
Algorithmica
DOI 10.1007/s00453-015-0054-2

Largest Chordal and Interval Subgraphs Faster than 2n

Ivan Bliznets1 · Fedor V. Fomin2 ·
Michał Pilipczuk3 · Yngve Villanger2

© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract We prove that in a graph with n vertices, induced chordal and interval
subgraphs with the maximum number of vertices can be found in time O(2λn) for
some λ < 1. These are the first algorithms breaking the trivial 2nnO(1) bound of the
brute-force search for these problems.

Keywords Exact exponential algorithms · Chordal graphs · Interval graphs ·
Maximum induced Π -subgraph

The research leading to these results has received funding from the European Research Council under the
EuropeanUnion’s SeventhFrameworkProgramme (FP/2007–2013)/ERCGrantAgreementNo. 267959 and
the Research Council of Norway (Yggdrasil mobility program 2013–2014, Project Number 227328/F11), as
well as from the Government of the Russian Federation (Grant 14.Z50.31.0030) and Grant of the President
of Russian Federation (MK-6550.2015.1). This research was done while M. Pilipczuk was affiliated with
the University of Bergen and was supported by the aforementioned ERC Grant. A preliminary version of
this paper appeared in the proceedings of ESA 2013.

B Michał Pilipczuk
michal.pilipczuk@mimuw.edu.pl

Ivan Bliznets
iabliznets@gmail.com

Fedor V. Fomin
fomin@ii.uib.no

Yngve Villanger
yngve.villanger@gmail.com

1 St. Petersburg Department of Steklov Institute of Mathematics, 27 Fontanka, St. Petersburg,
Russia

2 Department of Informatics, University of Bergen, Bergen, Norway

3 Institute of Informatics, University of Warsaw, Warsaw, Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-015-0054-2&domain=pdf

Algorithmica

Table 1 Known results for Maximum Induced Π -Subgraph

Property Time complexity References

Edgeless O(1.2109n) Robson [22]

Acyclic O(1.7548n) Fomin et al. [7]

Bipartite O(1.62n) Raman et al. [21]

Planar O(1.7347n) Fomin et al. [9]

d-degenerate O((2 − εd)n) Pilipczuk and Pilipczuk [20]

Cluster graph O(1.6181n) Fomin et al. [6]

Biclique O(1.3642n) Gaspers et al. [14]

o(n/ log n) treewidth O(1.7347n) Fomin and Villanger [11]

r -regular O((2 − εr)
n) Gupta et al. [17]

Matching O(1.6957n) Gupta et al. [17]

1 Introduction

The area of exact exponential algorithms is about solving intractable problems faster
than the trivial exhaustive search, though still in exponential time [8]. In this paper,
we give algorithms computing maximum induced chordal and interval subgraphs in a
graph faster than the trivial brute-force search. These problems are interesting cases of
a more general meta-problem Maximum Induced Π -Subgraph, where for a given
graph G and hereditary class of graphsΠ one asks for an induced subgraph belonging
Π with the maximum possible number of vertices. (Let us recall that a class of graphs
is hereditary if it is closed under taking induced subgraphs).

By the result of Lewis andYannakakis [19], theMaximum InducedΠ -Subgraph
problem is NP-hard for every non-trivial class of graphs Π . Different classes Π were
studied in the literature; examples include classes of graphs that are edgeless, pla-
nar, outerplanar, bipartite, complete bipartite, acyclic, degree-constrained, chordal
etc. From the point of view of exact algorithms, as far as membership in Π can be
tested in polynomial time, a trivial brute-force search trying all possible vertex sub-
sets of G solves Maximum Induced Π -Subgraph in time O∗(2n) on a graph G
with n-vertices.1 However, many algorithms for Maximum Induced Π -Subgraph
which are faster than O∗(2n) can be found in the literature for explicit classes Π .
Notable examples are Π being the class of graphs that are edgeless [22] (equivalent
to Maximum Independent Set), acyclic [7] (equivalent to Maximum Induced

Forest), bipartite [21], planar [9], degenerate [20], regular [17], cluster graphs [6],
bounded treewidth [11], or bicliques [14], see Table 1. Very recently, Fomin et al. [10]
have shown that for every hereditary class of graphs Π that have constant treewidth
and are definable in counting monadic second-order logic (CMSO), the Maximum

Induced Π -Subgraph problem can be solved in O(1.7347n) time.
The listed examples suggest that existence of algorithms faster than 2n for Maxi-

mum Induced Π -Subgraph can be a phenomenon of a much more general nature.

1 In this paper we use the O∗(·) notation suppressing polynomial terms in the input size.

123

Algorithmica

In fact, so far we do not know any efficiently recognizable class Π for which a lower
bound could be derived. Therefore, the following is a folklore open problem in the
field; we could not find it explicitly stated in the literature, so we state it below.

Hypothesis 1 For every hereditary graph classΠ that canbe recognized in polynomial
time, theMaximum Induced Π -Subgraph problem can be solved in timeO∗(2λn)

for some λ < 1.

We expect that some additional weak conditions on Π may be needed to pro-
vide a positive answer to hypothesis we discuss propositions of such relaxations in
Sect. 6. Thus, the aforementioned results [6,7,9,10,14,20–22] can be viewed as partial
progress on Hypothesis 1: the idea is to investigate how different features of the class
Π can be used to design an algorithm breaking the 2n barrier.

Since every hereditary class of graphs Π can be characterized by a (not necessarily
finite) set of forbidden induced subgraphs, there is an equivalent formulation of the
Maximum Induced Π -Subgraph problem. For a set of graphs F , a graph G is
called F-free if it contains no graph from F as an induced subgraph. The Maximum

F-free Subgraph problem is to find a maximum induced F-free subgraph of G.
Clearly, if F is the set of forbidden induced subgraphs for Π , then the Maximum

Induced Π -Subgraph problem and theMaximum F-free Subgraph problem are
equivalent.

It is well known that when the set F is finite, then Maximum F-free Subgraph

can be solved in time O∗(2λn), where λ < 1. This can be seen by applying a simple
branching argument, see Proposition 2, or by reducing to the d-Hitting Set problem,
which is solvable faster than O∗(2n) for every fixed d [6,13]. Examples of F-free
classes of graphs for some finite set F are split graphs, cographs, line graphs or
trivially perfect graphs; see the book [3] for more information on these graph classes.

It is however completely unclear if anything faster than the trivial brute-force is pos-
sible in the case whenF is an infinite set, even whenF consists of very simple graphs.
One of themost known andwell studied classes ofF-free graphs is the class of chordal
graphs, whereF is the set of all cycles of length more than three. Chordal graphs form
a fundamental class of graphs whose properties are well understood. Another funda-
mental class of graphs is the class of interval graphs. We refer to the book of Golumbic
for an overview of properties and applications of chordal and interval graphs [16]. In
spite of nice structural properties of these graphs, no exact algorithms for Maximum

Induced Chordal Subgraph and Maximum Induced Interval Subgraph

problems better than the trivial O∗(2n) were known prior to our work.

Our results We define four properties of a graph class and give an algorithm that, for
every fixed graph class Π (not part of the input) satisfying these properties, and for
a given n-vertex graph G, finds a maximum induced subgraph of G belonging to Π

in time O∗(2λn) for some λ < 1, where λ depends only on the class Π . Because
classes of chordal and interval graphs satisfy the required properties, as an immediate
corollary we obtain that Maximum Induced Chordal Subgraph and Maximum

Induced Interval Subgraph can be solved in time O∗(2λn) for some λ < 1.
When pipelined with simple branching arguments, our algorithms can be used to

obtain time O∗(2λn) algorithms for some λ < 1 for a variety of other Maximum

123

Algorithmica

Induced Π -Subgraph problems, where class Π comprises chordal/interval graphs
that moreover contain no induced subgraph from a finite forbidden set of graphs.
Examples of such classes are proper interval graphs, Ptolemaic graphs, block graphs;
see [3] for definitions and discussions of these graph classes.

The main intention of our work was to break the trivial 2n barrier, and thus to
provide a new insight into Hypothesis 1 by analyzing chordal and chordal-like graph
classes. For this reason, we did not try to optimize the constant λ in the exponent.
There are several places where the running time of our algorithm can be improved
at a cost of more involved arguments or intensive case analyses. However, we would
like to stress again that the main motivation of our work is the theoretical study of
Hypothesis 1, rather than pursuit of really efficient algorithms for the respective prob-
lems. Therefore, we refrain from giving these improvements and prefer keeping the
arguments as simple as possible.

Organization In Sect. 2 we give notation and recall known tools that will be used
later. In Sect. 3 we discuss the four properties of a graph class that are needed for our
algorithm to be applicable. Section 4 contains the description of the algorithm. For
the convenience of the reader, in Sect. 5 we summarize the order of choice of small
constants used by the algorithm. Finally, in Sect. 6 we give some concluding remarks.

2 Preliminaries

Standard graph notation We denote by G = (V, E) a finite, undirected and simple
graph with vertex set V (G) = V and edge set E(G) = E . We also use n to denote
the number of vertices in G. For a nonempty subset of vertices W ⊆ V , a subgraph
induced by W is defined as G[W] = (W, E ∩ (W × W)). An induced subgraph of a
graph is a subgraph induced by some subset of vertices. A clique is a set of vertices
inducing a complete subgraph. We say that a vertex set W ⊆ V is connected if G[W]
is connected. The open neighborhood of a vertex v is N (v) = {u ∈ V : uv ∈ E}
and the closed neighborhood is N [v] = N (v) ∪ {v}. For a vertex set W ⊆ V we put
N (W) = ⋃

v∈W N (v)\W and N [W] = N (W) ∪ W . Whenever the graph to which
the neighbourhood operation is applied is not clear from the context, we put it in the
subscript of N . For a vertex subset X of a graphG, we useG\X to denote the subgraph
of G induced by V (G)\X .

A graph class Π is simply a family of graphs. We often use terms Π -graph or
Π -subgraph to express membership in Π . We say that a graph class is hereditary
if Π is closed under taking induced subgraphs. Every hereditary graph class can be
described by a (possibly infinite) list of minimal forbidden induced subgraphs FΠ :
graph G is in Π if and only if it does not contain any induced subgraph from FΠ , and
for each H ∈ FΠ every induced subgraph of H , apart from H itself, belongs to Π .
The class of graphs not containing any induced subgraph from a listF will be denoted
by F-free graphs.

Chordal graphs are graphs not containing any induced cycles of length more than
three, that is, chordal graphs are F-free graphs where the set F consists of all cycles
of length more than three. Chordal graphs are hereditary and polynomial-time recog-
nizable [16,23]. Chordal graphs admit many more characterizations, for example they

123

Algorithmica

(a) (b)

1 2 n. . .

(c)

1 2 3 . . . n

(d)

n1

2 . . .

(e)

Fig. 1 Forbidden induced subgraphs for interval graphs. a bipartite claw, b umbrella, c n-net, n ≥ n2, d
n-tent, n ≥ 3, e Cn, n ≥ 4

are exactly graphs admitting a tree decomposition where every bag is a clique. By
combining this with a well-known fact that every tree decomposition contains a bag
whose removal splits the graph into connected components, each having at most half
of the number of vertices, we obtain the following useful corollary.

Proposition 1 [15] If H is a chordal graph, then there exists a clique S in H and a
partition of V (H)\S into two subsets X1, X2, such that

– |X1|, |X2| ≤ 2
3 |V (H)|, and

– there is no edge between X1 and X2.

Such a set S is called a 2
3 -balanced clique separator in H . Proposition 1 follows

from a similar result on trees and tree decomposition of chordal graphs. Note that
since |X2| ≤ 2

3 |V (H)|, then |X1| = |V (H)| − |S| − |X2| ≥ 1
3 |V (H)| − |S|, and the

same holds also for X2.
Interval graphs form a subclass of chordal graphs admitting a decomposition into

a clique path instead of less restrictive clique tree. Interval graphs are also hereditary
and polynomial-time recognizable [2,16]. Their characterization in terms of minimal
forbidden induced subgraphs was given by Lekkerkerker and Boland [18]; see Fig. 1
for reference. The book of Golumbic [16] provides a thorough introduction to chordal
and interval graphs.

We now describe the classical tools needed for the algorithm. The following result
basically follows from the observation that branching on forbidden structures of con-
stant size always leads to complexity better than 2n .

Proposition 2 Let F be a finite set of graphs and let � be the maximum number of
vertices in a graph from F . Let Π be a hereditary graph class that is polynomial-time
recognizable. Assume that there exists an algorithm A that for a given F-free graph
G on n vertices, in O∗(2εn) time finds a maximum induced Π -subgraph of G, for

123

Algorithmica

some ε < 1. Then there exists an algorithmA′ that for a given graph G on n vertices,
finds a maximum induced F-free Π -graph in G in time O∗(2ε′n), where ε′ < 1 is a
constant depending on ε and �.

Proof LetΠ ′ be the class ofF-freeΠ -graphs; since � is a constant,Π ′ is polynomial-
time recognizable. Algorithm A′, given a graph G = (V, E) with n vertices, tries
to find a maximum induced Π ′-subgraph using standard branching arguments. At
each point the algorithm maintains two disjoint sets A, D ⊆ V ; at the starting point
A = D = ∅. Given A, D, the algorithm tries to find a maximum size set X inducing
a Π ′-graph such that A ⊆ X and D ∩ X = ∅. Whenever we arrive at a situation
when |A ∪ D| > (1 − ε)n, we stop the branching procedure and perform a brute
force check on the remaining vertices of V \(A ∪ D). That is, we examine all subsets
A′ ⊆ V \(A ∪ D) and test whether G[A ∪ A′] induces a Π ′-graph. This takes time
O∗(2|V \(A∪D)|) ≤ O∗(2εn).

At each step of the branching procedure we check in polynomial time whether
G\D contains a subgraph isomorphic to any graph of F . Assume first that we have
found such a subgraph and let S ⊆ V \D be its vertex set. Clearly, for every induced
Π ′-subgraph, at least one of vertices of S is not contained in this subgraph. As vertices
of S∩ A have to be in the solution searched in this branch, we branch on set S\A. More
precisely, for every partition (A′, D′) of S\A where D′ is nonempty, we produce a
branch in which A′ is incorporated into A and D′ is incorporated into D. Note that this
leads to 2�′ −1 branches produced and increasing |A∪D| by �′, where �′ = |S\A| ≤ �.
Note moreover that since �′ ≤ �, then 2�′ − 1 ≤ 2ε��

′
for some ε� < 1 depending on

�.
Assume now that G\D contains no induced subgraph from F , hence it is F-free.

We apply the algorithmA to G\D to compute the maximum induced Π -subgraph of
G\D. As G\D isF-free, this subgraph is in fact in the class Π ′. Note here that at this
point we relax the condition that the set we are looking for has to contain A as a subset,
however this does not affect correctness of the algorithm: the found subgraph is still
an inducedΠ ′-subgraph of G, so it can be only larger than the solution we are looking
for in this branch. The running time of the application ofA isO∗(2ε|V \D|) ≤ O∗(2εn).

Let us now discuss the running time of the algorithm. Note that at the point of
applying brute-force check we have that (1−ε)n+� ≥ |A∪D| > (1−ε)n, as |A∪D|
can increase by at most � at each step. Each branching step increases |A∪ D| by some
�′ and introduces at most 2ε��

′
subbranches, hence the total number of instances where

algorithmA or a brute-force check is applied is at most 2ε�((1−ε)n+�) = O(2ε�(1−ε)n).
Application of brute-force or algorithmA takesO∗(2εn) time. Hence, the total running
time is O∗(2ε′n), where ε′ = ε�(1 − ε) + ε < 1. ��

The following lemma of Fomin and Villanger [12] will be useful for us to guess
connected sets of vertices with small running-time overhead.

Proposition 3 [12] Let G = (V, E) be a graph. For every v ∈ V , and b, f ≥ 0, the
number of connected vertex subsets B ⊆ V such that

– v ∈ B,
– |B| = b + 1, and
– |N (B)| = f ,

123

Algorithmica

is at most
(b+ f

b

)
. Moreover, all such subsets can be enumerated in time O∗((b+ f

b

))
.

Alongwith Proposition 3we use the following standard bound on binomial coefficients
in terms of entropy.

Proposition 4
(n
k

) ≤ 2H(kn)n for any n ≥ 1 and 1 ≤ k ≤ n − 1, where H(t) =
−t log2 t − (1 − t) log2(1 − t).

Note that from Proposition 4 it follows that for k = αn and α = 1
2 we have

(n
k

) =
O(2κn) for some κ < 1.

The last necessary ingredient is the classical idea used by Schroeppel and Shamir
[24] for solving Subset Sum by reducing it to an instance of 2-Table. In the 2-Table
problem, we are given two k×mi matrices Ti , i = 1, 2, and a vector s ∈ Qk . Columns
of each matrix are mi vectors of Qk . The question is, if there is a column of the first
matrix and a column of the second matrix such that the sum of these two columns
is equal to s. A trivial solution to the 2-Table problem would be to try all possible
pairs of vectors; however, this problem can be solved more efficiently. We can sort
columns of T1 lexicographically inO(km1 logm1) time, and for every column v of T2
check whether T1 contains a column equal to s − v in O(k logm1) time using binary
search.

Proposition 5 [24]The2-Tableproblemcanbe solved in timeO((m1+m2)k logm1).

3 Properties of the graph class

In this section we gather the required properties of the graph classΠ for our algorithm
to be applicable. We consider only hereditary subclasses of chordal graphs, hence our
first property is the following.

Property (1) Π is a hereditary subclass of chordal graphs.

As Π is hereditary, it may be described by a list of vertex-minimal forbidden
induced subgraphs FΠ . We need the following properties of FΠ :

Property (2) All graphs in FΠ are connected, and none of them contains a clique of
size ℵ + 1 for some universal constant ℵ.

For chordal graphs FΠ consists of cycles of length at least 4, hence ℵ = 2. For
interval graphs, an inspection of the list of forbidden induced subgraphs, depicted on
Fig. 1, shows that wemay takeℵ = 4. In the following, we always treatℵ as a universal
constant for class Π on which all the later constants may depend; moreover, ℵ may
influence the exponents of polynomial factors hidden in theO∗ notation. An example
of a subclass of chordal graphs not satisfying this property, is the class of strongly
chordal graphs. The reason for that is that minimal forbidden subgraphs of strongly
chordal graphs can contain a clique of any size, see [3] and Sect. 6 for more informa-
tion on this class of graphs. Note that other examples of classes not satisfying Property
(2) are classes where some forbidden induced subgraphs are disconnected, e.g. split
graphs.However,whenever the number of disconnected graphs inFΠ is finite (as in the

123

Algorithmica

case of split graphs), they can be always handled separately using Proposition 2. See
also Theorem 2 in Sect. 6, in which we explicitly combine the forthcoming Theorem 1
with Proposition 2. Finally, let us remark that the connectedness of all the forbidden
induced subgraphs is equivalent to requiring Π to be closed under taking disjoint
union.

Thirdly, we need our graph class to be efficiently recognizable.
Property (3) Π is polynomial-time recognizable. Chordal graphs and interval graphs
have polynomial time recognition algorithms, see e.g. [2,16,23]. For our arguments
to work we need one more algorithmic property. The property that we need can be
described intuitively as robustness with respect to clique separators. More precisely,
we need the following statement.

Property (4) There exists a polynomial-time algorithm A that takes as input a graph
G together with a clique S in G. The algorithm answers YES or NO, such that the
following conditions are satisfied:

– If A answers YES on inputs (G1, S1) and (G2, S2) where |S1| = |S2|, then graph
G ′, obtained by taking disjoint union of G1 and G2 and identifying every vertex of
S1 with a different vertex of S2 in any manner, belongs to Π .

– If G ∈ Π , then there exists a clique separator S in G such that V (G)\S may
be partitioned into two sets X1, X2 such that (i) |X1|, |X2| ≤ 2

3 |V (G)|, (ii) there
is no edge between X1 and X2, (iii) A answers YES on (G[X1 ∪ S], S) and on
(G[X2 ∪ S], S).

We remark that some of the proposed properties might be relaxed. For example, one
might replace Property (3) by the property that the graph class is subexponential-time
recognizable. Also, the property of being a subclass of chordal graphsmight be relaxed
in some way. However, such relaxations do not increase the number of natural graph
classes to which our algorithm might be applied, and hence we state the properties to
be as natural and simple as possible.

Observe that Property (1) and Proposition 1 already provides us with some 2
3 -

balanced clique separator S of G. Shortly speaking, Property (4) requires that in
addition belonging to Π may be tested by looking at G[X1 ∪ S] and G[X2 ∪ S]
independently. For chordal graphs, Property (4) follows from Proposition 1 and a
folklore observation that if S is a clique separator in a graph G, with (X1, X2) being a
partition of V (G)\S such that there is no edge between X1 and X2, then G is chordal
if and only if G[X1 ∪ S] and G[X2 ∪ S] are chordal. Hence, we may take chordality
testing for the algorithm A.

For interval graphs, let us take the clique path of G and examine a clique separator
S such that there is at most half of vertices on the left of it and at most half on the right
of it. Let X1 be the vertices before S on the clique path, and X2 be the vertices after
S. Clearly, S is then even a 1

2 -balanced clique separator, with partition (X1, X2) of
V (G)\S. Then it follows that G[X1 ∪ S] and G[X2 ∪ S] admit clique paths in which
S is one of the end bags of the path. On the other hand, assume that we are given any
two graphs G1,G2 with equally sized cliques S1, S2, such that G1,G2 admit clique
paths with S1, S2 as the end bags. Then we may create a clique path of the graph G ′

123

Algorithmica

obtained from the disjoint union of G1 and G2 and identification of S1 and S2 in any
manner, by simply taking the clique paths for G1 and G2 and identifying the end bags
containing S1 and S2, respectively. Hence, as A we may take an algorithm which for
input (G, S) checks whether G is interval and admits a clique path with S as the end
bag. Such a test may be easily done as follows: we add two vertices v, v′ toG, where v

is adjacent to v′ and to every vertex of S, while v′ is adjacent only to v. In this manner
we force S to be the end bag, and run the intervality test. Hence, interval graphs also
satisfy Property (4).

4 The algorithm

In this section we prove the main result of the paper, which is the following.

Theorem 1 If Π satisfies Properties (1)–(4), then there exists an algorithm which,
given a graph G with n vertices, returns a maximum induced subgraph of G belonging
to Π in time O∗(2λn) for some λ < 1, where λ depends only on Π .

As we already observed, chordal and interval graphs satisfy Properties (1)-(4). Thus
Theorem 1 implies immediately the results claimed in the introduction. Our approach
is based on a thorough investigation of the structure of a maximum induced sub-
graph. In each of the cases, we deploy a different strategy to identify possible
candidates for an optimal solution. The properties we strongly rely on are the balanced
separation property (Property (4)), and conditions on minimal forbidden induced sub-
graphs for Π (Property (2)). The flowchart of the algorithm is given in Fig. 2. A
shorter description of the algorithm may be found in conference version of the paper
[1].

Let G = (V, E). In the description of the algorithm we use several small positive
constants: α, β, γ, δ, ε, and one large constant L (for reader’s convenience a table
with a short description of constants is given in Sect. 5). The final constant λ depends
on the choice of α, β, L , γ, δ, ε; during the description we make sure that constants
(α, β, L , γ, δ, ε) can be chosen so that λ < 1. The choice of each constant depends
on the later ones, e.g., having chosen L , γ, δ, ε, we may find a positive upper bound
on the value of β so that we may choose any positive β smaller than this upper bound.
For reader’s convenience, in Sect. 5 we give a summary of the procedure of choosing
constants.

Firstly, we observe that by Proposition 2, we may assume that the input graph does
not contain any forbidden induced subgraph from FΠ of size at most � for some
constant �, to be determined later. Indeed, if we are able to find an algorithm for
maximum inducedΠ -subgraph running inO∗(2λn) time for some λ < 1 and working
in F ′

Π -free graphs, where F ′
Π consists of graphs of FΠ of size at most �, then by

Proposition 2 we obtain an algorithm for maximum induced Π -subgraph working in
general graphs and with running timeO∗(2λ′n) for some λ′ < 1. Hence, from now on
we assume that the input graph G does not contain any forbidden induced subgraph
from FΠ of size at most �.

123

Algorithmica

Step 1:
Find largest
clique K

Case B:
|K| ≤ αn

Step 2:
Brute-force on all sets
of size less than n

2 − βn
or more than n

2 + βn

Step 3:
Guess clique S and

|X1|, |X2|

Step 4:
Branch on the number of
connected components

in H \ S

Branch B.1:
H \ S contains less
than γn components

Case B.1.1:
|N (X1)| − |X1| ≥ δn or
|N (X2)| − |X2| ≥ δn

Case B.1.2:
Case B.1.1 not applicable
|N (X1) ∩ N (X2)| ≥

Case B.1.3:
Cases B.1.1-2 not applicable

Branch B.2:
H \ S contains more
than γn components

Step 5:
Branch on values

rl, |X|, |Y |, |N [X]|

Case A:
|K| ≥ αn

Output solution

Guarantee that
solution H has size
between
n
2 − βn and n

2 + βn

Guarantee that
|S| ≤ αn

is a clique-separator
from Proposition 1

Proposition 3 and
2-Table problem
are used in branch B.1

Fig. 2 Schematic representation of the algorithm

The algorithm performs a number of steps. After each step, depending on the
result, the algorithm chooses one of the subcases (for reader convenience a schematic
representation of algorithm is given in Fig. 2).

Step 1 Using the algorithm of Robson [22], find the largest clique K in G in
O∗(20.276n) time.

We consider two cases: either K is large enough to finish the search directly, or K
is small and we have a guarantee that the maximum induced Π -graph we are looking
for contains only small cliques. The threshold for small/large is αn for a constant α,
0 < α < 1/48, to be determined later.

Case A: |K | ≥ αn.
We show that in this case, the problem can be solved inO∗(2(1−(1−κ0)α)n) time for

some κ0 < 1 depending only on ℵ. We use the following auxiliary lemma.

123

Algorithmica

Lemma 1 Let P be a subset of the vertices of a graph G with n vertices that induces
a graph belonging toΠ , and let K be a clique in G such that P ∩K = ∅. Then in time
O∗(2κ0·|K |), for some κ0 < 1 depending only on ℵ, it is possible to find an induced
subgraph of G with the maximum number of vertices, where maximum is taken over
all induced subgraphs H of G such that (i) H ∈ Π , (ii) V (H)\K = P. In other
words, the maximum is taken over all induced subgraphs belonging to Π which can
be obtained by adding some vertices of K to P.

Proof For every nonempty subset W of K of size at most ℵ, we colour W red if
G[W ∪ P] ∈ Π . Note that this construction may be performed using at most ℵ · |K |ℵ
tests of belonging to Π , hence in polynomial time for constant ℵ.

For every subset X ⊆ K , we observe that G[P ∪ X] belongs to Π if and only if all
nonempty subsets of X of size at most ℵ are red. Indeed, if the latter is not the case,
there is a subsetW ⊆ X such that G[P ∪W] /∈ Π , so by Property (1) G[P ∪ X] /∈ Π

as well. For the opposite direction, let us assume that G[P ∪ X] contains some for-
bidden induced subgraph F ∈ FΠ . Then |F ∩ X | > ℵ because otherwise, by the
definition of the colouring, F ∩ X would not be coloured red. But since X is a clique,
we conclude that F contains a clique on ℵ + 1 vertices, which is a contradiction with
Property (2).

Hence, to obtain a maximum subgraph one has to find a maximum subset of X such
that all its subsets of size at most ℵ are coloured red. This is equivalent to finding a
maximum clique in a hypergraph with hyperedges of cardinality at most ℵ, which can
be done using a branching algorithm inO∗(2κ0·|K |) time for some κ0 < 1, depending
only on ℵ.

The branching algorithm maintains two disjoint sets of vertices A and D, at the
beginning equal to ∅. Set A consists of vertices that are guessed to be in the solution,
while D consists of vertices guessed to not be in the solution. The algorithm termi-
nates the branch when K\D does not have any subset of size at most ℵ not coloured
red. This makes K\D a candidate for the optimum X which is the largest set among
the candidates. If the branch is not terminated, we infer that there must be a subset
W ⊆ K\D of size at most ℵ which is not coloured red. Clearly, at least one of the
vertices of W cannot be in the optimum X , hence we examine W\A and branch into
2|W\A| −1 cases, in each fixing a different choice which vertices ofW\A should go to
A and which should go to D; the omitted case is when all the considered vertices go
to A. As |W\A| ≤ ℵ, we have that 2|W\A| −1 ≤ 2κ0·|W\A| for some κ0 < 1 depending
only on ℵ. Hence, we are able to fix alignment of |W\A| vertices by creating at most
2κ0·|W\A| branches, and the total running time 2κ0·|K | follows. ��

To complete case A, let H be a maximum induced subgraph of G belonging to
Π . We branch into at most 2|V \K | subcases, in each fixing a different subset P of
V \K as V (H)\K ; we discard all the branches where the subgraph induced by P
does not belong to Π . For each branch, we use Lemma 1 to find a maximum induced
Π -subgraph which can be obtained from the guessed subset by adding vertices of
K . This takes time O∗(2κ0·|K |) for each branch. Thus the running time in this case is
O∗(2|V \K | · 2κ0·|K |) ≤ O∗(2(1−α)n · 2κ0·αn) = O∗(2(1−(1−κ0)α)n). Note that 1 − (1 −
κ0)α < 1 for α > 0 and κ0 < 1.

123

Algorithmica

Case B: The graph G has no clique of size αn.

Firstly, we search for solutions that have at most n/2 − βn or at least n/2 + βn
vertices for some β, 0 < β < 1/16, to be determined later. For this, we may apply
a simple brute-force check that tries all vertex subsets of size at most �n/2 − βn� or
at least �n/2 + βn� in time O∗(

(n
�n/2−βn�

)
); note that by Proposition 4 for β > 0 it

holds that O∗(
(n
�n/2−βn�

)
) ≤ O∗(2κ1n) for some κ1 < 1 depending on β.

Step 2 Test all subsets of size at most n/2 − βn and at least n/2 + βn, whether they
induce a graph fromΠ . Let H be a such induced subgraph of maximum size. If |H | ≥
n/2+ βn, we output this solution and terminate the algorithm. If |H | = �n/2− βn�,
we proceed with the algorithm to test whether there is some induced subgraph of size
between n/2 − βn and n/2 + βn. If |H | < �n/2 − βn�, we again terminate the
algorithm and output H ; the reason is that Π is hereditary, so if there would be some
bigger H , the previous option would happen.

If execution of Step 2 did not terminate the algorithm, we know that the cardinality
of the vertex set of a maximum induced subgraph belonging toΠ is between n/2−βn
and n/2 + βn. We proceed to further steps with this assumption.

Let H be a maximum induced Π -subgraph of G. We do not know how H looks
and the only information about H we have so far is that:

– H has no clique of size αn, and
– that n/2 − βn ≤ |V (H)| ≤ n/2 + βn.

Let us note that the number of vertices of G not contained in H is also between
n/2 − βn and n/2 + βn.

We now use Property (4) to find a 2
3 -balanced clique separator in H . More precisely,

there is a clique S in H such that V (H)\S may be partitioned into sets X1 and X2
such that

– 1
3 |V (H)| − |S| ≤ |X1|, |X2| ≤ 2

3 |V (H)|, and
– there is no edge between X1 and X2 in G.

As S is also a clique inG, we have that |S| ≤ αn. Therefore, observe that |X1|, |X2| ≥
(16 − β

3 − α)n > 1
8n, since β < 1/16 and α < 1/48. Property (4) gives us more

algorithmic properties of the partition (X1, S, X2) of V (H); these properties will be
useful later. As α is small, we may afford the following branching step.

Step 3 Branch into at most (1 + αn)
(n
αn

) · (n + 1)2 subproblems, in each fixing a
different subset of V of size at most αn as S, as well as the cardinalities of X1, X2
(we bound

(n
0

) + (n
1

) + · · · + (n
αn

)
by (1+ αn) · (n

αn

)
). Discard all the branches where

S is not a clique.

From now on we focus on one subproblem; hence, we assume that the clique S is
fixed and the cardinalities of X1, X2 are known. Let G ′ = G\S; to ease the notation,
for X ⊆ V (G ′) we denote N ′[X] = NG ′ [X] and N ′(X) = NG ′(X). We consider
two cases of how the structure of the optimal solution H may look like, depending on
how many connected components H\S has. The threshold is γ n for a small constant
γ > 0 to be determined later.

123

Algorithmica

Step 4 Branch into two subproblems: in the first branch assume that H\S has at most
γ n connected components, and in the second branch assume that H\S has more than
γ n connected components.

In the branches of Step 4 the algorithm checks several cases, and for every case
proceeds with further branchings. To ease the description, we do not distinguish these
branchings as separate Steps, but rather explain them in the text.

Branch B.1: Graph H\S has at most γ n connected components.

We first branch into at most (n + 1)3 subproblems, in each fixing the cardinali-
ties of sets N ′(X1), N ′(X2) and N ′(X1) ∩ N ′(X2) such that |N ′(X1) ∩ N ′(X2)| ≤
|N ′(X1)|, |N ′(X2)| ≤ n − (|S| + |X1| + |X2|). From now on we assume that these
cardinalities are fixed. We consider a few cases depending on the sizes of N ′(X1),
N ′(X2) and N ′(X1) ∩ N ′(X2); in these cases we use small constants δ and ε, to be
determined later.

Case B.1.1:
∣
∣|N ′(X1)| − |X1|

∣
∣ ≥ δn, or

∣
∣|N ′(X2)| − |X2|

∣
∣ ≥ δn.

We concentrate only on the subcase of
∣
∣|N ′(X1)| − |X1|

∣
∣ ≥ δn, as the second sub-

case is symmetric. As the number of components is small, their approximate location
can be guessed at a cost of a small running time overhead as follows. Let P1 be a set
of vertices of size at most γ n that is constructed by picking one vertex from every
component of G[X1] = H [X1]. We branch into at most (1 + γ n)

(n
γ n

)
subproblems,

in each fixing a different subset of size at most γ n as P1.
We add an artificial vertex v1 to G ′, make it adjacent to all the vertices of P1, and

enumerate all vertex sets of the new graph that (i) are connected, (ii) contain P1∪{v1},
(iii) are of size |X1| + 1 and have neighbourhood of size |N ′(X1)|. By Proposition 3,
the number of such sets is at most

(|X1|+|N ′(X1)||X1|
)
and they can be enumerated in

time O∗(
(|X1|+|N ′(X1)||X1|

)
); note that here we enumerate candidates for such sets using

Proposition 3 for vertex v1, and filter out all the subsets that do not contain P1. Clearly,
X1 ∪ {v1} is among the enumerated sets.

We therefore branch into at most
(|X1|+|N ′(X1)||X1|

)
subproblems, in each fixing a dif-

ferent set out of the enumerated ones as X1 (after excluding v1). Moreover, in each
subproblem we branch further into at most

(n−|X1|−|N ′(X1)||X2|
)
subproblems, in each fix-

ing a different subset of V \(N ′[X1] ∪ S) as X2. For each of these subproblems we
check whether G[X1 ∪ X2 ∪ S] belongs to Π in polynomial time.

Thus we obtain at most

(1 + γ n) ·
(

n

γ n

)

·
(|X1| + |N ′(X1)|

|X1|
)

·
(
n − |X1| − |N ′(X1)|

|X2|
)

subproblems. Since |N ′(X1)|, |X1| ≤ n and
∣
∣|N ′(X1)|−|X1|

∣
∣ ≥ δn, by Proposition 4

we infer that
(|X1|+|N ′(X1)||X1|

) ≤ O∗(2κ2(|X1|+|N ′(X1)|)) for some κ2 < 1, depending on
δ. On the other hand,

123

Algorithmica

(
n − |X1| − |N ′(X1)|

|X2|
)

≤ O∗(2n−|X1|−|N ′(X1)|).

At the end of the discussion of Step 2 it was shown that |X1| ≥ 1
8n, hence |X1| +

|N ′(X1)| ≥ 1
8n. So we have that in this case

(|X1| + |N ′(X1)|
|X1|

)

·
(
n − |X1| − |N ′(X1)|

|X2|
)

= O∗(2κ3n)

for some κ3 < 1 depending on δ. Hence, the total number of branches produced by
Case B.1.1, including the overheads from guessing S and cardinalities, is bounded by
O∗(

(n
αn

) · (n
γ n

) · 2κ3n). Given κ3, which depends on δ only, we may choose α and γ

small enough so that this number is smaller than O∗(2κ4n) for some κ4 < 1.

Case B.1.2: Case B.1.1 does not apply, but |N ′(X1) ∩ N ′(X2)| ≥ εn.

We proceed similarly to Case B.1.1, but we change the strategy for guessing the
set X2: instead of a brute-force guess in V \(N ′[X1] ∪ S), we again make use of
Proposition 3. Let P1, P2 be sets of vertices of size at most γ n that are constructed by
picking one vertex from every component of G[X1] = H [X1] and G[X2] = H [X2],
respectively. Similarly as in the previous case, branch into at most (1 + γ n)2 · (n

γ n

)2

subproblems, in each fixing P1 and P2. Again, we enumerate at most
(|X1|+|N ′(X1)||X1|

)

candidates for X1 by adding an artificial vertex adjacent to all the vertices of P1, and
then we branch into a number of subproblems, in each fixing one of these candidates
as X1. We terminate all the branches where P2 and X1 are not disjoint, or there is
an edge between them. Note that the total number of created subproblems is at most
(|X1|+|N ′(X1)||X1|

) ≤ O∗(22|X1|+δn).
Now consider the graph G ′′ = G\(N ′[X1] ∪ S). Note that X2 ⊆ V (G ′′) and the

neighbourhood of X2 in G ′′ is of size at most |N ′(X2)| − εn, as at least εn vertices
from the intersection with N ′(X1) have been removed. Therefore, we can add an
artificial vertex v2 in G ′′ adjacent to all the vertices of P2, and apply Proposition 3 to
it. Similarly as in the case of X1, we can enumerate at most

(|X2| + |N ′(X2)| − |N ′(X1) ∩ N ′(X2)|
|X2|

)

candidates for the set X2 in time

O∗
((|X2| + |N ′(X2)| − |N ′(X1) ∩ N ′(X2)|

|X2|
))

.

Then we branch further into at most
(|X2|+|N ′(X2)|−|N ′(X1)∩N ′(X2)||X2|

)
subproblems, in

each fixing one of the candidates as X2. As |N ′(X2)| ≤ |X2| + δn and |N ′(X1) ∩
N ′(X2)| ≥ εn, we have that |X2|+|N ′(X2)|−|N ′(X1)∩N ′(X2)| ≤ 2|X2|−(ε−δ)n.

When X1 and X2 are fixed, in polynomial time we check whether the graph
G[X1 ∪ X2 ∪ S] belongs to Π . Observe that O∗(22|X1|+δn) · O∗(22|X2|−(ε−δ)n) =

123

Algorithmica

S

X1

X1

X1

X2

X2

X2

Uboth

Unone

N (X1)

N (X2)

Fig. 3 Situation in Case B.1.3. Neighbourhoods N ′(X1) and N ′(X2) have almost equal sizes to X1 and
X2, respectively, while Uboth and Unone contain only a tiny fraction of vertices

O∗(22(|X1|+|X2|)−(ε−2δ)n); moreover, |X1| + |X2| ≤ n/2 + βn. Hence, given ε > 0
we may choose δ and β small enough so that O∗(22|X1|+δn) · O∗(22|X2|−(ε−δ)n) ≤
O∗(2κ5n) for some κ5 < 1 depending on ε. Now observe that the total number of
branches produced in Case B.1.4, including overheads from guessing S, cardinalities,
as well as P1 and P2, isO∗((n

αn

) · (n
γ n

)2) ·O∗(2κ5n), so given κ5 we may choose α and
γ small enough so that the total number of subbranches produced is at mostO∗(2κ6n)

for some κ6 < 1. Every subbranch is then processed in polynomial time.

Case B.1.3: None of the cases B.1.1 or B.1.2 applies.

Summarizing, sets X1 and X2 have the following properties:

– 1
6n − β

3 n − αn ≤ |X1|, |X2| ≤ 1
3n + 2β

3 n,

– 1
2n − (α + β)n ≤ |X1| + |X2| ≤ 1

2n + βn,

–
∣
∣|N ′(Xi)| − |Xi |

∣
∣ ≤ δn for i = 1, 2, and |N ′[X1] ∩ N ′[X2]| ≤ εn.

Let Uboth = N ′[X1] ∩ N ′[X2] = N ′(X1) ∩ N ′(X2), Unone = V (G ′)\(N ′[X1] ∪
N ′[X2]), and U = Uboth ∪ Unone; see Fig. 3. We already know that |Uboth| ≤ εn. We
now claim that |Unone| ≤ ζn, where ζ = 2α + 2β + 2δ + ε. Indeed, we have that

|Unone| = |V (G ′)| − |X1| − |X2| − |N ′(X1)| − |N ′(X2)| + |N ′(X1) ∩ N ′(X2)|
≤ n − 2(|X1| + |X2|) + 2δn + εn ≤ (2α + 2β + 2δ + ε)n.

Given that sets Uboth and Unone are small, we may fix them with O∗(
(n
εn

) · (n
ζn

)
)

overhead in the running time: we branch into O∗(
(n
εn

) · (n
ζn

)
) subproblems, in each

fixing a pair of disjoint subsetsUboth andUnone of V \S of cardinalities at most εn and
ζn, respectively. Note that then V (G ′)\U is the symmetric difference of N ′[X1] and
N ′[X2]; let I = V (G ′)\U . We are left with determining which part of I is in X1∪ X2,
and which is outside.

Observe that every vertex of I is in exactly one of the two sets: N [X1] or N [X2].
Hence, by Property (4) of Π , we may look for subsets X1, X2 of I , such that (i)

123

Algorithmica

algorithm A run on G[X1 ∪ S] and G[X2 ∪ S] with clique S distinguished provides
a positive answer in both of the cases, and (ii) I is a disjoint union of N [X1] and
N [X2]. We model this situation as an instance of the 2-Table problem as follows. For
i = 1, 2, enumerate all the subsets of I of size |Xi | as candidates for Xi , and discard
all the candidates for which the algorithmA does not provide a positive answer when
run on the subgraph induced by the candidate plus the clique S. For each remaining
candidate subset create a binary vector of length |I | indicating which vertices of I
belong to its closed neighbourhood. Construct matrices T1, T2 by putting the vectors
created for candidates for X1, X2 as columns of T1, T2, respectively. Now, we need to
check whether one can find a column of T1 and a column of T2 that sum up to a vector
consisting only of ones.

As |Xi | ≤ 1
3n+ 2β

3 n for i = 1, 2, we have that tables T1, T2 have at most
(n
1
3 n+ 2β

3 n

)

columns, which isO∗(2κ7n) for some universal constant κ7 < 1 (recall that β < 1/16,
so 1

3n + 2β
3 n < 3

8n). Hence, by Proposition 5 we may solve the obtained instance of
2-Table in O∗(2κ7n) time. The total running time used by Case B.1.3, including the
overheads for guessing clique S, setU and cardinalities, isO∗(

(n
αn

) · (n
εn

) · (n
ζn

) ·2κ7n);
note that we may choose α, β, δ, ε small enough so that this running time isO∗(2κ8n)

for some κ8 < 1.

Branch B.2: Graph H\S has more than γ n connected components.

Consider connected components of H\S and fix a large constant L > 2 depending
on γ , to be determined later. We say that a component containing at most C = L/γ

vertices is small, and otherwise it is large. Let r� and rs be the numbers of large
and small components of H\S, respectively. The number of vertices contained in
large components is hence at least L·r�

γ
. Thus, L·r�

γ
≤ n, r� ≤ γ n

L and, consequently,

rs ≥ γ n−r� ≥ γ n(1− 1
L) ≥ γ n

2 . Since small components are nonempty, they contain
at least γ n

2 vertices in total.

S

X
X

NX NX

Z

Y
Y

Y

Fig. 4 Situation in Branch B.2. Note that even if we fix X and S, the remaining part V \(N ′[X] ∪ S) still
needs to be partitioned between Y and Z

123

Algorithmica

Let us summarize the situation; see Fig. 4 for reference. The vertices of V can be
partitioned into disjoint sets S, X , NX , Y , and Z , where

(i) S is the clique guessed in Step 3;
(ii) X are the vertices contained in large components of H\S;
(iii) NX = N ′(X);
(iv) Y are the vertices contained in small components of H\S;
(v) Z consists of vertices not contained in H and not adjacent to X .

Note that V (H) = S ∪ X ∪ Y . Unfortunately, even given X and S, the algorithm still
cannot deduce the solution: we still need to split the remaining part V \(N ′[X] ∪ S)

into Y that will go into the solution, and Z that will be left out. However, as we know
that G[X] has a small number of components, we can proceed with a branching step
that guesses X using Proposition 3. Let P be a set of vertices that contains one vertex
from each connected component of G[X]; we have that |P| = r� ≤ γ n

L .

Step 5. Branch into at most (n + 1)4 subbranches fixing r�, |X |, |Y |, |N ′[X]|. Then
branch into

(n
r�

) ≤ (n
γ n
L

)
cases, in each fixing a different set of size r� as a candi-

date for P . Add an artificial vertex v1 adjacent to P , and using Proposition 3 in
O∗(

(|N ′[X]|
|X |

)
) ≤ O∗(2|N ′[X]|) time enumerate at most

(|N ′[X]|
|X |

) ≤ 2|N ′[X]| vertex sets
that (i) are connected, (ii) contain P ∪ {v1}, (iii) are of size |X | + 1 and have neigh-
bourhood of size |N ′(X)|.Note that we can do it by filtering out sets that do not contain
P from the list given by Proposition 3. As X ∪ {v} is among enumerated candidates,
branch into at most 2|N ′[X]| subcases, in each fixing a different candidate for X .

Let R = G[V \(N ′[X] ∪ S)]. Note that we need to have |V (R)| ≥ |Y | ≥ rs ≥ γ n
2 ,

so if |V (R)| <
γ n
2 then we may safely terminate the branch. We will now use the

fact that the input graph does not contain any forbidden induced subgraphs of size
bounded by some bound �; recall that this assumption was justified in the beginning
of Sect. 4 by an application of Proposition 2. We set � = 3C2 + 1; hence, whenever
we examine an induced subgraph of G of size at most �, we know that it belongs to
Π . The later steps of the algorithm are encapsulated in the following lemma.

Lemma 2 Assuming α <
γ

104C3 and � = 3C2 + 1, there exists a universal con-

stant ρ < 1 and an algorithm working in O∗(2ρ|V (R)|) time that enumerates at most
O(2ρ|V (R)|) candidate subsets of V (R), such that Y is among the enumerated candi-
dates.

Before we proceed to the proof, let us observe that application of Lemma 2 finishes
the whole algorithm. Indeed, so far in the branching procedure we have an overhead of
O∗(

(n
αn

) ·(n
γ n
L

) ·2|N ′[X]|) for guessing S and X . If we now enumerate and examine—by
testing whether G[X ∪ S ∪ Y] ∈ Π—all the candidates for Y given by Lemma 2, we
arrive at running time

O∗
((

n

αn

)

·
(
n
γ n
L

)

· 2|N ′[X]| · 2ρ|V (R)|
)

.

Since |N ′[X]| + |V (R)| ≤ n, ρ < 1 is a universal constant and |V (R)| ≥ γ n
2 ,

given γ > 0 we may choose L to be large enough and α > 0 to be small enough

123

Algorithmica

(and smaller than γ

104C3) so that this running time is O∗(2κ9n) for some κ9 < 1. Here
we exploit the fact that ρ does not depend on α, γ or L . Intuitively, what is really
happening at this point is that the threshold C for large components depends on γ and
L , and thus the threshold � for forbidden induced subgraphs on which we branch a
priori using Proposition 2 depends on γ and L . This branching, however, is performed
outside the current reasoning and we avoid a loop in the definitions of thresholds.

We proceed to the proof of Lemma 2.

Proof (of Lemma 2) The initial step is a classical branching algorithm whose goal is
to reduce the degrees in R. The algorithm will produce a number of branches: pairs
(A, D), where A is the set of vertices assumed to be contained in the solution, and D
is the set of vertices assumed to be excluded from it. During branching process we will
be adding vertices to sets A and D, the algorithm starts with A = D = ∅. We say that
a vertex v ∈ V (R) is heavy if deg(v)R\D ≥ 3C , and is light otherwise. Our goal is to
get rid of all the heavy vertices, that is, to achieve a situation where all the vertices in
R\D are light (where the degrees are counted in R\D). The following claim formally
explains all the demanded properties.

Claim 1 There exists a universal constant σ < 1 and an algorithm running in time
O∗(2σ |V (R)|), which outputs a set of pairs L = {(A1, D1), (A2, D2), . . . , (Ap, Dp)}
of disjoints subsets of V (R) with the following conditions satisfied:

– For every pair (Ai , Di), all vertices of R\Di are light in R\Di .
– There is an index i0 such that Ai0 ⊆ Y and Di0 ∩ Y = ∅.
–

∑p
i=1 φ(Ai , Di) ≤ 2σ |V (R)|, where φ is a potential function defined as φ(A, D) =

2σ |V (R)\(A∪D)|.

Proof (of Claim 1) The algorithm maintains two disjoint sets A and D; A is the set of
vertices assumed to be contained in the constructed candidate set, while the vertices
of D are assumed to be excluded from the constructed candidate set. Naturally, we
begin with A = D = ∅. The algorithm stops branching when it finds out that R\D
contains only light vertices. Thus, the output of the branching algorithm is a set of
leaf branches (Ai , Di)where R\Di only contains light vertices. During branching we
ensure the property that there is at least one output branch (Ai , Di) such that Ai ⊆ Y
and Di ∩Y = ∅; to express this property, we will also say that the branching is correct.

The progress of the algorithm is measured by the potential function φ(A, D) =
2σ |V (R)\(A∪D)| for some universal constant σ < 1 to be determined later. At each
branching step we will ensure that the sum of potentials in subbranches is at most the
potential of the initial branch. As the potential is always at least 1, we will produce at
most 2σ |V (R)| leaf branches (Ai , Di) in total, and their total sum of potentials will be
at most 2σ |V (R)|. Each branching step will be performed in polynomial time, so the
whole branching algorithm runs in O∗(2σ |V (R)|) time.

If R\D does not contain any heavy vertex, we terminate the branching procedure
and output the current pair (A, D). Otherwise, the graph R\D contains some heavy
vertex v. At first consider the case v /∈ A. As R[Y] has all the connected components
of size at most C , we infer that if v ∈ Y , then at most a third of the neighbours of v in
R\D can belong to Y . Hence, we can afford the following branching step. We branch

123

Algorithmica

into a number of subcases. In one subcase, v is assigned to D. In the other subcases,
v is assigned to A and alignment of all the vertices of NR\D(v)\A is guessed in such
a manner that v has less than C neighbours in A. As the neighbours of v in R\D can
be only in A, or neither in A nor in D, at most a third of neighbours contained in
NR\D(v)\A can go in this manner to A. Note here that if NR\D(v)\A is empty, this
means that v has already at least C neighbours in A and we may safely terminate the
branch. The correctness of the presented branching rules follows directly from the fact
that all the connected components of R[Y] are of size at most C .

From Proposition 4 follows combinatorial bound which will be useful when con-
trolling the behaviour of the potential:

Fact 1 If |M | = m, then the number of subsets of M of size at most m/3 is bounded
by 2σ ′·m for some universal constant σ ′ < 1.

In fact we can choose 2σ ′ = 1.89. By Fact 1, in order to prove that the total
potential of resulting instances is at most the initial potential, it suffices to check that
for n = |V (R)\(A ∪ D)| and m = |NR\D(v)\A| ≥ 1 it holds that

2σn ≥ 2σ(n−1) + 2σ ′·m · 2σ(n−1−m).

This is however equivalent to

2σ ≥ 1 + 2m(σ ′−σ).

Let us choose 1 > σ > σ ′ so that 2σ (2σ − 1) ≥ 2σ ′
. Observe that this can be

done since function f (t) = 2t (2t − 1) is continuous and strictly increasing in the
neighbourhood of 1, and f (1) = 2 > 2σ ′

. Then

2σ ≥ 1 + 2σ ′−σ ≥ 1 + 2m(σ ′−σ),

since m ≥ 1 and σ ′ < σ .
In the remaining case when v ∈ A, we simply omit the branch when v is assigned

to D. Hence, to bound the total potential of obtained subbranches, we need to check
that

2σn ≥ 2σ ′·m · 2σ ·(n−m),

which follows from the fact that σ ′ < σ . This completes the proof of Claim 1. ��
We proceed with the proof of Lemma 2. Let

L = {
(A1, D1), (A2, D2), . . . , (Ap, Dp)

}

be the set of pairs produced by Claim 1.We know that (i)
∑p

i=1 φ(Ai , Di) ≤ 2σ |V (R)|,
(ii) for every i all the vertices in R\Di are light, and (iii) there exists an index i0
such that Ai0 ⊆ Y and Di0 ∩ Y = ∅. Let Lsmall be the subset of L consisting of pairs

123

Algorithmica

(Ai , Di) such that |Ai |+|Di | ≥ |V (R)|
4 , andLlarge be the subset of remaining instances

from L (here small/large in Lsmall,Llarge indicate that there is small or large number
of remaining vertices for which we have to decide). Now, for every pair (A, D) ∈ L
we produce a number of candidates for Y . We handle listsLsmall andLlarge differently.

For every pair (A, D) ∈ Lsmall we proceed by brute force. As the final candidates
for Y , we output all the sets of form A ∪ Y ′, where Y ′ is a subset of V (R)\(A ∪ D).
Clearly, if (Ai0 , Di0) ∈ Lsmall, thenY is among the output candidates.Wenowestimate
how many candidates have been output.

For (A, D) ∈ Lsmall, let m = |V (R)\(A ∪ D)|. Thus, for (A, D) we produce
exactly 2m candidates. Since m ≤ 3

4 |V (R)|, we have that 2m = 2σm · 2(1−σ)m ≤
φ(A, D) · 2 3

4 |V (R)|(1−σ). Hence, the total number of candidates produced for Lsmall is
at most

∑

(A,D)∈Lsmall

φ(A, D) · 2 3
4 |V (R)|(1−σ) = 2σ |V (R)|+ 3

4 |V (R)|(1−σ) = 2
3+σ
4 |V (R)|.

Note that 3+σ
4 < 1 for σ < 1.

We finally proceed to the pairs from Llarge. Let (A, D) ∈ Llarge, and let Q =
V (R)\(A ∪ D). The following claim is the crucial step in our reasoning:

Claim 2 If (A, D) ∈ Llarge is such that A ⊆ Y and D ∩ Y = ∅, then we have that
|Q ∩ Y | ≥ 2

3 |Q|.
In other words, we may safely assume that in the correct branch at least two thirds

of the unresolved vertices must remain in the solution. Before we proceed to the proof
of Claim 2, we present how it will be used to finish the whole algorithm of Lemma 2.

For every pair (A, D) ∈ Llarge we again proceed by brute force, but we take Claim 2
into consideration as well. That is, we output as candidates all sets of form Ai ∪ Y ′,
where Y ′ is a subset of Q of size at least 23 |Q|. By applying Fact 1 to the complement of

Y ′, we infer that the number of produced choices is at most 2σ ′m ≤ 2σm = φ(A, D),
where again m = |Q|. Thus, the total number of candidates produced in this manner
is at most

∑

(A,D)∈Llarge

φ(A, D) ≤ 2σ |V (R)| ≤ 2
3+σ
4 |V (R)|.

Concluding, the algorithm will produce at most 2 · 2 3+σ
4 |V (R)| candidates for Y :

2
3+σ
4 |V (R)| for Lsmall and 2

3+σ
4 |V (R)| for Llarge. Hence we can take ρ = 3+σ

4 . Claim 2
ensures that Y will be among the candidates enumerated for Llarge providing that
(Ai0 , Di0) ∈ Llarge, while we have already argued that Y will be among the candidates
enumerated for Lsmall providing that (Ai0 , Di0) ∈ Lsmall.

We now proceed to the proof of Claim 2.

123

Algorithmica

Proof (of Claim 2) Assume for the sake of contradiction that |Q ∩ Y | < 2
3 |Q|. Then,

since |Q| ≥ 3
4 |V (R)|, we have that

|Q\Y | >
1

3
|Q| ≥ 1

4
|V (R)| ≥ γ n

8
.

We construct a set T ⊆ Q\Y with the following properties:

– T is independent in G,
– no two vertices of T are adjacent to the same connected component of R[Y],
– |T | ≥ γ n

104C3 .

The construction of T is performed greedily. We iteratively pick to T an unused
vertex v of Q\Y and mark the following vertices of Q\Y as used: (i) v itself, (ii)
all the neighbours of v in Q\Y , and (iii) all the vertices of Q\Y that are adjacent to
any component of R[Y] adjacent to v. Recall that the degrees in R\D are bounded
by 3C and Q ⊆ V (R)\D, so v can have at most 3C neighbours in Q\Y . For the
same reason, v can be adjacent only to at most 3C connected components of R[Y].
Each of these components is of size at most C , and each vertex contained in any
such component can be adjacent to only 3C vertices of Q\Y . In total, the number of
vertices marked as used, including v itself, is at most 1 + 3C + 3C · C · 3C ≤ 13C3.
Hence,we can alwaysfind anunusedvertex for at least |Q\Y |

13C3 ≥ γ n
104C3 rounds. From the

construction it trivially follows that the constructed T has the two remaining requested
properties.

We now claim that R[T ∪Y] ∈ Π . Indeed, from the fact that the vertices of T have
degree at most 3C in R\D we infer that the connected components of R[T ∪Y] need to
be of size at most 1+3C2. If R[T ∪Y] /∈ Π , then there would be a forbidden induced
subgraph from FΠ in R[T ∪ Y]. As all graphs in FΠ are connected, this subgraph
would need to be contained in one of the connected components of R[T ∪ Y], and
hence would be of size at most 1 + 3C2. However, we assumed that G does not
contain any graph from FΠ of size at most � = 1 + 3C2, a contradiction. Hence
R[T ∪ Y] ∈ Π .

It remains to show that the constructed T contradicts that H is maximum induced
subgraph from Π . Consider the induced subgraph H ′ constructed as H ′ = G[X ∪
Y ∪ T]. In other words, we remove the clique S from the solution H , and insert the
set T instead. Clearly, H ′ is a disjoint union of graphs G[X] and G[Y ∪ T]; as both
of these graphs belong to Π , so does H ′. Moreover, as |S| = αn <

γ n
104C3 ≤ |T |, we

have that |V (H ′)| > |V (H)|. This is a contradiction with optimality of H . ��
As discussed before, Claim 2 finishes the proof of Lemma 2. ��

5 Summary of the order of choice of constants

In this section we give a short summary of the order of choice of constants. The
description of the constants is summarized in Table 2. In the following, by running
time faster than 2n we mean running time of form O∗(2κn) for some κ < 1.

123

Algorithmica

Table 2 Short description of important constants

Constant
name

Short description Defined in

α Largest clique-size in input graph G Step 1

β Checking whether solution size is in [n2 − βn, n
2 + βn] Step 2

γ Number of connected components in H\S Step 4

δ
∣
∣|N ′(X1)| − |X1|

∣
∣ ≥ δn Case B.1.1

ε |N ′(X1) ∩ N ′(X2)| ≥ εn Case B.1.2

ζ 2α + 2β + 2δ + ε, upper bound on the size of Unone Case B.1.3

L Large constant> 2 Branch B.2

C C = L
γ , size of small components in H\S Branch B.2

� The input graph does not contain any forbidden induced Before step 1

Subgraph from FΠ of size at most �

� Set to 3C2 + 1 End of algorithm

We first examine Case B.1.3. In this case, the running time is O∗(
(n
εn

) · (n
ζn

)
) ·

O∗(2κ7n) for some universal constant κ7 < 1 such that
(n
3
8 n

) = O∗(2κ7n). Hence, we

can find a positive upper bound ε0 > 0 on α, β, δ, ε, such that choosing these constants
smaller than ε0 results in Case B.1.3 running faster than 2n .

We now proceed with Case B.1.2. We first fix any ε > 0 such that ε < ε0. As
observed in this case, given ε > 0 we can find a positive upper bound ε1 < ε0 on
α, β, γ, δ, such that for any choice of α, β, γ, δ smaller than ε1 we obtain running time
faster than 2n .

We proceed similarly with Case B.1.1. We fix any δ > 0 such that δ < ε1. Again,
as observed in this case, given δ > 0 we can find a positive upper bound ε2 < ε1 such
that choosing α, γ to be smaller than ε2 results in running time faster than 2n .

Now we examine Branch B.2. Let us fix any γ > 0 such that γ < ε2. Recall
that the running time in this branch was O∗(

(n
αn

) · (n
γ n
L

) · 2|N ′[X]| · 2ρ|V (R)|), where
|N ′[X]| + |V (R)| ≤ n, |V (R)| ≥ γ n

2 and ρ < 1 is a universal constant. Hence, given
γ > 0 we can find a positive lower bound L0 ≥ 2 on L and a positive upper bound
ε3 < ε2 on α, such that taking any L > L0 and positive α < ε3 gives us running
time faster than 2n . We fix any L > L0, and by lowering ε3 if necessary we ensure
that inequality ε3 <

γ

104C3 holds, where C = L/γ . Then we can fix the remaining
two constants: we fix β to be any positive constant smaller than ε1 so that Step 2 runs
faster than 2n , and α to be any positive constant smaller than ε3. Thus we make sure
that in Branches B.1 and B.2 we obtain running time faster than 2n .

Since Case Aworks faster than 2n for any α > 0, namely inO∗(2(1−(1−κ0)α)n) time
for some κ0 < 1 depending only on ℵ, we infer that the whole algorithm runs faster
than 2n . Note however, that we assumed that the algorithm runs on F ′

Π -free graphs,

where F ′
Π consists of graphs of FΠ of size at most �, for � = 3C2 + 1 = 3 L2

γ 2 + 1.

Since F ′
Π is a finite family of graphs, we can apply Proposition 2 as described in

Sect. 4 before Step 1, and obtain running time faster than 2n for the general problem.

123

Algorithmica

Note now that � is set to be quadratic in terms of C , which in turn depends on L
and γ . Since L depends on γ , which in turn depends on δ and ε, even very rough
estimates show that � will be at least in the order of several thousands, or even far
worse. Therefore, at the very beginning of the algorithm we branch on forbidden
induced subgraphs of sizes up to at least several thousands; in this branching we omit
only one in 2� branches, where no vertex of an obstacle is selected to the solution. This
leads to the conclusion that if we spell out κ as 0.9999 . . . 99, then the number of nines
will be at least two to the power of several thousands—much more than the number
of atoms in the universe, not to mention the length of this paper. For this reason, we
believe that the precise estimates of the obtained running time are pointless, especially
given that the purpose of this paper is only to show that 2n is not an unbreakable
barrier for the Maximum Induced Π -Subgraph problem for chordal-like graph
classes.

6 Conclusion

Theorem 1 shows that for any class of graphs Π satisfying Properties (1)–(4), a max-
imum induced subgraph from Π of a graph with n vertices can be found in time
O∗(2λn) for some λ < 1. Pipelining Proposition 2 with Theorem 1 shows that we
moreover may add any finite family of forbidden subgraphs on top of belonging to Π .
More precisely, we have the following theorem.

Theorem 2 Let F be a finite set of graphs and Π be a class of graphs satisfying
Properties (1)–(4). There exists an algorithm which for a given n-vertex graph G,
finds a maximum induced F-free Π -graph in G in time O∗(2λn) for some λ < 1,
where λ depends only on ℵ and F .

As mentioned in the introduction, Theorem 2 covers such graph classes as proper
interval graphs (claw-free interval graphs), Ptolemaic graphs (chordal and gem-free),
block graphs (chordal and diamond-free), see Fig. 5. We refer to [3] for the definitions
and discussions on these graphs.

In this manner, we hope to provide a new insight into Hypothesis 1 by considering
chordal-like graph classes. So far the research on breaking the 2n barrier for theMax-

imum Induced Π -Subgraph problem concentrated mostly on exploiting sparsity of
a graph class, like in [7,9,20], or thinness in terms of treewidth, like in the metaresult
of Fomin et al. [10]. In this work we were dealing with graph classes which inher-
ently allow existence of large cliques, and thus a new set of tools was needed. Shortly
speaking, the crux of our approach is to use existence of balanced clique separators in
chordal graphs to apply the 2-Table trick of Schroeppel and Shamir [24]. However,
this application needed to be preceeded by a long and technical preparation of the
instance at hand.

Clearly, the most important research direction stemming from our work is further
investigation of Hypothesis 1. Since we believe that the fully general statement might
turn out to be either false or very hard to prove, we propose some relaxations that can
be more approachable.

123

Algorithmica

Firstly, following the approach of Fomin et al. [10] one could require the graph
class Π to be moreover definable in some logical formalism, for example in CMSO2
(Counting Monadic Second-Order logic, that is, Monadic Second-Order logic with
modular predicates and quantification over edge subsets) or CMSO1 (the same as
CMSO2, but without quantification over edge subsets). It can be easily seen that
both chordal and interval graphs are definable in CMSO1 by testing existence of any
of the forbidden induced subgraphs. We have two concrete examples of hereditary,
polynomial-time recognizable, and CMSO1-definable graph classes for which we do
not know any algorithm faster than 2n :

– Perfect graphs can be defined as graphs which contain neither an odd hole, nor
an odd anti-hole; this result is known as the Strong Perfect Graph Theorem [5].
Perfect graphs are hereditary, polynomial-time recognizable [4], and containing an
odd hole or an odd anti-hole can be easily expressed in CMSO1.

– Strongly chordal graphs are chordal graphs that moreover exclude �-suns (graphs
with 2� vertices partitioned in two sets W = {w1, w2, . . . w�} and U =
{u1, u2, . . . u�} such that U is a clique and W is independent set, besides wi is
connected to u j if and only if i = j or i ≡ j + 1 mod n, see Fig. 5) for � ≥ 3 as
induced subgraphs; we refer to [3] for a broader discussion of this graph class. They
are also hereditary, polynomial-time recognizable [3], and definable inCMSO1. The
reason why they do not fall under the regime of Theorem 2 is that �-suns contain
arbitrary large cliques and thus Property (2) is not satisfied.

Secondly, one could impose some structural properties on the set of forbidden
induced subgraphsFΠ . One obvious relaxation, already used in Property (2), is requir-
ing that all the graphs from FΠ are connected, or equivalently that Π is closed under

1

2

3

. . .

5

1

2

3

. . .

5

(a) (b) (c)

(d) (e) (f)

Fig. 5 Forbidden subgraphs used in characterizations of graph classes discussed in Sect. 6. a claw, b
diamond, c gem, d hole (cycle), e anti-hole, f sun

123

Algorithmica

taking disjoint union.More restrictions on the graphs fromFΠ can be further imposed.
For instance, it would be interesting to see if requiring that all the graphs from FΠ

have treewidth bounded by some constant could help in breaking the 2n barrier; note
that this subsumes both the case of chordal and of interval graphs.

Finally, one could deviate from the precise statement of Hypothesis 1 and replace
the condition of being hereditary with connectivity. That is, we would like to find a
maximum induced connected graph belonging to Π . Of course, our approach fails
since the connectivity requirements are not hereditary, and thus Property (1) is not
satisfied. Say, can a maximum induced connected chordal subgraph be found faster
than 2n?

Acknowledgments We thank the reviewers for careful reading of the manuscript and many helpful
comments.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Bliznets, I., Fomin, F.V., Pilipczuk, M., Villanger, Y.: Largest chordal and interval subgraphs faster
than 2n . In: Proceedings of the 21st Annual European Symposium on Algorithms, ESA 2013, Lecture
Notes in Computer Science, vol. 8125, pp. 193–204. Springer (2013)

2. Booth,K.S., Lueker,G.S.: Testing for the consecutive ones property, interval graphs, andgraphplanarity
using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)

3. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Society for Industrial and Applied
Mathematics, Philadelphia (1999)

4. Chudnovsky, M., Cornuéjols, G., Liu, X., Seymour, P.D., Vuskovic, K.: Recognizing berge graphs.
Combinatorica 25(2), 143–186 (2005)

5. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann.
Math. 164(1), 51–229 (2006)

6. Fomin, F.V., Gaspers, S., Kratsch, D., Liedloff, M., Saurabh, S.: Iterative compression and exact
algorithms. Theor. Comput. Sci. 411(7), 1045–1053 (2010)

7. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback vertex set problem:
exact and enumeration algorithms. Algorithmica 52(2), 293–307 (2008)

8. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer Science & Business Media, New
York (2010)

9. Fomin, F.V., Todinca, I., Villanger, Y.: Exact algorithm for the Maximum Induced Planar Subgraph
problem. In: Proceedings of the 19th Annual European Symposium onAlgorithms, ESA 2011, Lecture
Notes in Computer Science, vol. 6942, pp. 287–298. Springer (2011)

10. Fomin, F.V., Todinca, I., Villanger, Y.: Large induced subgraphs via triangulations and CMSO. SIAM
J. Comput. 44(1), 54–87 (2015)

11. Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations. In: Proceedings of
the 27th International Symposium on Theoretical Aspects of Computer Science, STACS 2010, LIPIcs,
vol. 5, pp. 383–394. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2010)

12. Fomin, F.V., Villanger, Y.: Treewidth computation and extremal combinatorics. Combinatorica 32(3),
289–308 (2012)

13. Gaspers, S.: Exponential time algorithms: structures, measures, and bounds. Ph.D. thesis, University
of Bergen, Norway (2008)

14. Gaspers, S., Kratsch, D., Liedloff, M.: On independent sets and bicliques in graphs. Algorithmica
62(3–4), 637–658 (2012)

15. Gilbert, J.R., Rose, D.J., Edenbrandt, A.: A separator theorem for chordal graphs. SIAM J. Algebr.
Discrete Methods 5(3), 306–313 (1984)

123

http://creativecommons.org/licenses/by/4.0/

Algorithmica

16. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)
17. Gupta, S., Raman, V., Saurabh, S.: Maximum r -regular induced subgraph problem: fast exponential

algorithms and combinatorial bounds. SIAM J. Discrete Math. 26(4), 1758–1780 (2012)
18. Lekkerkerker, C., Boland, J.: Representation of a finite graph by a set of intervals on the real line.

Fundam. Math. 51(1), 45–64 (1962)
19. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J.

Comput. Syst. Sci. 20(2), 219–230 (1980)
20. Pilipczuk, M., Pilipczuk, M.: Finding a maximum induced degenerate subgraph faster than 2n . In:

Proceedings of the 7th International Symposium on Parameterized and Exact Computation, IPEC
2012, Lecture Notes in Computer Science, vol. 7535, pp. 3–12. Springer (2012)

21. Raman, V., Saurabh, S., Sikdar, S.: Efficient exact algorithms through enumerating maximal indepen-
dent sets and other techniques. Theory Comput. Syst. 41(3), 563–587 (2007)

22. Robson, J.M.: Algorithms for maximum independent sets. J. Algorithms 7(3), 425–440 (1986)
23. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J.

Comput. 5(2), 266–283 (1976)
24. Schroeppel,R., Shamir,A.:A t = O(2n/2), s = O(2n/4) algorithm for certainNP-complete problems.

SIAM J. Comput. 10(3), 456–464 (1981)

123

	Largest Chordal and Interval Subgraphs Faster than 2n
	Abstract
	1 Introduction
	2 Preliminaries
	3 Properties of the graph class
	4 The algorithm
	5 Summary of the order of choice of constants
	6 Conclusion
	Acknowledgments
	References

