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Department of Mathematics

University of Bergen

May, 2016





Acknowledgments

Foremost, I would like to thank God, for the amazing life I am experiencing.

Dr. habil. Florin Adrian Radu, is by far, one of the best professors and supervisors I have ever had. I

am very grateful for all his advice, teaching and time. It is a pleasure working under your guidance and

it would be a pleasure if we continue this work to a PhD.

I would also like to thank Dr. Jan Martin Nordbotten, my co-supervisor, for all the advice concerning

this work.

I must acknowledge the generous financial support of the Mexican Petroleum Institute (IMP); the work

reported in this thesis would not have been possible without the grant they provided me. I would also

like to thank the NUPUS group and Department of Mathematics for financing a visit to four excellent

universities in USA, where I learnt new concepts and perspectives related to MEOR.

It is not easy to express all the gratefulness I owe to my parents; my mother Julia Marbán Hernández

and my father Ing. Daniel Landa Piedra. I will just state that if I were a baby again and I would have

to choose the perfect parents that are going to raise me with love and education, you both will be always

my choice. Also, a huge thank you to my brother Edgar Landa Marbán.

In the academic work I wish to thank Prof. Radilla, Ing. Bernardo González, F́ıs. Benito Pantoja,
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Abstract

In today’s world, oil remains the main source of energy. After discovering a petroleum reservoir, one

can extract about 30% of the oil by using and maintaining the initial pressure in the reservoir through

water flooding (first and second phase oil recovery). Nevertheless, 60-70% of oil remains in the reservoir

after this, so called conventional recovery, so enhanced oil recovery (EOR) is strongly needed. Microbial

enhanced oil recovery (MEOR) is an environmentally friendly and very promising EOR technology.

In this thesis we implement a non-standard model for MEOR that includes the interfacial area between

the oil and water. We consider the two-phase flow equations and multicomponent reactive transport

equations for three components: bacteria, nutrients and biosurfactants. The growth of bacteria affects the

properties of the medium (porosity, permeability), up to the extreme case of pore clogging (bioclogging)

and generation of new paths. Biosurfactants lower the interfacial tension, which improves the oil recovery.

We consider in this thesis, for the first time in context of MEOR, also the role of interfacial area on EOR.

The motivation to include the interfacial area in the model is to eliminate the hysteresis in the capillary

pressure relationship and model that biosurfactants are mainly living at the oil-water interface.

A typical mathematical model for MEOR consists on nonlinear coupled partial differential equations

(PDEs) and ordinary differential equations (ODEs). The spatial discretization is obtained using finite

differences (FD) and two-point flux approximation (TPFA), and the time discretization using backward

Euler (BE). We make the implementation for 1-D and 2-D domains using cell-centered grids. We present

in detail the discretization of the equations, including the treatment of the boundary conditions. After

the discretization in space and time, the problems to be solved at each time step are still nonlinear. For

solving these equations, we use an implicit scheme that considers a linear approximation of the capillary

pressure gradient, which results in an efficient and stable scheme. The code for running the simulations is

written in MATLAB. Following this, we test the code with analytic solutions and benchmark simulations.

We consider a 1-D porous medium where we study the spatial distribution and the evolution in time of the

average pressure, water saturation, oil-water interfacial area, capillary pressure, porosity, permeability

ratio, residual oil water saturation and bacterial, nutrient and biosurfactant concentrations. After, we

make a sensitivity analysis in order to examine the effects of the relevant model parameters. Finally, we

make simulations considering a porous medium with a thief zone, which is a 2-D problem.

A comprehensive model, including two-phase flow, bacteria, nutrients and biosurfactants was imple-

mented. The model has been tested using analytic and benchmark problems. For the first time, the

role of interfacial area in MEOR was studied. We showed that different predictions of oil recovery are

obtained by including the availability of interfacial area in the model. Nevertheless, it is necessary to do

more experiments in the laboratory in order to compare with the numerical simulations and validate the

model assumptions.
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Chapter 1

Introduction

Nowadays, oil is one of the most valuable resources in the world, considering its extensive use in the daily

life, such as in the production of gasoline, plastic, etc. After discovering a petroleum reservoir, one can

extract about 30% of the oil by using and maintaining the initial pressure in the reservoir through water

flooding (first and second phase oil recovery). Nevertheless, 60-70% of oil remains in the reservoir after

this, so called conventional recovery. This is the motivation for developing new extraction techniques in

order to recover the most oil possible. One of these enhanced oil recovery (EOR) techniques consists of

adding bacteria to the reservoirs and using their bioproducts and effects to improve the oil production,

which is called microbial enhanced oil recovery (MEOR). It is worth pointing out that MEOR has been

already used in some oil reservoirs (Lazar et al. 2007, Patel et al. 2015). Nevertheless, the MEOR

technology is not yet completely understood and there is a strong need for reliable mathematical models

and numerical tools to be used for optimizing MEOR.

The current MEOR models are based on (non-realistic) simplifications, e.g. only one transport equation

for the bacterial concentration is considered, changes in the porosity and permeability due to bioclogging

are ignored, numerical simulations are just made in one dimension or the oil-water interfacial area is not

included in the model (Kim 2006, Niessner and Hassanizadeh 2008b, Nielsen et al. 2010, Li et al. 2011,

Babatunde 2014, Skiftestad 2015). In order to make more accurate simulations of petroleum reservoirs,

we need better models where we contemplate most of the phenomena involved.

In the present work we implement a nonstandard model for two-phase flow with transport equations

including bioclogging and the oil-water interfacial area in 1D and 2D. The motivation to include the

interfacial area in the models is to eliminate the hysteresis in the capillary pressure relationship (Has-

sanizadeh and Gray 1993) and model that biosurfactants are mainly living at the oil-water interface

(Kosaric and Varder-Sukan 2015). To our knowledge, this is the first time that the effects of MEOR

including the oil-water interfacial area are studied. We can describe briefly the model presented as fol-

lows: we inject water, bacteria and nutrients to a reservoir. The bacteria consume nutrients and produce

more bacteria and biosurfactants, which have a tendency to live at the interface between oil and water.

As time passes, some bacteria die or attaches to the rock, affecting the porosity and permeability of the

medium (bioclogging). The biosurfactants reduce the water-oil interfacial tension, allowing the recovery

of more oil. The consideration of interfacial area in the model enables to include that biosurfactants are

mainly living at the oil-water interface, which is belived to be a very important feature for MEOR.

xi
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Math models for MEOR are based on coupled nonlinear partial differential equations (PDEs) and ordinary

differential equations (ODEs), which are very difficult to be solved. Therefore, it is necessary to use

advanced numerical methods and simulations to predict the behavior on time of the unknowns in this

complex system. Even though it is possible to buy commercial software in the petroleum industry for

simulation, it is preferable to do the discretization of the equations and write an own code to perform

numerical simulations, in order to implement new relations that are not included in the commercial ones.

For numerically solving the model, we consider 1-D and 2-D rectangular domains with a regular parti-

tion consisting of rectangular elements, involving cell-centered grill points. The spatial discretization is

obtained using finite differences (FD) and two-point flux approximation (TPFA), and the time discretiza-

tion using backward Euler (BE). There are different algorithms for solving coupled nonlinear PDEs. For

example, for solving the pressure and saturation equations, the implicit pressure explicit saturation (IM-

PES) is a popular scheme that eliminates the nonlinearities using the structure of the equations but it

has a restriction in the time step due to stability problems (Thomas 1995). In order to have a more effi-

cient and stable scheme, we use an implicit scheme that considers a linear approximation of the capillary

pressure gradient (Pop et al. 2004, Radu et al. 2010, Kumar et al. 2013). The general algorithm that we

use for solving the system of equations is a generalization of the work done by Skiftestad 2015. First we

solve the pressure, saturation and interfacial area equations iteratively. Subsequently we solve iteratively

the three transport equations. Afterwards, we solve for the change in porosity and then we update the

permeability. Finally, we compute the new interfacial tension, capillary number and the residual oil

saturation and proceed to the next time step.

The overarching goal of this work is then to develop and implement an accurate numerical simulator

for two-phase flow in porous media including the transport equations for bacteria, nutrients and bio-

surfactants, the oil-water interfacial area and the bioclogging in 1D and 2D using appropriate numerical

methods. Overall, we achieved to implement the model. However, it is necessary to do experiments in the

laboratory in order to compare with the numerical simulations and validate all the model assumptions.

In the following, we summarize each chapter

� Chapter 2 Firstly, we introduce the basic concepts, ideas and equations for modeling an oil reser-

voir. In addition, we mention all the assumptions, considerations and simplifications in order to

propose a model for two-phase flow and multicomponent transport in porous media, including

bioclogging and interfacial area.

� Chapter 3 Secondly, we give the theory and techniques for discretizing and solving numerically the

mathematical model. We use finite differences and TPFA for the spatial discretization and BE for

the time discretization. A flux diagram representing the algorithm for solving the model is shown

at the end of the chapter, contributing to a better understanding of our approach.

� Chapter 4 After having established the model and the numerical algorithm, we proceed with

the implementation. We consider 1-D and 2-D domains, the 2D being numerical rectangular with

regular rectangular gridding using cell-centered cells with half-cells on the boundaries. We test our

code against benchmark results and analytic solutions, and analyze the rate convergence of the

L2-errors.
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� Chapter 5 In this chapter we perform numerical experiments for testing the MEOR model. We

consider a 1-D porous medium where we study the spatial distribution and the evolution in time

of the average pressure, water saturation, oil-water interfacial area, capillary pressure, porosity,

permeability ratio, residual oil water saturation and bacterial, nutrient and biosurfactant concen-

trations. After, we make a sensitivity analysis of the model in order to examine the effects of the

relevant model parameters. We found qualitative differences in the shapes of the curves, thus we

gave an explanation for these results. For making use of our 2-D simulator, we study the bioclogging

in a porous medium with a thief zone, which is a problem we cannot simulate in 1D.

� Chapter 6 Finally, we present our conclusions and propose further work inspired by this study.



Chapter 2

Reservoir modeling

In this chapter we explain the phases of oil recovery, we mention some EOR methods and we develop

the MEOR technique, giving some definitions and explaining the general process of implementation, the

different types of MEOR, advantages and problems for implementing MEOR. In addition, we introduce

the definitions and equations for modeling of the oil reservoir, including the interfacial area in the capillary

pressure relation.

2.1 Oil recovery

In general, we classify the oil recovery in three stages. Primary recovery produces oil and gas due to the

natural pressure of the reservoir, recovering between 10-20% of the total resources (Sen 2008). Once the

pressure in the reservoir is in equilibrium, the oil production stops and in order to continue with the oil

extraction we need to add energy to the reservoir. Secondary recovery consists in stimulating the oil wells

by the injection of fluids, improving the flow of oil and gas to the wellhead, obtaining from 10-40% of the

oil in place (Sen 2008). For obtaining the oil remained, we use EOR as a third recovery. In Fig. 2.1.1 we

show the types of EOR processses employed in the oil industry. However, some of these methods apart

from being expensive, involve the use of toxic chemicals, being harmful to the environment (Patel et al.

2015). Regarding the MEOR technique, it is economically feasible and enviromentally friendly.

Figure 2.1.1 Flow sheet diagram showing some EOR techiques (borrowed from Sen 2008).

1
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2.2 The MEOR technique

MEOR is a process to recover the oil remaining in the reservoir using microorganisms. Although the idea

seems easy, it is necessary to understand the science involved, due to the presence of chemical, biological

and physical processes. This idea was proposed by Beckman in 1926, but it was until 1947 that ZoBell

and his research group did several experiments and settled the basis for applying microorganisms for oil

recovery (Lazar et al. 2007). Fig. 2.2.1 shows a simplified diagram for applying MEOR to a reservoir.

Figure 2.2.1 General diagram of the MEOR technique in an oil reservoir. On the left well, bacteria
and nutrients are injected, meanwhile the oil is extracted on the right well. Inside the reservoir, the
bioproducts change the properties of the porous medium and fluids, allowing to increase the production.

2.2.1 Strategies

Regarding the MEOR process, there are three general strategies for his application (Weihong et al. 2009)

� Injection of nutrients to stimulate indigenous microorganisms

If there are indigenous microorganisms inside the reservoir capable of contributing in the recovery,

our purpose is to use them. However, it is first necessary to study the reservoir in order to detect

if any useful microorganisms is present and after choose the way to stimulate the microorganisms

so that their actions modify the rock and fluid properties (Weihong et al. 2009).

� Injection of exogenous microorganisms and nutrients

If there are not microorganisms inside the reservoir that could improve the oil extraction, the next

evident idea is to inject both microorganisms and nutrients to the reservoir. Notwithstanding,

these exogenous microorganism should be capable to live with the indigenous microorganisms and

to adapt to the reservoir conditions (Bryant 1991). Furthermore, the transport of the exogenous

microorganisms could be a problem, requiring that these microorganisms have a minimal absorption

to the reservoir rock material, in order that they disperse efficiently inside the reservoir (Weihong

et al. 2009). In spite of this, one advantage is that we can design a nutrient package specifically for

these exogenous microorganism in order to stimulate their growing and metabolism (Youssef et al.

2007).
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� Injection of ex situ-produced metabolites

If there are not microorganisms able to live inside the reservoir, the following idea is to generate

the bioproducts outside the reservoir and after inject them into the reservoir. However, transport

inside the reservoir is also a problem due to a loss (absorption) of bioproducts along the reservoir

(Weihong et al. 2009). Despite this, we can produce biosurfactants and polymers from economical

renewable sources (Maneerat 2005).

2.2.2 Mechanisms

The bioproducts formed due to microbial activity are surfactants, polymers, solvents, acids and gases.

In Sen 2008, it is summarize the different effects due to the microbial activity. Table 2.2.1 shows these

effects.

Table 2.2.1 Effects using MEOR.

Biomass Selective plugging and wettability alteration.
Surfactants Emulsification and de-emulsification through reduction of interfacial tension.
Polymers Injectivity profile and viscosity modification, selective plugging.
Solvents Rock dissolution for better permeability, oil viscosity reduction.
Acids Permeability increase, emulsification.
Gases Increased pressure, oil swelling, interfacial tension and viscosity reduction.

The main purpose of using these microbes is to modify the rock and fluid properties in order to enhance

the oil recovery. To accomplish this, we have the following performances (Patel et al. 2015)

� Selective plugging

The water flows inside the reservoir through the paths that need less energy, leaving some of them

with feasible oil but not water flow. For reaching these new paths, we use the biomass and polymers

to lock these paths where the water already drove the oil.

� Wettability alteration

Given that water and oil are immiscible fluids, it is more difficult to mobilize the oil due to the water

flow. However, using surfactants we can increase the ability of water to mix together, improving

the sweep efficiency and increasing the production (Patel et al. 2015).

� Bioacids/solvents/gases

Regarding the non-interconnection between all pores, there are some zones inside the reservoir

where the oil is isolated. To reach these zones, we can remove these rocks in order to access this

oil. Hence, we can modify the permeability and porosity of the porous medium due to the effect

of acids and solvents formed from microbial activity (Patel et al. 2015). Furthermore, stimulating

microbes that produce gases, we increase the reservoir pressure, and also this gas can dissolve into

the oil, reducing its viscosity and increasing the sweep efficiency (Lazar et al. 2007, Sen 2008, Patel

et al. 2015).

� Degradation, clean-up of build up

In relation with heavy crude oil, some microbes are capable of consuming hydrocarbons, leading to

make the oil less viscous and easier to recover (Patel et al. 2015).
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� Surface tension alteration: biosurfactants

In order to improve the oil recovery, lowering the surface and interfacial tension between the rock,

water and oil is a possibility. To do this, we can use surfactants produced from microbes. These

biosurfactants have the advantage to be biodegradable, temperature tolerant and pH-hardy. Also

they are non harmful to humans and lower concentrations of them can produce similar results as

chemical surfactants (Patel et al. 2015).

2.2.3 Advantages and adversities

Among all EOR techniques, MEOR is the one we decided to study in this thesis because one of its

characteristics is to be environmentally friendly. In Lazar et al. 2007, they highlight advantages of using

MEOR technologies. Table 2.2.2 shows some of these advantages.

Table 2.2.2 Advantages of using MEOR.

I The microbes and nutrients are cheap and easy to produce and handle in the field.
II Less expensive to implement and easier applied than another EOR method.
III The cost of the injected fluids are independent on oil prices.
IV The effects of bacterial activity within the reservoir are magnified over time due to

colony growing.

However, there are some problems facing MEOR implementations; some of them in Table 2.2.3 (Lazar

et al. 2007).

Table 2.2.3 Disadvantages of using MEOR.

I Lost injectivity due to wellbore plugging.
II Complications for dispersion/transport of all necessary components to the target.
III Promotion of desired metabolic activity in situ.
IV Preclusion of competition or undesirable secondary activity.

Moreover, each reservoir has different characteristics, so a study in advance is necessary before MEOR

implementations (Castorena-Cortés et al. 2012). Despite the disadvantages, we are still optimistic about

the benefits from applying MEOR. However, there is a lot of work to do in order to make more field im-

plementations. Today, MEOR research is more complex, including genetically-engineered microorganism

for MEOR (GEMEOR) and enzyme-enhanced oil recovery (EEOR), to mention some of the new areas of

research (Patel et al. 2015). In order to make possible the use of MEOR and their variants, mathematical

modeling and simulation is fundamental.
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2.3 Flow in porous media

A material containing pores (voids) and a solid part (skeleton) is called porous medium. The pores

can just be filled with one fluid (single-phase, e.g. water), two fluids (two-phases, e.g. oil and water),

three fluids (three-phases, e.g. gas, oil and water), etc. The size of petroleum reservoirs is of the order

of kilometers and we cannot simulate the whole reservoir. That is why we work with Representative

Elementary Volumes (REV), where we assign to each point of the porous medium the property of the

REV around the point. This scale has to be large enough in order to contain a representative quantity

of voids for defining a mean global property, but small enough for keeping the property local, having a

characteristic length from the order of one centimeter to a few centimeters (Nordbotten and Celia 2011).

Once we had introduced the concept of REV, we can define mathematically some physical properties in

the porous media.

Porosity [φ] is a measure of the void space and is given by the ratio of the void volume in REV divided

by the volume of REV. According to this definition, the porosity is a dimensionless property with values

in the range [0,1]. However, the porosity of most sedimentary rocks is generally lower than 0.5 (Tiab and

Donaldson 2003). Moreover, we are interested in the flow trough connected void spaces, which is why

we consider just the interconnected pores for the computation of φ. Even though the porosity can be a

function of several variables (position, time, temperature, depth, ...), in this thesis we consider that the

porosity is just a function of position and time (φ(x, t)). Fig. 2.3.1 shows the porosity as a function of

the REV.

Figure 2.3.1 Porosity as a function of volume (adapted from Engler 2010).

Another common porous medium property is the absolute permeability [k], that is a measure of the

ease a liquid passes through the voids. The permeability of a rock depends on the rock grain size, grain

shape, grain size distribution, grain packing and the degree of consolidation and cementation (Tiab and

Donaldson 2003). The permeability has dimensions of area [L2] and in the general case is a tensor.

However, for simplicity in this thesis we consider examples where the permeability is a scalar and a

function of position and time (k(x, t)). In the oil industry, Darcy is used to measure the permeability

(1 Darcy = 0.986923 µm2). Permeability of petroleum reservoir rocks may range from 0.1 to 1000 or more

millidarcies (Tiab and Donaldson 2003). Reservoirs having below 1 mD are considered tight, meanwhile

the ones above 250 mD are considered very good quality.
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Having defined some properties of the porous medium, now we introduce some properties of the fluid.

Density [ρ] is a physical property of matter, being a measure of the relative heaviness of objects with a

constant volume. Mathematically, it is given by the ratio of the mass of fluid over the volume of fluid.

Density units are [M/L3]. Examples of typical density values for water and oil are 1000 kg/m3 and 800

kg/m3 respectively (Li et al. 2011). In this thesis, we consider incompressible fluids (ρ =constant).

Another important property for describing a fluid is its viscosity [µ]. Viscosity is a measure of a fluid’s

resistance to flow. The unities of viscosity are [M/(L ·T )]. Examples of typical viscosity values for water

and oil are 1 ×10−3kg/(m · s) and 3.92 ×10−3kg/(m · s) respectively (Li et al. 2011). In this work, we

consider fluids with constant viscosity.

2.4 Darcy’s law

In 1856, Henry Darcy published a study of the design of sand filters, where he predicted the quantity

of water flowing though these filters, giving the basis for the following equation (Nordbotten and Celia

2011)

u = −κ∇h (2.1)

where u is a measure of the volumetric flow rate per area of the porous medium with dimensions [L/T ]

and κ is called hydraulic conductivity, being a coefficient of proportionality given by

κ =
kρg

µ
(2.2)

where g is the magnitude of gravity. In Eq. (2.1), h is the hydraulic head, which dimension is [L].

One way to interpret the hydraulic head is that fluids flow from higher values of h to lower ones. One

expression for the hydraulic head is given by

h =
p

ρg
+ z (2.3)

where z is measured relative to a given point in the system, but it does not matter where we choose this

reference point, because what is relevant is the differences between hydraulic heads. The pressure p is

defined as force divided by the area where the force is acting. The dimensions of pressure are [M/(L ·T 2)].

After defining pressure, it is easier to understand why the flow is from the zones with larger pressure to

the lower ones. Substitution of Eqs. (2.3) and (2.2) in (2.1) leads to

u = −k

µ
∇(p− ρg) (2.4)

where we use the convention that the coordinate z is positive upward.
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2.5 Mass conservation

The law of conservation of mass was introduced by Antoine Lavoasier in 1789, stating that mass is neither

created nor destroyed in chemical reactions. The Gauss’s theorem or divergence theorem is essential for

the derivation of the mathematical form of many physical conservation laws, and states

Let f be a continuously differentiable vector field, defined in a volume Ω. Let ∂Ω be the closed surface

forming the boundary of Ω and let n be the unit outward normal to ∂Ω. Then the divergence theorem

states that ˆ
Ω

∇ · f dx =

ˆ
∂Ω

f · ndS (2.5)

A proof of the theorem can be found in Matthews 1998. For formulating the mass conservation law,

intuitively we have that the change of mass in a volume Ω is balanced by the total flow into ∂Ω through

the boundaries and any source/sink term F . Mathematically, we have the following expression

ˆ
Ω

∂M

∂t
dx = −

ˆ
∂Ω

f · ndS +

ˆ
Ω

Fdx (2.6)

where M is the mass. Applying the divergence theorem on the second integral and rearranging terms,

we obtain ˆ
Ω

(
∂M

∂t
+∇ · f− F

)
dx = 0 (2.7)

The previous integral must hold for any arbitrary Ω, so finally we obtain the differential equation for

conservation of mass
∂M

∂t
+∇ · f = F (2.8)

For example, considering an incompressible fluid of density ρ, porosity φ and volumetric flow rate per

area u, the conservation law is given by

∂φ

∂t
+∇ · u =

F

ρ
(2.9)

Figure 2.5.1 Volume Ω enclosing a porous media filled with water. Due to the absence of source/sink
terms and no reaction presented, all water coming into the left side has to come out of the right side.
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2.6 Two-phase flow

Let us consider a porous medium filled with water and oil. In this case, these fluids are immiscible (they

do not exchange mass between them). For knowing the amount of a phase in the REV, we introduce the

saturation of phase α [sα] given by the ratio of volume of phase α (in REV) over the volume of voids

(in REV), where in this work, we consider gas and oil as non-wetting phases (α =n) and water for the

wetting phase (α =w). In the case where the porous medium is just filled with two fluids, we have that

sn + sw = 1.

In the water-oil interface there is a surface free energy due to natural electrical forces, which attract the

molecules to the interior of each phase and to the contact surface. This interfacial tension keeps the

fluids separated, defined by the quantity of work needed to separate a surface of unit area from both

fluids. The ability of a fluid phase to wet a solid surface in the presence of a second immiscible phase is

called wettability. In Fig. 2.6.1 we show the three general categories of wettability, where θ is the contact

angle at oil-water-solid interface; σInt,os, σInt,ws and σInt,ow are the interfacial energy between oil-solid,

water-solid and oil-water respectively. The contact angle θ is connected with the interfacial energies by

Young’s equation σInt,os − σInt,ws = σInt,ow cos θ.

Figure 2.6.1 Different categories of wettability (adapted from Engler 2010).

Capillary pressure pc is defined as pressure differential between two immiscible fluid phases occupying the

same pores caused by interfacial tension between the two phases that must be overcome to initiate flow

(Bahadori et al. 2014). Besides, in typical reservoirs, the pores are microscopic and there is interfacial

tension between oil-water fluids, these result in capillary pressure influencing considerably in the fluid

distributions (Engler 2010). In a small tube, we can compute the pc as

pc =
2σInt cos θ

r
(2.10)

where r is the tube radius. From this expression, we note the smaller the radius, the larger the capillary

pressure. On the macroscale, the capillary pressure is given by

pn − pw = pc (2.11)

where pn and pw are the non-wetting and wetting phase pressure respectively and pc an empirical func-

tion. In standard models, pc is just considered as a function of the water saturation pc(sw). Let us

consider a porous medium just filled with water. We inject to the medium oil and after we inject water.

Plotting the capillary pressure profile, we obtain the profiles shown in Fig. 2.6.2.
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Figure 2.6.2 Capillary pressure profile illustrating hysteresis (borrowed from Nordbotten and Celia
2011).

Drainage is the process when a non-wetting phase displaces the wetting phase, whilst imbibition is when

the wetting phase displaces the non-wetting phase. From the plot, we note the presence of an entry

pressure pe, being the minimum pressure needed in order to put the non-wetting phase inside the porous

media. In addition, we note that pc is not a well-defined function because while there is one value of

water saturation, there is more than one value of pc, due to pc being dependent on the history. This

phenomenon presented in some systems is called hysteresis. The explanation for drainage curves having

higher capillary pressures while imbibition curves having lower capillary pressure is because pore throats

have smaller radii than pore bodies (Eq. 2.10 states that the capillary pressures are inversely proportional

to the radius) (Nordbotten and Celia 2011).

Let us consider that the wetting phase is water and the non-wetting phase is oil in Fig. 2.6.2. Intuitively,

we could think about extracting all water from the reservoir after drainage, but in reality water saturation

can be reduced to 5-40%, at this point the water saturation becomes immobile, defined as irreducible

water saturation swi (Engler 2010). The residual oil saturation sor is the oil that remains in the pores

after the imbibition process. In Fig. 2.6.3 we show the displacement of oil by water, where we present

schematically the role of swi and sor

Figure 2.6.3 Oil recovery progression in a porous media in 1D (adapted from Engler 2010).
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A At the beginning, the porous medium is filled with some oil sn 6= 0, with some irreducible water

sw = swi and residual oil sor 6= 0.

B We inject water on the left boundary, so on the right boundary we just obtain oil.

C After some time of water injection, water breakthrough is presented, and both oil and water is produced

simultaneously.

D If we add some surfactants, we can lower the sor.

The recovery of oil can be analyzed in two stages: before and after water breakthrough. Until water

breakthrough, the oil recovery correspond to the water injection. After water breakthrough, there is

production of oil and water, so for obtaining the percentage of oil recovered, we use numerical integration.

We define the total volume of injected water by Wi(t) = tQT , where QT is the water injection rate. We

define the pore volume by Vp = AφL, where L is the length of the porous medium [L] and A is the cross

sectional area [L2]. Using the previous definitions, the number of pore volumes pv injected is given by

pv = Wi

Vp
. The number of pore volume gives a better understanding of the amount of water injected in

the reservoir and it is very common to plot the oil recovery in function of pv.

In the beginning of this section, we introduced the definition of absolute permeability, where we empha-

sized that it is for the case when we have one phase present, being the absolute permeability a property

of the rock independent of the phase in question. When we have two fluids, even though they do not

mix, just with their own presence they interfere in the flow of each other. Permeability to each phase α is

called effective permeability kα. For modeling this phenomenon, we introduce the relative permeabilities

kr,w(sw) and kr,n(sw), and we can write the effective permeabilities for each phase

kw = kr,w(sw)k kn = kr,n(sw)k (2.12)

Due to pc, kr,w and kn,w are empirical functions depending on the porous media and phases, it is useful

to visualize their profile for some popular parameterizations. In the present work, we use the capillary

pressure and relative permeability parameterizations shown in Table 2.6.1. In this table, λ, η, ς = 1−1/η

are parameters and the effective water and oil saturation are given by

s∗w =
sw − swi

1− sor − swi
s∗n =

sn − sor
1− sor − swi

(2.13)

Table 2.6.1 Capillary pressure and relative permeability parameterizations.

Van Genuchten 1980 Brooks and Corey 1964

pc(s
∗
w) = pe(s

∗−1/ς
w − 1)1/η pc(s

∗
w) = pes

∗−1/λ
w

kr,w(s∗w) =
√
s∗w[1− (1− s∗1/ςw )ς ]2 kr,w(s∗w) = s∗2w

kr,n(s∗w) =
√

1− s∗w(1− s∗1/ςw )2ς kr,n(s∗n) = s∗2n

In Fig. 2.6.4 we show the capillary pressure and relative permeabilities profiles with some value parame-

terizations we consider in this thesis.
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Figure 2.6.4 Examples of capillary pressure and relative permeability profiles. VG and BC are abbre-
viations of Van Genuchten and Brooks-Corey respectively. For the capillary pressure, we set Pe = 2
MPa.

Now we introduce the definition of phase mobilities

λw =
kr,w
µw

λn =
kr,n
µn

(2.14)

Once we defined the phase mobilities, we can write the Darcy’s law and the mass conservation equations

for each phase

∂φsw
∂t

+∇ · uw =
Fw
ρw

uw = −λwk(∇pw − ρwg)

∂φsn
∂t

+∇ · un =
Fn
ρn

un = −λwk(∇pn − ρng)

(2.15)

In the next section we rewrite the previous set of equations in just two equations, where the primary

variables are the average pressure p and the water saturation sw.

2.7 Average pressure formulation

In the previous section, we provided two mass conservation and two flux equations. In addition, the

relation of both pressure though the capillary pressure pn − pw = pc and the constriction for the phase

saturation sw + sn = 1. If we consider that pc is just a function of water saturation, then we have a set

of 6 equations with 6 unknowns. In this work we consider the average pressure formulation for solving

this system.

We define the average pressure p as

p =
pw + pn

2
(2.16)
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From the definition of capillary pressure, we have the relation pn − pw = pc. Using both relations, we

can write pw and pn as follows

pw = p− 1

2
pc pn = p+

1

2
pc (2.17)

Substitution of the previous relations in the flux equations uw and un in Eq. (2.15) leads to

uw = −λwk(∇(p− 1

2
pc)− ρwg) un = −λnk(∇(p+

1

2
pc)− ρng)

Summing the last two equations and defining λΣ = λn + λw and λ∆ = λn − λw, we can write the total

flux uΣ = uw + un as

uΣ = −k(λΣ∇p+
1

2
λ∆∇pc − (λwρw + λnρn)g)

Now, summing the two mass conservation equations in Eq. (2.15) leads to

∂φ(sw + sn)

∂t
+∇ · uΣ =

∑
α=w,n

Fα
ρα

(2.18)

Using that sw + sn = 1 and substituting the total flux (2.7) in the previous equation, we get the equation

we called “the pressure equation”

∂φ

∂t
+∇ · (−k(λΣ∇p+

1

2
λ∆∇pc − (λwρw + λnρn)g)) =

∑
α=w,n

Fα
ρα

(2.19)

On the other hand, substitution of Eq. (2.17) in the mass conservation equation for the wetting-phase,

it leads to the equation we called “the saturation equation”

∂φs

∂t
−∇ · (λwk(∇(p− 1

2
pc)− ρng)) =

Fw
ρw

(2.20)

Then, given proper boundary and initial conditions for the average pressure and water saturation, we

can solve the pressure and saturation equations, obtaining the profiles for the pressure, saturation and

flux of the wetting and non-wetting phases.

2.8 Interfacial area

Considering a porous medium filled with two fluids, the surface where they make contact is called in-

terfacial area. Mathematically, we compute the specific interfacial area awn as a ratio of the interfacial

area in the REV over the volume of REV, resulting in units of [1/L]. In this work we refer to the specific

interfacial area as interfacial area. For understanding better the importance of awn, let us consider Fig.

2.8.1.



2.8 Interfacial area 13

Figure 2.8.1 Example comparing the interfacial area given the same amount of oil. When we split the
square in four pieces, the interfacial area increases by a factor of 2. Then, using biosurfactants, the more
interfacial area is presented, the more oil we can mobilize from the reservoir.

When Darcy made his experiments and deduced his law, he just considered a single-phase flow. In the

case of two-phase flow, we just extend Darcy’s law for two variables, but we may expect there are more

forces involve than the gradient of the hydraulic head. In Hassanizadeh and Gray 1990, they developed

equations of momentum balance for phases and interfaces, based on thermodynamic principles. The two-

phase flow equations are a particular case of these equations and in this thesis for modeling the interface

between oil and water we use the following equation (Niessner and Hassanizadeh 2008a)

∂awn
∂t

+∇ · (awnvwn) = Ewn with vwn = −kwn∇awn (2.21)

where vwn is the interfacial velocity [L/T ], Ewn is the rate of production of specific interfacial area

[L3/T ] and kwn is the interfacial permeability [L3/T ]. In standard models, we give pn − pw = pc(sw)

as an empirical function with fitting parameters, in order to have a relation between both pressures

and solve the system. However, we mentioned that this capillary pressure relation presents hysteresis.

Following the thermodynamic approach in Hassanizadeh and Gray 1993, they proposed that including the

interfacial area in the capillary pressure relation eliminates the hysteresis under equilibrium conditions.

Fig. 2.8.2 shows experimental interfacial area profiles reported by Porter et al. 2010, where they focused

on measuring directly pc, sw and awn during drainage and imbibition; after they compared with those

predicted from a thermodynamic model, finding reasonable approximations, giving a practical tool for

constructing these surfaces from pc − sw curves, being just necessary either the data from the drainage

or imbibition process (Chen et al. 2007).

Figure 2.8.2 Examples of experimental interfacial area profiles (Porter et al. 2010). The first plot shows
the hysteresis in the interfacial area while the second plot shows the interfacial area surface awn(sw, pc).
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Because we consider the oil-water interfacial area awn(sw, pc) in this work, we have to provide a relation

pn − pw = pc(awn, sw) that accounts for interfacial forces. This relation can be produced by fitting

surfaces to awn − sw − pc data coming from models or experiments. In Niessner and Hassanizadeh

2008a, they used a bi-quadratic relationship. However, this relation does not fulfill the requirements

awn(0, pc) = awn(1, pc) = 0. In this work, we use the next relation (Joekar-Niasar and Hassanizadeh

2012)

awn(sw, pc) = α1s
α2
w (1− sw)α3pα4

c (2.22)

with α1, α2, α3 and α4 constants. From the given parameterization (2.22), we can isolate the capillary

pressure

pc(sw, awn) = α
−1/α4

1 s−α2/α4
w (1− sw)−α3/α4a1/α4

wn (2.23)

In order to better visualize this parameterization, in Fig. 2.8.3 we show the interfacial area surface using

the values from Joekar-Niasar and Hassanizadeh 2012 α1=6.462, α2=3.057e−12, α3=1.244, α4=-0.963.
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Figure 2.8.3 Interfacial area profile in Joekar-Niasar and Hassanizadeh 2012.

For solving the interfacial area equation, we need to provide the mathematical expression for the pro-

duction/destruction rate of interfacial area Ewn. However, we could not find information about this

term apart from Niessner and Hassanizadeh 2008a, where they proposed a relation based on physical

arguments. It is clear that when the reservoir is filled with just one phase, there is not interfacial area.

When we start to inject the other phase, we start to generate interfacial area until we have a maximum

interfacial area value. After this saturation value, if we increase the saturation the interfacial area de-

creases. Moreover, the faster the change in saturation, the larger the rate of change of interfacial area.

Then, we consider the following production/destruction rate of interfacial area

Ewn = −ewn
∂sw
∂t

(2.24)

where ewn is a parameter characterizing the strength of change of specific interfacial area due to a change

of saturation, with unites [1/L]. Moreover, to estimate this parameter, they neglected the interfacial area

flux in Eq. 2.21, thus after using the chain rule for the time derivative in Eq. 2.21, we have

∂awn
∂pc

(
dpc
dsw

)
line

∂sw
∂t

+
∂awn
∂sw

∂sw
∂t

= −ewn
∂sw
∂t

(2.25)
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Rearranging terms, the expression for ewn results

ewn = −∂awn
∂pc

(
dpc
dsw

)
line

− ∂awn
∂sw

(2.26)

where the path

(
dpc
dsw

)
line

is in general unknown, but in the main drainage and imbibition curves, pc is

a known function of sw. In addition, it is possible to compute this derivative for ewn = 0. For all other

paths, we interpolate using these three values of ewn (Niessner and Hassanizadeh 2008a).

Experimental investigations focused on simultaneously measuring pc, sw and awn are often difficult,

expensive and subject to limitations, thus only a few have been reported in the literature, indicating

a need for further experimental studies characterizing the relationship awn(sw, pc) (Youssef et al. 2003,

Chen et al. 2007, Porter et al. 2010).

2.9 Transport equations

In Chapter 2 we mentioned the MEOR technique, involving the addition of bacteria and nutrients inside

the oil reservoir in order to produce biosurfactants and reduce the interfacial tension, leading to enhanced

oil recovery. The movement of these components in the water is controlled by advective and diffusion

processes.

The advection-difussion equation can be derived from the conservation of mass (2.8)

∂c

∂t
+∇ · j = R (2.27)

where c is the concentration of mass transferred and j is the total flux given by j = jdif + jadv =

−D∇c+ uc (Bennett 2012). Dispersion causes spreading of c, where we have mechanical and molecular

dispersion (diffusion). Diffusion describes the spread of particles through random motion, going from

higher concentration to lower concentration, described by Fick’s Law, while mechanical dispersion is due

to every path has different geometry inside the porous medium, so not all c components travel in the

average flow velocity, leading to faster and slower transport of c. Advection causes transport of c due to

the flow movement, in this cases the water flow.

For describing the movement of bacteria, nutrients and bioproducts, we consider the following transport

equations (Kim 2006, Li et al. 2011)

∂(Cbφsw)

∂t
−∇ ·

(
Dbswφ∇Cb − uwCb − φvgCb

)
= Rb

∂(Cnφsw)

∂t
−∇ ·

(
Dnswφ∇Cn − uwCn

)
= Rn

∂(Cpφsw)

∂t
−∇ ·

(
Dpswφ∇Cp − uwCp

)
= Rp
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where the reaction rate terms are given by

Rb = −k1φswCb + k2ρbσ1 − k3φswCb + g1 max
Cn

Kb/n + Cn
φswCb − d1φswCb −

Rp
Yp/b

Rn = − Rp
Yp/n

− Yn(φswCb + ρbσ)

Rp = µp max
Cn − C∗n

Kp/n + Cn − C∗n
(φswCb + ρbσ)

and in the general case the dispersion coefficients are given by

Dβ,ij = δijαβ,T |u|+ (αβ,L − αβ,T )
uiuj
|u|

+ δijD
eff
β β = {b, n, p} (2.28)

where the fluid velocity of the aqueous phase is given by u = uw
φsw

. In this work we consider that biosur-

factants are the only bioproducts. Table 2.9.1 shows a brief description of the previous parameters (Kim

2006, Li et al. 2011).

Table 2.9.1 Descriptions and units in the SI for the parameters used in the transport equations.

Parameter Description
Cb, Cn, Cp Concentrations of bacteria, nutrients and biosurfactants [M/L3]

vg Settling velocity of bacteria [L/T ]
k1 Reversible rate of bacterial attachment to the rock surface [1/T ]
k2 Bacterial detachment rate [1/T ]
k3 Irreversible rate of bacterial attachment to the rock surface [1/T ]
d1 Bacterial decay rate coefficient [1/T ]
ρb Density of bacteria [M/L3]
σ1 Volumetric fractions of bacteria attached reversibly [−]
σ2 Volumetric fractions of bacteria attached irreversibly [−]
Yp/b Biosurfactant yield coefficient per unit bacteria [−]
Yp/n Biosurfactant yield coefficient per unit nutrient [−]
Yn Maintenance energy+bacterial growth yield coefficient representing

nutrient consumed [1/T ]
g1max Maximum bacterial growth rate coefficient [1/T ]
µp max Maximum specific biomass production rate [1/T ]
Kb/n Half-saturation constant for concentration of specific growth rate [M/L3]
Kp/n Half-saturation constant for production of biosurfactants by consuming

nutrient+substrate [M/L3]
C∗n Critical nutrient concentration for metabolism [M/L3]

αb,L, αn,L, αp,L Longitudinal dispersivity of bacteria, nutrients and biosurfactants [L]
αb,T , αn,T , αp,T Transverse dispersivity of bacteria, nutrients and biosurfactants [L]
Deff
b , Deff

n , Deff
p Effective diffusion coefficients of bacteria, nutrients and biosurfactants in

the water phase [L2/T ]
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Let us analyses the reaction terms for the transport equations. Regarding the bacterial clogging, we

consider both scenarios: reversible k1 and irreversible k3 attachment to the rock, resulting in a detachment

rate k2. For modeling the growth of bacteria, we use the Monod-type model (Skjaelaaen 2010)

g1 = g1max
Cn

Kb/n + Cn
(2.29)

where g1max is the observed maximum growth rate and Kb/n the half saturation constant, being the

nutrient concentration level when g1 = 1
2g1max. On the other hand, we consider a linear death of

bacteria, given by d1. Due to nutrients and bacteria being involved in the generation of biosurfactants,

we introduce the yield coefficients 1
Yp/b

+ 1
Yp/n

= 1. For the nutrients consumed for bacteria, we consider

the yield coefficient Yn, which we included in the Rn term. Considering now the biosurfactants source

term, we need to model the production in function of nutrients and bacteria. We consider that the

production rate is given by (Lacerda et al. 2012)

µp = µp max
Cn − C∗n

Kp/n + Cn − C∗n
(2.30)

We notice that this function has the same structure than the Monod-type model, but we included the

term C∗n, in order to model a need of minimum Cn for obtaining biosurfactants.

The pressure, saturation and interfacial area equations are coupled with these transport equation under

the following assumptions (Li et al. 2011)

1. The two-phase flows are incompressible and immiscible.

2. Both viscosities are constants.

3. We neglect the presence of dissolved salt in the wetting phase.

4. The system is isothermal.

2.10 Bioclogging

In Chapter 2, we introduced the idea of bioclogging as a mechanism for MEOR. In Kim 2006, a transport

model that incorporates reversible/irreversible attachment to the solid matrix and growth/decay of bac-

teria is presented, where changes in porosity and permeability due to bacterial deposition and/or growth

are also included. Following this model, the mass balance equations for bacteria deposited reversibly and

irreversibly on the solid matrix are given by

∂(ρbσ1)

∂t
= R1

∂(ρbσ2)

∂t
= R2

(2.31)
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with

R1 = k1(φ0 − σ)Cb − k2ρbσ1 + g1ρbσ1 − d1ρbσ1

R2 = k3(φ0 − σ)Cb + g1ρbσ2 − d1ρbσ2

(2.32)

where the modify porosity is defined as φ = φ0 − σ = φ0 − σ1 − σ2. This model describe the changes of

porosity in function of the position and time. In this model the growth and decay rate coefficients for

the bacteria deposited and suspended are supposed to be equal.

Apart from reduction of the porosity due to bacteria clogging, the rock’s ability to allow phases to flux

is affected. For including the changes of permeability, we consider the parametric model (Clement et al.

1996), which states that reduction of porosity leads to reduction of permeability as the following relation

k = k0

(
φ

φ0

)C
(2.33)

where we take the value for the parameter C = 19/6 from Clement et al. 1996, which is founded in the

idea that bioclogging is due to radius reduction instead of raise of micro-colonies.

2.11 Interfacial tension

One of the main objectives of applying MEOR is to reduce the sor via surfactant effect on the oil-water

interfacial tension. There exist several experiments showing the impact of surfactants in reducing the

interfacial tension (Youssef et al. 2003, Wu et al. 2013). Common initial interfacial area values are of the

order of 10−2 mN/m and we aim to lower this value ≤ 10−3 mN/m (Yuan et al. 2015). In order to model

mathematically this behavior, we need a function σInt(Cps) that under values of a critical surfactant

concentration, the interfacial tension does not decrease but over this critical surfactant concentration,

the interfacial tension decreases until a minimal interfacial tension value, persisting this value despite we

increase the surfactant concentration. One mathematical model fulfilling these requirements is given by

(Nielsen et al. 2010)

σ∗Int = σInt
− tanh(l3 ∗ Cp − l2) + 1 + l1
− tanh(−l2) + 1 + l1

(2.34)

where l1, l2 and l3 are fitting parameters, which define the efficiency of the surfactant, moderating

the concentration where the interfacial tension drops dramatically and the minimal interfacial tension

achieved after the surfactant action (Nielsen et al. 2015).
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2.12 Capillary number

The residual oil saturation after water flooding is believed to be distributed through the pores in the

petroleum reservoir in the form of immobile globules, being the capillary and viscous interactions the

main forces acting on these globules (Donaldson et al. 1989). The capillary number NCa relates the

surface tension and viscous forces acting in the interface and is given by

NCa =
uwµw
σ∗Int

(2.35)

At the end of water flooding, the capillary number is in the range 10−6 to 10−7 (Donaldson et al. 1989). In

order to increase the capillary number, from Eq. 2.35 we observe that increasing the flow rate, the water

viscosity or lowering the interfacial tension are the three possibilities. In Li et al. 2011, they implemented

a biological and hydrogeological finite element model, resulting in a functional relation between sor and

NCa, demonstrating that MEOR could improve the oil extraction if we can obtain a capillary number

between 10−5 and 10−1.

2.13 Residual oil saturation

Formerly, we mentioned that the surfactants reduce the oil-water interfacial tension, allowing to enhance

oil recovery. In order to model the amount of residual oil saturation recovered using biosurfactants,

we consider an irreducible residual oil saturation smin
or . On the other hand, the capillary number NCa

is inversely proportional to the interfacial tension σInt. Then, for modeling the residual oil saturation

reduction due to biosurfactant effects, one possibility is to give a parameterization where when the

capillary number increases, the sor decreases until a irreducible value of oil saturation.

For relating the residual oil saturation and the capillary number, in this thesis we use the following

relation (Li et al. 2007)

sor(t+ ∆t) = min
(
sor(t), s

min
or + (smax

or − smin
or )[1 + (T1NCa(t))T2 ]

1
T2
−1)

(2.36)

where smin
or and smax

or are the maximum and minimum residual oil saturation and both T1 and T2 are

fitting parameters estimated from the experimental data.

Giving the mathematical expressions for the interfacial area reduction σ∗Int, the capillary number NCa and

the residual oil saturation reduction sor(t), we can account in our model the effect of the biosurfactants

in improving the oil recovery.
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2.14 Two-phase flow model with transport equations

including bioclogging and interfacial area

In summary, the next equations represent our model, and in the next two chapters we show one way to

deal with the discretization and boundary conditions in 1-D and 2-D domains.

∂φ
∂t −∇ · (k(λΣ∇p+ 1

2λ∆∇pc − (λwρw + λnρn)g)) =
∑

α=w,n

Fα
ρα

in Ω

∂φsw
∂t −∇ · (λwk(∇(p− 1

2pc)− ρng)) = Fw
ρw

in Ω
∂awn
∂t −∇ · (awnkwn∇awn) = Ewn in Ω

∂(Cbφsw)
∂t −∇ ·

(
Dbswφ∇Cb − uwCb − φvgCb

)
= Rb in Ω

∂(Cnφsw)
∂t −∇ ·

(
Dnswφ∇Cn − uwCn

)
= Rn in Ω

∂(Cpφsw)
∂t −∇ ·

(
Dpswφ∇Cp − uwCp

)
= Rp in Ω

∂ρbσ1

∂t = R1 in Ω
∂ρbσ2

∂t = R2 in Ω

k = k0

(
φ
φ0

)C
in Ω

σ∗Int = σInt
− tanh(l3∗Cp−l2)+1+l1
− tanh(−l2)+1+l1

in Ω

sor = min
(
sor(t), s

min
or + (smax

or − smin
or )[1 + (T1NCa)T2 ]

1
T2
−1)

in Ω

Initial conditions for sw, p, awn, Cb, Cn, Cp, φ, k, σ1, σ2 in Ω

Boundary conditions for sw, p, awn, Cb, Cn, Cp on ∂Ω

Parametrizations for kr,w = kr,w(s), kr,n = kr,n(s), pc = pc(sw, awn)



Chapter 3

Discretization of the model

For solving numerically the two-phase flow model in a given domain, it is necessary to discretize the

equations and the space and time domains. The reason for partitioning both space and time is that

computers cannot work with the continuum, so we divide the space and time domains in a finite number

of elements. In order to achieve the discretization of equations, we use one finite volume method, the

TPFA. In this chapter we present the theory and techniques for discretizing and solving numerically the

mathematical model.

3.1 Space and time discretization

Numerical methods have been developed since a long time ago, contributing to different techniques to

partition a domain. This partition could be formed for elements of different shapes and sizes; it depends

on the problem. For example, if there is a zone in the domain where we want more resolution in the

results, we should consider a finer partition in this region.

For discretizing the space domain, we consider a uniform cell-centered grid with half-cells at the bound-

aries. For example, in Fig. 3.1.1 we show such discretization in a 1-D domain of length L with step ∆x.

Figure 3.1.1 Cell-centered grid in 1D. We label the middle points xi of the elements Ωi.

Fig. 3.1.2 shows a uniform cell-centered grid in a 2D domain of length L and width W .
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Figure 3.1.2 Gridding in a rectangular domain of size L×W .

The purpose of defining a partition is to find a numerical solution of the discrete problem in the points

{xi}, where by raising the number of elements, we make better approximations to the solution of the

continuous problem.

Because time is also a continuous variable, we have to use a discretization technique. For doing this, we

consider a uniform discretization from the initial time t0 until the final time T with ∆t step. In Fig.

3.1.3 we show such discretization.

Figure 3.1.3 Vertex-centered grid in 1D. We label the vertex points tn and the size step ∆t.

3.2 Approximations for the derivatives, integrals and

parameterizations

Once we have the discretization of space and time, we need to discretize the derivatives and integrals.

For doing this, we consider an arbitrary function f(x) and its Taylor expansion (Canuto and Tabacco

2008)

f(x+ ∆x) = f(x) + f ′(x)∆x+
∆x2

2
f ′′(x) +O(∆x3)

f(x−∆x) = f(x)− f ′(x)∆x+
∆x2

2
f ′′(x) +O(∆x3)

(3.1)

From the previous equations, we isolate f ′(x) and get

f ′(x) =
f(x+ ∆x)− f(x)

∆x
+O(∆x) f ′(x) =

f(x)− f(x−∆x)

∆x
+O(∆x) (3.2)



3.2 Approximations for the derivatives, integrals and parameterizations 23

Now, subtracting the second equation from the first equation in (3.1) and isolating f ′(x), we obtain

f ′(x) =
f(x+ ∆x)− f(x−∆x)

2∆x
+O(∆x2) =⇒ f ′(x) =

f(x+ ∆x
2 )− f(x− ∆x

2 )

∆x
+O(∆x2) (3.3)

In this thesis we consider functions of two variables f(x, y). Generalization of these functions can be

followed from the previous analysis, having as results such as

∂f

∂x
(x, y) ≈ f(x+ ∆x, y)− f(x, y)

∆x

∂f

∂y
(x, y) ≈

f(x, y + ∆y
2 )− f(x, y − ∆y

2 )

∆y
(3.4)

Both of the last expressions are used in this work for approximating the derivatives. The derivative

approximation of first order O(∆x) is used on the boundaries of the spatial domain and time derivatives,

while the second order approximation O(∆x2) is used in the cell-centered grid.

Now, we focus on the time variable. Let us consider the following differential partial equation

∂u

∂t
(x, t) = F (u, t) (3.5)

We use the next notation uni ≡ u(xi, tn). Using the derivative discretization, we get

un+1 − un

∆t
≈ F (u, t) =⇒ un+1

i = uni + F (u, t)∆t (3.6)

The three following methods are use to find an approximation (Olsen-Kettle 2011)

� Explicit Euler’s method un+1
i = uni + F (uni , t

n)∆t+O(∆t)

� Implicit Euler’s method un+1
i = uni + F (un+1

i , tn+1)∆t+O(∆t)

� Crank-Nicolson Scheme un+1
i = uni + 1

2 [F (un+1
i , tn+1) + F (uni , t

n)]∆t+O(∆t2)

The one that we use in this thesis is the Implicit Euler’s method, also known as BE. Although the explicit

Euler’s method is also of order O(∆t) and easier to implement, it is not A-stable (Trefethen and Bau

1997).

After mentioning the mechanisms of approximations for the derivatives, now we study the numerical

integration. Let us consider the following integral

I[f ] =

bˆ

a

f(x)dx (3.7)

where f(x) is a given function and [a, b] a finite interval. We look for approximating the integral by

I[f ] ≈
n∑
i=1

wif(xi) (3.8)

where x1 < x2 < · · · < xn are distinct nodes and w1, w2, . . . , wn the corresponding weights (Dalquist

and Bjorck 2008). These weights are determined in order that (3.8) computes exactly the polynomial
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with the highest degree possible. Considering a cell-centered grid, in the midpoint rule we approximate

f(x) on [xi−1/2, xi+1/2] by

fi = f(xi) xi =
1

2
(xi−1/2 + xi+1/2) (3.9)

leading to the approximation
x+1/2ˆ

x−1/2

f(x)dx ≈ fi∆x (3.10)

Finally, after taking into account every sub interval [xi−1/2, xi+1/2], the composite midpoint rule is given

by (Dalquist and Bjorck 2008)

bˆ

a

f(x)dx = ∆x

n∑
i=1

fi +
(b− a)∆x2

24
f ′′(ξ), ξ ∈ [a, b] (3.11)

Even though the midpoint rule just uses one function value for the approximation, it computes exact

integral when f(x) is a polynomial of degree 1. Generalization of the midpoint rule to a 2-D domain like

in Fig. 3.1.2 leads to
byˆ

ay

bxˆ

ax

f(x, y)dxdy = ∆x∆y

m∑
j=1

n∑
i=1

fij (3.12)

Once we have introduced these methods of approximations, we proceed with the TPFA.

3.3 Two-point flux approximation

When we use finite difference methods in order to approximate PDEs, we replace the operator derivatives

by differences between points on a discrete set of points in the domain. On the other hand, when we

consider finite volume methods, they are derived from conservation of quantities over cell volumes (Jorg

et al. 2009). These methods are widely used for numerically solving PDEs; we use both on them in this

work.

Let us consider the following differential equation on a domain Ω (Lunde 2006)

−∇ · c∇y = F (3.13)

Our aim is to find the solution for y ∀x ∈ Ω. First, we consider a partition of our domain Ω =
⋃

Ωk,

where Ωk denotes a grid cell in Ω. We integrate Eq. (3.13) in the control volume Ωk

−
ˆ

Ωk

∇ · c∇ydx =

ˆ
Ωk

Fdx (3.14)

Let us focus on the left integral. Using the divergence theorem, we can write this integral as

−
ˆ

Ωk

∇ · c∇ydx = −
ˆ
∂Ωk

c∇y · ndS (3.15)
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In the general case, the boundary ∂Ωk could be part of several control volume boundaries. For example, in

the 3-D case considering a quadrangular partition, there are six control volumes sharing part of the same

boundary. Let us consider the 2-D case (which the 1-D case can be derived from) shown in Fig. (3.1.2).

In this case, we have four boundaries γi+1,j = Ωi+1,j ∩ Ωij , γi,j+1 = Ωi,j+1 ∩ Ωij , γi−1,j = Ωi−1,j ∩ Ωij

and γi,j−1 = Ωi,j−1 ∩ Ωij . Having found the boundaries, we can approximate ∇y using two points:

one in the current control volume Ωi and the other in the corresponding adjacent control volume. This

way to approximate the gradient is called two-point flux approximation. Using the previous idea, we

approximate the gradient as

∇y ≈ 2
yi+1,j − yij

∆xi+1,j + ∆xij
on γi+1,j (3.16)

where yi+1,j and yij correspond to the average value in the control volume Ωi+1,j and Ωij respectively, and

∆xi+1,j and ∆xij correspond to the distance from the middle points of Ωi+1,j and Ωij to the boundary

γi+1,j . Using this approximation and taking into account the sign after the inner product with the normal

vectors n, we write Eq. (3.14) as

− 2
yi+1,j − yij

∆xi+1,j + ∆xij

ˆ

γi+1,j

cdS − 2
yi,j+1 − yij

∆xi,j+1 + ∆xij

ˆ

γi,j+1

cdS − 2
yi−1,j − yij

∆xi−1,j + ∆xij

ˆ

γi−1,j

cdS

− 2
yi,j−1 − yij

∆xi,j−1 + ∆xij

ˆ

γi,j−1

cdS =

ˆ

Ωij

Fdx

(3.17)

Now, we consider c̃ as an approximate value of the parameter c on the boundary (in the next section

we explain methods of approximation for this parameters) and also approximate the right integral using

numerical integration. We finally write

− 2c̃i+1,j
yi+1,j − yij

∆xi+1,j + ∆xij
|γi+1,j | − 2c̃i,j+1

yi,j+1 − yij
∆xi,j+1 + ∆xij

|γi,j+1| − 2c̃i−1,j
yi−1,j − yij

∆xi−1,j + ∆xij
|γi−1,j |

− 2c̃i,j−1
yi,j−1 − yij

∆xi,j−1 + ∆xij
|γi,j−1| = F̃ij |Ωij |

(3.18)

Applying the same procedure to all control volumes in Ω, it leads to a linear system of the form Ay = b.

To make this system positive definite, we add a positive constant to the first diagonal element of A (Lunde

2006). Moreover, this system would have a unique solution if appropriate parameterizations, boundary

and initial conditions are given.

3.4 Approximations of the parameters on the inte-

gral boundaries

In the previous section, it was necessary to use an approximation of the parameter c on the boundaries, as

we consider a cell centered grid and we do not know the values on the walls. Depending on the parameter,

we should consider different technique approximations, in order to get stability and correct results (Aziz

and Settari 1979).
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Regarding the permeability of the medium, we approximate k by the harmonic mean (Aavatsmark 2002)

ki+1/2 =
2(∆xi+1 + ∆xi)

∆xi+1

ki+1
+ ∆xi

ki

(3.19)

The reason for considering this harmonic mean comes from the computation of an effective permeability

when we consider a layered system with different values of permeability and a flux perpendicular to

these layers, finding that the effective permeability of a system with two layers is given by Eq. (3.19)

(Nordbotten and Celia 2011).

Considering now the phases mobilities, one way to approximate them is using the upstream weighting

(Chen et al. 2006)

rλi+1/2 =

rλ(si) if flow is from i to i+ 1

rλ(si+1) if flow is from i+ 1 to i
(3.20)

For the rest of the parameters (porosity, diffusion, etc) that we need to approximate on the walls, we

simply use the average value

ξi+1/2 =
ξi+1 + ξi

2
(3.21)

3.5 Initial and boundary conditions

In general, PDEs have infinite number of solutions. However, given an oil reservoir problem, we are

interested in one particular solution of these PDEs. It is natural to think that we have to provide some

information about the reservoir to the PDEs, in order to find a unique solution. These conditions are

motivated by the physics, being the initial and boundary conditions (Strauss 2008). An initial condition

gives the solution at a certain time t0 for all points inside the domain Ω. In relation to the boundary,

we know information (pressure, saturation, flux, ...) about the reservoir on the walls. For example, we

could know the flow through the walls, the amount of bacteria that we are injecting into one part of the

boundary, etc. There are several types of boundary conditions, but in this thesis we consider Dirichlet

boundary conditions (the value of the solution is known on the boundary), Neumann boundary conditions

(the normal derivative is known on the boundary) and flux boundary conditions (the flux is known on

the boundary).

For solving our model, we need to give the initial conditions for the following variables

p(x, 0) = p0(x) sw(x, 0) = sw,0(x) awn(x, 0) = awn,0(x) cb(x, 0) = cb,0(x) cn(x, 0) = cn,0(x)

cp(x, 0) = cp,0(x) σ1(x, 0) = σ1,0(x) σ2(x, 0) = σ2,0(x) φ(x, 0) = φ0(x) k(x, 0) = k0(x)

Additionally, we need to provide the boundary conditions for the average pressure, water saturation,

interfacial area, bacterial, nutrient and biosurfactant concentrations. In the next chapter, we show with

details a way to deal with these boundary conditions in 1D and 2D.
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3.6 General formulation for solving the model

Once we have the discretization of the space, time and equations, we proceed with the implementation.

Prior to this, we introduce the following ideas and concepts that we use in the numerical solver. For

solving the pressure, saturation and interfacial area equations, we use an implicit scheme. The use of

these iterative formulations is very common, for example in Pop et al. 2004 and List and Radu 2016 they

solved the Richards equation using this technique. Regarding the two-phase flow, in Radu et al. 2015b

and Radu et al. 2015a they solved the equations using the same iterative scheme. The convergence of

this implicit scheme can be followed from Radu et al. 2010, Kumar et al. 2013, Kumar et al. 2014 and

Kvashchuk 2015. The notation we use is

pn+1,j
i where p

solution for time t(n+1), iner iteration
current point (3.22)

Because we use an iterative scheme, it is indispensable to have a measure of the error. It is known that

any norm is equivalent in a finite-dimensional space (Trefethen and Bau 1997), so it is not relevant which

the norm we choose because we are interested in measuring the reduction of error. For this work, we use

the following L2-norm

‖x‖L2 =

(
∆x

m∑
i=1

x2
i

)1/2

(3.23)

Once we have a measure for the error, we can proceed with the general idea for solving numerically our

model. Extending the Skiftestad 2015’s algorithm, we have the following procedure

I We solve the pressure equation using the previous values of saturation and interfacial area.

II We solve the saturation equation using the new value of pressure and the previous value of interfacial

area.

III We solve the interfacial area equation using the update value of saturation.

IV We compute the errors ‖j+1pn+1 − jpn+1‖L2 , ‖j+1sn+1 − jsn+1‖L2 and ‖j+1an+1 − jan+1‖L2 .

V If the errors are less than a given tolerance ε, we solve the concentration equations. Otherwise, we

upgrade the values for the inner iteration j and we solve again the three equations. If any of the

errors get more than ε in a given maximum number of iterations MI, either the problem is not well

posed or we have to consider smaller time steps.

VI We solve the concentration equation iteratively (this due to the source/sink values depend also in

the saturation) until the error is less than ε or we reach the MI.

VII If the concentration error is less than ε, we solve the bacterial deposited equations and we update

the porosity.

VIII After updating the porosity, we compute the new permeability, interfacial tension and residual oil

saturation.

IX We move to the next time step. If we have not reach the final time T , we start the process again

until we reach the final time T .

X Once we reach the final time, we finally plot the results.
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3.7 Flux diagram for solving the model

In Fig. 3.7.1, we show a flux diagram for solving the two-phase model with transport equations including

bioclogging and interfacial area.
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Figure 3.7.1 Flux diagram for solving the two-phase flow model. MI represents the maximun number
of iterations and ε the error tolerance.



Chapter 4

Implementation of the model in 1-D

and 2-D domains

In the previous chapter, we describe some techniques used to discretize partial differential equations in

order to give a numerical solution. Once we have the discretization of the problem, we proceed to solve

it in 1D and 2D. In this chapter we explain in detail how to implement the equations in 1-D and 2-D

rectangular domains with rectangular gridding using cell-centered cells with half-cells on the boundaries.

We also compare the numerical results with benchmark simulations and we study the error convergence

given analytic solutions.

4.1 1-D formulation

Regarding the spatial location, we are living in a three dimensional space. Then, for specifying a point

inside a reservoir, we need three spatial coordinates. However, there are many cases were we can reduce

the dimension to 2D or even 1D, using symmetries, approximations, etc. For the 1-D simulation, we

consider a porous media of size L. In this case, we just have two boundaries, where we have to provide

appropriate conditions in order to get the unique solution.

4.1.1 Pressure equation

We start writing the expression for the pressure equation in 1D

∂φ

∂t
− ∂

∂x

[
k
(
λΣ

∂p

∂x
+

1

2
λ∆

∂pc
∂x
− (λwρw + λnρn)g

)]
=
∑
α=w,n

Fα
ρα

(4.1)

We integrate in a control interval [xi−1/2, xi+1/2]

ˆ xi+1/2

xi−1/2

(
∂φ

∂t
− ∂

∂x

[
k
(
λΣ

∂p

∂x
+

1

2
λ∆

∂pc
∂x
− (λwρw + λnρn)g

)])
dx =

ˆ xi+1/2

xi−1/2

∑
α=w,n

Fα
ρα
dx (4.2)

29
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Using the Fundamental Theorem of Calculus for the left integral and the midpoint rule for the right

integral

∂φi
∂t

∆x−
(
k
(
λΣ

∂p

∂x
+

1

2
λ∆

∂pc
∂x
− (λwρw + λnρn)g

))
i+1/2

+
(
k
(
λΣ

∂p

∂x
+

1

2
λ∆

∂pc
∂x
− (λwρw + λnρn)g

))
i−1/2

=
∑
α=w,n

Fα,i
ρα

∆x
(4.3)

Considering the chain rule for pc

∂pc
∂x

=
∂pc
∂sw

∂sw
∂x

+
∂pc
∂awn

∂awn
∂x

(4.4)

Due to the fact that the capillary pressure is a function of the saturation and interfacial area, both of

them being unknowns, we should use an inner iteration j in order to upgrade the values of the functions

depending on the saturation and interfacial area and solve this system of equations (pressure, saturation

and interfacial area equations) until a stopping criterion is reached. For initializing the iteration, we

consider the solution at the previous time step

pn+1,1
i = pni , an+1,1

wn,i = anwn,i, sn+1,1
w,i = snw,i, λn+1,1

i = λni , ∀i (4.5)

Using Eq. (3.2), we approximate the time derivative for the porosity as ∂φi
∂t ≈

φni −φ
n−1
i

∆t with φ0
i = φ1

i .

Using the previous considerations and rearranging the terms in order to put on the left hand side the

pressure, we get the following system of equations

−
pn+1,j+1
i+1

∆x
λn+1,j

Σ,i+1/2k
n
i+1/2 + pn+1,j+1

i

(
λn+1,j

Σ,i+1/2k
n
i+1/2

∆x
+
λn+1,j

Σ,i−1/2k
n
i−1/2

∆x

)
−
pn+1,j+1
i−1

∆x
λn+1,j

Σ,i−1/2k
n
i−1/2

=
∑
α=w,n

Fn+1
α,i

ρα
∆x− φni − φ

n−1
i

∆t
∆x

+
1

2
λn+1,j

∆,i+1/2k
n
i+1/2

(
∂pn+1,j

c,i+1/2

∂sw

sn+1,j
w,i+1 − s

n+1,j
w,i

∆x
+
∂pn+1,j

c,i+1/2

∂awn

an+1,j
wn,i+1 − a

n+1,j
wn,i

∆x

)
+

1

2
λn+1,j

∆,i−1/2k
n
i−1/2

(
∂pn+1,j

c,i−1/2

∂sw

sn+1,j
w,i−1 − s

n+1,j
w,i

∆x
+
∂pn+1,j

c,i−1/2

∂awn

an+1,j
wn,i−1 − a

n+1,j
wn,i

∆x

)
− g[ρw(kni+1/2λ

n+1,j
w,i+1/2 − k

n
i−1/2λ

n+1,j
w,i−1/2) + ρn(kni+1/2λ

n+1,j
n,i+1/2 − k

n
i−1/2λ

n+1,j
n,i−1/2)]

(4.6)
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Multiplying ∆x∆t in both sides, we finally obtain

− pn+1,j+1
i+1 λn+1,j

Σ,i+1/2k
n
i+1/2∆t

+ pn+1,j+1
i

(
λn+1,j

Σ,i+1/2k
n
i+1/2 + λn+1,j

Σ,i−1/2k
n
i−1/2

)
∆t

− pn+1,j+1
i−1 λn+1,j

Σ,i−1/2k
n
i−1/2∆t

=
∑
α=w,n

Fn+1
α,i

ρα
∆x2∆t− (φni − φn−1

i )∆x2

+
1

2
λn+1,j

∆,i+1/2k
n
i+1/2

(
∂pn+1,j

c,i+1/2

∂sw
(sn+1,j
w,i+1 − s

n+1,j
w,i ) +

∂pn+1,j
c,i+1/2

∂awn
(an+1,j
wn,i+1 − a

n+1,j
wn,i )

)
∆t

+
1

2
λn+1,j

∆,i−1/2k
n
i−1/2

(
∂pn+1,j

c,i−1/2

∂sw
(sn+1,j
w,i−1 − s

n+1,j
w,i ) +

∂pn+1,j
c,i−1/2

∂awn
(an+1,j
wn,i−1 − a

n+1,j
wn,i )

)
∆t

− g[ρw(kni+1/2λ
n+1,j
w,i+1/2 − k

n
i−1/2λ

n+1,j
w,i−1/2) + ρn(kni+1/2λ

n+1,j
n,i+1/2 − k

n
i−1/2λ

n+1,j
n,i−1/2)]∆x∆t

(4.7)

Defining

ai = λn+1,j
Σ,i+1/2k

n
i+1/2 1 ≤ i ≤ N − 1

bi =
∑
α=w,n

Fn+1
α,i

ρα
∆x2∆t− (φni − φn−1

i )∆x2

+
1

2
λn+1,j

∆,i+1/2k
n
i+1/2

(
∂pn+1,j

c,i+1/2

∂sw
(sn+1,j
w,i+1 − s

n+1,j
w,i ) +

∂pn+1,j
c,i+1/2

∂awn
(an+1,j
wn,i+1 − a

n+1,j
wn,i )

)
∆t

+
1

2
λn+1,j

∆,i−1/2k
n
i−1/2

(
∂pn+1,j

c,i−1/2

∂sw
(sn+1,j
w,i−1 − s

n+1,j
w,i ) +

∂pn+1,j
c,i−1/2

∂awn
(an+1,j
wn,i−1 − a

n+1,j
wn,i )

)
∆t

− g[ρw(kni+1/2λ
n+1,j
w,i+1/2 − k

n
i−1/2λ

n+1,j
w,i−1/2) + ρn(kni+1/2λ

n+1,j
n,i+1/2 − k

n
i−1/2λ

n+1,j
n,i−1/2)]∆x∆t

we can write the linear system of equations for the pressure in the matrix system Apn+1,j+1 = b



BCs

−a1 a1 + a2 a2 0 0 . . . 0 0

0 −a2 a2 + a3 −a3 0 0 0 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0 −ai−1 ai−1 + ai −ai 0 . . . 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

0 0 . . . 0 0 −aN−2 aN−2 + aN−1 −aN−1

BCs





pn+1,j+1
1

.

.

.

pn+1,j+1
i

.

.

.

pn+1,j+1
N


=



BCs

b2

.

.

.

bi

.

.

.

bN−1

BCs



4.1.2 Saturation equation

We start writing the expression for the saturation equation in 1D

∂φsw
∂t
− ∂

∂x

(
λwk

( ∂
∂x

(
p− 1

2
pc
)
− ρng

))
=
Fw
ρw

(4.8)

We integrate in a control interval [xi−1/2, xi+1/2]

ˆ xi+1/2

xi−1/2

∂φsw
∂t

dx−
ˆ xi+1/2

xi−1/2

∂

∂x

(
λwk

( ∂
∂x

(
p− 1

2
pc
)
− ρng

))
dx =

ˆ xi+1/2

xi−1/2

Fw
ρw

dx (4.9)
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Using the Fundamental Theorem of Calculus for the left integral and the midpoint rule for the right

integral

∂φisw,i
∂t

∆x−
(
λwk

( ∂
∂x

(
p− 1

2
pc
)
− ρng

))
i+1/2

+
(
λwk

( ∂
∂x

(
p− 1

2
pc
)
− ρng

))
i−1/2

=
Fw,i
ρw

∆x (4.10)

Now we have to approximate the temporal derivative for the saturation. This can be done with the

Implicit Euler’s method (3.2). Considering the inner iteration j and the chain rule for the capillarity

pressure

φni s
n+1,j+1
w,i − φni sni

∆t
∆x

−kni+1/2λ
n+1,j
w,i+1/2

(pn+1
i+1,j+1 − p

n+1,j+1
i

∆x
− 1

2

(
∂pn+1,j

c,i+1/2

∂sw

sn+1,j+1
w,i+1 − sn+1,j+1

w,i

∆x

+
∂pn+1,j

c,i+1/2

∂awn

an+1,j
wn,i+1 − a

n+1,j
wn,i

∆x

)
− ρng

)
−kni−1/2λ

n+1,j
w,i−1/2

(pn+1,j+1
i−1 − pn+1,j+1

i

∆x
− 1

2

(
∂pn+1,j

c,i−1/2

∂sw

sn+1,j+1
w,i−1 − sn+1,j+1

w,i

∆x

+
∂pn+1,j

c,i−1/2

∂awn

an+1,j
wn,i−1 − a

n+1,j
wn,i

∆x

)
− ρng

)
=
Fn+1
w,i

ρw
∆x

(4.11)

Rearranging terms and multiplying ∆x∆t in both sides

sn+1,j+1
w,i+1 kni+1/2λ

n+1,j
w,i+1/2

∂pn+1,j
c,i+1/2

∂sw

∆t

2

+ sn+1,j+1
w,i

(
φni ∆x2 −

(
kni+1/2λ

n+1,j
w,i+1/2

∂pn+1,j
c,i+1/2

∂sw
+ kni−1/2λ

n+1,j
w,i−1/2

∂pn+1,j
c,i−1/2

∂sw

)∆t

2

)
+ sn+1,j+1

w,i−1 kni−1/2λ
n+1,j
w,i−1/2

∂pn+1,j
c,i−1/2

∂sw

∆t

2

=
Fn+1
w,i

ρw
∆x2∆t+ φni s

n
w,i∆x

2

+ kni+1/2λ
n+1,j
w,i+1/2(pn+1,j+1

i+1 − pn+1,j+1
i −

∂pn+1,j+1
c,i+1/2

∂awn

an+1,j
wn,i+1 − a

n+1,j
wn,i

2
− ρng∆x)∆t

+ kni−1/2λ
n+1,j
w,i−1/2(pn+1,j+1

i−1 − pn+1,j+1
i −

∂pn+1,j
c,i−1/2

∂awn

an+1,j
wn,i − a

n+1,j
wn,i−1

2
− ρng∆x)∆t

(4.12)

Defining

di = kni+1/2λ
n+1,j
w,i+1/2

∂pn+1,j
c,i+1/2

∂sw

∆t

2
1 ≤ i ≤ N − 1

ei =
Fn+1
w,i

ρw
∆x2∆t+ φni s

n
wi∆x

2

+ kni+1/2λ
n+1,j
w,i+1/2(pn+1,j+1

i+1 − pn+1,j+1
i −

∂pn+1,j
c,i+1/2

∂awn

an+1,j
wn,i+1 − a

n+1,j
wn,i

2
− ρng∆x)∆t

+ kni−1/2λ
n+1,j
w,i−1/2(pn+1,j+1

i−1 − pn+1,j+1
i −

∂pn+1,j
c,i−1/2

∂awn

an+1,j
wn,i − a

n+1,j
wn,i−1

2
− ρng∆x)∆t
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we can write the linear system of equations for the saturation equation in the matrix system Bsn+1,j+1 = e

B



sn+1,j+1
1

...

sn+1,j+1
i

...

sn+1,j+1
N


=



BCs

e2

...

ei
...

eN−1

BCs



B =



BCs

d1 ∆x2φn2 − d1 − d2 d2 0 0 . . . 0 0

0 d2 ∆x2φn3 − d2 − d3 d3 0 0 0 0

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

. . . 0 di−1 ∆x2φni − di−1 − di di 0 . . . 0

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

0 0 . . . 0 0 dN−2 ∆x2φnN−1 − dN−2 − dN−1 dN−1

BCs



4.1.3 Interfacial equation

We start writing the expression for the interfacial area equation in 1D

∂awn
∂t
− ∂

∂x

(
awnkwn

∂awn
∂x

)
= Ewn (4.13)

We integrate in a control interval [xi−1/2, xi+1/2]

ˆ xi+1/2

xi−1/2

∂awn
∂t

dx−
ˆ xi+1/2

xi−1/2

∂

∂x

(
awnkwn

∂awn
∂x

)
dx =

ˆ xi+1/2

xi−1/2

Ewndx (4.14)

Using the midpoint rule and the Fundamental Theorem of Calculus

∂awn
∂t

∆x−
(
awnkwn

∂awn
∂x

)
i+1/2

+
(
awnkwn

∂awn
∂x

)
i−1/2

= Ewn,i∆x (4.15)

Considering again the inner iteration j , the approximation for the temporal derivative, and the chain rule

an+1,j+1
wn,i − anwn,i

∆t
∆x− knwn,i+1/2a

n+1,j
wn,i+1/2

(an+1,j+1
wn,i+1 − a

n+1,j+1
wn,i

∆x
)

− knwn,i−1/2a
n+1,j
wn,i−1/2

(an+1,j+1
wn,i−1 − a

n+1,j+1
wn,i

∆x

)
= En+1

wn,i∆x

(4.16)
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Rearranging terms and multiplying ∆x∆t in both sides

− an+1,j+1
wn,i+1 knwn,i+1/2a

n+1,j
wn,i+1/2∆t

an+1,j+1
wn,i (∆x2 + (knwn,i+1/2a

n+1,j
wn,i+1/2 + knwn,i−1/2a

n+1,j
wn,i−1/2)∆t)

− an+1,j+1
wn,i−1 knwn,i−1/2a

n+1,j
wn,i−1/2∆t

= (En+1
wn,i∆t+ anwn,i)∆x

2

(4.17)

Defining

qi = knwn,i+1/2a
n+1,j
wn,i+1/2∆t 1 ≤ i ≤ N − 1

ri = (En+1
wn,i∆t+ anwn,i)∆x

2

we can write the linear system of equations for the saturation equation in the matrix system Qan+1,j+1 = r

Q



an+1,j+1
wn,1

...

an+1,j+1
wn,i

...

an+1,j+1
wn,N


=



BCs

r2

...

ri
...

rN−1

BCs



Q =



BCs

−q1 ∆x2 + q1 + q2 −q2 0 0 . . . 0 0

0 −q2 ∆x2 + q2 + q3 −q3 0 0 0 0

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

. . . 0 −qi−1 ∆x2 + qi−1 + qi −qi 0 . . . 0

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

0 0 . . . 0 0 −qN−2 ∆x2 + qN−2 + qN−1 −qN−1
BCs



4.1.3.1 Boundary conditions

In the following pages, we show a way to deal with boundary conditions for the pressure and saturation

equation. It is analogous for the interfacial area.

4.1.3.1.1 Dirichlet boundary conditions

Let us suppose that we have Dirichlet boundary conditions for the pressure equation on the right boundary

(p(L, t) = pR(t)). Because we consider a cell-centered grill, we do not know the value of the pressure

derivative on the right boundary, but we know the pressure. So one way to deal with Dirichlet boundary

conditions is to modify the size of the two boundary cells (Thomas 1995) as follows
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Figure 4.1.1 Modification in a half-cell for Dirichlet boundary conditions in 1D. We observe the change
of size for implementing the condition.

Then, considering a half cell on the right boundary, the integration results

− λn+1,j
Σ,N+1/2k

n
N+1/2

pn+1
R − pn+1,j+1

N
∆x
2

+ λn+1,j
Σ,N−1/2k

n
N−1/2

pn+1,j+1
N − pn+1

N−1

∆x

=
∑
α=w,n

Fn+1
α,N

ρα

3∆x

4
−
φnN − φ

n−1
N

∆t
∆x

+
1

2
λn+1,j

∆,N+1/2k
n
N+1/2

(
pn+1,j
c,N+1/2

∂sw

sn+1,j
w,N+1 − s

n+1,j
wN

∆x
2

+
∂pn+1,j

c,N+1/2

∂awn

an+1,j
wn,N+1 − a

n+1,j
wn,N

∆x
2

)

+
1

2
λn+1,j

∆,N−1/2k
n
N−1/2

(
∂pn+1,j

c,N−1/2

∂sw

sn+1,j
w,N−1 − s

n+1,j
w,N

∆x
+
∂pn+1,j

c,N−1/2

∂awn

an+1,j
wn,N−1 − a

n+1,j
wn,N

∆x

)
− g[ρw(knN+1/2λ

n+1,j
w,N+1/2 − k

n
N−1/2λ

n+1,j
w,N−1/2) + ρn(knN+1/2λ

n+1,j
n,N+1/2 − k

n
N−1/2λ

n+1,j
n,N−1/2)]

(4.18)

From the last equation, we just rearrange terms and we implement in the last row in the matrix system

for the pressure. Nevertheless, we need the value of sn+1,j
w,N+1. If we have for the the saturation equation

on the right boundary Dirichlet condition, we already know the value sn+1,j
w,N+1 = sw(L, t) ∀t. If instead

we have a Neumann boundary condition (s′w(L, t) = qR(t)), we approximate the value as

qn+1
R =

sn+1,j
w,N+1 − s

n+1,j
w,N

∆x
2

⇒ sn+1,j
w,N+1 = qn+1

R

∆x

2
+ sn+1,j

w,N (4.19)

4.1.3.1.2 Neumann boundary conditions

Let us suppose that we have Neumann boundary conditions for the saturation on the right boundary

(s′w(L, t) = qR(t)). Because we considered a uniform cell-centered grid, we already know the value for

the derivative on the boundary, so after integration and substitution we get

φnNs
n+1,j
w,N − φnNsnw,N

∆t
∆x

−knN+1/2λ
n+1,j
w,N+1/2

(pn+1,j+1
N+1 − pn+1,j+1

N
∆x
2

− 1

2

(
∂pn+1,j

c,N+1/2

∂sw
qn+1
R

+
∂pn+1,j

c,N+1/2

∂awn

an+1,j
wn,N+1 − a

n+1,j
wn,N

∆x
2

)
− ρng

)
−knN−1/2λ

n+1,j
w,N−1/2

(pn+1,j+1
N − pn+1,j+1

N−1

∆x
− 1

2

(
∂pn+1,j

c,N−1/2

∂sw

sn+1,j+1
w,N−1 − s

n+1,j+1
w,N

∆x

+
∂pn+1,j

c,N−1/2

∂awn

an+1,j
wn,N−1 − a

n+1,j
wn,N

∆x

)
− ρng

)
=
Fn+1
w,N

ρw
∆x

(4.20)

From the last equation, we just rearrange terms and we implement in the last row in the system matrix

for the saturation. For computing the mobilities and derivatives of capillary pressure on the boundary,
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we need to approximate the saturation on the right boundary. We use the following approximation

sn+1,j+1
w,N+1 = qn+1

R

∆x

2
+ sn+1,j+1

w,N (4.21)

4.1.3.1.3 Flux boundary conditions

Now, let us suppose that we have flux boundary conditions on the right boundary (n · Σu(L, t) = qR(t)).

Because we consider a uniform cell-centered grid, we already know the value of the total flux on the

boundary, so after integration and substitution we get

∂φN
∂t

∆x+ qR(t) +
(
k
(
λΣ

∂p

∂x
+

1

2
λ∆

∂pc
∂x
− (λwρw + λnρn)g

))
N−1/2

=
∑
α=w,n

Fα,N
ρα

∆x (4.22)

From the last equation, we can just follow the previous method and rearrange terms in order to substitute

in the matrix system for the pressure equation. After solving the system, using the expression for the

total flux

uΣ = −k(λΣ∇p+
1

2
λ∆∇pc − (λwρw + λnρn)g) (4.23)

We approximate the right pressure

pn+1,j+1
N+1 = −

∆x
2

λn+1,j
Σ,N

(
qn+1
R

knN
+

1

2
λn+1,j

∆,N p
′n+1,j
c,N

sn+1,j
w,N+1 − s

n+1,j
w,N

∆x
2

−(λn+1,j
w,N ρw+λn+1,j

n,N ρn)g

)
+pn+1,j+1

N (4.24)

4.1.4 Validation of the two-phase flow model in 1D

After discretizing the pressure, saturation and interfacial area equations, we should test if the algorithm is

working. In this section we test our algorithm with two analytic solutions, computing the error reduction

in order to check if the numerical solution approximates to the continuous one, and also with a benchmark

simulation.

4.1.4.1 Analytic solution

In this section we present the numerical results for using the previous algorithm given two analytic

solutions. First, we test our algorithm just considering the pressure and saturation equations verifying

the error reduction, and after we test the algorithm including the interfacial tension equation.

4.1.4.1.1 Example 1

We consider a 1-D domain of size L = 1. We test our scheme for the next analytic solutions and

parameterizations

p(x, t) = tx2 sw(x, t) = ex + t pc(sw, awn) = −s2
w kr,w(sw) = sw kr,n(sw) = 2sw
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with Dirichlet boundary conditions for the pressure and saturation, except on the right boundary for the

pressure, where we give the flux

p(x, 0) = 0 p(0, t) = 0 n · uΣ(L, t) = −(3(t+ eL)2tL− eL(t+ eL)2)

sw(x, 0) = ex sw(0, t) = 1 + t sw(L, t) = eL + t

We consider

k = ρw = φ = ρn = µw = µn = 1

The source/sink terms are given by

Fw
ρw

= φ− k(2t(xex + t+ ex) + (t+ ex)e2∗x + (t+ ex)(tex + 2e2x))

Fn
ρn

= −φ− k(4t(xex + t+ ex)− 2(t+ ex)e2x − 2(t+ ex)(tex + 2e2x))

We present the results of the analysis of convergence in Table 4.1.1, where we halve the size of the time

and space step in each case.

Table 4.1.1 Pressure and saturation errors for the analytic validation in 1D. We test for different mesh
sizes and time steps, with L = 1 and T = 0.1.

∆x ∆t Lp,2 error Ls,2 error reduction p reduction s
1 0.2 0.01 0.039244 0.012350
2 0.1 0.005 0.0090652 0.0024305 4.3291 5.0814
3 0.05 0.0025 0.0021532 5.1367e-004 4.2101 4.7316
4 0.025 0.00125 5.2277e-004 1.1628e-004 4.1189 4.4176
5 0.0125 0.000625 1.2866e-004 2.7555e-005 4.0632 4.2200

From Table 4.1.1 we observe that the error reduction for both pressure and saturation approximates to

4, which is the behavior expected (Iserles 2009).
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Figure 4.1.2 Pressure and saturation profiles for the analytic validation in 1D. The size partitions we
used are dx= 0.025 and dt= 0.00125.
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4.1.4.1.2 Example 2

Now, we also consider the interfacial area equation. We test our scheme for the next analytic solutions

and parameterizations

p(x, t) = tx2 sw(x, t) = ex + t awn(x, t) = t sin(x)

pc(sw, awn) = −a2
wns

2
w kr,w(sw) = sw kr,n(sw) = 2sw

with Dirichlet boundary conditions for the pressure, saturation and interfacial area, except on the right

boundary for the saturation and interfacial area, where we have Neumann conditions

p(x, 0) = 0 p(0, t) = 0 p(L, t) = tL2

sw(x, 0) = ex sw(0, t) = 1 + t
∂sw
∂x

(L, t) = eL

awn(x, 0) = 0 awn(0, t) = 0
∂awn
∂x

(L, t) = t cos(L)

where we consider

kwn = ρw = φ = ρn = µw = µn = 1 k = 0.001

The source/sink terms are given by

Fw
ρw

= 1− k(2t(xex + ex + t)

− 1

2
(ex(−2t2(sin(x)2ex(ex + t) + sin(x) cos(x)(ex + t)2)) + (ex + t)(−2t2(2 sin(x) cos(x)ex(ex + t)

+ sin(x)2ex(ex + t) + sin(x)2e2x + cos(x)2(ex + t)2 − sin(x)2(ex + t)2 + 2 sin(x) cos(x)(ex + t)ex))))

Fn
ρn

= −1− k(4t(xex + ex + t)

+ (ex(−2t2(sin(x)2ex(ex + t) + sin(x) cos(x)(ex + t)2)) + (ex + t)(−2t2(2 sin(x) cos(x)ex(ex + t)

+ sin(x)2ex(ex + t) + sin(x)2e2x + cos(x)2(ex + t)2 − sin(x)2(ex + t)2 + 2 sin(x) cos(x)(ex + t)ex))))

Ewn = sin(x)− kwnt2(cos(x)2 − sin(x)2)

We present the results of the analysis of convergence in Table 4.1.2, where we halve the size of the time

and space step in each case. From the table we observe that the error reductions approximates to 2.

Table 4.1.2 Pressure, saturation and interfacial errors for the analytic validation in 1D. We tested for
different mesh sizes and time steps, with L = 1 and T = 1.

∆x ∆t Lp,2 error Lsw,2 error Lawn,2 error red p red sw red awn
1 0.2 0.1 0.015756 0.0063866 0.0083452
2 0.1 0.05 0.011011 0.0037196 0.0037359 1.4309 1.7170 2.2338
3 0.05 0.025 0.0072132 0.0020267 0.0017916 1.5265 1.8354 2.0852
4 0.025 0.0125 0.0041720 0.0010494 8.7942e-004 1.7290 1.9312 2.0372
5 0.0125 0.00625 0.0022443 5.3254e-004 4.3587e-004 1.8589 1.9706 2.0176
6 0.00625 0.003125 0.0011639 2.6807e-004 2.1700e-004 1.9282 1.9866 2.0086
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Figure 4.1.3 Pressure, saturation and interfacial area profiles for the analytic validation in 1D. The size
partitions we used are dx= 0.025 and dt= 0.0125.

4.1.4.2 Benchmark simulation

We test our algorithm against a numerical simulation made by Amaziane et al. 2009, where the porous

medium has a length L = 100 m with homogeneous permeability and porosity (the gravity is neglected).

The parameters for the simulation are given in Table 4.1.3 where we assume that the gaseous phase is

incompressible (Skiftestad 2015).

Table 4.1.3 Model parameters used in the benchmark validation of the two-phase model in 1D.

Parameter Value Parameter Value Parameter Value
k 1mD φ 0.1 pe 2 MPa
µn 9·10−6 Pa·s swi 0 L 100 m
µw 0.86·10−3 Pa·s sor 0 T 45 days
ρn 2 kg/m3 n 2
ρw 996.5 kg/m3 m 0.5

In the simulation, we consider that the porous medium is filled with 30% of gas and water is injected on

the left boundary. The boundary and initial conditions for the pressure and saturation are the following

p(x, 0) = 0.5 MPa p(0, t) = 4 MPa p(L, t) = 0.5 MPa

sw(x, 0) = 0.7 sw(0, t) = 1 ∂sw
∂x (L, t) = 0

Fig. 4.1.4 shows that after 45 days of water injection, we have extracted approximately 30% of the gas.

When we compare these results with the ones shown in the paper, we observe that they present the same

behavior, despite the fact that we did not consider compressibility in the gaseous phase.
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Figure 4.1.4 Pressure and saturation profiles for the benchmark validation in 1D. The size partitions
we used are dx=0.5 m and dt= 3.888e−6 s.

4.1.5 Transport equations

Posterior to solving the pressure, saturation and interfacial area equations, we consider now the dis-

cretization of the transport equations. We start writing the transport equations in 1D

∂(Cbφsw)

∂t
− ∂

∂x

(
Dbswφ

∂Cb
∂x
− uwCb − φvgCb

)
= Rb

∂(Cnφsw)

∂t
− ∂

∂x

(
Dnswφ

∂Cn
∂x
− uwCn

)
= Rn

∂(Cpφsw)

∂t
− ∂

∂x

(
Dpswφ

∂Cp
∂x
− uwCp

)
= Rp

(4.25)

We show the discretization for the bacteria equation, and for getting the discretization for the other two

equations, we just change indexes and consider vg = 0.

We integrate in a control interval [xi−1/2, xi+1/2]

ˆ xi+1/2

xi−1/2

∂(Cbφsw)

∂t
dx−

ˆ xi+1/2

xi−1/2

∂

∂x

(
Dbswφ

∂Cb
∂x
− uwCb − φvgCb

)
dx =

ˆ xi+1/2

xi−1/2

Rbdx (4.26)

Using the Fundamental Theorem of Calculus for the left integrals and the midpoint rule for the right

integral

∂(Cb,iφisw,i)

∂t
∆xi −

(
Dbswφ

∂Cb
∂x
− uwCb − φvgCb

)
i+1/2

+
(
Dbswφ

∂Cb
∂x
− uwCb − φvgCb

)
i−1/2

= Rb,i∆xi

(4.27)



4.1 1-D formulation 41

Approximating the temporal derivative, using the inner iteration j and rearranging terms
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− Cn+1,j+1
b,i−1 (

1

∆x
Dn+1
b,i−1/2s

n+1
w,i−1/2φ

n
i−1/2 +

1

2
(un+1
w,i−1/2 + φni−1/2vg))

= Rn+1,j
b,i ∆x+ Cnb,iφ

n
i s
n
w,i

∆x

∆t

(4.28)

Multiplying ∆x∆t in both sides

− Cn+1,j+1
b,i+1 (∆tDn+1

b,i+1/2s
n+1
w,i+1/2φ

n
i+1/2 −

∆x∆t

2
(un+1
w,i+1/2 + φni+1/2vg))

+ Cn+1,j+1
b,i (φni s

n+1
w,i ∆x2 + ∆t(Dn+1

b,i+1/2s
n+1
w,i+1/2φ

n
i+1/2 +Dn+1

b,i−1/2s
n+1
w,i−1/2φ

n
i−1/2

+
∆x

2
(un+1
w,i+1/2 + φni+1/2vg − u

n+1
w,i−1/2 − φ

n
i−1/2vg))

− Cn+1,j+1
b,i−1 (∆tDn+1

b,i−1/2s
n+1
w,i−1/2φ

n
i−1/2 +

∆x∆t

2
(un+1
w,i−1/2 + φni−1/2vg))

= Rn+1,j
b,i ∆x2∆t+ Cnb,iφ

n
i s
n
w,i∆x

2

(4.29)

Defining

fi = ∆tDn+1
i+1/2s

n+1
w,i+1/2φ

n
i+1/2 1 ≤ i ≤ N − 1

gi =
∆x∆t

2
un+1
w,i+1/2 1 ≤ i ≤ N − 1

hi = φni s
n+1
w,i ∆x2

ii =
∆x∆t

2
φni vg

we can write the three transport equations

− Cn+1,j+1
b,i+1 (fb,i − gi − ii)

+ Cn+1,j+1
b,i (hi + fb,i + fb,i−1 + gi + ii − gi−1 − ii−1)

− Cn+1,j+1
b,i−1 (fb,i−1 + gi−1 + ii−1)

= Rn+1.j
b,i ∆x2∆t+ Cnb,iφ

n
i s
n
w,i∆x

2

(4.30)

− Cn+1,j+1
n,i+1 (fn,i − gi)

+ Cn+1,j+1
n,i (hi + fn,i + fn,i−1 + gi − gi−1)

− Cn+1,j+1
n,i−1 (fn,i−1 + gi−1)

= Rn+1.j
n,i ∆x2∆t+ Cnn,iφ

n
i s
n
w,i∆x

2

(4.31)

− Cn+1,j+1
p,i+1 (fp,i − gi)

+ Cn+1,j+1
p,i (hi + fp,i + fp,i−1 + gi − gi−1)

− Cn+1,j+1
p,i−1 (fp,i−1 + gi−1)

= Rn+1,j
p,i ∆x2∆t+ Cnp,iφ

n
i s
n
w,i∆x

2

(4.32)
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Finally, we can write the linear system of equations for the transport equations in the matrix system

D



Cn+1,j+1
b,1

...

Cn+1,j+1
b,i

Cn+1,j+1
n,i

Cn+1,j+1
p,i

...

Cn+1,j+1
p,N


=



BCs

BCs

BCs

Rn+1,j
b,2 ∆x2∆t+ Cnb,2φ

n
2 s
n
w,2∆x2

...

Rn+1,j
p,N−1∆x2∆t+ Cnp,N−1φ

n
N−1s

n
w,N−1∆x2

BCs

BCs

BCs



D =



BCs

BCs

BCs

−fb,1 − g1 − i1 0 0 h2 + fb,2 + fb,1 + g2 + i2 − g1 − i1 0 0 −fb,2 + g2 + i2 . . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

BCs

BCs

BCs



4.1.5.1 Boundary conditions

The implementation of the boundary conditions for the transport equations can be obtained following

the same ideas as for the pressure, saturation and interfacial area equations. For the next scenarios, we

consider vg = 0.

4.1.5.1.1 Dirichlet boundary conditions

Considering Dirichlet conditions on the left boundary (C(0, t) = M(t)), we use a half cell, so we have the

following equation

Cn+1,j+1
1 φn1 s

n+1
w,1 − Cn1 φn1 snw,1
∆t

3∆x

4
−Dn+1

3/2 s
n+1
w,3/2φ

n
3/2

Cn+1,j+1
2 − Cn+1,j+1

1

∆x
+ un+1

w,3/2C
n+1,j+1
3/2

+Dn+1
1/2 s

n+1
w,1/2φ

n
1/2

Cn+1,j+1
1 −Mn+1

∆x
2

− un+1
w,1/2C

n+1,j+1
1/2

= Rn+1,j
1

3∆x

4

(4.33)

In this case, noting that we approximate Cn+1,j+1
1/2 = 1

2 (Cn+1,j+1
1 +Mn+1), we rearrange terms and finally

obtain

+ Cn+1,j+1
1 (φn1 s

n+1
w,1

3∆x2

4
+ ∆t

(
Dn+1

1/2 s
n+1
w,1/2φ

n
1/2 + 2Dn+1

3/2 s
n+1
w,3/2φ

n
3/2 +

∆x

2
(un+1
w,3/2 − u

n+1
w,1/2)

)
− Cn+1,j+1

2 (∆tDn+1
3/2 s

n+1
w,3/2φ

n
3/2 −

∆x∆t

2
un+1
w,3/2)

= (Rn+1,j
N ∆t+ Cn1 φ

n
1 s
n
w,1)

3∆x2

4
+

(
2Dn+1

1/2 s
n+1
w,1/2φ

n
1/2 + un+1

w,1/2

∆x

2

)
Mn+1∆t

(4.34)
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4.1.5.1.2 Neumann boundary conditions

Considering a Neumann condition on the right boundary (n · ∇C = Q(t)), we use the following approxi-

mation for the concentration

Cn+1
N+1/2 − C

n+1
N

∆x
2

= Qn+1 ⇒ Cn+1,j+1
N+1/2 = Qn+1 ∆x

2
+ Cn+1,j+1

N (4.35)

When we use the previous expression, the equation to solve on the right boundary becomes

Cn+1,j+1
N φnNs

n+1
w,N − CnNφnNsnw,N
∆t

∆x

−Dn+1
N+1/2s

n+1
w,N+1/2φ

n
N+1/2Q

n+1 + un+1
w,N+1/2

(
Qn+1 ∆x

2
+ Cn+1,j+1

N

)
+Dn+1

N−1/2s
n+1
w,N−1/2φ

n
N−1/2

Cn+1,j+1
N − Cn+1,j+1

N−1

∆x
− un+1

w,N−1/2C
n+1,j+1
N−1/2

= Rn+1,j
N ∆x

(4.36)

And by rearranging terms, we finally obtain

+ Cn+1,j+1
N (φnNs

n+1
w,N∆x2 + ∆t

(
Dn+1
N−1/2s

n+1
w,N−1/2φ

n
N−1/2 +

∆x

2
(2un+1

w,N+1/2 − u
n+1
w,N−1/2)

)
− Cn+1,j+1

N−1 (∆tDn+1
N−1/2s

n+1
w,N−1/2φ

n
N−1/2 +

∆x∆t

2
un+1
w,N−1/2)

= Rn+1,j
N ∆x2∆t+ CnNφ

n
Ns

n
w,N∆x2 +

(
Dn+1
N+1/2s

n+1
w,N+1/2φ

n
N+1/2 − u

n+1
w,N+1/2

∆x

2

)
Qn+1∆x∆t

(4.37)

4.1.5.1.3 Flux boundary conditions

Considering flux boundary conditions on the left boundary (n · (−φswD∇C + uwC) = F (t)), we get the

following system

Cn+1,j+1
1 φn1 s

n+1
w,1 − Cn1 φn1 snw,1
∆t

∆x−Dn+1
3/2 s

n+1
w,3/2φ

n
3/2

Cn+1,j+1
2 − Cn+1,j+1

1

∆x
+ un+1

w,3/2C
n+1,j+1
3/2 − Fn+1

l

= Rn+1,j
1 ∆x

(4.38)

It is worth emphasizing that we approximate in different ways the values of the concentrations on the

boundaries. For the left boundary we have

−
[
− φn0 sn+1

w,0 D
n+1
0

Cn+1
1 − Cn+1

0
∆x
2

+ un+1
w,0 C

n+1
0

]
= Fn+1

l

⇒ Cn+1
0 =

−Fn+1
l ∆x+ 2Cn+1

1 φn0 s
n+1
w,0 D

n+1
0

2φn0 s
n+1
w,0 D

n+1
0 + uw,0∆x

Meanwhile for the right boundary

− φnNsn+1
w,ND

n+1
N

Cn+1
N+1 − C

n+1
N

∆x
2

+ un+1
w,NC

n+1
N = Fn+1

r

⇒ Cn+1
N+1 =

(
un+1
w,N

∆x

2φnNs
n+1
w,ND

n+1
N

+ 1

)
Cn+1
N − Fn+1

r

∆x

2φnNs
n+1
w,ND

n+1
N
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4.1.6 Bioclogging

We start writing the equations for the mass balance equations for bacteria deposited reversibly and

irreversibly on the solid matrix

∂(ρbσ1)

∂t
= k1(φ0 − σ)Cb − k2ρbσ1 + g1ρbσ1 − d1ρbσ1

∂(ρbσ2)

∂t
= k3(φ0 − σ)Cb + g1ρbσ2 − d1ρbσ2

(4.39)

We approximate the temporal derivatives using the Implicit Euler’s method (3.2)

ρbσ
n+1
1,i − ρbσn1,i

∆t
= k1(φ0,i − σn+1

i )Cn+1
b,i − k2ρbσ

n+1
1,i + g1ρbσ

n+1
1,i − d1ρbσ

n+1
1,i

ρbσ
n+1
2,i − ρbσn2,i

∆t
= k3(φ0,i − σn+1

i )Cn+1
b,i + g1ρbσ

n+1
2,i − d1ρbσ

n+1
2,i

(4.40)

Writing the unknowns on the left hand-side and considering σ = σ1 + σ2

σn+1
1,i (k1C

n+1
b,i ∆t+ ρb(1 + (k2 + d1 − g1)∆t)) + σn+1

2,i k1C
n+1
b,i ∆t = ρbσ

n
1,i + ∆tk1φ0,iC

n+1
b,i

σn+1
2,i (k3C

n+1
b,i ∆t+ ρb(1 + (d1 − g1)∆t)) + σn+1

1,i k3C
n+1
b,i ∆t = ρbσ

n
2,i + ∆tk3φ0,iC

n+1
b,i

(4.41)

Letting

ai = k1C
n+1
b,i ∆t+ ρb(1 + (k2 + d1 − g1 max

Cn+1
n,i

Kb/n + Cn+1
n,i

)∆t)

bi = k1C
n+1
b,i ∆t

ci = ρbσ
n
1,i + ∆tk1φ0,iC

n+1
b,i

di = k3C
n+1
b,i ∆t

ei = k3C
n+1
b,i ∆t+ ρb(1 + (d1 − g1 max

Cn+1
n,i

Kb/n + Cn+1
n,i

)∆t)

fi = ρbσ
n
2,i + ∆tk3φ0,iC

n+1
b,i

(4.42)

We obtain the update solutions

σn+1
1,i =

bifi − ciei
bidi − aiei

(4.43)

σn+1
2,i =

cidi − aifi
bidi − aiei

(4.44)

Once we solve the previous system, we can update the new porosity

φ = φ0 − σ = φ0 − σ1 − σ2 ≥ 0 (4.45)

Using the parametric model for the permeability (2.33), we update the new permeability after solving

the system for the porosity

kn+1
i = k0,i

(
1− σn+1

i

φ0,i

)C
(4.46)

Finally, we compute the new interfacial tension, capillary number and residual oil saturation using (2.34),

(2.35) and (2.36).
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4.1.7 Validation of the concentration formulation in 1D

Once we have achieved the discretization of the transport equations, it is time to verify its functionality.

In this section we present the analysis of convergence of the error reduction for an analytic solution and

after we test our algorithm with the results from an experiment that considers bioclogging.

4.1.7.1 Analytic solution

We consider a porous medium of length L = 1. We test our scheme for the next analytic solutions with

Dirichlet boundary conditions

Cb(x, y, t) = t sinx Cn(x, y, t) = t sinx Cp(x, y, t) = ex ln(1 + t)

We take

φ = sw = uw = Db = Dn = Dp = 1 vg = 0

The source/sink terms are given by

Rb = sinx(1 + tDb) + t cosx Rn = sinx(1 + tDn) + t cosx Rp = ex
(

1

1 + t
+ ln(1 + t)(1−Dp)

)
The reason for considering the same solution for the two first equations is to verify there is not a typo

mistake. Fig. 4.1.5 shows the concentration profiles. We present the results of the analysis of convergence

in Table 4.1.4, where we halve the size of the time and space steps in each case. From the table, we can

conclude that the numerical solver for the transport equations is working.

Table 4.1.4 Concentration errors for the analytic validation of the transport model in 1D. We test for
different mesh sizes and time steps, with L = 1 and T = 1.

∆x ∆t Lb,2 error Ln,2 error Lp,2 error red b red n red p
1 0.2 0.1 3.0660e-004 3.0660e-004 0.0024336
2 0.1 0.05 1.0691e-004 1.0691e-004 0.0011409 2.8680 2.8680 2.1329
3 0.05 0.025 3.1458e-005 3.1458e-005 5.4799e-004 3.3983 3.3983 2.0820
4 0.025 0.0125 8.5153e-006 8.5153e-006 2.6793e-004 3.6943 3.6943 2.0452
5 0.0125 0.00625 2.2139e-006 2.2139e-006 1.3240e-004 3.8464 3.8464 2.0237
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Figure 4.1.5 Concentration profiles for the analytic validation of the transport model in 1D. The size
partitions are dx=0.0125 and dt=0.00625.

4.1.7.2 Benchmark simulation

We test our algorithm against a numerical experiment made by Kim 2006. They considered a 40-cm

column, where they continuously injected bacteria on one side in order to examine the transport and

sorption behavior through the column. The following initial and boundary conditions were used in the

experiment

Cb(x, 0) = σ1(x, 0) = σ2(x, 0) = 0
∂Cb
∂x

(L, t) = 0 −Db
∂Cb
∂x

(0, t) + uwCb(0, t) = uwCb0

The model parameters used in the numerical experiments are given in Table 4.1.5.

Table 4.1.5 Model parameters used in the benchmark validation of the transport model in 1D.

Parameter Value Parameter Value Parameter Value
Cb0 4.32 mg·l−1 vg 1.61×10−5 cm·s−1 g1 1.0×10−6 s−1

L 40 cm ρb 1.085×106 mg·l−1 d1 1.0×10−7 s−1

φ0 0.4 k1 2.28×10−5 s−1

uw 2.17×10−4 cm·s−1 k2 3.56×10−7 s−1

αb,T 0.27 cm k3 1.72×10−6 s−1

For the numerical experiment, we partition the domain in 240 elements and consider time intervals of

dt=.0026. We present the simulation profiles in Fig 4.1.6
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Figure 4.1.6 Concentration profiles for the benchmark validation of the transport model in 1D. On the
left plot, we have the relative bacteria concentration in the aqueous phase, while on the right plot, we
have the bacteria attached to the solid phase after 4, 20, 40 and 60 days respectively.

In the first plot, we observe an increment of bacterial concentration as time passes, being greater on the

left side of the porous medium than on the right because we have greater amount of bacteria attached to

the rock on the left as seen in the second plot. Comparison with the simulation results published in Kim

2006 show similar behaviors for the different final times.

4.2 2-D formulation

In this chapter we extend the implementation of our two-flow model to the 2-D case. In this study,

we consider rectangular domains with regular rectangular partitions of dimensions L ×W . We define

the size of the partition in the horizontal direction as ∆x and for the vertical direction ∆y. Fig. 3.1.2

shows a partition of a rectangular domain, where we label the four boundaries of the element Ωij . For

general nonorthogonal grids, multi-point flux approximation (MPFA) mehtods are used (Aavatsmark

2002, Klausen et al. 2008).
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4.2.1 Pressure equation

We start writing the expression for the pressure equation in 2D

∂φ

∂t
−∇ · [k

(
λΣ∇p+

1

2
λ∆∇pc − (λwρw + λnρn)g

)]
=
∑
α=w,n

Fα
ρα

We integrate in a control square Ωij

ˆ
Ωij

(
∂φ

∂t
−∇ · [k

(
λΣ∇p+

1

2
λ∆∇pc − (λwρw + λnρn)g

)])
dx =

ˆ
Ωij

∑
α=w,n

Fα
ρα
dx

Using the divergence theorem

ˆ
Ωij

∂φ

∂t
dx−

ˆ
γij

(k
(
λΣ∇p+

1

2
λ∆∇pc − (λwρw + λnρn)g

))
· n dS =

ˆ
Ωij

∑
α=w,n

Fα
ρα

dx

Splitting the left integral

ˆ
Ωij

∂φ

∂t
dx−

ˆ
γij

kλΣ∇p · ndS−
ˆ
γij

k
1

2
λ∆∇pc · n dS +

ˆ
γij

k(λwρw + λnρn)g · ndS =

ˆ
Ωij

∑
α=w,n

Fα
ρα
dx

Using the chain rule for the pc

∇pc,ij =
∂pc
∂sw

(sw,ij , awn,ij)∇sw,ij +
∂pc
∂awn

(sw,ij , awn,ij)∇awn,ij

and the TPFA for the gradient

(∇p · n)

∣∣∣∣
γij1

≈ (pi+1,j − pij)
∆x

(∇p · n)

∣∣∣∣
γij2

≈ (pi,j+1 − pij)
∆y

(∇p · n)

∣∣∣∣
γij3

≈ − (pij − pi−1,j)

∆x
(∇p · n)

∣∣∣∣
γij4

≈ − (pij − pi,j+1)

∆y
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we obtain

pi+1,j − pij
∆x

ˆ
γij1

kλΣdS +
pi,j+1 − pij

∆y

ˆ
γij2

kλΣdS

+
pi−1,j − pij

∆x

ˆ
γij3

kλΣdS +
pi,j−1 − pij

∆y

ˆ
γij4

kλΣdS

+
1

2

(
sw,i+1,j − sw,ij

∆x

ˆ
γij1

∂pc
∂sw

kλ∆dS +
awn,i+1,j − awn,ij

∆x

ˆ
γij1

∂pc
∂awn

kλ∆dS

)
+

1

2

(
sw,i,j+1 − sw,ij

∆y

ˆ
γij2

∂pc
∂sw

kλ∆dS +
awn,i,j+1 − awn,ij

∆y

ˆ
γij2

∂pc
∂awn

kλ∆dS

)
+

1

2

(
sw,i−1,j − sw,ij

∆x

ˆ
γij3

∂pc
∂sw

kλ∆dS +
awn,i−1,j − awn,ij

∆x

ˆ
γij3

∂pc
∂awn

kλ∆dS

)
+

1

2

(
sw,i,j−1 − sw,ij

∆y

ˆ
γij4

∂pc
∂sw

kλ∆dS +
awn,i,j−1 − awn,ij
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∂φ
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Using the mid point rule twice for approximating the integrals for the porosity and for the source/sink

term, we approximate the parameters on the boundary, using the inner iteration m and rearranging the

equation
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(4.47)

This previous system with initial and boundary conditions allows to solve for the pressure variable.
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4.2.2 Saturation equation

We start writing the expression for the saturation equation in 2D

∂φsw
∂t
−∇ · (λwk(∇(p− 1

2
pc)− ρwg)) =

Fw
ρw

(4.48)

We integrate in a control square Ωij

ˆ
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(
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2
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Using the divergence theorem
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dV (4.50)

Splitting the left integral, using the chain rule for pc, the approximation of the gradient, the approximation

of the temporal derivative and the inner iteration m, we obtain
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∆x

− gρwkni,j+1/2λ
n+1,m
w,i,j+1/2∆x+ gρwk

n
i,j−1/2λ
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Rearranging terms, we finally get the following system of equations
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∆x2∆y2∆t+ φnijs

n
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4.2.3 Interfacial equation

We start writing the expression for the interfacial area equation in 2D

∂awn
∂t
−∇ · (awnkwn∇awn) = Ewn (4.52)

We integrate in a control square Ωij

ˆ
Ωij

(
∂awn
∂t
−∇ · (awnkwn∇awn)

)
dx =

ˆ
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Ewndx (4.53)

Using the divergence theorem

ˆ
Ωij
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dx−
ˆ
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awnkwn∇awn · ndS =

ˆ
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Ewndx (4.54)

Considering again the inner iteration m, the approximation for the temporal derivative and the chain rule
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(4.55)

Rearranging terms and multiplying ∆x∆y∆t in both sides, we finally obtain
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(4.56)

4.2.3.1 Boundary conditions

The treatment for the boundary conditions is analogous to the 1-D domain, but this time we have more

cases for considering the size of the cells on the corners. The next figures show how to deal with them.
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Figure 4.2.1 Modification in half cells for Dirichlet boundary conditions in 2D. In the first domain, we
consider a Dirichlet boundary condition on the left and a Neumann\Flux on the bottom, while in the
second domain, Dirichlet conditions on both boundaries.

4.2.3.1.1 Dirichlet boundary conditions

Let us suppose that we have Dirichlet boundary conditions on the left and on the bottom sides for the

pressure equation (p(0, y, t) = pL(y, t), p(x, 0, t) = pB(x, t)). After integration of the pressure equation,
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The previous example gives the idea for implementing Dirichlet boundary conditions.
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4.2.3.1.2 Flux boundary conditions

Now, let us suppose that we have flux boundary conditions on the right boundary n·uΣ(L, y, t) = qR(y, t).

Integration of the pressure equation in one of the right cells, using the divergence theorem, splitting the
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Rearranging terms, we finally obtain
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n+1,m
∆,N−1/2,j

(
∂pn+1,m

c,N−1/2,j

∂sw
(sn+1,m
w,N−1,j − s

n+1,m
w,N,j ) +

∂pn+1,m
c,N−1/2,j

∂awn
(an+1,m
wn,N−1,j − a

n+1,m
wn,N,j)

)
∆y2

− ∆t

2
knN,j−1/2λ

n+1,m
∆,N,j−1/2

(
∂pn+1,m

c,N,j−1/2

∂sw
(sn+1,m
w,N,j−1 − s

n+1,m
w,N,j ) +

∂pn+1,m
c,N,j−1/2

∂awn
(an+1,m
wn,N,j−1 − a

n+1,m
wn,N,j)

)
∆x2

− g[ρw(knN,j+1/2λ
n+1,m
w,N,j+1/2 − k

n
N,j−1/2λ

n+1,m
w,N,j−1/2)

+ ρn(knN,j+1/2λ
n+1,m
n,N,j+1/2 − k

n
N,j−1/2λ

n+1,m
n,N,j−1/2)]∆x2∆y∆t

(4.57)
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After solving the system, we approximate the value of the pressure on the right border

pn+1,m+1
N+1,j = −

1
2∆x

λn+1,m
Σ,N,j

(
qn+1
R,j

knN,j
+

1

2
λn+1,m

∆,N,j

[
∂pn+1,m

c,N,j

∂sw

sn+1,m
w,N+1,j − s

n+1,m
w,N,j

∆x
2

+
∂pn+1,m

c,N,j

∂awn

an+1,m
wn,N+1,j − a

wn,n+1,m
N,j

∆x
2

])
+ pn+1,m+1

N,j

(4.58)

4.2.3.1.3 Neumann boundary conditions

Let us suppose that we have a Neumann condition on the top boundary for the saturation equation

( ∂s∂y (x,W, t) = qT (x, t)). Direct substitution of the boundary condition in Eq. (4.51) leads to

φni,Ms
n+1,m+1
w,i,M − φni,Msnw,i,M

∆t
∆x∆y

−
[
λn+1,m
w,i+1/2,Mk

n
i+1/2,M

pn+1,m+1
i+1,M − pn+1,m+1

i,M

∆x

− 1

2
λn+1,m
w,i+1/2,Mk

n
i+1/2,M

(
∂pn+1,m

c,i+1/2,M

∂sw

sn+1,m+1
w,i+1,M − s

n+1,m+1
w,i,M

∆x
+
∂pn+1,m

c,i+1/2,M

∂awn

am,n+1
wn,i+1,M − a

n+1,m
wn,i,M

∆x

)]
∆y

−
[
λm,n+1
w,i,M+1/2k

n
i,M+1/2

pn+1,m+1
i,M+1 − pn+1,m+1

i,M

∆y
2

− 1

2
λn+1,m
w,i,M+1/2k

n
i,M+1/2

(
∂pn+1,m

c,i,M+1/2

∂sw
qn+1
T,i +

∂pn+1,m
c,i,M+1/2

∂awn

an+1,m
wn,i,M+1 − a

n+1,m
wn,i,M

∆y
2

)
+ gρwk

n
i,M+1/2λ

n+1,m
Σ,i,M+1/2

]
∆x

−
[
λn+1,m
w,i−1/2,Mk

n
i−1/2,M

pn+1,m+1
i−1,M − pn+1,m+1

i,M

∆x

− 1

2
λn+1,m
w,i−1/2,Mk

n
i−1/2,M

(
∂pn+1,m

c,i−1/2,M

∂sw

sn+1,m+1
w,i−1,M − s

n+1,m+1
w,i,M

∆x
+
∂pn+1,m

c,i−1/2,M

∂awn

an+1,m
wn,i−1,M − a

n+1,m
wn,i,M

∆x

)]
∆y

−
[
λn+1,m
w,i,M−1/2k

n
i,M−1/2

pn+1,m+1
i,M−1 − pn+1,m+1

i,M

∆y

− 1

2
λn+1,m
w,i,M−1/2k

n
i,M−1/2

(
∂pn+1,m

c,i,M−1/2

∂sw

sn+1,m+1
w,i,M−1 − s

n+1,m+1
w,i,M

∆y
+
∂pn+1,m

c,i,M−1/2

∂awn

an+1,m
wn,i,M−1 − a

n+1,m
wn,i,M

∆y

)
− gρwkni,M−1/2λ

n+1,m
Σ,i,M−1/2

]
∆x

=
Fn+1
w,i,M

ρw
∆x∆y

where we use sn+1,m
w,i,M+1 = qn+1

T,i
∆y
2 + sn+1,m

w,i,M in order to compute the mobilities and derivatives of capillary

pressure on the top boundary.

4.2.4 Validation of the two-phase flow model in 2D

In this section we present the analysis of convergence of the error reduction for two analytic solutions,

where in the first example we do not consider the interfacial area equation, and after we test our algorithm
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with the results from a benchmark simulation.

4.2.4.1 Analytic solution

We study the error reduction given two analytic solutions.

4.2.4.1.1 Example 1

We consider a porous medium of dimensions L = 2, W = 0.5. We test our scheme for the next analytic

solutions and parameterizations

p(x, y, t) = y sin(x) + t2 sw(x, y, t) = tex+y + 1 pc(sw) = −s
3
w

3

kr,w(sw) = sw kr,n(sw) = 2sw

with Dirichlet boundary conditions for the pressure and saturation and initial conditions given by

p(x, y, 0) = y sin(x) p(0, y, t) = t2 p(L, y, t) = y sin(L) + t2

p(x, 0, t) = t2 p(x,W, t) = W sin(x) + t2

sw(x, y, 0) = 1 sw(0, y, t) = tey + 1 sw(L, y, t) = teL+y + 1

sw(x, 0, t) = tex + 1 sw(x,W, t) = tex+W + 1

We consider

k = ρw = ρn = µw = µn = φ = 1 g = 0

The source/sink terms are given by

Fw
ρw

= φex+y − k[tex+y(y cos(x) + sin(x))− y sin(x)(tex+y + 1) + tex+y(tex+y + 1)2(4tex+y + 1)]

Fn
ρn

= −φex+y − 2k[tex+y(y cos(x) + sin(x))− y sin(x)(tex+y + 1)− tex+y(tex+y + 1)2(4tex+y + 1)]

We present the results of the analysis of convergence in Table 4.2.1, where we halve the size of the time

and space step in each case. From the table we observe that the error reduction for both pressure and

saturation approximates to 4.

Table 4.2.1 Pressure and saturation errors for the analytic validation in 2D. We test for different mesh
sizes and time steps, with L = 2, W = 0.5 and T = 1.

∆x ∆y ∆t Lp,2 error Ls,2 error red p red s
1 0.25 0.125 0.0625 1.9121e-4 0.022499
2 0.125 0.0625 0.03125 4.7548e-5 0.0064204 4.0213 3.5043
3 0.0625 0.03125 0.015625 1.1923e-5 0.0017886 3.9879 3.5896
4 0.03125 0.015625 0.0078125 2.9963e-6 4.7982e-4 3.9792 3.7277
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Figure 4.2.2 Pressure and saturation profiles for the analytic validation in 2D. The size partitions are
dx=0.0625, dy=0.03125 and dt=0.015625.

4.2.4.1.2 Example 2

We consider a porous medium of dimensions L = 2, W = 1. We test our scheme for the next analytic

solutions and parameterizations

p(x, y, t) = x2y2t sw(x, y, t) = x2 + y2 + t awn(x, y, t) = etxy

pc(sw, awn) = −awnsw kr,w(sw) = sw kr,n(sw) = 2sw

with boundary and initial conditions given by

Pressure

p(x, y, 0) = 0 n · uΣ(0, y, t) = −1

2
kyt(y2 + t)2 n · uΣ(x, 0, t) = −1

2
kxt(x2 + t)2p(L, y, t) = L2y2t

n · uΣ(x,W, t) = −k(x2 +W 2 + t)(6Wtx2 − 1

2
etxW (tx(x2 + by2 + t) + 2W ))

Saturation

sw(x, y, 0) = x2 + y2 sw(0, y, t) = y2 + t

n · ∇sw(L, y, t) = 2L n · ∇sw(x, 0, t) = 0 n · ∇sw(x,W, t) = 2W

Interfacial area

awn(x, y, 0) = 1 awn(0, y, t) = 1

n · ∇awn(L, y, t) = tyetyL n · ∇awn(x, 0, t) = 0 n · ∇awn(x,W, t) = txetxW

where we consider

ρw = ρn = µw = µn = φ = 1 k = kwn = 0.001 g = 0
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The source/sink terms are given by

Fw
ρw

= 1− k(8x2y2t+ 2t(x2 + y2 + t)(x2 + y2)

+
1

2
exyt(2x(ty(x2 + y2 + t) + 2x) + (x2 + y2 + t)(t2y2(x2 + y2 + t) + 4xyt+ 2)

+2y(tx(x2 + y2 + t) + 2y) + (x2 + y2 + t)(t2x2(x2 + y2 + t) + 4xyt+ 2)))

Fn
ρn

= −1− 2k(8x2y2t+ 2t(x2 + y2 + t)(x2 + y2)

−1

2
exyt(2x(ty(x2 + y2 + t) + 2x) + (x2 + y2 + t)(t2y2(x2 + y2 + t) + 4xyt+ 2)

+2y(tx(x2 + y2 + t) + 2y) + (x2 + y2 + t)(t2x2(x2 + y2 + t) + 4xyt+ 2)))

Ewn = xyexyt − 2kwnt
2e2txy(x2 + y2)

We present the results of the analysis of convergence in Table 4.2.2, where we halve the size of the time

and space step in each case

Table 4.2.2 Pressure, saturation and interfacial area errors for the analytic validation in 2D. We test
for different mesh sizes and time steps, with L = 2, W = 1 and T = 1.

∆x ∆y ∆t Lp,2 error Lsw,2 error Lawn,2 error red p red sw red awn
1 0.1 0.2 0.05 0.10551 0.010628 0.060792
2 0.05 0.1 0.025 0.040402 0.0065931 0.030952 2.6115 1.6120 1.9641
3 0.025 0.05 0.0125 0.016874 0.0035531 0.015515 2.3943 1.8556 1.9950
4 0.0125 0.025 0.00625 0.0076123 0.0018126 0.0077552 2.2167 1.9602 2.0006
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Figure 4.2.3 Pressure, saturation and interfacial area profiles for the analytic validation in 2D. The size
partitions are dx=0.0125, dy=0.025 and dt=0.00625.

From the table we observe that the error reduction for the pressure, saturation and interfacial area

approximates to 2.
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4.2.4.2 Benchmark simulation

We test our algorithm against another numerical simulation made by Amaziane et al. 2009. The pa-

rameters for the simulation are given in Table 4.2.3, where we assume again that the gaseous phase is

incompressible.

Table 4.2.3 Model parameters used in the benchmark validation in 2D.

Parameter Value Parameter Value Parameter Value
k 1mD φ 0.1 pe 2 MPa
µn 9·10−6 Pa·s ssmax 1 L 100 m
µw 0.86·10−3 Pa·s ssres 0 W 2 m
ρn 2 kg·m−3 n 2 T 45 days
ρw 996.5 kg·m−3 m 0.5

In the simulation, we consider that the porous medium is initial saturated with water and the gas is

injected on the left side of the porous medium. The boundary and initial conditions for the pressure and

saturation are the following

p(x, y, 0) = 0.1 MPa p(L, y, t) = 0.1 MPa n · uΣ(x,W, t) = 0 p(0, y, t) = 2 MPa n · uΣ(x, 0, t) = 0

sw(x, y, 0) = 1 n · ∇sw(L, y, t) = 0 n · ∇sw(x,W, t) = 0 sw(0, y, t) = 0.4 n · ∇sw(x, 0, t) = 0
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Figure 4.2.4 Pressure and saturation profiles for the benchmark validation in 2D. The size parameters
are dx=dy=1 m and dt=3.888e-4.

When we compare these results with the ones shown in the paper, we observe that they present the same

behavior. After 45 days of gas injection, we have not reach the breakthrough, which implies we are just

extracting water.
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4.2.5 Transport equations

Having implemented correctly the algorithm for solving the pressure, saturation and interfacial area

equations, we proceed with the transport equations. We start for writing the transport equations in 2D

∂(Cbφsw)

∂t
−∇ · (Dbswφ∇Cb − uwCb − φvgCb) = Rb

∂(Cnφsw)

∂t
−∇ · (Dnswφ∇Cn − uwCn) = Rn

∂(Cpφsw)

∂t
−∇ · (Dpswφ∇Cp − uwCp) = Rp

(4.59)

We show the discretization for the bacterial concentration equation and for getting the discretization for

the other two equations, we just change indexes and consider vg = 0.

We integrate in a control square Ωij

ˆ
Ωij

(
∂(Cbφsw)

∂t
−∇ · (Dbswφ∇Cb − uwCb − φvgCb)

)
dx =

ˆ
Ωij

Rb dx (4.60)

Using the divergence theorem for the left integral and the midpoint rule for the right integral

ˆ
Ωij

∂(Cbφsw)

∂t
dx−

ˆ
γij

(Dbswφ∇Cb − uwCb − φvgCb) · ndS =

ˆ
Ωij

Rb dx (4.61)

By splitting the left integral, using the approximation of the gradient, considering that αL = αT , the

approximation of the temporal derivative and the inner iteration m we obtain

Cn+1,m+1
b,ij φnijs

n+1
w,ij − Cnb,ijφnijsnw,ij
∆t

∆x∆y

−Dn+1
b,i+1/2,js

n+1
w,i+1/2,jφ

n
i+1/2,j

Cn+1,m+1
b,i+1,j − Cn+1,m+1

b,ij

∆x
∆y

−Dn+1
b,i,j+1/2s

n+1
w,i,j+1/2φ

n
i,j+1/2

Cn+1,m+1
b,i,j+1 − Cn+1,m+1

b,ij

∆y
∆x

−Dn+1
b,i−1/2,js

n+1
w,i−1/2,jφ

n
i−1/2,j

Cn+1,m+1
b,i−1,j − Cn+1,m+1

b,ij

∆x
∆y

−Dn+1
b,i,j−1/2s

n+1
w,i,j−1/2φ

n
i,j−1/2

Cn+1,m+1
b,i,j−1 − Cn+1,m+1

b,ij

∆y
∆x

+un+1
wx,i+1/2,j

Cn+1,m+1
b,i+1,j + Cn+1,m+1

b,ij

2
∆y + un+1

wy,i,j+1/2

Cn+1,m+1
b,i,j+1 + Cn+1,m+1

b,ij

2
∆x

−un+1
wx,i−1/2,j

Cn+1,m+1
b,i−1,j + Cn+1,m+1

b,ij

2
∆y − un+1

wy,i,j−1/2

Cn+1,m+1
b,i,j−1 + Cn+1,m+1

b,ij

2
∆x

−φni,j+1/2vg
Cn+1,m+1
b,i,j+1 + Cn+1,m+1

b,ij

2
∆y + φni,j−1/2vg

Cn+1,m+1
b,i,j−1 + Cn+1,m+1

b,ij

2
∆x

=Rn+1,m+1
b,ij ∆x∆y
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Rearranging terms, we obtain the following system

Cn+1,m+1
b,ij {[φnijsnw,ij∆x2∆y2 +Dn+1

b,i+1/2,js
n+1
w,i+1/2,jφ

n
i+1/2,j

+Dn+1
b,i−1/2,js

n+1
w,i−1/2,jφ

n
i−1/2,j + (un+1

wx,i+1/2,j − u
n+1
wx,i−1/2,j)

∆x

2
]∆y2∆t

+ [Dn+1
b,i,j+1/2s

n+1
w,i,j+1/2φ

n
i,j+1/2 +Dn+1

b,i,j−1/2s
n+1
w,i,j−1/2φ

n
i,j−1/2

+ (un+1
wy,i,j+1/2 − u

n+1
wy,i,j−1/2 − (φni,j+1/2 − φ

n
i,j−1/2)vg)

∆y

2
]∆x2∆t}

−Cn+1,m+1
b,i+1,j (Dn+1

b,i+1/2,js
n+1
w,i+1/2,jφ

n
i+1/2,j − u

n+1
wx,i+1/2,j

∆x

2
)∆y2∆t

−Cn+1,m+1
b,i,j+1 (Dn+1

b,i,j+1/2s
n+1
w,i,j+1/2φ

n
i,j+1/2 − (un+1

wy,i,j+1/2 − φ
n
i,j+1/2vg)

∆y

2
)∆x2∆t

−Cn+1,m+1
b,i−1,j (Dn+1

b,i−1/2,js
n+1
w,i−1/2,jφ

n
i−1/2,j + un+1

wx,i−1/2,j

∆x

2
)∆y2∆t

−Cn+1,m+1
b,i,j−1 (Dn+1

b,i,j−1/2s
n+1
w,i,j−1/2φ

n
i,j−1/2 + (un+1

wy,i,j−1/2 − φ
n
i,j−1/2vg)

∆y

2
)∆x2∆t

=(Rn+1,m
b,ij ∆t+ Cnb,ijφ

n
ijs

n
w,ij)∆x

2∆y2

Finally, we can write the linear system of equations for the transport equations in the matrix form

MCn+1,m+1 = R, where we consider C being of the form

Cn+1,m+1 =



Cn+1,m+1
b,11

Cn+1,m+1
n,11

Cn+1,m+1
p,11

Cn+1,m+1
b,21

Cn+1,m+1
n,21

Cn+1,m+1
p,21

...

Cn+1,m+1
b,N,M

Cn+1,m+1
n,N,M

Cn+1,m+1
p,N,M


The treatment for the boundary conditions can be complete as a generalization of the sections 4.1.5.1

and 4.2.3.1.
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4.2.6 Validation of the concentration formulation in 2D

Similar to the 1-D case, we need to run the code and make comparisons with known solutions in order

to validate the code’s functionality. In this section we present the analysis of convergence of the error

reduction for an analytic solution and test our algorithm with the results from an experiment that

considers bioclogging.

4.2.6.1 Analytic solution

We consider a rectangular porous medium of dimensions L = 2 and W = 1. We test our scheme for the

next analytic solutions with Dirichlet boundary conditions

Cb(x, y, t) = t(sinx+ cosx) Cn(x, y, t) = t(cosx− sin y) Cp(x, y, t) =
1

1 + x+ y + t

We consider

φ = sw = uwx = uwy = Db = Dn = Dp = 1 vg = 0

The source/sink terms are given by

Rb = (sinx+ cos y)(1 + t)− Cn Rn = (cosx− sin y)(1 + t) + Cb Rp = 2C2
p(1− 2Cp)

In this example we test the algorithm for the case when the two first transport equations are coupled

and the source/sink term for the surfactants are a function of the concentration. We present the results

of the analysis of convergence in Table 4.2.4, where we halve the size of the time and space steps in each

case. From the table, we can conclude that the numerical solver is working.

Table 4.2.4 Concentration errors for the analytic validation of the transport model in 2D. We test for
different mesh sizes and time steps, with L = 2, W = 1 and T = 1.

∆x ∆y ∆t Lb,2 error Ln,2 error Lp,2 error red b red n red p
1 0.2 0.2 0.1 0.0080298 0.0012655 0.0013173
2 0.1 0.1 0.05 0.0023322 2.3714e-4 4.4028e-4 3.4431 5.3364 2.9919
3 0.05 0.05 0.025 6.0926e-4 5.1309e-5 1.4079e-4 3.8278 4.6218 3.1273
4 0.025 0.025 0.0125 1.5455e-4 1.2398e-5 4.9410e-5 3.9422 4.1386 2.8494
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Figure 4.2.5 Concentration profiles for the analytic validation of the transport model in 2D. The size
partitions are dx=dy=0.05 and dt=0.025.

4.2.6.2 Benchmark simulation

We test our algorithm against an experiment made by Hendry et al. 1997 and numerical modeled by Kim

2006. In their experiments, bacteria were introduced into the column during t0 =38.4 hours in order to

examine the transport and sorption behavior of Klebsiella oxytoca. The following initial and boundary

conditions were used in the experiment

Cb(x, y, 0) = σ1(x, y, 0) = σ2(x, y, 0) = 0 n · ∇Cb(L, y, t) = n · ∇Cb(x, 0, t) = n · ∇Cb(x,W, t) = 0

n · (−Db∇Cb(0, y, t) + uwCb(0, y, t)) =

uwCb0 0 < t ≤ t0
0 t > t0

The model parameters used in the numerical experiment are given in Table 4.2.5.

Table 4.2.5 Model parameters used in the benchmark validation of the transport model in 2D.

Parameter Value Parameter Value Parameter Value
Cb0 4.32 mg·l−1 vg 1.61×10−5 cm·s−1 g1 0
L 40 cm ρb 1.085×106 mg·l−1 d1 0
W 5 cm k1 2.28×10−5 s−1 φ0 0.4
uw 2.17×10−4 cm·s−1 k2 3.56×10−7 s−1

αb,T 0.27 cm k3 1.72×10−6 s−1

For the numerical experiment, we consider a partition of the domain in 82 parts on the horizontal axis,

12 parts on the vertical axis and time intervals of dt=.00009. Fig. 4.2.6 shows the relative bacteria

concentration in the end of the column at different times. We observe that after approximately 30 hours

of bacteria injection, it is finally observed throughout the whole column. Because we stop injecting

bacteria after 38.4 hours, there is a maximum relative bacteria concentration of 10−2 and after, the

concentration decreases until it reaches a relative concentration of 5×10−3 approximately. This behavior

is due to the attachment, detachment, growth and death of bacteria. Comparison with the simulation

results published in Kim 2006 and Li et al. 2011 indicated the same behavior.
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Figure 4.2.6 Concentration profile for the benchmark validation of the transport model in 2D. We show
the relative bacteria concentration in the end of the column at different times.



Chapter 5

The effects of MEOR including the

oil-water interfacial area

Following all previous work, we can finally perform numerical experiments to study the effects of MEOR

considering the oil-water interfacial area. In order to formulate the two-phase flow model with transport

equations including bioclogging and interfacial area, we considered the next works: Li et al. 2011 (Trans-

port equations), Clement et al. 1996 and Kim 2006 (bioclogging), Niessner and Hassanizadeh 2008a and

Joekar-Niasar and Hassanizadeh 2012 (interfacial area), Nielsen et al. 2010 (reduction of interfacial area)

and Li et al. 2007 (reduction of residual oil saturation). In each of these texts, they considered different

experimental conditions, having their respective values of parameterizations. The best way to validate

our model would be to consider just one experiment in the laboratory, where most of these parameters are

estimated. However, we could not find such an experiment in the current literature where they included

transport equations, interfacial area and bioclogging. Therefore, when we ran the program using those

parameters, it resulted in unreliable scenarios. We then looked for new parameters in order to have a

more realistic study case.

In Chapter 2 we introduced a power-law for the interfacial area parameterization awn = (sw, pc) (2.22).

In Joekar-Niasar and Hassanizadeh 2012, after fitting the alpha parameters to some experimental data,

they obtained α1 = 6.462, α2 = 3.057 × 10−12, α3 = 1.244 and α4 = −0.963, leading to the approach

sα2
w ≈ 1. When we consider the previous remarks, the interfacial area expression that we use for the

numerical experiments becomes

awn(sw, pc) = α1(1− sw)α3pα4
c (5.1)

For modeling that biosurfactants are mainly living at the oil-water interface (Kosaric and Varder-Sukan

2015), we introduce a reaction rate of a Monod form in the maximum specific biomass production rate

coefficient in order to have a greater biosurfactant concentration in the zones with large interfacial area

and null biosurfactant production in the zones with no-interfacial area

µp,max = µpa,max
awn

Ka + awn
(5.2)

where Ka is a constant with unities [1/m].

We consider that all bioproducts correspond to biosurfactants. In Chapter 2 we mentioned that biosur-

factants lower the interfacial tension between water and oil, leading to modification of the residual oil

saturation. Regarding the interfacial tension expression (2.34), we choose the parameters from Nielsen

et al. 2010. For the residual oil saturation relation (2.36), we consider the following values smax
or = 0.3,

65
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smin
or = 0.08, T1 = 4× 104 and T2 = 4.5. Fig. 5.0.7 shows the profiles for the interfacial tension, capillary

number and residual oil saturation using the parameters in Table 5.1.3.

Biosurfactant concentration [kg/m
3
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Figure 5.0.7 Interfacial tension, capillary number and residual oil saturation profiles. For the capillary
number, we considering a constant water velocity of 2× 10−5 m/s. We noticed that for these parameter
values, the interfacial tension decreases after a biosurfactant concentration of 10−2 kg/m3 and the residual
oil saturation decreases from 1× 10−2 kg/m3 to 2× 10−2 kg/m3.

5.1 Numerical experiments and sensitivity analysis

We consider a porous medium of length L = 1 m. We inject water, bacteria and nutrients into the left

boundary and oil, water, bacteria, nutrients and biosurfactants flow out through the right boundary. For

the water and oil pressures, we take the same conditions as in Li et al. 2011: pw(x, 0) = 0.981 kPa and

pn(x, 0) = 9.417 kPa; leading to an average pressure of p(x, 0) = 5.199 kPa and initial capillary pressure

of pc(x, 0) = pn(x, 0) − pw(x, 0) = 8.436 kPa. On the left boundary, we have a flux boundary condition

while on the right boundary we consider a constant pressure of 5.199 kPa. We take the same capillary

pressure and relative permeability expressions as in Niessner and Hassanizadeh 2008a, corresponding to

the Brooks-Corey parameterizations. In order to have the same initial water saturation on the right

boundary sw(L, 0) = 0.2446, we take λ = 2.129. In numerical experiments, it is common to consider the

same value for the initial residual oil saturation along the porous medium (Nielsen et al. 2010, Li et al.

2011). For studying other scenarios, we consider a porous medium where the residual oil saturation is

greater in the opposite side where the water injection occurs. Then, we consider a reservoir with residual

oil saturation as a linear function of the position, having on the left boundary a minimum residual

oil saturation smin
or = 0.08 and on the right boundary a maximum residual oil saturation smax

or = 0.3.

Therefore, the left boundary condition for the water saturation is sw(0, t) = 0.92. Regarding the right

boundary condition for the water saturation, we consider a Neumann condition with zero value. We choose

the value for the initial interfacial area evaluating awn(x, 0) = awn(sw(x, 0), pc(sw(x, 0))), analogously

for the left boundary awn(0, t) = awn(sw(0, t), pc(sw(0, t))). We consider that there is neither bacteria

nor nutrients initially in the porous media and we inject them on the left boundary. We also consider a

no-flux boundary condition for the biosurfactant concentration on the left boundary.
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Table 5.1.1 Initial and boundary conditions for the 1-D numerical experiments.

Initial Left boundary Right boundary
p(x, 0) = 5199 Pa n · uΣ(0, t) = −2.78× 10−5m/s p(L, t) = 5199 Pa

sw(x, 0) = swi + (1− sor − swi)pepc
λ

sw(0, t) = 0.92 n · ∇sw(L, t) = 0

awn(x, 0) = 452.07 /m awn(0, t) = 81.89 /m n · ∇awn(L, t) = 0
Cb(x, y, 0) = 0 Cb(0, t) = 0.5 kg/m3 n · ∇Cb(L, t) = 0
Cn(x, y, 0) = 0 Cn(0, t) = 0.2 kg/m3 n · ∇Cn(L, t) = 0
Cp(x, y, 0) = 0 n · (−φswDp∇Cp(0, t) + uwCp(0, t)) = 0 n · ∇Cp(L, t) = 0

Fig. 5.1.1 shows the initial saturation distributions for our numerical experiments.

Figure 5.1.1 Initial saturation distributions for the parametric studies in 1-D cores. Our main goal it
is to extract the most oil possible (sn − smin

or ). In our studies we consider a linear decreasing distribution
of residual oil saturation.

After setting the values of the parameters, initial and boundary conditions, we perform numerical tests.

We also do a sensitivity analysis in order to identify the critical parameters involved. In Kim 2006 he

studied the effects on bioclogging for different injected bacterial concentrations Cb, different reversible

attachment rate coefficients k1, different detachment rate coefficients k2, different irreversible attachment

rate coefficients k3 and different growth rate coefficients g1. In Li et al. 2011, they did a similar sensitivity

analysis but included the transport equations. Regarding the interfacial area, in El-Amin et al. 2015 they

did numerical experiments changing the parameters α1, α3 and α4 in the interfacial area expression

awn(sw, pc),however, they just considered the two-phase flow transport equations. About the interfacial

area permeability kwn, we could not find studies where they show a sensitivity analysis. Then, in this

thesis we focus on the next study cases

� Reference case. We study the evolution in time of the pressure, saturation, interfacial area, capillary

pressure, residual oil saturation, porosity, permeability ratio, bacterial, nutrient and biosurfactant

concentrations and oil recovery. The aim of this study is to better understand the influence of the

different variables in all modeled processes.

� Case I. We compare the different profiles until the final time T=10 hr, for different values of kwn.

The objective of this sensitivity analysis is to determine the impact of the parameter kwn in the

oil recovery. In the literature, we find values of interfacial permeability from 10−5 m3/s (El-Amin

et al. 2015) to 10−17 m3/s (Niessner and Hassanizadeh 2008a). We set kwn = 10−7 m3/s in the

reference case.
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� Case II. We test with different values of Ka. This parameter changes the biosurfactant production,

having the property of µp,max = 1
2µpa,max when awn = Ka. Initially the interfacial area has a value

of awn = 452.07 1
m , thus in the reference case we set Ka = 250 1

m . In order to perform numerical

experiments neglecting the interfacial area influence on the biosurfactant production, we can set

Ka = 0.

� Case III. The parameter α1 in the interfacial area parameterization awn = α1(1−sw)α3pα4
c influences

the magnitude of the interfacial area giving greater values of interfacial area for greater values of

α1. In the literature we find interfacial area values between 10 1
m (Joekar-Niasar and Hassanizadeh

2012) to 1000 1
m (El-Amin et al. 2015). We make a sensitivity analysis of this parameter in this

range.

� Case IV. The parameter α3 in the interfacial area parameterization awn = α1(1 − sw)α3pα4
c gives

the dependence on the water saturation. For solving the pressure and saturation equations, we

have to calculate the derivatives of pc(sw, awn) with respect to sw and awn. Therefore, we expect

different results in the pressure and saturation profiles.

� Case V. The parameter α4 in the interfacial area parameterization awn = α1(1−sw)α3pα4
c determines

the dependence on the capillary pressure. Analogous to the previous case, the parameter α4 affects

the derivative values of the capillary pressure expression, so we make a sensitivity analysis in order

to visualize the impact of this parameter.

Table 5.1.2 shows the different parameters we study in the numerical experiments.

Table 5.1.2 Simulation matrix. µp,max = µpa,max
awn

Ka+awn
awn(sw, pc) = α1(1− sw)α3pα4

c

Case kwn
m3

s Ka
1
m α1 α3 α4 Case kwn

m3

s Ka
1
m α1 α3 α4

Base 10−6 250 6.462 1.244 -0.963

I 10−6 250 6.462 1.244 -0.963 IV 10−7 250 6.462 0.9 -0.963
1
210−7 1
10−7 1.244
1
210−8 1.5
10−8 2.5

II 10−7 10 6.462 1.244 -0.963 V 10−7 250 6.462 1.244 -0.5
100 -0.75
250 -0.963
500 -1
1000 -1.3

III 10−7 250 0.5 1.244 -0.963
1
6.462
10
20

Table 5.1.3 summarizes the parameters we use in the numerical experiments.
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Table 5.1.3 Model parameters used in the numerical experiments.

Parameter Value Parameter Value
φ0 0.4 µw 1× 10−3 kg/(m · s)
k0 0.94× 10−12m2 µn 3.92× 10−3 kg/(m · s)
pe 2740 Pa C 19/6
λ 2.129 C∗n 0
Ka 250 /m g 0
g1 max 2× 10−5/s µp max 5× 10−6/s
d1 10−7/s vg 0
k1 2.28× 10−4/s Fw 0
k2 3.56× 10−7/s Fn 0
k3 1.72× 10−6/s swi 0.2
Kb/n 10−5 kg/m3 kwn 10−7 m3/s
Kp/n 1 kg/m3 Deff

b 1.5× 10−9 m2/s
Yp/b 7.944 Deff

n 1.5× 10−9 m2/s
Yp/n 1.144 Deff

p 1.5× 10−9 m2/s
Ys 5× 10−6/s ρw 1000 kg/m3

αb,T 0.01 m ρn 800 kg/m3

αn,T 0.01 m ρb 1600 kg/m3

αp,T 0.01 m α1 6.462
l1 41× 1−−4 α2 0
l2 2 α3 1.244
l3 180 α4 -0.963
T1 4× 104 smaxor 0.3
T2 4.5 sminor 0.08
σInt 3.37× 10−2 N/m

5.1.1 Reference case

When we performed the simulation using the parameters from Clement et al. 1996, Kim 2006, Li et al.

2007, Niessner and Hassanizadeh 2008a, Li et al. 2011, Nielsen et al. 2010 and Joekar-Niasar and Has-

sanizadeh 2012, it resulted in unreliable scenarios. Therefore, we looked for new parameters in order to

have a reference case and analyze the results. In this section our model for MEOR is tested using the

parameters in Table 5.1.3.

Fig. 5.1.2 shows the profiles for the average pressure, water saturation, interfacial area and capillary

pressure. From the pressure profile, we observe that the pressure in the entry decreases over time, due

to less pressure is needed after the water has displaced some oil in order to have the same flux. The

saturation profiles shows how much water we have put inside the reservoir over time, displacing more

oil at the beginning but after the water breakthrough, the recovery becomes slower. In respect to the

interfacial area, we notice that it is increassing when sw is decreasing. This is in accordance to the results

from Joekar-Niasar and Hassanizadeh 2012. We also notice that the interfacial value decreases over time,

which is the expected behavior due to the porous medium approaching a constant water saturation of

0.92 in the spatial distribution. Analyzing the capillary pressure expression, we observe that over time it

presents an expected behavior where the capillary pressure is a decreasing function of the water satura-

tion.
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Figure 5.1.2 p, sw, awn and pc profiles in the reference case for different times.

Fig. 5.1.3 shows the different profiles of bacterial, nutrient and biosurfactant concentration and residual

oil saturation. Regarding the bacterial concentration, we observe a decreasing behavior in the spatial

distribution, due to bacteria death, attachment to the rock or escapement on the right boundary. Nu-

trients are transported by the water, being consumed by the bacteria in order to reproduce and produce

biosurfactants, leading to a decrease in nutrient concentration. The biosurfactant concentration increases

over time. The residual oil saturation remains the same for 3.5 hours, but after this the biosurfactant

concentration is big enough to start the modification of the residual oil. After 8 hours, we notice that

the residual oil saturation almost reaches its lowest value.
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Figure 5.1.3 Cm, Cn, Cp and sor profiles in the reference case.

Fig. 5.1.4 shows the profiles of the porosity and permeability ratio at different time values. Porosity and

permeability changes are very small but still we observe the expected behavior of decreasing over time.

We used the parameters in Li et al. 2011 for modeling the bioclogging, where they also showed small

changes in bioclogging. We notice more bioclogging on the side where we inject the bacteria, which is in

accordance with the experiments (Kim 2006).



5.1 Numerical experiments and sensitivity analysis 72

Distance [m]
0 0.2 0.4 0.6 0.8 1

P
or
os
it
y
[-
]

0.3985

0.399

0.3995

0.4

T=1 hr

T=2.5 hr

T=5 hr

T=7.5 hr

T=10 hr

Distance [m]
0 0.2 0.4 0.6 0.8 1

P
er
m
ea
b
il
it
y
ra
ti
o
[-
]

0.988

0.99

0.992

0.994

0.996

0.998

1

Figure 5.1.4 φ and k/k0 profiles in the reference case.

Fig. 5.1.5 shows the oil recovery after 10 hours of water, bacteria and nutrient injection with and without

interfacial area. We observe that after injecting 0.3 pore volume units of water, we reach the water

breakthrough and injecting approximately one pore volume units of water, the biosurfactant starts to

act, lowering the interfacial tension, extracting the residual oil saturation. Regarding the water flooding,

we notice a slight difference between them, resulting in a greater oil recovery after the breakthrough

when we consider the interfacial area. In relation with the effects on MEOR, due to the consideration of

the maximum specific biomass production rate coefficient µp,max = µp,maxawn/(Ka + awn) as a function

of the interfacial area, we have less net production of biosurfactants in comparison to MEOR without

interfacial area (in this numerical experiment we consider the same value of µp,max = µpa,max). However,

after 2.5 pore volumes units of water injected, the oil recovery is the same.
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Figure 5.1.5 Comparison of the oil recovery due to biosurfactant action.
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5.1.2 Case I: influence of the interfacial permeability kwn in the

oil recovery

In order to compare the influence of the interfacial permeability in the different profiles with respect to

the reference case, we do a sensitivity analysis for kwn, displaying the results of oil recovery and the

different variables in Figs. 5.1.6 and 5.1.7 respectively.

From the interfacial area profile in Fig. 5.1.7, we have that for kwn = 10−6 m3/s the interfacial area

approximates to an uniform distribution, while for kwn = 10−8 m3/s practically we have the same initial

distribution of interfacial area. On the other hand, for the capillary pressure we have opposite behavior

than the interfacial area, having greater values for kwn = 10−6 m3/s and lower for kwn = 10−8 m3/s.

The saturation profiles shows a slower displacement of oil for kwn = 10−6 m3/s than kwn = 10−8 m3/s.

In respect to the pressure profiles, we have just slight differences on the left pressure, but the five of

them have similar values. From the same figure we observe that the bacterial and nutrient concentration

profiles are practically the same, just few nutrient more were consumed for kwn = 10−8 m3/s, leading

to a greater production of biosurfactants. Analyzing the residual oil saturation profiles after 5 hours, we

notice that for kwn = 10−8 m3/s the biosurfactants have recovered more oil than for kwn = 10−6 m3/s.

This result is expected due to we add the interfacial area dependence to the maximum specific biomass

production rate coefficient, giving a greater concentration in the zones with greater interfacial area values.

Fig. 5.1.6 shows the oil recovery in function of the pore volume injected to the reservoir. As mentioned

before, we have better oil extraction for smaller values of kwn.
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Figure 5.1.6 Comparison of the oil recovery after 10 hours in the parametric study of kwn.
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Figure 5.1.7 Profiles in the parametric study of kwn, T=10 hr. For sor, T=5 hr.
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5.1.3 Case II: influence of the parameter Ka in the oil recovery

In this case we do a sensitivity analysis for Ka, displaying the results of oil recovery and the different

variables in Figs. 5.1.8 and 5.1.9 respectively.

Due to the consideration of the dependence of the interfacial area in the form of the Monod-type model in

the maximum specific biomass production rate coefficient, the biosurfactant production is less for greater

values of Ka. When analyzing the saturation profile in Fig. 5.1.9, we notice a slower extraction of oil

for Ka = 1000 and faster extraction for Ka = 10 as expected. We notice that the interfacial area profile

is the same for the five cases but the capillary pressure changes, having a greater value for Ka = 1000.

From the same figure we notice that the bacterial concentration profiles have very similar values. For

the nutrient concentration, we have a greater consumption for small values of Ka, leading to a larger

production of biosurfactants. When analyzing the residual oil saturation profiles after 7 hours, we notice

that for Ka = 10 the biosurfactants have recovered more oil than for Ka = 1000. This result is expected

due to the addition of the interfacial area dependence to the maximum specific biomass production rate

coefficient, giving a greater concentration for small values of Ka. However, we notice that in our numerical

experiment, even though there are three orders of magnitude between the largest and smallest Ka value,

both of them have some residual oil recovered after 7 hours. This is due to the values for the parameters in

the interfacial tension and residual oil saturation expressions, giving the residual oil saturation reduction

in a small range of surfactant concentration, behavior from Fig. 5.0.7.

From Fig. 5.1.8 we have a sooner effect of biosurfactants for small values of Ka and a delayed effect for

greater values of Ka. As studied in this case, the parameter Ka allows to modify the production rate of

biosurfactants.
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Figure 5.1.8 Comparison of the oil recovery after 10 hours in the parametric study of Ka.
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Figure 5.1.9 Profiles in the parametric study of Ka, T=10 hr. For sor, T=7.
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5.1.4 Case III: influence of the interfacial area parameter α1 in

the oil recovery

In this case we do a sensitivity analysis for α1, displaying the results of oil recovery and the different

variables in Figs. 5.1.10 and 5.1.11 respectively.

From the interfacial area and capillary pressure profiles in Fig. 5.1.11, we have greater values of interfacial

area for larger α1. We notice a greater extraction of oil for larger values of α1, that is the expected

behavior. From the same figure we notice a slight decrease in bacterial concentration for α1 = 20. We

also observe lower nutrient concentration for this value of α1, having greater biosurfactant production.

From the residual oil saturation profile, we notice after 7 hours there is no reduction in residual oil

saturation for α1 = 0.5 whereas for α1 = 20 we almost reduce all .

Fig. 5.1.10 shows the oil recovery for the different values of α1. When α1 = 0.5, we observe that the

biosurfactant action starts after 2 pore volume units of water injection. For α1, the improvement in

oil starts after 1.5 pore volume units of water injection. However, for the reference case, α1 = 10 and

α1 = 20 the biosurfactant action starts after 1 pore volume unit of water injected. These results are also

sensitive to the parameter Ka, which we studied in the previous section.
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Figure 5.1.10 Comparison of the oil recovery after 10 hours in the parametric study of α1.
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Figure 5.1.11 Profiles in the parametric study of α1, T=10 hr. For sor, T=7 hr.
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5.1.5 Case IV: influence of the interfacial area parameter α3 in

the oil recovery

In this case we do a sensitivity analysis for α3, displaying the results of oil recovery and the different

variables in Figs. 5.1.12 and 5.1.13 respectively. The aim of this study is to determinate the influence of

the parameter α3 in the oil recovery.

Fig. 5.1.13 shows that the interfacial area is more sensitive to changes in the water saturation for greater

values of α3. This behavior is expected due to (1 − sw)α3 goes to 0 for greater values of α3 than 1,

giving a greater curvature. In the same figure, we have the different profiles for bacterial, nutrient and

biosurfactant concentration and residual oil saturation for different values of α3. We notice a greater

biosurfactant production for α3 = 0.9, due to the interfacial area being greater for this value. Regarding

the residual oil saturation profile, we have that after four hours of water injection, there is not residual

oil recovered for α = 0.9.

Analyzing Fig. 5.1.12, we notice that when we increase the value α3 the biosurfactant action is delayed.
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Figure 5.1.12 Comparison of the oil recovery after 10 hours in the parametric study of α3.
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Figure 5.1.13 Profiles in the parametric study of α3, T=10 hr. For sor, T=4 hr.
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5.1.6 Case V: influence of the interfacial area parameter α4 in

the oil recovery

In this case we do a sensitivity analysis for α4, displaying the results of oil recovery and the different

variables in Figs. 5.1.14 and 5.1.15 respectively.

Fig. 5.1.15 shows the different profiles after 10 hours for the average pressure, water saturation, interfacial

area, capillary pressure, residual oil saturation, bacterial, nutrient and biosurfactant concentration, while

changing the values of the parameter α4 in the interfacial area parameterization. We observe a faster

displacement of oil for α4 = −1.3. However, we notice in the interfacial area profiles that for α4 = −1.3

the interfacial area is practically constant even the water saturation is not, so in our numerical experiment

this is not a physical value for the parameter α4. From the same figure, we notice after 5 hours of injection

we have not recovered residual oil for α4 = −0.5, but for −0.75 we start to recover it.

Fig. 5.1.14 shows the oil recovery for the different values of α4. We notice that after four pore volumes

injected to the reservoir, the oil extraction follows the same behavior.

Pore volume
0 0.5 1 1.5 2 2.5

O
il
re
co
v
er
y

0

0.1

0.2

0.3

0.4

0.5

0.6

α
4
=-0.5

α
4
=-0.75

α
4
=-0.963

α
4
=-1

α
4
=-1.3

Water

Figure 5.1.14 Comparison of the oil recovery after 10 hours in the parametric study of α4.
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Figure 5.1.15 Profiles in the parametric study of α4, T=10 hr. For sor, T=5 hr.
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5.2 Simulations in a porous medium with a thief zone

In the 2-D case, we study a porous medium with a thief zone. There are different definitions for the

thief zones (Li et al. 2015); one of them given by Feng et al. 2010, who considers the thief zone as a high

permeability layer with residual oil saturation. Similar studies has been done by Kou and Sun 2004 and

Amundsen 2015, with a 2-D porous medium with same permeability values in the upper and lower parts

but greater permeability value in the middle. However, due to the symmetry (gravity is not considered),

we can just solve half of the domain. Fig. 5.2.1 shows this porous medium, coloring the different perme-

ability zones.
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Figure 5.2.1 2-D porous medium with a thief zone. The upper half has a permeability of 2 mD, while
the lower half has a permeability of 0.5 mD.

In the numerical experiments, we consider a porous medium with the same parameters, initial and bound-

ary conditions to the 1-D case; the only difference are the values of the permeabilities. We inject water,

bacteria and nutrients on the left side and we obtain oil, water, bacteria, nutrients and biosurfactants

on the right side. We consider the top and bottom boundaries are closed, meaning that there is not flux

through them. Table 5.2.1 shows the initial and boundary conditions used for this reservoir.

Table 5.2.1 Initial and boundary conditions for the 2-D numerical experiments.

Pressure
p(x, y, 0) = 5199 Pa p(L, y, t) = 5199 Pa
n · uΣ(x,W, t) = 0 n · uΣ(0, y, t) = −2.78× 10−5m/s
n · uΣ(x, 0, t) = 0
Saturation

sw(x, y, 0) = swi + (1− sor − swi)pepc
λ

n · ∇sw(L, y, t) = 0

n · ∇sw(x,W, t) = 0 sw(0, y, t) = 0.92
n · ∇sw(x, 0, t) = 0
Interfacial area
awn(x, y, 0) = 452.07 1/m n · ∇awn(L, y, t) = 0
n · ∇awn(x,W, t) = 0 awn(0, y, t) = 81.89 1/m
n · ∇awn(x, 0, t) = 0
Bacterial concentration
Cb(x, y, 0) = 0 n · ∇Cb(L, y, t) = 0
n · (−φswDb∇Cb(x,W, t) + uwCb(x,W, t)) = 0 Cb(0, y, t) = 0.5 kg/m3

n · (−φswDb∇Cb(x, 0, t) + uwCb(x, 0, t)) = 0
Nutrient concentration
Cn(x, y, 0) = 0 n · ∇Cn(L, y, t) = 0
n · (−φswDn∇Cn(x,W, t) + uwCn(x,W, t)) = 0 Cn(0, y, t) = 0.2 kg/m3

n · (−φswDn∇Cn(x, 0, t) + uwCn(x, 0, t)) = 0
Biosurfactant concentration
Cp(x, y, 0) = 0 n · ∇Cp(L, y, t) = 0
n · (−φswDp∇Cp(x,W, t) + uwCp(x,W, t)) = 0 n · (−φswDp∇Cp(x, 0, t) + uwCp(x, 0, t)) = 0
n · (−φswDp∇Cp(0, y, t) + uwCp(0, y, t)) = 0
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5.2.1 Pressure, saturation, interfacial area and concentration

distributions

We ran the numerical simulations until a final time of 10 hours. Intuitively, the results we expect is

faster water flux in the zone with greater permeability value, leading to faster oil recovery in this zone.

In this numerical experiment the upper permeability is 4 times bigger than the lower permeability, thus

we expect a flux four times faster in the zone with large permeability. On the other hand, regarding the

capillary pressure and interfacial area profiles, we expect to have greater values in the zones with lower

water saturation.

Fig. 5.2.2 shows the pressure and saturation profiles after 5 and 10 hours. As we mentioned before, more

oil has been displaced in the more permeable zone. In respect to the pressure profiles, we notice a slight

difference on the left pressure values in order to keep the same flux in both zones.
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Figure 5.2.2 Pressure and saturation profiles in the reservoir with a thief zone.

Fig. 5.2.3 shows the capillary pressure and interfacial area profiles. After 10 hours we observe lower cap-

illary pressure in the less permeable zone, in accordance with the standard behavior of greater interfacial

area in zones with lower water saturation. Despite the interfacial area increases from left to right, we do

not notice differences between both permeable zones. Therefore, we attribute this behavior to the rate

of production of specific interfacial area expression Ewn.



5.2 Simulations in a porous medium with a thief zone 85

0 0.5 1 1.5 2

0

0.1

0.2

0.3

0.4

0.5

Capillary pressure [kPa], T=10 hr

2 3 4 5 6

0 0.5 1 1.5 2

0

0.1

0.2

0.3

0.4

0.5

Interfacial area [1/m], T=10 hr

100 150 200 250 300

Figure 5.2.3 Capillary pressure and interfacial area profiles in the reservoir with a thief zone.

Fig. 5.2.4 shows the evolution in time for the bacteria and nutrients after 0.5, 1.5 and 2.5 hours. We

notice that the bacteria is transported faster in the more permeable zone, but there is also a loss due to

some bacteria attaching to the rock, dying or producing biosurfactants. For the nutrients, we observe

that most of them are transported without being consumed by the bacteria. This behavior is due to the

election of the coefficients Yn and Yp/n.
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Figure 5.2.4 Bacterial and nutrient profiles in the reservoir with a thief zone.
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Fig. 5.2.5 shows the biosurfactant and residual oil saturation profiles after 2, 4 and 6 hours of injection.

In the first two hours, we observe that some residual oil has been already removed in both parts. After

6 hours, the oil in the thief region has already been removed. However, in the region with permeability

0.5 mD, the biosurfactants has not reached a sufficient concentration to lower the interfacial tension.
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Figure 5.2.5 Biosurfactant and residual oil saturation profiles in the reservoir with a thief zone.
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5.2.2 Bioclogging

In Chapter 2 we mentioned that MEOR has different applications in order to improve the oil recovery,

one of them being to lock the paths where the water flows easily in order to reach another zone with oil.

Fig. 5.2.6 shows the porosity after 10 hours of injection. We notice in the thief zone a greater decrease of

porosity than in the lower part. However, both porosity reductions are small, as a result of the parameters

k1, k2, k3, g1,max and d1.
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Figure 5.2.6 Porosity profile in the reservoir with a thief zone.

Fig. 5.2.7 shows the permeability ratio k/k0 after 10 hours of injection. Because we use a model where

the relation between permeability ratio and biomass-modified porosity ratio is given by the parameter C,

we have similar results for the permeability ratio in the porous medium. We notice greater decrease of

permeability in the thief zone.
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Figure 5.2.7 Permeability ratio profile in the reservoir with a thief zone.
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5.2.3 Oil recovery

The main goal of MEOR it is to enhance the oil recovery using bacteria. In order to have a measure of

the improvements in the oil extraction, we compute the oil recovery.

Fig. 5.2.8 shows the oil recovery as a function of the pore volume injected in the reservoir with a thief

zone. We notice that 10 hours of water injection equals to 2.5 pore volumes. We observe that after

injecting 0.8 pore volumes of water, the biosurfactant starts to lower the interfacial tension and we raise

the oil production. In comparison with the oil extraction in the 1-D case in Fig. 5.1.5, the effects of the

biosurfactants start after 1 pore volume unit of water injection. This difference in the oil extraction is

due to the different permeability values.
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Figure 5.2.8 Comparison of the oil recovery due to biosurfactants in the reservoir with a thief zone.

All these results show that the program is adequate for modeling water flooding, transport of products,

bioclogging and biosurfactant effects including the oil-water interfacial area.
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Chapter 6

Conclusion

A new model for MEOR, which includes two-phase flow, bacteria, nutrient and biosurfactant transport

and considers the role of the oil-water interfacial area, bioclogging and reduction of residual oil saturation

due to the action of biosurfactants has been developed. The model was implemented in 1D and 2D in

MATLAB and tested against analytic examples and benchmark problems. The developed model is

currently one of the most complete models of MEOR. The model particularly includes the oil-water

interfacial area in order to eliminate the hysteresis in the capillary pressure relationship and takes in

account that biosurfactants are mainly living at the oil-water interface. To our knowledge, these are the

first studies of the effects of MEOR including the oil-water interfacial area.

The MEOR model consists on a system of nonlinear coupled PDEs and ODEs, whose solution represents

a challenge by itself. In order to have an efficient and stable scheme, we used an implicit stepping

that considers a linear approximation of the capillary pressure gradient. The time discretization of the

equations was obtained using BE and the spatial discretization using FD and TPFA. The details of the

implementation are presented in Chapter 4, including the treatment of the boundary conditions. Although

the implementation of the algorithm was challenging, we wrote in MATLAB the full code without using

any commercial petroleum software.

We tested our numerical solver against analytic solutions, obtaining a reduction in the error when we

lowered the value of the spatial and temporal steps, which corroborates the correctness of the implemen-

tation. We also tested our numerical solver against benchmark simulations, obtaining a good match with

the results showed in Hendry et al. 1997, Amaziane et al. 2009 and Li et al. 2011.

In order to model that biosurfactants are mainly living at the oil-water interface, we considered the

maximum specific biomass production rate as a function of the interfacial area awn in the form of the

Monod-type model µp,max = µpa,maxawn/(Ka + awn). In the 1-D case, we investigated the impact of

the relevant parameters. We ascertained that the interfacial area distribution is very sensitive to the

interfacial permeability kwn. In the 2-D case, we considered a porous medium with a thief zone, which

is a problem we cannot simulate in 1D. Although the capillary pressure distribution was different in

both permeable regions, the interfacial area profile had the same values along the y direction, even

though we had different water saturation values along this direction. We attribute this result to the

production/destruction rate of interfacial area Ewn (currently there is just one model for Ewn).



90

In regard to our main goal, notwithstanding that we put together models with parameters from different

experiments, we succeed in finding new parameters and making the full implementation of the two-phase

flow model with transport equations including bioclogging and interfacial area. We obtained different

water flux profiles and oil recovery predictions when we considered the interfacial area in the model. In

the numerical experiments, we observed an improvement in the oil recovery when the biosurfactants were

presented in the reservoir. Even though real reservoirs are more complex than the model presented, this

work is useful for understanding the main phenomena involved in the recovery of petroleum. Moreover,

for better testing of our model, it is necessary to do more experiments in the laboratory in order to

compare with the numerical simulations and validate all the model assumptions.

Finally, we propose further work inspired in this thesis. Following the procedure showed in Chapter 3

for the discretization of the model in 1-D and 2-D cores, one can easily extend the discretization to the

three-dimensional scenario; however, the implementation is more challenging. Also, in this work we solved

the equations for the pressure, saturation and interfacial area iteratively, verifying the convergence rate

numerically. Nevertheless, it is necessary to do a theoretical analysis of the convergence of the scheme

in order to determinate the maximum time step size for having convergence. In order to have a more

complete model, we should extend it considering more phenomena, for example chemotaxis (Lapidus and

Schiller 1974), fractures (Shapiro 1987, Fumagalli and Scotti 2013), biosurfactant transportation in the

oil phase (Nielsen et al. 2010), compresibility (Klöfkorn 2012) and changes in the viscosities (Sugai et al.

2007). It is necessary to investigate new relations for the production/destruction rate of interfacial area

Ewn because currently there is just one model. Following the fact that the more interfacial area, the

more residual oil recovered, new relations for the interfacial tension reduction and residual oil saturation

should be investigated including the interfacial area.
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Appendices

A. List of Symbols and Abbreviations

Symbol Unit Description

A m2 Cross sectional area

awn 1/m Interfacial area

C − Parameter for the permeability modification

Cb, Cn, Cp, Cp kg/m3 Bacterial, nutrient and biosurfactant concentration

C∗s kg/m3 Critical nutrient concentration for metabolism

d1 1/s Bacterial decay rate coefficient

Deff
b , D

eff
n , D

eff
p m2/s Effective diffusion coefficients

Ewn m3/s Rate of production of specific interfacial area

ewn 1/m Production rate of specific interfacial area

g m/s2 Gravity

g1,max 1/s Maximum bacterial growth rate coefficient

h m Hydraulic head

j, jadv, jdif kg/m2 · s Total, advective and diffusive flux

k1, k2, k3 1/s Reversible attachment, detachment and irreversible attachment

k,kw,kn m2 Absolute, wetting and non-wetting effective permeabilities

kr,w, kr,n − Wetting and non-wetting relative permeabilities

kwn m3/s Interfacial permeability

Kb/n,Kp/n kg/m3 Half saturation constants for producing bacteria and biosurfactants

l1, l2, l3 −,−, kg/s2 Fitting parameters for modeling the interfacial area

L m Length of porous medium

M kg Mass

NCa − Capillary number

p, pe, pw, pn kg/m · s2 Average, entry, wetting and non-wetting pressure

pv − Number of pore volume injected

QT m3/s Water injection rate

r m Tube radius

sw, sn − Wetting and non-wetting saturation

sor, s
min
or , smax

or − Residual oil saturation, minimum and maximum

swi − Irreducible water saturation

s∗w − Effective water saturation

T1, T2 − Fitting parameters for modeling the residual oil saturation

u,uΣ m/s Volumetric and total flow rate per area

vg m/s Settling velocity of bacteria

vwn m/s Interfacial velocity

Vp m3 Pore volume

Wi m3 Volume injected of water

Yp/b, Yp/n − Biosurfactant yield coefficients per unit bacteria and nutrient

z m Distance to the datum for the hydraulic head
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Greek symbols

Symbol Unit Description

α0
◦ Angle of flow relative to the horizontal

α1, α2, α3, α4 − Parameters for the interfacial area relation

αb,L, αn,L, αp,L m Longitudinal dispersivities

αb,T , αn,T , αp,T m Tranverse dispersivities

∆ρ kg/m3 Density difference between wetting and non-wetting phases

∆t s Time step

∆x m Space step

η − Parameter for the Van Genuchten parameterizations

κ m/s Hydraulic conductivity

λ − Parameter for the Brooks-Corey parameterizations

λw, λn m · s/kg Wetting and non-wetting mobilities

µ kg/m · s Viscosity

µp,max 1/s Maximum specific biomass production rate

µpa,max 1/s Maximum specific biomass production rate including interfacial area

φ − Porosity

ρ kg/m3 Density

σ, σ1, σ2 − Volumetric fraction attached totally, reversibly and irreversibly

σInt, σInt,min, σInt,max kg/s2 Interfacial tension, minimum and maximum

θ ◦ Contact angle

% − Exponent parameter for modeling the interfacial tension

ς − Exponent parameter for the Van Genuchten parameterizations

Abbreviations

Abbreviation Name

BE Backward Euler

EOR Enhanced oil recovery

EEOR Enzyme-enhanced oil recovery

FD Finite differences

GEMEOR Genetically-engineered microorganism for MEOR

IMPES Implicit pressure explicit saturation

MEOR Microbial enhanced oil recovery

MIOR Microbial improved oil recovery

MPFA Multi-point flux approximation

ODE(s) Ordinary differential equation(s)

PDE(s) Partial differential equation(s)

REV Representative elementary volume

TPFA Two-point flux approximation
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