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ABSTRACT

JASPAR is a popular open-access database for
matrix models describing DNA-binding preferences
for transcription factors and other DNA patterns.
With its third major release, JASPAR has been
expanded and equipped with additional functions
aimed at both casual and power users. The
heart of the JASPAR database—the JASPAR CORE
sub-database—has increased by 12% in size, and
three new specialized sub-databases have been
added. New functions include clustering of matrix
models by similarity, generation of random matrices
by sampling from selected sets of existing models
and a language-independent Web Service applica-
tions programming interface for matrix retrieval.
JASPAR is available at http://jaspar.genereg.net.

INTRODUCTION

Computational analysis of regulatory properties of
DNA is most often based on the use of matrix models
describing binding preferences of transcription factors,
or other DNA patterns. Such matrices are based on sets
of known or inferred sites for a DNA-binding protein,
and can be scanned over genomic sequences to predict

novel binding sites (1,2). JASPAR is the most compre-
hensive open-access database holding such models.
The heart of JASPAR is the JASPAR CORE sub
database, holding curated, non-redundant matrix
models from multi-cellular eukaryotes. The methodology
for JASPAR CORE curation has been described pre-
viously (3). JASPAR CORE is now a standard resource in
gene regulation bioinformatics and is used as a matrix set
in a wide variety of other services [for instance (4–9)],
and large-scale projects (10,11). Besides JASPAR CORE,
the database contains several sub-databases (JASPAR
Collections) holding matrix models produced by different
methods and for different purposes (Table 1).

Here we present the recent JASPAR expansion, which
includes a significant increase of the JASPAR CORE
content and an addition of three new sub-databases
focusing on core promoter patterns, splice sites and motifs
detected in vertebrate highly conserved non-coding
elements, respectively. In addition, we present several
unique functional features in the web interface aimed at
both casual and power users, including statistics on
expected number of predictions each matrix will yield
at several different thresholds in random sequences
generated by three commonly encountered sequence
background models, dynamic clustering of matrices by
similarity and generation of random matrices using a
selected set of matrices as background model.
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RESULTS

Here we briefly describe the new data and functional
features; more detailed descriptions are available at the
documentation at the web site.

Expansion of JASPARCORE

The JASPAR CORE database holds a curated set of
transcription factor-binding profiles from multi-cellular
eukaryotes: this is a unique feature with respect to
databases of similar scope. We have extended JASPAR
CORE with 15 new, high-quality profiles from recent
experimental literature, increasing the total number of
JASPAR CORE models to 138 (Table 1). In addition,
annotation for all models in the database has been
updated [e.g. to standard gene symbols from Entrez
Gene (12)] and expanded. Prompted by user feedback,
several existing matrices have been updated or corrected.

New sub-databases

Existing and new sub-databases within JASPAR and
their specific features are described in Table 1. Since the
last update, we have added three new sub-databases,
which are briefly described below (see the web documen-
tation for details):

JASPAR POLII. The large body of novel data pertaining
transcription start sites (13,14) has triggered a new interest
in computational studies of core promoters. The JASPAR
POLII sub-database holds 13 known DNA patterns
linked to RNA polymerase II core promoters, such as
the Inr and BRE elements, each based on experimental
evidence: each model must be constructed using five
or more experimentally verified sites. An important
difference to the transcription factor profiles in JASPAR
CORE is that patterns here do not necessarily have a
specified protein that binds them [See Ref. (15) for a
review on core promoter patterns]. When possible,
profiles were extended by 2 nt more than the core motif.
We consistently report positions relative to the TSS as the
position of 50 and 30 edge of the matrix.

JASPAR CNE. Highly conserved non-coding elements
(CNEs) are a distinctive feature of metazoan genomes.
Many of them can be shown to act as long-range

enhancers that drive expression of genes that are
themselves regulators of core aspects of metazoan devel-
opment and differentiation. Since they act as regulatory
inputs, attempts at deciphering the regulatory content
of these elements have started (16–18). JASPAR CNE is
a collection of 233 matrix profiles derived by Xie et al. (19)
by clustering of overrepresented motifs from human
conserved non-coding elements. While the biochemical
and biological role of most of these patterns is still
unknown, Xie et al. have shown that the most abundant
ones correspond to known DNA-binding proteins,
among them is the insulator-binding protein CTCF.
These matrix profiles will be useful for further character-
ization of regulatory inputs in long-range developmental
gene regulation in vertebrates.

JASPAR SPLICE. This small collection contains matrix
profiles of human canonical and non-canonical splice
sites, as matching donor:acceptor pairs. It currently
contains only six highly reliable profiles (two canonical
and four non-canonical) obtained from human genome
(20). In the future, we shall include additional eukaryotic
species, as well as new models for exonic splicing
enhancers (ESE) and inhibitors (ESI).

Extended functionality

In addition to data extension, we have implemented a
number of functional improvements in the web interface
of the JASPAR database. These range from static
statistics, such as expected number of hits on typical
DNA sequence for any factor, to dynamic tools for
similarity-based profile clustering and for generating
random profiles based on a subset of known profiles.

Web service interface. The JASPAR database can now
be reached remotely through a new Web Service interface.
Current functionality includes retrieval of profiles by
name, by identifier and by searching profile annotations.
The purpose of providing an external application
programming interface (API) is to simplify the utilization
of JASPAR in distributed applications and in scientific
workflows created in workflow editors like Triana (21),
BPEL (http://www.bpelsource.com/) or Taverna (22).
Other benefits include platform- and language-indepen-
dent access, as well as constant up-to-date access to

Table 1. JASPAR databases

Database Number of
models

Scope Species coverage When to use

JASPAR CORE 138 Curated, non-redundant matrix models Multi-cellular eukaryotes ‘Standard’ promoter analysis
JASPAR FAM 11 Familial ‘consensus’ patterns for major

structural families of transcription factors
Multi-cellular eukaryotes Matrix-to-matrix comparison

and classification, or as prior
knowledge for pattern finders

JASPAR PHYLOFACTS 174 Evolutionary conserved patterns in
50 promoter regions

Multi-cellular eukaryotes As a complement to JASPAR
CORE for large-scale studies

JASPAR POLII 13 Core promoter element models Multi-cellular eukaryotes Core promoter analysis
JASPAR CNE 233 Motifs overrepresented in vertebrate highly

conserved non-coding elements
Human Analysis of regulatory content

of long-range enhancers
JASPAR SPLICE 6a Splice sites Humana Splice site analysis

aExpansion under way.
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the database over time. The API is implemented as a
WS-I compliant Web Service, identical to the technology
used for the services made available through the
EMBRACE Network of Excellence (www.embracegrid.
info), and the Web Service technology chosen by the
European Bioinformatics Institute (EBI) (23). Its
basic usage is described in tutorials at the JASPAR web
site. The WSDL describing this service can be found at:
http://api.bioinfo.no/wsdl/JasparDB.wsdl. Further infor-
mation about the Web Service, including example
clients in Java and Python, is available on the Jaspar
web site and in the WSDL file.

Expected predictions/base-pair statistics for all
models. An important problem with genome-wide scan-
ning with matrix models is the limited information content
in a typical matrix, resulting in numerous spurious hits
just due to sequence background (1,2). The number of
false positives varies considerably between factors and
also depends on what type of sequences that models are
applied to, user-defined cutoffs and to a more limited
extent on the type of scoring scheme used. For a first-
glance assessment of the rate of spurious predictions of a
given model, we apply the model to three distinct sequence
sets: known promoters from the EPD database (24), CpG
islands and randomly selected genomic DNA, respec-
tively. For different score thresholds, we plot the mean
number of hits per 1000 nt for each sequence set. The
resulting bar plots are available for each JASPAR matrix
(Figure 1).

Dynamic clustering by similarity and creation of familial
binding profiles from a given profile subset. Many
transcription factors bind similar targets and it is often
helpful to cluster similar binding profiles to generate
familial binding profiles—models describing a set of
matrices (25). Part of this problem is matrix profile
comparison and alignments, explored by several research-
ers (25–30). Recently, Mahony et al. (27,28) made a
comprehensive study on alignments of matrices and
construction of familial binding profiles, resulting in the
STAMP tool, which is now used within JASPAR to
cluster matrix models. Hierarchical clustering is per-
formed on a selected set of matrices using the UPGMA
algorithm with a Pearson Correlation Coefficient distance
metric. Then the optimal number of clusters is selected
using a log variant of the Calinski and Harabasz statistic
[See Ref. (27) for details]. Finally, the clusters are
partitioned and a familial binding profile is created for
each cluster using iterative refinement (a multiple align-
ment method). An example is shown in Figure 1.

Dynamic random profile generation. In many computa-
tional studies, it is helpful to have a set of ‘random’
matrices. This is particularly true for assessment of
distances between putative sites and reference points as
transcription start sites, and also for matrix-to-matrix
comparisons. In these cases, it is desired that the
randomized matrices should share properties with the
true matrix set—for instance having the same nucleotide
content and/or the same general information content.

Within any JASPAR sub-database, users can select a
subset of matrices, which will then be used to generate
random matrices using one of two methods:
(i) Permutations: Columns of the selected matrices are
shuffled: either constrained to shuffling of columns
within each matrix or between all selected matrices.
(ii) Probabilistic sampling: This enables the users to
generate random Position Frequency Matrices from
selected profiles. In our model, each random column is
sampled from a posterior distribution—a 4D Dirichlet
mixture distribution. The posterior distribution has
two contributions: a multinomial with counts of columns
selected as in (i), and a Dirichlet mixture prior trained
from all observed nucleotides in the JASPAR database.
We assume that column positions are independent.

DISCUSSION

We have presented a significant update to the JASPAR
database, including an expansion of the core database,
three new sub-databases and many new utilities. The new
web service interface enables easy interaction with
scientific workflows and an increasing number of pro-
gramming languages that support this technology.
We project that the new features, together with the
open-access policy, will further consolidate the JASPAR
database as a standard resource in the field of gene
regulation bioinformatics.

Towards a comprehensive set of models for
most known transcription factors

The lack of models for the binding specificity of most
transcription factors is a significant bottleneck for com-
prehensive computational analysis of genomes. Only a
fraction of transcription factors have been characterized in
enough detail to allow the construction of adequate
models of their binding specificity. This problem is being
solved in two principally different ways. First, tiling
array approaches for measuring binding preferences
en masse are being developed (31); these technologies
show great promise and are expected to make their mark
on the field in the near future. Second, a wealth of cis-
regulatory elements, characterized in painstaking detail, is
hidden in experimental literature; many of these sites are
not included in any database. There is a growing awareness
of this problem in the field, resulting in online open-access
databases such as ORegAnno (32) and PAZAR (33), where
one of the goals is to house expert-curated binding sites.
We are currently developing services to enable cross-talk
with these databases to enable matrix models built on
curated sites that exceed a certain quality threshold.
JASPAR, ORegAnno and PAZAR face the same chal-
lenge: to build models or sites, it is necessary to mine the
literature, which inevitably means that the curators will
miss many important studies. The only long-term solution
would be a requirement by scientific journals for research-
ers to deposit protein–DNA interactions in public data-
bases prior to publication, much in the same way as
mRNAs must be submitted to Genbank (34). Part of such
a system will be to establish a minimal standard for
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reporting these interactions, much like the MIAME
standard (35) for microarray data. As before, JASPAR
team is always prepared to incorporate new matrices and
matrix sets provided by external contributors.

Data availability

All the data in JASPAR are available without any
restrictions, either from the web interface, as flat files or
through the Web service interface.
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Figure 1. New features in the JASPAR database web interface. (A) A listing of matrices in the JASPAR-CORE database resulting from selection of
MADS and bHLH-type factors. These models are used in the clustering analysis in panel C. (B) A pop-up window showing detail information on the
MA0001 model, with expected predictions/bp statistics. (C) Dynamic clustering of selected profiles. At the top, a dendrogram describing the
similarities of the input profiles is shown. Clusters of similar modes are merged into familial binding profiles, shown below. In this case, two larger
clusters are produced, corresponding to bHLH and MADS type matrices. Two smaller clusters correspond to outliers in both groups.

Nucleic Acids Research, 2008, Vol. 36, Database issue D105

 at U
niversitetsbiblioteket i B

ergen on A
pril 7, 2016

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/


Conflict of interest statement. None declared.

REFERENCES

1. Stormo,G.D. (2000) DNA binding sites: representation and
discovery. Bioinformatics, 16, 16–23.

2. Wasserman,W.W. and Sandelin,A. (2004) Applied bioinformatics
for the identification of regulatory elements. Nat. Rev. Genet., 5,
276–287.

3. Sandelin,A., Alkema,W., Engstrom,P., Wasserman,W.W. and
Lenhard,B. (2004) JASPAR: an open-access database for eukaryotic
transcription factor binding profiles. Nucleic Acids Res., 32,
D91–D94.

4. Lenhard,B., Sandelin,A., Mendoza,L., Engstrom,P., Jareborg,N.
and Wasserman,W.W. (2003) Identification of conserved regulatory
elements by comparative genome analysis. J. Biol., 2, 13.

5. Montgomery,S.B., Astakhova,T., Bilenky,M., Birney,E., Fu,T.,
Hassel,M., Melsopp,C., Rak,M., Robertson,A.G. et al. (2004)
Sockeye: a 3D environment for comparative genomics. Genome
Res., 14, 956–962.

6. Frith,M.C., Fu,Y., Yu,L., Chen,J.F., Hansen,U. and Weng,Z.
(2004) Detection of functional DNA motifs via statistical over-
representation. Nucleic Acids Res., 32, 1372–1381.

7. Ho Sui,S.J., Mortimer,J.R., Arenillas,D.J., Brumm,J., Walsh,C.J.,
Kennedy,B.P. and Wasserman,W.W. (2005) oPOSSUM:
identification of over-represented transcription factor binding sites
in co-expressed genes. Nucleic Acids Res., 33, 3154–3164.

8. Marinescu,V.D., Kohane,I.S. and Riva,A. (2005) MAPPER: a
search engine for the computational identification of putative
transcription factor binding sites in multiple genomes.
BMC Bioinformatics, 6, 79.

9. Aerts,S., Van Loo,P., Thijs,G., Mayer,H., de Martin,R., Moreau,Y.
and De Moor,B. (2005) TOUCAN 2: the all-inclusive open source
workbench for regulatory sequence analysis. Nucleic Acids Res., 33,
W393–W396.

10. The ENCODE Consortium, (2007) Identification and analysis of
functional elements in 1% of the human genome by the ENCODE
pilot project. Nature, 447, 799–816.

11. Carninci,P., Kasukawa,T., Katayama,S., Gough,J., Frith,M.C.,
Maeda,N., Oyama,R., Ravasi,T., Lenhard,B. et al. (2005) The
transcriptional landscape of the mammalian genome. Science, 309,
1559–1563.

12. Maglott,D., Ostell,J., Pruitt,K.D. and Tatusova,T. (2007) Entrez
Gene: gene-centered information at NCBI. Nucleic Acids Res., 35,
D26–D31.

13. Muller,F., Demeny,M.A. and Tora,L. (2007) New problems in
RNA polymerase II transcription initiation: matching the diversity
of core promoters with a variety of promoter recognition factors.
J. Biol. Chem., 282, 14685–14689.

14. Sandelin,A., Carninci,P., Lenhard,B., Ponjavic,J., Hayashizaki,Y.
and Hume,D.A. (2007) Mammalian RNA polymerase II core
promoters: insights from genome-wide studies. Nat. Rev. Genet., 8,
424–436.

15. Smale,S.T. and Kadonaga,J.T. (2003) The RNA polymerase II core
promoter. Annu. Rev. Biochem., 72, 449–479.

16. Bailey,P.J., Klos,J.M., Andersson,E., Karlen,M., Kallstrom,M.,
Ponjavic,J., Muhr,J., Lenhard,B., Sandelin,A. et al. (2006) A global
genomic transcriptional code associated with CNS-expressed genes.
Exp. Cell Res., 312, 3108–3119.

17. Pennacchio,L.A., Ahituv,N., Moses,A.M., Prabhakar,S.,
Nobrega,M.A., Shoukry,M., Minovitsky,S., Dubchak,I., Holt,A.

et al. (2006) In vivo enhancer analysis of human conserved
non-coding sequences. Nature, 444, 499–502.

18. Pennacchio,L.A., Loots,G.G., Nobrega,M.A. and Ovcharenko,I.
(2007) Predicting tissue-specific enhancers in the human genome.
Genome Res., 17, 201–211.

19. Xie,X., Mikkelsen,T.S., Gnirke,A., Lindblad-Toh,K., Kellis,M. and
Lander,E.S. (2007) Systematic discovery of regulatory motifs in
conserved regions of the human genome, including thousands of
CTCF insulator sites. Proc. Natl Acad. Sci. USA, 104, 7145–7150.

20. Chong,A., Zhang,G. and Bajic,V.B. (2004) Information for the
coordinates of exons (ICE): a human splice sites database.
Genomics, 84, 762–766.

21. Majithia,S., Shields,M., Taylor,I. and Wang,I. (2004) Triana: a
graphical web service composition and execution toolkit. In
Proceedings of the IEEE International Conference on Web Services,
pp. 514–524, http://www.trianacode.org.

22. Hull,D., Wolstencroft,K., Stevens,R., Goble,C., Pocock,M.R., Li,P.
and Oinn,T. (2006) Taverna: a tool for building and running
workflows of services. Nucleic Acids Res., 34, W729–W732.

23. Labarga,A., Valentin,F., Anderson,M. and Lopez,R. (2007) Web
services at the European bioinformatics institute. Nucleic Acids Res.,
35, W6–W11.

24. Schmid,C.D., Perier,R., Praz,V. and Bucher,P. (2006) EPD in its
twentieth year: towards complete promoter coverage of selected
model organisms. Nucleic Acids Res., 34, D82–D85.

25. Sandelin,A. and Wasserman,W.W. (2004) Constrained binding site
diversity within families of transcription factors enhances pattern
discovery bioinformatics. J. Mol. Biol., 338, 207–215.

26. Hughes,J.D., Estep,P.W., Tavazoie,S. and Church,G.M. (2000)
Computational identification of cis-regulatory elements associated
with groups of functionally related genes in Saccharomyces
cerevisiae. J. Mol. Biol., 296, 1205–1214.

27. Mahony,S., Auron,P.E. and Benos,P.V. (2007) DNA familial
binding profiles made easy: comparison of various motif alignment
and clustering strategies. PLoS Comput. Biol., 3, e61.

28. Mahony,S. and Benos,P.V. (2007) STAMP: a web tool for
exploring DNA-binding motif similarities. Nucleic Acids Res., 35,
W253–W258.

29. Pietrokovski,S. (1996) Searching databases of conserved sequence
regions by aligning protein multiple-alignments. Nucleic Acids Res.,
24, 3836–3845.

30. Schones,D.E., Sumazin,P. and Zhang,M.Q. (2005) Similarity of
position frequency matrices for transcription factor binding sites.
Bioinformatics, 21, 307–313.

31. Berger,M.F., Philippakis,A.A., Qureshi,A.M., He,F.S.,
Estep,P.W.III. and Bulyk,M.L. (2006) Compact, universal DNA
microarrays to comprehensively determine transcription-factor
binding site specificities. Nat. Biotechnol., 24, 1429–1435.

32. Montgomery,S.B., Griffith,O.L., Sleumer,M.C., Bergman,C.M.,
Bilenky,M., Pleasance,E.D., Prychyna,Y., Zhang,X. and Jones,S.J.
(2006) ORegAnno: an open access database and curation system for
literature-derived promoters, transcription factor binding sites and
regulatory variation. Bioinformatics, 22, 637–640.

33. Portales-Casamar,E., Kirov,S., Lim,J., Lithwick,S., Swanson,M.I.,
Ticoll,A., Snoddy,J. and Wasserman,W.W. (2007) PAZAR: a
framework for collection and dissemination of cis-regulatory
sequence annotation. Genome Biol., 8, R10.

34. Benson,D.A., Karsch-Mizrachi,I., Lipman,D.J., Ostell,J. and
Wheeler,D.L. (2007) GenBank. Nucleic Acids Res., 35, D21–D25.

35. Brazma,A., Hingamp,P., Quackenbush,J., Sherlock,G., Spellman,P.,
Stoeckert,C., Aach,J., Ansorge,W., Ball,C.A. et al. (2001) Minimum
information about a microarray experiment (MIAME)-toward
standards for microarray data. Nat. Genet., 29, 365–371.

D106 Nucleic Acids Research, 2008, Vol. 36, Database issue

 at U
niversitetsbiblioteket i B

ergen on A
pril 7, 2016

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/

