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type can very well account for the recent anomalies in cosmic ray electron and positron data

reported by PAMELA, ATIC and Fermi LAT, without violating any other bounds. This scenario

will soon be tested by the Fermi LAT data on diffuse gamma ray emission.

European Physical Society Europhysics Conference on High Energy Physics
July 16-22, 2009
Krakow, Poland

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:nils-erik.bomark@ift.uib.no


P
o
S
(
E
P
S
-
H
E
P
 
2
0
0
9
)
0
9
8

Cosmic Ray Signatures from Decaying Gravitino Dark Matter N.-E. Bomark

1. Introduction

Among all dark matter candidates, the most studied ones are clearly the WIMPs, which are
particles with electroweak scale masses and annihilation cross sections. In supersymmetric mod-
els, the lightest supersymmetric particle (LSP) is a prominent dark matter candidate when it is
protected from decay via R-parity, a symmetry first introduced to guarantee the stability of the
proton. However, other symmetries could also provide such protection.

Attempts at detecting dark matter have focused on WIMP properties, both in direct detection
experiments and when using indirect methods, i.e. the search for annihilation products. At the
same time there is no direct empirical evidence in favour of the WIMPs; in fact, we know little
about the interaction strength of dark matter.

Gravitinos as dark matter have very different features compared to conventional WIMPs, such
as the neutralino, since they do not annihilate at any measurable rate and are not expected to show
up in direct detection experiments at all. In fact, gravitino dark matter does not require R-parity;
it has been shown that even if this symmetry is violated, the lifetime of the gravitino can easily be
larger than the age of the universe [1].

We will here report on a study [2] of supersymmetric models with a gravitino LSP and trilinear
R-parity violating operators (for bilinear R-parity violation see [3]):

λLiL j Ēk +λ
′LiQ jD̄k +λ

′′ŪiD̄ jD̄k, (1.1)

whereL(Q) are the left-handed lepton (quark) doublet superfields, andĒ (D̄,Ū) are the correspond-
ing left-handed singlet fields. Earlier work [4] studied the gamma radiation from gravitino decays
induced by the operators of Eq. (1.1). This is now extended to include charged cosmic rays.

2. Charged Particles

Recently, several anomalies in the data on cosmic ray electrons and positrons have been re-
ported. PAMELA has reported an anomalous rise in the positron fraction above 10 GeV [5] and
ATIC [6] as well as Fermi LAT [7] have reported an excess in electrons plus positrons at around
100–800 GeV. It is believed that these anomalies require a new source of high energy electrons and
positrons, and the most commonly discussed possibilities are pulsars and dark matter [8]. Our aim
is to see how well these anomalies can be fitted with the decay products from gravitino dark matter,
with an emphasis on the Fermi LAT and PAMELA data.

In order to study the cosmic ray flux expected in experiments, we use PYTHIA 6.4 [9] to
calculate the spectra of the decay products. We then let GALPROP [10] propagate the particles
through the galaxy and calculate the expected background. The GALPROP model we use is a
conventional diffusion model where we have rescaled the resulting primary electrons by a factor
0.75 to make room for a simultaneous fit to PAMELA and Fermi LAT. For the dark matter halo
density, we assume a NFW profile [11] with parametersrc = 20 kpc andρ0 = 0.33 GeV cm−3.

Operators giving rise to jets, i.e.LQD̄ andŪD̄D̄ operators, will produce large numbers of
electrons and positrons through charged pions. The resulting spectra, however, are too soft to
simultaneously fit PAMELA and Fermi LAT. Moreover, the non-observation of any excess in the
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Figure 1: Left panels: fit ofL1L3Ē3 (top) andL2L3Ē3 (bottom) operators (dashed blue) and GALPROP
background (solid blue) to electron-plus-positron spectrum from Fermi LAT (red, with error bars). Also
shown is ATIC data (green, with error bars). Right panels: data on positron fraction from PAMELA (red,
with error bars) shown with GALPROP background (solid blue) and the result of the fit to the Fermi LAT
data for theL1L3Ē3 andL2L3Ē3 operators (dashed blue).

antiproton data reported by PAMELA [12] essentially excludes all attempts withLQD̄ andŪD̄D̄
operators.

We focus therefore on the nineLLĒ operators. When attempting fits with these operators, it
becomes clear that the three operators with an SU(2) singlet field of the electron type (Ē1) give a
spectrum that is too hard; in order to get both a sufficiently soft electron-plus-positron spectrum and
a large enough positron contribution at PAMELA energies, tau flavour in the SU(2) singlet compo-
nent,Ē3, works better. However, this is only true for single coupling dominance; if combinations
of operators are considered, additional good fits can be obtained.

For gravitino masses around 2 TeV,L1L2Ē3 andL1L3Ē3 give good fits to both PAMELA and
Fermi LAT. If the gravitino mass is increased towards 4 TeV,L2L3Ē3 also gives a good fit. The
absence of electron flavour requires a large gravitino mass in order to reach the high end of the
Fermi LAT data. Figure1 shows two such fits;L1L3Ē3 (L2L3Ē3) with gravitino masses of 1.8 (3.7)
TeV, and other sparticle masses set to 2 (6) TeV.
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3. Gamma Rays
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Figure 2: Photon spectra for the fits of the op-
eratorsL1L3Ē3 andL2L3Ē3 to the Fermi LAT
data. For comparison we also give the EGRET
data on extragalactic diffuse emission [13].

With a gravitino decay through anLLĒ op-
erator, gamma rays appear in two ways: internal
bremsstrahlung off the produced leptons and from
the decay of mesons (mostlyπ0) from τ decay. Fig-
ure2 shows the resulting gamma ray flux expected
for experiments in the solar system. As one can see,
the gravitino masses that we consider are too large
to be in conflict with the EGRET data on extragalac-
tic diffuse emission, but Fermi LAT will eventually
be able to either find some excess, or exclude this
model, for the parameter space under consideration.

4. Conclusions

Within R-parity violating SUSY models, gravitinos can be natural dark matter candidates. For
trilinear R-parity violating operators of theLLĒ type, the recent anomalies in cosmic ray electrons
and positrons can be accurately explained without contradicting other cosmic ray measurements.
This scenario will be tested in the near future by the diffuse gamma ray data from Fermi LAT.
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