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ABSTRACT 

In regenerative medicine or dentistry, it has been reported that stem cells induce the 

regenerative potential of injured tissues. In the present thesis, pulp and periapical tissues 

as well as pulpal cells were exposed to bioactive soluble molecules secreted by bone 

marrow mesenchymal stem cells (BMSC) cultured in vitro to determine the paracrine 

effects of MSC on tissue healing and regeneration.  

In Study I, the proliferation and osteo/odontogenic differentiation of human dental 

pulp cells (hDPC) exposed in vitro to the exogenous recombinant growth 

differentiation factor-5 (GDF-5) and to a cocktail of soluble growth factors released by 

bone marrow stem cells in a conditioned culture medium (CM) were evaluated. Cell 

proliferation was examined by MTT, and osteo/odontogenic differentiation was 

assessed by Real-Time Quantitative Reverse Transcription PCR, alkaline phosphatase 

(ALP) staining, osteocalcin (OC) immunoreactivity and Alizarin Red Staining. It was 

found that CM collected from cultures of BMSC has higher osteo/odontogenic inductive 

effect on hDPC than GDF-5. 

Study II was designed to evaluate the influence of CM on the healing responses of 

the dental pulp and periodontium of rat molars, following immediate replantation. CM 

had no effect on vascular endothelial growth factor (VEGF) mRNA and ALP mRNA in 

the dental pulp after 3 days, whereas an up-regulation of ALP mRNA was found in the 

tooth socket of the replanted teeth. Observations after 90 days showed that CM reduced 

the occurrence of external cervical and surface resorption and prevented extensive 

dentin production in replanted teeth. 

Following the disclosure in Study II that CM had a protective effect on the pulp 

tissue following replantation, Study III was undertaken in order to investigate the 

underlying effect of CM on the release of inflammatory cytokines from hDPC in vitro, 

and on the gene expression of inflammatory cytokines following tooth replantation. In 

vitro, CM significantly stimulated production of prostaglandin E2 (PGE2), the 

inflammatory cytokines interleukin IL-10, -6 and -8, and chemokine RANTES, in 

hDPC compared with the control cells. Three days after tooth replantation, significantly 

lower mRNA levels of IL-1β, and-6, and TNF-α were associated with CM than with 

untreated replanted teeth. 
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These studies showed that BMSC-CM stimulates early differentiation and matrix 

mineralization, and the expression of inflammatory mediators in hDPC in vitro. BMSC-

CM seems to attenuate the initial inflammatory reaction in pulp tissue, and enhance 

pulpal and periodontal healing following replantation of rat molars.  
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1. INTRODUCTION 

Most tissue organs have limited regenerative capacity after injury. In this context, 

stem cells are of fundamental importance, primarily because of their inherent ability to 

differentiate into a variety of phenotypes to replace injured cells and structures [1]. 

Stem cell therapy, intended to enhance wound healing or tissue regeneration, is based 

on the concept that with appropriate induction, mesenchymal stem cells, usually bone 

marrow stromal cells, can differentiate into cell lineages appropriate to the injured 

tissue [2-4]. During in vitro culture to expand the quantity of stem cells, bioactive 

soluble molecules, such as growth factors, cytokines and microvesicles, collectively 

referred to as secretome, are secreted by the cells into the culture medium [5]. 

Previously discarded as a waste product after culture of the cells, this conditioned 

culture medium (CM) may be a readily accessible source of growth factors and 

cytokines, with potential clinical application, for example to enhance healing and 

moderate inflammation. Although the underlying mechanisms have not been fully 

clarified, recent research indicates that the action of the bioactive soluble molecules 

secreted by the stem cells may be as important to tissue repair as the differentiation of 

the stem cells themselves [6]. In wound healing, for example, CM, because of its 

secretome content, might have potential as a cell-free therapeutic agent. 

 In hard tissues such as tooth or bone, incomplete regeneration of tissues after 

trauma may result in functional impairment and compromised appearance. Dental 

trauma may cause injury to vascular, neural and hard tissues. Recovery may be 

compromised by pulpal necrosis and infection, arrested root formation and root 

resorption [7, 8]. In replantation of avulsed teeth, application of biological molecules 

or growth factors in the form of secretome might reduce the risk of root resorption, a 

common cause of failure. 

Human dental pulp cells are multipotent, with high growth potential. There is 

increasing awareness of their potential as a readily accessible source of stem cells for 

use in other organs [9]. The mechanisms underlying the response of human dental pulp 

cells to trauma are not fully understood. In a broader context, further understanding of 

pulp cell biology and the role of secretome in pulpal healing may lead not only to 
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improved methods for regeneration of dental tissues but also to advances in clinical 

applications, in regenerative medicine. 

The studies on which the present thesis is based were designed to investigate the 

potential of BMSC-CM to stimulate angio- and neurogenesis and connective tissue 

formation, namely bone, dentin and periodontal tissues, in vitro and in an animal tooth 

replantation model.

1.1. STEM CELLS 

During the early stage of embryonic cell division, a pool of cells becomes 

specialized [10]. These specialized cells give rise to three embryonic germ layers; 1) 

the ectoderm, which forms the outer body layer and is also a precursor for the brain, 

the spinal cord and the nerves, 2) the mesoderm, which gives support to tissue cells 

(e.g. connective tissue) and 3) endoderm, which becomes the internal tissue lining (e.g. 

the lining of respiratory organs) [10]. Not all embryonic cells have the potential to 

progress to fully functional stem cells [10]. In adulthood, some residual cells persist, as 

reservoirs for tissue renewal and healing after injury [11]. 

There is also a subpopulation of quiescent resident cells, referred to as adult stem 

cells, somatic stem cells, or organ-specific adult stem cells [12], located in special 

microenvironments called stem cell niches, where they are regulated and maintained 

[13]. Although the bone marrow is regarded as the primary reservoir for stem cells, 

their presence has also been reported in a variety of tissues such as adipose tissue [14], 

dermis [15] and dental tissues [16]. In the studies on which this thesis is based, the 

stem cells investigated were harvested from human adult bone marrow (Lonza) and 

human adult dental pulp tissue. 

1.1.1. Bone marrow stromal cells (BMSC) 

Generally, the bone marrow microenvironment comprises specific cells in close 

proximity within a connective tissue network [17]. 

Within the bone marrow, there are two heterogeneous populations of stem cells: 

hematopoietic stem cells and multipotent mesenchymal stromal cells (MSC) [2]. MSC 

are undifferentiated (immature) adult progenitor cells, with the potential to 
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differentiate into several mesodermal tissues and cell lineages, including bone 

(osteoblasts), cartilage (chondrocytes) and fat (adipocytes) [2-4]. MSC may also be 

able to transdifferentiate into non-mesodermal lineages such as hepatocyte-like cells 

(endodermal lineages) [18] and neuronal and neuroglial cells (ectodermal lineages) 

[19].  

Although stem cells constitute only 0.001 to 0.01% of the total cell population of 

bone marrow, MSC can easily be isolated and expanded in vitro. According to the 

criteria established by the International Society for Cellular Therapy (ISCT) [20], 

isolated MSC should attach to the plastic dish after culture. This property allows 

separation of MSC from the hematopoietic stem cells. MSC should also express the 

cell surface antigens CD105, CD73 and CD90 and be negative for CD45, CD34, CD14 

or CD11b, CD79α or CD19, and HLA-DR.  A further criterion is that in vitro, MSC 

should  retain the potential to differentiate into mesenchymal tissue-specific cells, such 

as osteoblasts, adipocytes, and chondroblasts [20]. 

To overcome the challenge of MSC heterogeneity, cell separation techniques have 

been proposed to isolate particular cell types. However, to date no specific cell surface 

marker candidate has been identified. 

1.1.2. Dental pulp stem cells (DPSC) 

The ability of dental pulp tissue to heal or regenerate after injury is dependent on the 

survival of existing cells, or their renewal by multipotent mesenchymal progenitor 

cells of the dental pulp tissue [16, 21, 22]. Under normal conditions, stem cells are 

quiescent (temporarily non-proliferative). Activity, triggered only in response to 

insults, is in the form of differentiation into odontoblast-like cells with secretory 

activity. Dental pulp cells (DPC) have been harvested from permanent and primary 

teeth and their potential application in dental pulp therapy has been investigated [23].  

Fibroblastic cells isolated from the pulp tissues of deciduous and supernumerary 

teeth produce dentin-like nodules in vitro [24]. Dental pulp stem cells (DPSC) 

comprise a subpopulation of MSC in the dental pulp tissue, defined as fibroblast-like 

cells with standard stem cell properties, including clonogenic, self-renewal and 

multipotential differentiation properties [16, 23]. On the basis of their mesenchymal 
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and ectodermal origins, DPSC are regarded as a heterogeneous population of MSC 

[25]. 

As with other MSC, DPSC can be distinguished from non-mesenchymal stem cells 

by their pattern of cell surface marker expression. Although there is no specific 

marker(s) for this subpopulation, their expression pattern should be similar to that of 

BMSC [16]. When maintained in specific induction medium, these unique cells can 

also differentiate or transdifferentiate into different cell lineages, including neuronal, 

bone and endothelial cells [25]  and have recently been used for dental and other tissue 

engineering purposes [9]. 

1.1.3. Applications of MSC and challenges 

In vitro investigations confirm that MSC have the potential to differentiate not only 

into diverse mesodermal lineages (e.g., osteogenic, chondrogenic and adipogenic) but 

also beyond conventional mesodermal lineages, including hepatocyte-like cells [18], 

neuronal and neuroglial cells [19] and endothelial cells [26]. 

The homing capacity of stem cells has been demonstrated in a number of studies. In 

a mouse model, intravenously administered mesenchymal cells derived from bone 

marrow migrated into different irradiated tissues (bone, cartilage, and lung) [27]. In a 

canine model, transplantation of CD31-subfraction cells from bone marrow (BMSC), 

adipose tissue (ADSC) and DPSC into an empty root canal indicated the potential to 

regenerate dental pulp tissue [28]. MSC have also been investigated for their 

therapeutic effects in clinical conditions such as osteogenesis imperfecta [29], graft 

versus host disease (GVHD) after bone marrow transplantation [30], liver diseases 

[31] and burn-induced skin defects [32]. 

Despite promising potential, a major disadvantage of stem cell–based therapy is that 

the cells are generally unavailable in the quantities required for direct clinical 

application. This issue has largely been overcome by the development of in vitro cell 

expansion strategies. Several methods are available, including varying the serum 

content of the culture medium, modifying culture surfaces, and/or the addition of 

growth factors and cytokines. During these expansion procedures, the stem cells may 

lose their capacity to self-renew (stemness) [33]. 
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Post-transplantation, stem cells are vulnerable to microenvironmental stress. They 

are generally found in low quantities, with poor engraftment properties and survival 

rates [34, 35]. This is generally attributed to microenvironmental factors such as 

hypoxia (low oxygen supply), ischemia (poor blood supply) and inflammatory cells 

and cytokines [36-38]. Not only is stem cell survival threatened, but the potential to 

differentiate into target tissues may also be compromised, with an adverse effect on the 

healing outcome (Figure 1). 

 

 

Figure 1 Effect of microenvironmental stress on MSC at the graft site. Adapted from Melanie 

Rodrigues et al. Stem Cell Res Ther. (2010), presented with permission from Biomed Central 

[36]. 

1.2.  BIOACTIVE SOLUBLE MOLECULES 

Bioactive molecules, secreted by inflammatory, progenitor and endothelial cells and 

fibroblasts [39] may be classified as inflammatory cytokines (pro- and anti-

inflammatory cytokines), growth factors, vasculogenic and neurogenic factors [40]. 

The action of the biological molecules is generally determined by their proximity to 

the target area. Cellular changes can be triggered in numerous ways: 1) autocrine; (2) 

paracrine; (3) endocrine; (4) juxtacrine; (5) extracellular matrix mediated and (6) 

intracrine action [41]. In an autocrine response, the bioactive molecules act on the cell 
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itself. In a paracrine response, the adjacent cells are affected. However, when the 

distance is short-range, the terms “juxtacrine and intracrine” are sometimes used. 

Endocrine responses are those triggered in more distant cells.  

There is considerable scientific evidence to support the beneficial effects of a 

number of growth factors in stimulating the healing process, for example members of 

the TGFβ superfamily [42-44], vascular endothelial factor (VEGF) and fibroblast 

growth factor (FGF) [45-47]. 

1.2.1. Growth differentiation factor-5 (GDF-5) 

Exogenous growth factors, singly or in combination with numerous others, are 

involved in many aspects of tissue healing, including neuro- and angiogenesis and 

repair of bone-cartilage and tooth structure. 

Growth differentiation factors are bone morphogenic proteins (BMPs), which are 

subsets of the signalling peptides of the transforming growth factor (TGF) β 

superfamily [48]. BMPs are pleiotropic morphogens involved in such biological 

responses as cell proliferation, differentiation and apoptosis [48] and exert their 

biological effects through specific receptors called TGFβ receptors (Type I and Type 

II). Smad 1, 5 and 8 are considered to be important intracellular transduction pathways 

of BMP receptors [49]. 

BMPs and their receptors are expressed in the developmental stages of many tissues 

such as bone, tooth, heart, neural tissue and cartilage [48, 50]. Currently, they are 

widely applied in hard tissue engineering, to stimulate differentiation of mesenchymal 

stem cells [51]. GDF-5, also known as BMP-14 or cartilage-derived morphogenetic 

protein-1 (CDMP1), has various biological effects on the development of connective 

tissues, including bone, joints, tendons and ligaments [52]. GDF-5 also has an 

angiogenic effect [53] and is considered to be a neurotrophic factor in the development 

of the nervous system [49]. Deficiency of this signalling peptide has been associated 

with delayed healing of bone fractures  [54]. 

Exposure of MSC to GDF-5 in vitro results in formation of cartilage and further 

ossification, such as condensation, increased glycosaminoglycan deposition and 

collagen type II transcripts, indicating chondrogenic differentiation of BMSC [55]. 

The results of a number of studies of DPSC and dental tissues indicate that GDF-5 is 
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involved in neuro- and angiogenesis as well as in cell differentiation and 

mineralization of extracellular matrix protein [42, 43]. 

1.2.2. MSC-secretome 

In regenerative medicine and/or tissue engineering applications, engrafted stem cells 

are vulnerable to ischemia and this may lead to poor survival of grafted cells and 

limited paracrine secretion and function [37]. Recent research shows that the paracrine 

effects of MSC secretome are an important factor in repair and healing after stem cell 

therapy [6, 56, 57]. Cell secretome comprises a group of soluble and vesicular trophic 

and immunomodulatory factors, such as extracellular proteins, growth factors, 

cytokines, chemokines and other molecules, which may influence the surrounding 

microenvironments and directly or indirectly modulate the biological phenotypes of 

different resident cells [5, 58]. 

There is considerable evidence that the paracrine effects of secreted soluble 

biomolecules are important in neuro- and angiogenesis. BMSC has been associated 

with detectable neuroprotective factors in ischemic areas, with reduction of apoptosis 

and enhancement of endogenous cellular proliferation [59]. A co-culturing system of 

MSC and dorsal root ganglion explants revealed that the majority of the secreted 

soluble molecules comprised extracellular matrix molecules, adhesion molecules and 

neurotrophic mediators, including nerve growth factor (NGF), brain-derived 

neurotrophic factor (BDNF), bFGF and ciliary neurotrophic factor (CNTF) [60]. 

Expression of angiogenic cytokines such as VEGF, angiopoietin 1 and 2 (Ang-1 and -

2), bFGF, HGF, platelet-derived growth factors and insulin-like growth factor 1 

(IGF1) have also been associated with the secretome of BMSC, indicating a pivotal 

role in angiogenesis [61]. 

MSCs have low inherent immunogenicity and modulate immunological responses 

[62]. BMSC have been shown to secrete interleukin-6, and 8 (IL-6 and IL-8), 

prostaglandin E2 (PGE2), and VEGF into culture medium and modulate inflammation 

through an effect on dendritic cells, natural killer cells, and naïve and effector T cells, 

to a more tolerant/anti-inflammatory phenotype [63]. Secretion of IL-6 and PGE2 by 

BMSC was associated with reduced local inflammation in animals with arthritis [64]. 
IL-6 derived from BMSC is assumed to be a crucial factor for in vitro inhibition of 



Paracrine Effects of Mesenchymal Stem Cells on Dental Tissues 

8 

 

monocyte differentiation and skewing monocytes towards an anti-inflammatory 

producing cell type (IL-10) or type II activated macrophages [65]. 

1.2.2.1. Preparation of MSC secretome 

Over the past decade, many attempts have been made to modulate cell behaviour 

towards improved cell survival, avoidance of immune rejection, and cell secretion. 

Cell preconditioning strategies comprise pre-treating or stimulating the cells during ex 

vivo or in vitro expansion before transplantation [66]. Among the strategies available 

today are physiological preconditioning [hypoxic conditions [61] and serum 

deprivation [67]], genetic manipulation [68], molecular or pharmacological treatment 

[69] and thermal preconditioning [37]. In the studies on which this thesis is based, 

serum deprivation was used to modulate the secretion of bioactive soluble molecules. 

The process of in vitro culture of cells in either serum-free, reduced serum, and/or 

serum-protein free medium is collectively referred to as serum deprivation [70] and  

has recently been proposed as a tool to evaluate several cellular mechanisms, including 

cell secretion. It was shown that MSC cultured under serum deprivation conditions 

could survive for up to 1 year [67]. Moreover, serum deprivation induced the 

expression of angiogenic markers in MSC (e.g. insulin growth factor, angiopoietins 

and VEGF-A). By an autocrine mechanism, MSC change shape to form typical 

microtubules, like endothelial cells [67]. Compared with MSC cultured in complete 

medium, those cultured under conditions of serum deprivation were reported to be 

more resistant to oxidative damage (less DNA damage) and were stimulated to change 

their secretion of paracrine factors [71]. Moreover, MSC underwent epigenetic 

modifications during serum deprivation, which in turn increased secretion of pro-

survival cytokines, including IGF1 and leptin [71]. 

Serum deprivation has also been shown to induce secretion of inflammatory healing 

mediators, including IL-6, IL-8 and chemokine (C-X-C motif) ligand 1 (CXCL1) from 

MSC [72]. Recently, the process has been evaluated as a physiological preconditioning 

model for ischemia, leading to secretion of a variety of bioactive soluble factors from 

MSC, including TGF-β1, VEGF-A, IGF1 and HGF, which in turn regulate a number 

of cellular activities, including growth, survival and angiogenesis [67, 73]. 
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1.3.  USE OF STEM CELL-DERIVED CONDITIONED MEDIUM (CM) 

IN REGENERATIVE MEDICINE 

While stem cell transplantation is effective, especially in the treatment and 

regeneration of nonhealing tissues, recent in vitro and in vivo studies indicate that stem 

cell-CM can significantly enhance wound healing (section 1.3.1. and 1.3.2). CM is a 

supernatant of the cell culture and was previously regarded as waste, containing cell 

debris and artefacts. It is now recognized that CM contains a variety of bioactive 

soluble molecules and microvesicles secreted by the cells being cultured. A variety of 

biological functions has been attributed to CM containing factors secreted from MSC, 

such as immunoregulation, anti-apoptotic and anti-fibrotic properties [74, 75], cell 

homing or chemotactic effects [76], stimulation of angio/neurogenesis [77, 78] and 

connective tissue healing [73].  

Cells can be cultured under different conditions, such as normal standard conditions, 

hypoxic (2% O2) or serum deprivation conditions, and the duration can be regulated 

[79, 80]. The conditions under which the cells are cultured influence the composition 

of the culture medium. 

The mechanisms by which CM promotes wound healing, independently of the stem 

cells, are not fully understood. The present thesis addresses the role of BMSC-CM as a 

stimulatory factor in angio/neurogenesis and connective tissue formation (e.g. bone 

and periodontal tissues). 

1.3.1. Role in angio- and neurogenesis 

The primary goal of angiogenic therapy is to enhance the growth of blood vessels in 

injured tissues, optimizing nutrient support for wound healing. Compared with CM 

collected from endothelial cell culture, BMSC-CM is reported to reduce apoptosis and 

to improve cell survival in hypoxic endothelial cells [74]. BMSC-CM has been shown 

to contain antiapoptotic and angiogenic factors, such as IL-6, VEGF, and monocyte 

chemoattractant protein. The observed effect on cell survival in hypoxic endothelial 

cells was attributed to activation of the PI3K-Akt signalling pathway [74]. In a similar 

study, BMSC-CM induced substantially longer vascular sprouts than a control 

(unconditioned) medium [67]. MSC grown under hypoxic conditions secreted greater 
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amounts of proangiogenic cytokines (e.g. stromal-derived factor-α, chemokine (C-X-C 

motif) ligand 1, RANTES, monocyte chemoattractant protein and macrophage colony-

stimulating factor). However, both hypoxic and normoxic CM stimulated chemotaxis 

and adhesion of endothelial cells and promoted survival of cardiomyocytes [76]. 

BMSC-CM also contains a wide range of proteins with angiogenic effects, such as 

VEGF, monocyte chemoattractant protein and macrophage inflammatory protein-1α 

and b [77]. BMSC-CM stimulated complex capillary networks in canine endothelial 

cells (CVEC), and induced cellular migration and survival via decreasing apoptotic 

pathway of CVEC (caspase-3) [77].  

Because of the importance of both angiogenesis and neurogenesis in healing and 

function, the role of BMSC-CM in these processes has been investigated in a number 

of studies. Collectively, these studies demonstrate that BMSC-CM has a profound 

neurogenic effect, promotes the growth and proliferation of nerve cells and increases 

the expression of neuronal markers [78, 81, 82]. 

1.3.2. Role in bone and periodontal tissue healing 

The role of BMSC-CM in bone and periodontal healing has been investigated in 

several studies [73]. In one study, calvarial bone defects were treated with human 

BMSC-CM [80]. In vitro, after 48-h of incubation, the BMSC-CM was positive for 

IGF-1 and VEGF. BMSC-CM was able to induce migration of rat MSC. Moreover, 

BMSC-CM induced expression of the specific osteogenic markers osteocalcin (OC) and 

core-binding factor alpha 1/Runt-related transcription factor 2 (Runx2) in mouse MSC 

[80]. In the rat calvarial bone defect model, human BMSC-CM/agarose composite gel 

was implanted into the bone defects for 4 or 8 weeks. New bone generation was 

revealed in the defects implanted with the BMSC-CM /agarose composite gel. 

Regenerated bone induced by BMSC-CM was of higher quality than that achieved by 

the other groups. Human BMSC-CM also increased the migration and mobilization of 

injected labelled rat MSC into the implanted region [80]. 

Another study revealed that in vitro, MSC secrete a broad range of cytokines 

including IGF1, VEGF, TGF-β1, and HGF [73]. This study also showed that BMSC-

CM (30% FBS) substantially enhanced the proliferation and migration of dog MSC and 

periodontal ligament (PDL) cells compared with serum-free DMEM. In vivo, intrabony 
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defects were filled with scaffolds of absorbable atelo-collagen sponge and loaded with 

BMSC-CM or PBS. After 4 weeks, BMSC-CM had induced new bone and cementum, 

with minimal inflammatory cell infiltration [73]. 

A more recent study in rabbits investigated the effect of human MSC-CM in 

accelerating bone formation after 2, 4 and 8 weeks [83]. In vitro, MSC-CM induced 

significant migration of rat MSC compared with serum-free DMEM. This study also 

showed that MSC-CM contains a group of secreted bioactive molecules, including IGF-

1, VEGF, TGFb1, but not FGF-2, PDGF-BB, or BMP-2 [83]. This study also showed 

that after 2, 4 and 8 weeks, MSC-CM grafted onto a beta-tricalcium phosphate scaffold 

in the sinus cavity induced more bone formation in the entire sinus floor than a 

PBS/beta-tricalcium phosphate scaffold [83]. 

The potential of serum-free human BMSC-CM and MSC to accelerate bone healing 

has been compared in a distraction osteogenesis mouse model [56]. After 4 days, a 

high speed-distraction gap of 3.2 mm was filled with either MSC or BMSC-CM. After 

11 days, both MSC and their CM had achieved a similar rate of new bone callus 

formation [56]. 

Another study has evaluated bone formation around titanium implants by 

immobilization (stabilization) of rat BMSC-CM [84]. Compared with the controls, 

immobilized rat BMSC-CM on the surface of the titanium implant positively 

modulated attachment of rat BMSC after 24 h in vitro, with an up-regulated gene 

expression of OC after 14 days. Moreover, extracellular matrix, signal transduction, 

protein synthesis and growth factors were detected in the implant culture. In regard to 

osseointegration around the titanium implant in vivo, rat BMSC-CM promoted 

significant bone formation after 7 and 14 days [84]. 

1.4. EFFECT OF BIOACTIVE SOLUBLE MOLECULES IN DENTAL 

TISSUES 

In traumatized dental tissues, bioactive soluble molecules should stimulate neuro-

angiogenesis within the root canal and the surrounding tissues, promote migration, 

proliferation and differentiation of endogenous stem cells and induce release of 

extracellular matrix proteins [85]. However, traumatic injuries to the dental hard 
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tissues are often complicated by vascular and neural damage, including pulpal necrosis 

and infection, arrested root formation and root resorption [7, 8]. Function or esthetics 

may be compromised [86]. In clinical dentistry, complete tooth displacement is usually 

treated by replantation. In successful cases, the structural integrity of the alveolar ridge 

is maintained and the vitality of pulp and periodontal tissues is preserved. Healing is 

achieved either by repair or regeneration, with formation of new tissue similar to the 

original [87]. A number of factors influence the healing outcome, including the 

severity of the impact, the age of the patient, the viability of periodontal ligament cells 

and the time elapsing between the trauma incident and tooth replantation or 

transplantation (immediate or delayed). 

The capacity of bioactive molecules to induce cell differentiation and vascularisation 

has been investigated both in vitro and in vivo. The results of in vitro investigations of 

enzyme-dissociated and/or explant pulp cells from permanent and/or deciduous teeth 

indicate that dental pulp stem and progenitor cells could regenerate dentin-like 

structures [88]. DPC are sensitive to their surrounding local microenvironments and 

stimuli [89]; after culture in specific induction microenvironments, DPSC display 

morphological changes and form mineralization nodules [16]. During odontogenic 

differentiation, these cells can express specific odontoblasts and dentin-forming 

markers such as dentin sialoprotein (DSP) and dentin matrix protein (DMP-1). 

Together with expression of ALP and collagen type I (Col 1), the formation of 

mineralized nodules confirms their ability to form a dentin-like structure. 

Dental pulp tissue healing is tightly regulated by metabolic changes and the 

microenvironments surrounding the quiescent stem cells or progenitor cells. Growth 

factors and cytokines have been investigated for their potential to stimulate cell 

differentiation and vascularization. VEGF and FGF-2 were shown to be likely 

candidates for the induction of angiogenesis during pulp repair [90]: VEGF induced 

neovascularization, FGF2 had a profound effect on proliferation of DPSC, and cells 

stimulated by FGF2 and TGF β1 showed odontoblast-like differentiation through 

increased gene/protein expression (DSP and DMP) and increased ALP.  

The use of bioactive soluble molecules for promoting PDL and cementum 

regeneration following tooth trauma has also been investigated. [91]. BMP-7 did not 
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promote healing after complete removal of the PDL and cementum, but did so in teeth 

with partially intact cementum and PDL [91]. Another study evaluated the effect of 

NGF and/or epidermal growth factor (EGF) on the regeneration of periodontal tissues, 

alveolar bone and pulpal tissues in an auto-transplantation rat model [92]. Application 

of collagen, NGF and/or EGF was followed by extensive root resorption and minimal 

cementum coverage, but not ankylosis. In pulpal healing, collagen and EGF improved 

vascularization of the pulp [92]. 

Bioactive soluble molecules are less effective in inflamed pulp tissue [93], prompting 

experiments in which the pulp is extirpated and the root canal is filled with exogenous 

bioactive soluble molecules. In one such study, bFGF, VEGF, NGF, PDGF, and BMP7 

were delivered individually or together into endodontically cleaned teeth before 

transplantation into the mouse dorsum [94]. New dentin-pulp like tissues were  

established with new blood vessels [94]. In another study, coating the root of extracted 

teeth with enamel matrix derivative (EMDOGAIN) resulted in normal PDL healing and 

reduced both replacement and inflammatory root resorption [95]. A study which 

evaluated the ability of both SDF1 and BMP7 to regenerate connective tissues (bone 

and PDL) used both ectopic and orthotopic models for tooth regeneration in an 

anatomically shaped artificial tooth. The results showed that SDF1 and BMP7 enhanced 

the regenerative capacity of the PDL and stimulated new bone formation [96]. 
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1.5.  RATIONALE 

MSC-based therapy has shown promising results in wound tissue healing, through 

cell-cell and cell-matrix interactions [1]. Despite the disadvantage of an invasive 

collection procedure, therapeutic applications of bone marrow stem cells have been 

successful [16, 97]. It is now recognized that bioactive soluble molecules secreted by 

MSC into the culture medium during expansion in vitro, may induce significant 

biological effects, independently of cell transplantation. CM is easily prepared, can be 

freeze-dried, is relatively inexpensive and does not present the immune rejection 

problems which might complicate stem cell therapy [85]. Thus CM shows promise as 

an alternative approach to stem cell therapy and warrants further investigation. In recent 

experiments using dental healing models, CM has shown significant positive effects 

[73]. An important potential field of application would be in managing dental trauma, 

reducing the risk of root resorption after replantation of avulsed teeth. In the studies on 

which this thesis is based, CM is investigated with special reference to its effects on 

dental pulp cells in vitro and, in an in vivo animal model, its effects on post-traumatic 

tissue healing in teeth and supporting structures. 
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2. AIM 

The overall aim of this thesis was to study the paracrine effects of mesenchymal stem 

cells (MSC) on pulpal cells and dental tissues. Utilizing in vitro and in vivo 

experimental models, the paracrine effects of MSC were investigated by exposing 

human dental pulp cells (hDPC) and periapical tissues to conditioned medium collected 

from cultures of human bone marrow cells (BMSC-CM). 

 

Specific Aims 

 

• To investigate the osteo/odontogenic potential of human dental pulp cells (hDPC) 

in response to BMSC-CM and recombinant growth differentiation factor-5 (GDF-

5) (Study I). 

 

• To investigate the effect in vivo of BMSC-CM on the healing process of pulp and 

supporting structures following replantation of rat molars  (Study II). 
 

• To determine the effect of BMSC-CM on the production of inflammatory 

mediators from hDPC in vitro, and on the mRNA expression of inflammatory 

mediators in rat pulpal tissues after tooth replantation (Study III). 
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3. MATERIAL AND METHODS 

The different experimental models, evaluation and methods of assay are summarized 

in Table 1. Further details are provided in each individual Study (I-III). 

Table 1 A brief outline of the whole Study 

Experimental Models Evaluations Methods 

In vitro culture of 
hDPC, stimulated by 
rhGDF-5 and/or 
BMSC-CM. (Study I) 

Cell Isolation 
Stem cell Characterization 
Cell Morphology 
Cell Proliferation 
Osteo/odontogenesis 

Enzymatic digestion 
Flow cytometry 
Crystal Violet 
MTT 
Real-Time-qRT-PCR 
Western Blot 
Alizarin Red Staining 
ALP Staining 
Immunocytochemistry 

Bilateral rat tooth 
replantation model. 
(Study II) 

Blood and nerve supply 
Root resorption and dentin 
formation 

Real-Time-qRT-PCR 
Immunohistochemistry 
Histology 

Release of 
inflammatory 
mediators from hDPC 
in vitro, and gene 
expression in the pulp 
tissue of replanted 
molars in vivo (Study 
III) 

Protein secretion 
Cyclooxygenase enzymes 2 
(COX-2) protein expression 
PGE2 production 
Gene expression of 
inflammatory mediators 

Cytokine assay 
Western Blot 
 
Prostaglandin E2 assay  
Real-Time-qRT-PCR 
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3.1. CELL CULTURE 

3.1.1. Primary dental pulp cell isolation (Studies I and III) 

Dental pulp cells were isolated from the third molar teeth of healthy adult patients 

during routine operative procedures at the Dental Clinic at the University of Bergen, 

Norway by the enzyme dissociation method described previously [16, 98]. Briefly, 

dental pulp tissue was isolated by creating a groove (0.5 - 1 mm) with a sterile high-

speed drill under copious irrigation with sterile saline solution along the cemento-

enamel junction, followed by splitting with a chisel to reveal the pulp chamber. 

Harvested tissue was sectioned into small pieces and immersed in an enzymatic 

digestive solution of collagenase type 1 (4 mg⁄ml) and dispase (2 mg⁄ml) for 1 h at 37 

°C. The digested tissue was centrifuged at 1400 rpm for 10 min, and thereafter filtered 

through a 70 µm strainer.  

Single-cell suspensions were cultured and expanded with DMEM supplemented with 

10% fetal bovine serum (FBS) and 1% penicillin/streptomycin, before incubation at 37 

°C in 5 % CO2 atmosphere. The culture medium was changed twice weekly. When the 

cells reached ~75 % confluence, they were either subcultured or stored in liquid 

nitrogen.  

The protocol was approved by the ethics committee at the University of Bergen, 

Norway (225.05, 3.2008.1750, 2009/610 and 2013/1248). All participants were 

informed verbally about the project and signed an informed consent form before the 

procedure. 

3.1.2. Primary dental pulp cell characterization (Studies I and III) 

To evaluate the mesenchymal stem cell markers on isolated human dental pulp cells, 

flow-cytometric analysis was carried out using Mouse Anti-Human antibodies against 

cell surface molecules (CD90-FITC, CD105-APC, STRO-1 PerCP-Cy5.5, and CD24-

PE (R&D System). Cells at passage 1 were stained by incubation with conjugated 

antibodies in the dark for 1 hour, washed thoroughly with PBS and then centrifuged at 

250-300x g for 5 min at 4°C. The supernatant was removed, and the cell pellets were 
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re-suspended in 10% paraformaldehyde and stored at 4°C until analysis. Flow-

cytometric analysis was conducted by FACS flow cytometry (BD FACS Aria SORP). 

A total of 100,000 events were used for each sample. 

3.1.3. Collection of BMSC-CM (Studies I-III) 

In studies I-III, primary human bone marrow stromal stem cells (MSC) at passage 3 

were seeded at an initial density of 2 × 106 into T-75 cm2 culture flasks and then 

allowed to reach 80-90% confluence. The cells were then thoroughly washed three 

times with PBS and re-fed with serum free-DMEM for 48 hr. In Study III, DMEM 

serum-free medium was prepared under the same conditions and defined as a control. 

The cell supernatant was then collected and centrifuged at 3000 xg for 3 min at 4 oC 

and re-centrifuged at 1500 ×g for 5 min at 4 oC. The final supernatant was collected in 

small tubes and then stored at -80 and/or 4 oC for further experiments. 

 
Figure 2 The BMSC-CM collection procedure. Figure made using Servier Medical Art. 
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3.1.4. Experimental design (Studies I and III) 

In Studies I and III, human dental pulp cells at passage 4-6 were cultured and 

treated with different media as illustrated in Figure 3. 

 

Figure 3 Outline of Studies I and III. In Study I, hDPC were cultured under complete 

growth media, trypsinized, counted and then cultured in different media: (1) DMEM (10% 

FBS), (2) OM (10% FBS), (3) 500ng/ml rhGDF-5 plus OM or (4) BMSC-CM plus OM. In 

Study III, hDPC were cultured with DMEM (5% FBS) for 24 hr. The cells were then 

cultured with either DMEM (1% FBS) or BMSC-CM (1% FBS). Figure made using Servier 

Medical Art. 
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3.1.4.1. Cell Morphology and proliferation assay (Study I) 

To investigate the effect of different treatment media on the cell morphology, 2 × 

104 hDPC were incubated in a 24-well plate for 48 and 120 hr. The cell morphology 

was then disclosed by crystal violet staining. Cell proliferation under different culture 

conditions was analysed by colorimetric assay for the quantification of MTT 

mitochondrial reaction of the viable cells. Briefly, hDPC were seeded at 1 x104/well in 

96-well plates for 3, 24, 48, and 120 hr. After incubation, the cells were further 

incubated for 4 h with methylthiazol tetrazolium assay (MTT; Sigma Chemicals). 

Then, a solution of DMSO containing 6.25% (v/v) 0.1 M NaOH was added to the 

wells and incubated by shaking for 20 min at room temperature. The end product was 

quantified by microplate spectrophotometry at a wavelength of 570. 

3.1.4.2. Western Blot (Studies I and III) 

3.1.4.2.1. Protein Extraction 

In Study I, hDPC, initial density 1 x 105 per cm2, were seeded onto a six-well plate 

for 5 days. In Study III, hDPC, initial density 7 X 105 cells were seeded in 80 mm 

petri dishes for 24 hr. At the end of the incubation period, the cells were lysed using 

lysis buffer (RIPA buffer plus protease and phosphatase inhibitors; ThermoScientific) 

and centrifuged at 14,000 rpm at 4oC for 20 min. Total protein concentration was 

measured by Pierce-BCA Protein Assay Kit (ThermoScientific). 

3.1.4.2.2. Western Blot procedures 

Twenty micrograms of total protein extracts were subjected to a 10% Mini-

PROTEANR TGX™ Precast Gel for electrophoresis and transferred onto PVDF 

transfer membranes. The membranes were blocked in 5% non-fat dry milk, incubated 

overnight at 4°C with primary antibody, followed by incubation with horseradish 

peroxidase (HRP)-conjugated secondary antibody. Immunoreative bands were 

visualized by use of enhanced chemiluminescence with Imun-Star™ WesternC™ 

Chemiluminescence Kit. Finally, the Gel Doc™ EZ System was used for photography, 

For Study I, protein expression was quantified using a densitometer normalized with 

the internal controls.
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3.1.4.3. ALP and mineralization assay (Study I) 

To examine the effect of different treatment modalities on the osteo/odontoblast 

differentiation of hDPC, cytochemical staining for ALP enzyme was carried out after 5 

days. After washing and fixation with neutral buffered formalin (10%) for 1 min, ALP 

staining buffer (SIGMAFAST_BCIPR/NBT tablet; Sigma-Aldrich) was added for 10 

min. For the mineralization assay, Alizarin R Staining was used to detect calcium 

nodule formation after 7 and 14 days. After washing and fixation with 70% ethanol for 

1h at –20oC, Alizarin R Staining (40mM) was added and incubated with shaking at 

room temperature for 1 hr. Finally, the positive and negative stains were recorded 

using an inverted microscope equipped with a digital camera. 

3.1.4.4. Immunocytochemistry analysis (Study I) 

To examine the effect of growth factors on protein expression by hDPC, an 

immunocytochemistry assay was carried out after 5 days. After incubation and fixation 

with 4% paraformaldehyde, methanol with 0.3% hydrogen peroxide was added. The 

cell-plate was incubated overnight with blocking serum (5%, goat serum and/or 

donkey serum) at 4°C in a humidity chamber. Primary antibodies against OC, TUBβ3, 

DMP1 and DSP were added overnight at 4°C. Finally, the hDPC were washed three 

times in PBS and incubated firstly with goat secondary antibody and then with 

Avidin/Biotinylated enzyme Complex for 1 h at room temperature. Immunoreactivity 

was finally disclosed by incubation with substrate solution and examined with an 

inverted microscope equipped with a digital camera. 

3.1.4.5. Prostaglandin E2 production (Study III) 

To evaluate the effect of BMSC-CM on PGE2 production in hDPC, the quantity of 

PGE2 was determined after 24 hr in the supernatant, using a commercially available 

ELISA kit (Prostaglandin E2 ELISA Kit, Monoclonal, Neogen Corporation, Lansing, 

Michigan, USA). PGE2 in both CM and control medium was also quantified. After 

incubation, the supernatants of all media were added to the monoclonal PGE2 antibody 

pre-coated plate before the diluted enzyme conjugate was added, and then incubated at 

room temperature for 1 hr. The plate was washed by buffer and substrate solution was 
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then added for 30 mins. Finally, 50 ul of hydrochloric acid (1N) was added to stop the 

enzyme reaction. The PGE2 content of all samples was quantified by microplate 

spectrophotometry (BMG LABTECH, GmbH) at a wavelength of 450 nm. 

3.1.4.6. Multiplex Cytokine assay (Study III) 

To determine whether BMSC-CM exerted an inflammatory response on hDPC, the 

concentrations of IL-10, -4, -6, and IL-8, and chemotactic cytokine RANTES were 

assessed after 24 hr, according to the manufacturer's protocol [99]. The concentration 

of selected cytokines in both CM and control medium was also measured. Briefly, the 

capture antibody-coupled beads were incubated with antigen standards and sample 

supernatants for 30 min, shaking in the dark at room temperature. The plate was then 

washed thoroughly with buffer to remove unbound materials. Next, the plate was 

incubated with biotinylated detection antibodies for 30 min by shaking in the dark at 

room temperature, and then washed thoroughly to remove the unbound biotinylated 

antibodies. Thereafter, 50 µl of reporter streptavidin-phycoerythrinconjugate (SA-PE) 

was added and incubated for 10 min in the dark at room temperature. Finally, after 

removing excess SA-PE, the beads were resuspended in 125 µl and the fluorescence 

was read and measured by Bio-Plex® MAGPIX™ Multiplex Reader. The observed 

concentrations were used to calculate the differences among the groups.  

3.2. ANIMAL EXPERIMENTS  (Studies II and III) 

3.2.1. Replantation model using rat maxillary first molars 
In Sprague-Dawley rats three weeks of age, immature maxillary first molars were 

extracted and replanted as previously described [100] (Figure 4A). Anaesthesia with 

Hypnorm-Dormicum (1 mL fentanyl/fluansion and 1 ml midazolam diluted in 2 ml 

sterile water) was administrated subcutaneously. The maxillary left first molar was 

extracted with a straight excavator, left with attached gingival tissue on the mesial side 

for 2 mins, and then gently replanted to its original position without further treatment. 

The same extraction procedure was carried out on the right side, but BMSC-CM (25 

µl) was injected into the socket before replantation in the original position. The 
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replantation protocol and evaluation methods are summarized in Figure 4A and B, and 

Table 2. In Study II, un-operated left and right maxillary first molars were used as a 

reference group (Table 3). 

 
Figure 4 (A) Illustration of the replantation model (B) The study design includes three 

different time points (3, 14 and 90 days). After 3 and 14 days, the animals were euthanized by 

neck dislocation (ND) for Real-Time-qRT-PCR analysis (RT-qRT-PCR), and transcardiac 

perfusion (TP) for immunohistochemistry (IHC). After 90 days, all animals were euthanized 

with TP for IHC. 
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Table 2 Replanted maxillary first molars: experimental group treated with CM and untreated 

control group (Studies II and III). 

Table 3 Overview of the different methods used for the reference group (Study II).

3.2.2. Immunohistochemistry (IHC) (Study II) 

Demineralized specimens intended for cryosectioning were immediately frozen in 

O.C.T. tissue-tech (Sakura Finetek, Tokyo, Japan). Cryosectioning was performed with 

a Leica CM 3050S (Leica Microsystems, Wetzlar, Germany) at −24°C. 

Immunohistochemical staining (IHC) for Laminin- and PGP 9.5-immunoreactivity was 

conducted as described elsewhere [101] and evaluated according to the different 

parameters shown in Table 4. An overview of different antibodies is presented in Table 

5. 

Methods Endpoint 
 (days)  

No. of Rats Study II Study III 

IHC 3 5 x __ 
 14 5 x __ 
 90 5 x __ 
 
RT-qRT-PCR  
  
          Teeth 

 
 
 

3 

 
 
 

5 

 
 
 

x 

 
 

 
x 

 14 5 x x 
           

Sockets 
 

3 
 

5 
 

x 
 

__ 
 14 5 x __ 

Methods No. of Rats Study II 

IHC 3 x 
 

RT-qRT-PCR 
 

Teeth 

 
 

 
3 

 
 
 

x 

Sockets 3 x 
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Table 4 Immunohistochemical parameters evaluated 

Pulp healing pattern Expression of Laminin- and PGP 9.5- 
immunoreactivity  

Dentin formation Dentin thickness from the furcal surface of 
the pulpal floor towards the internal pulp 
floor 

Root resorption Presence of ESRR and ECR 
ESRR: External surface root resorption; ECR: External cervical resorption. 

Table 5 Antibodies (Studies I-III) 

Full name Abbreviation Species Manufacturer Study 

Beta-actin β-Actin Human Santa Cruz I 

Osteocalcin OC Human Santa Cruz I 

Dentin sialophosphoprotein DSPP Human Santa Cruz I 

β3 tubulin TUBB3 Human Santa Cruz I 

Dentin matrix protein 1 DMP1 Human Santa Cruz I 

Laminin Laminin Rabbit StressGen 
Biotechnologies 

II 

Protein Gene Product 9.5 PGP 9.5 Rabbit  StressGen 
Biotechnologies 

II 

Cyclooxygenase 2 COX-2 Rabbit  Santa Cruz III 

Chemokine (C-C motif) 
ligand 5 

RANTES Human Bio-Rad III 

Interleukin-10 IL-10 Human Bio-Rad III 

Interleukin-6 IL-6 Human Bio-Rad III 

Interleukin-4 IL-4 Human Bio-Rad III 

Interleukin-8 IL-8 Human Bio-Rad III 

Prostaglandin E2 PGE2 Human Neogen 
Corporation 

III 
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3.3. REAL-TIME-qRT-PCR (Studies I - III) 

Details of Real-Time-qRT-PCR used in studies I-III are described elsewhere [102]. 

In Study I, total RNA was isolated using an isolation kit (Maxwell® 16 Total RNA 

Purification Kit, Promega), according to the manufacturer’s protocol. In studies II and 

III, total RNA was isolated from tooth samples using the TRIZOL method (Invitrogen, 

Carlsbad, CA, USA). RNA purity and quantification were determined by 

spectrophotometry (ThermoScientific NanoDrop Technologies, Wilmington, DE). 

The reverse transcription reaction was conducted using the High-Capacity cDNA 

Archive Kit (Applied Biosystems, Foster City, CA, USA), using 1000 ng total RNA 

dissolved in 40 µl nuclease-free water mixed with reverse transcriptase (RT) buffer, 

random primers, dNTPs and MultiScribe RT. The cDNA corresponding to 1 μg of 

mRNA was used as a template in each PCR reaction of primers. The real time PCR was 

performed under standard enzyme and cycling conditions on a StepOnePlus real-time 

PCR system using TaqMan® gene expression assays. Amplification was performed in 

96-well thermal cycler plates for 30 cycles, with a final 10-min extension at 72 °C. For 

all studies, the relative expression of each gene was analysed using the comparative CT 

method (2-ΔΔCt) and normalized to GAPDH, serving as an internal control. An overview 

is presented in Table 5. 
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Table 5 Overview of gene expression assays 

Code Full name Abbreviation Species Study 

Hs99999905-m1 Glyceraldehyde 3-phosphate 
dehydrogenase 

GAPDH Human I 

Hs00231692-m1 Runt-related transcription factor 2 RUNX2 Human I 

Hs00164099-m1 collagen type I COL1A2 Human I 

Hs01029144-m1 Alkaline phosphatase ALPL Human I 

Hs01587814-g1 Osteocalcin OC (BGLAP) Human I 

Hs00171962-m1 Dentin sialophosphoprotein DSPP Human I 

Hs01009391-g1 Dentin matrix protein 1 DMP1 Human I 

Hs00964963-g1 β3 tubulin TUBB3 Human I 

Hs01931883-s1 Glial cell-derived neurotrophic factor GDNF Human I 

Hs00375822-m1 Angiopoietin 1 Ang-1 Human I 
Hs00900055-m1 Vascular endothelial growth factor VEGF Human I 

Rn01749022-g1 Glyceraldehyde 3-phosphate 
dehydrogenase 

GAPDH Rat II-III 

Rn01512298-m1 Runt-related transcription factor 2 RUNX 2 Rat II 

Rn01511601-m1 Vascular endothelial growth factor A VEGFa Rat II 

Rn00686607-m1 Osteoclast stimulating factor 1 OSTF1 Rat II 

Rn00580432-m1 Interleukin 1β IL-1β Rat III 

Rn99999010-m1 Interleukin 4 IL-4 Rat III 

Rn99999011-m1 Interleukin 6 IL-6 Rat III 

Rn00563409-m1 Interleukin 10 IL-10 Rat III 

Rn00567841-m1 Interleukin 8 IL-8 
(CXCR2) 

Rat III 

Rn00562055-m1 Tumor necrosis factor alpha TNF alpha Rat III 
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3.4.  STATISTICAL ANALYSIS  (Studies I-III) 
Quantitative results were expressed as mean ± SD. In Study I, one-way analysis of 

variance was followed by a multiple-comparison Tukey test between the groups, 

control cell, OM, GDF-5 and CM-treated cells using IBM SPSS Statistics 19 (IBM). In 

Study II, one-way analysis of variance was followed by a multiple-comparison Tukey 

test between control and CM-treated replanted teeth and reference teeth. In Study III, 

Student’s t-test was used for comparison between CM and control medium, between 

CM-treated cells and control cells and between CM-treated and control replanted teeth 

using IBM SPSS Statistics 22 (IBM). Differences between the means were considered 

statistically significant at p < 0.05.  
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4. RESULTS 

4.1.  DENTAL PULP CELLS: ISOLATION AND 

CHARACTERIZATION (Studies I and III) 

Human DPC from young healthy donors (n=3) were successfully isolated, cultured 

and propagated after enzymatic digestion (Figure 5A). After 7 days, formation of 

clusters of cells was observed (Figure 5AI) and after 21 days, cells reached 70 to 80% 

confluence (Figure 5AII). Cells at passage 1 positively expressed the stem cell surface 

markers CD90 (45.4%), CD105 (5.8%), STRO-1 (6.1%) and CD24 (95.9%) (Figure 

5). 

 

 
Figure 5 Human DPC after isolation (passage 1). (AI) after 7 days and (AII) after 21 days). 

(B) Flowcytometric analysis revealed that hDPC at passage 1 positively expressed selected 

mesenchymal stem cell markers. Modified from Niyaz Al-Sharabi et al. J Tissue Eng (2014), 

presented with permission of Mary Ann Liebert, Inc. 
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4.2.  OSTEO/ODONTOGENIC DIFFERENTIATION OF ISOLATED 

hDPC UNDER DIFFERENT CULTURE CONDITIONS IN VITRO 

(Study I) 

4.2.1. Cell proliferation under different cell culture conditions 

CM significantly inhibited proliferation of hDPC after 24 and 48 hr compared with 

the OM, and after 120 hr compared with control cells, OM and GDF-5 treated cells 

(Figure 6). 

 
Figure 6 MTT assay reveals that CM has an inhibitory effect on cell proliferation compared 

with the other groups. The data are presented as mean ± standard deviation. (* p<0.05, ** 

p<0.01, and *** p<0.000). Adapted and modified from Niyaz Al-Sharabi et al. J Tissue Eng 

(2014), present with permission from Mary Ann Liebert, Inc. 

4.2.2. mRNA level of neuro/angiogenic and osteo/odontogenic 

differentiation genes 

The mRNA expression of TUBβ3 was significantly down-regulated in the cells 

treated with CM, compared with the other treatment groups after 2 days, and 

compared with cells treated with OM and GDF-5 after 5 days. Expression of GDNF 

was up-regulated in hDPC treated with CM, compared with the other groups after 2 

days, and compared with the cells treated with OM and GDF-5 after 5 days. Compared 

with the other groups, the cells treated with GDF-5 exhibited high expression of Ang1 
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after 2 days: expression declined after 5 and 9 days, but was still higher than for cells 

treated with OM and CM after 9 days. mRNA expression of VEGF was lower in all 

treatment groups than in the control. There was no difference between the control cells 

and those treated with CM at any time point. Significant differences in the mRNA 

levels of VEGF were found between the cells treated with GDF-5 and control cells 

after 2 and 9 days. CM significantly down-regulated the mRNA expression of RUNX-

2 compared with cells treated with OM and GDF-5 after 2 days. COL-1 and ALP 

expression were down-regulated in hDPC treated by CM compared with the controls, 

and cells treated with OM and GDF-5 at all time points. In contrast, compared with 

OM and GDF-5 treatment, CM treatment of hDPC significantly increased mRNA 

expression of the late differentiation marker (OC) after 2 and 5 days, and compared 

with all groups after 9 days. Figure 7 shows different mRNA levels of markers related 

to neuro/angiogenic and osteo/odontogenic differentiation on hDPC after 2 days. 

 

Figure 7 Real-time-qRT-PCR data in GDF-5 and CM-treated cells after 2 days. GAPDH was 

used for data normalization. The data are presented as mean ± standard deviation (*p < 0.05, 

**p < 0.01 and ***p < 0.001).  
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4.2.3. Protein expression of TUBβ3 and OC  

Immunocytochemical analysis revealed that hDPC after 5 days of culture in CM 

had the highest expression of TUBβ3 and OC of all the groups (Figure 8). 

 

 

Figure 8 Immunocytochemistry for TUBβ3 and OC in hDPC treated under different 

culture conditions after 5 days. Modified from Niyaz Al-Sharabi et al. J Tissue Eng (2014), 

presented with permission from Mary Ann Liebert, Inc. 

4.2.4. ALP staining and calcium nodule formation 

The hDPC cultured in CM showed weak staining for ALP after 5 days, and highest 

calcium nodule formation of all the groups after 14 days (Figure 9). The GDF-5 group 

exhibited massive mineralized nodule formation compared with the OM group. 
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Figure 9 ALP and Alizarin Red Staining. (A) High positive staining for ALP in the OM 

group after 5 days compared with the other groups, the lowest in the CM group. (B) At 14 

days the CM group had the highest red nodule staining of all groups. Adapted from Niyaz Al-

Sharabi et al. J Tissue Eng (2014), presented with permission from Mary Ann Liebert, Inc. 

4.3. EFFECTS OF CM ON PULPAL AND PERIODONTAL HEALING 

FOLLOWING TOOTH REPLANTATION IN VIVO (Study II) 

4.3.1. Expression of VEGF and ALP mRNA in tooth pulp and socket 

samples 

Real Time qRT-PCR data revealed expression of VEGF and ALP in the tooth 

samples of replanted teeth and reference teeth after 3 and 14 days. In the tooth 

samples, the expression level of VEGF and ALP was significantly higher in all 

replanted teeth than in the reference teeth. However, as shown in Figure 10, at no time 

point were there any differences in VEGF or ALP levels between the replanted teeth 

in the control and the CM groups. In the socket tissues, there was no difference 

between the groups in the level of expression of VEGF. After 3 days, statistically 

higher levels of ALP were observed for the replanted teeth of the control and CM 

groups compared with the reference teeth, but there were no differences after 14 days. 

Compared with the control group, ALP expression in the CM group was statistically 

higher after 3 days, with no differences after 14 days (Figure 10).  
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Figure 10 mRNA levels of VEGF and ALP in replanted teeth and reference group. GAPDH 

was used as a reference gene for normalization. The data are presented as mean ± standard 

deviation (*p < 0.05, **p < 0.01 and ***p < 0.001). 

4.3.2. Histological findings 

4.3.2.1. Expression of Laminin- and PGP 9.5-immunoreactivity in the  pulp and 

supporting tissues 

Histological examination demonstrated laminin-immunoreactivity in the pulp and 

supporting tissues of the replanted teeth. No morphological differences were observed 

among the groups of replanted teeth at any time point. The presence of PGP 9.5-

immunoreactive nerve fibres was faint or undetectable in the tissue of the replanted 

teeth after 3 days, but normal expression was found after 14 and 90 days (Figure 11). 
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Figure 11 Expression of Laminin- and PGP 9.5-immunoreactivity in a replanted control tooth 

(A), and one from the BMSC-CM group (B) after 14 days. BV; blood vessels; NF, nerve 

fibers; PH, pulpal horn and PF; pulpal floor (magnification, 10×; scale bar, 50 µm). 

4.3.2.2. Root resorption 

After 3 days, no signs of root resorption were detected, whereas after 14 days ECR 

and ESRR were observed in 5 teeth: 4 from the control group and one from the CM 

group (Figure 12). After 90 days, all control replanted teeth (100%) showed signs of 

either ECR or ESRR, compared with only one specimen from the CM group (20%). 
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Figure 12 External surface root resorption in the apical third of both experimental groups at 

day 14, indicated by white asterisks (magnification, 10×; scale bar, 50 μm). 

4.3.2.3. Periodontal ligament healing 

At all observation time points, replanted teeth in both the control and CM groups 

were characterized by a distinct PDL reattachment. Destruction of the PDL was seen 

only in resorption areas after 14 and 90 days. 

4.3.2.4. Root development 

After 3 days, the replanted teeth were characterized by an open apex which 

continued to narrow at day 14. After 90 days, complete root development was 

observed in all replanted teeth. 

4.3.2.5. Measurement of dentin thickness 

There were no differences in dentin thickness between the replanted teeth after 3 

days. After 14 days, there was an increase compared with 3 days. After 90 days, the 

dentin thickness of the replanted teeth in the control group was significantly greater 

than for the CM group (Figure 13) which in turn was significantly greater than in the 

reference rat teeth at this time point. 
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Figure 13 Dentin thickness measurements at day 3, 14 and 90 in all replanted teeth and 

reference teeth. The data are presented as mean ± standard deviation (***p < 0.001). 

4.3.2.6. Bone-like tissue formation (BLT) 

As shown in Figure 14, after 90 days, one replanted tooth specimen from the control 

group (20%) showed mineralized tissue formation in the central part of the pulp 

chamber. No such change was observed in the replanted teeth of the CM group. 

 

Figure 14 (A) In a replanted tooth of the control group pulp calcification (framed) in the 

central part of the pulp chamber, is surrounded by extensive new dentin formation 

(magnification, 10x; scale bar, 50 μm. (B) Higher magnification of (A) showing bone-like 

tissue formation, surrounded by soft tissue. RD: reparative dentin, PH: pulpal horn, BLT: 

bone- like tissue PT: pulp tissue (magnification, 20×; scale bar, 100 μm). 
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4.4. RELEASE AND GENE EXPRESSION OF INFLAMMATORY 

MEDIATORS IN VITRO AND IN VIVO (Study III) 

4.4.1. Concentration of inflammatory mediators in vitro 

IL-10, -6, and -8, and RANTES were detected in both control medium and CM, but 

in differing concentrations: the levels of IL-6 and -8, and RANTES were significantly 

higher in the CM than in the control medium (Figure 15). 

 
 

Figure 15 Concentration of inflammatory mediators in CM compared with control. The data 

are presented as mean ± standard deviation (*p < 0.05 and ***p < 0.001). 

4.4.2. CM and inflammatory mediators secreted by hDPC in vitro 

After culture of hDPC, the levels of IL-10, -6, and -8, and RANTES were statistically 

higher in CM than in the control medium (Figure 16). 
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Figure 16 Level of inflammatory mediators in cells from the CM and control groups. The data 

are presented as mean ± standard deviation (***p < 0.001). 

4.4.3. PGE2 production and protein expression of COX-2 in vitro 

Production of PGE2 was significantly higher in CM than in the control medium and in 

cells cultured with CM compared with control cells (Figure 17 A). Western blot 

analysis revealed higher expression of COX-2 in hDPC treated by CM than in controls 

(Figure 17 B).  

 
Figure 17 (A) Concentrations of PGE2 in CM compared with control, and in cells from the CM 

and control groups. (B) Western blot data showing expression of COX-2. GAPDH was used as 

a reference control in the western blot analysis. The data are presented as mean ± standard 

deviation (*p < 0.05 and **p < 0.01). 
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4.4.4. Expression of  IL1β, -10, -8 , and -6, and TNF-α in replanted rat 

molars  

Three days after replantation of the rat molars, mRNA expression of the pro-

inflammatory cytokines IL-1β, and -6, and TNF-α was lower in the CM teeth than in 

the control teeth; there was no difference between groups in regard to the mRNA level 

of IL-10 and -8. At 14 days, there was no intergroup difference in the mRNA levels of 

IL1β, -10, -8 and -6, and TNF-α (Figure 18). 

 

Figure 18 mRNA levels of IL-1β, -10, -8 and -6, and TNF-α in replanted teeth treated with 

CM and replanted control teeth. GAPDH was used for data normalization. The data are 

presented as mean ± standard deviation (*p < 0.05 and **p < 0.01).  
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5. DISCUSSION 

Recent research has shown that stem cells can mediate healing responses without 

prior differentiation, a property attributed to bioactive soluble molecules which are 

secreted by the stem cells into the surrounding culture medium during expansion in 

vitro [103]. 

Conditioned culture medium was previously discarded as waste after culture and 

expansion of stem cells. However, it is now of interest as a readily accessible source of 

growth factors and cytokines with potential clinical application, to moderate 

inflammation and enhance healing. 

The present thesis is based on in vivo and in vitro studies of the effects of signalling 

molecules, released from BMSC during culture, on dental pulp cells and dental tissues. 

The results show that BMSC-CM stimulates early differentiation and matrix 

mineralization and the expression of inflammatory mediators in hDPC in vitro. The in 

vivo experiments show that BMSC-CM seems to attenuate the initial inflammatory 

reaction in pulp tissue, and enhance pulpal and periodontal healing following 

replantation of rat molars. 

5.1. DENTAL PULP CELL ISOLATION AND CHARACTERIZATION 

In Studies I and II, hDPC from young adults were successfully isolated, cultured and 

propagated after enzymatic digestion. Of several methods for harvesting dental pulp 

cells, enzymatic digestion yields cells with high mineralization potential [104]. 

Stem/progenitor cells from young adults are preferred. Such cells are less likely to be 

adversely affected by environmental factors, and can be cultured and propagated to 

adequate numbers, circumventing any age-related loss in numbers or functionality, 

which might result in decreased regenerative capacity, including proliferation [105, 

106]. The third molars are frequently extracted in early adulthood, at a stage when the 

structure of these teeth is still immature; hence the pulps harbour a large reservoir of 

undifferentiated cells necessary to complete tooth development. 

To meet the criteria for MSC, stem cells derived from the pulp should express protein 

surface markers such as CD 90, STRO-1 and CD 105. In accordance with earlier studies 
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[107], the heterogeneous population of dental pulp cells in the present Study positively 

expressed these markers. STRO-1 antibody  is regarded as a marker for purification of 

stromal cell precursors in bone marrow and dental pulp [108] and has been detected in 

dental pulp cells and odontoblasts at the stage of completion of crown and root 

formation [109].  

CD 24 antibody is expressed by many cell types, including stem cells derived from 

the apical papilla (SCAP) [110, 111]. The DPC in the present Study exhibited relatively 

high expression of CD 24. As both SCAP and DPC are derived from neural crest cells 

[112], this might be attributable to contamination with SCAP during harvesting of the 

dental pulp tissue, or to the similar origin of the tissue types [112]. 

It should be noted, however, that inconsistencies in reports about expression of cell 

surface markers from different studies could be due to many variables such as passage 

number, composition of the culture medium and individual variations among donors. 

5.2.  IN VITRO DIFFERENTIATION OF DENTAL PULP CELLS 

Study I showed that BMSC-CM inhibited hDPC proliferation and induced 

expression of markers such as TUBβ3 and OC, associated with neurogenic and 

osteogenic differentiation, respectively. After short-term culture, there was a high rate 

of mineralization. 

There is a strong correlation between cell proliferation and differentiation: terminal 

differentiation is associated with a shift from a proliferative to a differentiating state 

[113]. The inhibitory effects of CM on cell proliferation found in Study I have also 

been reported previously [114]. However, contradictory results are also reported: 

BMSC-CM has been shown to increase proliferation of both PDL cells and MSC in 

vitro [73, 80]. Nor did GDF-5 exert any mitotic effects on hDPC at early time points, 

but increased cell proliferation after 120 hr. GDF-5 is reported to have no mitotic 

effects on mouse DPC and porcine cells derived from the dental papilla, but increases 

the proliferation of stem cells derived from the dental follicle and periodontal ligament 

stem cells [42, 43, 115]. These inconsistencies regarding the effects of both CM and 

GDF-5 on cell proliferation might be attributable to the different target cells, cell 
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culture design or synergistic effects between BMSC-CM and the chemicals in the 

osteogenic medium [116]. Further study is warranted in order to gain a more detailed 

understanding of the mitotic effects of GDF-5 and BMSC-CM and the underlying cell 

signalling pathways. 

Col 1, ALP and calcium deposition are often used to identify the early and late 

stages of differentiation and maturation of cells. ALP expression is greatest when the 

cell begins to differentiate, followed by a decrease and subsequent calcium deposition 

[117]. Down-regulation of the core-binding factor alpha 1/Runt-related transcription 

factor 2 (Cbfa1/RUNX2) gene is an important indicator of fully differentiated 

odontoblasts [118]. In accordance with these findings, Study I revealed that the 

inhibition of cell proliferation by BMSC-CM was associated with a low level of 

transcription factor Cbfa1/RUNX2 and ALP staining. Up-regulated gene and protein 

expression of bone-matrix protein (OC), together with accelerated mineralization were 

also observed. This is in accordance with previous observations [42, 56, 119]. 

In addition to the cytokines and growth factors demonstrated in CM, MSC secrete 

PGE2. The production of PGE2 by MSC transplanted to stimulate tissue formation 

confirms the dual effect of PGE2 on tissue healing and regeneration [120]. In Study 

III, CM enhanced the expression of PGE2 and its enzyme (COX-2) by hDPC. A 

similar response is reported after stimulation of hDPC with bone inductive materials 

such as Mineral Trioxide Aggregate [121]. In Study III, CM induced secretion of IL-6 

from hDPC after short-term culture in vitro (24 hr). IL-6 has an important 

immunoregulatory function [65, 122] and affects the angiogenic and bone remodelling 

processes. IL-6 expression also decreases when MSC undergo cell differentiation into 

different lineages [123]. Exogenous IL-6 and IL-6 produced by stem cells were found 

to induce osteoblastic differentiation of periodontal ligament cells as well as adipose 

stem cells in vitro [124, 125]. The ability of MSC-CM to induce mineralization in 

mouse BMSC in vitro was inhibited by antibodies against IL-6, indicating a role of IL-

6 signaling in prompting osteogenesis of mouse BMSC [56]. Although the 

concentrations of cytokines after cell differentiation were not evaluated in this project, 

it is assumed that the higher paracrine and autocrine levels of IL-6 and PGE2 found in 
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Study III might have an effect on initiation of osteo/odontogenic differentiation of 

hDPC [56, 126]. 

DPSC are of neural crest origin and might have a therapeutic effect when 

transplanted to the damaged central nervous system [127]. In Study I the hDPC 

cultured in BMSC-CM expressed TUBβ3 mRNA and protein, indicating neurogenic 

properties of the cells. Previous research has also shown the induction of neuronal 

differentiation of DPSC, as evidenced by up-regulation of neurogenic mRNA markers 

and increased protein expression of TUBβ3 [128]. 

Revascularization is crucial to healing and repair of the dental pulp. Under specific 

inductive conditions, DPC, can transdifferentiate into vessel-forming cells with 

expression of specific cell tissue markers [129]. In Study I, BMSC-CM did not induce 

substantial up-regulation of VEGF and Ang1 mRNA compared with the treated 

control cells. However, after 2 days, expression of VEGF mRNA was higher in cells 

cultured with BMSC-CM than in those cultured with GDF-5 and the latter exhibited 

higher expression of Ang-1 mRNA. The addition of osteogenic supplements to the 

MSC culture media is reported to decrease VEGF expression and secretion [130], 

suggesting that in Study I the osteogenic supplements together with the BMSC-CM 

might have reduced mRNA expression of VEGF and Ang1. These results indicate the 

need for further investigation of potential negative interactions between constituents of 

OM (e.g., dexamethasone) and proangiogenic cytokine expression and secretion. 

While distinct osteo/odontogenic differentiation of hDPC was demonstrated in 

Study I, trans-differentiation of hDPC into vessel and/or neuronal phenotypic cells 

was more difficult to assess. Therefore, further investigation is warranted into the 

influence of the current treatments, especially BMSC-CM, on the potential of hDPC to 

transdifferentiate into phenotypical and functional neuronal- and /or endothelial-like 

cells. 
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5.3.  BMSC-CM MODULATES INFLAMMATION AND 

HEALING OF DENTAL TISSUES 

It has been proposed that the paracrine effects of MSC secretome can accelerate 

wound healing, especially when administered to the site of injury [131]. The results of 

the in vitro studies on which this thesis is based show that BMSC-CM modulates 

osteo/odontogenic differentiation. Based on these observations, and the fact that 

BMSC-CM is known to contain bioactive soluble molecules with cyto-protective and 

inflammatory properties [75], a rat tooth replantation model was used in order to 

evaluate the effects of BMSC-CM on the healing of dental tissues. As inflammation is 

an integral part of the healing process, the influence of BMSC-CM on the 

inflammatory response to dental trauma was also investigated. 

5.3.1. Root resorption and periodontal healing 

In clinical dentistry, despite attempts at immediate replantation of traumatically 

avulsed teeth, the healing outcomes are unpredictable [132]. Root resorption may 

result in reversible or irreversible damage to cementum, dentin and bone [133]. 

Delayed replantation, with drying and damage to the PDL cells (cementoblast 

necrosis) is regarded as a major contributory factor to clinical failure [134]. Injury to 

or loss of the protective layers (per-cementum and pre-dentin) may trigger an 

inflammatory reaction and root resorption [8]. PDL damage can be limited by 

immediate replantation. Hence in Study II, the teeth were replanted within two 

minutes of extraction.  Evaluation after 90 days revealed that BMSC-CM reduced the 

number of cases of external root resorption in replanted teeth. These findings are in 

accordance with those of a previous study of PDL cells, showing that CM derived 

from cultured gingival fibroblasts had a significant effect on the viability of PDL cells 

[135]. 

Root resorption is attributed to clastic cells on the root surface following an 

inflammatory response to trauma or bacterial irritants [8]. Inhibiting osteoclast activity 

might reduce the negative effects of the inflammation. In Study II, the finding that 
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BMSC-CM reduced the number of teeth with resorption after replantation is in 

accordance with evidence from previous studies. In Study II, factors secreted by MSC 

induced up-regulated production of lipid mediator PGE2 from hDPC in vitro. It has 

been suggested that the in vitro stimulatory effect of PGE2 on RANKL and OPG 

expression in a cementoblast cell line, as well as the production of OPG by 

cementoblasts, can in turn protect the root surface from resorption [136]. Thus BMSC-

CM may enhance healing not only by modulating the inflammatory state surrounding 

the tooth, but also through reduction in osteoclastic activity [73, 137]. 

5.3.2. Root development 

During tooth formation, the pulp has an inherent capacity for continued root 

development. After trauma, immature permanent teeth exhibit an inherent healing 

capacity. The healing pattern has been categorized into normal, partial closure and 

arrested root development [138, 139]. These developmental patterns are influenced by 

the viability of the PDL, pulp revascularization and the survival of Hertwig’s epithelial 

root sheath [138, 139]. In Study II the replanted teeth exhibited normal or complete 

root development at 90 days. This might be attributable to the developmental stage of 

the teeth at replantation and the short interval between extraction and replantation, 

limiting the severity of the trauma and the inflammatory response. Hertwig’s epithelial 

root sheath was preserved and root formation continued [140]. Surviving 

mesenchymal stem cells, residing in the apical papilla, are thus important for 

continued root formation [141]. 

5.3.3. Pulpal healing 

The dental pulp is enclosed in dentin. If  the dental hard tissues are unaffected by 

tooth displacement and replantation, damage is limited primarily to disruption of  

pulpal nerve and blood supply and injury to the PDL. 

5.3.3.1. Nerve and blood supply 

In the intact pulp, nerve fibres are located along the blood vessels, close to the 

odontoblast layer and predentin as well as in the inner part of dentin [142]. Following 
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tooth replantation, these nerve fibres play an important role in pulp tissue healing [143, 

144]. In Study II, pulpal healing following replantation was rapid. Expression of the 

neuronal marker PGP 9.5 was faint or weak 3 days after replantation, but had resumed 

close to normal levels at day 14, indicating a high potential for recovery or 

regeneration of odontoblasts in young teeth. Expression of PGP 9.5 has been proposed 

as an indicator of differentiation of odontoblasts or odontoblast-like cells. [145].  

 An important aspect of the inflammatory response is the increase in blood supply. 

This facilitates migration of inflammatory cells which are important for elimination of 

microbial elements and recovery of pulpal function [146]. As the pulp lacks a 

collateral blood supply, necrosis may develop after injury. The necrotic pulp is more 

susceptible to invasion of microorganisms and subsequently to development of apical 

pathology. MSC and their secreted factors may enhance cell migration/differentiation 

and reduce inflammation and clastic activity [73, 80, 137]. Immature teeth with an 

open apex have high revascularisation potential [147]. In Study II the higher 

expression of VEGF mRNA and Laminin-immunoreactivity observed after tooth 

replantation indicates vascularization of the replanted teeth. 

5.3.3.2. Hard tissue formation and inflammatory reaction 

The in vivo Study showed that compared with untreated replanted teeth, CM 

treatment resulted in attenuated gene expression of inflammatory mediators (IL-1β, 

and -6, and TNF-α) and a corresponding formation of mineralized tissue along the 

pulp-dentin interface.  

In vitro, expression of early markers of inflammation is associated with early 

expression of odontogenic differentiation and mineralization markers in hDPC [121, 

148, 149]. Although pulpal inflammation is regarded as a negative factor in pulpal 

disease, the initial inflammatory reaction in the pulp tissues might in fact be a 

prerequisite for healing [121]. However, resolution of inflammation is then required to 

eliminate further tissue damage caused by pro-inflammatory mediators. Inflammation 

is thus a balance between pro-inflammatory mediators (e.g., IL-1β and TNF-α) and 

anti-inflammatory mediators (e.g., IL-4 and IL-10) that are important for recovery of 
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tissue homeostasis. Although Study III disclosed no difference in the mRNA levels of 

IL-10 between control and CM treated replanted teeth, IL-10 expression  in the latter 

was associated with low mRNA levels of IL-1β, and -6, and TNF-α, 3 days after 

replantation, indicating a possible immunoregulatory effect of the MSC secretome [6]. 

In Study III, CM stimulated production of IL-10 by hDPC, compared with the 

control medium (DMEM). Two in vitro studies support this disclosure: firstly, human 

dental pulp showed  higher production of IL-10 in healthy than in inflamed dental pulp 

cells and this up-regulation was associated with suppressed proliferation of activated T 

cells [150] and secondly, secretion of IL-10 from mesenchymal cells was shown to 

inhibit cardiac fibroblast proliferation and collagen expression [75]. Thus IL-10 

released from hDPC stimulated by culture in BMSC-CM may serve a protective 

function for the pulp tissue. 

 Study III revealed high concentrations of RANTES and IL-8 in BMSC-CM, 

increasing further after treatment of hDPC with BMSC-CM. It is unclear whether this 

effect is associated with osteo-/odontogenic-like phenotype differentiation of hDPC in 

vitro, as we did not evaluate their production after cell differentiation. However, a 

previous study has shown that the ability of MSC-CM to induce osteogenic 

differentiation of mouse BMSC was not affected by antibodies against RANTES or 

SDF-1 in vitro [56]. In contrast, the in vivo part of Study III disclosed no differences 

in mRNA levels of IL-8 among the replanted groups. These results might be 

attributable to the effect of immediate replantation on chemokine expression, or IL-8 

might have a minor impact in the current model. It is therefore necessary to document 

earlier and later time points to achieve more comprehensive mapping of the cytokine 

and chemokine profiles and the cellular and tissue responses of MSC-CM over time. 

Pulp calcification and inflammation after tooth replantation are closely dependent 

mechanisms [151]. At least three forms of tissue obliteration of the pulp tissue space 

have been reported after replantation; dentin-like, bone like or both, and fibrotic tissue 

with irregular calcification [152, 153]. This form of hard tissue is assumed to be 

produced either by physiological stimulation or abnormal regulatory mechanisms of 

pre-existing odontoblast and/or un-/differentiated pulpal stem cells [154]. In 
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accordance with the correlation between inflammation and the rate of hard tissue 

formation following tooth injury, increased mineralized tissue formation in the tooth 

pulp of replanted control teeth might be a consequence of the high mRNA levels of IL-

1β, and -6, and TNF-α found three days after replantation. CM might therefore reduce 

the initial inflammatory reactions in the dental pulp, thus reducing mineralized tissue 

formation along the pulp-dentin interface. 

Although in Study I high rates of mineralization were observed after stimulating 

hDPC with CM in vitro, this effect was not replicated in Study II. This discrepancy 

could be attributable to the impact of a single dose versus continuous stimulation, the 

time points studied, the amount of CM or to the presence of osteo/odontogenic 

supplements added to the culture medium in Study I. However, the long term effect of 

CM as a single dose in vivo, as observed in Studies II and III, was not anticipated. 

Although repeated application of CM has shown positive effects on bone healing, 

possibly mediated by increased vascularization [155], the present model precluded 

repeated application.  

There is a correlation between a high rate of hard tissue formation in the pulp space 

and inflammation and resorption on the root surface [144, 156]. However, in the 

present studies the rate of inflammation on the root surface was not evaluated. The 

reduction in the mineralization rate along the pulp-dentin interface, as well as the 

marked reduction in the number of teeth undergoing external root resorption after CM 

treatment, might thus be related to a lower level of inflammation in the root and 

surrounding tissues. 
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6. CONCLUDING REMARKS 

Traumatic injuries to hard tissues such as bone or teeth trigger many physiological 

responses such as inflammation, vascularization, neurogenesis and differentiation of 

endogenous stem/progenitor cells. The studies on which this thesis is based addressed 

the role of paracrine secretions of stem cells in tissue repair and healing. The in vitro 

studies analysed the effect of bone marrow mesenchymal stem cells conditioned 

medium on human dental pulp cells. In vivo, dental trauma and replantation of avulsed 

molar teeth were simulated in a rat model, in order to investigate the influence on root 

resorption of conditioned medium containing secretome from cultured human bone 

marrow stem cells.  

 

The results of the studies suggest the following conclusions: 

 

• Compared to exogenous recombinant GDF-5 and odontogenic medium, CM has a 

pronounced stimulatory effect on differentiation of hDPC, evidenced by expression of 

osteocalcin and a corresponding rapid formation of mineralized nodules. 

 

• In a rat model simulating avulsion and replantation of molar teeth, BMSC-CM 

reduces the number of teeth undergoing external root resorption and the rate of hard 

tissue formation along the pulp-dentin interface.  
 

•  BMSC-CM attenuates the initial inflammatory reaction in the pulp tissue following 

replantation of rat molars, as evidenced by decreased gene expression of IL-1β, IL-6, 

and TNF-α. 

 

• BMSC-CM contains a group of inflammatory healing mediators, including IL-6 and 

PGE2. Production of IL-6 and PGE2 by hDPC is significantly up-regulated when hDPC 

are stimulated by BMSC-CM in vitro. 
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• BMSC-CM contains only insignificant amounts of anti-inflammatory IL-10, but 

production increases significantly when hDPC are stimulated with BMSC-CM in vitro. 
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7.  FUTURE PERSPECTIVES 

• Cells cultured in CM contain a group of microvesicles with bi-lipid membranes 

[157]: detailed investigation of the properties of these components might disclose 

other stem cell paracrine/endocrine factors which may favourably influence dental 

tissue repair and regeneration. 

 

• The results of these studies show that stem cell secretome in CM can induce early 

and rapid osteo/odontogenic differentiation in vitro. However, further investigation is 

warranted to determine the relative effects of CM on migration of DPSC, and their 

differentiation into different lineages. 

 

• The results also highlight the contribution of stem cell secretome to tissue healing by 

inducing production of relevant inflammatory healing mediators (e.g., IL-10, IL-6 and 

PGE2) in vitro, and reducing the initial inflammatory reactions in pulp tissue in vivo. It 

would therefore be of interest to investigate whether CM might have an 

immunomodulatory influence on pulp-dentin regeneration and repair of pathological 

conditions of the pulp. 

 

• While the present project addressed the effect of CM on pulpal cells and the 

preservation of pulp vitality after tooth replantation, the effect of CM on pulp 

regeneration also warrants investigation. 
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Abstract – Aim: To investigate the effect of paracrine factors secreted
from human bone marrow stromal cell (BMSC-CM) on pulpal and peri-
odontal healing following immediate replantation of maxillary rat first
molars. Material and Methods: Fifty maxillary rat first molars were ele-
vated and replanted after 2 min. The left teeth were replanted without
treatment, whereas BMSC-CM was injected into the right socket prior to
replantation. Twelve un-operated teeth served as reference teeth. The
expression of vascular endothelial growth factor A, alkaline phosphatase,
Runt-related transcription factor 2 and osteoclast stimulating factor 1 was
studied by real-time reverse transcription polymerase chain reaction at day
3 and 14. The dentin thickness together with Laminin- and PGP 9.5-
immunoreactivity were studied after 3, 14 and 90 days. Results: Real-
Time qRT-PCR data showed up-regulated expression of ALP mRNA in
the socket specimens of conditioned medium treated replanted teeth after
3 days. No morphological differences were found for the expression of
Laminin and PGP 9.5 between control and conditioned medium treated
replanted teeth. At day 14, external cervical and surface root resorption
was found in one BMSC-CM and one control tooth. At 90 days, all con-
trol replanted teeth had external cervical and surface root resorptions,
whereas only one sample was seen among the conditioned medium treated
teeth. At day 90, more extensive dentine formation with narrowing of the
pulpal space was observed in the control compared with conditioned med-
ium treated teeth. Conclusions: The present findings showed that BMSC-
CM treatment reduced the number of replanted teeth with external root
resorption and resulted in a significant reduction in new dentin
formation.

Traumatic dental injuries (TDI) are the most common
facial injuries that affect the integrity of the natural
dentition (1). After tooth avulsion, replantation may
preserve the alveolar-ridge and orofacial development
and growth. Despite attempts for immediate replanta-
tion of traumatically avulsed teeth, many factors may
impair the healing process. Pulpal changes after rupture
of blood vessels and nerve fibres, damaged odontoblast
function and degree of attachment damage, may affect
the healing outcomes after trauma (2, 3).

Several studies have focused on treatment of the
root surface to control periodontal complications after
replantation or transplantation. Despite attempts to
control periodontal ligament (PDL) repair and tooth
revascularization, uncertain healing outcome has been
found (4–7). Bioactive soluble molecules, which are a
group of signalling molecules able to control several
endogenous activities, have shown promising results in

some healing models. Bone morphogenic protein 7
(BMP-7) was shown to increase cementum formation,
improve eruption and survival of transplanted teeth in
immature mini-pigs (8). In addition, BMP-6 enhanced
periodontal wound healing and cementogenesis in dogs
(9). For enhanced pulpal revascularization, vascular
endothelial factors (VEGF) has been suggested as a
crucial angiogenic factor for traumatically avulsed teeth
(10), whereas endothelial growth factor (EGF)
improved revascularization of the pulp tissue after
auto-transplantation in rat molars (11).

It has been shown that transplanted exogenous stem
cells produce a variety of bioactive immunoregulatory,
angiogenic and neurotrophic molecules that can be
used for improving and accelerating wound healing
(12). In particular, secreted factors derived from bone
marrow mesenchymal stem cell (BMSC) or bone mar-
row mesenchymal stem cell conditioned medium
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(BMSC-CM) has been shown to promote wound heal-
ing (13, 14). For dental tissues, BMSC-CM is able to
induce osteo/odontogenic differentiation of dental pulp
cells in vitro (15), and promote alveolar bone and
cementum regeneration in infra-bony defects in rats
(16). The existence of mesenchymal stem cells in pulpal
and periodontal tissues may therefore participate and
influence healing after tooth avulsion. Therefore, the
aim of the presented study was to investigate the effect
of human bone marrow stromal cell secreted molecules
as a conditioned medium (BMSC-CM) to enhance peri-
odontal and pulpal healing following replantation of
rat molars.

Materials and methods

Animals and replantation procedures

The experimental protocol was approved by the Regio-
nal Committee for Animal Research Ethics, University
of Bergen, under supervision of the Norwegian Experi-
mental Animal Board.

Thirty-one female Sprague-Dawley rats, aged 3 weeks
and approximately 100 g in weight were used (National
Public Health Institute, Norway). The animals were fed
standard pellet diets with water ad libitum and acclima-
tized for 7 days prior to the operation procedures.
Anaesthesia was achieved with a subcutaneous injection
of Hypnorm-Dormicum (1 ml fentanyl/fluansion diluted
in 1 ml sterile water mixed with 1 ml midazolam diluted
in 1 ml sterile water, 0.2 ml kg�1 body weight). Before
the surgical procedure, the crown was cleaned with
0.3% chlorhexidine gel. The left and right first maxillary
molars were selected in this study. The teeth were ele-
vated with a sterile elevator placed at the distal aspect
of the crown, according to an established protocol (17).
The left tooth was first elevated for 2 min and replanted
without any treatment (denoted as control replanted
teeth). The contralateral right tooth was elevated in a
similar manner, but received injection of BMSC-CM
(lyophilized reagent diluted in 100 ml serum-free med-
ium, 0.025 ml tooth�1) in the socket before replantation
(denoted as CM treated replanted teeth). No postopera-
tive fixation was used. Postoperative pain killer (Tem-
gesic 0.3 mg ml�1, 0.05 ml 100 g�1 body weight) and
antibiotic prophylaxis (benzylpenicillinprocaine
300 000 IE ml�1), 0.020 ml 100 g�1 body weight, were
given. The animals were kept on a soft diet after the
operation to facilitate feeding and drinking. At the end
of the observation periods (3, 14 and 90 days), all ani-
mals were anaesthetized subcutaneously with Hypnorm-
Dormicum (approximately 0.4 ml rat�1). Five rats at 3,
14 and 90 days were processed for immunohistological
analysis. The rest of the rats at 3 and 14 days were euth-
anized with neck dislocation for gene analysis. Six refer-
ence teeth (three rats) were processed for the gene
analysis, and six reference teeth (three rats) were pro-
cessed for immunohistological analysis (Table 1).

Tissue preparation

For gene analysis, the upper jaw of the rats was dis-
sected out and separated into left and right parts.

Teeth and socket specimens were prepared and immedi-
ately submerged in RNA later and stored at �80°C.
For the histological procedures, animals at day 3, 14
and 90 underwent transcardiac perfusion by hep-
arinized saline (0.9% NaCl/0.03% heparin), followed
by 10% ethylene-diamine-tetra acetate (EDTA), pH
7.4, at room temperature (Table 1). Briefly, after trans-
verse abdominal incision, a fine needle was inserted
into the descending aorta and immobilized by needle
forceps before infusion of perfusion solution. The max-
illary jaws were then dissected out and immersed in
demineralizing solution (10% EDTA) at 4°C for
4 weeks. Decalcified specimens were rinsed in PBS for
24 h, subsequently soaked in 30% sucrose in 0.1 M
phosphate buffer, pH 7.4 for 24 h, embedded in
O.C.T. tissue-tech (Sakura Finetek, Tokyo, Japan), and
immediately kept at �80°C.

Gene analysis

Total RNA was isolated using TRIZOL method and the
RNA purity and quantification were determined by spec-
trophotometry (ThermoScientific NanoDrop Technolo-
gies, Wilmington, DE, USA). The reverse transcription
reaction was performed using the High-Capacity cDNA
Archive Kit (Applied Biosystems, Foster City, CA,
USA), using 1000 ng total RNA dissolved in 40 ll
nuclease-free water mixed with reverse transcriptase
(RT) buffer, random primers, dNTPs and MultiScribe
RT. The cDNA corresponding to 10 ng of mRNA was
used as a template in each PCR reaction of primers
(Applied Biosystems, Foster City, CA, USA). Quanti-
tative RT-PCR was conducted by a StepOnePlus real-
time PCR system using TaqMan� gene expression
assays: glyceraldehyde-3-phosphate dehydrogenase
(GAPDH, Rn01749022-g1), Runt-related transcription
factor 2 (RUNX 2, Rn01512298-m1), Vascular
endothelial growth factors A (VEGFa, Rn01511601-
m1) and Osteoclast stimulating factor 1 (OSTF1,
Rn00686607-m1) (Applied Biosystems, Foster City,
CA, USA). The data were analysed using the 2�DDCT

method and GAPDH served as house-keeping gene for
normalization.

Immunohistochemical procedure (IHC) using Laminin and

PGP 9.5

Cryosectioning was performed on a Leica CM 3050S
(Leica Microsystems, Wetzlar, Germany) at �24°C into
25-lm sections. Sections were fixed with cold acetone

Table 1. Replanted and reference rat upper first molars

Endpoint

(days) IHC Gene analysis Rats No.

3 days 5 rats 5 rats

(10 teeth and 10 sockets)

10 rats (20 teeth)

14 days 5 rats 5 rats

(10 teeth and 10 sockets)

10 rats (20 teeth)

90 days 5 rats 5 rats (10 teeth)

Reference

teeth

3 rats 3 rats

(6 teeth and 6 sockets)

6 rats (12 teeth)

Total rats 18 rats 15 rats 31 rats (62 teeth)
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and treated with absolute methanol containing 0.3%
H2O2 for 30 min to block endogenous peroxidase activ-
ity. Sections were incubated with PBS containing 2.5%
normal goat serum for 60 min at room temperature
before incubation with rabbit polyclonal anti-Laminin
(1:5000; StressGen Biotechnologies, Victoria, Canada)
and rabbit polyclonal anti-PGP 9.5 (1:400; StressGen
Biotechnologies, Victoria, BC, Canada) overnight.
After several rinses in PBS, sections were incubated
with biotinylated anti-rabbit IgG for 60 min, and
finally with biotin/avidin solution (VECTASTAIN Elite
ABC Kit, Vector Laboratories, Inc. Burlingame, CA,
USA). Following washes with PBS, substrate solution-
cell reactions (DAB Substrate Kit, Vector Labora-
tories, Inc., Burlingame, CA, USA) were added at
room temperature. The expression of Laminin and
PGP 9.5 was examined with an inverted microscope
equipped with a digital camera (FV 500, Olympus,
Tokyo, Japan).

Immunohistochemical evaluation

The immunostaining was evaluated according to the
following parameters; pulp healing pattern including an
analysis of angiogenic and neurogenic marker expres-
sion in the pulp chamber, and reparative or new dentin
formation. Dentine formation was evaluated by calcu-
lating the dentine thickness from the furcal surface of
the pulpal floor towards the internal pulp floor.

For analysis of root resorptions, several parameters
were used; ESR, External surface resorption; IRR,
Internal root resorption; EIRR, External inflammatory
root resorption; ECR, External cervical resorption;
Ankylosis (replacement resorption). All parameters
were evaluated by a blinded observer.

Statistical analysis

The mRNA expression of the reference teeth was
considered as the normal level of uninjured teeth.
Quantitative data of dentin thickness after 3, 14 and
90 days and the mRNA expression levels were pre-
sented as mean � standard deviation. For statistical
analysis, one-way analysis of variance was followed
by a multiple-comparison Tukey test, IBM� SPSS�

Statistics 22.0 (IBM, USA). Statistical significance
was determined at P < 0.05.

Results

Real-Time Quantitative Reverse Transcription PCR (Real-Time

qRT-PCR)

The Real-Time qRT-PCR data revealed ALP, Cbfa1/
Runx2 and OSTF1 (bone remodelling related genes),
and VEGFa (angiogenic related gene) mRNA expres-
sion in all teeth and sockets samples after 3 and
14 days (Fig. 1).

Higher VEGFa mRNA expression was found in all
tooth specimens of replanted teeth after 3 and 14 days
compared with reference rat teeth. Although not statis-
tically significant, the VEGFa mRNA level was slightly

up-regulated in all socket specimens of replanted teeth
after 3 and 14 days compared with reference rat teeth.
No intergroup differences were found between the con-
trols and CM treated tooth and socket specimens.

The ALP mRNA expression was significantly up-
regulated in the tooth specimens of control and CM
treated replanted teeth after 3 and 14 days compared
with reference rat teeth. Compared to 3 days, the ALP
mRNA expression was declined at 14 days. In the
socket specimens, a significant up-regulation of ALP
mRNA was detected in all replanted teeth after 3 days
compared with reference rat teeth. A significant up-reg-
ulation of ALP mRNA expression in the socket speci-
mens was also found for the CM treated replanted teeth
compared with control replanted teeth after 3 days.
Compared to 3 days, the ALP mRNA expression in the
socket specimens was significantly down-regulated in
the control and CM treated replanted after 14 days.

For the RUNX2 mRNA expression, up-regulation
was found in the control replanted teeth compared
with the reference rat teeth after 3 days. After 14 days,
statistical down-regulation was found in the control
replanted teeth compared with same group after
3 days. No intergroup time differences in the mRNA
level of RUNX2 was found for the CM treated
replanted teeth, although the expression after 14 days
was declined. For the sockets, no differences were
detected between replanted teeth and reference rat teeth
at 3 and 14 days.

Increased mRNA expression of OSTF1 was found
in all replanted teeth compared with the reference rat
teeth, although not at a statistical level. On the other
hand, the mRNA expression of OSTF1 in the sockets
were down-regulated in all replanted compared to the
reference rat teeth, and the expression of OSTF1 was
statistically down-regulated in control replanted com-
pared with reference rat teeth after 14 days.

Histological analysis

Reference rat teeth
The reference rat teeth showed normal distribution of
Laminin and PGP 9.5 in pulp and periodontium
(Fig. 2).

Three days after replantation
The pulp of control and CM treated replanted teeth
demonstrated immunoreactivity to both Laminin and
PGP 9.5 (Fig. 3). The PGP 9.5 staining was faint com-
pared with reference rat teeth. The PDL was separated
from the alveolar bone by organized connective tissue
in all replanted teeth. No statistical differences were
found between the experimental groups for the dentin
thickness (Fig. 4).

Fourteen days after replantation
Increased immunoreactivity of Laminin was found in
both control and CM treated replanted teeth, as com-
pared with reference rat teeth (Fig. 5). Laminin- and
PGP 9.5-immunoreactivity was densely distributed
close to the odontoblast layer, with a pattern similar to
reference rat teeth. The intensity of the Laminin- and

© 2015 The Authors. Dental Traumatology Published by John Wiley & Sons Ltd.
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Fig. 1. Real-Time qRT-PCR analysis at day 3 and 14 in teeth and tooth socket specimens. Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) was used for data normalization. The data are presented as mean � standard deviation (*P < 0.05,
**P < 0.01 and ***P < 0.001).

© 2015 The Authors. Dental Traumatology Published by John Wiley & Sons Ltd.

4 Al-Sharabi et al.



PGP 9.5-immunoreactivity was higher in the mesial
root as compared with the distal root of the
replanted teeth. For the dentin formation, statistically
more dentin was formed in both replanted groups
compared with day 3 groups and the reference rat
teeth (Fig. 4, ***P < 0,001). However no intergroup
difference was found between control and CM trea-
ted replanted teeth. Continued root development was
observed in all replanted teeth comparable with the
reference rat teeth. External cervical and surface root
resorptions were noted in the mesial part of the
mesial root of one specimen in each of the replanted
groups (Fig. 6A).

Ninety days after replantation
Complete root development was shown with distinct
PDL in the replanted teeth. Laminin and PGP 9.5-
immunoreatctivity was observed in the pulp tissue, with
a similar pattern as found for reference rat teeth.
External cervical and surface root resorptions were
noted in the replanted teeth (Fig. 6B). Resorptions
were demonstrated in all control replanted teeth,
whereas resorptions were only found in one CM trea-
ted replanted tooth. Extensive dentin formation was
found at this time point, and was significantly higher in
the control replanted teeth as compared with the CM
treated replanted teeth (Fig. 4 and 7, ***P < 0.001).
Dentin formation in both control and CM treated
replanted teeth was significantly higher after 90 days as
compared with 3 and 14 days, and to the reference rat
teeth (Fig. 4, ***P < 0.001). Dentin formation was

Fig. 2. Laminin- and PGP 9.5-immunoreactivity distribution,
as demonstrated in reference rat teeth. BV, blood vessels; NF,
nerve fibres; PH, pulp horn and PF, pulp floor
(magnification, 109; scale bar, 50 lm).

Fig. 3. Laminin- and PGP 9.5-
immunoreactivity 3 days following
tooth replantation. (a) control and (b)
CM treated replanted teeth. Laminin
and PGP 9.5-immunoreative
distribution is demonstrated in both
control and CM treated replanted teeth.
BV, blood vessels; NF, nerve fibres; PH,
pulp horn and PF, pulp floor
(magnification, 109; scale bar, 50 lm).
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characterized by narrowing of the pulp chamber and
scattered calcified tissues was seen in one of the control
replanted teeth (Fig. 7).

Discussion

The present study revealed that bone marrow stromal
cell conditioned medium (BMSC-CM) reduced the
number of teeth with external root resorption and pro-
hibited excessive reactive dentin formation.

As angiogenesis is indicated as a critical step in pulp
healing (18), this study used Laminin and VEGFa as

markers for pulpal blood supply. Laminin is presents
in the basement membrane of blood vessels and cell
membranes (19). Laminin is a member of proteins and
glycoproteins that has many biological functions
including cell-cell interactions, and encourage neurite
outgrowth after tissue damage (19). In the current
study, gene and immunohistological data showed the
expression of blood vessels markers even 3 days follow-
ing replantation. At day 14, Laminin immunoreactivity
appeared to be up-regulated in the pulp tissue of the
replanted compared with reference rat teeth. This may
reflect a role for Laminin in the tissue healing. The
mesial root of the replanted teeth was characterized by
intensive Laminin immunoreactivity compared to the
distal root, indicating a more severe luxation trauma to
the distal root during the procedure. These results
might indicate better revascularization, possibly due to
less sever luxation trauma and the fact that this root is
bigger with a larger volume. Increased density of Lami-
nin-positive blood vessels in the pulp after dentinal
injury has been reported, reflecting localized increased
blood flow (20).

Pulpal nerve fibres are shown to affect the pulp tis-
sue homeostasis, blood flow and healing (21). In nor-
mal pulp tissue, nerve fibres are densely distributed in
the odontoblast layer, predentin, and the inner part
of dentin. In the root they are more centrally located
along the blood vessels (22). During pulpal injury,
nerve fibres react by sprouting of their terminal
axons, indicating an important role in the healing
process (23). PGP 9.5 has been used as neurochemical
marker for intra-pulpal nerves during tooth develop-
ment (24). In agreement with previous studies the
odontoblasts also expressed PGP 9.5, possibly reflect-

Fig. 4. Dentin thickness at day 3, 14 and 90. At day 3, no
statistical differences were found among the experimental
groups. At day 14, dentin thickness was significantly
increased in all replanted teeth as compared to the same
groups at day 3, and reference teeth at day 14. At day 90,
CM treated replanted teeth exhibited less dentin thickness
compared with the control replanted rat teeth. Both replanted
groups had increased dentin thickness compared with the
same groups at day 3 and 14. The data are presented as
mean � standard deviation (***P < 0.001).

Fig. 5. Laminin- and PGP 9.5-
immunoreactivity in the pulp chamber
of replanted teeth at day 14. (a)
Laminin- and PGP 9.5-immunoreative
staining in a control replanted tooth. (b)
Laminin- and PGP 9.5-immunoreative
staining in a CM treated replanted
tooth. BV, blood vessels; NF, nerve
fibres; PH, pulp horn; PF, pulp floor
(magnification, 109; scale bar, 50 lm).

© 2015 The Authors. Dental Traumatology Published by John Wiley & Sons Ltd.
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ing their neural crest origin (24). It has previously
been documented that the PGP 9.5-immunoreactivity
in pulpal nerves and odontoblasts disappeared
1–3 days following replantation, and that some frag-
mented immunoreative structures in the coronal pulp
remained (25). That study also found that PGP 9.5-
immunoreactive regenerating axons returned after
5 days (25). In the present study the PGP 9.5-immu-
noreactivity was weak or disappeared at day 3, possi-
bly reflecting the presence of the protein and not
functional nerve fibres.

Post-traumatic external root resorption is virtually
a consequence of damage and inflammation in the
PDL and the root cementum, and is considered as a
self-limiting condition that is followed by repair (26).
Cervical root resorption is also an inflammatory medi-
ated external resorption of the root, but is more pro-
gressive in nature (27). Periodontal healing is strongly
affected by the extent of damage to the PDL cells
(28), and is mainly dependent on time and extra-oral
storage (17). Numerous attempts to preserve the PDL
cells and reduce the clastic activity have been sug-
gested to minimize root resorption. For example, topi-
cal alendronate (ALN) treatment of dog teeth was
found to inhibit the osteoclast activity, reflected by a
reduction in the incidence of root resorption (29).
Enamel matrix derivative (EMDOGAIN) was found
to reduce the number of teeth with inflammatory root

Fig. 6. (a) External surface root
resorptions on both control and CM
treated replanted teeth at day 14
indicated by white asterisks
(magnification, 49; scale bar, 500 um).
(b) External cervical root resorptions in
both experimental groups at day 90
indicated by white asterisks
(magnification, 109; scale bar, 50 lm).

Fig. 7. Extensive dentin formation with narrowing of the
pulp space seen in a control replanted tooth at day 90. Pulp
calcifications (white asterisks) occupy the pulp space beneath
an extensive amount of tertiary dentin. Arrowheads indicate
the new dentin formation. PH, pulp horn; PF, pulp floor
(magnification, 209; scale bar, 100 lm).

© 2015 The Authors. Dental Traumatology Published by John Wiley & Sons Ltd.
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resorption after replantation of permanent incisors in
Beagle dogs (26). In the present study, we found a
reduction in external surface resorption after BMSC-
CM treatment at 90 days. These findings are in line
with results showing that BMSC-CM treatment
induced proliferation of PDL cells in vitro, and
improved regeneration of cementum in a dog one-wall
intrabony defect model (16). In addition, the newly
regenerated bone and cementum in the dog one-wall
intrabony defect model was associated with minimal
inflammatory cell infiltration compared with the other
treatment groups (16). Also, BMSC-CM prevent the
activity of osteoclast cells, which is a prerequisite for
bone resorption (30). Taken together these results
indicate that BMSC-CM can promote periodontal
healing of replanted teeth.

Damage to the neurovascular supply can induce
pulp-dentin complex responses and accelerate deposi-
tion of hard-tissue. The severity of the damage,
reflecting the extent of pulpal inflammation, influences
the deposition of dentin along the periphery of the
pulp space (31). A previous study has suggested that
rupture of the blood vessels may cause pulpal ischae-
mia and degeneration of primary odontoblasts, thus
triggering the underlining mesenchymal stem cells to
form new odontoblast-like cells (32). However, three
or more healing events with respect to the dentin-pulp
reaction after tooth trauma have been presented. This
includes dentin-like, bone-like, mixed tissue and/or
fibrotic tissue healing (33, 34). The present study
found dentine-like tissue with increased thickness in
control replanted teeth compared with BMSC-CM
treated and reference teeth. Evidence of calcified tissue
in the central portion of the pulp chamber was found
in one of the control replanted teeth at day 90. Cen-
tral deposition of hard tissue may be produced by
odontoblast-like cells originating from migrated and
differentiated stem cells residing in the perivascular
area. Based on the present results we are not able to
conclude whether the dentin deposition in the
replanted teeth is a result of surviving primary or
newly differentiated secondary odontoblasts. It may
be speculated that a reduced inflammation, as found
for infrabony defects treated with BMSC-CM, may be
responsible for reduced dentine thickness found in the
present study.

Conclusions

Based on the current findings, BMSC-CM treatment
was able to reduce the number of teeth with severe root
resorptions and prevent excessive new dentin formation
in the pulp chamber that was observed in untreated
replanted maxillary immature teeth.
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Abstract 

Purpose: To evaluate the effect of paracrine factors secreted from bone marrow stromal 

cells as a conditioned medium (BMSC-CM), on the secretion of pro- and anti-inflammatory 

cytokines from dental pulp cells (hDPC) in vitro, and on the gene expression in vivo after 

replantation of rat molars. 

Materials and Methods: hDPC were cultured in CM for 24 hr, and the concentration of 

interleukin (IL)-10, -4, -6, and -8, RANTES, and prostaglandin E2 (PGE2) in the media were 

measured by Multiplex assay and ELISA, respectively. Expression of cyclooxygenase-2 

(COX-2) was also examined by Western blot analysis after 24 h. Left and right maxillary first 

rat molars (n=20) were elevated for 2 minutes and then replanted with or without CM injected 

into the tooth sockets. Levels of IL-1β, -10, -4, -6 and -8, and tumor necrosis factor-alpha 

(TNF-α) mRNA were evaluated by Real-Time qRT-PCR 3 and 14 days following tooth 

replantation. 

Results: The production of IL-8, -10 and -6, RANTES and PGE2 by cells cultured in CM 

was significantly higher than production by cells cultured in standard medium (DMEM). At 

day 3 following replantation in vivo, the levels of IL-1β and -6, and TNF-α mRNA were 

significantly lower in the CM-treated replanted teeth compared with control teeth. Further, at 

day 3 the IL-6/IL-10 ratio was significantly lower in the CM-treated replanted teeth compared 

with control. At day 14 following replantation, no differences in the mRNA levels and ratios 

were detected between the pulp tissues of replanted and control teeth. 

Conclusions: These findings indicated that CM promotes secretion of pro- and anti-

inflammatory cytokines from hDPC in vitro, and attenuates the initial inflammatory response 

in the rat dental pulp in vivo following tooth replantation. 



Introduction 

Teeth and supporting tissues are well equipped with tissue specific stem cells/progenitor 

cells that are activated during tissue injury and inflammation [1]. The fate of stem cells in 

terms of migration, self-renewal and differentiation into specialised phenotypes, is governed 

by the surrounding local microenvironment and soluble molecules [2]. Exogenously 

transplanted mesenchymal stem cells (MSC) are shown to stimulate a wide range of 

biological activities in immune cells as well as endogenous resident stem cells/progenitor 

cells [3]. It has been shown that MSC are potent cells for tissue healing and repair, an effect 

exerted either by cell-cell contact or via the secretion of soluble factors including growth 

factors, cytokines and chemokines [4, 5]. Although bone marrow stromal/stem cells (BMSC) 

and dental stem cells differ in their osteo/odontogenic phenotype characteristics [6], bone 

marrow is widely used as a standard available source for adult stem cells. It has been shown 

that BMSC participate in regeneration of tooth-like structures when transplanted into the 

alveolar socket together with scaffold and dental bud cells in mice [7]. BMSC are also able to 

be re-programmed to give rise to odontoblasts and ameloblast-like cells in proximity to 

embryonic epithelium [8, 9]. 

Conditioned medium (CM) from mesenchymal stem cells (MSC-CM) contains growth 

factors and cytokines, and has been shown to mimic the regulatory effects of stem cells on 

immunocompetent cells [10, 11]. CM from stem cells derived from adipose tissue has been 

shown to enhance secretion of anti-inflammatory IL-10 from T-helper cells in vitro [12]. 

More recently, CM from bone marrow stromal cells (BMSC-CM) was found to induce 

formation of new bone and cementum in intrabony defects with minimal inflammatory cell 

infiltration [13]. 

Dental traumas are complex in nature and affect both hard and soft tissues. The healing 

outcome is thought to depend on a successful interplay and balance between progenitor cells 



residing in different tissue compartments [14]. Recent data have suggested that dental pulp 

resident stem cells/progenitor cells are involved in production of inflammatory mediators that 

promote cell differentiation and pulpal healing [15]. Although replantation after tooth 

displacement can preserve the tooth and supporting tissues, minimizing pulpal inflammation 

is important after replantation [16]. 

Since growth factors and cytokines play a role in healing events following injury [17], we 

hypothesised that the growth factors and cytokines present in the BMSC-CM can induce 

production of cytokines with a protective function. Thus, the first aim of the present study was 

to examine the effect of BMSC-CM on the release of interleukin (IL)-10, -4, -6, and -8, 

RANTES, and PGE2 from hDPC in vitro. Next, the in vivo effect of BMSC-CM on mRNA 

expression of IL-1β, -10, -4, -6, and -8, and TNF-α in pulp tissue of replanted teeth was 

evaluated. 

Materials and methods 

BMSC culture and collection of conditioned medium 

Primary human bone marrow stromal cells (hBMSC) were purchased from European 

Service Center for Lonza Bioscience (Lonza, Verviers, Belgium). The BMSC were then 

cultured in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal bovine 

serum (FBS) and 1% penicillin-streptomycin at 37°C in a humidified atmosphere containing 

5% CO2. Cells at passage 3 were seeded into T-75 cm2 culture flasks at an initial density of 2 

x 106. When the cells reached 80-90% confluence they were washed with PBS three times, 

supplemented with fresh serum-free DMEM containing 1% penicillin-streptomycin and 

collected after 48 hr. The supernatants from different culture flasks were pooled, then 

centrifuged at 4°C at 3000 x g for 3 min followed by 5 min at 1500 x g and collected as a CM. 

DMEM serum free medium incubated under the same conditions served as a control. The 

media were stored at −80°C for further experiments. 



Isolation of human dental pulp cells (hDPC) and cell culture 

According to the protocol approved by the Regional Committees for Medical and Health 

Research Ethics (REC) at the University of Bergen, Norway (225.05, 3.2008.1750, 2009/610 

and 2013/1248), human third molar teeth (n=3) from healthy adult patients aged 18–25 were 

extracted during routine operative procedures at the Dental Clinic at the University of Bergen, 

Norway. The dental pulp cells (hDPC) were enzymatically isolated and characterised by 

phenotype on the basis of positive expression for mesenchymal cell surface markers, such as 

CD90, CD105, STRO-1, and CD24 [18]. Cells from passages 4-6 were used for the in vitro 

study and the experiments were performed in triplicate. The isolated hDPC were cultured with 

DMEM containing 5% FBS and 1% penicillin-streptomycin (DMEM-5% FBS) at an initial 

density of 6 x 105 for 24 hr. Next, the cells were incubated with either DMEM-1% FBS 

(control cells) or BMSC-CM-1% FBS (CM-treated cells). 

Multiplex assay of cytokine Levels 

Supernatants from control or CM-treated hDPC, as well as samples of BMSC-CM or 

control medium, were tested for the presence of IL-10, -4, -6, and -8, and RANTES by use of 

Bio-Plex Pro Human Cytokine Group I 6-plex Assay (human multiplex bead-based 

immunoassay kit, Bio-Rad Company, USA) after a 24 h incubation. The multiplex cytokine 

assay allows simultaneous quantification, and was performed according to the manufacturer’s 

instructions (Bio-Plex™ Cytokine Assay, Bio-Rad Company, USA) [19]. The level of 

released cytokines was measured in pg/ml, using a Bio-Plex® MAGPIX™ Multiplex Reader 

(Bio-Rad Company, USA). 

PGE2 determination by Enzyme Linked Immunosorbent Assay (ELISA) 

The collected supernatants used for determination of cytokine level were also tested for the 

presence of PGE2 using a commercial ELISA kit (Prostaglandin E2 ELISA Kit, Monoclonal, 

Neogen Corporation, Lansing, Michigan, USA), according to manufacturer's instruction. The 



PGE2 content of the samples was quantified by microplate spectrophotometry (BMG 

LABTECH, GmbH, Germany) at a wavelength of 450nm, and the concentration was 

calculated in ng/ml according to standards. 

Western blot analysis 

To measure the protein expression of COX-2 in hDPC after BMSC-CM treatment, 7 × 105 

cells were seeded in 80 mm petri dishes and cultured for 24 h. Cell total protein fractions were 

extracted using RIPA buffer according to the manufacturer’s instruction (RIPA buffer plus 

protease and phosphatase inhibitors, ThermoScientific, USA). The concentration of total 

proteins was measured with the Pierce™ BCA Protein Assay Kit (ThermoScientific, USA). 

Twenty microgram of total protein extracts were separated by electrophoresis and transferred 

as previously described [18]. The membranes were blocked with 5% nonfat-milk in TBS 

containing 0.1% Tween 20 for overnight at 4oC with rabbit anti-COX-2 antibody (1:1000 

dilutions, Abcam®, Cambridge, U K). The membranes were then incubated with goat anti-

rabbit horseradish peroxidase (HRP)-conjugated antibody (1:2000 dilutions, Santa Cruz 

Biotechnology; Santa Cruz, CA, USA), in 5% nonfat-milk in TBS containing 0.1% Tween 20 

for 1 h. Rabbit anti-GAPDH served as an internal control for the total expression of COX-2 

(1:1000 dilutions, Santa Cruz Biologicals, Santa Cruz, CA, USA). Protein detection was done 

with an enhanced chemiluminescence (ECL) kit and the bands were visualised by the Gel 

Doc™ EZ System (Bio-Rad Laboratories, Hercules, CA, USA). 

Replantation model using rat maxillary first molars 

To study the effect of BMSC-CM on the gene expression of IL-1β, -10, -4, -6 and -8, and 

TNF-α in vivo, a tooth replantation model using rat maxillary first molars was used. Thirteen 

female Sprague-Dawley rats, aged 3 weeks (approximately 100 g in weight), were included 

(National Public Health Institute, Norway). General anesthesia was achieved in each animal 

with 0.2 ml/kg of Hypnorm-Dormicum (1 mL fentanyl/fluansion and 1 ml midazolam diluted 



in 2 ml sterile water). Before surgery, the tooth crown was cleaned with 0.3% chlorhexidine 

gel, and the left and right first maxillary molars (n=20) were elevated mesially for 2 mins, and 

then replanted as previously described (Figure 3A) [20]. The left first maxillary molars (n=10) 

were first elevated and replanted without treatment (control replanted teeth), whereas the right 

first maxillary molars (n=10) were replanted after injection of 25 ul of CM in the tooth socket 

(CM-treated replanted teeth). No postoperative fixation was used. Three and 14 days 

following replantation all animals were anaesthetized with Hypnorm-Dormicum and 

euthanized with neck dislocation. Next, the upper jaw of the rats was dissected out and the 

teeth were then extracted, submerged in RNAlater and stored at −80°C. The animal 

experiments were approved by the Regional Committee for Animal Research Ethics at the 

University of Bergen, under regulations of the Norwegian Experimental Animal Board. 

Real-Time Quantitative Reverse Transcription PCR (Real-Time qRT-PCR) 

To study the in vivo effects of BMSC-CM on gene expression of IL-1β, -10, -4, -6 and -8, 

and TNF-α in the rat tooth pulp 3 and 14 days following tooth replantation, total RNA was 

isolated using the TRIZOL (Invitrogen, Carlsbad, CA, USA). RNA purity and quantification 

were determined by spectrophotometry (ThermoScientific NanoDrop Technologies, 

Wilmington, DE, USA), and the reverse transcription reaction was performed using the High-

Capacity cDNA Archive Kit (Applied Biosystems, Foster City, CA, USA). The cDNA 

corresponding to 1 μg of mRNA was used as a template in each PCR reaction of the different 

primers (Table 1), and the RT-PCR was performed on a StepOnePlus real-time PCR system 

using TaqMan® gene expression assays (Applied Biosystems, Foster City, CA, USA). Rat 

glyceraldehyde 3-phosphate dehydrogenase was used as a normalised reference gene, and the 

relative expression of each gene was analysed using the 2−ΔΔCT method. 

Data analysis 



Quantitative results were expressed as mean ± SD. For the in vitro experiments, a student 

t-test was used for comparison between CM and controls. A similar comparison was 

performed between CM-treated cells and control cells. For the in vivo experiments, the 

expression of each cytokine was calculated, and then the ratios of the pro-inflammatory 

cytokines IL-1β, -6 and TNF-α to the anti-inflammatory IL-10 were calculated. A student t-

test was used for comparison to determine differences between CM-treated and control 

replanted teeth. The analysis was performed using IBM SPSS Statistics 22 (IBM® SPSS® 

Statistics 22.0, USA), and the differences between the means were considered statistical 

significant at p < 0.05. 

Results 

Secretion of inflammatory mediators in vitro 

The levels of IL-6, and -8, and RANTES were significantly higher in CM than the control 

medium (Figure 1). When hDPC were cultured in CM, the levels of IL-10, -6 and -8 and 

RANTES were significantly higher in the supernatant compared with control cells (Figure 1). 

IL-4 was detected in low levels in CM and control medium, and the levels were not enhanced 

in the supernatant from the control and CM-treated cells (data not shown). 

The effect of CM on the expression of COX-2 and PGE2 in hDPC 

The effect of CM on PGE2 release and expression of COX-2 was further examined at the 

protein level. CM contains significant higher level of PGE2 compared with control, and 

induced significantly higher release of PGE2 from hDPC compared with control cells (Figure 

2A). Since CM resulted in up-regulated production of PGE2, COX-2 expression was assessed 

in hDPC. The protein expression of COX-2 was greater in CM-treated cells compared with 

control cells (Figure 2B). 

Effect of CM on mRNA levels of IL-1β, -10, -6 and -8, and TNF-α in replanted rat 

teeth 



Three and 14 days following tooth replantation in vivo, mRNA for IL-1β, -10, -6 and -8, 

and TNF-α was detected in all replanted teeth (Figure 3B). No mRNA expression of IL-4 was 

detected in the tooth samples at all time points (data not shown). 

At day 3, a significantly lower level of IL-1β and -6, and TNF-α mRNA was detected in 

the CM-treated replanted teeth than in the control (Figure 3B). There was no statistical 

difference in the mRNA level of IL-10 and -8 between the groups. At day 14, no-intergroup 

differences were found for the mRNA levels of IL-1β, -10, -6 and -8, and TNF-α between the 

CM-treated and control replanted teeth (Figure 3B). 

At day 3 following replantation, the IL-6/IL-10 ratio was significantly lower in CM-treated 

compared to control replanted teeth. The ratios of IL-1β/IL-10 and TNF-α/IL-10, however, 

did not differ between the groups (Figure 4). By day 14 following replantation, the ratios of 

pro-inflammatory cytokines IL-1β and -6, and TNF-α to anti- inflammatory cytokine IL-10 

did not differ between the groups (Figure 4). 

Discussion 

The present study showed that BMSC-CM induced higher secretion of PGE2, IL-10, -8, and 

-6, and RANTES in hDPC in vitro, and attenuated the gene expression of IL-1β, -6 and TNF-

α in pulp tissues three days following tooth replantation in vivo. 

IL-6 is a pleiotropic cytokine that acts as a major mediator in the host response following 

tissue injury, with an effect on bone osteoclasts and bone resorption through an 

autocrine/paracrine manner [21]. The result of the present study showed that a significant high 

level of IL-6 was detected in the CM both before and after incubation with hDPC in vitro. It 

has been reported that MSC secrete high levels of IL-6 [22], and the cytokine has previously 

been reported to be involved in the immunoregulatory effects exerted by MSC [23]. In the 

pulp tissue, the mRNA level of IL-6 has been found to be significantly up-regulated in teeth 

with irreversible pulpitis compared with healthy teeth [24]. It has been reported that continued 



expression of IL-6 correlates with the degree of inflammation in the pulp following tissue 

injury and infection [25]. Three days following tooth replantation, IL-6 was significantly 

lower in the CM-treated than the control teeth, a finding indicating an effect of CM on the 

immediate inflammatory response. Notably, the mRNA level of IL-6 declined in pulp tissues 

of replanted teeth after 14 days in both groups, suggesting a normal resolution process. One 

has to take into consideration that the single application of BMSC-CM used in this study was 

not expected to have a long-term effect. Although repeated administration of CM has been 

shown to be beneficial for bone healing [26], continued application is technically difficult in 

the present model. 

In an in vivo inflammatory arthritic model, MSC secretion of the immunoregulatory factor 

PGE2 showed a concomitant IL-6 up-regulation [4]. The current study found higher levels of 

PGE2 in the CM. Moreover, an enhanced level of both PGE2 and the enzyme involved in 

PGE2 biosynthesis (COX-2) was detected after culture of hDPC in CM PGE2 has been shown 

to induce osteoblast and cementoblast differentiation and mineralisation in vitro [27, 28], and 

higher production of COX-2 and PGE2 by hDPC was found after stimulation with mineral 

trioxide aggregate (MTA) [15]. Low concentrations of exogenous PGE2 is able to induce 

calcified nodule formation by hDPC in vitro [29]. It is therefore tempting to speculate that the 

presence of PGE2 in CM, and the subsequent increase after cultivation of hDPC in CM in 

vitro, could be involved in the differentiation and mineralisation of endogenous dental pulp 

cells [18]. Although the expression of PGE2 was not examined in vivo, the finding that PGE2 

is present in CM suggests a possible role of CM during pulp healing following tissue injury. 

IL-10 is a key anti-inflammatory cytokine that inhibits production of pro-inflammatory 

cytokines including IL-1β, -6 and TNF-α [30], thereby having an immunoregulatory effect. 

Increased secretion of IL-10 has also been detected in rats with acute kidney injury treated 

with BMSC-CM, suggesting a significant role of IL-10 in survival and protection of the 



kidney [31]. We found no difference in the level of IL-10 between the CM and control 

medium, but an elevated level was detected in the medium of CM-treated compared with the 

control hDPC, suggesting stimulatory effect/s of CM on hDPC for the production of the 

resolution molecules. This is in parallel with a previous finding showing that CM from 

adipose stem cells induces secretion of IL-10 from CD4+FoxP3+ cells in vitro [12]. It has 

been reported that the mRNA level of IL-10 is up-regulated in the pulp beneath deep caries 

compared with shallow caries [32], and also in teeth with irreversible pulpitis [33]. Following 

tooth replantation, we found no difference in the mRNA level of IL-10 between CM-treated 

and control replanted teeth. However, the expression of IL-10 in CM-treated replanted teeth 

was previously reported to be associated with a reduction in the mRNA level of IL-1β, -6 and 

TNF-α, suggesting an immunoregulatory effect of CM [34]. 

IL-4 is another anti-inflammatory cytokine and plays a role in formation of TH-2 cells, and 

in shifting the macrophage phenotypes into IL-10 producing cells [35]. IL-4 is also known to 

stimulate fibroblast proliferation and inhibit osteoclast activities [36]. The present in vitro 

experiments did not find an elevated level of IL-4 either before and/or after CM treatment. 

Moreover, mRNA level of IL-4 was not detected in the replanted teeth. The relevance of these 

findings is unclear and further molecular investigations to examine this undetected gene are 

needed. 

IL-1β is considered a strong inflammatory mediator, important in acute host responses 

[37]. Three days following tooth replantation, IL-1β mRNA expression was significantly 

lower in CM-treated compared with control replanted teeth. It is well known that IL-1β 

activates osteoclasts, resulting in bone destruction and root resorption [38]. Continued release 

of IL-1β might thus impair tissue healing. As for IL-6, IL-1β mRNA declined after 14 days, 

indicating attenuation of inflammation over time. 



In agreement with reports showing that chemokines are constitutively produced and 

secreted from stem cells [39], we found high level of RANTES and IL-8 in CM, with a 

significant increase when hDPC were cultured in CM. In dental pulp tissue both the mRNA 

level and protein expression of IL-8 have been found to increase in inflamed pulp [24, 40]. As 

for IL-1β, continued expression of IL-8 may contribute to root and bone destruction of injured 

teeth [25]. The present in vivo results found no differences in the mRNA level of IL-8 

between the groups, suggesting a minor role for IL-8 in the current model. 

TNF-α, a potent pro-inflammatory mediator, is able to induce secretion of other pro-

inflammatory cytokines, including IL-6 [41]. TNF-α has been detected during orthodontic 

tooth movement, indicating a role for TNF-α in inflammation and root resorption [42]. TNF-α 

has been found in teeth with symptomatic irreversible pulpitis [43], and in the gingival 

crevicular fluid after tooth injury [25]. However, no difference in the mRNA level of TNF-α 

was found between teeth with healthy pulps and reversible pulpits, [44]. Down-regulated 

mRNA level of TNF-α in CM-treated replanted teeth after 3 days compared with controls 

might suggest that CM treatment attenuates the initial inflammatory reaction after tooth 

replantation.

Collectively, the lower level of IL-1β, -6 and TNF-α in the CM-treated replanted teeth 

supports an immunoregulatory action of the stem cells paracrine factors. However, cytokines 

always act in a network and some cytokines can block the effects of others. In particular, it 

has been shown that increased IL-6/IL-10 ratio during pulpitis could be used as an indicator 

for pulp disease [33]. Based on this, the ratio of each pro-inflammatory cytokine IL-1β, and -6 

and TNF-α to the anti-inflammatory cytokine IL-10 was investigated. IL-6/IL-10 ratio was 

significantly lower in the CM-treated replanted teeth than the control replanted teeth. No 

difference was found in the IL-1β, TNF-α /IL-10 ratio. These findings suggest an impact of 

CM on the inflammatory/resolution process through the IL-6 and IL-10 network. Although 



the pro/anti-inflammatory ratios were lowered after 14 days in all replanted teeth, the level of 

inflammatory reaction at early time points might affect the healing outcome negatively. In this 

context, it has been shown that pulp tissue mineralisation and inflammation are closely related 

mechanisms [45-47].  

Conclusion 

We conclude that CM promotes secretion of pro- and anti-inflammatory cytokines from 

hDPC in vitro. Moreover, CM attenuates the initial inflammatory response in rat dental pulp 

tissue in vivo following tooth replantation. 
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Figure Legends 

 

Figure 1 Multiplex assay for IL-10, -6 and -8, and RANTES in control, CM, control cells 

and CM-treated cells. The data are presented as mean ± standard deviation (**p< 0.01 and 

***p<0.001). 



 

Figure 2 Expression levels of PGE2 and COX-2. (A) ELISA for PGE2 and (B) Western 

blot analysis of COX-2. The intensity of each band of COX-2 expression was normalised to 

the internal control GAPDH. The data are presented as mean ± standard deviation (*p<0.05, 

and **p<0.01) 

 



 

Figure 3 (A) CM treatment of rat first maxillary molars in the rat replantation model. (B) 

Real-Time qRT-PCR data showing expression of IL-1β, -10, -6, and -8, and TNF-α 3 and 14 

days following replantation (*p<0.05 and **p< 0.01). 



 

Figure 4 Real-Time qRT-PCR results showing the pro-inflammatory cytokines/anti-

inflammatory IL-10 ratios 3 and 14 days following tooth replantation (*p< 0.05). 

 

 

 

 

 

 



Table 1 Real-Time qRT-PCR probes used in in vivo study 

Probes Codes 

GAPDH Rn01749022-g1 

IL1β  Rn00563409-m1 

IL-10 Rn00563409-m1 

IL-4 Rn99999010-m1 

IL-6 Rn99999011-m1 

IL-8 Rn00567841-m1 

TNF-α  Rn00562055-m1 
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