoreline will have 

different effects on the shoreface-shelf profile (as described in Chapter Five) and the feedback 

time, the time it will take for the profile to achieve renewed equilibrium to a new set of 

depositional conditions, will also vary. Seasonal variations produced by, for instance, a major 

winter storm, may only result in disequilibrium for a few years until renewed equilibrium is 

attained (Larson and Kraus, 1994), whereas long-term changes in wave climate may result in 

disequilibrium ranging over geological time scales (>10³ years)(Hampson and Storms, 2003). 

If changes in depositional environment occur more frequently than the shoreface-shelf profile 

can adapt, the profile may be in constant disequilibrium. As a result, the shoreface-shelf is 

interpreted not to respond similarly across the entire profile, but rather (given enough time) 

imposed changes will gradually adjust the profile into that of a long-term equilibrium profile. 

Imposed mechanisms which may affect the profile curvature include changes in relative sea 

level, changes in wave climate and sediment supply (O’Byrne and Flint, 1995; Storms and 

Hampson, 2005; Howell et al., in review). These effects will be discussed in the following 

sections in addition to output data derived from modelling, where they are compared to 

observations from the Sunnyside Member.  

 

6.2 The effect of changes in relative sea level  

 

Changes in relative sea level force the formation of a prograding shoreline through alternating 

cycles of accretionary forced regressions and transgressions, assuming continuous 

sedimentation (Helland-Hansen and Martinsen, 1996). The results from modelling indicate 

that the LSF progressively erodes the underlying shoreface-shelf sediments during forced 

regression, creating an erosional discontinuity surface; resulting in an overall steepening of 

the profile (Figure 6.1). This discontinuity becomes less distinct basinward of the LSF and is 

interpreted to represent a RSME (Storms and Hampson, 2005). Subsequent sea level rise 

results in the formation of non-depositional discontinuity surfaces and amalgamation of time-

lines as new accommodation space is created in the proximal part, and the majority of 

sediments are trapped in the backshore area. This period is also associated with flattening of 

the shoreface-shelf profile (Figure 6.1). The surface represents a landward dislocation of the 

shoreline and is interpreted as a marine flooding surface (parasequence boundary) (Van 
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Wagoner et al., 1988; 1990). This relationship is different from the one observed in the 

Sunnyside Member, where the discontinuity surfaces are most distinct basinward of the LSF. 

However, the lateral extension down-dip of approximately 10 km is in the same order if 

magnitude, although marginally higher than the ones observed in study area, which can be 

correlated up to 7 km in a  down-dip direction.  

The three upward coarsening units represented by Well A (Figure 5.6) are similar to 

those observed in the Sunnyside Member, illustrating the same distinct decrease in grain-size 

and sandbed amalgamation, and the same lateral shifts in facies. However, when traced up-dip 

to Well B (Figure 5.6), distinct erosional discontinuity surfaces are present, indicated by an 

abrupt increase in grain-size and amount of sandbed amalgamation. These features are not 

observed in the Sunnyside Member, instead the non-depositional discontinuities amalgamate 

into the LSF without any distinct changes in lithology, neither above nor below these surfaces. 

Even farther landwards, the simulated discontinuities are associated with a landward 

dislocation of the shoreline, representing rise in relative sea level. In the Sunnyside, such 

dislocation of the shoreline is associated with parasequence boundaries rather than bedset 

boundaries (Howell et al., in review). Differences in annual deposition rates suggest that 

changes in sea level will affect most of the profile in a down-dip direction. This corresponds 

to the field observations of this study where parasequence boundaries can be traced from the 

non-marine realm (Howell et al., in review) and basinwards for at least 15 km. Changes in 

relative sea level is therefore not considered as the main driving mechanism for the formation 

of non-depositional discontinuity surfaces in the Sunnyside Member, even though PSBs have 

similar characteristics in the distal part of the profile. PSBs will be difficult to distinguish 

from those which are not associated with a landward shift of the shoreline, and only by 

tracing the surfaces up-dip can the distinction be made, enabling one to separate landward 

amalgamated bedsets from landward displaced parasequences.  

 

6.3 The effect of changes in wave climate 

 

Wave climate (height, wave length, frequency) is related to a variety of factors, such as: 

alongshore topography, offshore bathymetry and wind strength, duration and direction. 

Topography and bathymetry determine whether the shoreline is reflective or dissipative 

(Wright et al., 1979) and how much wave energy which is redirected along the shoreline as 

longshore currents (Inman and Bagnold, 1963). During major storm events, low pressure and 
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winds may result in the local sea level rising by several tens of centimetres and a subsequent 

build-up of water along the shoreline (Inman and Bagnold, 1963; Walker and Plint, 1992; 

Larson and Kraus, 1994). This pile-up of water results in down-welling and a basinward 

directed gradient, forcing the water back into the basin as the storm weakens (Figure 6.2). The 

sediments which are eroded at the shoreface during the high-energy period will be transported 

basinwards by this storm induced geostrophic current or storm surge, and redeposited farther 

out on the shoreface and the OTZ, where the wave and current energy is below the threshold 

for sediment transport (Dott and Bourgeois, 1982; Swift et al., 1983; Walker and Plint, 1992). 

During fair-weather periods, shallow waves transport sediments landwards, resulting in a net 

sediment transport towards the shoreline (Inman and Bagnold, 1963; Walker and Plint, 1992; 

Larson and Kraus, 1994). Such changes in the wave climate may occur at different time spans, 

ranging from days during individual storms, to seasonal (increased winter storm intensity), or 

within geological time spans (Larson and Kraus, 1994). Figure 6.1 illustrates how changes in 

wave climate will affect the shoreface-shelf profile. A long-time increase in wave energy 

results in erosion of the proximal part and deposition in the distal part of the shoreface-shelf, 

leading to a flattening and shallowing of the profile (Inman and Bagnold, 1963; Walker and 

Plint, 1992; Larson and Kraus, 1994; Niedoroda et al., 1995). This is supported by the 

difference in shoreface-shelf profiles during simulated periods of changing wave climate 

(Figure 5.12). Short-time changes on the other hand, ranging from hours to seasonal, have 

similar effects, but reestablishment of pre-storm profiles commonly occurs within years 

(Leatherman, 2001; Zhang et al., 2004). Similarly, a decrease in wave base results in a net 

landward sediment transport and an increased profile curvature due to steepening of the USF 

and deepening of the OTZ (Figure 6.1)(Inman and Bagnold, 1963; Larson and Kraus, 1994; 

Niedoroda et al., 1995). Again, this is confirmed by the change in shoreface-shelf profile 

during a simulated decrease in wave climate. The lowering of storm and fair-weather wave 

base also results in a basinward displacement or extension of the facies belts (basinward of 

the USF). The amount of displacement depends on the shoreface-shelf gradient and a decrease 

in dip-angle during high-energy periods may amplify this displacement. In contrary, a 

decrease in wave energy results in elevation of the fair and storm weather wave base, and a 

landward displacement or shortening of the facies belts will occur as a reduced amount of the 

seabed is affected by the oscillating waves. A consequence of this is that the facies belts 

overlying a non-depositional discontinuity surfaces, formed during decreasing wave climate, 

should be narrower than the ones below as less surface area is influenced by wave action. 

This is evident from some of the palaeogeographical maps presented in Chapter Three (Figure 
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3.7and Figure 3.8) demonstrating more confined OTZ facies belts above the discontinuity 

surfaces; however, this trend is not conclusive.  

 

 

 

 
 

Simulated changes in wave climate have been shown to result in the formation of 

discontinuity surfaces which are primarily associated with erosion (Storms and Hampson, 

2005). Amalgamation of time lines suggests that the discontinuity surfaces are primarily 

confined to the LSF. This observation is similar to those observed in the Sunnyside which can 

be correlated for approximately 7 km down-dip. The major difference between the simulated 

discontinuity surfaces and those encountered in the Sunnyside Member is that the ones 

observed in the field are exclusively non-depositional. In addition, the discontinuities 

associated with change in wave climate are most pronounced in the LSF and the USF where 

they are associated with facies shifts of at least 2-3 km, whereas the non-depositional surfaces 

in the Sunnyside Member are most pronounced in the distal part of the LSF and the OTZ, and 

are associated with landward facies shifts of up to 5 km. Therefore, an increase in wave 

climate results in the formation of erosional discontinuity surfaces, the equivalents of which 

have not been observed in the study area. A decrease in wave climate results in poorly 

developed, coarsening upward successions overlain by units reflecting gradual decrease in 

grain-size and sandbed amalgamation, together with a minor landward shift of facies; these 

are usually considerably less distinct than those observed in the field.    

Figure 6.2. Both short and long-term changes in wave climate may affect the shoreface-shelf profile, shoreline 
morphology and sediment distribution. Low wave climate results in an increased profile curvature, landward 
transport of sediments, and landward shift of facies. High wave climate results in flattening of the profile 
curvature, net basinward sediment transport and basinward shift of facies. Strength and direction of longshore 
drift depends on the direction and energy of incoming waves. 
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6.4 The effect of autocyclic and allocyclic changes in sediment supply   

 

Wave-dominated shorelines are generally fed by two different sediment sources: dip-sources, 

represented by river mouths, and strike-sources, represented by longshore drift and reworking 

of shoreface-shelf material (Rodriguez et al., 2001). These two supply mechanisms have very 

different influence on the shoreface-shelf profile. Extensive dip-feeding close to a river mouth 

forces the profile to be convex, due to the amount of sediments added, compared to the 

reworking potential of waves and currents in the USF (Larson and Kraus, 1994). Strike 

feeding on the other hand, will result in a relatively continuous sediment supply along the 

shoreface-shelf, allowing progradation without changing the profile from its original concave 

shape (Rodriguez et al., 2001). 

Figure 6.1 illustrates how the shoreface-shelf profile will respond to changes in 

sediment supply. Although the dip-fed shorelines will be different from strike-fed shorelines, 

the general response to an increase in sediment supply is elevation and increased curvature of 

the profile (Niedoroda et al., 1995; Rodriguez et al., 2001). In the case of abrupt changes in 

sediment supply, increased input will result in progradation of the foreshore and the upper 

part of the shoreface, and an overall shallowing of the profile. This will again increase the 

profile’s curvature as the sediments can not be distributed quickly enough to maintain the 

original shoreface-shelf slope (Rodriguez et al., 2001). Similarly, an abrupt decrease in 

sediment input will result in flattening of the shoreface profile as less material is added to the 

proximal part. These internal changes of the shoreface-shelf profile are less distinctive than 

those associated with changes in relative sea level and wave climate (Niedoroda et al., 1995). 

This is supported by modelling results, which demonstrates that the prograding shoreline 

experiences both abrupt and gradual changes in sediment supply. An abrupt increase therefore 

results in slight steepening of the proximal part of the profile whereas the distal part becomes 

slightly deeper. During simulations completed in this study, the profile never obtained a 

convex shape, as have been reported elsewhere outside river mouths in modern wave-

dominated systems (Rodriguez et al., 2001). This is probably related to the relationship 

between the sedimentation rate and the wave reworking potential.  

Gradual changes in sediment supply (Figure 6.1) will have similar effects to those 

mentioned above. A long-time increase will provide waves and currents with more time to 

distribute sediments more evenly, resulting in a progradational, shallowing profile (Rodriguez 

et al., 2001). Unlike the case of abrupt increase in sediment supply, these gradual changes will 

force the profile to step seaward without any major changes in the profile’s curvature. A slow 



Chapter Six 

118 

decrease in sediment supply would similarly lead to gradual deepening of the shoreline as the 

sediments available are trapped close to the shore. This is also supported by simulations, 

where gradual changes in sediment supply have even less influence on the profile than abrupt 

changes, resulting only in minor variations of the curvature during progradation.  

Changes in sediment supply are related to several depositional mechanisms of both 

autocyclic and allocyclic origin (e.g. Dominguez et al., 1987; Bhattacharya and Giosan, 2003). 

Allocyclic controls on sedimentation are related to alterations in: e.g. climate, tectonics or 

subsidence, and are associated with long-term and regional changes in sediment input. Abrupt, 

autocyclic changes in sediment supply are related to internally-derived forced alterations, 

possibly triggered by allocyclic processes, such as channel avulsion and delta lobe shifting 

(Figure 6.3) (Dominguez, 1996). Channel avulsion is induced by either changes in relative sea 

level, variable fluvial discharge, or by the progradation and subsequent abandonment of 

channels due to decreased transport capacity (Dominguez et al., 1987; 1996). Studies of 

Quaternary, wave-dominated shorelines suggests that the most important driving mechanism 

for delta lobe shifting is high-frequency changes in relative sea level, resulting in flooding of 

the river mouth and a decrease in the rivers transport capacity (Dominguez et al., 1987; 1996). 

Such abrupt changes in the position of the river mouth will affect the sediment supply at a 

given point along the shoreline, and the areas up- or down-drift of the abandoned part will 

then experience a decrease in sediment input, along with subsidence and compaction 

(Dominguez, 1996).   

Channel avulsion and delta lobe shifts are generally considered to be autocyclic events 

and are related to variations in the fluvial gradient, which determines the rivers transport 

capacity (Beerbower, 1966; Dominguez et al., 1987; Dominguez and Wanless, 1991; Thorne 

and Swift, 1991b). Generally, a systems transport capacity decreases as the topographic slope 

decreases and visa versa, assuming no other controlling factors (Thorne and Swift, 1991b). 

Such decrease in fluvial transport capacity is the main mechanism for crevassing and channel 

migration, and it is most commonly obtained by progradation and the over-extension of the 

river’s course (Dominguez and Wanless, 1991); although it can be triggered by various high-

frequency autocyclic and allocyclic processes (Beerbower, 1966). Both an increase in 

sediment supply and a decrease in fluvial discharge, results in decreased transport capacity 

and the increased probability of channel avulsion (Beerbower, 1966). In modern systems, 

allocyclic processes such as tectonics (Goodbred and Kuehl, 2000) and eustasy (Dominguez 

et al., 1987; Dominguez and Wanless, 1991; Dominguez, 1996) have also proven to affect the 

alluvial slope, transport capacity and subsequent channel avulsion. Other allocyclic changes 
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are related to high-frequency climate changes which have resulted in reversal of the littoral 

drift, and which have been studied along the Holocene Nayarit strandplain (Curray et al., 

1969). This resulted in erosion, channel avulsion, truncation and the rearranging of the beach-

ridge sets along with the entire coastline. A similar relationship is observed in the Danube 

delta, where lobe shifts and increased wave climate resulted in erosion and increased 

longshore drift (Bhattacharya and Giosan, 2003). 

 

 

 
     

Variations in fluvial discharge may also affect the morphology of a wave-dominated 

shoreline (Dominguez, 1996). Figure 6.4 illustrates how the river mouth may act as barrier for 

longshore drift when fluvial discharge is high, and how it is forced down-drift during 

subsequent periods of low discharge (Dominguez, 1996). During periods of increased fluvial 

input, longshore driven sediments will accumulate up-drift of the river mouth, resulting in 

progradation as beach-ridges accrete along the shoreline. This is because high fluvial 

discharge will act as a groyne, decreasing the longshore drift. This is accompanied by high 

deposition directly in front of the river mouth, as waves and currents are not able to redeposit 

the high amount of sediments introduced to the shoreline. This effect is also recognized in the 

Figure 6.3. Summary of autocyclic and allocyclic processes and mechanisms which may affect and trigger 
channel avulsion and associated delta lobe shifts. White and black arrows represent longshore drift and fluvial 
discharge respectively. 
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present day Brazos delta, where a major channel mouth bar was created during a flood-event 

in 1965 (Rodriguez et al., 2000). In periods of low discharge, the model predicts that less 

longshore driven sediments accumulate around the river mouth, and the updrift part of the 

shoreline is eroded and reworked by waves into a spit. This spit will partly close off the river 

mouth and force the river to deflect downdrift. During this period, the sediment previously 

deposited in front of the river mouth is redeposited along the shoreline by longshore currents, 

and may accrete to form a new shoreline farther down drift (Rodriguez et al., 2000; 

Bhattacharya and Giosan, 2003). This is the present day situation in the Brazos delta, where 

the 1965 mouth bar has been attached to the shoreline down drift, and constitutes the present 

day shoreline. Subsequent increase in fluvial discharge resulted in entrapment of river borne 

sediments updrift of the river mouth, and the shoreline therefore prograded basinward of the 

previously truncated beachridges. This mechanism is not directly related to channel avulsion 

and the effects are less important, but it can still result in relocation of the river mouth and 

changes of the sediment supply along the shoreline (Dominguez, 1996). 

Simulation studies of progradational shorelines which are exposed to abrupt changes 

in sediment supply suggests that discontinuity surfaces are formed during periods of 

decreased sediment supply, and that they extend across most of the shoreface-shelf. Up-dip 

(in the USF), the non-depositional discontinuity surfaces are truncated by erosional surfaces 

which formed during subsequent periods of an abrupt increase in sediment supply. This 

relationship is similar to what can be observed in the Sunnyside Member where pronounced, 

non-depositional discontinuity surfaces pinch-out landwards. Although there are no signs of 

erosional truncation associated with the pinch out of the discontinuity surfaces into the LSF, it 

cannot be excluded. The lateral extension of the simulated discontinuity surfaces is hard to 

determine, but these surfaces seem to gradually pinch-out basinward as storm event 

deposition decrease. In contrast to the discontinuity surfaces which are associated with 

changes in sea level and wave base, these surfaces are mainly restricted to the LSF and the 

OTZ, similar to the ones observed in the Sunnyside Member. However, the most distinct 

difference between the non-depositional discontinuity surfaces in the simulated succession 

and the ones in the Sunnyside Member, is the absence of a landward dislocation of the facies 

in the modelled succession. This is because changes in sediment supply alone cannot change 

the position of the wave base; sediment supply can only determine the amount of sediments 

supplied to the wave base and not its reworking potential. 
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The simulated effects of gradual and asymmetric changes in sediment supply are 

somewhat similar to those related to abrupt changes, only less distinct. The discontinuity 

surfaces formed in the distal parts of the profile (Well A, Figure 5.18), are less pronounced 

and less comparable to the ones observed in the Sunnyside Member. In addition, the 

amalgamation of time lines is restricted to the LSF and OTZ, suggesting that no major 

discontinuities were formed in the USF or in the offshore zone. The simulated surfaces can be 

correlated for approximately 5-10 km down-dip, a distance which is directly comparable to 

the ones measured in the Sunnyside Member which are traceable for approximately 7 km 

down-dip. The major difference between the two sections is the lack of a landward shift of 

facies (in the simulated unit), which is similar to the effects of abrupt decrease in sediment 

supply, as described above. 

 

Figure 6.4. Model for downdrift migration of the river mouth in response to changes in fluvial discharge. High 
fluvial discharge (A) result in entrapment and progradation of longshore driven sediments updrift the river 
mouth. As the fluvial discharge is low (B), longshore driven sediments are no longer trapped around the river 
mouth and the updrift shoreline experience erosion. A spit is formed as sediments are redeposited close to the 
outlet, forcing the river to a path further downdrift. Renewed high discharge (C) results in progradation of the 
updrift part as sediments are trapped. Black and white arrows indicate fluvial and longshore transported 
sediments respectively. Modified from (Dominguez, 1996).    
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6.5 The combined effect of changes in sediment supply and wave climate 
 

A combined decrease in wave climate and sediment supply may occur in response to a variety 

of changes in the alongshore topography, bathymetry and climate (see sections above). The 

induced longshore transport of material, which is determined by the angle of the approaching 

waves and their interaction with the shoreline (Inman and Bagnold, 1963; Bittencourt et al., 

2002), is considered to be a very important sediment source along wave-dominated shorelines 

(Dominguez et al., 1987; Dominguez, 1996; Bhattacharya and Giosan, 2003). As a 

consequence, changes in wave climate may also affect the sediment supply along-strike, so 

that decreasing wave climate might be accompanied by decreasing sediment supply. 

Modelling of the progradational shoreline suggests that cyclic changes in both wave 

climate and sediment supply will force the shoreface-shelf profile to experience periods of 

disequilibrium as it is readapting to the new depositional conditions. The result is a slightly 

increased profile curvature as the distal part (OTZ) becomes deeper and the most proximal 

part (USF) becomes slightly deeper during periods of low wave climate and sediment supply. 

At the time of subsequent high wave climate and sediment supply, the effect is opposite, 

decreasing the profile curvature. These alterations in the shoreface-shelf profile are very 

similar to those formed during periods of changing relative sea level, and to those resulting 

from abrupt changes in sediment supply alone.  

Well A and B (Figure 5.22) suggest that distinct upward coarsening successions are 

formed in the distal part of the prograding unit. These are bounded by a discontinuity surface 

representing a decrease in grain-size and sandbed amalgamation. This is similar to what has 

been observed in the Sunnyside Member, where thick HCS sandbeds of the pOTZ are 

abruptly overlain by interbedded sandstone beds and mudstone beds of the dOTZ, or by 

offshore deposits. In addition, the simulated succession indicates a relatively distinct 

landward shift of facies, which is also one of the main characteristics of the discontinuity 

surfaces observed in the study area. The distal well (Well B, Figure 5.22) is therefore highly 

comparable to the sections observed in the Sunnyside Member. When correlated up-dip, these 

simulated surfaces correlate with discontinuity surfaces displaying interbedded sand and 

mudbeds overlying amalgamated sandbeds, resembling pOTZ deposits overlying LSF 

deposits. Even farther up-dip, the discontinuities disappear into amalgamated sandbeds, 

representing the LSF. Although the timelines amalgamate in the USF and foreshore, there are 

no distinct shifts of facies related to the surfaces landward of the LSF. This relationship is 

also observed in the Sunnyside Member, where OTZ deposits commonly overlie LSF deposits, 
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demonstrating a landward shift of the facies belts (Figure 6.5). This indicates that 

discontinuity surfaces, which are associated with a distinct shift in facies, are also associated 

with changes in the profile curvature, whereas the ones representing no facies shifts, reflect a 

continuous shoreface-shelf curvatures during changes in depositional environment. The exact 

pinch-out style of the non-depositional discontinuity surfaces is neither observed in Woodside 

Canyon or in Long Canyon, as the outcrops disappears into the subsurface in the particular 

area. Other discontinuity surfaces have been removed during later sea level fall and associated 

fluvial incision. The lateral extent of the non-depositional discontinuity surfaces formed 

during simulation of changing wave base and wave climate, is in the order of 5-10 km 

(considering the distance of  time-line amalgamation down-dip). The surfaces are also 

confined to the LSF and OTZ, and are therefore highly comparable to the ones observed in 

the Sunnyside Member which have a similar extent and position in the shoreface-shelf profile 

(see Chapter Three).  

 

 

 
 

Non-depositional discontinuity surfaces have also been described in the Grassy 

Member, Kenilworth Member and Spring Canyon Member, where they are marked by 

moderately to intense bioturbation and sometimes carbonate cemented as they pinch out into 

the LSF (O’Byrne and Flint, 1995; Pattison, 1995; Hampson and Storms, 2003). In the Spring 

Canyon Member, some of these surfaces can also be traced even farther landwards into 

correlative, unusually thick, USF and foreshore deposits (Figure 6.6) where they may be 

marked by rooted surfaces (Hampson and Storms, 2003).  

 

Figure 6.5. S3.3b in the proximal part of Long Canyon 1 (Log 20). LSF deposits is overlain by OTZ deposits, 
indicating a landward shift of facies and wave base. The OTZ unit is approximately 2 m thick. 
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6.6 Formation of bedsets  
 

The lateral extension of discontinuity surfaces will vary as different mechanisms affect the 

shoreline in different ways. Changes in wave climate and sea level will influence various 

parts of the shoreline similarly and simultaneously as the formative mechanisms most likely 

are of allocyclic origin (e.g. regional topography or high-frequency climate changes), whereas 

(autocyclic) changes in sediment supply may affect a more restricted part of the shoreline. In 

the Sunnyside Member, most of the discontinuity surfaces have been traced for at least 10 km 

along-strike (between Woodside Canyon and Long Canyon 1) without changing in thickness 

or internal architecture (except for S3.2b which pinch-out towards the south). The same have 

been observed in the overlying Grassy Member, where bedsets may be continuous for over 20 

km along-strike (O’Byrne and Flint, 1995). This implies that the mechanism(s) responsible 

for bedset boundary formation are consistent for at least 10-20 km along-strike. In dip-

direction, the bedsets in the Sunnyside Member have been traced for at least 8-14 km, 

whereas non-depositional discontinuity surfaces in the Kenilworth Member have been traced 

for 0.8-6 km (Hampson, 2000) and 0.5-9 km down-dip (Pattison, 1995). The formative 

mechanism(s) must therefore affect a relatively extensive part of the shoreface-shelf, both 

along-strike and down-dip.    

According to Hampson and Howell (2005), the most landward position of S2 USF and 

foreshore deposits is located to the northwest of the study area (between Rock and Bear 

Canyon), whereas the basinward pinch-out of the same deposits is situated between Jeep Trail 

and Woodside Canyon, approximately 15 km farther to the east (Hampson and Howell, 2005). 

Similarly, the most landward position of S3 USF and foreshore deposits is found between 

South Lila Canyon and Woodside Canyon, whereas the basinward pinch-out can be observed 

Figure 6.6. Up-dip expression of non-depositional (nd) discontinuity surfaces in the (A) foreshore and (B) 
lower shoreface, Kenilworth Member.  The discontinuities pinch-out into unusually thick foreshore and USF 
deposits. The pictures are from Hampson et al.  (in review, their Figure 6).  
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in the vicinity of Blue Castle Canyon, a distance of approximately 10 km farther to the east 

(Hampson and Howell, 2005). Between these localities, seven or eight bedsets have been 

recognized in S2 (Howell et al., in review), and three have been recognized in S3. This 

suggests that each bedset represent approximately 2-3 km of shoreline progradation. A similar 

pattern has also been interpreted from the underlying Kenilworth Member, which is indicating 

that each parasequence is comprised of 1-5 bedsets, each representing roughly 2-4 km of 

shoreline progradation (Hampson, 2000, their Figure 3 and Figure 6). Modern wave-

dominated deltas demonstrate an average progradation rate of approximately 20 km for the 

last 5000 years (including several high-frequency sea level changes) (Dominguez et al., 1987; 

Dominguez, 1996). Assuming similar progradation rates for the ancient Sunnyside and 

Kenilworth shorelines, this (although very simplistic) comparison indicates that each bedset 

represent approximately 500-1000 years of progradation. Even though this not a fully 

quantitative estimation, this does indicate that bedsets are features which occupy a 

considerable amount of space and time, and that they were relatively sparse in numbers and 

comprised a substantial amount of the ancient prograding strandplain/delta system.   

Hampson et al. (in review) suggested a close connection between individual beach-

ridges and bedsets, beach-ridge sets and bedset stacking patterns, and progradational 

shorelines and parasequences. According to this study, beach-ridges (which are tens of meters 

wide, and tens of kilometres along-strike) can be traced into the subsurface where they 

correlated with basinward dipping clinoforms, which are interpreted to result from increased 

storm activity and/or high sediment reworking from longshore currents (Rodriguez and Meyer, 

in review). Beach-ridge sets (which are hundred of meters to several kilometres wide, and 

tens of kilometres along-strike) are bounded by erosional surfaces undistinguishable from the 

ones associated with individual beach-ridges, and do not correlate with distinct breaks in 

lithology (Rodriguez and Meyer, in review). Rather, these surfaces are angular discordant in 

plan view and mark the boundary of beach-ridge sets which indicate variations in shoreline 

trajectory (Hampson et al., in review). Beach-ridge sets have been interpreted to represent 

relocation of the river mouth in response to changes in sediment supply and wave climate, 

along with superimposed high-frequency changes in sea level (Hampson et al., in review; 

Rodriguez and Meyer, in review).  

The main problem with connecting individual beach-ridges with individual bedsets, 

and beach-ridge sets with zones of different shoreline trajectories, is the variance in width and 

the time of formation. If each bedset in the prograding S3 was equivalent to one beach-ridge, 

each ridge would be several kilometres wide and the entire progradational shoreline would 
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have been composed of only 7-8 beach-ridges. For comparison, up to 280 beach ridges (one 

every 50 m) have been counted in four beach-ridge sets on the modern Nayarit strandplain in 

western Mexico (Curray et al., 1969). This indicates that modern beach-ridges occupy far less 

space, and that they are significantly more numerous than ancient bedsets in the Sunnyside 

Member (assuming similar dimensions of ancient and modern beach ridges).  

The formation of beach-ridges is widely discussed, but there is a general agreement 

that sandy beach-ridges either originate as berms, or as alongshore amalgamation of mouth 

bars and spits (Bird, 2000; Otvos, 2000; Rodriguez et al., 2000; Bhattacharya and Giosan, 

2003). The timing of beach-ridge formation is also debated, but an average of 30-150 years 

has been suggested by Otvos (2000), whereas Curray (1969) calculated that one beach-ridge 

was formed every 12-16 years during the Holocene progradation of the Nayarit strandplain. 

Rodriguez et al. (2000) suggested that ridges were created by alongshore migration of mouth 

bars, which may have formed within decades. However, both the preservation potential, and 

spacing of beach-ridges, are highly dependent on the sediment supply and amount of 

shoreline progradation (Bird, 2000). This suggests that the timing of beach-ridge formation in 

modern deltas and strandplains are at least one order of magnitude higher than bedsets in 

ancient shallow-marine systems.  

Hampson et al. (in review) along with Rodriguez and Meyer (in review) have also 

suggested that individual beach-ridges can be traced into the subsurface, by using ground 

penetrating radar profiles, where they correlate with reflectors representing truncation of 

underlying strata. Although such erosional features may explain the presence of erosional 

discontinuity surfaces, they can not explain non-depositional discontinuities, as they are 

characterized by a decrease in sedimentation basinward of the LSF. Erosional scouring of the 

shoreface-shelf profile is likely to have occurred during increased wave climate, increased 

sediment supply or relative sea level fall, all of which increase sedimentation in the distal 

parts of the basin rather than decreasing it. Relative sea level fall and increasing wave base is 

also associated with a basinward shift of facies, instead of a landward shift of facies, which is 

characteristic for the bedset boundaries in the Sunnyside Member.          

Beach-ridge sets, on the other hand, display more similarities to bedsets in both size 

and timing. They are considered to be up to several kilometres wide and are thought of as 

being deposited within several thousand years (Curray et al., 1969; Dominguez et al., 1987; 

Dominguez and Wanless, 1991; Dominguez, 1996; Hampson et al., in review). Some of the 

mechanisms associated with reorganization of beach-ridges (Figure 6.3) are related to changes 

in the wave climate (Rodriguez and Meyer, in review) or delta lobe sifting (Curray et al., 
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1969), and even possibly with high-frequency changes in sea level (Dominguez et al., 1987; 

Dominguez and Wanless, 1991; Dominguez, 1996; Bhattacharya and Giosan, 2003; 

Rodriguez and Meyer, in review). As mentioned previously, internal parasequence 

architecture in the Sunnyside Member is characterized by non-depositional discontinuity 

surfaces in the LSF and OTZ, indicating decreasing wave climate. Observations from the 

study area suggest that the up-dip pinch-out of the surfaces occurs in the LSF where they 

become difficult to trace. In addition to this, core samples taken across truncating beach-ridge 

set boundaries demonstrates that there is no major change in lithology associated with the 

erosional surfaces (Rodriguez and Meyer, in review). This indicates that the bedset 

boundaries in the Sunnyside Member (along with those observed elsewhere in the Blackhawk 

Formation) may be related to similar erosional surfaces in the USF (and proximal LSF), 

which are not associated with changes in lithology. Moreover, Hampson and Storms (2003) 

also reported on unusual thick USF deposits associated with the landward pinch-out of bedset 

boundaries. Similar thick beach successions have also been observed on modern strandplains, 

where they occur along erosional boundaries and truncate beach-ridge sets (Curray et al., 

1969). These observations further support a connection between bedsets and beach-ridge sets.    

Figure 6.7 describes a theoretical model for development of non-depositional 

discontinuity surfaces (bedsets), as observed in the Sunnyside Member. As a delta lobe shifts 

due to for example channel avulsion, alternations in wave climate or high-frequency changes 

in sea level, the entire coastal system is rearranging, resulting in truncation of old beach-

ridges, beach-ridge systems and repositioning of the river mouth (Curray et al., 1969; 

Dominguez, 1996; Bhattacharya and Giosan, 2003; Rodriguez and Meyer, in review). 

Topographic changes along the coastline, in response to repositioning of the river mouth, may 

result in alterations in the local wave climate as the abandoned part of the coastline becomes 

more sheltered. Changing height and direction of incoming waves will also affect the strength 

of the longshore currents, resulting in decreasing transport capacity and sediment supply 

(Figure 6.2) (Inman and Bagnold, 1963). Sediment supply may also decrease as the proximity 

to the river mouth and the fluvial discharge decreases. In addition, progradation of beach-

ridge systems is dependent on wave climate and the amount of available sediments (Bird, 

2000; Otvos, 2000; Rodriguez and Meyer, in review), and erosion occurs if the amount of 

sediments removed down-drift by longshore currents exceed the amount added from up-drift. 

As parts of the shoreline become abandoned, waves and currents rework the proximal part of 

the shoreface and transports sediments down-drift, rather than to the OTZ and offshore zone, 

which itself becomes sediment starved. In addition, the abandoned part of the shoreline may 
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experience localized compaction and subsidence due to loading, as well as a high-frequency, 

low-amplitude rises in sea level (Dominguez, 1996), which will only contribute further to this 

effect, storing all available sediments along the shoreline and the backshore area where 

accommodation space is being created. This may result in the formation of an erosional 

surface in the foreshore, USF and the most proximal part of the LSF as the profile adapts to 

the renewed depositional conditions (Figure 6.8). Because the distal part of the LSF and the 

OTZ only receives an insignificant amount of sediment during this period, the erosional 

surface correlates with a surface marked by non-deposition farther basinwards. This will 

explain the non-depositional discontinuity surfaces in the study area which are truncated in 

the LSF. As the newly established coastline progrades, an increasing amount of sediments 

will be distributed along the shoreline, and the abandoned part of the strandplain/delta will 

receive more material and eventually the whole system will start to prograde.  

 

 

 
       

A relationship between the formation of bedsets and river mouth migration along 

progradational shorelines implies that the surfaces form during periods of normal regression 

with a horizontal to positively inclined shoreline trajectory (0°-90°) (Helland-Hansen and 

Figure 6.7.  (A and B) Bedsets may form in response to channel avulsion and delta lobe shifts. (B) 
Reorganization of the shoreline may result in a local decrease in longshore current and/or wave climate and 
sediment supply. (C) The proximal part of the abandoned shoreline is eroded and experience compaction and 
subsidence, whereas the distal part becomes sediment starved. (D) As the shoreline progrades, sediments are 
transported down-drift to the abandoned part of the shoreline which undergoes renewed progradation. 
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Martinsen, 1996). A positively inclined shoreline trajectory indicates that accommodation 

space is being created in the non-marine realm, resulting in unstable distributary channels in 

coastal plain which are prone to avulsion. During periods of sea level fall and forced 

regression, on the other hand, no accommodation space is being created in the coastal plain or 

in the shallow-marine environment, and the distributary channels tend to be fixed within their 

pre-existing courses (Schumm and Ethridge, 1994). A similar relationship has also been 

described from the Kenilworth Member, where non-depositional discontinuity surfaces are 

interpreted to have been formed during normal regression, and where erosional discontinuities 

were formed during periods of falling sea level and forced regression (Hampson, 2000). The 

discontinuity surfaces in the Sunnyside Member have been interpreted to represent periods of 

a sub-horizontal shoreline trajectory (as discussed in Chapter Three) (Howell et al., in review), 

and reflects periods of relatively continuous accommodation space in the coastal plain. Non-

depositional discontinuities surfaces similar to those which have been observed in the study 

area therefore interpreted to form during normal regression only, as forced regression inhibits 

lateral channel migration.  

 

            
 

Assuming a close connection between bedsets and beach-ridge sets (as suggested in 

the previous sections), these packages should reflect similar morphological patterns as beach 

Figure 6.8.  Model for formation of 
bedset boundaries and a beach-ridge 
set boundaries. (A) Normal 
progradation of a wave-dominated 
shoreline. Sediments are transported 
both basinwards (horizontal arrow) and 
along the shoreline by longshore drift 
(vertical arrow). (B) During periods of 
delta lobe shift and rearrangement of 
the shoreline topography, the 
foreshore, USF and the proximal parts 
of the LSF is eroded as the 
disequilibrium profile adapts to the 
new depositional setting. A decrease in 
wave climate and sediment supply to 
the distal parts of the shorefaces-shelf 
profile, results in the formation of a 
non-depositional discontinuity surfaces 
and a landward shift of facies. The 
landward extent of the bedset boundary 
marks the beach-ridge set boundary, 
which may be represented by a unusual 
thick USF and beach succession. (C) 
Reestablishment of the equilibrium 
profile results in renewed progradation 
of the shoreline. 
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ridges along modern shorelines. The transition from S3.2 to S3.3 is associated with an abrupt 

change from an exclusively wave-dominated to a mixed wave and current-dominated bedset. 

Although the discontinuity surface bounding S3.3 (S3.3b) is less pronounced compared to the 

other bedset boundaries in the Sunnyside Member, the change in depositional environment 

that occurs across this surface is striking. This bedset in particular, supports the hypothesis of 

shifting delta lobes, positioning the ancient river mouth closer to the area represented by 

Woodside Canyon and Long Canyon 1.  

 

 

 
 

Another similarity between ancient bedsets in the Sunnyside Member and modern 

wave-dominated systems is apparent when one compares these to the modern day Paraíba do 

Sul delta in Brazil, which is composed of beach-ridge sets of different scales and sizes (Figure 

6.9). Three main beach-ridge sets are recognized on the delta plain, representing episodes of 

delta lobe shifts and coastal reorganization during the Late Holocene (Dominguez et al., 

1987). The width of beach-ridge sets varies along-strike as they are truncated by other ridge 

sets, or as they reach the delta plain margin. Interpreted cross-sections through the delta plain 

(based on the shapes and sizes of the beach-ridge sets) suggest that bedsets may vary in length 

along-strike and down-dip as they are truncated. Some bedsets (cross-section B) are laterally 

restricted when compared to others, as they are truncated along-strike. Such truncation of 

bedsets is comparable to the observations in the Sunnyside Member, where S3.1 and S3.2 in 

Woodside Canyon amalgamates into S3.2 towards the south, in Long Canyon 1 (Figure 3.4 

Figure 6.9. The Paraíba do Sul delta (Brazil) is composed of three discrete beach-ridge sets (bounded by white 
lines). Their cross-cutting relationship represents periods of delta lobe shifts and coastal reorganization during
Holocene progradation. Cross-sections (A-C) represent different theoretical down-dip profiles through the delta, 
and indicate the variation in number and thickness of bedsets which may occur along-strike, assuming a close 
relationship between beach-ridge sets and bedsets. Bedsets may be lateral extensive along-strike but may also 
experience rapid truncation without leaving distinct erosional surfaces. The entire deltaic system is interpreted 
to correspond to a parasequence (Hampson et al., in review). Picture from Google Earth. 
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and Figure 3.5). No erosional surface is observed in S3.2 (in Long Canyon 1) as anticipated 

by Rodriguez and Meyer (in review), indicating that beach-ridge set boundaries not are 

represented by changes in lithology. This interpretation also implies that beach-ridges should 

become thinner along-strike and eventually pinch-out or become truncated by another bedset. 

The pinch-out style is unpredictable, although observations of modern beach ridges (e.g. the 

Paraíba do Sul strandplain) suggest that they may be truncated within some hundred meters, 

which could be difficult to recognize in outcrop.    

 

6.7 Petroleum and exploration potential of the Sunnyside Member 
 
 

Reservoir properties within a wave-dominated highstand shoreline (such as one of the 

Sunnyside parasequences), will depend on good internal connectivity between sandstone 

bodies, both along-strike and down-dip. Parasequence boundaries are regional flooding 

surfaces which also have a continental component, reflecting a landward dislocation of the 

shoreline (Van Wagoner et al., 1990). Bedset boundaries, on the other hand, are more local 

and are not associated with a landwards shift of the shoreline. A good understanding of the 

reservoir will also depend on confident interpretation of bedset boundaries and parasequence 

boundaries, as they are associated with important geometrical differences (Hampson et al., in 

review). Intra parasequence connectivity between sandstone bodies will be related to pinch-

out styles of bedsets and bedset boundaries, and it is therefore important to understand how 

they were formed in order to be able to predict their subsurface expression. The interpretation 

presented in this study suggests that besets similar to the ones observed in the Sunnyside 

Member will pinch out along-strike within some tens of kilometres, where they commonly 

becomes truncated by another bedset (beach ridge set). As observed between S3.1 and S3.2 in 

the field area, and between modern day beach ridge sets (Rodriguez and Meyer, in review), 

these truncational boundaries are associated with a sand-sand contact, resulting in good 

connectivity between successive sandstone bedsets along-strike (Figure 6.10). Consequently, 

the reservoir is characterized by an internal structure where most internal sandstone bodies are 

separated by a low permeable heterolithic unit vertically, but which are connected both up-dip, 

and along-strike, providing relatively good horizontal permeability. 

From a reservoir perspective, the recognition of the incised valley complex, and an 

associated detached or attached lowstand shoreline, will also be of great importance.
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The sequence stratigraphic model for a foreland, ramp margin sequence (Figure 1.5) predicts 

deposition of a relatively sandy lowstand shoreline, whereas the model for shelf-break margin 

predicts relatively muddy submarine fans and slope fans (Van Wagoner et al., 1990). These 

lowstand fans are likely to be detached from the highstand shoreline if the sea level falls 

below the shelf break. The lowstand shoreline in a ramp margin (such as the Sunnyside 

shoreline) will probably be connected with the highstand shoreline through the incised valley, 

unless it is removed by transgressive erosion (Van Wagoner et al., 1990). In the Sunnyside 

Member, no lowstand shorelines have been observed and neither has the basinward pinch-out 

of the incised valley. As discussed in Chapter Three, this may relate to extensive transgressive 

erosion. The recognition of incised valleys and transgressive erosion is therefore important in 

predicting lowstand sandstones and down-dip connection between the HST and the LST, 

allowing fluid flow between potential reservoirs. In the Sunnyside Member, identification of 

an incised valley would be relatively straight forward in the proximal parts of Woodside 

Canyon, but very problematic distally and in Long Canyon 1, along the correlative SB. The 

only indication of an incised valley and an associated lowstand shoreline is the local presence 

of a coarse-grained transgressive lag, which is interpreted to be partly derived from the valley 

fill (Van Wagoner et al., 1990). No lag is present in Long Canyon 1, suggesting that the lag 

will disappear away from the incised valley, making the correlative SB hard to differentiate 

from a PSB which has similar expressions. 

Figure 6.10.  Bedset pinch-out style along-strike and down-dip. The parasequence is composed of 
three bedsets and represents a prograding wave-dominated shoreline. Bedset boundaries may form 
during truncation of beach ridge sets, and are associated with a sand-sand contact in the proximal part, 
and a sand-mud contact in the distal part.  This results in good connectivity between the adjacent 
sandstone bodies. The figure is based on the features observed in the Sunnyside Member. 
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Chapter Seven – Summary and Conclusions 

 

7.1 Summary and Conclusions 

 

The Sunnyside Member was deposited on the western margin of the Late Cretaceous, Western 

Interior Seaway, and it is composed of three sandstone tongues which are separated by 

Mancos shale (Young, 1955). The three sandstone units are defined as wave-dominated, fifth-

order parasequences, and comprise parts of three high-frequency sequences together with the 

underlying Kenilworth Member and the overlying Grassy Member  (Young, 1955; Van 

Wagoner et al., 1990; Howell and Flint, 2003; Howell et al., in review). A number of sixth-

order cycles (bedsets) are also superimposed on these parasequences, reflecting alternations in 

the shallow-marine depositional environment (Mitchum and Van Wagoner, 1991; Hampson 

and Storms, 2003; Howell et al., in review). Discontinuity surfaces bounding bedsets and 

parasequences may easily be misinterpreted in laterally restricted outcrops as their expression 

in the rock record is very similar, both marking units which are represented by an upward 

increase in grain-size and sandstone bed amalgamation. These surfaces indicate an abrupt 

decrease in sedimentation and an increase in bioturbation. The discontinuity surfaces can only 

be distinguished by tracing them up-dip, where bedset boundaries commonly disappear into 

the lower shoreface (indicating a landward shift of facies, not the shoreline), and where the 

parasequence boundary extend into the non-marine realm, suggesting marine flooding and a 

landward dislocation of the shoreline (Van Wagoner et al., 1990; Howell et al., in review).     

Observations in Woodside Canyon and Long Canyon 1, suggest a progradational 

stacking pattern for the bedsets. The discontinuity surfaces allow correlation throughout most 

of the study area, and have been traced for 5-10 km down-dip, and commonly for more than 

10 km along-strike, where they are associated with only minor changes in thickness and 

lithology (Figure 3.4 and Figure 3.5). All bedsets are characterized by an apparent landward 

shift of facies of a few kilometers. However, one bedset pinches-out laterally and 

amalgamates into the time-equivalent bedset farther south, leaving no trace of the 

discontinuity surface bounding it. Further, the uppermost bedset in S3 has a different 

expression then the remaining units, containing mixed wave and current induced sedimentary 

structures and low bioturbation (Figure 2.5). The unit also displays an abnormal pinch-out 

geometry and represents a basinward thinning wedge. This uppermost bedset is therefore 
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interpreted to result from an abrupt change in the depositional environment, and lateral shifts 

of the river mouth. Sea level fall subsequent to the deposition of this bedset led to extensive 

transgressive erosion of the uppermost part of the unit (Howell et al., in review). This is 

evident from a well developed Glossifungites firm-ground which is associated with the 

bounding PSB, and the removal of a considerable amount of proximal LSF, USF and 

foreshore deposits in and west of the study area.      

Estuarine deposits in the proximal and central part of Woodside Canyon are 

interpreted as an incised valley fill, reflecting relative sea level rise (Howell et al., in review). 

This valley fill is very heterolithic and witness of a variety of depositional environments 

within the estuary (e.g. Figure 4.2)(Howell et al., in review). The general trend is a localized 

unit of tidal influenced fluvial deposits in the lower part of the valley, representing deposition 

during lowstand and early transgression (Dalrymple et al., 1992; Zaitlin et al., 1994). This 

unit is commonly overlain by IHS deposits, indicating a landward shift of facies, increased 

accommodation space, and decreasing down-dip gradient. The IHS has different expression 

and lithology throughout the study area, indicating varying types of tidal channels (Figure 

4.7). Large, supra, intra and subtidal bar deposits are located within the channel sandstones, 

and commonly overlie the IHS. Locally, these are overlain by lagoonal and tidal flat 

interbedded mudstones and sandstone deposits, reflecting an upward transition into a more 

low- energy part of the estuary.  

The absence of incised valley deposits in Log 10 suggests that this particular area was 

located outside the incised valley during sea level fall, or that the area represented an intra 

valley high at the time of formation (Figure 4.10). Alternatively, the absence of these deposits 

may relate to extensive transgressive erosion, as observed elsewhere in the field area (Howell 

et al., in review). The valley margin located between Log 12 and 13 (Figure 4.2) is interpreted 

to represent the southern margin of the estuary, and not its maximum basinward extent. 

2D process-response modelling (BARSIM, Storms et al., 2002) suggests that 

discontinuity surfaces are formed within a variety of depositional environments (Storms and 

Hampson, 2005). Sea level rise results in the formation of distinct non-depositional 

discontinuity surfaces as most sediment is trapped in the nearshore and backshore area, and 

the entire shoreface-shelf experiences sediment starvation. The formation of these surfaces is 

associated with a deepening of the profile, both in the proximal and distal part, and a 

landward shift of facies and the shoreline. A (significant) rise in sea level gives rise to 

features which are characteristic of parasequences, not bedsets (Van Wagoner et al., 1990), 
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and are therefore not considered as an important driving mechanism for bedset (boundary) 

formation in the Sunnyside Member.  

Changes in wave climate result mainly in the formation of erosional discontinuity 

surfaces in the proximal part of the shoreface-shelf and are accompanied with a basinward 

shift of facies (Storms and Hampson, 2005). Only minor discontinuities surfaces and facies 

shifts are associated with decreasing wave climate, which is also associated with deepening of 

the distal part of the shoreface-shelf profile. The discontinuity surfaces formed by changes in 

wave climate alone, are therefore not comparable to the ones observed in the field.  

An abrupt decrease in sediment supply results in the formation of discontinuity 

surfaces extending across most of the shoreface-shelf. Such decrease is also associated with a 

marginal deepening of the distal part of the profile and a marginal shallowing of the proximal 

part. In contrast to changes in sea level and wave base, varying the sediment supply will not 

affect the position of the wave base, and the decrease in grain-size and amalgamation of 

sandstone beds is only dependent on the amount of sediments which are transported to the 

shoreface-shelf. Abrupt increase in sediment supply results in erosional surfaces which are 

restricted to the proximal part of the shoreface. Because of the lack of landward shift of facies, 

abrupt changes in sediment supply alone is not considered to be the main driving force for the 

formation of bedset boundaries observed in the field. Gradual, asymmetric changes in 

sediment supply have similar effects as those of abrupt changes, only less pronounced. 

Neither do these produce discontinuities which are comparable to the ones observed. The 

discontinuities which are associated with shifts in facies are also associated with changes of 

the shorefaces-shelf profile, whereas the ones not representing any facies shifts reflect a 

continuous profile curvature. 

When the prograding shoreline is introduced to combined changes in wave climate and 

sediment supply, both erosional and non-depositional discontinuity surfaces are formed. Non-

depositional surfaces are formed during periods when the shoreface-shelf is sediment starved, 

and when the wave base is dislocated landwards; this is associated with a minor deepening of 

the distal part of the shoreface-shelf profile. The discontinuity surfaces are truncated in the 

lower shoreface by erosional surfaces of restricted lateral extent. Even though the wells (A 

and B, Figure 5.22) do not display equally distinct coarsening upward units as those observed 

in the Sunnyside Member, the surfaces are associated with both a decrease in grain-size and 

sandbed amalgamation and a landward shift of facies, which makes them directly comparable 

to the ones observed in the field.    
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The bedsets in the Sunnyside Member are interpreted to result from shifting of delta 

lobes in response to for example changing fluvial discharge, over-extension of the river’s 

course, high-frequency climate changes and/or, possibly, low-amplitude, high-frequency 

changes in relative sea level. A relatively abrupt relocation of the river mouth will affect the 

sediment supply down-drift. Such relocations may also be directly associated with changes in 

wave climate, either as a result, or as a consequence of the renewed coastline topography. The 

relationship between wave energy and topography also determine the strength and direction of 

the longshore current, which is an important sediment transport mechanism along wave-

dominated coastlines (e.g. Inman and Bagnold, 1963; Dominguez et al., 1987). Delta lobe 

shifts may therefore be associated with a contemporary decrease in sediment supply and wave 

climate, resulting in sediment starvation and a landward shift of facies along the abandoned 

part of the coastline (Figure 6.3 and Figure 6.8). This effect may be further amplified by 

compaction, subsidence and low-amplitude, high-frequency changes in sea level.  

A close connection between bedsets and beach-ridge sets is a result of this 

interpretation of bedset formation. Modern studies have suggested that beach ridge sets are 

formed as the river changes its course and rearranges the coastal morphology (e.g. Curray et 

al., 1969). This implies that bedsets in the subsurface will have similar geometries and aerial 

extent as the beach-ridge sets observed along modern coastlines. Core samples from modern 

strandplains indicates that the erosional boundaries defining each beach-ridge set not are 

associated with any change in lithology (Rodriguez and Meyer, in review). This will explain 

why bedset boundaries are hard to detect landward of the lower shoreface. Furthermore, 

unusual thick upper shoreface and foreshore deposits have been reported from the landward 

pinch-out of ancient bedset boundaries (Hampson and Storms, 2003). Similar, thick, beach 

ridge units have also been observed in modern stranplains where they occur along erosional 

boundaries truncating beach ridge sets (Curray et al., 1969). This relationship supports the 

interpretation of connection between bedsets and beach ridge sets.  

The pinch-out geometry of bedsets both along-strike and down-dip is of great 

importance in a petroleum exploration perspective. Sand body connectivity is poor in the 

distal parts of the unit where thin sandstone tongues are interbedded with more muddy, distal 

deposits (Figure 6.10). Up-dip (landward of the lower shoreface), the transition between 

individual bedsets will be represented by a sand-sand contact, allowing fluid flow between the 

units. The erosional surfaces will also be connected by a sand-sand contact along-strike, 

favoring lateral connectivity between adjacent bedsets. 
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7.2 Further Work 

 

Good control on the incised valley stratigraphy depends on detailed studies of the estuarine 

successions both in Woodside Canyon and in Long Canyon 2. Several valley margins should 

be present in these areas, but the detection of these will require careful tracing of the SB 

throughout the exposed cliff faces. The remote location of valley fill in Long Canyon 1 might 

be traced and exposed in outcrops on the southern side of the canyon. However, the unit is 

very thin and an identification will rely on detailed correlation of the G1b. Similarly, the 

outline of the incised valley in the area close to Log 10 might be identified by close 

inspections and tracing of surfaces in the relatively inaccessible cliffs.  

The interpretation of bedset and bedset boundary formation presented in this study 

may be further strengthened by more close investigations both in the up-dip part and along-

strike of the shallow-marine unit. If bedsets results from delta lobe shifts, they should pinch-

out along-strike and/or be truncated by another bedset. Down-dip wells and core samples 

from modern analogs, extending from the backshore and into the offshore transition zone 

would identify non-depositional discontinuity surfaces along with their up-dip expression 

(erosion, rooting, cementing etc). In ancient outcrops, bedset boundaries should be traced to 

their most landward extent. If the uppermost, amalgamated part is a result from truncation and 

erosion during delta lobe shifts, the surface may be identified by a Glossifungites firm-ground, 

reflecting exhumation of the older shallow-marine sediments. The identification of unusual 

thick USF deposits will also indicate reorientation of beach ridge sets and lateral shifts of the 

river mouth (Curray et al., 1969). 
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Sedimentological logs and facies associations  
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