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Previous wound healing studies have failed to define a role for either a1b1 or a2b1 integrin in fibroblast-mediated
wound contraction, suggesting the involvement of another collagen receptor in this process. Our previous work
demonstrated that the integrin subunit a11 is highly induced during wound healing both at the mRNA and
protein level, prompting us to investigate and dissect the role of the integrin a11b1 during this process.
Therefore, we used mice with a global ablation of either a2 or a11 or both integrin subunits and investigated the
repair of excisional wounds. Analyses of wounds demonstrated that a11b1 deficiency results in reduced
granulation tissue formation and impaired wound contraction, independently of the presence of a2b1. Our
combined in vivo and in vitro data further demonstrate that dermal fibroblasts lacking a11b1 are unable to
efficiently convert to myofibroblasts, resulting in scar tissue with compromised tensile strength. Moreover, we
suggest that the reduced stability of the scar is a consequence of poor collagen remodeling in a11� /� wounds
associated with defective transforming growth factor-b–dependent JNK signaling.
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INTRODUCTION
In the dermis, fibroblast interactions with the collagen network
are important in maintaining skin homeostasis (Sorrell and
Caplan, 2004) and become essential during repair of skin
lesions (Liu et al., 2010). During wound healing, numerous
complex cell–matrix interactions occur. Keratinocytes migrate
on fibronectin in the provisional matrix to seal the wound
toward the outside (Margadant et al., 2009). Dermal fibro-
blasts migrate into the wound, proliferate, and differentiate
into myofibroblasts, which produce granulation tissue (GT)
rich in collagen I (Hinz, 2007; Driskell et al., 2013).
Myofibroblasts, which express a-smooth muscle actin (a-
SMA), use cytoskeleton-driven forces to contract the wound
(Tomasek et al., 2002; Wipff et al., 2007). Finally, the con-

tracted GT is remodeled to restore normal tissue
architecture. Although the importance of cell–matrix interac-
tions for wound contraction seems to be deductive, the
identity of participating receptors in the dermis has been
ambiguous.

In the skin, the collagen-binding integrins a1b1 and a2b1
are present on fibroblasts and on microvasculature, but only
a2b1 is expressed on basal keratinocytes (Gardner et al.,
1999; Grenache et al., 2007; Zweers et al., 2007). Wound
healing studies in a1b1 or a2b1 integrin–deficient mice have
surprisingly failed to define a role for either receptor in
fibroblast-mediated wound contraction (Gardner et al., 1999;
Grenache et al., 2007; Zweers et al., 2007), suggesting that
additional collagen receptor(s) are involved in this process.
One possible candidate is a11b1, which in the skin is
exclusively expressed on fibroblasts (Velling et al., 1999;
Zhang et al., 2006).

Early remodeling of collagen matrices mediated by fibro-
blasts in vitro has been shown to be essentially an arginine-
glycine-aspartic acid-independent but b1 integrin–dependent
process (Gullberg et al., 1990). Data collected so far on
fibroblasts have identified integrins a2b1 (Klein et al., 1991;
Zhang et al., 2006) and a11b1 (Popova et al., 2007) as being
involved in collagen remodeling. a2b1 has been shown to
contribute to collagen gel remodeling in fibroblasts of different
origin, including the dermis, whereas functional studies on
a11b1 have so far been limited to mouse embryonic
fibroblasts (MEFs) and periodontal ligament fibroblasts
(Popova et al., 2007; Barczyk et al., 2013).

In the present study, we demonstrate that repair of skin
wounds is compromised in mice lacking integrin a11b1,
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characterized by diminished wound contraction, reduced
formation of GT, and altered scar stability. Our combined
in vivo and in vitro data show that myofibroblast differentia-
tion and collagen remodeling are impaired in the absence of
a11b1. Hence, we demonstrate that efficient collagen remo-
deling requires both a11b1 and non-canonical transforming
growth factor-b1 (TGF-b1)-dependent JNK signaling.

RESULTS
Impaired wound healing in a11b1-deficient mice
In previous studies, we showed that expression levels of the
integrin subunits a2 and a11 are elevated during the course of
wound healing, with a peak of integrin a11 at 7 days after
injury (Zweers et al., 2007). To dissect whether these two
integrins have distinguishable functions during tissue
regeneration, we investigated wound repair in mice that are
deficient of a2b1, a11b1 or both integrins. Specifically, we
analyzed the formation of GT and contraction of full-thickness
skin wounds 7 days after lesion. Sections through the middle
of such wounds are illustrated in Figure 1a, showing GT of
C57BL/6 wild-type mice and their integrin–deficient litter-
mates. As expected, the amount of GT developed in a2-null
mice did not differ from wild-type mice (Zweers et al., 2007);
however, significantly less GT was developed by a11-null
mice (P¼ 0.0317) and by double mutants (P¼0.0369;

Figure 1b). As there was no difference between the single
a11-null and the double a2/a11-null mutant wounds, we
conclude that the effect seen in the double mutant is attributed
to the absence of a11b1 integrin. Differences in wound area
were not reflected by the scab size, which was comparable in
all 3 mutants and wild-type mice (Supplementary Figure S1A
and B online). However, histology revealed that the distances
between wound edges–which serve as an indicator of wound
contraction–were significantly increased in integrin a11b1-
deficient wounds (P¼0.0447; Figure 1d). The reduced wound
contraction was not caused by an impaired function of the
panniculus carnosus muscle that participates in the contrac-
tion, as it was equally contracted in all genotypes (Figure 1c).
As we identified the lack of a11 as responsible for reduced GT
formation and impaired wound contraction, we limited our
further analysis to comparison of wounds in a11b1-deficient
versus littermate control mice.

Impaired migration of fibroblasts lacking a11b1

As fibroblasts are the main cells that produce GT during
wound healing, we aimed to determine the impaired fibroblast
function that could be responsible for the a11� /� wound
healing phenotype. For this purpose, we isolated dermal
fibroblasts from murine newborn skin. We determined expres-
sion levels of collagen-binding integrins by co-precipitation
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with the b1 subunit and indeed detected high levels of
co-precipitating a11 but not of a2 integrin subunit
(Figure 2a). Dermal fibroblast interactions with collagen I
appeared to exclusively depend on integrins, as antibodies to
integrin b1 completely blocked adhesion of wild-type cells on
collagen I. Interestingly, adhesion to collagen I was strongly
reduced in dermal a11� /� fibroblasts, whereas antibodies to
a2 reduced attachment of a11þ /þ dermal fibroblasts by only
50% (Figure 2b).

As an effective healing process relies on fibroblast migra-
tion, we investigated the importance of a11b1 and a2b1 for
cell migration on collagen I and fibronectin (Figure 2c).
Trajectory path length of individual fibroblast was measured,
revealing a significant reduction in migration when a11
was absent. This effect was even more pronounced when
a2� /� //a11� /� fibroblasts were analyzed. As expected,
migration on fibronectin was not affected by the absence of
both a2b1 and a11b1 (Figure 2c).

To test whether compromised migration of fibroblasts into
the wound might be responsible for the impaired formation of
GT, the total number of cells in the GT was estimated by

assessment of DAPI-stained nuclei per unit area. However, the
total number of cells in a11b1-deficient GTs was not reduced,
indicating that impaired migration is not responsible for the
diminished GT area (Supplementary Figure S1C and E online).
Furthermore, we were able to exclude the possibility that a11
deficiency might impair proliferation and thus offer an
explanation to the comprised formation of GT, as we did
not observe a proliferation defect in the absence of a11 either
in the wounds (Ki67 staining, Supplementary Figure S1F and G
online) or in the cultured dermal fibroblasts (Supplementary
Figure S1H online).

Reduced myofibroblast differentiation in the absence of a11b1

During wound healing, fibroblasts can become activated by
mechanical tension and differentiate into a-SMA-expressing
myofibroblasts, which secrete ECM proteins to form the GT
and contract the wound (Van De Water et al., 2013).
Immunohistochemical staining revealed that the a-SMA-
positive area was significantly smaller in a11� /� wounds
compared with control littermates (P¼ 0.022; Figure 3a and
b). In the skin, a-SMA is expressed by myofibroblasts and
vascular smooth muscle cells. As vascularization was not
affected (Supplementary Figure S1C and D online), we
concluded that reduced levels of a-SMA in GTs of a11-
deficient mice were caused by a reduced number of myofi-
broblasts. Western blotting of wound extracts confirmed
reduced a-SMA levels in a11� /� wound lysates (Figure 3c).

In vitro, myofibroblast differentiation can be induced by
using attached collagen lattices in which embedded fibro-
blasts experience mechanical resistance (Tomasek et al.,
2002; Grinnell and Petroll, 2010). Hence, a11þ /þ dermal
fibroblasts expressed high levels of a-SMA when they were
subjected to the mechanical strain of an attached collagen gel,
indicating that they had differentiated into myofibroblasts.
However, a11� /� fibroblasts embedded in attached collagen
lattices under identical conditions displayed reduced a-SMA
induction, clearly pointing to defective myofibroblast
differentiation (Figure 3d and e).

Myofibroblast differentiation is not only dependent on
mechanical forces but also requires TGF-b (Van De Water
et al., 2013). When we treated fibroblasts in vitro with either
an TGF-b receptor type I inhibitor or a reagent inhibiting
Smad3 signaling, we found that––similar to a-SMA––
expression of the integrin subunit a11 depends on TGF-b
and downstream Smad signaling (Figure 3f). It is notable that
in turn TGF-b-dependent Smad3 activation is not impaired by
a11-deficiency (Supplementary Figure S2D online). Although
treatment of fibroblasts with TGF-b resulted in elevated levels
of the integrin a11-subunit, it did not influence expression of
a2 (Supplementary Figure S2B online), which was also
unaffected by inhibition of TGF-bRI and Smad3 (Figure 3f).
To exclude that impaired myofibroblast differentiation of
a11� /� fibroblasts could be due to an impaired ability to
activate TGF-b, fibroblasts were co-cultured with mink lung
endothelial cells (TMLC), which express luciferase when they
are exposed to active TGF-b. Using this approach, we showed
that activation of TGF-b is not affected by the presence of
integrin a11b1 (Supplementary Figure S2C online).
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Defect of collagen remodeling in a11-null mice

a-SMA-expressing myofibroblasts are the major source of
fibrillar collagens, which are essential for producing a func-
tional scar, thereby terminating the repair process (Klingberg
et al., 2013). Therefore, we next addressed the question
whether the impaired formation of GT would still give rise
to a fully functional scar. For this purpose, we inflicted
incisional wounds on the backs of a11� /� and control
mice, which heal at a faster rate compared with excisional
wounds and allowed us to assess the tensile properties of the
developed scar (Wu et al., 2003). Thus, incisional wounds
were removed together with cranial and caudal skin
(Figure 4b) at 16 days after injury and placed in a material
testing device, which determines the tensile strength. Scars of
a11� /� mice ruptured at lower force applied (P¼ 0.0063),

indicating that expression of a11b1 integrin confers stability to
cutaneous scars (Figure 4a). To investigate whether reduced
scar stability was a consequence of an impaired formation of
the reconstituted collagen matrix, collagens within the GT
were stained with Sirius red. Polarized light microscopy
allowed allocation of the anisotropic thin (green) and thick
(red) collagen fibrils (Junqueira et al., 1979). This analysis
revealed a significant increase in thinner fibrils in the GT of
integrin a11-deficient mice (Figures 4c and d), demonstrating
an abnormal composition of the provisional collagen matrix.

To verify that a11� /� fibroblasts had reduced capacity to
reorganize the collagen environment, floating collagen lattices
were used as a suitable model for early GT contraction
(Dallon and Ehrlich, 2008; Grinnell and Petroll, 2010).
Fibroblasts were embedded in collagen lattices and allowed
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to reorganize the matrix, which was quantified by measuring
gel diameters over time and calculating gel area. As illustrated
in Figure 4e, over a time course of 72 h of contraction,
a11� /� fibroblasts displayed significantly less remodeling of
the collagen matrix compared with a11þ /þ and a2� /� cells.
To exclude the involvement of collagen integrin bridging that
might assist in integrin collagen interaction (Zeltz et al., 2013),
we limited the following contraction experiments to 24 hours.
Under these conditions, antibodies to the b1 integrin subunit
almost completely blocked fibroblast-mediated collagen
gel contraction and a11-deficiency considerably reduced
collagen remodeling (Supplementary Figure S2E online),
implicating the integrin a11b1 as a crucial receptor in this
process. Importantly, overexpression of a11 in a11� /�

fibroblasts (a11� /�KI, Figure 4f) rescued the a11� /� pheno-
type (Figure 4g).

Collagen remodeling requires a11b1 and TGF-b-dependent JNK
signaling

Our previous collagen remodeling experiments were assessed
in the presence of 2% serum, as unstimulated murine dermal
fibroblasts (no serum) displayed minimal basal remodeling
activity (Figure 5a). To understand why a11� /� cells fail to
reorganize collagen lattices, we investigated the soluble
autocrine factor(s) responsible for initiation of collagen remo-
deling. On the basis of its documented importance for
collagen remodeling, TGF-b1 was again a good candidate
(Montesano and Orci, 1988). The cytokine TGF-b1 is known
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to enhance the capacity of fibroblasts to remodel collagen
matrices (Poon et al., 2009), which was confirmed when the
cytokine was applied to collagen gels with embedded a11þ /þ

dermal fibroblasts. Interestingly, the TGF-b1 stimulating effect
on collagen remodeling was lost when added to collagen gels
containing a11� /� fibroblasts (Figure 5a).

TGF-b exerts its effects via two major signaling pathways,
the canonical pathway, which involves Smad signaling, or
alternatively by a non-canonical pathway, which leads to
activation of MAPK signaling by a mechanism that
includes JNK and p38. As our data obtained with chemical
inhibitors indicated that a11 expression was regulated via
canonical Smad signaling, we investigated whether this

pathway was also involved in the a11-dependent collagen
remodeling. For this purpose, we silenced Smad4, a cofactor of
Smad2 and Smad3, using siRNA (Supplementary Figure S3A
online). Knock-down efficiency was confirmed by western
blotting showing reduced a11 expression by 50%, similar to
the reduction that we previously obtained with the Smad3
inhibitor. However, the Smad4 knock-down did not impair
collagen reorganization (Supplementary Figure S3B online),
indicating that the canonical Smad pathway was not involved
in this process.

We next investigated the non-canonical pathway. Inhibition
of p38-MAPK by SD203580 did not impair collagen reorga-
nization (Supplementary Figure S3C online). In contrast,
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inhibition of JNK by SP600125 and of the upstream MKK1
using PD098059 significantly delayed a11-mediated collagen
remodeling (Figure 5b and Supplementary Figure S3C online).
We furthermore observed a defect of JNK phosphorylation in
a11-deficient cells during collagen gel contraction (Figure 5c).
However, JNK could also be activated through the soluble
integrin- and growth factor–activated tyrosine kinase, FAK. To
discriminate between JNK signaling as result of integrin/FAK
activation versus non-canonical TGF-b signaling in a11þ /þ

fibroblasts, phospho-JNK levels were determined in fibroblasts
embedded in contracting collagen gels following treatment
with FAK inhibitor PF-573228 or TGF-b receptor type I
inhibitor SB505124. Despite inhibition of collagen remodel-
ing, PF-573228 did not affect JNK phosphorylation
(Supplementary Figure S3D and E online). Conversely,
SB505124 significantly inhibited both JNK phosphorylation
(Figure 5d) and collagen remodeling (Figure 5b), indicating
involvement of the non-canonical TGF-b signaling pathway in
a11-mediated collagen remodeling.

To further ascertain the role of JNK in collagen remodeling,
fibroblasts were co-transfected with the dominant negative
form of JNK1 and JNK2. The efficiency of the dominant
negative JNK variants was confirmed by reduced levels of
activated c-jun, a downstream effector of JNK (Figure 5e).
Dominant negative JNK–transfected fibroblasts embedded in
collagen lattices showed a reduced ability to reorganize the
matrix (Figure 5f). Moreover, MEFs isolated from JNK1/2-null
mouse embryos also presented a defect in collagen remodel-
ing (Figure 5g). Together these results clearly demonstrate that
fibroblast-mediated collagen remodeling requires a11b1
integrin–mediated contact with collagen and the presence of
TGF-b that elicits a non-canonical signal pathway involving
JNK.

DISCUSSION
In the present study, we addressed the functional relevance of
the a11b1 integrin during the repair process of skin wounds
and described specific functions exerted by a11b1 but not by
other collagen-binding integrins such as a2b1. Using targeted
deletion of a11, we show that development of GT and
formation of mechanically stable scar tissue critically rely on
the presence of a11b1. Our in vitro results strongly suggest
that a11b1-deficient fibroblasts exhibit a reduced ability to
differentiate into myofibroblasts. The resulting reduction in
myofibroblast number causes an impaired tissue restoration
and compromised wound contraction in vivo. Finally, remo-
deling of collagenous tissues to a mature and strong scar
depends almost exclusively on a11b1, supported by the
in vitro finding that lattice contraction by a11� /� fibroblasts
is similarly abolished as reported for fibroblasts deficient in b1
integrins (Liu et al., 2010).

Our in vitro data further show that a2b1 and a11b1
cooperate in murine fibroblast adhesion and cell migration
on collagen I-coated two-dimensional surfaces and confirm
our earlier results obtained using a2� /� dermal fibroblasts
(Zhang et al., 2006). Despite these findings, the overall cell
number in wounds did not differ from controls, maybe
reflecting the ability of a11-null fibroblasts to migrate on

fibrin and other components of the provisional wound matrix
(Reyhani et al., 2014). We recently suggested compensatory/
complementary cellular interactions with collagen integrin
bridgings molecules (Zeltz et al., 2013). A prominent collagen
integrin bridging molecule in the dermis is periostin (Egbert
et al., 2014), which is important for fibroblast migration into
the wounds (Elliott et al., 2012). The integrin-mediated
periostin-dependent adhesion might provide an indirect link
of fibroblasts to fibrillar collagen and is one potential
mechanism to compensate for the lack of a11b1 (Zeltz
et al., 2013).

Integrin a11b1 can regulate myofibroblast differen-
tiation in corneal and cardiac fibroblasts (Carracedo
et al., 2010; Talior-Volodarsky et al., 2012). Here we
showed that a11 and a-SMA are regulated in a similar
manner by TGF-b signaling in primary dermal fibroblasts
and that the absence of a11 leads to reduced myofibroblast
numbers in GT in vivo and impaired ability to remodel
collagen lattices in vitro. Addition of recombinant TGF-b1
failed to rescue the ability of a11� /� fibroblasts to contract/
remodel lattices.

Although both canonical and non-canonical TGF-b
receptor–mediated induction of myofibroblast differentiation
has been described, a-SMA can be induced in wounds in the
absence of TGF-b type II receptor (Martinez-Ferrer et al.,
2010), indicating that fibroblasts can activate parallel/
compensatory mechanisms.

Integrins are also dynamically regulated in both two-
dimensional and three-dimensional contexts. In the three-
dimensional environment, integrin a2 is upregulated in float-
ing collagen lattices (Klein et al., 1991) and both a2 and a11
are upregulated in attached collagen gels (Klein et al., 1991;
Carracedo et al., 2010). We think that the low levels of a2
expression in mouse dermal fibroblasts are, however,
sufficient to provide cell attachment and migration but not
to efficiently remodel collagen at early time points (24 hours).
Expression of a2 is upregulated over time by fibroblasts in
collagen lattices, which leads to more efficient collagen
remodeling, as we observed at 72hours. As only a11
appears to induce a-SMA levels, we assume that differential
signaling is active during myofibroblast differentiation and
also during collagen remodeling.

Our results demonstrate that both TGF-b and a11b1 integrin
have important roles in collagen matrix reorganization by
activation of the JNK signaling pathway. Blocking JNK has
been shown to inhibit TGF-b-induced collagen remodeling
(Shi-Wen et al., 2009) and myofibroblast differentiation (Shi-
Wen et al., 2006). A previous report showed that FAK is
essential for TGF-b-induced JNK activation in MEFs (Liu et al.,
2007). Although FAK is also necessary for collagen
reorganization in our model, we could not demonstrate its
role in JNK phosphorylation. Cross talk between non-Smad
TGF-b signaling and integrins has already been described (Mu
et al., 2012). A tempting speculation is that part of the non-
canonical TGF-b signaling might depend on a11b1 but not on
FAK.

In summary, our data demonstrate that a11b1 is
the major collagen receptor present on dermal fibro-
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blasts essential in collagen remodeling. We also demon-
strate that a11b1 is involved in myofibroblast differentiation
and GT formation following injury to ensure scar tissue
strength. As myofibroblast differentiation and collagen
dynamics are at the core of fibrotic processes, a11b1 is an
interesting collagen receptor to investigate further in patholo-
gical fibrosis.

MATERIALS AND METHODS
Detailed materials and methods are provided in Supplementary Data

online.

Mice

C57BL/6 mice with targeted deletion of Itga2 or of Itga11 gene as

previously described (Holtkotter et al., 2002; Popova et al., 2007)

were used in this study. Compound a2� /� //a11� /� mutant mice

were generated by intercrossing the single mutants. Wild-type and

compound a2� /� //a11� /� mutant mice were crossed with the

immorto mouse carrying the Simian virus 40 large T antigen under

control of the temperature-sensitive H-2Kb-tsA58 promoter (Jat et al.,

1991; kindly provided by U Mayer, University of East Anglia, UK),

generating immorto mice carrying at least one copy of the H-2Kb-

tsA58 transgene. Animals were housed in specific pathogen-free

facilities. PCR genotyping was performed on DNA extracted from

tail tip biopsies as described (Holtkotter et al., 2002; Popova et al.,

2007). All animal experiments were approved by the local veterinary

authorities (LANUV NRW, Germany or the Norwegian Animal

Research Authority).

Cell culture

Mouse dermal fibroblasts were isolated as previously described and

used in experiments up to passage 2 (Zweers et al., 2007). Briefly, the

entire trunk skin of postnatal day 3 C57BL/6 mice, a11� /� mutant

mice or compound a2� /� //a11� /� mutant mice was removed and

incubated overnight at 4 1C with trypsin-EDTA (0.05%-0.02%, PAA

Laboratories, Pasching, Austria). Upon manual detachment from the

epidermis, the dermis was minced and incubated with Dulbecco’s

modified essential medium (DMEM, Gibco Invitrogen, Oslo, Norway)

containing 400 U ml� 1 of collagenase I (CLS-1, Worthington,

Lakewood, NJ) for 1 hour at 37 1C. Dermal fibroblasts were

cultured in DMEM supplemented with 10% fetal calf serum (PAA

Laboratories) and 1% penicillin and streptomycin (Sigma-Aldrich,

Oslo, Norway). Immorto mouse dermal fibroblasts were generated as

previously described (Whitehead and Joseph, 1994). Immortalized

cells showed collagen-binding integrin expression levels similar to

primary cells (Supplementary Figure S2A online). Immortalized

fibroblasts were used in experiments leading to the following results:

Figure 2c, 4f and g, 5e and f. Integrin a11 was rescued in Simian virus

40-immortalized a11� /� fibroblasts (a11� /�KI) by viral transfection

with the full-length of mouse Itga11 cDNA (Lu et al., 2014). jnk1� /

� //jnk2� /� MEFs are described in Schumacher et al. (Schumacher

et al., 2014), originally isolated by Prof. Erwin Wagner (Javelaud

et al., 2003).

Wounding and staining of wound tissues

Excisional and incisional full-thickness wounds were inflicted on the

shaved backs of 10-week-old female mice as described (Zweers et al.,

2007). Incisional wounds of 2.5 cm were placed on the lower back

crossing the midline, sutured in the center, and harvested at 16 days

after injury.

For histology, wounds were bisected, and either fixed for 2 hours in

4% paraformaldehyde and then processed for paraffin embedding or

frozen unfixed in O.C.T. compound (Sakura, Staufen, Germany).

Paraffin sections were stained with hematoxylin and eosin or Sirius

red according to standard procedures. Vascular structures were

visualized by immunofluorescence staining of cryosections, acetone

fixed, and incubated overnight at 4 1C with an antibody against CD31

(MEC13.3, BD Biosciences, Heidelberg, Germany; 1:1,000 in (phos-

phate buffered saline) PBS/1% bovine serum albumin (BSA)), fol-

lowed by incubation with a Cy3-conjugated antibody directed against

a-SMA (4A1, Sigma-Aldrich; 1:500 in PBS/1% BSA). Secondary

IgG1k, Alexa 488-conjugated goat anti-mouse antibody (Molecular

Probes, Darmstadt, Germany; 1:500 in PBS/1% BSA) was applied for

1 hour at room temperature. Sections were counterstained with DAPI

and mounted.

Myofibroblasts were visualized by immunohistochemical staining

with an antibody directed to a-SMA (Tomasek et al., 2005). Paraffin

sections were dewaxed in xylol and rehydrated, blocked in 10%

normal goat serum for 30 minutes (endogenous biotin was blocked

using the Biotin Blocking System (Dako, Hamburg, Germany)),

incubated with primary fluorescein-conjugated antibody against a-

SMA (1:250 in 1% BSA), followed by rabbit anti-fluorescein antibody

(1:750, Molecular Probes A889) and subsequently by biotinylated

goat anti-rabbit IgG (Vectastain ABC kit, Vector Laboratories,

Peterborough, UK). Complex was detected by incubation with the

ABC-alkaline phosphatase complex (Vector Laboratories), and color

was developed with Vector red alkaline phosphatase substrate (Vector

Laboratories).

Collagen type I gel contraction

Collagen gel contraction was performed as previously described

(Barczyk et al., 2013). Briefly, each ml contained the following:

500ml of 2� DMEM containing 1.6� 105 cells per ml, 10ml 200 mM

Glutamine (Cambrex Bioscience, Stockholm, Sweden), 10ml antibiotics,

100ml 0.2M 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

(Sigma-Aldrich) pH 8.0, and 400ml collagen type I (PureCol,

Advanced Biomatrix, Carlsbad, CA). A total of 300ml of this mixture

was added into each well of a 24-well plate and were allowed to

polymerize (B90 minutes) at 37 1C. In order to obtain floating

conditions, gels were poured into wells that had been previously

coated overnight with 5% BSA in sterile PBS. Once the cell-

containing collagen mixture had polymerized, DMEM supple-

mented with 2% fetal calf serum was added. Recombinant human

TGF-b1 (PeproTech, Stockholm, Sweden; 5 ng ml� 1), SB505124

(Sigma-Aldrich; 10mM), SP600125 (Sigma-Aldrich; 25mM), SB203580

(Sigma-Aldrich; 10mM), PD098059 (Sigma-Aldrich; 5mM), PF-573228

(Sigma-Aldrich; 10mM) or b1 integrin antibody Ha 2/5 (BD

Biosciences) were used as indicated. After 24 hours of collagen

remodeling, we did not notice significant differences in cell number

between a11þ /þ and a11� /� fibroblasts. Results are expressed as

the mean from three independent experiments±SD, each condition

at least performed in triplicates per experiment.

Statistical analysis

Results are expressed as the mean±SD of at least three replicates

and are representative of three independent experiments. Statistical
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significance was assessed using unpaired Student’s t-tests unless

stated differently, with Po0.05 being considered significant. Gaus-

sian distribution was verified by the Kolmogorov-Smirnov test.

Calculations were performed using GraphPad Prism (GraphPad soft-

ware, La Jolla, CA).
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