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Abstract

The VEGFs -A, -B, -C, -D are important signaling molecules with pivotal implication 

in the growth of blood and lymphatic vessels, the so-called angio- and

lymphangiogenesis. They exert their activities by binding to their receptors, 

VEGFRs-1, -2 and -3. Their involvement in pathologic processes such as tumor 

growth or inflammatory disorders has been thoroughly described, rheumatoid arthritis 

being just one example. The VEGF family represents the link between angiogenesis 

and bone turnover, as seen in cancer metastasis to the bone or arthritis. Furthermore, 

they are involved in the differentiation of dendritic cells and lymphocytes, while 

macrophages and PMNs have been identified as sources of VEGFs, showing a 

mediatory function of these molecules in immune responses.

The presence of VEGF-A and its main angiogenic receptor VEGFR-2 in well-

vascularized normal dental pulp has been previously described. Apical periodontitis, 

a common inflammatory disease caused by the interaction of root canal bacteria with 

the host immune response, is characterized by bone resorption. VEGF-A is also 

known to be present in these lesions of endodontic origin. 

However, the picture of VEGF family and their receptors with respect to location and 

function in the dental pulp and in periapical pathology have so far been incomplete. 

The aims of this thesis were to identify and map the presence of VEGF family and 

their receptors VEGFR-2 and -3 in apical periodontitis and dental pulp and to 

investigate their role in periapical disease development. 

In normal rat apical periodontium (Paper I), VEGF-A, -C, -D and VEGFR-2 and -3

were present on blood vessels. Upon endodontic exposure for periapical disease 

development, an intensification of immunohistochemically stained vascular structures 

was noticed. Macrophages and neutrophils expressed all VEGFs and VEGFRs in the 

lesions, with macrophages being an important source of VEGF-C and -D. Osteoclasts 

were the source for VEGFR-2 and -3. The gene expression of VEGF-A and VEGFR-

3 was significantly up-regulated following pulp exposure. The results suggest the 
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implication of VEGF family and their receptors in the periapical immune response, 

vascular remodeling and in bone resorptive activities.

In human periapical lesions (Paper II) VEGFs and VEGFRs were expressed on blood 

vessels and on macrophages, PMNs, B- and T-lymphocytes. At the gene level, 

significant up-regulations were recorded for genes involved in VEGF-mediated 

angiogenic activity, such as phosphatidylinositol-3-kinases (Pl3K), protein kinase C

(PKC), mitogen-activated protein kinases (MAPK) and phospholipases (PL). These 

findings suggest the implication of VEGF family in ongoing immune reactions along 

with vascular remodeling in human established periapical lesions.

The normal dental pulp (Paper III) presented with blood vessels, macrophages and T-

lymphocytes positive for the same VEGFs and VEGFRs. Furthermore, VEGF-B was

only seen at cellular level in the dental pulp. Twenty-six of 84 VEGF signaling genes, 

including VEGFR-3 were significantly altered in the dental pulp compared with 

control PDL. The pulpal tissue has high VEGF signaling capacity with respect to 

immune responses and vascular activity.

Using specific markers for lymphatic vessels, we confirmed the absence of lymphatic 

vessels from both apical periodontium and the dental pulp. Macrophages expressing 

LYVE-1 were found in human periapical lesions and the dental pulp, with an 

assumed angiogenic role.

Upon inducing periapical lesions we systemically blocked VEGFR-2 and/or -3 in 

order to investigate their signaling patterns with respect to lesion size, angiogenesis, 

local inflammatory response and lymphangiogenesis in the draining lymph nodes 

(Paper IV). We have found that VEGFR-2 reduces inflammation whereas combined 

VEGFR-2 and -3 signaling causes an increase of the process, seen in amounts of 

PMNs and osteoclasts, as well as different cytokines expression. In the regional 

lymph nodes, lymphangiogenesis is dependent on VEGFR-2 and/or VEGFR-3

signaling.

The results of these studies provide evidence on the presence of VEGFs and VEGFRs 

in dental pulp and apical periodontitis, with implications in immune responses and 

vascular remodeling. VEGFR-2 and/or -3 signaling influences inflammatory 

reactions during periapical disease development.
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1. Introduction

1.1 Vascular endothelial growth factors (VEGFs) and 
receptors (VEGFRs)

First organ system to develop during embryogenesis is the circulatory system. The 

major regulators of blood and lymphatic vessel development are the members of the 

vascular endothelial growth factor (VEGF) family. The initial formation of the 

primitive vascular plexus is known as vasculogenesis [1], whereas the process of 

blood and lymphatic vessel development from preexisting vessels, as occurring in 

adult tissues, is known as angio- and lymphangiogenesis, respectively. The essential 

cells from which the vessels are built are the endothelial cells (ECs) [2].

The VEGF family in mammals includes five glycoproteins: VEGF-A (or 

VEGF/vascular permeability factor), VEGF-B, VEGF-C, VEGF-D and placental 

growth factor (PlGF) [3]. These bind with differing affinities to three endothelial 

transmembrane tyrosine kinase receptors, the VEGFRs: VEGFR-1 (Flt1), VEGFR-2

(human KDR/mouse Flk1) and VEGFR-3 (Flt4). Neuropilins (NRP-1 and NRP-2) 

can also work as co-receptors to the various VEGFRs in ECs [4].

VEGF-A is essential for development of blood vessels and exerts this activity via 

VEGFR-2, but is also to bind VEGFR-1, as well as NRP-1 and NRP-2 [5]. The

angiogenic effect is mainly driven by VEGFR-2, while VEGFR-1 acts as a negative 

regulator of the process [6].

Under physiologic conditions, ECs in adult organisms are mostly quiescent. 

Exceptions, during which VEGF-A and its receptors increase in expression, include

exercise-induced angiogenesis in heart and skeletal muscle [7], the hair cycle [8], the 

female reproductive cycle and placental growth [9] and wound healing [10]. VEGF-A

mostly exerts its’ activities on ECs, but it can also bind to its’ receptors on 

hematopoietic stem cells, neurons or monocytes [11]. Osteoblasts and chondrocytes 

produce VEGF-A [12, 13], linking it to skeletal growth and endochondral bone 

formation [14, 15]. The presence of VEGFR-2 on both osteoblasts and osteoclasts 

indicates the involvement of VEGF-A in bone remodeling [16]. Activation of 
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angiogenesis starts as VEGF-A engages with VEGFR-2 thereby inducing the 

proliferation, survival, sprouting and migration of ECs and increasing endothelial 

permeability [3].

Under homeostatic conditions, VEGF-B is highly expressed in heart myocardium, 

skeletal muscle, brown fat, vascular smooth muscle, brain, kidney and parietal cells 

of the stomach [17-20], while PlGF is found in placenta, heart, lungs, skeletal muscle 

and adipose tissue [21-23]. Both are specific ligands to VEGFR-1 [3, 24], but can 

also transduce their signals via NRP-1 [25]. While PlGF has an angiogenic role [26, 

27], VEGF-B seems to be related to metabolic functions [28, 29] neuroprotection [30]

and primarily connected to inflammatory settings [31].

VEGF-C and -D normally bind to VEGFR-3 and are responsible for lymphatic vessel 

development. However, upon proteolytic activation, VEGF-C and -D also bind to

VEGFR-2, thus being involved in angiogenic, as well as lymphangiogenic activities 

[32]. NRP-2 is a co-receptor for both VEGF-C and -D and required for efficient 

sprouting of lymphatic capillaries [33]. During embryogenesis, VEGF-C is expressed 

around areas of lymphatic development, along with its receptor VEGFR-3 [34, 35].

The expression decreases thereafter, however remaining high in lymph nodes [36].

VEGF-D is expressed in various locations in murine embryos, while in humans it is 

strongly detected in skeletal muscle, colon, small intestine, heart and lung [37-39].

Although VEGF-C is essential for lymphatic development, VEGF-D seems to be 

dispensable, with uncertain physiological role during embryogenesis, as seen in 

knockout mice models [40]. VEGFR-3 is widely expressed in ECs during mouse 

embryogenesis, but later on it is mostly restricted to lymphatic endothelium [41, 42].

It seems to also play a role in mouse embryonic angiogenesis [43]. In human adult 

tissues, VEGFR-3 is mostly found on lymphatic ECs, exerting a protective role at this 

level, but could also be identified on fenestrated blood capillaries [44], monocytes, 

macrophages and some dendritic cells [45, 46]. Figure 1 gives an overview of VEGF 

family and their binding affinities to different receptors.
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Figure 1. Schematic representation of VEGF binding affinities to the different 
receptors and their involvement in angio- and lymphangiogenesis. VEGF-A is the 
main angiogenic factor. VEGF-C and -D transduce lymphangiogenic signals, and 
upon proteolytic activation bind to both VEGFR-2 and -3, thus also promoting 
angiogenesis. 

1.2 Blood and lymphatic vasculature

The vascular system must supply tissues with nutrients, growth factors and hormones 

as well as clear waste products. 

Therefore, a certain vascular permeability is required in order to allow small 

molecules to extravasate under homeostatic conditions. [47]. Lymphatic ECs (LECs),

just like blood ECs (BECs) are also quiescent under resting conditions. During 

homeostasis, lymphatics are essential for regulation of interstitial pressure, lipid 

metabolism and immune surveillance [48]. They absorb water and macromolecules 

from the interstitium, uptake vitamins and lipids in the intestine and provide an 

important traffic route for immune cells [49]. Lymphatics start as blind-ended vessels 

in the interstitium and have the primary aim to drain excess interstitial fluid, returning 

it into the blood stream. Hereby, the lymph passes through collecting ducts and 
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lymph nodes, and in the latter scanning for foreign antigens occurs – hence the 

importance of the lymphatic system for the immune defense [24].

Figure 2. Lymphatic vessels collect macromolecules, cells and fluid provided by 
blood vessels from the interstitium (a, modified image from Servier Medical Art, 
Laboratoires Servier, Suresnes, FR). These enter the lymphatic capillaries via valve-
like structures between the LECs. These portals also prevent the return of lymph to 
the intersitium (b). The anchoring filaments attach the ECs to the extracellular matrix 
(ECM) and also prevent the collapse of vessels under conditions of increased tissue 
pressure (c).

1.2.1 Distinguishing blood from lymphatic vasculature

Lymphatic and blood capillaries are structurally different. With the exception of 

fenestrated and discontinuous endothelia, BECs interconnect via tight junctions, 

resulting in a continuous basement membrane. In contrast, lymphatic capillaries lack 

the surrounding connective tissue cells of the blood vessels, the pericytes, and present 

with loosely connected LECs and a discontinuous basement membrane. The LECs

attach to the ECM via anchoring filaments [50], which regulate the valve-like

opening of the ECs in the lymphatic lumen [48]. These portals allow fluid, particles

and immune cells, such as dendritic cells and some leukocytes, to enter the vessel 

lumen [51-53] (Figure 2).

Both BECs and LECs carry pan-endothelial markers, such as Platelet endothelial cell 

adhesion molecule-1 (PECAM-1), even though this is only weakly expressed on 

a

b c
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lymphatics [54]. The differentiation can be difficult regarding their VEGFRs 

expression. BECs express VEGFRs-1 and -2, while VEGFRs-2 and -3 are found on 

LECs. Furthermore, VEGFR-3 is also expressed by fenestrated blood endothelium, 

high endothelial venules (HEVs) of the lymph nodes, as well as abnormal tumor 

vessels [41, 44, 55]. LECs are intensely positive for specific molecules, such as 

prospero homebox-1 (Prox1), the membrane glycoprotein podoplanin (D2-40) and 

lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) [34, 56-59], which can 

be used in order to distinguish between BECs and LECs. A selection of blood- and 

lymphatic markers is presented in figure 3.

Figure 3. Selected markers for blood and lymphatic endothelium, reviewed in [60]
(BEC, blood endothelial cell; LEC, lymphatic endothelial cell). ”+”sign represents 
staining intensity. 

1.2.2 Angio- and lymphangiogenesis in disease

ECs maintain the ability to divide and proliferate in response to different stimuli, such 

as hypoxia (insufficient oxygen concentration), often found during tissue expansion. 

Activation of hypoxia-inducible factor (HIF), especially HIF-1 , stimulates vasculo-

and angiogenesis through induction of VEGF-A. However, hypoxia is also 

characteristic of both inflammation and cancer [61, 62]. Ferrara N. [63] reported that 
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hormones, several growth factors, inflammatory cytokines and oncogenes can induce 

VEGF-A expression in various tissues and cells. Consequently, excessive 

angiogenesis is used as a hallmark of many disorders – cancer, chronic inflammations 

like arthritis [64] or psoriasis [65], atherosclerosis [66, 67], infectious diseases [68, 

69], diabetic retinopathy [70], asthma [71] or obesity [72] (Table 1).

Table 1. Diseases related to abnormal and increased angiogenesis, modified after 
Carmeliet P. [73].

The VEGF family and their receptors have been identified in a variety of immune 

cells involved in different disorders. Mast cells, which infiltrate chronic inflammatory 

sites and tumors, can express VEGF-A, -B, -C and -D and enhance the expression of 

VEGF-A [74]. VEGF-A induces monocyte migration through the activation of 

VEGFR-1 [75]. Monocytes, progenitor cells of macrophages and dendritic cells, 

express VEGFR-1 in a high majority [76], whereas PlGF, ligand to VEGFR-1,

Diseases related to increased or abnormal angiogenesis
Organ Pathological process
Multiple organs Cancer

Autoimmune disorders
Infectious diseases, including 
periodontal disease

Blood vessels Atherosclerosis, hemangiomas

Skin Warts, pyogenic granulomas, 
psoriasis, Kaposi’s sarcoma,  scar 
keloids

Female reproductive system Endometriosis, uterine bleeding, 
ovarian cysts/hyperstimulation

Adipose tissue Obesity

Bone, joints Rheumatoid arthritis, synovitis, 
osteomyelitis

Eye Prematurity - and diabetic retinopathy

Digestive system Inflammatory bowel disease, ascites
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induces cytokine and chemokine gene expression in these cells [77]. Macrophage 

colony stimulating factor (M-CSF), a pro-inflammatory cytokine, can induce VEGF-

A expression by monocytes [78], suggestive of the angiogenic role of monocytes 

during inflammation.

Macrophages, with important roles in phagocytosis, are known for their increased 

presence in chronic inflammatory settings and tumors. Thereby they produce a range 

of growth factors, cytokines, such as IL-1 ) or

(TNF ), and proteolytic enzymes according to their microenvironment [79]. TNF

sustains tumor and blood vessel growth by stimulating angiogenic factors like VEGF-

A or IL-8, a major angiogenic chemokine [80]. IL-1 enhances tumor invasiveness and 

induces angiogenesis by stimulating TNF and HIF-1 release [80, 81]. Tumor cells 

and macrophages express VEGF-C and -D, thus having an important role in 

lymphangiogenesis [82]. Increased VEGF-C expression is related to lymph node 

metastasis for thyroid, lung or gastro-intestinal cancers [83]. Thus, both blood and 

lymphatic vessel proliferation occur under pathologic conditions, such as 

inflammation or tumor growth. 

Polymorphonuclear leukocytes (PMNs) are known to be involved in the physiological 

progress of menstrual cycle angiogenesis [84]. However, they can also stimulate an

increased release of angiogenic factors within tumors and be the source of these 

factors upon TNF stimulation arising during tumor or chronic inflammation 

progression [85]. In addition, PMNs contribute to inflammatory lymphangiogenesis, 

by increasing VEGF-A bioavailability and secreting VEGF-D [86].

Lymphangiogenesis occurs as a response to inflammatory stimuli with the aim of 

facilitating clearance of antigens, inflammatory cells, and cytokines from inflamed 

sites and of establishing the resolution of inflammation. The sprouting from pre-

existing lymphatics, the characteristic of adult lymphangiogenesis, is mediated by 

VEGF-C and -D signaling upon binding to the main lymphatic endothelial receptor, 

VEGFR-3 [87]. Pro-inflammatory cytokines and bacterial lipopolysaccharide (LPS), 

encountered during inflammation caused by bacterial infections, generate VEGF-C

expression in many cell types [51]. During chronic inflammation, VEGF-A induces 

lymphangiogenesis via VEGFR-2 expressed on lymphatic endothelium. VEGF-A



20

mediated lymphangiogenesis is also seen in the draining lymph nodes representing a 

contrast to the angiogenic drive seen during development [88, 89]. Thus, lymph node 

inflammatory lymphangiogenesis can be induced both via VEGF-A/VEGFR-2 and 

VEGF-C and-D/VEGFR-3 signaling [90].

Some chronic inflammatory diseases are actively maintained through 

lymphangiogenesis [91], as demonstrated in chronic airway inflammation [51],

psoriasis [92], ulcerative colitis [93], as well as rejected renal transplants [94].

Experimental blocking of lymphangiogenic factors during inflammation suppresses 

lymhangiogenesis, as well as reactive lymphadenitis, and consequently edema 

persists [51]. A study performed on K14-VEGF-A transgenic mice showed that in 

chronic skin inflammation, blocking VEGFR-2 inhibits angiogenesis and

inflammatory reactions. VEGFR-3 inhibition however prolonged inflammatory 

edema [95]. In a model of transgenic TNF mice with chronic inflammatory arthritis, 

blocking of VEGFR-3 resulted in a decrease of lymph node lymphangiogenesis and 

an augmentation of inflammation [96]. On the other hand, in the same disease setting, 

anti-VEGFR-2 treatment reduced both lymphangiogenesis and the severity of 

inflammation [96]. These findings suggest that induced lymphangiogenesis and

lymphatic drainage are related to the severity of inflammatory lesions and that 

adequate lymphatic drainage may be beneficial during chronic inflammatory 

conditions.

1.3 The tooth biology

The tooth is a highly complex organ comprising organized structures with various 

and specific shapes. It develops within the alveolar bone and after it erupts in the oral 

cavity, the root(s) firmly anchors to surrounding bone. The tooth structure comprises 

of three outer mineralized tissues – coronal enamel, radicular cementum and corono-

radicular dentin which surround the inner non-mineralized soft tissue, the dental pulp. 
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Figure 4. Schematic representation of the tooth and supporting tissues.

1.3.1 The dental pulp

The dental pulp is a unique tissue confined within rigid walls. It exhibits specialized 

cellular components – the odontoblasts, known for their dentin-deposition activity 

throughout life and upon external aggression - such as caries, and for their 

involvement in sensory transduction [97, 98]. Additionally, the pulp has rich sensory 

innervation [99] and is well supplied with blood vessels [100], which contribute to 

its’ defensive functions. It is also equipped with cellular components necessary for 

antigen recognition and immune reaction, such as T lymphocytes, macrophages and 

the major antigen-presenting cells (APCs), the dendritic cells [101].

Dental caries and traumatic injuries may provide entry-ways for bacteria to the pulpal 

space, hence causing inflammation which may evolve to pulpal necrosis if left 

unattended. It has been shown that teeth with viable dental pulp are more resistant to 
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bacterial invasion of the dentine than teeth with root canal fillings [102], thus the 

important role of the pulp in defense processes.

1.3.2 Pulp vascularization 

Like in other tissues, pulp blood flow brings oxygen and nutrients to the dental pulp, 

while also removing waste products thereafter. The pulp microcirculation is supplied 

by the maxillary artery, which divides into dental arteries and further arterioles that 

enter the teeth. These have a central orientation and give capillary branches towards 

pulp periphery. The blood drains into venules, which are also centrally located. The 

vasculature differs in the crown and root of the tooth. In the root, blood vessels 

penetrate the apical area of the pulp and form tiny branches. Dental crown capillaries

form successive glomerular individualized structures that supply areas of 100-150 μm 

in subodontoblastic and odontoblastic areas [103, 104]. Furthermore, some coronal 

capillaries have been described with a fenestrated structure [105].

An increased blood supply during inflammation leads to angiogenic capillary 

sprouting regulated by hypoxia. Under normal conditions, pro- and anti-angiogenic 

factors and neuropeptides control pulp vascularization [106, 107]. Dentin and pulp 

fibroblasts as well as ECs express pro-angiogenic factors, such as VEGF and 

fibroblast growth factor (FGF-2) [106-108]. Immunohistochemical analysis of normal 

and inflamed pulp has revealed the presence of VEGF under both conditions [109].

Dental pulp stem cells have the capability of differentiation into ECs [110]. This 

indicates that the pulp has the capacities of healing and regeneration processes which 

require angiogenesis.

Even though a lymphatic system is required for fluid and macromolecules transport 

especially during inflammatory conditions, the presence of lymphatics in the dental 

pulp remains controversial. Initial observations suggested that the pulp contains 

lymphatic capillaries [111-113]. This fact was later on disputed, as specific lymphatic 

markers (Prox1) did not reveal any lymphatics in the dental pulp [114]. Berggreen et 

al. [115] found LYVE-1+ immune cells in mouse dental pulp, and VEGFR-3+ vessels 

which were interpreted as lymphatics. And yet, another study partially contradicts 

these findings, as by use of multiple specific lymphatic markers (LYVE-1, D2-
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40/Podoplanin and Prox-1) no lymphatic vessels were identified in human dental pulp 

[116].

1.3.3 The periodontium

The tooth supporting and surrounding structures enclose gingiva, periodontal 

ligament (PDL), cementum and alveolar bone. 

The gingiva is the part of the alveolar mucosa covering the cervical part of the tooth 

and the tooth-carrying portion of the alveolar bone [117].

The PDL contains mainly collagen fibers, anchoring the root surface to the tooth 

socket of the maxilla or mandible, but also various cells – fibroblasts, osteoblasts, 

cementoblasts, progenitor stem cells, epithelial cell rests of Malassez, neural cells, 

and ECs, associated with the vasculature as well as ECM [118-120]. The PDL fulfills 

several functions – tooth support, stability, nutrition and protection, as well as 

mobility and adaptation to mechanical forces. 

Cementum covers the root surface and continues deposition throughout life after 

tooth eruption [121].  There are three types of cementum in human teeth- acellular

afibrillar cementum that covers minor areas of enamel; acellular extrinsic fiber 

cementum located mostly in the cervical and middle root portions, with apical 

exceptions in front teeth; and cellular intrinsic fiber cementum, mostly covering the 

rest of areas, with a predilection for the furcation and apical parts of the roots. 

Sometimes they overgrow each other, resulting in mixed stratified cementum [121, 

122]. It is mainly the cellular intrinsic cementum type which participates in root 

repair processes [121].

Alterations in adult cementum structure and organic as well as inorganic composition 

occur due to pathological changes – bacteria-caused long-lasting inflammation being 

a major example [121, 123, 124]. Even though it is considered that root surface is 

more resistant to resorption than alveolar bone, radicular resorption of cementum and 

dentin does occur upon pulpal pathology, trauma or orthodontic treatment [125, 126].

The key players of this process are odontoclasts, similar cells to osteoclasts 

concerning multinucleated structural and functional characteristics [127].
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The alveolar bone consists of the outer buccal, lingual or palatal cortical plates, and 

the central part containing a large amount of trabecular (spongious) bone with bone 

marrow in between trabeculae. The cortical bone is covered on the external side by 

the periosteum, which contains fibroblasts, osteoclast and osteoblast progenitor cells, 

nerve cells, blood vessels and bone-forming osteoblasts at the innermost part. The 

endosteum covers the inner side of cortical bone and external surface of the 

spongiosa. It also contains osteoblasts, as well as flat, bone-lining cells with no active 

bone secretory function [128, 129]. Other cells of the bone are the osteocytes which 

participate in bone remodeling processes along with osteoblasts and osteoclasts and 

actively maintain the bone matrix [130, 131]. Osteoclasts, multinucleated giant cells,

are present on bone surfaces or intracortically and are responsible for bone resorptive 

activity [132].

1.3.4 Blood supply of the periodontium

The periodontium is highly vascularized. Alveolar arteries supply the PDL with three 

different branches: the dental, the interradicular and the interdental. Before entering 

the tooth apex, the dental artery emerges from the bone and gives off afferent 

subdivisions that form a vascular network in the apical third of the PDL [128]. While 

the interdental and interradicular arteries give mostly lateral branches, all these 

vessels within the PDL intercommunicate [128]. The apical and coronal thirds of the 

PDL are generally more vascularized than the middle third. Arteries are commonly 

accompanied by larger venous channels. Lymphatics exist in the gingiva, where they 

start as blind-ended vessels and pass along the external surface of the alveolar bone 

[133]. Gingival lymphangiogenesis occurs during periodontal disease development 

[134] and a recent study has shown the protective role of lymphatics in periodontal 

inflammation [135]. While no lymphatic vessels were detected at the border between

gingiva and PDL [133], some LYVE-1+ vessels have been described to transverse 

interdental bone [115]. The lymphatic drainage of the PDL is still debated [136].
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1.4 Bone remodeling 

Bone is a dynamic tissue with constant forming and resorption activity in order to 

maintain mineral homeostasis and structural integrity [137]. During the so-called 

coupling sequence, osteoclasts resorb the mineralized matrix, while osteoblasts form 

new bone matrix [138]. This process is regulated by local and systemic elements, 

such as mechanical load, calcium levels, paracrine and endocrine factors. 

Figure 5. Schematic illustration of bone remodeling cycle. Micro-cracks lead to 
osteocyte apoptosis which determines osteoclast precursors’ recruitment. M-CSF and
receptor activator of nuclear factor kappa-B ligand (RANKL) are produced by bone-
lining cells and activate osteoclasts. Bone morphogenic proteins (BMP), 
transforming growth factor- (TGF- ), insulin growth factor-1 (IGF-1), 
cardiotrophin-1 (CT-1) are osteoclast-derived molecules which control bone 
apposition by osteoblasts. Newly-formed osteocytes secrete sclerostin, which 
terminates the bone secretion. (Shapes modified from Servier Medical Art, 
Laboratoires Servier, Suresnes, FR).

The activation of resorption occurs via apoptosis of osteocytes around a micro-

fracture [137]. This leads to osteoclast precursor recruitment, osteoclastogenesis and

bone resorption. The osteoclasts then die by apoptosis, which recruits osteoblast 

precursors. The resorbed area is filled with bone formed by osteoblasts, concluding 
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the cycle [137]. Alterations of this process can disturb the balance with pathological 

consequences [138].

Bone remodeling is controlled by signals between bone cells [139, 140], but also via 

sympathetic nervous system, hematopoietic stem cells, inflammation and the immune 

system, and vasculature [141-143]. In the 1990’s the RANKL/RANK/osteoprotegerin 

(OPG) system was discovered and made it possible to understand more of the 

mechanism of bone resorption and remodeling [144, 145]. RANKL, the major 

osteoclast differentiation factor, is expressed by osteoblasts upon stimulation by a 

multitude of factors, but also by activated T cells, an indication of the immune system 

influencing bone resorption [146]. Under homeostatic conditions, RANKL binds to 

RANK, the receptor on osteoclast surface, thus activating the NF-kB pathway and 

resulting in bone resorption. Expression of RANKL can be regulated by 

glucocorticoids, Vitamin D3, IL-1, TNF or LPS [147-150]. The RANKL/RANK 

binding is inhibited by OPG, a decoy receptor of the osteoblasts for RANKL, thus 

limiting bone resorption [144]. Under pathologic conditions, such as rheumatoid 

arthritis, periodontal disease, osteoporosis, metastatic bone tumors or multiple 

myeloma, the ratio RANKL/OPG increases in favor of bone breakdown [151].

1.5 Dental inflammation

As a response to injuries, living tissues respond with inflammation. The causes 

include microbial infections, trauma, chemical injuries, tissue necrosis and 

hypersensitivity reactions. Dental inflammation caused by microorganisms has been 

well established [152-154].

Gingival inflammation, a common disease with high prevalence, is caused by 

microorganisms; it can be reversed through treatment, but can also evolve to chronic 

periodontal breakdown. Dental caries is the most prevalent infectious disease, 

affecting most individuals, with both functional and economic impacts [155]. These 

lesions, along with tooth fractures or iatrogenic maneuvers are the portal of bacteria

to the dental pulp, causing pulpal inflammation. If untreated, pulpitis evolves to pulp 

necrosis and apical periodontitis, with destructive processes of the bone.  The human 
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oral cavity is host to approximately 700 bacterial species [156, 157]. It is mostly 

anaerobic gram-negative bacteria and their virulence factors that take part in dental 

disease development [158, 159].

The inflammatory response consists of a vascular and a cellular component. 

Vasodilation and increased blood flow at sites of inflammation go along with 

increased vascular permeability, resulting in plasma and protein extravasation into 

injury site and movement of leukocytes from vessels into the inflamed tissue [160].

The initial recognition of bacteria and their by-products is mediated by tissue-resident 

macrophages, mast cells, fibroblasts or dendritic cells via their toll-like (TLRs) and 

nucleotide binding oligomerization domain receptors (NODs) [161, 162]. In turn, this 

activation of the innate immune response leads to production of a variety of 

inflammatory mediators, including chemokines and cytokines. The vasodilation and 

extravasation of neutrophils represent the immediate effects of these mediators. When 

reaching the affected site, activated PMNs try to eliminate pathogens by releasing 

toxic contents of their granules [163]. If successful, resolution of inflammation 

occurs. If not resolved, a chronic inflammation takes place, where the PMN infiltrate 

is replaced with macrophages, B- and T- lymphocytes – characteristic of the adaptive 

immune response. Macrophages usually predominate in chronic inflammation, being 

responsible for the release of multiple cytokines and inflammatory mediators with 

both pro- and anti-inflammatory roles, thus also affecting resident tissue. Along with 

dendritic cells, they present antigens via their major histocompatibility complex 

(MHC) class II to T-helper (Th) cells in the regional lymph nodes, activating these 

cells. This leads to production of more cytokines that contribute to increased 

macrophage activation and to formation of memory B- and Th-cells. Furthermore, B 

lymphocytes also become activated, developing into antibody-producing plasma cells 

against the presented antigens. Thus, lymph node enlargement seen during 

inflammation, the lymphadenitis, is the result of immune cell reactions which try to 

prevent the spread of a local aggressor throughout the organism.

Little is known on lymphangiogenesis and lymphadenitis occurring during dental 

inflammation. Lymphangiogenesis in the gingiva during periodontal disease has

previously been described [134]. Clinical findings have shown that during acute 
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phases of marginal and apical periodontitis mainly caused by bacteria, local and 

regional lymphadenitis arise [164]. Within the dental pulp, the presence of lymphatics 

is still disputed. A study on normal and inflamed pulps suggests that during 

inflammation, lymphangiogenesis occurs as more CD31+/VEGFR-3+ vessels have 

been seen [165]. Knowing that VEGFR-3 is also expressed on some fenestrated blood

vessels and that no other lymphatic markers have been employed in that study, this 

evidence [165] remains controversial. An interesting recent finding shows the 

migration of pulpal dendritic cells to regional lymph nodes as soon as 16 hours upon 

cusp trimming and bacterial exposure. This may lead to further immune cell 

recruitment [166]. The exact migratory pathways of pulp APCs to regional lymph 

nodes are in need of further investigation.

1.5.1 Apical periodontitis

The periapical lesion is in fact the result of the host’s immune response upon constant 

bacterial aggression from the root canal aiming at confining the infection to the 

endodontic space. Apical bone loss in the forms of granulomas or cysts, which dental 

practitioners notice on radiographs as radiolucent areas, represents a main indicator of 

periapical disease (Figure 6).

Figure 6. Radiographic exemplifications of teeth with deep, untreated or secondary 
caries and periapical lesions (unpublished images, Department of Endodontics,
University of Bergen).
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A necrotic dental pulp lacks blood supply and subsequently inflammatory cells that 

would eliminate bacteria [167]. Thus, bacteria penetrating the root canal towards the 

apex trigger a periapical immune defense with a rich cellular component consisting of 

PMNs, macrophages, B- and T-lymphocytes or plasma cells [168-171]. Fibroblasts, 

osteoblasts, osteoclasts, eosinophils, mast cells and epithelial cells are also among 

cells found in periapical lesions [172, 173]. Figure 7 exemplifies cellular infiltrates in 

mouse (A and B) and human (C) periapical lesions, as well as presence of osteoclasts

(D) in a human apical periodontitis lesion.

Figure 7. A and B. Periapical lesions induced in mice, following 21 days of pulpal 
exposure, (H&E staining). Necrotic pulp (NP) remnants are visible in the root 
canals. Periradicular cellular infiltrates of different intensities (arrowhead), along 
with areas of bone resorption (arrows) are observed. C. H&E staining of human 
periapical lesions revealing different cellular and fibrous infiltrates. D. TRAP 
staining of human periapical lesion exemplifying pre-osteoclasts or osteoclasts 
(arrows, intense red staining) in the body of human periapical lesion (Unpublished 
data).

The inflammatory response cannot occur without its’ vascular component. The 

extravasation of PMNs, of high importance in periradicular disease development, 
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follows vascular hyperemia, congestion and local edema [172]. Though mostly 

protective, PMNs also degrade host tissues, not just microorganisms, due to release of 

their cytotoxic granules, especially in the acute phases of apical periodontitis where 

they predominate [172].

Reports vary considering the dominating type of cells in established periapical lesions 

with either macrophages [170, 174] or lymphocytes [175, 176] taking the lead. 

Macrophages have central roles in innate, as well as acquired immunity [177]. In rat 

models of apical periodontitis, it has been shown that their numbers increase in the 

first 10 days of lesion development, maintaining similar levels for up to 60 days and 

decreasing thereafter [178]. Through their phagocytic role, they prevent 

dissemination of bacteria from the root canal to the surrounding bone. By being 

APCs, they process the antigen, present it to Th cells, which they also activate, thus 

triggering the adaptive immune response. Along with IL-1 and TGF- production,

macrophages also release metallo-proteases (elastase, collagenase) and 

prostaglandins, which participate in the bone destructive process [177].

Usually T cells are more numerous than B cells [175]. Of the T-cells, Th1, Th2 and 

Th17 as well as T-cytotoxic (Tc) subtypes were identified in periapical lesions [171, 

179]. Th1 cells produce IL-2 and IFN ), which control cell-mediated 

immunity, while Th2 cells secrete IL-4, -5, -6, -9, -10 and -13 that regulate plasma 

cells and humoral immune response [180-182]. Out of these cytokines, IL-6 and IL-

10 may exert anti-inflammatory effects in bone inflammation [183, 184].  Th17 cells 

are known for IL-17 production, a cytokine, which so far has been described with 

both pro- and anti-inflammatory functions [179, 185]. They also release IFN , with 

protective effects in periapical inflammation [186]. Upon cytokine activation, B-cells

proliferate into plasma cells, which produce antibodies to bacterial antigens [187]. An

overview of periapical cellular interactions during apical periodontitis development is 

given in figure 8.
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Figure 8. Schematic representation of major cellular interactions during periapical 
disease development. Bacteria and their products from the root canal are attacked by 
extravasated PMNs from blood vessels. Macrophages (MØ) recognize antigens via 
TLRs, engulf these and present the information to T cells, activating the adaptive 
immune response. Activated macrophages enhance migration of monocytes and 
PMNs from vessels in the area via IL-1. B-cells activation determines antibody 
production (IgG) against specific antigens. Many mediators are being produced, 
some with osteoclastic stimulating effect (Granulocyte macrophage colony-
stimulating factor (GM-CSF), TNF , IL-1), others with anti-inflammatory roles (IL-6, 
IL-10). Osteoclasts (Oc) are also activated due to release of RANKL and Granulocyte 
colony-stimulating factor (G-CSF) by osteoblasts (Ob) in the periapical bone (Shapes 
modified from Servier Medical Art, Laboratoires Servier, Suresnes, FR).

The interplay between ECs, PMNs, macrophages, lymphocytes and osteoclasts 

characterize these endodontic lesions, along with the main consequence of this 

process – bone resorption [167, 172, 188]. Osteoclastic bone breakdown is stimulated 

through the induction of the major pro-inflammatory cytokines such as IL-1 , IL-1 ,
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RANKL or TNF [189, 190]. IL-1 and IL-1 are produced in apical periodontitis 

lesions by several types of cells – macrophages, PMNs, fibroblasts and osteoclasts 

[191, 192]. The role of IL-1 in apical periodontitis development was demonstrated by 

inhibiting IL-1 receptor and showing a 60% reduction of bone destruction [187].

Additional to bone resorption enhancement, IL-1 can stimulate T- and B-cells [193],

enhance leukocyte adhesion to endothelial walls or activate the production of 

prostaglandins and proteolytic enzymes [172].

Fibroblasts, macrophages and PMNs are also the source of TNF , which mediates 

RANKL stimulation of osteoclast differentiation through autocrine mechanism [194],

hence stimulating bone resorption. 

Although osteoblasts are the main source of RANKL, B- and T-cells [195] as well as  

fibroblasts [196] also express this factor. Furthermore, it has been suggested that 

other cells, like macrophages, PMNs, ECs and epithelial cells express RANKL in 

periapical lesions [197].

                            

Figure 9. Scattered cells (arrows) in a human periapical lesion stained positive for 
RANKL (Unpublished data).

Microorganisms, inflammatory molecules such as IL-1, TNF and IFN or even 

chemokines themselves stimulate the production of chemokines at sites of apical 
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periodontitis [198]. Osteoclast differentiation and activation is also induced by 

chemokines, such as IL-8/CXCL8 [199], macrophage inflammatory protein- (MIP-

1 )/CCL3 or regulated on activation, normal T cell expressed and secreted 

(RANTES)/CCL5 [200, 201]. Monocyte chemotactic protein (MCP-1)/CCL2, 

abundantly produced in chronic inflammation, is associated with osteoclast 

chemotaxis and differentiation [202, 203], while mediating monocyte recruitment to 

bone inflammatory sites and being involved in bone remodeling [204, 205]. Dentin 

proteins stimulate PMN migration by inducing the release of keratinocyte 

chemoattractant (KC)/CXCL1 and MIP-2/CXCL2 [206]. In granulomas, RANTES is 

associated with recruitment of CD4+ Th cells and CD68+ macrophages, whereas MIP-

1 and MIP-1 /CCL4 are related to the CD8+ Tc population. Moreover, the increased 

expression of RANTES and MCP-1, in cysts versus granulomas is indicative of 

augmented osteoclast recruitment and thus may be of importance in periapical disease 

development [207].

Cytokines and chemokines are also important mediators of angiogenesis. IL-1 and 

TNF are known inducers of angiogenic responses [80, 81], while IL-6 has also been 

shown to promote VEGF-dependent angiogenesis in tumor settings [208]. MCP-1 can 

trigger EC migration and vessel sprouting [209], whereas mice lacking MCP-1 have 

experienced delayed wound healing, indicative of the angiogenic involvement of this 

chemokine [210].  Apart from its’ role in osteoclastogenesis, IL-8 is also a potent 

angiogenic factor [211], acknowledged for intensifying the local vascular response in 

apical periodontitis [172].

Additional to angiogenic cytokines and chemokines, recent studies have

demonstrated the presence of the angiogenic factors FGF-2 and VEGF in these 

lesions [212, 213]. Microvessel density counts have revealed increased amounts of 

blood vessels in periapical lesions with intense inflammatory infiltrates [214]. During 

periods of exacerbation of chronic periapical inflammation, vasodilation and 

increased vascular leakage can occur, seen as regional mucosal swelling. This process 

is often accompanied by local lymphadenitis. The lymphangiogenesis mechanism in

the draining lymph nodes during acute and chronic apical periodontitis is still in need 

of further investigations.
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All of the above indicate the complex development of periapical disease, with 

intricate vascular and cellular processes taking place.
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2. Aims of this study

The dental pulp is a well vascularized tissue, very often under inflammatory insults. 

Pulpal inflammation, when untreated, further evolves to necrosis of the tissue and 

periapical inflammation. The general aims of this study were to identify and map the 

presence of the VEGF family and receptors in normal dental pulp, as well as in apical 

periodontitis and to establish their roles in periapical disease development.

Specific aims

To determine the existence and localization of VEGFs and VEGFRs during 

development of apical periodontitis in a rat model (Paper I).

To investigate the presence of VEGFs and VEGFRs in human dental tissue 

with focus on normal dental pulp and periapical lesions (Papers II and III). 

To examine VEGF signaling at the gene level in normal dental pulp versus 

normal PDL (Paper III).

To investigate the existence of lymphatics in periapical tissues and human 

pulp (Papers I-III).

To study the roles of VEGFR-2 and -3 signaling during development of apical 

periodontitis in a murine model by individual or combined blocking of these 

receptors (Paper IV).

To investigate inflammatory reactions in regional draining lymph nodes with 

respect to lymph node size and lymphangiogenesis upon pulpal exposure and 

systemic inhibition of VEGFR-2 and/or -3 (Paper IV).
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3. Materials and methods

Animal experiments (Papers I and IV)

Female Wistar rats (Paper I) and male C57BL/6 mice (Paper IV) were used. The

animals were housed in polycarbonate cages at the animal facility at least one week 

prior to experiments. They were fed standard pellet diet and given water ad libitum.

The experiments were approved by the Regional Committee for Animal Research 

Ethics, University of Bergen, under the supervision of the Norwegian Experimental 

Animal Board. 

Anesthesia: The rats were anesthetized with intramuscular injections of 

medetomidine/Domitor® (Orion Pharma, Espoo, FI), 0,4 mg/kg body weight and 

Ketamine/Ketalar® (Pfizer, Solentuna, SWE), 60 mg/kg body weight (Paper I). The 

mice were anesthetized  with ketamine/Ketalar® 100 mg/kg body weight and 

Xylazine/Rompun Vet® (Bayer, Leverkusen, DE) 10 mg/kg body weight (Paper IV).

Pulp exposure (Paper I): First right maxillary and mandibular molars were drilled 

with a round bur until the pulp was exposed. Thereafter they were left open to the 

oral environment for either 10 days or 3 weeks for periapical lesions development.

Figure 10. Picture taken during pulp exposures induced in mice. The anesthetized 
animals were placed on a jaw retraction board. Instrumentation of root canals in first 
mandibular molars was done upon pulp exposure with a 0.6 K-file. 
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Pulp exposure (Paper IV): Bilateral first mandibular molar pulps were exposed and 

removed with round burs. The mesial and distal canals were filed with a 0.06 K-file. 

The teeth were left open to the oral cavity for either 10 days or 3 weeks during which 

periapical lesions were developed.

Systemic treatments (Paper IV): Administration dosage and frequency of each 

substance are presented in the manuscript. Briefly, upon pulp exposures, the mice of 

both observation groups were injected intraperitoneal throughout the experimental 

periods with either normal IgG (controls), anti-VEGFR-2 (anti-R2), anti-VEGFR-3

(anti-R3) or combined anti-VEGFR-2 and-3 (anti-R2/R3) antibodies. 

Upon experiment completion and euthanasia of all animals with anesthesia overdose, 

rats and mice jaws (Papers I and IV) and mice lymph nodes (Paper IV) were collected 

for further analysis.

Human tissue collection (Papers II and III)

Periapical lesions were collected after endodontic surgery of teeth diagnosed with 

chronic apical periodontitis (Paper II). Normal PDL (Papers II and III) and dental 

pulps (Paper III) were extracted from surgically removed healthy wisdom teeth. All 

human tissue was provided by the Department of Maxillofacial Surgery, Haukeland 

University Hospital, Bergen, upon patient written consent. The samples were stored 

in an authorized bio bank (REK 3.2008.1750) at -

RNA extraction  and quantitative real-time PCR analysis 
(Papers I-III)

Rat jaws were freed of gingival remnants and bone blocks containing the first molar 

with the periapical lesion were dissected. The dissected tissue (Paper I), human 

granulomas (Paper II), normal PDL (Paper II and III) and dental pulp (Paper III) were 

placed in RNAlater® (Ambion, Austin, TX, USA) and frozen until further handling. 

Total RNA was extracted using commercially available RNAeasy minikit (Qiagen, 

Chatsworth, CA, USA) following manufacturer’s protocol. Upon homogenization 
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and an on-column DNase digestion with RNase-free DNase set (Qiagen), quality was 

assessed by gel electrophoresis to ensure that 28S and 18S ribosomal RNA were 

clearly evident.  A spectrophotometer (Nanodrop, Wilmigton, DE) was used for RNA 

quantity measurements. First strand cDNA synthesis was performed with M-MLV 

Reverse Transcriptase (Ambion) and Random Hexamer Primer (Fermentas GmbH, St 

Leon-Rot, DE) with 2 μg total RNA for rat samples (Paper I) and RT2 First Strand 

Kit (Qiagen) using 1 μg RNA for human tissue samples (Papers II and III). 

Gene expression analysis of rat periapical lesions was performed by use of 

predesigned TaqMan gene expression assays (Applied Biosystems, Foster City, CA, 

USA) for VEGF-A, -C and VEGFR-3 with ACTB as a control gene (Paper I). Human 

samples (Papers II and III) were screened for 84 genes contained in the Human 

VEGF Signaling RT2 Profiler PCR Array System (Qiagen). Both human pulp and 

periapical lesion samples were normalized to calibrator PDL and 5 genes served as 

references (GAPDH, B2M, ACTB, HPRT1, RPL13A).  An RT-PCR thermocycler 

(LightCycler 480, Roche Diagnostics AG, Rotkreuz, SUI) was used for all analyses. 

Expression profiles of the target genes were measured relative to the mean critical 

threshold (Ct) of the reference genes by using the Ct method described by Livak 

and Schmittgen [215].

Histology (Papers I, II and IV)

Representative rat jaws (Paper I) and periapical lesions (Paper II) were embedded in 

paraffin, sectioned (5 m) and stained with H&E. Cryosections (12-14μm) from 

exposed and control mice lymph nodes (Paper IV) were also stained with H&E.

Immunohistochemistry (Papers I-IV)

Rats deeply anesthetized with sodium pentobarbital (Mebumal) were transcardially 

perfused with heparinized saline, followed by 4% PFA with 0,2% picric acid in 0.1M 

phosphate-buffered saline, pH 7,4 (Paper I). The jaws were removed and decalcified 

in 10% EDTA, saturated in 30% sucrose and stored at -80° until cryosectioning (20 
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m). In paper IV, mice mandibles were removed without prefixation. Hemi-

mandibles exposed for 10 days were decalcified in 10 % EDTA and post-fixed with 

4% PFA upon cryosectioning during staining protocols. Mice hemi-mandibles 

exposed for 21 days were fixed with 4% PFA, stored in 50% ethanol, used for CT 

analysis and thereafter followed the same treatment for immunohistochemical (IHC) 

analysis. Lymph node cryosections were PFA fixed prior to staining.

In papers II and III, frozen human periapical lesions and dental pulps were 

cryosectioned (12-16μm) and stored at -80° until further handling. They were used 

either for single staining with the avidin-biotin peroxidase (ABC) method and nickel-

enhanced 3, 3’-diaminobenzidine (DAB) as the chromogen (Papers I-IV) or for 

immunofluorescent procedures (Papers I-IV). In papers I-III the staining aimed at 

identifying the presence and localization of VEGFs and their receptors in periapical 

lesions and dental pulp. In paper IV, IHC was used for identification and 

quantification of immune cells (neutrophils and macrophages) and blood vessels in 

induced apical periodontitis, as well as lymphangiogenesis occurring in draining 

lymph nodes. Details on the used primary and secondary antibodies, as well as 

protocols are given in papers I-IV.

The specificity of all immune reactions was tested by omission of the primary 

antibodies and/or substitution with isotype controls. Sections were visualized in a 

photomicroscope (Nikon Eclipse E600; Nikon Instruments, Kanagawa, Japan) or a 

fluorescent microscope (Axio Imager; Carl Zeiss Microimaging Inc, Jena, Germany) 

connected to AxioCam Mrm camera (Carl Zeiss) that used the AxioVision 4.8.1 (Carl 

Zeiss) imaging system. 

TRAP staining (Paper IV)

In order to identify and quantify osteoclasts, sections from exposed mice jaws were 

stained with tartrate resistant acid phosphatase (TRAP) according to manufacturer’s 

(Sigma-Aldrich, USA) instructions.
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Quantification of osteoclasts, neutrophils, macrophages and 
blood vessels (Paper IV)

Immunolabeled cells (TRAP+ osteoclasts, Ly-6.B2+ neutrophils, F4/80+

macrophages) and CD31+ vessels were counted in the periapical lesions from the 

apical constriction to the bone periphery on 2-4 sections from each mouse under a 

photomicroscope, quantified with Lucia imaging software (Lucia, v. 480; Laboratory 

Lymph nodes analysis (Paper IV)

Lymph node cryosections from the 21 days exposed mice and untreated animals 

(negative controls) were subjected to histological (H&E staining) and LYVE-1

immunofluorescent analyses. Histological evaluations were used for total area 

measurements (mm2), while LYVE-1+ sinus areas were measured in the hilum and 

medulla in 4-6 sections from each mouse in a 350 mx350 m grid. All evaluations 

were done with Lucia imaging software upon image capture in either a 

photomicroscope (H&E sections) or fluorescent microscope (LYVE-1 stained 

sections).

Micro-
IV)

PFA fixed hemi-mandibles from each group exposed for 21 days were washed with 

phosphate buffer, stored in 50% ethanol, number coded for blinded analysis and sent 

for μCT evaluation to the Forsyth Institute, Boston, MA, USA. The analysis was 

performed by means of a compact fan-beam-type tomograph (μCT40, Scanco 

Medical, Basserdorf, SUI). The data were exported into DICOM format, re-sliced in a 

standardized manner using the ImageJ software (Wayne Rasband, National Institutes 

of Health, Bethesda, MD, USA) to obtain pivotal sections containing the entire length 

of the root canals and periapical lesions.
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Lesion size measurement (Paper IV)

Periapical lesion sizes (mm2) of the distal roots were measured on 2-4 sections from 

each mouse in mesio-distal (both observation times) and bucco-lingual (after 21 days 

only) directions on cross-sectional areas containing root canal and lesions, using 

Adobe Photoshop CS4 (Adobe Systems, San Jose, CA, USA) and Lucia imaging 

software. A standardized device was placed through the apical constriction and the 

lesions were outlined to the bone periphery. All technical details are given in paper 

IV.

Protein extraction (Paper IV)

Dissected bone blocks containing periapical lesions developed after 21 days, and also 

from negative controls were homogenized in 400μL cell lysis buffer mix, the 

supernatants collected and stored at -

Multiplex and ELISA analysis (Paper IV)

A 96-well Milliplex MAP mouse cytokine/chemokine magnetic bead panel 

(MCYTOMAG-70K, Millipore, MA, USA) was used for the simultaneous detection 

of 25 cytokines in mouse bone blocks containing periapical lesions. G-CSF, GM-

CSF, IFN , IL-1 , IL-1 , IL-2, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12(p40), IL-

12(p70), IL-13, IL-15, IL-17, IP-10, MKC, MCP-1, MIP-1 , MIP-1 , MIP-2, 

RANTES and  TNF were the analyzed cytokines according to manufacturer’s 

instructions. A range of 3.2-10.000 pg/ml recombinant cytokines was used to 

establish the standard curves. The levels of inflammatory molecules were measured 

using the multiplex array reader from Luminex™ Instrumentation System (Bio-Plex 

Workstation from Bio-Rad Laboratories, Hercules, CA, USA) and concentrations 

were calculated with software provided by the manufacturer (Bio-Plex Manager

Software). The RANKL concentration in the same samples was measured with a 

Quantikine Enzyme Linked Immunosorbent Assay (ELISA) kit (R&D Systems, 
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Minneapolis, MN, USA), presented with a 96-well plate, following manufacturers’ 

protocol. The concentrations were calculated and presented as pg/mg tissue –

corresponding to samples’ weights.

Statistical analyses (Papers I-IV)

In papers I-III, qRT-PCR results were statistically analyzed. The p values were 

calculated based on an unpaired Student’s t-test comparing the replicate 2- values 

for each gene. 

In paper IV, all data was subjected to statistical analysis and the following tests were 

employed: One-way ANOVA and Bonferroni post-hoc test for normally distributed 

populations; Kruskal-Wallis and Dunn’s post-hoc test for non-normally distributed 

populations; Two-way ANOVA and Bonferroni post-hoc test for grouped analysis. 

A p value of <0.05 was considered statistically significant.
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4. Summary of results

4.1 Expression of VEGFs and their receptors in rat apical 
periodontitis (Paper I)

Immunohistochemical analysis demonstrated that VEGF-A, -C, -D and VEGFR-2

and -3 were expressed on cells and vessels in non-exposed control teeth PDL. Some 

PDL cells with fibroblastic appearance and others lining the bone or the root surface 

were positive for VEGFR-2 and -3.

All the investigated factors and receptors showed more intense staining on cells and 

vessels in induced periapical lesions at both 10 days and 3 weeks exposure times. 

With increased exposure time, the degrees of pulpal necrosis, periapical inflammatory 

infiltrate, root- and bone resorption were also amplified.

Within the infiltrates, CD68+ macrophages and HIS48+ neutrophils were sources of 

investigated VEGFs. Multinucleated CD68+ cells lining the bone, indicative of 

osteoclasts, were also positive for VEGFR-2 and-3.

At gene level, a significant up-regulation of VEGF-A and VEGFR-3 was observed 

after induction of periapical lesions.

4.2 Presence of VEGFs and VEGFRs in human dental 
tissues (Papers II and III)

Periapical lesions: All lesions presented with heterogeneous morphologies. VEGF-A,

-C, -D and VEGFR-2 and -3 were found on vWF+ blood vessels, ELA-2+ neutrophils, 

CD19+ B- and CD3+ T-lymphocytes, as well as CD68+ macrophages.

Normal dental pulp: CD68+ macrophages and CD3+ T-cells were the major cellular 

sources of VEGF-A, -B, -C, -D and VEGFR-2 and -3. CD31+ blood vessels were 

positive for the same VEGFs and their receptors with the exception of VEGF-B. No 

ELA-2+ neutrophils or CD19+ B lymphocytes could be identified in the analyzed 

normal dental pulp.
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Gene expression analysis: Analysis with the Human VEGF Signalling RT² Profiler™ 

PCR Array System revealed that out of 84 investigated genes, 27 and 67 were more 

than 2-fold altered in periapical lesions and dental pulp respectively, compared to 

control PDL. VEGF-A, -D and VEGFR-3 showed a non-significant up-regulation in 

periapical lesions. A significantly increased expression of VEGFR-3 was seen in 

dental pulp samples, while VEGFR-1, -2 and VEGF-D were non-significantly 

amplified in the same tissue.

4.3 Existence of lymphatics in dental pulp and periapical 
tissues (Papers I-III)

No lymphatic vessels could be identified in human dental pulp, while double 

immunofluorescent staining revealed the presence of LYVE-1+/CD68+ cells with 

dendritic appearance. No LYVE-1+ vessels could be localized in rat or human 

periapical lesions, indicative of all vessels being of angiogenic origin in both species.

Some CD68+ macrophages were also positive for LYVE-1 in the investigated human 

periapical lesions. 

4.4 The effects of VEGFR-2 and -3 signaling during 
development of murine apical periodontitis (Paper IV)

Lesion sizes: Systemic inhibition of either VEGFR-2 or -3 resulted in a fast lesion 

size development until day 10. Thereafter, a slowed progression was recorded. 

Combined inhibition of VEGFR-2 and -3 or IgG-treated controls showed slower 

growth of lesions until day 10, but all four groups reached similar levels on day 21.

Immune cells, blood vessels and osteoclasts: Blocking of VEGFR-2 significantly

increased Ly-6.B2+ neutrophils, along with TRAP+ osteoclasts upon 10 days of 

exposure compared with the other test groups (p<0.05). After 21 days, neutrophil 

infiltrates were substantially increased upon either VEGFR-2 or VEGFR-3 blocking. 

Anti-R2/R3 treatment resulted in fewer F4/80+ macrophages and TRAP+ osteoclasts 

on day 10. The latter systemic treatment also reduced angiogenesis seen on both 

observation times as fewer CD31+ blood vessels within the lesions.
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Cytokine expression: In addition to RANKL, 17 out of 25 cytokines and chemokines 

were expressed in periapical lesions. The pro-inflammatory cytokines IL-1 ,

RANTES, TNF , IL-17 and MCP-1 showed the highest values upon VEGFR-2

inhibition and the lowest expression in the anti-R2/R3 group. A tendency to down-

regulation of many cytokines (RANKL, IL-1 , IL-6, IL-17, MCP-1, MIP-1 , MIP-

1 , MIP-2, RANTES and TNF ) was observed in the anti-R2/R3 group, statistically 

significant for MCP-1 and RANKL compared to the IgG group (p<0.05).

Lymphadenitis and lymphangiogenesis in regional lymph nodes: Significantly bigger 

lymph nodes were found upon anti-R2 compared with anti-R2/R3 treatment and 

controls. The LYVE-1+ area fraction in the lymph nodes hilum and medulla, 

indicative for lymphangiogenesis, was greater in the IgG treated group compared to 

the other groups, yet only significant in the medulla (p<0.05).
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5. General discussion

The processes of angio- and lymphangiogenesis, mediated through the VEGF family 

are of high importance in physiological processes, such as growth or wound healing, 

but also in major pathological settings of tumor progression, inflammation and bone 

resorption.

VEGF-A has been previously found in normal dental pulp where bacteria can up-

regulate its’ expression [216, 217]. The main angiogenic receptor, VEGFR-2, has 

been described in primary and permanent dentition pulps [218]. The presence of 

VEGFR-3+ vessels in mouse and human dental pulp has been reported [115]. An

association between the presence of VEGF-A and the development of apical 

periodontitis has also been made [212, 214, 219].

However, other members of the VEGF family had not yet been addressed in the 

context of location and signaling patterns in periapical disease or dental pulp. 

The focus of this thesis was to investigate the presence of VEGF family and their 

receptors in periapical lesions and in normal dental pulp. The existence of lymphatics 

was also evaluated in these tissues. The implication of VEGFR-2 and/or -3 signaling 

in murine periapical disease development was studied with respect to lesion size, 

local inflammatory and vascular reactions as well as regional lymphangiogenic 

responses of the lymph nodes.

5.1 Presence of VEGFs and VEGFRs in apical 
periodontitis (Papers I and II)

By using an animal model of apical periodontitis, the disease development can be 

tracked from its acute phase (until day 7), through an active phase between days 7 

and 20 and slowing down thereafter as it enters a chronic stage [187]. Human 

samples of periapical lesions, even though essential for providing further information, 

give no data on the time aspect of disease progression, nor on the surrounding 

structures that are known to be affected by the infection, like dentin, cementum and 

bone.
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In the rat experimental model, immunohistochemical analysis revealed the presence 

of VEGF-A, -C, -D and VEGFR-2 and -3 on cells and vessels in both normal PDL 

and bone and in inflamed areas. Inflammation led to increased staining of the 

analyzed factors and receptors over the entire observation period. The involvement of 

immune cells in triggering periodontal and periapical bone resorption is well known 

[188]. We therefore sought at identifying the cells expressing VEGFs and VEGFRs, 

thus also finding their possible involvement in periapical inflammation.

CD68+ macrophages and HIS48+ PMNs expressed the investigated factors and 

receptors. Double immunofluorescent staining of B- and T- cells in human periapical 

lesions added these cells to the VEGFs and VEGFRs sources. Taken together, these 

findings indicate that immune cells produce VEGFs and VEGFRs which are involved 

in periapical disease development and that these cells may communicate with each

other and with ECs.

Interestingly, our results showed the expression of all investigated VEGFs and 

VEGFRs only on vessels of angiogenic origin, thus contradicting the presence of 

lymphatics in the apical periodontium. Former studies have revealed the presence of 

VEGFR-3 on lymphatic ECs, but also on fenestrated blood capillaries, blood vessels 

in inflammatory tissues, macrophages and dendritic cells [44, 46, 220]. Our results 

find VEGFR-3 positive blood vessels in rat normal and inflamed areas of PDL and 

periapical bone and also in inflamed human periapical lesions. We confirm earlier 

data that identified macrophages as the source of LYVE-1 in a pathologic context 

[221, 222]. However, in our investigated tissues, these cells couldn’t be related to 

growth of lymphatic vessels. Their role requires further investigation.

Another novel finding was the presence of CD68+ multinucleated cells, indicative of 

osteoclasts, in the periphery of rat periapical lesions, cells which also expressed both 

VEGFR-2 and -3. The role of osteoclasts in periradicular diseases remains 

undisputed. In vitro studies have shown that VEGF-A enhances osteoclastic bone 

resorption via VEGFR-2 [223] and that the interaction between VEGF-C, -D and 

RANKL mediates osteoclast differentiation [224]. Due to their binding affinities to 

both VEGFR-2 and -3 we can hereby assume that VEGF-C and -D are involved in 

osteoclast regulation in vivo.



48

At the gene level, the up-regulation of VEGFR-3 and VEGF-A upon rat pulp exposure 

was significant at both observation times. These genes, along with VEGF-D were 

non-significantly up-regulated in human periapical lesions compared with control 

PDL. PKC, a gene related to increased endothelial activity, PI3K, involved in EC

migration and survival and PLA2G6, which induces pathologic VEGF-A

angiogenesis, were all significantly up-regulated in the analyzed periapical lesions. In 

contrast, SHC2, which participates in VEGF-induced signaling by influencing 

VEGFR-2 activation, was found significantly down-regulated. Accordingly, VEGFR-

2 was also down-regulated. In another rat study where apical periodontitis was 

induced and CD31+ BECs were isolated, the gene expression of VEGFR-2 decreased 

after day 14 of pulp exposure [225]. We can therefore assume that in human chronic 

apical periodontitis, where time of lesion development is unknown, the gene 

expression of certain angiogenic factors may decrease over time. Further 

investigation is however required to determine the exact roles of angiogenic 

dynamics in periapical disease development.

5.2 The normal human dental pulp – reservoir of 
angiogenic factors (Paper III)

It is mostly upon pulp pathologic conditions that periapical tissues exhibit 

inflammatory disorders. We therefore sought to continue the investigation on the 

presence of VEGF family and receptors in normal dental human pulp. 

The existence of VEGF and VEGFR-2 in well-vascularized pulp has been described 

before [217, 218]. In our study we demonstrate for the first time the presence of 

VEGF-B, -C, -D at gene and protein level in the normal human dental pulp. We 

identified CD68+ macrophages and CD3+ T lymphocytes as the sources of VEGF-A, -

B, -C and -D, as well as VEGFR-2 and -3. Thus, cells involved in the pulp 

immunosurveillance [226] are also the source of angiogenic factors. No ELA-2+

neutrophils or CD19+ B-cells were identified in the analyzed tissue. Other

investigations have also reported the absence of neutrophils and B-lymphocytes from 

normal pulp tissue, which is in accordance with our findings [227, 228]. However, a 



49

new study using flow cytometry as method of analysis has identified a small 

percentage of approximately 2% B-lymphocytes, as well as a general population of 

CD16+ granulocytes in dental pulp [229]. This discrepancy of results may be due to 

the technique employed by Gaudin et al. and furthermore, the authors did not use 

specific markers for neutrophils [229].

VEGF-B was only found on immune cells in our analyzed samples. This factor is 

involved in blood ECs and pericyte survival, with no angiogenic activity [230]. It 

seems to be related to metabolic and neuroprotective functions [28-30]. We assume 

that VEGF-B may also exert a protective action on pulpal neuronal and ECs, possibly 

also under inflammatory conditions.

Matsushita et al. found that VEGF-A produced by dental pulp cells acts directly on 

these cells via autocrine mechanisms, promoting chemotaxis and cellular 

differentiation, action which mostly occurs via VEGFR-2 signaling [231].

The presence of the investigated VEGFs and VEGFRs on ECs, immune and stromal 

cells denotes possible cellular autocrine and paracrine communications, which may 

also be involved in vascular activities occurring in the dental pulp. Dental pulp stem 

cells are a known source of VEGF-A [232], however the presence of VEGF-B, -C

and -D on these potent cells remains an open research topic.

We confirm the presence of vessels of angiogenic origin (CD31+) expressing VEGF-

A, -C, -D and VEGFR-2 and -3 in normal dental pulps. Negative immunostaining 

with specific lymphatic markers, such as LYVE-1 and D2-40 exclude the presence of 

lymphatic vascular structures in the analyzed tissue. Even though formerly disputed, 

this is in accordance with another observation stating that human pulp does not 

present with lymphatic vessels [116]. However, fenestrated blood capillaries, a 

known source of VEGFR-3, have been described in the dental pulp [105]. Other 

studies have shown that VEGFR-3 expression is induced in ECs during angiogenesis 

in developing cornea and that it forms heterodimers with VEGFR-2 in blood vessels 

[233, 234]. The important up-regulation of the VEGFR-3 gene encountered in our 

study, as well as its’ roles along with the VEGF-C and -D presence on cells and 

vessels in the normal dental pulp require further investigations.
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In normal human dental pulp sections we commonly found LYVE-1+ macrophages,

as also seen in mouse pulp [115]. In epididymal adipose tissue, LYVE-1+

macrophages play an angiogenic role [235]. This epididymal tissue is highly hypoxic, 

thus promoting increased VEGF-activity via VEGFR-2, which in turn recruits bone-

marrow derived LYVE-1+ macrophages. At gene level, VEGF, VEGFR-1 and

VEGFR-2 were significantly up-regulated in the dental pulp. VEGFR-1 has been 

shown to be necessary for survival of ECs and macrophages [236]. Furthermore, the

inhibition of VEGFR-1 resulted in reduced macrophage recruitment, as well as 

impaired angiogenesis via MCP-1 signaling [237]. These findings may support an 

angiogenic role of macrophages in the dental pulp.

Interestingly, HIF1A, known for its ability to induce VEGF-signaling during hypoxia, 

showed a significant up-regulation in the pulp compared with control PDL, another 

highly vascularized tissue. Additionally, HIF-1 influences self-renewal and 

differentiation of stem cells by specific gene regulation and transcription factors 

important for stem-cell quiescence [238]. It is also known for regulating bone 

formation by osteoblasts [239]. Since the dental pulp rests in a low-oxygen 

environment, it is likely that the level of HIF1A may influence the stem cells numbers 

of the dental pulp and extrapolating its’ known effects on bone development, it may 

also control odontoblast function. A similar role in stem-cell quiescence is 

demonstrated by NFATc1 [240], which also exhibited an increased gene expression in 

the current study. 

Furthermore, genes of the MAPK and Pl3K families, involved in ECs migration and 

survival [241, 242], were also highly expressed in normal dental pulp, fact which 

suggests an intense vascular activity of this tissue. 

Our findings show that the dental pulp is an angiogenic reservoir, with vascular and 

immune cell interplay. However the exact roles of VEGF family members and genes 

involved in VEGF signaling, along with the roles of LYVE-1+ macrophages in the 

dental pulp still require further investigations.
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5.3 The roles of VEGFR-2 and/or -3 signaling in apical 
periodontitis

Our results on the presence of VEGFs and VEGFRs in dental tissues and in periapical 

lesions of endodontic origin raised numerous questions on the action mechanisms of 

these molecules. We aimed at looking into the VEGFR-2 and/or -3 signaling 

pathways during the development of apical periodontitis by individual or 

simultaneous blocking of these receptors. There were two major findings: blocking 

VEGFR-2 increased periapical inflammation characterized by amplified immune cell 

recruitment and inflammatory cytokine levels, while combined inhibition of VEGFR-

2 and -3 showed a decreased inflammatory response.

Lesion sizes increased rapidly during the active phase of development until day 10 

upon single VEGFR-2 and -3 blocking, compared to positive controls (IgG) and 

combined anti-VEGFR-2 and -3 treatments. In the chronic stage of disease progress, 

on day 21, they have reached similar levels in all four experimental groups. Even 

though no statistically significant differences were found between the test groups, 

time was of the essence regarding the overall lesion progression from day 0 to day 21 

within each test group. The strong inflammatory response seen upon VEGFR-2

inhibition with significantly higher amounts of neutrophils and TRAP+ osteoclasts 

may have resulted in rapid lesion growth. In a study conducted on osteopetrotic mice, 

VEGFR-3 was found to participate in osteoclast differentiation, with the inhibition of 

this receptor resulting in a reduction of osteoclasts [243]. We assume that in the 

context of periapical disease, VEGFR-3 signaling may have a direct inhibitory effect 

on osteoclast activity independent of their cellular numbers. After blocking VEGFR-

3, an increased initial resorptive activity occurs, translated as faster lesion size 

expansion until day 10. 

Osteoclasts, immune cells and blood ECs were found positive for both VEGFR-2 and 

-3 in papers I and II. In the current investigation, in order to evaluate the effects of 

VEGFR-2 and/or -3 signaling on these cells, we quantified TRAP+ osteoclasts, Ly-

6.B2+ PMNs and F4/80+ macrophages, along with CD31+ blood vessels within the 

developed periapical lesions. 



52

The numbers of PMNs and osteoclasts significantly increased upon VEGFR-2

blocking on day 10, whereas anti-VEGFR-3 treatment and combined inhibition of 

VEGFR-2 and -3 resulted in substantially fewer PMNs and osteoclasts than after

VEGFR-2 blocking. This may indicate that PMN recruitment and osteoclast 

differentiation in apical periodontitis are under VEGFR-2 inhibitory signaling. 

Macrophages seem to be influenced by combined VEGFR-2/-3 signaling, as their

numbers significantly decreased following combined systemic treatment on day 10. 

Blocking VEGFR-2 alone or simultaneous with VEGFR-3 decreased blood vessel 

counts, whereas the opposite effect was noticed under VEGFR-3 inhibition. This

indicates that the intense inflammatory response seen in the VEGFR-2 treatment 

group is independent of angiogenesis. Lymphangiogenesis in the regional draining 

lymph nodes seems to depend on both VEGFR-2 and -3, since an inhibition of the 

process occurred by individual as well as combined blocking of these receptors. The 

intense apical inflammatory reaction that follows the VEGFR-2 inhibition is also seen 

as lymphadenitis of the lymph nodes. 

Blocking both VEGFR-2 and -3 in the current study resulted in reduced periapical 

inflammation and angiogenesis, also seen in a model of corneal inflammation [244].

The same study [244] reports the inhibition of lymphagiogenesis under combined 

VEGFR-2/-3 blocking, which we have also seen in the draining lymph nodes.

The lack of lymphatics in the apical periodontium that we observed in papers I and II 

may result in different outcomes of the current investigation. Inhibition of VEGFR-2

decreased the severity of skin inflammation and arthritis [95, 96]. However, in those 

disease models, lymphangiogenesis does happen and is affected by both VEGFR-2

and -3 [95]. In apical periodontitis, no lymphangiogenesis can take place due to 

absence of lymphatic vessels. In contrast, we also report outcomes from an infectious 

disease with continuous antigenic stimulation, while the used models of skin 

inflammation and arthritis occurred in a sterile manner. This may explain our 

contradictory results.

Immune cells encountered in periapical lesions are the source of highly potent 

cytokines that activate bone resorption. We therefore investigated the expression of a 

wide panel of cytokines and chemokines involved in inflammation in well-established 
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periapical lesions. The results provided evidence for the important role in 

augmentation or attenuation of inflammatory reactions via VEGFR-2 and combined 

VEGFR-2/-3 signaling, respectively.

A tendency to down-regulation of many pro-inflammatory cytokines and chemokines, 

involved in the complex network of osteoclast differentiation and bone resorption, 

such as RANKL, IL-1 , IL-1 , IL-6, TNF , IL-17, MCP-1, MIP-1 , MIP-1 , MIP-2

and RANTES was observed upon combined inhibition of both receptors. 

Furthermore, most cytokines showed highest levels upon VEGFR-2 blocking, 

supportive of the intense inflammatory reaction. Even though IL-1 , IL-1 , TNF or

MCP-1 levels are significantly increased after VEGFR-2 treatment, their pro-

angiogenic effect does not occur, as seen in the low numbers of blood vessels counted 

on day 21. The VEGFR-2 is known as the main angiogenic receptor. The increased 

expression of these cytokines can be attributed to both the intense inflammatory 

immune response and to a compensatory reaction following VEGFR-2 inhibition.

MKC, a chemokine involved in neutrophil chemotaxis, increased in all experimental 

groups. A collaborating effect of MKC with G-CSF has been described with respect 

to PMN mobilization during acute inflammation [245]. G-CSF seems to have 

beneficial roles during inflammatory conditions, as it down-regulates LPS-induced 

TNF production [246]. Our findings show that upon VEGFR-2/-3 blocking, TNF

exhibits lowest values, while MKC and G-CSF are significantly increased. This 

supports the anti-inflammatory and MKC-collaborative effects of G-CSF, but cannot 

explain the intense inflammation occurring upon VEGFR-2 inhibition.

The exact mechanisms through which VEGFR-2 signaling reduces, while 

simultaneous VEGFR-2 and -3 activation boosts inflammatory reactions during 

apical periodontitis is in need of further investigation.



54

6. Conclusive remarks

1. The VEGFs-A, -C, - D and VEGFRs- 2 and -3 are well represented on blood 

vessels in normal rat periodontium. Cells lining the bone and on root surface 

as well as cells with fibroblastic appearance express VEGFR-2 and -3 under 

normal conditions.

2. Inducing apical periodontitis in rats augments the presence of cells and vessels 

positive for VEGFs and VEGFRs in the inflamed areas. The sources of VEGF-

A, -C and -D are macrophages and neutrophils. An important finding is that 

multinucleated osteoclasts express VEGFR-2 and -3 in inflamed apical tissue. 

The presence of VEGF family and their receptors on immune cells, blood 

vessels and osteoclasts during development of apical periodontitis suggests 

their implication in periapical disease development with respect to immune 

reactions, bone remodeling and angiogenesis.

3. Macrophages, PMNs, B- and T-lymphocytes, along with blood vessels express 

VEGF-A, -C, -D and VEGFR-2 and -3 in human periapical lesions. Gene 

expression of several pathways involved in VEGF signaling was altered in 

diseased periapical tissue compared with healthy PDL. This suggests ongoing 

vascular remodeling with immune cell implication in human periapical

pathology.

4. In the well-vascularized dental pulp, macrophages and T-lymphocytes are the 

sources of VEGF-A, -B, -C, -D and VEGFR-2 and-3. In accordance with 

previous reports, no PMNs and B-lymphocytes reside in the normal dental 

pulp. While VEGF-B is only found at immune cellular level, the rest of 

investigated factors and receptors are expressed on pulp blood vessels. 

Furthermore, 67 out of 84 investigated genes involved in VEGF signaling 

were altered in normal dental pulp vs PDL. HIF1A and NFATc1 expression is 
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likely induced by hypoxia in the pulp and these probably represent important 

factors for stem-cell quiescence. Thus, the dental pulp represents an 

angiogenic reservoir with high vascular activity and remodeling potential.

5. Our studies confirm that lymphatic vessels are absent from periapical tissues 

and from the dental pulp. Macrophages expressing the lymphatic marker 

LYVE-1 are present in both human normal dental pulp and periapical inflamed 

tissues. Even though their exact role remains to be determined, their main 

activity is assumed to be angiogenic.

6. In a murine model of apical periodontitis we show that VEGFR-2 inhibits, 

while combined VEGFR-2 and -3 signaling enhances periapical inflammation. 

Evidence for this finding is provided by the initial fast growth of the lesion 

sizes along with an increased presence of PMNs and osteoclasts upon 

VEGFR-2 inhibition, while numbers of macrophages, neutrophils and blood 

vessels are lowered after combined VEGFR-2/-3 systemic blocking. 

Furthermore, in the well-established periapical lesions, major pro-

inflammatory cytokines like IL- -

VEGFR-2 systemic treatment. In contrast, blocking both VEGFR-2 and -3

decreases expressions of inflammatory cytokines, significant for RANKL and

MCP-1. We also conclude that lymphangiogenesis in the draining lymph 

nodes seems to be equally dependent on VEGFR-2 and -3.

7. Even though the exact interplay between cells expressing ligands to VEGFR-2

and/or -3 involved in periapical disease pathogenesis still needs further 

investigations, we provide important initial evidence of their signaling 

contribution to periapical disease development. 
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7. Future perspectives

Since our initial investigations for mapping VEGF family members and their 

receptors at protein level are mainly descriptive, a quantification of these molecules 

in animal and human dental tissues should be performed. Both normal and inflamed 

pulp as well as periapical tissues can be subjected to quantification of VEGFs and 

VEGFRs expression by counting immunohistochemically stained structures and by 

use of enzyme-linked immunosorbent assays or flow cytometry analysis of the 

respective tissues. 

We assume that the high gene expression levels of HIF1A and NFATc1 in normal 

dental pulp are important for stem cell quiescence. It has been shown that dental pulp 

stem cells can induce VEGFR-2 dependent angiogenesis [247]. Investigations on the 

expression of all VEGFs and VEGFRs by stem cells in the normal dental pulp could 

provide more information on their possible involvement in pulp angiogenesis.

Pulp repair and revascularization of immature necrotic teeth require angiogenic 

processes. Understanding the molecular mechanisms underlying angiogenesis can 

lead to new therapeutic strategies. It has been previously suggested that topical 

application of VEGF-A enhances pulp neovascularization [248]. Knowing that both 

VEGFR-2 and -3 are present on vessels of angiogenic origin in the dental pulp, tissue 

engineering and possible therapeutic intervention on injured dental pulp could also be 

expanded to VEGF-C and -D.

Since we could not confirm the presence of lymphatic vessels in dental pulp or 

periodontium there are still open questions on the exact roles of VEGF-C, -D and 

their receptors VEGFR-2 and -3, along with their possible angiogenic involvement.

Macrophages expressing LYVE-1, a lymphatic marker, were found both in normal 

human dental pulp, as well as inflamed apical tissue. This implies that they are 

resident cells of the dental tissues, but also recruited at sites of dental inflammation, 

where they may have a role in immune response. Due to the absence of lymphatics in 

the dental pulp and apical periodontium, we assume an angiogenic role of these 
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macrophages. However, information on their kinetics and exact function is still in 

need of further investigation. 

Lymphatic responses were found in the draining lymph nodes in apical periodontitis 

settings. However, the localization of peripheral lymphatic vessels remains unknown. 

Further research is needed to clarify lymphatic mechanisms.

Research on macrophages has focused on the polarization of these cells during 

inflammatory conditions, describing different expression of pro-inflammatory 

cytokines and chemokines by 2 distinct types of macrophages, M1 and M2, and 

accordingly with diverse immune effects [249].  The M1 form expresses pro-

inflammatory, whereas anti-inflammatory cytokines are produced by the M2 subtype. 

In our studies we used antibodies that generically stain cells of monocytic origin. 

Thus, more research is needed in order to understand the macrophage types present in 

dental tissues and their involvement in the pathogenesis of apical periodontitis and 

possibly in vascular remodeling.

In murine apical periodontitis we show that VEGFR-2 reduces, while combined 

VEGFR-2 and -3 signaling increases inflammation. Yet, further investigations are

needed in order to elucidate the exact mechanisms of VEGFR-2 and/or -3 signaling in 

periapical inflammation and it remains to be seen to what extent these findings can 

offer therapeutic strategies.
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