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Abstract

In today’s world, oil remains the main source of energy. After discovering a petroleum reservoir, one
can extract about 30% of the oil by using and maintaining the initial pressure in the reservoir through
water flooding (first and second phase oil recovery). Nevertheless, 60-70% of oil remains in the reservoir
after this, so called conventional recovery, so enhanced oil recovery (EOR) is strongly needed. Microbial

enhanced oil recovery (MEOR) is an environmentally friendly and very promising EOR technology.

In this thesis we implement a non-standard model for MEOR that includes the interfacial area between
the oil and water. We consider the two-phase flow equations and multicomponent reactive transport
equations for three components: bacteria, nutrients and biosurfactants. The growth of bacteria affects the
properties of the medium (porosity, permeability), up to the extreme case of pore clogging (bioclogging)
and generation of new paths. Biosurfactants lower the interfacial tension, which improves the oil recovery.
We consider in this thesis, for the first time in context of MEOR, also the role of interfacial area on EOR.
The motivation to include the interfacial area in the model is to eliminate the hysteresis in the capillary

pressure relationship and model that biosurfactants are mainly living at the oil-water interface.

A typical mathematical model for MEOR consists on nonlinear coupled partial differential equations
(PDEs) and ordinary differential equations (ODEs). The spatial discretization is obtained using finite
differences (FD) and two-point flux approximation (TPFA), and the time discretization using backward
Euler (BE). We make the implementation for 1-D and 2-D domains using cell-centered grids. We present
in detail the discretization of the equations, including the treatment of the boundary conditions. After
the discretization in space and time, the problems to be solved at each time step are still nonlinear. For
solving these equations, we use an implicit scheme that considers a linear approximation of the capillary
pressure gradient, which results in an efficient and stable scheme. The code for running the simulations is

written in MATLAB. Following this, we test the code with analytic solutions and benchmark simulations.

We consider a 1-D porous medium where we study the spatial distribution and the evolution in time of the
average pressure, water saturation, oil-water interfacial area, capillary pressure, porosity, permeability
ratio, residual oil water saturation and bacterial, nutrient and biosurfactant concentrations. After, we
make a sensitivity analysis in order to examine the effects of the relevant model parameters. Finally, we

make simulations considering a porous medium with a thief zone, which is a 2-D problem.

A comprehensive model, including two-phase flow, bacteria, nutrients and biosurfactants was imple-
mented. The model has been tested using analytic and benchmark problems. For the first time, the
role of interfacial area in MEOR was studied. We showed that different predictions of oil recovery are
obtained by including the availability of interfacial area in the model. Nevertheless, it is necessary to do
more experiments in the laboratory in order to compare with the numerical simulations and validate the

model assumptions.
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Chapter 1

Introduction

Nowadays, oil is one of the most valuable resources in the world, considering its extensive use in the daily
life, such as in the production of gasoline, plastic, etc. After discovering a petroleum reservoir, one can
extract about 30% of the oil by using and maintaining the initial pressure in the reservoir through water
flooding (first and second phase oil recovery). Nevertheless, 60-70% of oil remains in the reservoir after
this, so called conventional recovery. This is the motivation for developing new extraction techniques in
order to recover the most oil possible. One of these enhanced oil recovery (EOR) techniques consists of
adding bacteria to the reservoirs and using their bioproducts and effects to improve the oil production,
which is called microbial enhanced oil recovery (MEOR). It is worth pointing out that MEOR has been
already used in some oil reservoirs (Lazar et al. 2007, Patel et al. 2015). Nevertheless, the MEOR
technology is not yet completely understood and there is a strong need for reliable mathematical models

and numerical tools to be used for optimizing MEOR.

The current MEOR models are based on (non-realistic) simplifications, e.g. only one transport equation
for the bacterial concentration is considered, changes in the porosity and permeability due to bioclogging
are ignored, numerical simulations are just made in one dimension or the oil-water interfacial area is not
included in the model (Kim 2006, Niessner and Hassanizadeh 2008b, Nielsen et al. 2010, Li et al. 2011,
Babatunde 2014, Skiftestad 2015). In order to make more accurate simulations of petroleum reservoirs,

we need better models where we contemplate most of the phenomena involved.

In the present work we implement a nonstandard model for two-phase flow with transport equations
including bioclogging and the oil-water interfacial area in 1D and 2D. The motivation to include the
interfacial area in the models is to eliminate the hysteresis in the capillary pressure relationship (Has-
sanizadeh and Gray 1993) and model that biosurfactants are mainly living at the oil-water interface
(Kosaric and Varder-Sukan 2015). To our knowledge, this is the first time that the effects of MEOR
including the oil-water interfacial area are studied. We can describe briefly the model presented as fol-
lows: we inject water, bacteria and nutrients to a reservoir. The bacteria consume nutrients and produce
more bacteria and biosurfactants, which have a tendency to live at the interface between oil and water.
As time passes, some bacteria die or attaches to the rock, affecting the porosity and permeability of the
medium (bioclogging). The biosurfactants reduce the water-oil interfacial tension, allowing the recovery
of more oil. The consideration of interfacial area in the model enables to include that biosurfactants are

mainly living at the oil-water interface, which is belived to be a very important feature for MEOR.

xi



xii

Math models for MEOR are based on coupled nonlinear partial differential equations (PDEs) and ordinary
differential equations (ODEs), which are very difficult to be solved. Therefore, it is necessary to use
advanced numerical methods and simulations to predict the behavior on time of the unknowns in this
complex system. Even though it is possible to buy commercial software in the petroleum industry for
simulation, it is preferable to do the discretization of the equations and write an own code to perform

numerical simulations, in order to implement new relations that are not included in the commercial ones.

For numerically solving the model, we consider 1-D and 2-D rectangular domains with a regular parti-
tion consisting of rectangular elements, involving cell-centered grill points. The spatial discretization is
obtained using finite differences (FD) and two-point flux approximation (TPFA), and the time discretiza-
tion using backward Euler (BE). There are different algorithms for solving coupled nonlinear PDEs. For
example, for solving the pressure and saturation equations, the implicit pressure explicit saturation (IM-
PES) is a popular scheme that eliminates the nonlinearities using the structure of the equations but it
has a restriction in the time step due to stability problems (Thomas 1995). In order to have a more effi-
cient and stable scheme, we use an implicit scheme that considers a linear approximation of the capillary
pressure gradient (Pop et al. 2004, Radu et al. 2010, Kumar et al. 2013). The general algorithm that we
use for solving the system of equations is a generalization of the work done by Skiftestad 2015. First we
solve the pressure, saturation and interfacial area equations iteratively. Subsequently we solve iteratively
the three transport equations. Afterwards, we solve for the change in porosity and then we update the
permeability. Finally, we compute the new interfacial tension, capillary number and the residual oil

saturation and proceed to the next time step.

The overarching goal of this work is then to develop and implement an accurate numerical simulator
for two-phase flow in porous media including the transport equations for bacteria, nutrients and bio-
surfactants, the oil-water interfacial area and the bioclogging in 1D and 2D using appropriate numerical
methods. Overall, we achieved to implement the model. However, it is necessary to do experiments in the

laboratory in order to compare with the numerical simulations and validate all the model assumptions.

In the following, we summarize each chapter

o Chapter 2 Firstly, we introduce the basic concepts, ideas and equations for modeling an oil reser-
voir. In addition, we mention all the assumptions, considerations and simplifications in order to
propose a model for two-phase flow and multicomponent transport in porous media, including

bioclogging and interfacial area.

o Chapter 3 Secondly, we give the theory and techniques for discretizing and solving numerically the
mathematical model. We use finite differences and TPFA for the spatial discretization and BE for
the time discretization. A flux diagram representing the algorithm for solving the model is shown

at the end of the chapter, contributing to a better understanding of our approach.

¢ Chapter 4 After having established the model and the numerical algorithm, we proceed with
the implementation. We consider 1-D and 2-D domains, the 2D being numerical rectangular with
regular rectangular gridding using cell-centered cells with half-cells on the boundaries. We test our
code against benchmark results and analytic solutions, and analyze the rate convergence of the

L2-errors.
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o Chapter 5 In this chapter we perform numerical experiments for testing the MEOR model. We
consider a 1-D porous medium where we study the spatial distribution and the evolution in time
of the average pressure, water saturation, oil-water interfacial area, capillary pressure, porosity,
permeability ratio, residual oil water saturation and bacterial, nutrient and biosurfactant concen-
trations. After, we make a sensitivity analysis of the model in order to examine the effects of the
relevant model parameters. We found qualitative differences in the shapes of the curves, thus we
gave an explanation for these results. For making use of our 2-D simulator, we study the bioclogging

in a porous medium with a thief zone, which is a problem we cannot simulate in 1D.

o Chapter 6 Finally, we present our conclusions and propose further work inspired by this study.



Chapter 2

Reservoir modeling

In this chapter we explain the phases of oil recovery, we mention some EOR methods and we develop
the MEOR technique, giving some definitions and explaining the general process of implementation, the
different types of MEOR, advantages and problems for implementing MEOR. In addition, we introduce
the definitions and equations for modeling of the oil reservoir, including the interfacial area in the capillary

pressure relation.

2.1 Qil recovery

In general, we classify the oil recovery in three stages. Primary recovery produces oil and gas due to the
natural pressure of the reservoir, recovering between 10-20% of the total resources (Sen 2008). Once the
pressure in the reservoir is in equilibrium, the oil production stops and in order to continue with the oil
extraction we need to add energy to the reservoir. Secondary recovery consists in stimulating the oil wells
by the injection of fluids, improving the flow of oil and gas to the wellhead, obtaining from 10-40% of the
oil in place (Sen 2008). For obtaining the oil remained, we use EOR as a third recovery. In Fig. 2.1.1 we
show the types of EOR processses employed in the oil industry. However, some of these methods apart
from being expensive, involve the use of toxic chemicals, being harmful to the environment (Patel et al.

2015). Regarding the MEOR technique, it is economically feasible and enviromentally friendly.

‘ Improved Oil Recovery Scheme

' ' ' '

‘ Thermal ‘ | Chemical ‘ l Gas Injection ‘ ‘ Biotechnological | l Novel ‘
k. l L 4 v
(1) Steam flood (1) Polymers (1yco2 (i) Seismic/Sonic
e . - . simulations
(ii) Combustion (ii) Surfactants (ii) N2 MEOR/MIOR
. AT e - (ii)
(iii) Hot water (iii) Alkali (iii) Flue gas Electromagnetic

Figure 2.1.1 Flow sheet diagram showing some EOR techiques (borrowed from Sen 2008).



2.2 The MEOR technique 2

2.2 The MEOR technique

MEOR is a process to recover the oil remaining in the reservoir using microorganisms. Although the idea
seems easy, it is necessary to understand the science involved, due to the presence of chemical, biological
and physical processes. This idea was proposed by Beckman in 1926, but it was until 1947 that ZoBell
and his research group did several experiments and settled the basis for applying microorganisms for oil
recovery (Lazar et al. 2007). Fig. 2.2.1 shows a simplified diagram for applying MEOR to a reservoir.

PRI v

i Y

S\
= T
Figure 2.2.1 General diagram of the MEOR technique in an oil reservoir. On the left well, bacteria

and nutrients are injected, meanwhile the oil is extracted on the right well. Inside the reservoir, the
bioproducts change the properties of the porous medium and fluids, allowing to increase the production.

-

iy

g
B

e
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2.2.1 Strategies

Regarding the MEOR process, there are three general strategies for his application (Weihong et al. 2009)

¢ Injection of nutrients to stimulate indigenous microorganisms
If there are indigenous microorganisms inside the reservoir capable of contributing in the recovery,
our purpose is to use them. However, it is first necessary to study the reservoir in order to detect
if any useful microorganisms is present and after choose the way to stimulate the microorganisms

so that their actions modify the rock and fluid properties (Weihong et al. 2009).

¢ Injection of exogenous microorganisms and nutrients

If there are not microorganisms inside the reservoir that could improve the oil extraction, the next
evident idea is to inject both microorganisms and nutrients to the reservoir. Notwithstanding,
these exogenous microorganism should be capable to live with the indigenous microorganisms and
to adapt to the reservoir conditions (Bryant 1991). Furthermore, the transport of the exogenous
microorganisms could be a problem, requiring that these microorganisms have a minimal absorption
to the reservoir rock material, in order that they disperse efficiently inside the reservoir (Weihong
et al. 2009). In spite of this, one advantage is that we can design a nutrient package specifically for
these exogenous microorganism in order to stimulate their growing and metabolism (Youssef et al.
2007).
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¢ Injection of ex situ-produced metabolites
If there are not microorganisms able to live inside the reservoir, the following idea is to generate
the bioproducts outside the reservoir and after inject them into the reservoir. However, transport
inside the reservoir is also a problem due to a loss (absorption) of bioproducts along the reservoir
(Weihong et al. 2009). Despite this, we can produce biosurfactants and polymers from economical

renewable sources (Maneerat 2005).

2.2.2 Mechanisms

The bioproducts formed due to microbial activity are surfactants, polymers, solvents, acids and gases.
In Sen 2008, it is summarize the different effects due to the microbial activity. Table 2.2.1 shows these

effects.

Table 2.2.1 Effects using MEOR.

Biomass Selective plugging and wettability alteration.

Surfactants Emulsification and de-emulsification through reduction of interfacial tension.
Polymers Injectivity profile and viscosity modification, selective plugging.

Solvents Rock dissolution for better permeability, oil viscosity reduction.

Acids Permeability increase, emulsification.

Gases Increased pressure, oil swelling, interfacial tension and viscosity reduction.

The main purpose of using these microbes is to modify the rock and fluid properties in order to enhance

the oil recovery. To accomplish this, we have the following performances (Patel et al. 2015)

¢ Selective plugging
The water flows inside the reservoir through the paths that need less energy, leaving some of them
with feasible oil but not water flow. For reaching these new paths, we use the biomass and polymers

to lock these paths where the water already drove the oil.

o Wettability alteration
Given that water and oil are immiscible fluids, it is more difficult to mobilize the oil due to the water
flow. However, using surfactants we can increase the ability of water to mix together, improving

the sweep efficiency and increasing the production (Patel et al. 2015).

¢ Bioacids/solvents/gases

Regarding the non-interconnection between all pores, there are some zones inside the reservoir
where the oil is isolated. To reach these zones, we can remove these rocks in order to access this
oil. Hence, we can modify the permeability and porosity of the porous medium due to the effect
of acids and solvents formed from microbial activity (Patel et al. 2015). Furthermore, stimulating
microbes that produce gases, we increase the reservoir pressure, and also this gas can dissolve into
the oil, reducing its viscosity and increasing the sweep efficiency (Lazar et al. 2007, Sen 2008, Patel
et al. 2015).

o Degradation, clean-up of build up
In relation with heavy crude oil, some microbes are capable of consuming hydrocarbons, leading to

make the oil less viscous and easier to recover (Patel et al. 2015).
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o Surface tension alteration: biosurfactants
In order to improve the oil recovery, lowering the surface and interfacial tension between the rock,
water and oil is a possibility. To do this, we can use surfactants produced from microbes. These
biosurfactants have the advantage to be biodegradable, temperature tolerant and pH-hardy. Also
they are non harmful to humans and lower concentrations of them can produce similar results as
chemical surfactants (Patel et al. 2015).

2.2.3 Advantages and adversities

Among all EOR techniques, MEOR is the one we decided to study in this thesis because one of its
characteristics is to be environmentally friendly. In Lazar et al. 2007, they highlight advantages of using
MEOR technologies. Table 2.2.2 shows some of these advantages.

Table 2.2.2 Advantages of using MEOR.

1 The microbes and nutrients are cheap and easy to produce and handle in the field.

II  Less expensive to implement and easier applied than another EOR method.

IIT  The cost of the injected fluids are independent on oil prices.

IV The effects of bacterial activity within the reservoir are magnified over time due to
colony growing.

However, there are some problems facing MEOR implementations; some of them in Table 2.2.3 (Lazar
et al. 2007).

Table 2.2.3 Disadvantages of using MEOR.

I Lost injectivity due to wellbore plugging.

II  Complications for dispersion/transport of all necessary components to the target.
IIT  Promotion of desired metabolic activity in situ.

IV Preclusion of competition or undesirable secondary activity.

Moreover, each reservoir has different characteristics, so a study in advance is necessary before MEOR
implementations (Castorena-Cortés et al. 2012). Despite the disadvantages, we are still optimistic about
the benefits from applying MEOR. However, there is a lot of work to do in order to make more field im-
plementations. Today, MEOR research is more complex, including genetically-engineered microorganism
for MEOR (GEMEOR) and enzyme-enhanced oil recovery (EEOR), to mention some of the new areas of
research (Patel et al. 2015). In order to make possible the use of MEOR and their variants, mathematical

modeling and simulation is fundamental.
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2.3 Flow in porous media

A material containing pores (voids) and a solid part (skeleton) is called porous medium. The pores
can just be filled with one fluid (single-phase, e.g. water), two fluids (two-phases, e.g. oil and water),
three fluids (three-phases, e.g. gas, oil and water), etc. The size of petroleum reservoirs is of the order
of kilometers and we cannot simulate the whole reservoir. That is why we work with Representative
Elementary Volumes (REV), where we assign to each point of the porous medium the property of the
REV around the point. This scale has to be large enough in order to contain a representative quantity
of voids for defining a mean global property, but small enough for keeping the property local, having a
characteristic length from the order of one centimeter to a few centimeters (Nordbotten and Celia 2011).
Once we had introduced the concept of REV, we can define mathematically some physical properties in

the porous media.

Porosity [¢] is a measure of the void space and is given by the ratio of the void volume in REV divided
by the volume of REV. According to this definition, the porosity is a dimensionless property with values
in the range [0,1]. However, the porosity of most sedimentary rocks is generally lower than 0.5 (Tiab and
Donaldson 2003). Moreover, we are interested in the flow trough connected void spaces, which is why
we consider just the interconnected pores for the computation of ¢. Even though the porosity can be a
function of several variables (position, time, temperature, depth, ...), in this thesis we consider that the
porosity is just a function of position and time (¢(x,t)). Fig. 2.3.1 shows the porosity as a function of
the REV.

1 Microscopic | Macroscopic
|
n |
/\ | Heterogeneous
B | /
‘o
g [\ | Homogeneous
& \/ \/ V|
|
|
| N
0 Fd

Vohime

Figure 2.3.1 Porosity as a function of volume (adapted from Engler 2010).

Another common porous medium property is the absolute permeability [k], that is a measure of the
ease a liquid passes through the voids. The permeability of a rock depends on the rock grain size, grain
shape, grain size distribution, grain packing and the degree of consolidation and cementation (Tiab and
Donaldson 2003). The permeability has dimensions of area [L?] and in the general case is a tensor.
However, for simplicity in this thesis we consider examples where the permeability is a scalar and a
function of position and time (k(x,t)). In the oil industry, Darcy is used to measure the permeability
(1 Darcy = 0.986923 pum?). Permeability of petroleum reservoir rocks may range from 0.1 to 1000 or more
millidarcies (Tiab and Donaldson 2003). Reservoirs having below 1 mD are considered tight, meanwhile

the ones above 250 mD are considered very good quality.
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Having defined some properties of the porous medium, now we introduce some properties of the fluid.
Density [p] is a physical property of matter, being a measure of the relative heaviness of objects with a
constant volume. Mathematically, it is given by the ratio of the mass of fluid over the volume of fluid.
Density units are [M/L3]. Examples of typical density values for water and oil are 1000 kg/m? and 800

kg/m3 respectively (Li et al. 2011). In this thesis, we consider incompressible fluids (p =constant).

Another important property for describing a fluid is its viscosity [p]. Viscosity is a measure of a fluid’s
resistance to flow. The unities of viscosity are [M/(L-T)]. Examples of typical viscosity values for water
and oil are 1 x1073kg/(m - s) and 3.92 x1073kg/(m - s) respectively (Li et al. 2011). In this work, we

consider fluids with constant viscosity.

2.4 Darcy’s law

In 1856, Henry Darcy published a study of the design of sand filters, where he predicted the quantity
of water flowing though these filters, giving the basis for the following equation (Nordbotten and Celia
2011)

u=—-kVh (2.1)

where u is a measure of the volumetric flow rate per area of the porous medium with dimensions [L/T]

and K is called hydraulic conductivity, being a coefficient of proportionality given by

k
. kpg

i (2.2)

where g is the magnitude of gravity. In Eq. (2.1), h is the hydraulic head, which dimension is [L].
One way to interpret the hydraulic head is that fluids flow from higher values of h to lower ones. One

expression for the hydraulic head is given by

h=2 1 (2.3)
P9
where z is measured relative to a given point in the system, but it does not matter where we choose this
reference point, because what is relevant is the differences between hydraulic heads. The pressure p is
defined as force divided by the area where the force is acting. The dimensions of pressure are [M/(L-T?)].
After defining pressure, it is easier to understand why the flow is from the zones with larger pressure to
the lower ones. Substitution of Egs. (2.3) and (2.2) in (2.1) leads to

w= <V~ pe) (2.4)

where we use the convention that the coordinate z is positive upward.
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2.5 Mass conservation

The law of conservation of mass was introduced by Antoine Lavoasier in 1789, stating that mass is neither
created nor destroyed in chemical reactions. The Gauss’s theorem or divergence theorem is essential for

the derivation of the mathematical form of many physical conservation laws, and states

Let f be a continuously differentiable vector field, defined in a volume 2. Let 02 be the closed surface
forming the boundary of 0 and let n be the unit outward normal to 02. Then the divergence theorem
states that

/V~fdx: f-ndS (2.5)
Q o

A proof of the theorem can be found in Matthews 1998. For formulating the mass conservation law,
intuitively we have that the change of mass in a volume €2 is balanced by the total flow into 92 through

the boundaries and any source/sink term F. Mathematically, we have the following expression

a—de:—/ f-ndS—i—/Fdx (2.6)
o Ot 0 Q

where M is the mass. Applying the divergence theorem on the second integral and rearranging terms,

/Q<68‘A;I+V~fF)d:c0 (2.7)

The previous integral must hold for any arbitrary €2, so finally we obtain the differential equation for

we obtain

conservation of mass oM
— + V- f=F 2.8
5 T (2.8)

For example, considering an incompressible fluid of density p, porosity ¢ and volumetric flow rate per

area u, the conservation law is given by

96 F
G TViu= (2.9)
n
u
i =l
T —
90 —u

Figure 2.5.1 Volume  enclosing a porous media filled with water. Due to the absence of source/sink
terms and no reaction presented, all water coming into the left side has to come out of the right side.
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2.6 Two-phase flow

Let us consider a porous medium filled with water and oil. In this case, these fluids are immiscible (they
do not exchange mass between them). For knowing the amount of a phase in the REV, we introduce the
saturation of phase a [s,] given by the ratio of volume of phase a (in REV) over the volume of voids
(in REV), where in this work, we consider gas and oil as non-wetting phases (o« =n) and water for the
wetting phase (o =w). In the case where the porous medium is just filled with two fluids, we have that

Sp + S = 1.

In the water-oil interface there is a surface free energy due to natural electrical forces, which attract the
molecules to the interior of each phase and to the contact surface. This interfacial tension keeps the
fluids separated, defined by the quantity of work needed to separate a surface of unit area from both
fluids. The ability of a fluid phase to wet a solid surface in the presence of a second immiscible phase is
called wettability. In Fig. 2.6.1 we show the three general categories of wettability, where 6 is the contact
angle at oil-water-solid interface; Ont,os; Omnt,ws and Ot ow are the interfacial energy between oil-solid,
water-solid and oil-water respectively. The contact angle 6 is connected with the interfacial energies by

Young’s equation Oint,os — OInt,ws = Olnt,ow COS 0.

Oil surrounding water droplets

Surface  Water wet Neutr Ol wet

Figure 2.6.1 Different categories of wettability (adapted from Engler 2010).

Capillary pressure p, is defined as pressure differential between two immiscible fluid phases occupying the
same pores caused by interfacial tension between the two phases that must be overcome to initiate flow
(Bahadori et al. 2014). Besides, in typical reservoirs, the pores are microscopic and there is interfacial
tension between oil-water fluids, these result in capillary pressure influencing considerably in the fluid

distributions (Engler 2010). In a small tube, we can compute the p. as

2010t c0s 0
pe = A7 (2.10)
T

where 1 is the tube radius. From this expression, we note the smaller the radius, the larger the capillary

pressure. On the macroscale, the capillary pressure is given by

Pn — Pw = Pc (211)

where p,, and p,, are the non-wetting and wetting phase pressure respectively and p. an empirical func-
tion. In standard models, p. is just considered as a function of the water saturation p.(s,). Let us
consider a porous medium just filled with water. We inject to the medium oil and after we inject water.

Plotting the capillary pressure profile, we obtain the profiles shown in Fig. 2.6.2.
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Figure 2.6.2 Capillary pressure profile illustrating hysteresis (borrowed from Nordbotten and Celia
2011).

Drainage is the process when a non-wetting phase displaces the wetting phase, whilst imbibition is when
the wetting phase displaces the non-wetting phase. From the plot, we note the presence of an entry
pressure p., being the minimum pressure needed in order to put the non-wetting phase inside the porous
media. In addition, we note that p. is not a well-defined function because while there is one value of
water saturation, there is more than one value of p., due to p. being dependent on the history. This
phenomenon presented in some systems is called hysteresis. The explanation for drainage curves having
higher capillary pressures while imbibition curves having lower capillary pressure is because pore throats
have smaller radii than pore bodies (Eq. 2.10 states that the capillary pressures are inversely proportional
to the radius) (Nordbotten and Celia 2011).

Let us consider that the wetting phase is water and the non-wetting phase is oil in Fig. 2.6.2. Intuitively,
we could think about extracting all water from the reservoir after drainage, but in reality water saturation
can be reduced to 5-40%, at this point the water saturation becomes immobile, defined as irreducible
water saturation s,,; (Engler 2010). The residual oil saturation s, is the oil that remains in the pores
after the imbibition process. In Fig. 2.6.3 we show the displacement of oil by water, where we present

schematically the role of s,,; and s,

Sw S’IU

0 X L 0 X L

Figure 2.6.3 Oil recovery progression in a porous media in 1D (adapted from Engler 2010).
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A At the beginning, the porous medium is filled with some oil s,, # 0, with some irreducible water

Sw = Sywi and residual oil s, # 0.
B We inject water on the left boundary, so on the right boundary we just obtain oil.

C After some time of water injection, water breakthrough is presented, and both oil and water is produced

simultaneously.

D If we add some surfactants, we can lower the s,,.

The recovery of oil can be analyzed in two stages: before and after water breakthrough. Until water
breakthrough, the oil recovery correspond to the water injection. After water breakthrough, there is
production of oil and water, so for obtaining the percentage of oil recovered, we use numerical integration.
We define the total volume of injected water by W;(t) = tQr, where Qr is the water injection rate. We
define the pore volume by V, = A¢L, where L is the length of the porous medium [L] and A is the cross
sectional area [L?]. Using the previous definitions, the number of pore volumes pv injected is given by

pv = V‘Z The number of pore volume gives a better understanding of the amount of water injected in
p
the reservoir and it is very common to plot the oil recovery in function of puv.

In the beginning of this section, we introduced the definition of absolute permeability, where we empha-
sized that it is for the case when we have one phase present, being the absolute permeability a property
of the rock independent of the phase in question. When we have two fluids, even though they do not
mix, just with their own presence they interfere in the flow of each other. Permeability to each phase a is
called effective permeability k,. For modeling this phenomenon, we introduce the relative permeabilities

kraw(sw) and ky o, (sy), and we can write the effective permeabilities for each phase
ky = krw(sw)k k, = krn(sw)k (2.12)

Due to pc, kv and £, , are empirical functions depending on the porous media and phases, it is useful
to visualize their profile for some popular parameterizations. In the present work, we use the capillary
pressure and relative permeability parameterizations shown in Table 2.6.1. In this table, A, n,¢ =1—-1/n

are parameters and the effective water and oil saturation are given by

Sn — Sor

Sw — Swi
st = —ow = Swi s = —on = Sor (2.13)
1_80T_8wi 1_507’_Swi

Table 2.6.1 Capillary pressure and relative permeability parameterizations.

Van Genuchten 1980 Brooks and Corey 1964
pe(sy,) = pe(szrl/g - 1)1/77 pe(sy,) = peszfil/)\
Fra(st) = VARl = (1= 50 )T kru(sh) = 527

Fra(sy) = VI= 55 (L= su/)%  koa(sh) = 572

In Fig. 2.6.4 we show the capillary pressure and relative permeabilities profiles with some value parame-

terizations we consider in this thesis.
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Figure 2.6.4 Examples of capillary pressure and relative permeability profiles. VG and BC are abbre-
viations of Van Genuchten and Brooks-Corey respectively. For the capillary pressure, we set P, = 2
MPa.

Now we introduce the definition of phase mobilities

Aw = — Ap = — (2.14)

Once we defined the phase mobilities, we can write the Darcy’s law and the mass conservation equations

for each phase

o Z (2.15)
Z7°n ‘U, = il n — 7Awk n— Fn
2 1V.u o u (Vpn — png)

In the next section we rewrite the previous set of equations in just two equations, where the primary

variables are the average pressure p and the water saturation s,,.

2.7 Average pressure formulation

In the previous section, we provided two mass conservation and two flux equations. In addition, the
relation of both pressure though the capillary pressure p,, — p, = p. and the constriction for the phase
saturation s,, + s, = 1. If we consider that p. is just a function of water saturation, then we have a set
of 6 equations with 6 unknowns. In this work we consider the average pressure formulation for solving

this system.

We define the average pressure p as
p= Pw ¥ Pn (2.16)
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From the definition of capillary pressure, we have the relation p, — p, = p.. Using both relations, we

can write p,, and p,, as follows

1 1
Pw =P = 5P Pn =P+ 5pe (2.17)

Substitution of the previous relations in the flux equations u,, and u,, in Eq. (2.15) leads to

1 1
Uy = —)\wk(v(p - 5}%) - ng) U, = _Ank(v(p + ipc) - Png)

Summing the last two equations and defining Ay, = A\, + Ay, and Aa = A, — Ay, we can write the total

flux uy = uy, + u, as
1
uy = *k(/\zvp + iAAvPc - ()‘wpw + /\npn)g)

Now, summing the two mass conservation equations in Eq. (2.15) leads to

—F— 4+ V. = — 2.18

Using that s, + s, = 1 and substituting the total flux (2.7) in the previous equation, we get the equation

we called “the pressure equation”
9¢

1
=tV (_k()‘ZVp + gAAvPc - ()‘wpw + )\npn)g)) = Z

o (2.19)

On the other hand, substitution of Eq. (2.17) in the mass conservation equation for the wetting-phase,
it leads to the equation we called “the saturation equation”
0¢s 1 F,

—— = V- (Ak(V(p = 5pc) — png)) =

o 5 ” (2.20)

Then, given proper boundary and initial conditions for the average pressure and water saturation, we
can solve the pressure and saturation equations, obtaining the profiles for the pressure, saturation and

flux of the wetting and non-wetting phases.

2.8 Interfacial area

Considering a porous medium filled with two fluids, the surface where they make contact is called in-
terfacial area. Mathematically, we compute the specific interfacial area a,,, as a ratio of the interfacial
area in the REV over the volume of REV, resulting in units of [1/L]. In this work we refer to the specific
interfacial area as interfacial area. For understanding better the importance of a,,,, let us consider Fig.
2.8.1.
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Figure 2.8.1 Example comparing the interfacial area given the same amount of oil. When we split the

square in four pieces, the interfacial area increases by a factor of 2. Then, using biosurfactants, the more
interfacial area is presented, the more oil we can mobilize from the reservoir.

When Darcy made his experiments and deduced his law, he just considered a single-phase flow. In the
case of two-phase flow, we just extend Darcy’s law for two variables, but we may expect there are more
forces involve than the gradient of the hydraulic head. In Hassanizadeh and Gray 1990, they developed
equations of momentum balance for phases and interfaces, based on thermodynamic principles. The two-
phase flow equations are a particular case of these equations and in this thesis for modeling the interface

between oil and water we use the following equation (Niessner and Hassanizadeh 2008a)

Otwn
ot

+ V- (awnVun) = Eun with Vn = —KwnVawn (2.21)

where vy, is the interfacial velocity [L/T], E,. is the rate of production of specific interfacial area
[L3/T) and ki, is the interfacial permeability [L3/T]. In standard models, we give p, — puw = Pe(Sw)
as an empirical function with fitting parameters, in order to have a relation between both pressures
and solve the system. However, we mentioned that this capillary pressure relation presents hysteresis.
Following the thermodynamic approach in Hassanizadeh and Gray 1993, they proposed that including the
interfacial area in the capillary pressure relation eliminates the hysteresis under equilibrium conditions.
Fig. 2.8.2 shows experimental interfacial area profiles reported by Porter et al. 2010, where they focused
on measuring directly p., S, and a., during drainage and imbibition; after they compared with those
predicted from a thermodynamic model, finding reasonable approximations, giving a practical tool for
constructing these surfaces from p. — s,, curves, being just necessary either the data from the drainage

or imbibition process (Chen et al. 2007).
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Figure 2.8.2 Examples of experimental interfacial area profiles (Porter et al. 2010). The first plot shows
the hysteresis in the interfacial area while the second plot shows the interfacial area surface a.n (Sw, Pe)-
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Because we consider the oil-water interfacial area a,n (sw, pe) in this work, we have to provide a relation
Dn — Pw = DPel@un, Sw) that accounts for interfacial forces. This relation can be produced by fitting
surfaces to ayn — Suw — pe data coming from models or experiments. In Niessner and Hassanizadeh
2008a, they used a bi-quadratic relationship. However, this relation does not fulfill the requirements
awn(0,pc) = awn(l,p.) = 0. In this work, we use the next relation (Joekar-Niasar and Hassanizadeh

2012)
oo (Swy Pe) = Q1892 (1 — 84) 2P (2.22)

with a1, as, ag and a4 constants. From the given parameterization (2.22), we can isolate the capillary
pressure

De(Sws Gun) = afl/a“s;”/a“(l — )8/ gl s (2.23)

In order to better visualize this parameterization, in Fig. 2.8.3 we show the interfacial area surface using
the values from Joekar-Niasar and Hassanizadeh 2012 o1 =6.462, aa=3.057e~'2, ai3=1.244, cy=-0.963.

p.=1kPa s, = 0.1
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Figure 2.8.3 Interfacial area profile in Joekar-Niasar and Hassanizadeh 2012.

For solving the interfacial area equation, we need to provide the mathematical expression for the pro-
duction/destruction rate of interfacial area E,,. However, we could not find information about this
term apart from Niessner and Hassanizadeh 2008a, where they proposed a relation based on physical
arguments. It is clear that when the reservoir is filled with just one phase, there is not interfacial area.
When we start to inject the other phase, we start to generate interfacial area until we have a maximum
interfacial area value. After this saturation value, if we increase the saturation the interfacial area de-
creases. Moreover, the faster the change in saturation, the larger the rate of change of interfacial area.

Then, we consider the following production/destruction rate of interfacial area

05y

Ewn = —Cwn—7,
“un ot

(2.24)
where e,,, is a parameter characterizing the strength of change of specific interfacial area due to a change
of saturation, with unites [1/L]. Moreover, to estimate this parameter, they neglected the interfacial area

flux in Eq. 2.21, thus after using the chain rule for the time derivative in Eq. 2.21, we have

Own ( dp. ) 05y  Oyn 05y 05y
line

op. \dsn ) ot T os, ot T U ar (2.25)
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Rearranging terms, the expression for e,,, results

0 d, 0
Cum = — Ay < po) _ Oaun (226)
Ope \d5w /) jipe 05w
where the path <3§C is in general unknown, but in the main drainage and imbibition curves, p. is

line
a known function of s,,. In addition, it is possible to compute this derivative for e, = 0. For all other

paths, we interpolate using these three values of e, (Niessner and Hassanizadeh 2008a).

Experimental investigations focused on simultaneously measuring p., s, and a.,, are often difficult,
expensive and subject to limitations, thus only a few have been reported in the literature, indicating
a need for further experimental studies characterizing the relationship @y (Sw,p.) (Youssef et al. 2003,
Chen et al. 2007, Porter et al. 2010).

2.9 Transport equations

In Chapter 2 we mentioned the MEOR technique, involving the addition of bacteria and nutrients inside
the oil reservoir in order to produce biosurfactants and reduce the interfacial tension, leading to enhanced
oil recovery. The movement of these components in the water is controlled by advective and diffusion

processes.

The advection-difussion equation can be derived from the conservation of mass (2.8)
—+V-.j=R (2.27)

where ¢ is the concentration of mass transferred and j is the total flux given by j = jair + Jagvy =
—DVc+ uc (Bennett 2012). Dispersion causes spreading of ¢, where we have mechanical and molecular
dispersion (diffusion). Diffusion describes the spread of particles through random motion, going from
higher concentration to lower concentration, described by Fick’s Law, while mechanical dispersion is due
to every path has different geometry inside the porous medium, so not all ¢ components travel in the
average flow velocity, leading to faster and slower transport of ¢. Advection causes transport of ¢ due to

the flow movement, in this cases the water flow.

For describing the movement of bacteria, nutrients and bioproducts, we consider the following transport
equations (Kim 2006, Li et al. 2011)

20 g (Dys,0¥Cs - waCh - 0w, ) = B
w V. (Dnsmvcn - uan) = Rn
% -V (Dpsw¢vCP - upr> = By
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where the reaction rate terms are given by

Ch R
Ry = —k1¢50,Ch + kapyo1 — k35wCh + g1 max = 5w Ch — d195,Chy — —>

Ky/n +Cy, Yo
R
R, = — Po_ Yn(qbswa + pba)
Yom
c,—-C*
Ry (¢35, Cy + ppo)

= ,up max Kp/n + Cn _ C:;

and in the general case the dispersion coefficients are given by

Ui 5

Dg.ij = dijapral + (apr — O%T)ﬁ + 83 D%, B =A{b,n,p} (2.28)

where the fluid velocity of the aqueous phase is given by u = (;5—11 In this work we consider that biosur-
factants are the only bioproducts. Table 2.9.1 shows a brief description of the previous parameters (Kim

2006, Li et al. 2011).

Table 2.9.1 Descriptions and units in the SI for the parameters used in the transport equations.

Parameter Description
Cy, Cy, Cp Concentrations of bacteria, nutrients and biosurfactants [M/L?]
Vg Settling velocity of bacteria [L/T]
k1 Reversible rate of bacterial attachment to the rock surface [1/7
ko Bacterial detachment rate [1/7]
k3 Irreversible rate of bacterial attachment to the rock surface [1/T]
dq Bacterial decay rate coefficient [1/T]
Ob Density of bacteria [M/L?]
o1 Volumetric fractions of bacteria attached reversibly [—]
o) Volumetric fractions of bacteria attached irreversibly [—]
Yo/ Biosurfactant yield coefficient per unit bacteria [—]
Yo/n Biosurfactant yield coefficient per unit nutrient [—]
Y, Maintenance energy+bacterial growth yield coefficient representing
nutrient consumed [1/7]
J1max Maximum bacterial growth rate coefficient [1/7]
Hp max Maximum specific biomass production rate [1/7]
Ky Half-saturation constant for concentration of specific growth rate [M/L3]
Kym Half-saturation constant for production of biosurfactants by consuming
nutrient+substrate [M/L3]
cy Critical nutrient concentration for metabolism [M/L?]
L, On. L, 0.1 | Longitudinal dispersivity of bacteria, nutrients and biosurfactants [L]
apT, 0T, @ | Transverse dispersivity of bacteria, nutrients and biosurfactants [L]
Dgﬁ, D, Dzﬁ Effective diffusion coefficients of bacteria, nutrients and biosurfactants in
the water phase [L?/T)
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Let us analyses the reaction terms for the transport equations. Regarding the bacterial clogging, we
consider both scenarios: reversible k; and irreversible k3 attachment to the rock, resulting in a detachment

rate ky. For modeling the growth of bacteria, we use the Monod-type model (Skjaelaaen 2010)

CTL

2.29
Kb/n +Cn ( )

91 = J1max
where gimax is the observed maximum growth rate and K/, the half saturation constant, being the
nutrient concentration level when ¢g; = %glmax. On the other hand, we consider a linear death of
bacteria, given by d;. Due to nutrients and bacteria being involved in the generation of biosurfactants,
we introduce the yield coefficients ﬁ/b + %/n = 1. For the nutrients consumed for bacteria, we consider
the yield coeflicient Y,,, which we included in the R,, term. Considering now the biosurfactants source
term, we need to model the production in function of nutrients and bacteria. We consider that the

production rate is given by (Lacerda et al. 2012)

C, —Cx

— U s _ 2.30
Hp = Hp ma Kym+Cn—Ci, ( )

We notice that this function has the same structure than the Monod-type model, but we included the

term C7, in order to model a need of minimum C), for obtaining biosurfactants.

The pressure, saturation and interfacial area equations are coupled with these transport equation under

the following assumptions (Li et al. 2011)

1. The two-phase flows are incompressible and immiscible.
2. Both viscosities are constants.

3. We neglect the presence of dissolved salt in the wetting phase.

W

. The system is isothermal.

2.10 Bioclogging

In Chapter 2, we introduced the idea of bioclogging as a mechanism for MEOR. In Kim 2006, a transport
model that incorporates reversible/irreversible attachment to the solid matrix and growth/decay of bac-
teria is presented, where changes in porosity and permeability due to bacterial deposition and/or growth
are also included. Following this model, the mass balance equations for bacteria deposited reversibly and

irreversibly on the solid matrix are given by

1) _ .
ot
2.31
8(pb0'2) _ R2 ( )

ot
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with

Ry = ki(¢o — 0)Cy — k2ppo1 + g1p601 — d1ppor (2.32)

Ry = k3(¢o — 0)Ch + g1pp02 — d1pp02

where the modify porosity is defined as ¢ = ¢g — 0 = ¢g — 01 — 02. This model describe the changes of
porosity in function of the position and time. In this model the growth and decay rate coefficients for

the bacteria deposited and suspended are supposed to be equal.

Apart from reduction of the porosity due to bacteria clogging, the rock’s ability to allow phases to flux
is affected. For including the changes of permeability, we consider the parametric model (Clement et al.

1996), which states that reduction of porosity leads to reduction of permeability as the following relation

k:k()(;;)c (2.33)

where we take the value for the parameter C' = 19/6 from Clement et al. 1996, which is founded in the
idea that bioclogging is due to radius reduction instead of raise of micro-colonies.

2.11 Interfacial tension

One of the main objectives of applying MEOR is to reduce the s, via surfactant effect on the oil-water
interfacial tension. There exist several experiments showing the impact of surfactants in reducing the
interfacial tension (Youssef et al. 2003, Wu et al. 2013). Common initial interfacial area values are of the
order of 1072 mN/m and we aim to lower this value < 1073 mN/m (Yuan et al. 2015). In order to model
mathematically this behavior, we need a function o (Cps) that under values of a critical surfactant
concentration, the interfacial tension does not decrease but over this critical surfactant concentration,
the interfacial tension decreases until a minimal interfacial tension value, persisting this value despite we
increase the surfactant concentration. One mathematical model fulfilling these requirements is given by

(Nielsen et al. 2010)
— tanh(l3 * Cp — lg) +1+104

— tanh(flg) =+ ]. —+ ll

(2.34)

%
OInt = Olnt

where [1, Iy and I3 are fitting parameters, which define the efficiency of the surfactant, moderating
the concentration where the interfacial tension drops dramatically and the minimal interfacial tension

achieved after the surfactant action (Nielsen et al. 2015).
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2.12 Capillary number

The residual oil saturation after water flooding is believed to be distributed through the pores in the
petroleum reservoir in the form of immobile globules, being the capillary and viscous interactions the
main forces acting on these globules (Donaldson et al. 1989). The capillary number Ng, relates the
surface tension and viscous forces acting in the interface and is given by
Uy P

*
Ofnt

Nca = (2.35)
At the end of water flooding, the capillary number is in the range 1076 to 10~7 (Donaldson et al. 1989). In
order to increase the capillary number, from Eq. 2.35 we observe that increasing the flow rate, the water
viscosity or lowering the interfacial tension are the three possibilities. In Li et al. 2011, they implemented
a biological and hydrogeological finite element model, resulting in a functional relation between s,, and

Nca, demonstrating that MEOR could improve the oil extraction if we can obtain a capillary number
between 10~° and 1071,

2.13 Residual oil saturation

Formerly, we mentioned that the surfactants reduce the oil-water interfacial tension, allowing to enhance
oil recovery. In order to model the amount of residual oil saturation recovered using biosurfactants,

min

we consider an irreducible residual oil saturation sh.™.

On the other hand, the capillary number Ng,
is inversely proportional to the interfacial tension op,;. Then, for modeling the residual oil saturation
reduction due to biosurfactant effects, one possibility is to give a parameterization where when the

capillary number increases, the s,, decreases until a irreducible value of oil saturation.

For relating the residual oil saturation and the capillary number, in this thesis we use the following
relation (Li et al. 2007)

Sor(t+ At) = min (Sor(t), spr™ + (50 — sI™)[1 + (TlNCa(t))TZ]Tszl) (2.36)

»<or or or

min
or

max

max are the maximum and minimum residual oil saturation and both 77 and 75 are

where s and s

fitting parameters estimated from the experimental data.

Giving the mathematical expressions for the interfacial area reduction o7, the capillary number N¢, and
the residual oil saturation reduction s, (t), we can account in our model the effect of the biosurfactants

in improving the oil recovery.
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2.14 Two-phase flow model with transport equations

including bioclogging and interfacial area

In summary, the next equations represent our model, and in the next two chapters we show one way to

deal with the discretization and boundary conditions in 1-D and 2-D domains.

% -V (k(szp + %)\Avpc - ()\wpw + )\npn)g)) = Z % in
a=w,n
855w — V- (Auk(V(p = $pc) — pug)) = 2= in &
Ba“m -V awrbkwnvawn) - Ewn in
‘"”<Cb¢’5w> (Dbsquvcb —u,Cy — ¢vgcb> =R, in O
ACatou) _ (Dnsw¢VCn - uan) =R, in O
A(Cp qbew) (D 50V C)p — uw(jp> =R, in ©
Bpa;,tal _ Rl in
% = R2 in
c
k = ko (; in 0
x — tanh(l3xCp—12)+1+1 .
Olnt = Olnt —tan;(—lg)—il-&-ll . ) in
Sor = Min (5o (1), STN 4 (smax — gmin)[] 4 (TlNCa)T2]T7271) in Q
Initial conditions for s, P, awn, Cb, Cn, Cp, ¢, k, 01, 02 in
Boundary conditions for s, p, awn, Cy, Cr, Cp on 0f2

Parametrizations for k., = kprw(8),  krn = krn(8),  Pe = Pe(Sw, Gwn)



Chapter 3

Discretization of the model

For solving numerically the two-phase flow model in a given domain, it is necessary to discretize the
equations and the space and time domains. The reason for partitioning both space and time is that
computers cannot work with the continuum, so we divide the space and time domains in a finite number
of elements. In order to achieve the discretization of equations, we use one finite volume method, the
TPFA. In this chapter we present the theory and techniques for discretizing and solving numerically the

mathematical model.

3.1 Space and time discretization

Numerical methods have been developed since a long time ago, contributing to different techniques to
partition a domain. This partition could be formed for elements of different shapes and sizes; it depends
on the problem. For example, if there is a zone in the domain where we want more resolution in the

results, we should consider a finer partition in this region.

For discretizing the space domain, we consider a uniform cell-centered grid with half-cells at the bound-

aries. For example, in Fig. 3.1.1 we show such discretization in a 1-D domain of length L with step Az.

I Y T R

NN RS
Trr2=() T3/2 Q:IV—Q—I/Q:L

Figure 3.1.1 Cell-centered grid in 1D. We label the middle points z; of the elements €2;.

Fig. 3.1.2 shows a uniform cell-centered grid in a 2D domain of length L and width W.

21
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Az
L ] - L ] L ]
Tije
Ay . Dijs ije Tipa . . w
Iija
*T1 * 712 . .

| |
| 4 |

Figure 3.1.2 Gridding in a rectangular domain of size L x W.

The purpose of defining a partition is to find a numerical solution of the discrete problem in the points
{z;}, where by raising the number of elements, we make better approximations to the solution of the

continuous problem.

Because time is also a continuous variable, we have to use a discretization technique. For doing this, we
consider a uniform discretization from the initial time ¢o until the final time 7" with At step. In Fig.

3.1.3 we show such discretization.

Ja%

t(J tl t-nfl tn tAVIT

Figure 3.1.3 Vertex-centered grid in 1D. We label the vertex points ¢,, and the size step At.

3.2 Approximations for the derivatives, integrals and

parameterizations

Once we have the discretization of space and time, we need to discretize the derivatives and integrals.
For doing this, we consider an arbitrary function f(z) and its Taylor expansion (Canuto and Tabacco
2008)

2

fle+Ax) = [(@) + ['(@)A0 + 22 () + O(Ax?)

(3.1)
Ax?
fla = Az) = f(z) = f'(2)Aw + ——f"(2) + o(Az?)
From the previous equations, we isolate f'(z) and get
f/(x): f(a:—l—Aat)—f(m) —I-O(A.”L') f/(CL')Z f(x)—f(x—Ax) —I—O(Al‘) (3.2)

Az Az
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Now, subtracting the second equation from the first equation in (3.1) and isolating f’(x), we obtain

flz+ Az) — f(z — Ax)
2Ax

F(r) = FO(AR?) = f/(x) = Lroma)  (33)

In this thesis we consider functions of two variables f(z,y). Generalization of these functions can be

followed from the previous analysis, having as results such as

of _fa+Axyy) — flz,y) of flay+ 5 - fay - 5Y)
%(x7y)"‘ Az Fy(xvy)"' 2 Ay =

(3.4)

Both of the last expressions are used in this work for approximating the derivatives. The derivative
approximation of first order O(Ax) is used on the boundaries of the spatial domain and time derivatives,

while the second order approximation O(Az?) is used in the cell-centered grid.

Now, we focus on the time variable. Let us consider the following differential partial equation

ou
E(w, t) = F(u,t) (3.5)

We use the next notation u} = u(x;,t,). Using the derivative discretization, we get

u7z+1 —um

A ~ F(u,t) = ul™ = ul' + F(u,t)At (3.6)

The three following methods are use to find an approximation (Olsen-Kettle 2011)

o Explicit Euler’s method '™ = u? 4+ F(ul, t")At + O(At)
o Implicit Euler’s method u ™' = u? + F(u] ™', t"+1)At + O(At)

o Crank-Nicolson Scheme uf™' = u? + L[F(ult! #"+1) + F(u?, t")|At + O(At?)

The one that we use in this thesis is the Implicit Euler’s method, also known as BE. Although the explicit
Euler’s method is also of order O(At) and easier to implement, it is not A-stable (Trefethen and Bau
1997).

After mentioning the mechanisms of approximations for the derivatives, now we study the numerical

integration. Let us consider the following integral

b
Hﬂ:/#@wx 3.7)

where f(z) is a given function and [a, ] a finite interval. We look for approximating the integral by

n
I[f] ~ > wif(x:) (3.8)
i=1
where x1 < x5 < -+ < x, are distinct nodes and wj, wa, ..., w, the corresponding weights (Dalquist

and Bjorck 2008). These weights are determined in order that (3.8) computes exactly the polynomial
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with the highest degree possible. Considering a cell-centered grid, in the midpoint rule we approximate

f(x) on [2;_1/2,i41/2] Dy

1
fi = flx:) T; = 5(%‘—1/2 + Zit1/2) (3.9)
leading to the approximation
z+1/2
/ f(@)dz ~ fida (3.10)
z—1/2

Finally, after taking into account every sub interval [z;_; /2> Tit1 /2], the composite midpoint rule is given
by (Dalquist and Bjorck 2008)

b N )
[ rwin =20y 5+ B e, gela (3.11)
a =1

Even though the midpoint rule just uses one function value for the approximation, it computes exact
integral when f(z) is a polynomial of degree 1. Generalization of the midpoint rule to a 2-D domain like
in Fig. 3.1.2 leads to

by bz m n
[ [ eisdy = a08y Y"1 (3.12)
ay ax J=114=1

Once we have introduced these methods of approximations, we proceed with the TPFA.

3.3 Two-point flux approximation

When we use finite difference methods in order to approximate PDEs, we replace the operator derivatives
by differences between points on a discrete set of points in the domain. On the other hand, when we
consider finite volume methods, they are derived from conservation of quantities over cell volumes (Jorg
et al. 2009). These methods are widely used for numerically solving PDEs; we use both on them in this

work.

Let us consider the following differential equation on a domain 2 (Lunde 2006)
—V.-cVy=F (3.13)

Our aim is to find the solution for y Vz € Q. First, we consider a partition of our domain Q = |JQy,

where  denotes a grid cell in . We integrate Eq. (3.13) in the control volume Qj

—/ V~chd;U:/ Fdx (3.14)
Qp

Qp

Let us focus on the left integral. Using the divergence theorem, we can write this integral as

- V- cVydr = — / cVy - ndS (3.15)
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In the general case, the boundary 00, could be part of several control volume boundaries. For example, in
the 3-D case considering a quadrangular partition, there are six control volumes sharing part of the same
boundary. Let us consider the 2-D case (which the 1-D case can be derived from) shown in Fig. (3.1.2).
In this case, we have four boundaries v;i11; = Qit1,; N Qij, Vijr1 = Qij+1 N Qij, Yie1,; = Lim1,; N Qij
and 7v; j—1 = € ;-1 N ;. Having found the boundaries, we can approximate Vy using two points:
one in the current control volume €2; and the other in the corresponding adjacent control volume. This
way to approximate the gradient is called two-point flux approximation. Using the previous idea, we
approximate the gradient as

Yit+1,5 — Yij
Vy~2—2 -2 a1 3.16
Y AmHLj +A$ij on  7Yi+1,5 ( )

where y;11,; and y;; correspond to the average value in the control volume €2; 11 ; and €);; respectively, and
Az;q1; and Az;; correspond to the distance from the middle points of €;41 ; and £2;; to the boundary
Vi+1,5- Using this approximation and taking into account the sign after the inner product with the normal

vectors n, we write Eq. (3.14) as

Yi+1,5 — Yij Yij+1 — Yij Yi—1,5 — Yij
-2 7 cdS — 2———"— cdS — 2————— cdS
A.’L‘i+1’j + A(Eij / A:I;i’jJrl + A.Tij / Axifl,j + Ail?ij /

Yi+1,5 Yi,j+1 Yi—1,5

Yij—1 — Yij
-2 v dS = [ Fd
Ax; i1+ Ay / ) / v

Vig-1 Qij

(3.17)

Now, we consider ¢ as an approximate value of the parameter ¢ on the boundary (in the next section
we explain methods of approximation for this parameters) and also approximate the right integral using

numerical integration. We finally write

~ Yi+1,5 — Yij ~ Yij+1 — Yij ~ Yi—1,57 — Yij
S 7 PR, o o1 MY R PNYS ) 7 SR ALY n s S LY B PVI 7 A ot ¥ LV PR
i4+1,5 Azit1; + Az [Vi+1,5] 1,541 Awi i1 + Aay; i, j+1l i—1,5 Azi_1; + Az Vi-1,5]
~ Yij—1 — Yij =
9 i 2Imr FY A | = Q.
1,7 1A~T¢,j—1 + Az "Yw 1 2J| w|
(3.18)

Applying the same procedure to all control volumes in €2, it leads to a linear system of the form Ay = b.
To make this system positive definite, we add a positive constant to the first diagonal element of A (Lunde
2006). Moreover, this system would have a unique solution if appropriate parameterizations, boundary

and initial conditions are given.

3.4 Approximations of the parameters on the inte-

gral boundaries

In the previous section, it was necessary to use an approximation of the parameter ¢ on the boundaries, as
we consider a cell centered grid and we do not know the values on the walls. Depending on the parameter,
we should consider different technique approximations, in order to get stability and correct results (Aziz
and Settari 1979).
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Regarding the permeability of the medium, we approximate k by the harmonic mean (Aavatsmark 2002)

k. . Q(A.’BiJrl + A.’L‘l>
i+1/2 7 T Az, |, Awp
kit ki

(3.19)

The reason for considering this harmonic mean comes from the computation of an effective permeability
when we consider a layered system with different values of permeability and a flux perpendicular to
these layers, finding that the effective permeability of a system with two layers is given by Eq. (3.19)
(Nordbotten and Celia 2011).

Considering now the phases mobilities, one way to approximate them is using the upstream weighting
(Chen et al. 2006)
(S5 if flow is from 7 to 7 + 1
PAiprz =S (52 (3.20)
+A(Si41) if flow is from i+ 1 to @
For the rest of the parameters (porosity, diffusion, etc) that we need to approximate on the walls, we

simply use the average value

Cit1/2 = % (3.21)

3.5 Initial and boundary conditions

In general, PDEs have infinite number of solutions. However, given an oil reservoir problem, we are
interested in one particular solution of these PDEs. It is natural to think that we have to provide some
information about the reservoir to the PDEs, in order to find a unique solution. These conditions are
motivated by the physics, being the initial and boundary conditions (Strauss 2008). An initial condition
gives the solution at a certain time ¢y for all points inside the domain €. In relation to the boundary,
we know information (pressure, saturation, flux, ...) about the reservoir on the walls. For example, we
could know the flow through the walls, the amount of bacteria that we are injecting into one part of the
boundary, etc. There are several types of boundary conditions, but in this thesis we consider Dirichlet
boundary conditions (the value of the solution is known on the boundary), Neumann boundary conditions
(the normal derivative is known on the boundary) and flux boundary conditions (the flux is known on

the boundary).
For solving our model, we need to give the initial conditions for the following variables

p(x,0) = po(x) Sw(%,0) = $u,0(X)  Awn(X,0) = awno(x) c(x,0) =cpo(xX) cn(x,0) = cpno(x)
cp(X7 0) = Cp,O(X) 01(x,0) = Ul,O(X) 02(x,0) = 02,0(X) P(x,0) = do(x) k(x,0) = ko(x)

Additionally, we need to provide the boundary conditions for the average pressure, water saturation,
interfacial area, bacterial, nutrient and biosurfactant concentrations. In the next chapter, we show with
details a way to deal with these boundary conditions in 1D and 2D.
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3.6 General formulation for solving the model

Once we have the discretization of the space, time and equations, we proceed with the implementation.
Prior to this, we introduce the following ideas and concepts that we use in the numerical solver. For
solving the pressure, saturation and interfacial area equations, we use an implicit scheme. The use of
these iterative formulations is very common, for example in Pop et al. 2004 and List and Radu 2016 they
solved the Richards equation using this technique. Regarding the two-phase flow, in Radu et al. 2015b
and Radu et al. 2015a they solved the equations using the same iterative scheme. The convergence of
this implicit scheme can be followed from Radu et al. 2010, Kumar et al. 2013, Kumar et al. 2014 and
Kvashchuk 2015. The notation we use is

n+1,j

P! where solution for time t(n+1), iner iteration (322)

Pcurrent point

Because we use an iterative scheme, it is indispensable to have a measure of the error. It is known that
any norm is equivalent in a finite-dimensional space (Trefethen and Bau 1997), so it is not relevant which
the norm we choose because we are interested in measuring the reduction of error. For this work, we use

the following L?-norm
m 1/2
Il = (Axe?> (3.23)
i=1

Once we have a measure for the error, we can proceed with the general idea for solving numerically our

model. Extending the Skiftestad 2015’s algorithm, we have the following procedure

I We solve the pressure equation using the previous values of saturation and interfacial area.

IT We solve the saturation equation using the new value of pressure and the previous value of interfacial

area.
IIT We solve the interfacial area equation using the update value of saturation.
IV  We compute the errors |[J+H1pntt —Jipntl| . |/+1sntt —Jdgntl|| > and ||/Ttant! —Jantl|| ..

V If the errors are less than a given tolerance €, we solve the concentration equations. Otherwise, we
upgrade the values for the inner iteration 7 and we solve again the three equations. If any of the
errors get more than € in a given maximum number of iterations MI, either the problem is not well

posed or we have to consider smaller time steps.

VI We solve the concentration equation iteratively (this due to the source/sink values depend also in

the saturation) until the error is less than e or we reach the MI.

VII If the concentration error is less than e, we solve the bacterial deposited equations and we update

the porosity.

VIIT After updating the porosity, we compute the new permeability, interfacial tension and residual oil

saturation.

IX We move to the next time step. If we have not reach the final time T, we start the process again

until we reach the final time 7.

X Once we reach the final time, we finally plot the results.
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3.7 Flux diagram for solving the model

In Fig. 3.7.1, we show a flux diagram for solving the two-phase model with transport equations including

bioclogging and interfacial area.

Beginning

Initial and boundary conditions, n=1

PONEIRE s equation 4_
Solve the saturation equation
Solve the interfacial area equation

Solve the concentration equations 4—“

Solve the bacterial deposited
equations

!

Upgrade permeability, interfacial
tension and residual oil saturation

et

Plot Solutions

|

\4
Maximum number of iterations

Figure 3.7.1 Flux diagram for solving the two-phase flow model. MI represents the maximun number
of iterations and € the error tolerance.



Chapter 4

Implementation of the model in 1-D

and 2-D domains

In the previous chapter, we describe some techniques used to discretize partial differential equations in
order to give a numerical solution. Once we have the discretization of the problem, we proceed to solve
it in 1D and 2D. In this chapter we explain in detail how to implement the equations in 1-D and 2-D
rectangular domains with rectangular gridding using cell-centered cells with half-cells on the boundaries.
We also compare the numerical results with benchmark simulations and we study the error convergence

given analytic solutions.

4.1 1-D formulation

Regarding the spatial location, we are living in a three dimensional space. Then, for specifying a point
inside a reservoir, we need three spatial coordinates. However, there are many cases were we can reduce
the dimension to 2D or even 1D, using symmetries, approximations, etc. For the 1-D simulation, we
consider a porous media of size L. In this case, we just have two boundaries, where we have to provide

appropriate conditions in order to get the unique solution.

4.1.1 Pressure equation

We start writing the expression for the pressure equation in 1D

dp 0 op 1. Ope

Fo

a=w,n

We integrate in a control interval [x;_; /2, 241 /2]

Tz (96 9 op 1. Ope Tit1/2 F,
[ (5 - sl Os g+ 300~ Owpa tdwpia)] o= [ P
Li—1/2

ot Oz Ox Ox . Pa

i—1/2 a=w,n

29
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Using the Fundamental Theorem of Calculus for the left integral and the midpoint rule for the right
integral

D¢
ot

dp 1. Ope
Ax — (k()\E% + 5/\A O - ()\wpw + )\npn)g))iJr]/Q
Op 1 Ipe
+ (k(Ag% + 325 = Quwpw + Mpn)9))iiijg = D

a=w,n

, (4.3)
&Aaj
Pa

Considering the chain rule for p,

Ope  Ope 08y | Ope Oaun
dr sy O + Oayn O (44)

Due to the fact that the capillary pressure is a function of the saturation and interfacial area, both of
them being unknowns, we should use an inner iteration 7 in order to upgrade the values of the functions
depending on the saturation and interfacial area and solve this system of equations (pressure, saturation
and interfacial area equations) until a stopping criterion is reached. For initializing the iteration, we
consider the solution at the previous time step

n+1,1 _ n+1,1 _ n+1,1 _ n+1,1 _ -
prtbl = pn n D Vs (4.5)

b, wn,g T Ywn,i) w,i — w,»

n__n—1
Using Eq. (3.2), we approximate the time derivative for the porosity as 85? ~ % with ¢? = ¢}.

Using the previous considerations and rearranging the terms in order to put on the left hand side the

pressure, we get the following system of equations

n+1,j+1 n+1,j kn /\n+17j kn n+1,54+1
_ Pina AL Lt ,i+1/2%i41/2 Si—1/2%i-1/2\  Pi—1 AvHLd pn
Azx it1/2%iv1/2 T Ps Az Az Az si—1/2"i—-1/2
Frt on — gt
L,
— § “ Ay 28T T Ag
Pa At
a=w,n
n+1l,j  n+l,j n+1,j n+1l,j  n4l,j n+1,j
" 1)\71+1,j n Peit1/2 Sw,it1 ~ Sw,i n ODe i 1172 Qo 11— G 7
2 A i+1/27i+1/2 0 Az Oawn Ax
n+l,j  n+l,5 n+1,j n+1,j n+1,j n+1,j
+ 1)\”"!‘17]' n pc,i71/2 Swyi—1 " Swyi + 8pc,i71/2 Aymyi=1 — Qpm i
27Ai-1/2%i—1/2 05y Az Otyn Az

n n+1,j n n+1,j5 n n+1,5 n n+1,j5
- Q[Pw(kiﬂ/z)\w,iﬁ/g - i—1/2)\w,i7]1/2) + Pn(ki+1/2>‘n,i+f/2 - i—l/QAn,iff/Q)]
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Multiplying AzAt in both sides, we finally obtain

_ n+1,j+1yn+1,j n
Dit1 )‘E,i+1/2 ih1/2000

n+1,5+1 [ yn+l,j nt1.j
+ p; ()‘z,i+1/2 i+1/2 T A5 inl/?) At

_p7b+1,]+1)\n+1,] n At

i—1 2,i—1/2 i'—1/2
F’IL—‘!-I
= D —APAL - (9] - ¢ A’
a=w,n pa (47)
n+1,j n+1,j
+}>\n+.17j n pc,i+1/2( ntlj nf1,j)+ Pc,i+1/2( ntlj n,+1jj) At
2 Ayi4+1/2"i41/2 asw w,i+1 w,t aawn wn,i+1 wn,i
n+1,j n+1,j
L nt1, Pei=1/2  nt1,j +1,5 8pc,i—1/2 41,5 +1,5
A bt (T G - ) + R i) ) A
+1,5 +1,5 +1,5 +1,5
o g[pw(k;l+1/2)‘;z,i+{/2 B ?71/2A3,i731/2) + pn(k?ﬂ/z)‘z,wf/z - ?71/2)‘:@7{/2)]A$At
Defining
+1,5 ,
ai:)‘;,w{/z i 1<i<N-1
Fn—!—l
b= Y —EA’At— (¢ - ¢} )A?
«

a=w,n

At

n+1,5 9 n+1,j
+ 1)\71—&-1,_7' n pC,i+1/2( n+l,j n+1,j) + pCJH’l/Q( n+l,j n-‘rl,j)
9 Ait+1/2 i+1/2 s w,i+1 w,i da wn,i+1 wn,i
w wn

1 8pn+1;j/2 apn+1,1]‘/2
v+1,7 c,i—1 +1,5 +1,5 cyi— 141,57 +1,5
+ 5)‘2,@—]1/2 ?—1/2 (8510(83’”{ - Sz,i )+ m(aln,iﬁ - a’Z)n,ij)> At
+1,5 +1,7 +1,5 +1,5
= glpw (k1 o Ny 31 0 = Ki1 o N1 y0) + Pkl 1 o A0 i3] o = KTy o A1 p) | Az AL

we can write the linear system of equations for the pressure in the matrix system Ap"tiitl =b

BCs BCs
—a1 a1+ a2 as 0 0 0 0 nt1,541 5
0 — — Py b2
a2 az + as as 0 0 0 0
p;r+i,j+1 — bz
0 —ai—1  ai—1+ta; —a; 0 0
n+1.,j+1
0 0 0 0 —aN-2 anN-2+an-1 —anN-1 PN b];\gl
BCs s
4.1.2 Saturation equation
We start writing the expression for the saturation equation in 1D
0Ppsy 0 0 1 Fy
- = k — Zp.) — = 4.8
o~ ap Mwk(5s (P = 5pe) = pag)) o (4.8)

We integrate in a control interval [x;_y /2, Zi41/2]

Tit1/2 a¢8w Tit1/2 o 0 1 Tiy1/2 Fw
/1 T dr — /l 5 ()\wk(a—z(p — ipc) — png))dx = / —dx (4.9)

Ci—1/2 i—1/2 Ti—1/2 Pw
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Using the Fundamental Theorem of Calculus for the left integral and the midpoint rule for the right

integral
8(257;5“;71' 0 1 0 1 Fwﬂ‘
—arAr = k(g2 (= 5pe) =Pn9)) i1y + k(5 (P = 5pe) = Png)), 1 )n = oy N7 (410)

Now we have to approximate the temporal derivative for the saturation. This can be done with the

Implicit Euler’s method (3.2). Considering the inner iteration / and the chain rule for the capillarity

pressure
n nt1,j+1 nn
i Sw,i —@i'S; Ag
At
n+1 n+1,5+1 n+lj  ntlj+1 n+1,j+1
i n+tl,j (pi+1,j+1 —Dp; 1 OPiviy2 Swi1 T Swii
+1/2%w,i+1/2 Az 2 0S4 Az

n+1,j n+1,j n+1,j
pc,i+1/2 Qoymyitl — Qi
+ - png)

Oy, Az (4.11)
n+1,j+1 n+1,5+1 gpntld  ntlgtl | 1+l :
g At (pz-_l —p; 1 (9Pei1/2 Sw,i1 Sw,i
=127 w,i-1/2 Az 2 DS Az
n+1,j n+1,j n+1,j
apc,i—l/2 Ayn,i=1 — wn,i —p g)
Oyn Az "
F’nrl'»l
=Y Az
Pw
Rearranging terms and multiplying Az At in both sides
n+1,j
Litlpn el apc,i+1/2§
w,i+1 i+1/2%w,i4+1/2 aSw 2
n+1,7 n+1,7
+omt T graa? = (K A Peivifz g vty Poicipe 55
w,i i i+1/2% w,i+1/2 asw i—1/2%w,i—1/2 asw 2
n+1,j
4o gntLiHlgn o antlg apc,i71/2 ﬁ
Swi-1 Fi—1/2Mpi-1/2 Os 2
w (4.12)
FTL-‘,‘-l
_ Tw,i 2 n_n 2
= ——Azx At + ¢}'s;, Az
. ,
pn+1,j+1 an+1,j an+1,j
n n+1,j n+1,5+1 n+1,5+1 c,i+1/2 %wn,i+1 — Ywn,i
+ k12X i1 2 (Pig —D; T T oa 5 — pngAz)At
wn
n+1,j n+lj an+1,j

. . . D, i Qopm i Z
+k?71/2)\n+17j ( n+1,j+1 —p?+1’]+1 - c,i—1/2 Ywn,i wn,i—1 —pngAx)At

w,i—1/2\Pi—1 Dty 9
Defining
apr T, At
_n n+1,5 c,i+1/2 At . .
di = ki1 /2005412 05w 2 l<i<N-1
nJ'rl
e; = —2 Az?At 4 ¢I's”, Ax?
w
pn+17j an+1,j n+1,j
n+1,j n+1,j+1 n+1,5+1 ¢,i+1/2 Ywn,i+1 — Ywn,i
+ k?+1/2>\w,i+1/2 (pi+1 - pl - aa 2 - pngAx)At
wn

pn-‘rLj an-i—l,j _ an+17j

n n+1,5 n+1,j+1 n+1,5+1 c,i—1/2 “wn,i wn,i—1

T k1 oA i1 2P —p; - — pngAx)At
’ O0Qwn 2
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we can write the linear system of equations for the saturation equation in the matrix system Bs® 17+l = e

BCs
1,j+1
8111+ ,J+ e

1,7+1
B S;LJr S = €;

1,541
SN EN-1

BCs

BCs

0 0 0 0 dy_g Az?¢%_ | —dy_p-—dyx_7 dx_1
BCs

4.1.3 Interfacial equation

We start writing the expression for the interfacial area equation in 1D

Own 0 Oawn \
o m:(“w”kw” o ) = Fun (413

We integrate in a control interval [x;_; /2, Zi41/2]

Lit1/2 aawn Tit1/2 a aawn Tit+1/2
— — = E 4.14
/z ar 0 /m o (““’"kw" oz )™ /z/ wnh (4.14)

i—1/2 1/2

Using the midpoint rule and the Fundamental Theorem of Calculus

OQwn O0Qwn

Oawn
W)H—l/Q + (aw”kw”W)i—l/2 =

ot

Az — (awnkwn EyniAx (4.15)

Considering again the inner iteration 7, the approximation for the temporal derivative, and the chain rule

an+1,j+1 —an n+1,7+1 _ an+1,j+1
wn,t wn,t Az — k™ an—i—l,j ( wn,i+1 wn,t )
At wn,i+1/2%wn,i4+1/2 Ax
n+1,j+1 n+1,j+1
_ n+1,5 (awn,ifl — Qi (4.16)
wn,i—1/2%pni-1/2 Az )
= E" LAz

wn,i
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Rearranging terms and multiplying Az At in both sides

n+1,7+1;.n n+1,j
- Yawn,it+1 kwn,i+1/2awn,i+l/2At
n+1,j+1 2 n n+1,j n n+1,5
awn,i (A.I‘ + (kw7z,i+1/2awn71+1/2 + kwn,i—l/Qawmi_l/Q)At) (4 17)
. an+1,]+1 n n+1,5 At

wnyi=1 Mwn,i—1/2%ni-1/2

— (E"+1.At +a” )A.%‘Q

wn,t wn,i

Defining

+1,5 .

ri = (E"YLAt +a, ) A2?

wn,t wn,t

we can write the linear system of equations for the saturation equation in the matrix system Qa1+l =

BCs
n+1,7+1 r
wn,l 2
n+1,7+1 .
Q a’wn,i T
n+1,7+1
aum,,N 'N-1
BCs
BCs
—q1  Az? +q1 +ao —q2 0 0 0 0
] —qg Am2+q2+<13 —q3 0 0 0 0
Q= 0 —qi—1 Ax? g +qy —aq; 0 0
0 Y 0 0 —an—2 As?tan_o+an_1 —an—1

BCs

4.1.3.1 Boundary conditions

In the following pages, we show a way to deal with boundary conditions for the pressure and saturation

equation. It is analogous for the interfacial area.

4.1.3.1.1 Dirichlet boundary conditions
Let us suppose that we have Dirichlet boundary conditions for the pressure equation on the right boundary
(p(L,t) = pr(t)). Because we consider a cell-centered grill, we do not know the value of the pressure
derivative on the right boundary, but we know the pressure. So one way to deal with Dirichlet boundary

conditions is to modify the size of the two boundary cells (Thomas 1995) as follows



4.1 1-D formulation 35

A 5
‘ ilfol | if%N |33N:1—L‘

Figure 4.1.1 Modification in a half-cell for Dirichlet boundary conditions in 1D. We observe the change
of size for implementing the condition.

Then, considering a half cell on the right boundary, the integration results

) n+l  ntl,j+1 ) n+1,j+1 _pn+1
_ o\l n Pr N LAt pn N N-1
E,N+1/2"N+1/2 Az S,N—1/2VN-1/2 Ax

2

n+1 n n—
Yo [aNade o0,

a=w,n Pa 4 At
n+1,j n+1,j n+1,j n+1,j n+1,j n+1,j

1)\n+1,j i DPeN+1/2 Sw, N1~ SwN 8pc,N+1/2 Gy, N+1 ~ Cwn,N (4.18)

+ 5 A7N+1/2 N+1/2 85 Ax aa Az
w P} wn 2
n+1,j n+1,j n+1,j n+1,j n+1,j n+1,j

+ 1A"+11j n pc,N71/2 Sw,N-1 ~ Sw,N + 8pc,Nfl/Q Qyn,N—1 ~ Qyyn, N

2 AN-1/2"N-1/2 08y Az Otuyn Az

n n+1,5 n n+1,j n n+1,5 n n+1,5
- g[pw(kN+1/2)‘w7Nerl/2 - kN—1/2>\w,N£1/2) + Pn(kN+1/2>\n,N+j1/2 - N—1/2>‘n,N31/2)}

From the last equation, we just rearrange terms and we implement in the last row in the matrix system
for the pressure. Nevertheless, we need the value of SZJr]\l,frl If we have for the the saturation equation
on the right boundary Dirichlet condition, we already know the value sZ)JrAl,il = syu(L,t) Vt. If instead
we have a Neumann boundary condition (s,(L,t) = qr(t)), we approximate the value as

n+1,j n+1,j

S — S . A.’L' .
n+l1 _ “w,N+1 w, N n+1l,7 _ n+1 n+1,j
4r - Az = Sw,NJrl =d4Rr 2 + Sw,N (419)

2

4.1.3.1.2 Neumann boundary conditions
Let us suppose that we have Neumann boundary conditions for the saturation on the right boundary
(st,(L,t) = qr(t)). Because we considered a uniform cell-centered grid, we already know the value for

the derivative on the boundary, so after integration and substitution we get

n ntl,j n .n

Nsw7N - Nsw,NAx
At
n+1,j+1 n+1,j+1 n+1,j
_am AL (pN+1 — PN _} 8pc,N+1/2 ntl
N+1/2 w,N+1/2 Az 2 as R
2 w
n+1,j n+1,j n+1,5
apc,N+1/2 Cpn,N+1 ~ Qwn,N
da Az _png)
wn 2
+1,5 +1,5+1 +1,5+1 (4.20)
n+1,5+1 n+1,j+1 n+1,7 n+1,j _ntlyj
_n \nHLi (pN S e n"12 SwN?T — Swn
N=1/2"w,N-1/2 Az 2 s Az
n+1,j n+1,j n+1,5
6pc,N—1/2 Qun,N-1 ~ Cyn,N 0 g)
Oy, Az "
n+1
N
= 2T Az
Pw

From the last equation, we just rearrange terms and we implement in the last row in the system matrix

for the saturation. For computing the mobilities and derivatives of capillary pressure on the boundary,
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we need to approximate the saturation on the right boundary. We use the following approximation

n+l,j+1 _ n+1Al‘ n+1,j+1
Sw,N+1 — 4R B t Sw,N (4.21)

4.1.3.1.3 Flux boundary conditions
Now, let us suppose that we have flux boundary conditions on the right boundary (n-su(L,t) = qr(t)).
Because we consider a uniform cell-centered grid, we already know the value of the total flux on the
boundary, so after integration and substitution we get

WA.%‘ +qr(t) + (k()\zafz + 5/\A or (Awpw + )‘npn)g))z\/—l/z = Z

Foc,N
Pa

Az (4.22)

a=w,n

From the last equation, we can just follow the previous method and rearrange terms in order to substitute
in the matrix system for the pressure equation. After solving the system, using the expression for the
total flux

us = ~k(AsVp + $AAVPe ~ (Awpu + Aupn)e) (4.23)

We approximate the right pressure

n+1 n+1,j n+1,j

Az
. == . .S — S . . .
n+1,j+1 _ 2 r Lyn+1 ‘nt1,5 5w, NH T Sw,N n+1,j n1, nt1,j+1
pN+1 - _An—‘rl’j ( L 5)\A,N pc7N Az _(Aw,N pw+An,N pn)g +pN (424)
=N N 2

4.1.4 Validation of the two-phase flow model in 1D

After discretizing the pressure, saturation and interfacial area equations, we should test if the algorithm is
working. In this section we test our algorithm with two analytic solutions, computing the error reduction
in order to check if the numerical solution approximates to the continuous one, and also with a benchmark

simulation.

4.1.4.1 Analytic solution

In this section we present the numerical results for using the previous algorithm given two analytic
solutions. First, we test our algorithm just considering the pressure and saturation equations verifying

the error reduction, and after we test the algorithm including the interfacial tension equation.

4.1.4.1.1 Example 1
We consider a 1-D domain of size L = 1. We test our scheme for the next analytic solutions and

parameterizations

p(z,t) = ta? Sw(x,t) =€+t De(Swy Qn) = fsfu kraw(Sw) = Sw Ern(Sw) = 28y
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with Dirichlet boundary conditions for the pressure and saturation, except on the right boundary for the

pressure, where we give the flux

p(z,0) =0 p(0,t) =0 n-us(L,t) = —(3(t+eM)2tL — eX(t + e")?)
Sw(z,0) =€” $u(0,t) =14+t s,(L,t)=el +1t

We consider
k=pw=0¢=pn=pw=p,=1

The source/sink terms are given by

Fy

" = ¢ — k(2t(ze” +t +e%) + (t +e%)e* ™ 4 (t 4 ) (te” + 2e*7))
F,

= ¢ — k(4t(ve® +t+e”) — 2(t + e")e® — 2(t + ) (te” + 2e%7))
Pn

We present the results of the analysis of convergence in Table 4.1.1, where we halve the size of the time

and space step in each case.

Table 4.1.1 Pressure and saturation errors for the analytic validation in 1D. We test for different mesh
sizes and time steps, with L =1 and T = 0.1.

Ax At L, 2 error L, error | reduction p | reduction s
1 0.2 0.01 0.039244 0.012350
2 0.1 0.005 0.0090652 0.0024305 4.3291 5.0814
31 0.05 0.0025 0.0021532 | 5.1367e-004 4.2101 4.7316
4| 0.025 | 0.00125 | 5.2277e-004 | 1.1628e-004 4.1189 4.4176
51 0.0125 | 0.000625 | 1.2866e-004 | 2.7555e-005 4.0632 4.2200

From Table 4.1.1 we observe that the error reduction for both pressure and saturation approximates to
4, which is the behavior expected (Iserles 2009).

Simulation 1, t=0.1 Simulation 1, t=0.1

0.1 T T 3 T

0.08 1 26
o 0.06 §22¢t
2 b=
5 E
&~ 0.04 & 1.8t

0.02 1 1 147}

0 . . : . 1 . . . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Distance Distance

Figure 4.1.2 Pressure and saturation profiles for the analytic validation in 1D. The size partitions we
used are dx= 0.025 and dt= 0.00125.
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4.1.4.1.2 Example 2
Now, we also consider the interfacial area equation. We test our scheme for the next analytic solutions

and parameterizations

2

p(z,t) = tx Swlx, t) =e" +1t Qo (x,t) = tsin(x)

2 krn(Sw) = 28w

pc(swa awn) = 7&12U”$w kr,w(sw) = Sw

with Dirichlet boundary conditions for the pressure, saturation and interfacial area, except on the right

boundary for the saturation and interfacial area, where we have Neumann conditions

p(x,0) =0 p(0,t) =0 p(L,t) = tL?
Sw(z,0) = €” sw(0,t) =141 a;—;(L,t):e’:
An(2,0) =0 awn(0,t) =0 ag;un (L,t) =tcos(L)
where we consider
kwn = pw =0 = pn = b = b =1 k = 0.001
The source/sink terms are given by
Il;—w =1—k(2t(xe® + €® +1)
— %(6x(—2t2(sin(x)26m(ez + 1) + sin(z) cos(z) (e + 1)?)) + (e” + t)(—2t*(2sin(x) cos(z)e” (e* + t)

+ sin(z)2e”(e® + t) + sin(z)?e*® + cos(z)?(e” + t)* — sin(z)?(e® + t)? + 2sin(x) cos(z)(e” + t)e”))))
% = —1— k(4t(xe® +e* + 1)

+ (e® (=2t (sin(z)%e” (e* + t) + sin(z) cos(x)(e® + 1)?)) + (e” 4 t)(—2t*(2sin(x) cos(z)e® (e” + t)

+ sin(z)2e”(e® + t) + sin(z)%e*® + cos(z)? (e + t)? — sin(z)?(e® + t)? + 2sin(x) cos(x)(e” + t)e®))))

Byn = sin(z) — kynt*(cos(x)? — sin(z)?)
We present the results of the analysis of convergence in Table 4.1.2, where we halve the size of the time

and space step in each case. From the table we observe that the error reductions approximates to 2.

Table 4.1.2 Pressure, saturation and interfacial errors for the analytic validation in 1D. We tested for
different mesh sizes and time steps, with L =1 and T = 1.

Ax At Ly error | Lg oerror | Ly, oerror | redp | red s, | red ay,
1 0.2 0.1 0.015756 0.0063866 0.0083452
2 0.1 0.05 0.011011 0.0037196 0.0037359 1.4309 | 1.7170 | 2.2338
3 0.05 0.025 0.0072132 | 0.0020267 0.0017916 1.5265 | 1.8354 | 2.0852
4 | 0.025 0.0125 | 0.0041720 | 0.0010494 | 8.7942e-004 | 1.7290 | 1.9312 | 2.0372
5| 0.0125 | 0.00625 | 0.0022443 | 5.3254e-004 | 4.3587e-004 | 1.8589 | 1.9706 | 2.0176
6 | 0.00625 | 0.003125 | 0.0011639 | 2.6807e-004 | 2.1700e-004 | 1.9282 | 1.9866 | 2.0086
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Simulation 2, t=1 4 Simulation 2, t=1 | Simulation 2, t=1

0.8 35 5 0.8
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Figure 4.1.3 Pressure, saturation and interfacial area profiles for the analytic validation in 1D. The size
partitions we used are dx= 0.025 and dt= 0.0125.

4.1.4.2 Benchmark simulation

We test our algorithm against a numerical simulation made by Amaziane et al. 2009, where the porous
medium has a length L = 100 m with homogeneous permeability and porosity (the gravity is neglected).
The parameters for the simulation are given in Table 4.1.3 where we assume that the gaseous phase is
incompressible (Skiftestad 2015).

Table 4.1.3 Model parameters used in the benchmark validation of the two-phase model in 1D.

Parameter Value Parameter | Value | Parameter | Value
k 1mD 10) 0.1 De 2 MPa
L, 9-10-% Pa-s Swi 0 L 100 m
Lo 0.86-102 Pa-s Sor 0 T 45 days
Pn 2 kg/m? n 2
Pw 996.5 kg/m? m 0.5

In the simulation, we consider that the porous medium is filled with 30% of gas and water is injected on

the left boundary. The boundary and initial conditions for the pressure and saturation are the following

p(z,0) = 0.5 MPa p(0,t) = 4 MPa p(L,t) = 0.5 MPa
Sw(x,0) = 0.7 50(0,1) =1 (L, t)=0

€Z

Fig. 4.1.4 shows that after 45 days of water injection, we have extracted approximately 30% of the gas.
When we compare these results with the ones shown in the paper, we observe that they present the same

behavior, despite the fact that we did not consider compressibility in the gaseous phase.
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Simulation 3, t=45 days

Simulation 3, t=45 days

4 - 1 -
3l 0.9
= —
¥ L
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Figure 4.1.4 Pressure and saturation profiles for the benchmark validation in 1D. The size partitions
we used are dx=0.5 m and dt= 3.888¢7¢ s.

4.1.5 Transport equations

Posterior to solving the pressure, saturation and interfacial area equations, we consider now the dis-

cretization of the transport equations. We start writing the transport equations in 1D

oCs) D (00 oY

5 o Dysyo o Uy Cy — PvyCy | = Ry
O(Crdsw) 0 oC, B

5 ~ <Dnsw¢ P uwC’n> =R, (4.25)
ICpopsw) O ac, _

ot gz \Prouwd g, —uwCy | = Iy

We show the discretization for the bacteria equation, and for getting the discretization for the other two

equations, we just change indexes and consider vy, = 0.

We integrate in a control interval [x;_; /2, 241 /2]

Tit1/2 8(Cb¢5w) Tit1/2 (9 aCb Tit1/2
/x ot dx /zil/z o bSw® o UpCy — $v,C | dx L Rydzx (4.26)

i—1/2 i—1/2

Using the Fundamental Theorem of Calculus for the left integrals and the midpoint rule for the right
integral

O(Ch,idiSw,i)

3t 2 = Rb,iAxi

(4.27)

aC, oC
Ax; — (Dbswcﬁai; — Uy Ch — ¢Ugcb)i+1/2 + (Dbsw(baixb — G — q{wf’(’yb)ifl/
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41

Approximating the temporal derivative, using the inner iteration 7 and rearranging terms

O A Dy b gz — W o B /20))
+ C;;rl’jﬂ(#sgtl% + AL 17;;:1/2% z+1/2¢1+1/2 + 1( w z+1/2 + it 1/20g)
+ AiDnHlm Z;z 1/2¢z 1/2 — 1( w,i— 1/2 + i 1/2“9))
O G DY o i1+ g (s + B 200)
= Ry Ax + O mijf
Multiplying AzAt in both sides
- Cz?;;lijﬂ(AthﬁuzsﬁL/zﬁﬂ/z - ﬁ( Z)Jrziuz + ¢?+1/2Ug))
+ CIZFJH(W i Ar? At(DZﬁyz w z+1/2¢1+1/2 + Dyl 1/2 w,i— 1/2¢z 1/2
WL Oty — U — 61 /ay))
Cn+17j+1(AtD"+11/2 Zm et %(uﬁf_l/z + @71 /20g))
= Ry T A2’ At + Cf 97 st Aa

Defining

1 ntl :
fi=AtD} sy pbiia, 1<i<N-—1

AxzAt

g = —5—uptl 1<i<N-1
hi = ¢} syl Ax?

AzAt
1 = 9 ¢ivg

we can write the three transport equations

1,j+1 )
- Cl?;:—lj-i_ (fb,i —9i — Zz‘)
+ C’;L;rl’]ﬂ(hi + foit+ foic1+Gi + i —gic1 —ti—1)
- C;ljlij-i_l(fb i-1+9gi—1+ ii71)
= Ry T A? At + Cp 97 st Aa

% ’U)l

C,Tfﬁ’fﬂ(fn,i - 9i)

+ C"“J“(hi + foi+ fri—1+9i — gi—1)
— Cp I (frsicr + 9i1)

= R AR AL+ C 07 T, A

1,541
- C;z-uj (fp,i - gz’)
+ Cz?jlyﬁl(hi + fpi + fpi-1+9i — gi-1)
1,541
- C;:quﬁ (fpi-1+gi-1)

= Ry T AR AL+ Cp 7 sy Ax®

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)
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Finally, we can write the linear system of equations for the transport equations in the matrix system

BCs
n+1,5+1
C'17,1 BCs
: BCs
1541 n+1,j 2 noAn on 2
Cglzr Jt Ry 7ATAL + Cfydy sy, s A
ntli+1 | _ .
D On,i - .
n+1,j+1 n+1,j 2 n n n 2
Cpi R A2 AL+ Cl @8ty Ax
: BCs
CrtLi+L BCs
b,
BCs
BCs
BCs
BCs
—fo1—91 — i1 0 0  he+ foo+ fo,1 +92+i2 —g1 — i1 0 0 —foa2+g2+iz
D —
BCs
BCs
BCs

4.1.5.1 Boundary conditions

The implementation of the boundary conditions for the transport equations can be obtained following
the same ideas as for the pressure, saturation and interfacial area equations. For the next scenarios, we

consider v, = 0.

4.1.5.1.1 Dirichlet boundary conditions
Considering Dirichlet conditions on the left boundary (C(0,t) = M (¢)), we use a half cell, so we have the

following equation

n+1,5+1 n n+1 non on n+1,54+1 n+1,54+1
Gy Prswn — CreTsn 3Ax cyTHIT oy

n+1 _n+1 n 2 n+1 n+1,7+1
—Dy5s ?3/2 +u C

At 4 3/2 “w,3/2 Ax w,3/273/2
Cn+17j+1 _ Mn+1 )
n+1 _n+1 n 1 n+1 n+1,j+1
+ D)5 8y,1 /2012 Az - “w,1/2C1/2 ! (4.33)
2
3Ax
— Rn+1;]
! 4
In this case, noting that we approximate CIL/Zl’jJrl = %(C’ILH’H'1 +M"™+1)| we rearrange terms and finally
obtain
; 3Az? Ax
n+1,7+1 n+1 n+1l n+1 n+1l n+1 n n+1
+ O (B sy 1 + At <D1/+2 Sw,+1/2 T2 T 2D?,/+2 sw,+3/2¢g/2 + 7(%,?/2 - “w,+1/2)>
; AxAt
n+1,5+1 n+1 _n+1 n n+1
— Gy ALDY s 05 — Tuw'g /2) (4.34)
; 3Az? Ax
n+1, n n n n n n n n
= (RN+ TAt + Cf 15“”1)T + (2D1/‘215w:"11/2¢1/2 + uw'j'11/22>M +1A



4.1 1-D formulation 43

4.1.5.1.2 Neumann boundary conditions
Considering a Neumann condition on the right boundary (n-VC = Q(t)), we use the following approxi-
mation for the concentration

n+1 n+1
ON+1/2 -Cy

Az

. A ;
— QL o oL Qn+1733 + ottt (4.35)
2

N+1/2

When we use the previous expression, the equation to solve on the right boundary becomes

n+1,7+1 ;n n+l n 4n .n
Cyn ¢N3wN CN¢NSw,NAx

At

n+1 n+1 n+1 n+1 n+1 n+1,5+1
— D oSuwnt1/2PN412Q" T Uy N0 <Q +C )

(4.36)
LIt el
+Dn+1 n “+1 ¢ N ~ YN-1 . n+l On+1,j+1
1/2%w,N-1/2PN-1/2 Az Uy, N—1/2% N-1/2
= Ry Az
And by rearranging terms, we finally obtain
Az
n+1,7+1 n+1 2 n+1 n+ n+1 n+1
+ONT7T (O sy vAT +At<D 125w N—1/2PN 172 T B) - (2uy, N+1/2 uw,N1/2)>
AxAt
n—&-l7 1+1
= ORI ADRE oSt N1 jp N oaye + =5t 1) (4.37)

j Az
1, n . n .n n n
:R?\;r 7A$2At+CN¢N5w7NAx2+ (D +1/25w+N+1/2¢N+1/2 w+1\1[+1/2 5 )Q FIALAL

4.1.5.1.3 Flux boundary conditions
Considering flux boundary conditions on the left boundary (n - (—¢s, DVC + u,,C) = F(t)), we get the
following system
n+1,54+1 1n n ;
C] +1,j (b?swﬁl _ Cib(b?sg’l Ag — Dl gn+ o (]n+1,1+1 01”+1,J+1 TR E—
At 3/2 3/2 3/2 Ax w,3/23/2 l
= RV Az

(4.38)

It is worth emphasizing that we approximate in different ways the values of the concentrations on the

boundaries. For the left boundary we have

Cn+1 Cn+1
¢61 :LU-Ban—Q—l n+1cn+1 _ Fvln+1

2
Fn+1Al’ + 2Cn+1¢ n+1Dn+1

CTL-‘,—I
200 s"+1 Ot 4y g Az

Meanwhile for the right boundary

n+1 n+1
C’N—&-l B C’N
Az
2

d)n n+1 Dn+1

n+1 n+1 _ n+1
NS w,N C Fr

Az Az
Cn+1 (un+1 1 Cn+1 n+1
= CUnp = N 1 ontl N T
v qu?\,s" DYy 2¢’]1\,SZ’ND"N
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4.1.6 Bioclogging

We start writing the equations for the mass balance equations for bacteria deposited reversibly and

irreversibly on the solid matrix

d(ppo
% = ki(¢o — 0)Cp — k2ppo1 + g1pp01 — d1pp01
9(pvo2) (4.39)
g
pabt 2} = ks(do — 0)Ch + g1pp02 — d1py02

We approximate the temporal derivatives using the Implicit Euler’s method (3.2)

puo Tt = oot
At (4.40)

n+1 n
PoO2i  — P03y, 1\ A1 +1 +1
— = k3(do: — ;)OS + gipeoy; — dipeosy;

At

_ 1y vt +1 +1 +1
=ki(¢o: — 0] )CyT — kapyol] + gipeot — dipyot]

Writing the unknowns on the left hand-side and considering o = o1 + 02

afjl(le;}let + pb(l + (/ﬂg +dy — gl)At)) + O'gjlklcgjrlAt = pbo—ﬁi + Atqubo,iC’gfjl

(4.41)
oy T (ksCyF At + py(1 + (di — g1)AL)) + 07T ksCy' T AL = pyoy ; + Atksgo Oy
Letting
n-&;l
a; = k1C" P AL+ pp(1 4 (ko + di — g1 max ——————)At
10y po(1+ (k2 +di — g1 Rt ngl) )
bi = k1O At
C; = pbafi + Atqubo,icgljrl (4 42)
d; = ksCpi LA '
n+1
e;i = k3O At 4 py(1 + (dy — 91 max————— ) At
3%b.q pb( ( 1 g1 Kb/n + ngl> )
fi = pvos; + Atksgo i Oyt
We obtain the update solutions
bifi — cie;
nt1 _ ViJi — Ci€i 4.43
7L bid; — a;e; ( )
nt1 _ Cidi —aifi 444
2, bldl — ;€; ( ’ )
Once we solve the previous system, we can update the new porosity
p=¢o—0=¢g—01—022>0 (4.45)

Using the parametric model for the permeability (2.33), we update the new permeability after solving

the system for the porosity

kP — ko[ 1 A 4.46
7 — N0,e - QSO' ( )

Finally, we compute the new interfacial tension, capillary number and residual oil saturation using (2.34),
(2.35) and (2.36).



4.1 1-D formulation 45

4.1.7 Validation of the concentration formulation in 1D

Once we have achieved the discretization of the transport equations, it is time to verify its functionality.
In this section we present the analysis of convergence of the error reduction for an analytic solution and

after we test our algorithm with the results from an experiment that considers bioclogging.

4.1.7.1 Analytic solution

We consider a porous medium of length L = 1. We test our scheme for the next analytic solutions with

Dirichlet boundary conditions
Cy(z,y,t) =tsinzx Cp(z,y,t) =tsinz Cp(z,y,t) =e”In(1 +¢)
We take
p=sy=Upy=Dy=D,=Dp, =1 v,=0
The source/sink terms are given by

1
Ry =sinz(1+tDy) +tcosaz R, =sinz(1+tD,)+tcosz R,=¢e" <1—|—t +In(1+¢)(1— Dp))
The reason for considering the same solution for the two first equations is to verify there is not a typo
mistake. Fig. 4.1.5 shows the concentration profiles. We present the results of the analysis of convergence
in Table 4.1.4, where we halve the size of the time and space steps in each case. From the table, we can

conclude that the numerical solver for the transport equations is working.

Table 4.1.4 Concentration errors for the analytic validation of the transport model in 1D. We test for
different mesh sizes and time steps, with L =1 and T = 1.

Ax At Ly,o error L,, o error L, 2 error red b red n red p
0.2 0.1 3.0660e-004 | 3.0660e-004 | 0.0024336
0.1 0.05 1.0691e-004 | 1.0691e-004 | 0.0011409 | 2.8680 | 2.8680 | 2.1329

0.05 0.025 | 3.1458e-005 | 3.1458e-005 | 5.4799¢-004 | 3.3983 | 3.3983 | 2.0820
0.025 | 0.0125 | 8.5153e-006 | 8.5153e-006 | 2.6793e-004 | 3.6943 | 3.6943 | 2.0452
0.0125 | 0.00625 | 2.2139e-006 | 2.2139e-006 | 1.3240e-004 | 3.8464 | 3.8464 | 2.0237

T W N =
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Simulation 4, t=1

Simulation 4, t=1
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Figure 4.1.5 Concentration profiles for the analytic validation of the transport model in 1D. The size
partitions are dx=0.0125 and dt=0.00625.

4.1.7.2 Benchmark simulation

We test our algorithm against a numerical experiment made by Kim 2006. They considered a 40-cm

column, where they continuously injected bacteria on one side in order to examine the transport and

sorption behavior through the column. The following initial and boundary conditions were used in the

experiment

Cy(2,0) = 01(2,0) = 03(x,0) =0

oCh
ox

T =0

oCy,
Do

The model parameters used in the numerical experiments are given in Table 4.1.5.

(Oa t) + uwa(O, t) = 1, Cpo

Table 4.1.5 Model parameters used in the benchmark validation of the transport model in 1D.

Parameter Value Parameter Value Parameter Value
Cho 4.32 mg171T Vg 1.61x107° cm-s~ ! g1 1.0x107 % 7T
L 40 cm Ob 1.085x10% mg1~! dy 1.0x10"7 g1
oo 0.4 k1 2.28x107° g1
Uy 2.17x107% cm-s~! ko 3.56x1077 st
ap, T 0.27 cm ks 1.72x1076 51

For the numerical experiment, we partition the domain in 240 elements and consider time intervals of
dt=.0026. We present the simulation profiles in Fig 4.1.6
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Simulation 5 Simulation 5
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Figure 4.1.6 Concentration profiles for the benchmark validation of the transport model in 1D. On the
left plot, we have the relative bacteria concentration in the aqueous phase, while on the right plot, we
have the bacteria attached to the solid phase after 4, 20, 40 and 60 days respectively.

In the first plot, we observe an increment of bacterial concentration as time passes, being greater on the
left side of the porous medium than on the right because we have greater amount of bacteria attached to
the rock on the left as seen in the second plot. Comparison with the simulation results published in Kim

2006 show similar behaviors for the different final times.

4.2 2-D formulation

In this chapter we extend the implementation of our two-flow model to the 2-D case. In this study,
we consider rectangular domains with regular rectangular partitions of dimensions L x W. We define
the size of the partition in the horizontal direction as Az and for the vertical direction Ay. Fig. 3.1.2
shows a partition of a rectangular domain, where we label the four boundaries of the element €;;. For
general nonorthogonal grids, multi-point flux approximation (MPFA) mehtods are used (Aavatsmark
2002, Klausen et al. 2008).
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4.2.1 Pressure equation

We start writing the expression for the pressure equation in 2D

d¢ 1 F,
ar k(A A e = (Awpw + Anpn = -
57~V K(AsVp+ SAaVpe = wpw + Anpn)g)] a;;n o
We integrate in a control square €2;;
0¢ 1 F,
= _v-[k - _ - Ta
/Qij <8t V- [k(AoVp + 5AaVpe = (Awpw + Anpn)g)]>dl‘ /QJ a:zw:n o dx

Using the divergence theorem

06 1 - F,
o TR [M (k(AsVp + 3AaVpe — (Awpuw + Anpn)g)) -ndS = /Q > p—adx

i oa=w,n

Splitting the left integral

0 1 F
/ a—(fdx - / kAsVp - ndS — / k5 AaVpe n dS+/ K(Awpw + Anpn)g - ndS = > Sdw
Qij Vi Yij Vi Qj a=wn P
Using the chain rule for the p,
Ipe Ope
Vpeij = D50 (Sw,ij» Qwn,ij)VSw,ij + m(sw,ij7awn,ij)vawn,ij
and the TPFA for the gradient
Wpom)| o~ Pl mPE) g Pat —Pi)
Yijt Az Yijz Ay
(Vp-n) ~ (P ~Pic1g) (Vp - n) ~ _ Pij — Pij+1)
i, Ax , Ay
Vij3 Yija
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we obtain
Dit+1,j — Pij / kdgds 4 Pid+l = Pis / ks dS
Az Yij1 Ay Yij2
+ZM/ IAndS + M/ A dS
Az Vij3 Ay Yij4
+1 Sw,i+1,j — Sw,ij / 8]% k’)\ dS+ Auwn,i+1,5 — QGuwn,ij / 8}% k_/\ ds
2 Ax i1 054 Az i1 Oty
+} Sw,i,j4+1 — Sw,ij / 3}% GPe pAAdS + Qwn,i,j+1 — Gwn,ij apc EAAdS
2 Ay Yij2 asw Ay Yij2 aaw”
1 Sw,i—1,j — Sw,ij / apc Qwn,i—1,j — Qwn,ij / 3]%
- ——kAadS : 2 kAadS
Jr2( Ax g 08y + Ax i Oywn A
1 w,,j—1 7 Sw,ij c wn,t wn,ij c
+(S*’J . s’ﬂ/ e 5 s + Lumsii=1 — Qunij O kAAdS)
2 Ay Yo 054 Ay Yo Otyn
F, 0
Qi a=w,n Pa Qi at
—pwg/ kwdS + pwg/ k)\wdepng/ kAndS + png/ kAndS
Yij2 Yij4 Vij2 Yij4

Using the mid point rule twice for approximating the integrals for the porosity and for the source/sink

term, we approximate the parameters on the boundary, using the inner iteration ™

and rearranging the

equation
n+1,m+1 n+1,m 2
p2+1] kz+1/2])\2 z+1/2]Ay At
n+1,m-+1 n+lm 2
+ D41 tir1/22% g1 AT AL
n+1,m-+1 n+1l,m 2
+p1 1,5 kl I/QJ)\Z'L 1/2]Ay At
n+1,m-+1 n+1lm 2
+P;1 ij—1/2/\z i j—1/2A$ At
n+1lm+1 n+1lm n+1l,m 2
~ Pij (k12,0 0412, JAy TR 1228 120
‘*‘kiq/z,g)‘zz 1/27Ay + ki 1/2)\2” 1/2Ax )At
n+1
2A,,2 -
== > EAPAYPAL+ (¢F; — oA Ay
a=w,n «
n+1lm n+1lm
. 1 n+1,m apc,i+1/27j( n+l,m n+1,m) apc,i+1/27j( n+l,m n+1 m 2At
2 z+1/2,g Ait+1/2,5 85 w,i+1,5 w,ij 8awn wn,i+1,j Ay K%
n+1 m 6 n+1l,m
1kn n+1 m C l,]+1/2 n+1,m n+1,m pc,i,j+1/2 n+1,m n+1 m, Az 2At
- 7]+1/2 Ay, j+1/2 Sw J,j+1 sw,ij ) + ( wn,i,j+1 Ayn ,ij
2 b Own
a n+1 m n+1,m
1 n n—i—l m pC i— 1/2,] n-‘rl,m n+1,m pc,ifl/lj n+1,m n+1 m A 2At
2 i— 1/2,.] Ayi—1/2,5 054 wifl,j T Cw,ij )+ Oty ( wn,i—1,5 — Qwn,ij Y
n+1lm n+1m
B 1 n n+1m ap(‘ 0] — 1/2 n+1,m _ Jntlm apc,i7j—1/2 n+lm ntlm A 2At
9 lii— 1/2 Ayij—1/2 D5 Swyij—1 7 Sw,ij )+ 78%,” ( wn,ij—1 — Qwn,ij ) | A
n+1,m n+1,m n+lm n+1,m 2
_g[pw(k ,]+1/2Aw i,7+1/2 kl] 1/2Aw ij— 1/2)+p"(klj+1/2)\nl]+1/2 klj 1/2Anz] 1/2)]AJI AyAt
(4.47)

This previous system with initial and boundary conditions allows to solve for the pressure variable.
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4.2.2 Saturation equation

We start writing the expression for the saturation equation in 2D

8¢8w 1 Fw
- . >\wk — 5Pc) = Pw - — .
o~V Quk(V(p = 5pe) — pug)) . (4.48)
We integrate in a control square €2;;
8¢Sw 1 Fw
— V- (M\k — =) — puw = — 4.4
/Qij ( 5~V Quk(V(p—gpe) —p g)>)dx /Q] P¥ (4.49)
Using the divergence theorem
OPS 1 F,
|25t [ 0wV 35— pug) mds = [ Trav (450)
Qij ot Vi 2 Qij Pw

Splitting the left integral, using the chain rule for p., the approximation of the gradient, the approximation

of the temporal derivative and the inner iteration ", we obtain

n ntlm+l . n n
ij Swig ij Sw,ij AzAy
At
n+lm+1l  n+lm+l1 p7n+1,m+1 _ ntlm+l
_ yn+lm n 141,57 1,7 __yn+lm n i,7+1 0,7
)‘w,i+1/2,j i+1/2,5 Ax Ay )\w,i,j+1/2 i,j+1/2 Ay Az
n+1,m-+1 _ n+1,m+1 n+1,m+1 _ n+1,m-+1
_yn+lm n Pi1j Dij Agy — \mHLm gn Dij—1 Pig Ag
w,i—1/2,5"i=1/2,j Ax Y= Awij—1/2i5-1/2 Ay
n+1,m n+1,m+1 n+1,m+1 n+1,m n+1,m n+1l,m
n Lynttm  gn Peit1/2,5 Swyitl,y  — Swiij n OPe,i1/2,5 Cumit1,j ~ Gwmij A
2 wyit1/2,j 7412, DS Az Dawn Az Y
n+1,m n+1,m+1 n+1,m+1 n+1,m n+1,m n+1,m
n })\nﬂ,m n Peijt1/2 Swiij+1  — Swiij 0 ciyj+1/2 Cwnyi,j+1 — Qwn,ij A (4.51)
9 Mw,ij+1/2%5+1/2 s Ay + oa Ay !
n+1,m n+1,m~+1 n+1,m+1 n+1,m n+1,m n+1,m
1>\n+1,m n 8pc,i—1/2,j wi—1,j  Sw,ij apc,i—1/2,j Copmi—1,7 — Qwn,ij A
+ 9 w,i=1/2,j%i=1/2,j 0s Az * Oa Az 4
w wn
n+1l,m n+l,m+1  nt+lm+1 b n+1l,m n+1l,m n+1,m
+ })\n—&-l,m n y pC,i’jfl/Q w,i,j—1 w,ij + pc»i,jfl/Q wn,i,j—1 — %wn,ij Az
2 wyij—1/270,5=1/2 OSy Ay Otyn Ay
n n+1lm n n+1,m
- prki,j+1/2)‘w,i,j+1/2Ax + gpwki,j—l/Q)‘w,i,j—l/QAI
prtl
— TwiH AgAy

w
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Rearranging terms, we finally get the following system of equations

b n+1,m
lsn-l—l,m—&-l n+lm  n pc,i+1/2,jA 274
9 witlg Mw,it1/2,5i+1/2,5 7&% Y
n+1,m
_'_} n+l,m+1yn+l,m Ope; it AZZAL
92 Sw,ij+1 w,i,j+1/2 1]-‘1—1/2 05w
8pn+1,m
- n+1 m+1 n+1,m n c,i—1/2,j 2
+2 w,i— wz—1/2,]k —-1/2,5 05w Ay At
n+1l,m
+1 n+1l,m+1\n+1,m n apc,i,j—l/Q A{Z}zAt
2 Sw,i,j—1 w,i,j—1/2 i,j—1/2788w
1n
+1,m+1 n 27,2
T 9 %w,ij (207522 Ay
1,m n+1l,m
5an.r Vo s op' T
n+1,m n c,i+1/2,§ A 2 nt+1,m cij+1/2 A 9
w12 k25 gAY T Ak e AT
1,m n+1,m
8pn+ ? . 8p T
n+1,m n c,i—=1/2,j5 2 n+1,m n c,i,j—1/2 2
)\w 7'_1/2]k —1/2,5 8sw Ay A’LUZ] 1/2™i,j—1/2 asw Ax )At]
n+1
w,i
“WH AZ? Ay AL+ b7 5w UAJZQAy
w
8 n+1l,m
)\n+1 m o pn n+l,m+1 nt+lm+l 10P, ,i4+1/2,5 ( n+lm n+1 m
w,i4+1/2,5"i+1/2,5 pH—LJ 4,7 2 Own Aymyit1,j — Qwn,ij
n+1,m
)\n+1 m En n+l,m+1 n+1 m+1 1 pc ,0+1/2 , nd+1,m n+1 m
+ w,i,j4+1/2"8,j+1/2 p17]+1 ] (awn,i,j-f-l Ay ,ij
o 2 Oawn
8 n+1,m
/\n+1 m k_n n+lm+1 n+lm+l 10P, ,i—1/2,5 ( m,n+1 n+1 m
+ w,i—1/2,j 1/2,5 Pi1 1,5 1,7 2 da awn,ifl,j Ay )i
wn
a n+1l,m
>\n+1 m n+lm+1l  n+lm+l 1 0P, ,0—1/2 , n+1m n+1 m
w,i,j—1/2 1] 1/2 pl,] 1 i, 2 da (awn,i,j—l Aoy K7
wn
n+1lm n n+1lm 2
00w (k7100 512 = Fivo1 22X o o) AL Ay At

)
)
)
)

2

A

Ax? AL

Ay AL

2

t
At
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4.2.3 Interfacial equation

We start writing the expression for the interfacial area equation in 2D

Oawn

ot

=V (awnkwnVawn) = Eyn (4.52)

We integrate in a control square €2;;

/ <a““’" V. (awnkanaum)>dm - / Byndz (4.53)
Q ot Qi

iJ

Using the divergence theorem

/ Oun ;. / unKun Vagn - ndS = / Euynd (4.54)

ij J ij

Considering again the inner iteration ", the approximation for the temporal derivative and the chain rule

n+1,m+1 —a® n+1lm+1 _ n+1,m+1
wn,tj wn,ij n+1 m wn,i+1,7 wn,ij
At A‘IAy kwn Z+1/27] wn Z+1/27] A.’L‘ Ay
n+1,m+1 _ n+1,m+1
n+1,m wn,t,j+1 wn,ij
- kwn z,j+1/2awn i,5+1/2 Ay Az

n+1lm+1 _ n+1,m+1
n gntLm Ayn,i—1,j wn,ij A
wn,i—1/2,5%wn,i—1/2,j Ax Y
n+lm+1l  n+lm+l
_ n+1lm wn,i,j—1 wn,ij
kwn,z,j 1/2awn i,j—1/2 Ay Az

(4.55)

= E"TL AzAy

wn,ij
Rearranging terms and multiplying AzAyAt in both sides, we finally obtain

n+1m+1 n+1
wn,i+1,5 kwn 7,+1/2,J wn ’L+1/2 ]Ay At

n+lm+1;n n+1,
Qo ,i,5+1 kwn 1,]+1/2aum i ]+1/2A.’E At

n+lm—+1;n n+1l,m
wn,i—1,5 Vwn,i— 1/23aumz 1/2jAy At

n+lm—+1;n n+1lm 2
_awn,z,] 1 kwn Ji,j— 1/2awn i,j— 1/2A.’I} At (456)

—a

n+1,m+1 2 n+1l,m n+1m 2
awn,ij (AI Ay +([ wn 7,+1/2] wn,i+1/2,j +kwnz 1/2,] wn,i— 1/2,]]Ay

n+1, +1, 2
+ [kwn z,j+1/2awn z,TJrl/? + kTwn 0,J— 1/2an i ]ALL‘ )At)

wn,i,j—1/2
=(E"ML At +a” Az Ay?

wn,ij wn 13)

4.2.3.1 Boundary conditions

The treatment for the boundary conditions is analogous to the 1-D domain, but this time we have more

cases for considering the size of the cells on the corners. The next figures show how to deal with them.
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|
| W
W Ay L] . .
Ay . . .
34y
4 L ) - L )
L] L] L ]
Az 3Azx Az Ax
2 4 4
\

aAr 3Ax Ax
2
L |
|

T
second domain, Dirichlet conditions on both boundaries.

Figure 4.2.1 Modification in half cells for Dirichlet boundary conditions in 2D. In the first domain, we
consider a Dirichlet boundary condition on the left and a Neumann\Flux on the bottom, while in the

4.2.3.1.1 Dirichlet boundary conditions

Let us suppose that we have Dirichlet boundary conditions on the left and on the bottom sides for the
we have

n+1l,m-+1 n+1,m-+1
n )\n+1,n7, p2,1 p
3/2,1°'5,3/2,1

pressure equation (p(0,y,t) = pr(y,t), p(x,0,t) = pp(x,t)). After integration of the pressure equation,
— D1

Ax
n+lm n4lm n+1,m n+l,m n41,m n+1,m
+lkn \HLm Oez/2,1 Swai — Swl +apc,3/2,1awn72,1 ~ Qw1 | |38y
2 3/217A3/21\ T jg,, Az Otm Az 4
n+1,m+1 n+1,m-+1
+ |k \ntLm D12 ~— D1
1,3/2\%,1,3/2 Ay
n+lm ni4lm n+1,m n+lm ni4lm n+1l,m
+1kn \nHLm 8pc,1,3/2 Sw,1,2 — Sw,11 +apc,1,3/2 Oyn,1,2 — Gn,1,1
5 R1,3/220,1,3/2 05w Ay Dty Ay
n n+1,m n n+1l,m 3Ax
+9[pw 1,3/2)\w)1’3/2+Pn 1,3/2>‘n,173/2] 4
n+1 n+1,m+1
o gn, ntim PLa TP
1/2,17%,1/2,1 Az
2
n+lm ni4lm n+1,m n+lm nitlm n+1,m
+1kn \n+Lm OP1/2,1c Swo,] wii OPeya1 G 6t — Qi \] 34y
5M1/2,174,1/2,1 D5u % Own % 4
n+l _ n+lm+l
4 n )\n-‘rl,m pB,l pl,l
1,1/27%1,1/2 Ay
2
n+lm n4lm n+1,m n+l,m n41,m n+1,m
+1k" /\’I’L-l-l,m 8p0,1¢1/2 Sw,l,O — CPw,1,1 apc,l,l/Z a’wn,l,O_awn,l,l
2"L1/22811/2\ T g % Dty %
n n+1lm n n+1lm 3Az
— glpw 1,1/2)‘u,,1,1/2+pn 1,1/2/\/”,1,1/2} 4
Fn+1 A ¢n o ¢n71 A A
_ Z o11 SAz 3Ay 1,1 1,1 3Az 3Ay
a A
a=w,n Pa 4 4 t

4 4

The previous example gives the idea for implementing Dirichlet boundary conditions.
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4.2.3.1.2 Flux boundary conditions

Now, let us suppose that we have flux boundary conditions on the right boundary n-us (L, y,t) = qr(y, t).

Integration of the pressure equation in one of the right cells, using the divergence theorem, splitting the

left integral, and using the boundary condition leads to

n+1
—qr; Ay
n+1,m-+1 _ n+1,m+1
1 (gn \ntLm PN, j+1 PN
N,j+1/2 N j+1/2 Ay
n+1,m n+1,m n+1,m n+1,m n+1,m n+1,m
+ Ly myn+1 Penit1/2 Sunin — Swny) | OPeniti/e (Guniier — Guwn, i)
2 "N.i+1/2A7N,j+1/2 OSw Ay O Ay
n n+1lm n n+1l,m
+ g[ﬂwkN,j+1/2)‘w,N,j+1/2 + p"kN,j-H/Q/\n,N,j—i-l/Q]) Az
n+1l,m-+1 o n+1l,m+1
4 (g \n+Lm Pn_1; N.,j
N-1/2'% N-1/2,j Ax
n+1,m n+1,m n-+1,m n+1,m n+1,m n+1,m
+ lkn )\n+17m 8pch71/2’j (Sva_lvj B w,N,j ) pcaNfl/Q:j (a‘wn7N—1,j — awn’N’j) A
2 "N-1/27AN-1/2,j 05y Az Oty Az Y
n+1l,m+1 . n+1l,m-+41
+ [k )\n+1,m pN,j—l pN,j
N,j—1/2S N j—1/2 Ay
n+1,m n+1,m n+1,m n+1l,m n-+1,m n+1,m
4 lgm m \n+1 e, ji-1/2 SNyt~ Swniy ) PeNj—1/2 @un, N1~ Cunivj)
2 "N:j—1/2A7N,j-1/2 05y Ay Oty Ay
n n+1,m n n+1l,m
~ 9wk j—1/2M N1y T pnkN,jl/zAn,N,jW]) A

n+1

(03

_ Z L“’N’jAsz-F

-1
Py — PN

At

AzAy

a=w,n
Rearranging terms, we finally obtain

n+1,m+1

n+1lm
T PN 1

k%,j+1/2/\z,N,j+1/2Ax2At

n+1lm4+1;n n+1,m 2
+oNT EN_1/25 8 N2, AYT AL
n+1lm+1;n n+1lm 2
+ PN N,j71/2)‘E,N,j—1/2AI At
n+l,m+1,n n+1l,m 2 n n+1,m 2 n n+1,m 2
— Py (kN,j+1/2>‘E,N,j+1/2AI + kN_1/27j)\E7N_1/27jAy + kN,j—1/2/\E,N,j—1/2AI )AL
n+1
_ a,N,j 2A,,2 n n—1 20,2 n+1 2
=— E — = ATAY AL+ (PR — PN ) AT AYT + g AzAytAt
a=w,n o
n+1l,m n+1,m
g n /\n+1,m 8pC7Naj+1/2( n+lm n+1,m) pC,N7j+1/2( n+1,m . anJrl,m) ACEz
9 "Nj+1/27A N, j+1/2 050 w,N,j+1 w,N,j Oty wn,N,j+1 wn,N,j
n+1,m n+1,m
g n n+1,m 8pC;N*1/2,j ( n+1lm n+1,m) pc,N*I/QJ( n+1lm n+1,m) A 2
9 N-1/2"AN-1/2,j D5 w,N—1,7 ~ Sw,N,j T Oay,  wnN-1j 7 An,N,j Y
n+1lm n+1l,m
o gk" n+1l,m apcyN,jfl/Q( n+lm n—i—l,m) pcﬁNyj*1/2( n+1l,m . an-i—l,m) A.’EQ
2 N,j—1/2 A,N,j—1/2 asw w,N,j—1 w,N,j 8awn wn,N,j—1 wn,N,j

n+1lm

+1,
—Q[Pw(k%,j+1/2)‘w,zv,j+1/2 N g1/2)

KN jo1/2Mm N 12
n+lm n+1l,m
PN )\an’jil /2)]A:c2AyAt

+ (kR j41/2 n,Nj+1/2 kNj-1/2

(4.57)
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After solving the system, we approximate the value of the pressure on the right border

1 n+1 n+lm n+lm _ n+1l,m
nilmtl _ 3AT (4R 4 Lyntrm [Pen w1y~ SN
PNy1; — ntlLm \ o 9 AN Ds Az

2,N,j N,j w 2

(4.58)

Awn Az N,j

n+lm n+lm _ _wn,n+1lm
e N GwnN11, ~ AN, D L pntme

2

4.2.3.1.3 Neumann boundary conditions
Let us suppose that we have a Neumann condition on the top boundary for the saturation equation
(g—j(x, W,t) = gr(z,t)). Direct substitution of the boundary condition in Eq. (4.51) leads to

n n+lm+1l  n

M5 MSuw,i, M
iy ,i, M i )b
i w,i i w,i AﬂjAy
At
n+1,m+1 o n+1,m—+1
| yn+1,m n Piv1im Pi v
w,it1/2,M  i+1/2,M Az
n+1,m n4+1,m+1 n+1,m+1 n+1,m m,n+1 n+1,m
_ 1 n+1,m n apc;iJrl/?,M Swi+1,M ~ Sw,i,M + pc,i+1/2,M Qo yit1,M — Qm i, M Ay
2 "w,it1/2,M Vit1/2,M OSuw Az Oty Az
n+1,m+1 _ n+1,m—+1
_|ymentl pn i, M+1 P m
w,i, M4+1/2"i,M+1/2 Ay
2
n+1,m n+1,m n+1,m __n+lm
L atim i pc,i,M+1/2qn_|__1+ Dei M+1/2 Cwn,i, M1~ Gwn,i, M
2 w,i, M+1/2"i,M+1/2 8Sw T,i 8awn %
n n+1,m
+ prki,M+1/2)‘z,i,M+1/2] Az
n+1,m+1 _ n+1,m-+1
_ | yntrm n Pi1m Pim
wyi—1/2,MPi—1/2,M Ar
n+1,m n+l,m+1 _ nt+lm+l b n+1,m n+1,m __n+lm
N 1)\77,+1,m L pC,i—l/Q,M w,i—1,M w,i,M + pC,i—l/Q,M awn,ifl,M awn,i,M Ay
9 wyi—1/2,M™i—1/2,M 05y Az Oyn Az
n+1,m+1 _ n+1,m-+1
| ynt+1m n Pinv—1 i, M
w,i,M—1/2%i,M—1/2 Ay
n+1,m n+l,m+1 _ nt+lm+l n+1,m n+1,m __n+lm
B 1)\”+11m n pc,i,M—l/Q sw,i,Mfl w,i, M + pc,i,M—l/Q awn,i,Mfl awn,i,M
2 w,i,M—1/2%,M~1/2 OSy Ay Otuwn Ay

+1,
— ngkZM—l/2>‘g.,iJ\2n—1/2] Ar

+1
_ qul,i,M AzAy

w
n+lm _ nt+lAy n+1lm . 1epe . . .
where we use SwiM+1 = 4T 3 TSy N order to compute the mobilities and derivatives of capillary

pressure on the top boundary.

4.2.4 Validation of the two-phase flow model in 2D

In this section we present the analysis of convergence of the error reduction for two analytic solutions,

where in the first example we do not consider the interfacial area equation, and after we test our algorithm
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with the results from a benchmark simulation.

4.2.4.1 Analytic solution

We study the error reduction given two analytic solutions.

4.2.4.1.1 Example 1
We consider a porous medium of dimensions L = 2, W = 0.5. We test our scheme for the next analytic
solutions and parameterizations
Sw(@,y,t) = te”V + 1

pc(sw) = -

3
p(x,y,t) = ysin(z) +¢° %w

kr,w(sw) = Sw kT,n(sw) = 28111

with Dirichlet boundary conditions for the pressure and saturation and initial conditions given by

p(0,y,t) = ¢? p(L,y,t) = ysin(L) + >

p(x, W,t) = Wsin(z) + t2

p(z,y,0) = ysin(z)
p(z,0,t) = t?

sw(z,y,0) =1 sw(L,y,t) = te"tV +1

Sw(x,0,t) =te® +1

$w(0,y,t) =te? +1
so(z, W,t) = te®™W + 1

We consider

k=py=pn=pw=tn=0¢=

The source/sink terms are given by

F,
— = e — k[te® Y (y cos(x) + sin(z)) — ysin(x)(te* Y 4 1) 4 te® TV (te™ TV + 1)2 (4te” TV + 1)]
Puw
F,

= —¢e™ TV — 2k[te ¥ (y cos(x) + sin(z)) — ysin(z)(te™ Y 4+ 1) — te™ TV (te” TV + 1) (4te”™ Y + 1)]
Pn

We present the results of the analysis of convergence in Table 4.2.1, where we halve the size of the time
and space step in each case. From the table we observe that the error reduction for both pressure and

saturation approximates to 4.

Table 4.2.1 Pressure and saturation errors for the analytic validation in 2D. We test for different mesh
sizes and time steps, with L =2, W =0.5 and T = 1.

Az Ay At Ly error | Lo error | red p red s
1 0.25 0.125 0.0625 1.9121e-4 | 0.022499
2 0.125 0.0625 0.03125 4.7548e-5 | 0.0064204 | 4.0213 | 3.5043
3| 0.0625 0.03125 0.015625 | 1.1923e-5 | 0.0017886 | 3.9879 | 3.5896
4 1 0.03125 | 0.015625 | 0.0078125 | 2.9963e-6 | 4.7982e-4 | 3.9792 | 3.7277
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Simulation 6, t=1 Simulation 6, t=1

Pressure
Saturation

Figure 4.2.2 Pressure and saturation profiles for the analytic validation in 2D. The size partitions are

dx=0.0625, dy=0.03125 and dt=0.015625.

4.2.4.1.2 Example 2

We consider a porous medium of dimensions L = 2, W = 1. We test our scheme for the next analytic

solutions and parameterizations

p(x,y,t) = 2%yt Su(Ty,t) =2® +y° +1 ayn(z,y,t) = Y
pc(swa awn) = —AynSw kr,w(sw) = Sw kr,n(sw) = 2sy

with boundary and initial conditions given by

Pressure
1 2 2 1 2 2 2,2
p(.’E,y,O) =0 n- uE(O)yat) = _§kyt(y +t) n- llg(l',O,t) = _akxt(x +t) p(Layat) =L Yy t
1
n-ux(z, W,t) = —k(z* + W2 +t)(6Wtz? — ietww(tm(xQ +by? +t) +2W))
Saturation

sw(@y,0) =2” +y°  s,(0,y,1) = y* +1
n-Vsy,(L,y,t)=2L n-Vs,(z,0,t) =0 n-Vs,(z,W,t) =2W

Interfacial area

n - Vayn(L,y,t) = tyel n-Vay,(z,0,t) =0 n - Vayn(z, W, t) = tze™

where we consider

Pw = Pn = fu = fin =P = k = kyn = 0.001 g=0
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The source/sink terms are given by

Fy

Pu

1
+§emyt(2x(ty(x2 +y? 1) +22) + (22 + 2 + 1) (PyP (2 + y? + t) + dayt + 2)

+2y(ta(e? +y® +1) + 2y) + (@ + y* + 1) (2% (2 + y* + 1) + dayt + 2)))

n

Pn

1
—5e™ Q2a(ty(a® + 37 +) + 20) + (2% +y7 + (Y@ + 7 + 1) +dayt +2)

+2y(te(z® +y° +t) + 2y) + (2% + y° + ) (2% (2® + y° + 1) + dayt + 2)))

=1 — k(8x%y%t + 2t(z? + % + 1) (2 + 3?)

By = xye®™t — kanthmy(acz + %)

= —1 — 2k(8z%y%t + 2t(z% + y? + t)(2® + ¢?)

We present the results of the analysis of convergence in Table 4.2.2, where we halve the size of the time

and space step in each case

Table 4.2.2 Pressure, saturation and interfacial area errors for the analytic validation in 2D. We test
for different mesh sizes and time steps, with L=2, W =1and T = 1.

Az Ay At Ly, error | Ly, o error | Lg,, 2 error | red p | red sy | red awn
1 0.1 0.2 0.05 0.10551 0.010628 0.060792
2 0.05 0.1 0.025 0.040402 0.0065931 0.030952 2.6115 | 1.6120 | 1.9641
3| 0.025 0.05 0.0125 0.016874 0.0035531 0.015515 2.3943 | 1.8556 | 1.9950
41 0.0125 | 0.025 | 0.00625 | 0.0076123 | 0.0018126 0.0077552 2.2167 | 1.9602 | 2.0006
Simulation 7, t=1

Pressure

y

Simulation 7, t=1

Saturation

Simulation 7, t=1

Interfacial area

— 0 W R LN o

)

Figure 4.2.3 Pressure, saturation and interfacial area profiles for the analytic validation in 2D. The size
partitions are dx=0.0125, dy=0.025 and dt=0.00625.

From the table we observe that the error reduction for the pressure, saturation and interfacial area

approximate

s to 2.



4.2 2-D formulation 59

4.2.4.2 Benchmark simulation

We test our algorithm against another numerical simulation made by Amaziane et al. 2009. The pa-
rameters for the simulation are given in Table 4.2.3, where we assume again that the gaseous phase is
incompressible.

Table 4.2.3 Model parameters used in the benchmark validation in 2D.

Parameter Value Parameter | Value | Parameter | Value
k 1mD 1) 0.1 De 2 MPa
L 9.107% Pa-s Semax 1 L 100 m
L 0.86-10~2 Pa-s Ssres 0 w 2m
Pn 2 kg-m™3 n 2 T 45 days
Pw 996.5 kg-m 3 m 0.5

In the simulation, we consider that the porous medium is initial saturated with water and the gas is
injected on the left side of the porous medium. The boundary and initial conditions for the pressure and

saturation are the following

p(z,y,0) = 0.1 MPa p(L,y,t) =0.1 MPa n-ux(z,W,t)=0 p(0,y,t) =2MPa n-ux(z,0,t)=0

Sw(z,y,0) =1 n-Vsy(L,y,t) =0 n-Vs,(x,W,t) =0 5,(0,y,t) =0.4 n-Vsy(r,0,t) =0
4 Simulation 8, t=45 days 1 Simulation 8, t=45 days
3.5
0.9 4
= = 0.8
o 2.5 .5
2 i
z 2 5 074
= <
~ 15 «
0.6
1
0.5 0.5
0 0.4
2 ] 77 —r1 1 1 11 1T T1 2 | — T T I — T I 1
y[m] 0 10 20 30 40 50 60 70 80 90 100 [r:l]o 10 20 30 40 50 60 70 80 90 100
X [m] y X [m]

Figure 4.2.4 Pressure and saturation profiles for the benchmark validation in 2D. The size parameters
are dx=dy=1 m and dt=3.888e-4.

When we compare these results with the ones shown in the paper, we observe that they present the same

behavior. After 45 days of gas injection, we have not reach the breakthrough, which implies we are just
extracting water.
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4.2.5 Transport equations

Having implemented correctly the algorithm for solving the pressure, saturation and interfacial area

equations, we proceed with the transport equations. We start for writing the transport equations in 2D

% =V (DpswdVCy — uy,Cp — ¢vyCy) = Ry
% . vAN (DpsquVCp - uwcp) =R,

We show the discretization for the bacterial concentration equation and for getting the discretization for

the other two equations, we just change indexes and consider vy = 0.

We integrate in a control square €2;;

/ <8(Cb¢sw) —V - (DpsuVCy — u,, Cp — ¢Vgcb))dx = / Ry dx (4.60)
Qi ot Q

Using the divergence theorem for the left integral and the midpoint rule for the right integral
a(C
/ ( b¢$w) de — / (Dbsw¢>VCb — 1, Cp — ¢Vgcb) -ndS = Ry dx (4.61)
Q ¥

ot ij Qij

ij

By splitting the left integral, using the approximation of the gradient, considering that ar = ar, the

approximation of the temporal derivative and the inner iteration " we obtain

n+1m+1 n n+l n n n
Clm'j d)ijsw,Aigl’f_ b,ijPijSw,ij AzAy
n+lm+1 Cn+1,7rz+1
_Dn+1 8n+1 n b,i+1,j b,ij A
bit1/2,5%w,i+1/2,jPi+1/2,5 Az Y
C7L+1,m+1 _ Cn-‘rl,m+1
_Dn+1 8n+1 ¢n bij+1 b,ij Az
byiyj+1/25w,i,5+1/2Pi,5+1/2 Ay
n+1,m+1 _ n+1,m-+1
7Dn+1 $n+1 n 4Ob,i—1’j quij A
bi—1/2,j%w,i—1/2,j7i—1/2,j Az Yy
n+1,m+1 _ n+1,m-+1
_ pn+l n+1 n byi,j—1 b,ij
Db,i,j—1/25w,i,j—1/2¢z‘,j—1/2 Ay Az
n+1,m+1 n+1,m+1 n+1,m+1 n+1,m+1
Lt Coiviy  +Chi Ay + urt! bigr +Chij A
ww,i+1/2,j D) Y7 Uyyijt1/2 9
n+1lm+1 n+1m+1 n+1,m-+41 n+1l,m+1
it Chii,j  +Chi Ag— it Coijii + G Az
wa,i—1/2,j 9 Y= Uy ij—1/2 9
n—‘o—},m,—i-l + n—li-‘l,m+l Cn+1,_m+l +Onfl,m+1
n b,i,j+1 b,ij A n byi,j—1 b,ij A
~ i j+1/2Y 5 Y+ @i j-1/2Y 5 T

1,m+1
:RZZ M AzAy
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Rearranging terms, we obtain the following system

Cgl,;;‘l’mﬂ{[ ij Sw ”AgcQAy + DZL:F+11/2,J wt+1/2,3¢?+1/2,j
+ Dgtj—ll/Q,j5321—1/2,]"1)?—1/2,3‘ + (UZ:,1i+1/2,j - uZl_}i—l/27j)%]Ay2At
+ [ngyl+1/2 w+z’1+1/2¢?,j+1/2 + thj,gl'fl/fm}jfl/ﬁﬁj*l/?
(u:g,li,jﬂm - uz-@"/_,li,j—lﬂ = (84172 — ¢ﬁj-1/2)”g)%]A$2At}
_Cglj—l}irg+1(DZL,;Z:I/Q,J‘stLiirl/z,j¢?+1/2-j - “?uilzﬂ/z JAQ )AyAt
_OZL’ZJ}QH(D;LE-HN th,lj-s-l/Z Zth+1/2 - (“Z—;}i,jﬂp - ¢Zj+1/2’09)%)A752At

_ 1, m+1 n+1 n+1 +1 Az
Cbl— (Dbzfl/Zj w271/2,]¢1*1/2j +uw:v i—1/2,5 9

A
+1,m+1 +1 n+1 Y 2
l?z,g Wll (Dl?zj 1/2 wz,] 1/2¢ i,j—1/2 ( wy,i,j—l/Q_d)zj—l/zvg)?)Ax At

=Ry AL+ CF s ) Ax? Ay

b,ij

)Ay2At

Finally, we can write the linear system of equations for the transport equations in the matrix form
MC" ™+ — R where we consider C being of the form

1,m+1
Cn+ >
b,11
1,m+1
Cm+ )
n,11
1,m+1
C’n+ 5
p,11
1,m+1
Cn-‘r >
b,21
1,m+1
Cn-‘r >
n,21
1,m+1
Cra
p,21

Cn+1,m+1 _

n+1,m+1
C’b,N,M

n+1,m+1
Cn SN, M

n+1,m+1
Cp N,M

The treatment for the boundary conditions can be complete as a generalization of the sections 4.1.5.1
and 4.2.3.1.
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4.2.6 Validation of the concentration formulation in 2D

Similar to the 1-D case, we need to run the code and make comparisons with known solutions in order
to validate the code’s functionality. In this section we present the analysis of convergence of the error
reduction for an analytic solution and test our algorithm with the results from an experiment that

considers bioclogging.

4.2.6.1 Analytic solution

We consider a rectangular porous medium of dimensions L = 2 and W = 1. We test our scheme for the

next analytic solutions with Dirichlet boundary conditions

1
Co(x, y,t) = t(si Cn(z,y,t) =t — si Coz,y,t) = ——
b(x,y,t) = t(sinx + cosx) (z,y,t) = t(cosz — siny) (2, y, 1) —
We consider
D =Sy = Uy = Uyy =Dy =Dy, =D, =1 vy =10
The source/sink terms are given by
Ry = (sinz + cosy)(1 +t) — Cp R, = (cosz —siny)(1 +t) + Cy R, =2C;(1-2C)

In this example we test the algorithm for the case when the two first transport equations are coupled
and the source/sink term for the surfactants are a function of the concentration. We present the results
of the analysis of convergence in Table 4.2.4, where we halve the size of the time and space steps in each

case. From the table, we can conclude that the numerical solver is working.

Table 4.2.4 Concentration errors for the analytic validation of the transport model in 2D. We test for
different mesh sizes and time steps, with L =2, W =1and T = 1.

Ax Ay At Ly error | Ly error | Ly o error | red b red n red p
0.2 0.2 0.1 0.0080298 | 0.0012655 | 0.0013173
0.1 0.1 0.05 0.0023322 | 2.3714e-4 | 4.4028e-4 | 3.4431 | 5.3364 | 2.9919
0.05 0.05 0.025 | 6.0926e-4 | 5.1309e-5 | 1.4079e-4 | 3.8278 | 4.6218 | 3.1273
0.025 | 0.025 | 0.0125 | 1.5455e-4 | 1.2398e-5 | 4.9410e-5 | 3.9422 | 4.1386 | 2.8494

=W N =
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Figure 4.2.5 Concentration profiles for the analytic validation of the transport model in 2D. The size
partitions are dx=dy=0.05 and dt=0.025.

4.2.6.2 Benchmark simulation

We test our algorithm against an experiment made by Hendry et al. 1997 and numerical modeled by Kim
2006. In their experiments, bacteria were introduced into the column during ¢y =38.4 hours in order to
examine the transport and sorption behavior of Klebsiella oxytoca. The following initial and boundary

conditions were used in the experiment

Cy(z,y,0) = 01(x,y,0) = 02(2,y,0) =0 n-VCy(L,y,t) =n-VCy(x,0,t) =n-VCy(x,W,t) =0

uyCro 0 <t <ty

n- (_vacb(07 Y, t) + uwcb(ou Y, t)) =
0 t >ty

The model parameters used in the numerical experiment are given in Table 4.2.5.

Table 4.2.5 Model parameters used in the benchmark validation of the transport model in 2D.

Parameter Value Parameter Value Parameter | Value
Cho 4.32 mg17! Vg 1.61x10~° cm-s~! g1 0
L 40 cm b 1.085x10% mg-1~! dy 0
W 5 cm k1 2.28x107° g1 b0 0.4
Uy 2.17x107* cm-s~! ko 3.56x10"7 !
apT 0.27 cm ks 1.72x1076 g1

For the numerical experiment, we consider a partition of the domain in 82 parts on the horizontal axis,
12 parts on the vertical axis and time intervals of dt=.00009. Fig. 4.2.6 shows the relative bacteria
concentration in the end of the column at different times. We observe that after approximately 30 hours
of bacteria injection, it is finally observed throughout the whole column. Because we stop injecting
bacteria after 38.4 hours, there is a maximum relative bacteria concentration of 1072 and after, the
concentration decreases until it reaches a relative concentration of 5 x 10~% approximately. This behavior
is due to the attachment, detachment, growth and death of bacteria. Comparison with the simulation
results published in Kim 2006 and Li et al. 2011 indicated the same behavior.
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Figure 4.2.6 Concentration profile for the benchmark validation of the transport model in 2D. We show
the relative bacteria concentration in the end of the column at different times.



Chapter 5

The effects of MEOR  including the

oil-water interfacial area

Following all previous work, we can finally perform numerical experiments to study the effects of MEOR
considering the oil-water interfacial area. In order to formulate the two-phase flow model with transport
equations including bioclogging and interfacial area, we considered the next works: Li et al. 2011 (Trans-
port equations), Clement et al. 1996 and Kim 2006 (bioclogging), Niessner and Hassanizadeh 2008a and
Joekar-Niasar and Hassanizadeh 2012 (interfacial area), Nielsen et al. 2010 (reduction of interfacial area)
and Li et al. 2007 (reduction of residual oil saturation). In each of these texts, they considered different
experimental conditions, having their respective values of parameterizations. The best way to validate
our model would be to consider just one experiment in the laboratory, where most of these parameters are
estimated. However, we could not find such an experiment in the current literature where they included
transport equations, interfacial area and bioclogging. Therefore, when we ran the program using those
parameters, it resulted in unreliable scenarios. We then looked for new parameters in order to have a

more realistic study case.

In Chapter 2 we introduced a power-law for the interfacial area parameterization @y, = (Sw,pe) (2.22).
In Joekar-Niasar and Hassanizadeh 2012, after fitting the alpha parameters to some experimental data,
they obtained o = 6.462, ag = 3.057 x 10712, a3 = 1.244 and a4 = —0.963, leading to the approach
s ~ 1. When we consider the previous remarks, the interfacial area expression that we use for the
numerical experiments becomes

awn(svac) = O41(1 - Sw)a3p?4 (51)

For modeling that biosurfactants are mainly living at the oil-water interface (Kosaric and Varder-Sukan
2015), we introduce a reaction rate of a Monod form in the maximum specific biomass production rate
coefficient in order to have a greater biosurfactant concentration in the zones with large interfacial area

and null biosurfactant production in the zones with no-interfacial area

Gwn
Hp,max = ﬂpa,maxﬁ (52)
a wn

where K, is a constant with unities [1/m)].

We consider that all bioproducts correspond to biosurfactants. In Chapter 2 we mentioned that biosur-
factants lower the interfacial tension between water and oil, leading to modification of the residual oil
saturation. Regarding the interfacial tension expression (2.34), we choose the parameters from Nielsen
et al. 2010. For the residual oil saturation relation (2.36), we consider the following values s5®* = 0.3,

or

65
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smin — (.08, Ty = 4 x 10* and Ty = 4.5. Fig. 5.0.7 shows the profiles for the interfacial tension, capillary

or T

number and residual oil saturation using the parameters in Table 5.1.3.

10 T
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104 == Capillary number [-] ——
= mmmm Regidual oil saturation [-] /
] 7
107 7
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107 10” 10"

Biosurfactant concentration [kg/m3]

Figure 5.0.7 Interfacial tension, capillary number and residual oil saturation profiles. For the capillary
number, we considering a constant water velocity of 2 x 1075 m/s. We noticed that for these parameter
values, the interfacial tension decreases after a biosurfactant concentration of 1072 kg/m? and the residual
oil saturation decreases from 1 x 1072 kg/m? to 2 x 1072 kg/m?.

5.1 Numerical experiments and sensitivity analysis

We consider a porous medium of length L = 1 m. We inject water, bacteria and nutrients into the left
boundary and oil, water, bacteria, nutrients and biosurfactants flow out through the right boundary. For
the water and oil pressures, we take the same conditions as in Li et al. 2011: p,,(2,0) = 0.981 kPa and
pn(z,0) = 9.417 kPa; leading to an average pressure of p(z,0) = 5.199 kPa and initial capillary pressure
of pe(x,0) = pp(x,0) — pyu(x,0) = 8.436 kPa. On the left boundary, we have a flux boundary condition
while on the right boundary we consider a constant pressure of 5.199 kPa. We take the same capillary
pressure and relative permeability expressions as in Niessner and Hassanizadeh 2008a, corresponding to
the Brooks-Corey parameterizations. In order to have the same initial water saturation on the right
boundary s,,(L,0) = 0.2446, we take A = 2.129. In numerical experiments, it is common to consider the
same value for the initial residual oil saturation along the porous medium (Nielsen et al. 2010, Li et al.
2011). For studying other scenarios, we consider a porous medium where the residual oil saturation is
greater in the opposite side where the water injection occurs. Then, we consider a reservoir with residual
oil saturation as a linear function of the position, having on the left boundary a minimum residual

min

oil saturation sg

= 0.08 and on the right boundary a maximum residual oil saturation s5** = 0.3.
Therefore, the left boundary condition for the water saturation is s,,(0,¢) = 0.92. Regarding the right
boundary condition for the water saturation, we consider a Neumann condition with zero value. We choose
the value for the initial interfacial area evaluating ayn(2,0) = Guwn(Sw(2,0), pe(sw(x,0))), analogously
for the left boundary aun(0,t) = @wn(8w(0,%), pe(sw(0,t))). We consider that there is neither bacteria
nor nutrients initially in the porous media and we inject them on the left boundary. We also consider a

no-flux boundary condition for the biosurfactant concentration on the left boundary.
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Table 5.1.1 Initial and boundary conditions for the 1-D numerical experiments.

Initial Left boundary Right boundary
p(z,0) = 5199 Pa n-ux(0,t) = —2.78 x 1075m/s p(L,t) = 5199 Pa
Sw(®,0) = 8y + (1 — Sop — swi)%)‘ $w(0,t) = 0.92 n-Vs,(L,t)=0
Qon (2,0) = 452.07 /m aywn(0,t) = 81.89 /m n-Vay,(L,t)=0
Cy(z,y,0) =0 Cy(0,t) = 0.5 kg/m?> n-VCy(L,t) =0
Chn(z,y,0) =0 Cn(0,t) = 0.2 kg/m? n-VC,(L,t)=0
Cp(z,y,0)=0 n-(—¢s,DpVC,(0,t) + u,Cp(0,t)) =0 n-VCy(L,t) =0

Fig. 5.1.1 shows the initial saturation distributions for our numerical experiments.

Water Oil
Bacteria Water
Nutrients Bactenia

Nutrients
Bioproducts

—> —>

Swi Sw Sn Sor Sgllum

Figure 5.1.1 Initial saturation distributions for the parametric studies in 1-D cores. Our main goal it
min

is to extract the most oil possible (s, — sT™). In our studies we consider a linear decreasing distribution
of residual oil saturation.

After setting the values of the parameters, initial and boundary conditions, we perform numerical tests.
We also do a sensitivity analysis in order to identify the critical parameters involved. In Kim 2006 he
studied the effects on bioclogging for different injected bacterial concentrations Cj, different reversible
attachment rate coefficients k1, different detachment rate coefficients ko, different irreversible attachment
rate coefficients k3 and different growth rate coefficients g;. In Li et al. 2011, they did a similar sensitivity
analysis but included the transport equations. Regarding the interfacial area, in El-Amin et al. 2015 they
did numerical experiments changing the parameters «;, as and a4 in the interfacial area expression
@n (Sw, De),however, they just considered the two-phase flow transport equations. About the interfacial
area permeability k.., we could not find studies where they show a sensitivity analysis. Then, in this

thesis we focus on the next study cases

o Reference case. We study the evolution in time of the pressure, saturation, interfacial area, capillary
pressure, residual oil saturation, porosity, permeability ratio, bacterial, nutrient and biosurfactant
concentrations and oil recovery. The aim of this study is to better understand the influence of the

different variables in all modeled processes.

o Case I. We compare the different profiles until the final time T=10 hr, for different values of k.
The objective of this sensitivity analysis is to determine the impact of the parameter k,, in the
oil recovery. In the literature, we find values of interfacial permeability from 107° m3/s (El-Amin
et al. 2015) to 10717 m3/s (Niessner and Hassanizadeh 2008a). We set ky, = 1077 m3/s in the

reference case.
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<

Case II. We test with different values of K,. This parameter changes the biosurfactant production,
having the property of fip max = % Hpa,max When a.,,, = K,. Initially the interfacial area has a value
of ay, = 452.07 %, thus in the reference case we set K, = 250 % In order to perform numerical
experiments neglecting the interfacial area influence on the biosurfactant production, we can set
K,=0.

Case ITI. The parameter «; in the interfacial area parameterization a.,,, = a1(1—s,,)*3p2* influences
the magnitude of the interfacial area giving greater values of interfacial area for greater values of
a. In the literature we find interfacial area values between 10 % (Joekar-Niasar and Hassanizadeh
2012) to 1000 - (El-Amin et al. 2015). We make a sensitivity analysis of this parameter in this

range.

Case IV. The parameter ag in the interfacial area parameterization a.,, = a1(1l — s,)*p¥ gives
the dependence on the water saturation. For solving the pressure and saturation equations, we
have to calculate the derivatives of p.(Sy, awn) With respect to s, and a,,. Therefore, we expect

different results in the pressure and saturation profiles.

Case V. The parameter oy in the interfacial area parameterization @y, = a1(1—=8,)*3p2* determines
the dependence on the capillary pressure. Analogous to the previous case, the parameter a, affects
the derivative values of the capillary pressure expression, so we make a sensitivity analysis in order

to visualize the impact of this parameter.

Table 5.1.2 shows the different parameters we study in the numerical experiments.

Table 5.1.2 Simulation matrix. pp max = upa,maxﬁ on (Sws De) = a1 (1 — 84y)*3pa

Case kyn ™ K,

3

1 . m 1
" o a3 oy ‘Case kwn "= Ko oo a3 oy

Base 107° 250  6.462 1.244 -0.963 |

II

II1

10~6 250 6.462 1.244 -0.963 | IV 107 250 6.462 0.9 -0.963
110-7 1
2
1077 1.244
31078 15
1078 2.5
10~7 10 6.462 1.244 -0.963 | V 10~7 250 6.462 1.244 -0.5
100 -0.75
250 -0.963
500 -1
1000 -1.3
107 250 0.5 1.244 -0.963
1
6.462
10
20

Table 5.1.3 summarizes the parameters we use in the numerical experiments.
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Table 5.1.3 Model parameters used in the numerical experiments.

Parameter Value Parameter Value

®o 0.4 oy 1 x 1073 kg/(m - s)
ko 0.94 x 1072m?  p, 3.92 x 1073 kg/(m - s)
Pe 2740 Pa C 19/6

A 2.129 C* 0

K, 250 /m g 0

1 max 2x 1075 /s p max 5x 1076 /s

dy 1077 /s Vg 0

k1 2.28 x 1074 /s F, 0

ko 3.56 x 1077 /s F, 0

ks 1.72 x 107 /s Swi 0.2

Ky/n 10~° kg/m3 kwn 107" m?/s
Ky/m 1 kg/m? Dgtt 1.5 x 1079 m2%/s
Yo/ 7.944 Dt 1.5 x 107 m?/s
Yy /n 1.144 Dgft 1.5x 1077 m?/s
Y, 5x1076/s P 1000 kg/m?

Qp. T 0.01 m Pn 800 kg/m‘3

O, T 0.01 m Pb 1600 kg/m3
Qp,T 0.01 m o 6.462

I 41 x 1-—4 o 0

lo 2 as 1.244

l3 180 oy -0.963

T 4 x 10* smaz 0.3

Ty 4.5 smin 0.08

Ont 3.37 x 1072 N/m

5.1.1 Reference case

When we performed the simulation using the parameters from Clement et al. 1996, Kim 2006, Li et al.
2007, Niessner and Hassanizadeh 2008a, Li et al. 2011, Nielsen et al. 2010 and Joekar-Niasar and Has-
sanizadeh 2012, it resulted in unreliable scenarios. Therefore, we looked for new parameters in order to
have a reference case and analyze the results. In this section our model for MEOR is tested using the

parameters in Table 5.1.3.

Fig. 5.1.2 shows the profiles for the average pressure, water saturation, interfacial area and capillary
pressure. From the pressure profile, we observe that the pressure in the entry decreases over time, due
to less pressure is needed after the water has displaced some oil in order to have the same flux. The
saturation profiles shows how much water we have put inside the reservoir over time, displacing more
oil at the beginning but after the water breakthrough, the recovery becomes slower. In respect to the
interfacial area, we notice that it is increassing when s,, is decreasing. This is in accordance to the results
from Joekar-Niasar and Hassanizadeh 2012. We also notice that the interfacial value decreases over time,
which is the expected behavior due to the porous medium approaching a constant water saturation of
0.92 in the spatial distribution. Analyzing the capillary pressure expression, we observe that over time it
presents an expected behavior where the capillary pressure is a decreasing function of the water satura-

tion.
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Figure 5.1.2 p, sy, aupn and p. profiles in the reference case for different times.

Fig. 5.1.3 shows the different profiles of bacterial, nutrient and biosurfactant concentration and residual
oil saturation. Regarding the bacterial concentration, we observe a decreasing behavior in the spatial
distribution, due to bacteria death, attachment to the rock or escapement on the right boundary. Nu-
trients are transported by the water, being consumed by the bacteria in order to reproduce and produce
biosurfactants, leading to a decrease in nutrient concentration. The biosurfactant concentration increases
over time. The residual oil saturation remains the same for 3.5 hours, but after this the biosurfactant
concentration is big enough to start the modification of the residual oil. After 8 hours, we notice that

the residual oil saturation almost reaches its lowest value.
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Figure 5.1.3 C),, C,,, Cp, and s, profiles in the reference case.

Fig. 5.1.4 shows the profiles of the porosity and permeability ratio at different time values. Porosity and
permeability changes are very small but still we observe the expected behavior of decreasing over time.
We used the parameters in Li et al. 2011 for modeling the bioclogging, where they also showed small
changes in bioclogging. We notice more bioclogging on the side where we inject the bacteria, which is in

accordance with the experiments (Kim 2006).
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Figure 5.1.4 ¢ and k/kg profiles in the reference case.

Fig. 5.1.5 shows the oil recovery after 10 hours of water, bacteria and nutrient injection with and without
interfacial area. We observe that after injecting 0.3 pore volume units of water, we reach the water
breakthrough and injecting approximately one pore volume units of water, the biosurfactant starts to
act, lowering the interfacial tension, extracting the residual oil saturation. Regarding the water flooding,
we notice a slight difference between them, resulting in a greater oil recovery after the breakthrough
when we consider the interfacial area. In relation with the effects on MEOR, due to the consideration of
the maximum specific biomass production rate coefficient pp max = fpmax@uwn/(Ka + Gwn) as a function
of the interfacial area, we have less net production of biosurfactants in comparison to MEOR, without
interfacial area (in this numerical experiment we consider the same value of fip max = pa,max). However,

after 2.5 pore volumes units of water injected, the oil recovery is the same.
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Figure 5.1.5 Comparison of the oil recovery due to biosurfactant action.
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5.1.2 Case I: influence of the interfacial permeability k,, in the

oil recovery

In order to compare the influence of the interfacial permeability in the different profiles with respect to
the reference case, we do a sensitivity analysis for k,,, displaying the results of oil recovery and the

different variables in Figs. 5.1.6 and 5.1.7 respectively.

From the interfacial area profile in Fig. 5.1.7, we have that for k,, = 1075 m3/s the interfacial area
approximates to an uniform distribution, while for k., = 1078 m3/s practically we have the same initial
distribution of interfacial area. On the other hand, for the capillary pressure we have opposite behavior
than the interfacial area, having greater values for k., = 107% m3 /s and lower for ki, = 1078 m?3 /s.
The saturation profiles shows a slower displacement of oil for ki, = 1076 m3/s than k., = 1078 m3/s.
In respect to the pressure profiles, we have just slight differences on the left pressure, but the five of
them have similar values. From the same figure we observe that the bacterial and nutrient concentration
profiles are practically the same, just few nutrient more were consumed for k,, = 1078 m3/s, leading
to a greater production of biosurfactants. Analyzing the residual oil saturation profiles after 5 hours, we
notice that for k., = 10~% m3/s the biosurfactants have recovered more oil than for k,, = 107% m3/s.
This result is expected due to we add the interfacial area dependence to the maximum specific biomass

production rate coefficient, giving a greater concentration in the zones with greater interfacial area values.

Fig. 5.1.6 shows the oil recovery in function of the pore volume injected to the reservoir. As mentioned

before, we have better oil extraction for smaller values of k.
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Figure 5.1.6 Comparison of the oil recovery after 10 hours in the parametric study of k.
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5.1.3 Case II: influence of the parameter K, in the oil recovery

In this case we do a sensitivity analysis for K, displaying the results of oil recovery and the different

variables in Figs. 5.1.8 and 5.1.9 respectively.

Due to the consideration of the dependence of the interfacial area in the form of the Monod-type model in
the maximum specific biomass production rate coefficient, the biosurfactant production is less for greater
values of K,. When analyzing the saturation profile in Fig. 5.1.9, we notice a slower extraction of oil
for K, = 1000 and faster extraction for K, = 10 as expected. We notice that the interfacial area profile
is the same for the five cases but the capillary pressure changes, having a greater value for K, = 1000.
From the same figure we notice that the bacterial concentration profiles have very similar values. For
the nutrient concentration, we have a greater consumption for small values of K,, leading to a larger
production of biosurfactants. When analyzing the residual oil saturation profiles after 7 hours, we notice
that for K, = 10 the biosurfactants have recovered more oil than for K, = 1000. This result is expected
due to the addition of the interfacial area dependence to the maximum specific biomass production rate
coefficient, giving a greater concentration for small values of K,. However, we notice that in our numerical
experiment, even though there are three orders of magnitude between the largest and smallest K, value,
both of them have some residual oil recovered after 7 hours. This is due to the values for the parameters in
the interfacial tension and residual oil saturation expressions, giving the residual oil saturation reduction

in a small range of surfactant concentration, behavior from Fig. 5.0.7.

From Fig. 5.1.8 we have a sooner effect of biosurfactants for small values of K, and a delayed effect for

greater values of K,. As studied in this case, the parameter K, allows to modify the production rate of

biosurfactants.
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Figure 5.1.8 Comparison of the oil recovery after 10 hours in the parametric study of K.



5.1 Numerical experiments and sensitivity analysis

76

50

K =10

K_=100
a

K, =250

K, =500

K, =1000

asf

40 t

]

30

251

Pressure [kPa

20t

0 0.2 0.4 0.6 0.8 1
Distance [m]

180

170 f
160
150
140 |
130
120 f

Interfacial area [1/m)]

110 ¢
100
90T,

80

0 0.2 0.4 0.6 0.8 1
Distance [m]
0.5

K, =10

K =100
a

K =250
a

K,=500

K,=1000

0.45

N
'S

o
w
[

<o
w

0.25

0.2

Bacterial concentration [kg/m?|

0 0.2 0.4 0.6 0.8 1
Distance [m]

Biosurfactant concentration [kg/m?|

0 0.2 0.4 0.6 0.8 1
Distance [m]

]

Residual oil saturation [-]

Saturation [-]

Capillary pressure [kPa]

Nutrient concentration [kg/m

0.95

091

075

071

0.65

081

0.2 0.4 0.6 0.8 1
Distance [m]

0.2 0.4 0.6 0.8 1
Distance [m]

<o
5

o
—_
~

o
I~}

o
=

o
o
&

0.06

0.2 0.4 0.6 0.8 1
Distance [m]

e
=
)

e
an

0.08

s K =10

K =100
a

K =250
a

K, =500

e,

‘o -
RELTTTTTTTLM

0.2 0.4 0.6 0.8 1
Distance [m]

Figure 5.1.9 Profiles in the parametric study of K,, T=10 hr. For s,., T=T7.



5.1 Numerical experiments and sensitivity analysis 77

5.1.4 Case III: influence of the interfacial area parameter o, in

the oil recovery

In this case we do a sensitivity analysis for «q, displaying the results of oil recovery and the different

variables in Figs. 5.1.10 and 5.1.11 respectively.

From the interfacial area and capillary pressure profiles in Fig. 5.1.11, we have greater values of interfacial
area for larger ;. We notice a greater extraction of oil for larger values of «y, that is the expected
behavior. From the same figure we notice a slight decrease in bacterial concentration for a; = 20. We
also observe lower nutrient concentration for this value of oy, having greater biosurfactant production.
From the residual oil saturation profile, we notice after 7 hours there is no reduction in residual oil

saturation for ar; = 0.5 whereas for oy = 20 we almost reduce all .

Fig. 5.1.10 shows the oil recovery for the different values of a;. When a3 = 0.5, we observe that the
biosurfactant action starts after 2 pore volume units of water injection. For «;, the improvement in
oil starts after 1.5 pore volume units of water injection. However, for the reference case, a; = 10 and
a1 = 20 the biosurfactant action starts after 1 pore volume unit of water injected. These results are also

sensitive to the parameter K,, which we studied in the previous section.
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5.1.5 Case IV: influence of the interfacial area parameter a3 in

the oil recovery

In this case we do a sensitivity analysis for «aj, displaying the results of oil recovery and the different
variables in Figs. 5.1.12 and 5.1.13 respectively. The aim of this study is to determinate the influence of

the parameter ag in the oil recovery.

Fig. 5.1.13 shows that the interfacial area is more sensitive to changes in the water saturation for greater
values of az. This behavior is expected due to (1 — s,,)** goes to 0 for greater values of ag than 1,
giving a greater curvature. In the same figure, we have the different profiles for bacterial, nutrient and
biosurfactant concentration and residual oil saturation for different values of a3. We notice a greater
biosurfactant production for ag = 0.9, due to the interfacial area being greater for this value. Regarding
the residual oil saturation profile, we have that after four hours of water injection, there is not residual

oil recovered for o« = 0.9.

Analyzing Fig. 5.1.12, we notice that when we increase the value a3 the biosurfactant action is delayed.

06 T T T T
e T
0.5 ‘{,,‘r--éf‘_‘r'—f" T
f‘"ﬁ‘:ﬁ; -
e
£ s
s
4 2
4 4
0 =
-
-
> ’
£03r I' 8
=z
02 -
- - _a3=0.9
o=
.......... o,=1.244
0.1F 3_1 5
o=l
- - _a3:2
_Water
O 1 1 1 1
0 0.5 1 1.5 2 2.5

Pore volume

Figure 5.1.12 Comparison of the oil recovery after 10 hours in the parametric study of as.



5.1 Numerical experiments and sensitivity analysis

80

w s B W W
wm O W O W

Pressure [kPa)
W
a3

— (1, =(0.9

00 o
| e 0,=1.244
15 — n3:1.5
10 + — ) =
5 . . . .
0 0.2 0.4 0.6 0.8 1

Distance [m]

Interfacial area [1/m]

0 0.2 0.4 0.6 0.8 1
Distance [m]
0.5
A e 1,=0.9
— 0.45 “z=
§ 04t — =1.244
= — LS
g 035} e (1, =2
£ 03}
=
5
€ 025t
8
5 02}
5
g 0.15
s}
0.1r
0.05 . . . .
0 0.2 0.4 0.6 0.8 1
Distance [m]
N x10°
=7
=
9
=6
g
=5
g
g 4
8
3
E
&2
=1
%
21
0
0 0.2 0.4 0.6 0.8 1

Distance [m)]

Saturation [-]

0.2 0.4 0.6 0.8 1
Distance [m)]

Capillary pressure [kPa]

Nutrient concentration [kg/m?]
o < = o <o
= < — — = = =
3] —_ [ B =)} o] (5]

e
=
>N

0.3

0.25

I
¥}

o
=
»

Residual oil saturation [-]

o
=

0.05

0.2 0.4 0.6 0.8 1
Distance [m)]
0 0.2 0.4 0.6 0.8 1
Distance [m]
e 0,209
0 0.2 0.4 0.6 0.8 1

Distance [m]

Figure 5.1.13 Profiles in the parametric study of ag, T=10 hr. For s,,., T=4 hr.



5.1 Numerical experiments and sensitivity analysis 81

5.1.6 Case V: influence of the interfacial area parameter o4 in

the oil recovery

In this case we do a sensitivity analysis for ay4, displaying the results of oil recovery and the different

variables in Figs. 5.1.14 and 5.1.15 respectively.

Fig. 5.1.15 shows the different profiles after 10 hours for the average pressure, water saturation, interfacial
area, capillary pressure, residual oil saturation, bacterial, nutrient and biosurfactant concentration, while
changing the values of the parameter ay in the interfacial area parameterization. We observe a faster
displacement of oil for ay = —1.3. However, we notice in the interfacial area profiles that for ay = —1.3
the interfacial area is practically constant even the water saturation is not, so in our numerical experiment
this is not a physical value for the parameter ay. From the same figure, we notice after 5 hours of injection

we have not recovered residual oil for ay = —0.5, but for —0.75 we start to recover it.

Fig. 5.1.14 shows the oil recovery for the different values of ay. We notice that after four pore volumes

injected to the reservoir, the oil extraction follows the same behavior.
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5.2 Simulations in a porous medium with a thief zone

In the 2-D case, we study a porous medium with a thief zone. There are different definitions for the
thief zones (Li et al. 2015); one of them given by Feng et al. 2010, who considers the thief zone as a high
permeability layer with residual oil saturation. Similar studies has been done by Kou and Sun 2004 and
Amundsen 2015, with a 2-D porous medium with same permeability values in the upper and lower parts
but greater permeability value in the middle. However, due to the symmetry (gravity is not considered),

we can just solve half of the domain. Fig. 5.2.1 shows this porous medium, coloring the different perme-

0.5
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0.1
0

ability zones.

Width [m]

0 0.5 1 1.5 2
Length [m]

Figure 5.2.1 2-D porous medium with a thief zone. The upper half has a permeability of 2 mD, while
the lower half has a permeability of 0.5 mD.

In the numerical experiments, we consider a porous medium with the same parameters, initial and bound-
ary conditions to the 1-D case; the only difference are the values of the permeabilities. We inject water,
bacteria and nutrients on the left side and we obtain oil, water, bacteria, nutrients and biosurfactants
on the right side. We consider the top and bottom boundaries are closed, meaning that there is not flux

through them. Table 5.2.1 shows the initial and boundary conditions used for this reservoir.

Table 5.2.1 Initial and boundary conditions for the 2-D numerical experiments.

Pressure

p(z,y,0) = 5199 Pa p(L,y,t) = 5199 Pa
n-us(z,W,t) =0 n-ux(0,y,t) = —2.78 x 10~°m/s
n-ux(x,0,t) =0

Saturation

Sw(xaya O) = Swi + (1 — Sor — 511)1')%)\ n- sz(L7yvt) = O

n-Vsy(z, W,t) =0 4 Sw(0,y,t) = 0.92

n-Vs,(z,0,t) =0

Interfacial area

awn (z,y,0) = 452.07 1/m n-Vay,(L,y,t) =0

n - Vay,(x, W,t) =0 awn(0,y,t) = 81.89 1/m
n-Vay,(z,0,t) =0

Bacterial concentration

Cyp(z,y,0) =0 n-VCy(L,y,t) =0

n - (—=¢s, Dy VO, (2, W, t) + 1y, Cy(z, W, 1)) =0 Cy(0,y,t) = 0.5 kg/m?
n - (—¢sy Dy VCy(2,0,t) + u,yCp(z,0,t)) =0

Nutrient concentration

Cp(z,y,0)=0 n-VC,(L,y,t)=0

n- (—¢s, D, VO, (2, W,t) + u,Cp(z,W,t)) =0  C,(0,y,t) = 0.2 kg/m3
n- (—¢s, D, VC,(2,0,t) + u,Cpr(2,0,t)) =0

Biosurfactant concentration

Cp(z,y,0) =0 n-VC,(L,y,t)=0
n-(—¢s,DpVCy(z, W,t) + u,Cp(z, W,t)) =0 n-(—¢s,DpVCy(z,0,t) + u,Cp(z,0,t)) =0
n- (—¢syu,DpVC,(0,y,t) + 1y, Cp(0,y,t)) =0
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5.2.1 Pressure, saturation, interfacial area and concentration

distributions

We ran the numerical simulations until a final time of 10 hours. Intuitively, the results we expect is
faster water flux in the zone with greater permeability value, leading to faster oil recovery in this zone.
In this numerical experiment the upper permeability is 4 times bigger than the lower permeability, thus
we expect a flux four times faster in the zone with large permeability. On the other hand, regarding the
capillary pressure and interfacial area profiles, we expect to have greater values in the zones with lower

water saturation.

Fig. 5.2.2 shows the pressure and saturation profiles after 5 and 10 hours. As we mentioned before, more
oil has been displaced in the more permeable zone. In respect to the pressure profiles, we notice a slight

difference on the left pressure values in order to keep the same flux in both zones.
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Figure 5.2.2 Pressure and saturation profiles in the reservoir with a thief zone.

Fig. 5.2.3 shows the capillary pressure and interfacial area profiles. After 10 hours we observe lower cap-
illary pressure in the less permeable zone, in accordance with the standard behavior of greater interfacial
area in zones with lower water saturation. Despite the interfacial area increases from left to right, we do
not notice differences between both permeable zones. Therefore, we attribute this behavior to the rate

of production of specific interfacial area expression F,.
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Figure 5.2.3 Capillary pressure and interfacial area profiles in the reservoir with a thief zone.

Fig. 5.2.4 shows the evolution in time for the bacteria and nutrients after 0.5, 1.5 and 2.5 hours. We
notice that the bacteria is transported faster in the more permeable zone, but there is also a loss due to
some bacteria attaching to the rock, dying or producing biosurfactants. For the nutrients, we observe
that most of them are transported without being consumed by the bacteria. This behavior is due to the

election of the coefficients Y,, and Y, Jn-
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Figure 5.2.4 Bacterial and nutrient profiles in the reservoir with a thief zone.
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Fig. 5.2.5 shows the biosurfactant and residual oil saturation profiles after 2, 4 and 6 hours of injection.
In the first two hours, we observe that some residual oil has been already removed in both parts. After
6 hours, the oil in the thief region has already been removed. However, in the region with permeability

0.5 mD, the biosurfactants has not reached a sufficient concentration to lower the interfacial tension.
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Figure 5.2.5 Biosurfactant and residual oil saturation profiles in the reservoir with a thief zone.
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5.2.2 Bioclogging

In Chapter 2 we mentioned that MEOR has different applications in order to improve the oil recovery,

one of them being to lock the paths where the water flows easily in order to reach another zone with oil.

Fig. 5.2.6 shows the porosity after 10 hours of injection. We notice in the thief zone a greater decrease of
porosity than in the lower part. However, both porosity reductions are small, as a result of the parameters

]411, k27 k3a 91,max and dl-
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Porosity, T=10 hr
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 5.2.6 Porosity profile in the reservoir with a thief zone.

Fig. 5.2.7 shows the permeability ratio k/kg after 10 hours of injection. Because we use a model where
the relation between permeability ratio and biomass-modified porosity ratio is given by the parameter C,
we have similar results for the permeability ratio in the porous medium. We notice greater decrease of

permeability in the thief zone.

0.988 0.99 0.992 0.994 0.996 0.998 1

Permeability ratio, T=10 hr
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Figure 5.2.7 Permeability ratio profile in the reservoir with a thief zone.
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5.2.3 Oil recovery

The main goal of MEOR it is to enhance the oil recovery using bacteria. In order to have a measure of

the improvements in the oil extraction, we compute the oil recovery.

Fig. 5.2.8 shows the oil recovery as a function of the pore volume injected in the reservoir with a thief
zone. We notice that 10 hours of water injection equals to 2.5 pore volumes. We observe that after
injecting 0.8 pore volumes of water, the biosurfactant starts to lower the interfacial tension and we raise
the oil production. In comparison with the oil extraction in the 1-D case in Fig. 5.1.5, the effects of the
biosurfactants start after 1 pore volume unit of water injection. This difference in the oil extraction is

due to the different permeability values.
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Figure 5.2.8 Comparison of the oil recovery due to biosurfactants in the reservoir with a thief zone.

All these results show that the program is adequate for modeling water flooding, transport of products,

bioclogging and biosurfactant effects including the oil-water interfacial area.
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Chapter 6

Conclusion

A new model for MEOR, which includes two-phase flow, bacteria, nutrient and biosurfactant transport
and considers the role of the oil-water interfacial area, bioclogging and reduction of residual oil saturation
due to the action of biosurfactants has been developed. The model was implemented in 1D and 2D in
MATLAB and tested against analytic examples and benchmark problems. The developed model is
currently one of the most complete models of MEOR. The model particularly includes the oil-water
interfacial area in order to eliminate the hysteresis in the capillary pressure relationship and takes in
account that biosurfactants are mainly living at the oil-water interface. To our knowledge, these are the
first studies of the effects of MEOR including the oil-water interfacial area.

The MEOR model consists on a system of nonlinear coupled PDEs and ODEs, whose solution represents
a challenge by itself. In order to have an efficient and stable scheme, we used an implicit stepping
that considers a linear approximation of the capillary pressure gradient. The time discretization of the
equations was obtained using BE and the spatial discretization using FD and TPFA. The details of the
implementation are presented in Chapter 4, including the treatment of the boundary conditions. Although
the implementation of the algorithm was challenging, we wrote in MATLAB the full code without using

any commercial petroleum software.

We tested our numerical solver against analytic solutions, obtaining a reduction in the error when we
lowered the value of the spatial and temporal steps, which corroborates the correctness of the implemen-
tation. We also tested our numerical solver against benchmark simulations, obtaining a good match with
the results showed in Hendry et al. 1997, Amaziane et al. 2009 and Li et al. 2011.

In order to model that biosurfactants are mainly living at the oil-water interface, we considered the
maximum specific biomass production rate as a function of the interfacial area a,, in the form of the
Monod-type model pp max = Kpa,max@uwn/(FKe + Gwn). In the 1-D case, we investigated the impact of
the relevant parameters. We ascertained that the interfacial area distribution is very sensitive to the
interfacial permeability k,,. In the 2-D case, we considered a porous medium with a thief zone, which
is a problem we cannot simulate in 1D. Although the capillary pressure distribution was different in
both permeable regions, the interfacial area profile had the same values along the y direction, even
though we had different water saturation values along this direction. We attribute this result to the

production/destruction rate of interfacial area E,,, (currently there is just one model for Ey,).
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In regard to our main goal, notwithstanding that we put together models with parameters from different
experiments, we succeed in finding new parameters and making the full implementation of the two-phase
flow model with transport equations including bioclogging and interfacial area. We obtained different
water flux profiles and oil recovery predictions when we considered the interfacial area in the model. In
the numerical experiments, we observed an improvement in the oil recovery when the biosurfactants were
presented in the reservoir. Even though real reservoirs are more complex than the model presented, this
work is useful for understanding the main phenomena involved in the recovery of petroleum. Moreover,
for better testing of our model, it is necessary to do more experiments in the laboratory in order to

compare with the numerical simulations and validate all the model assumptions.

Finally, we propose further work inspired in this thesis. Following the procedure showed in Chapter 3
for the discretization of the model in 1-D and 2-D cores, one can easily extend the discretization to the
three-dimensional scenario; however, the implementation is more challenging. Also, in this work we solved
the equations for the pressure, saturation and interfacial area iteratively, verifying the convergence rate
numerically. Nevertheless, it is necessary to do a theoretical analysis of the convergence of the scheme
in order to determinate the maximum time step size for having convergence. In order to have a more
complete model, we should extend it considering more phenomena, for example chemotaxis (Lapidus and
Schiller 1974), fractures (Shapiro 1987, Fumagalli and Scotti 2013), biosurfactant transportation in the
oil phase (Nielsen et al. 2010), compresibility (Klofkorn 2012) and changes in the viscosities (Sugai et al.
2007). Tt is necessary to investigate new relations for the production/destruction rate of interfacial area
FE.,n because currently there is just one model. Following the fact that the more interfacial area, the
more residual oil recovered, new relations for the interfacial tension reduction and residual oil saturation

should be investigated including the interfacial area.
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Appendices

A. List of Symbols and Abbreviations

Symbol

A

Qwn

C

Cy, Cy, Cp, Cp
Cs

dy

Dett, peft szf
Eyn

€wn

g

91, max

h

JrJadvs Jair
k1, ko, k3
k,ky, ky
Koy krn
kun

Ky Kp/n
I, la, I3

L

M

Nca

PsPes PwsPn
pU

Qr

-

S’LU k) S'Il

max

Sory S Sor

min
or

Swi

*
w

T17 T2

u, uy

S

Yo/6: Yp/n

Unit
1/m

kg/m?
kg/m3

kg/m?
T T ]{)g/82

Description

Cross sectional area

Interfacial area

Parameter for the permeability modification

Bacterial, nutrient and biosurfactant concentration
Critical nutrient concentration for metabolism

Bacterial decay rate coefficient

Effective diffusion coefficients

Rate of production of specific interfacial area

Production rate of specific interfacial area

Gravity

Maximum bacterial growth rate coefficient

Hydraulic head

Total, advective and diffusive flux

Reversible attachment, detachment and irreversible attachment
Absolute, wetting and non-wetting effective permeabilities
Wetting and non-wetting relative permeabilities
Interfacial permeability

Half saturation constants for producing bacteria and biosurfactants
Fitting parameters for modeling the interfacial area
Length of porous medium

Mass

Capillary number

Average, entry, wetting and non-wetting pressure

Number of pore volume injected

Water injection rate

Tube radius

Wetting and non-wetting saturation

Residual oil saturation, minimum and maximum
Irreducible water saturation

Effective water saturation

Fitting parameters for modeling the residual oil saturation
Volumetric and total flow rate per area

Settling velocity of bacteria

Interfacial velocity

Pore volume

Volume injected of water

Biosurfactant yield coefficients per unit bacteria and nutrient

Distance to the datum for the hydraulic head
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Greek symbols

Symbol

Qo

g, 2, (3, Oy
Qp I, 0n L, 0p L,

Qp, T, O, T, Op T

0,01,02

O1Ints OInt,min; OInt,max

0

o
S

Abbreviations

Abbreviation
BE

EOR
EEOR

FD
GEMEOR
IMPES
MEOR
MIOR
MPFA
ODE(s)
PDE(s)
REV
TPFA

Unit

kg/m?

kg/s?

Name

Backward Euler

Description

Angle of flow relative to the horizontal

Parameters for the interfacial area relation

Longitudinal dispersivities

Tranverse dispersivities

Density difference between wetting and non-wetting phases
Time step

Space step

Parameter for the Van Genuchten parameterizations
Hydraulic conductivity

Parameter for the Brooks-Corey parameterizations
Wetting and non-wetting mobilities

Viscosity

Maximum specific biomass production rate

Maximum specific biomass production rate including interfacial area
Porosity

Density

Volumetric fraction attached totally, reversibly and irreversibly
Interfacial tension, minimum and maximum

Contact angle

Exponent parameter for modeling the interfacial tension

Exponent parameter for the Van Genuchten parameterizations

Enhanced oil recovery

Enzyme-enhanced oil recovery

Finite differences

Genetically-engineered microorganism for MEOR

Implicit pressure explicit saturation

Microbial enhanced oil recovery

Microbial improved oil recovery

Multi-point flux approximation

Ordinary differential equation(s)

Partial differential equation(s)

Representative elementary volume

Two-point flux approximation
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