
University of Bergen

Department of Informatics

Using Smart Cards to Mitigate
Security Threats on Mobile

Devices

Author: Henrik Mathisen Sivertsg̊ard

Supervisors: Marcus Aloysius Bezem, Federico Mancini

Master thesis
June 2016

Abstract

This master thesis developed and tested the idea that smart cards are able to
help mitigate security threats on mobile devices that are handling sensitive
data. Investigating the limitations of smart cards is a fundamental part
of the idea and we performed in-depth testing and analysis of what smart
cards are capable of. Our study shows that smart cards are limited by
their low processing power, low amount of memory and a severely lacking
application programming language. These limitations affect smart cards
usefulness concerning cryptography and data processing. Additionally, lack
of standard support for smart cards in modern mobile operating systems is
a limitation we investigate and propose solutions for.

Despite these limitations, smart cards can still be a useful asset as they
offer a secure execution environment and are tamper resistant. Viable
use cases include secure key generation, management and storage, digital
signing, encryption, strong authentication and the possibility to run small
specialized applets securely. More complex use cases are also possible, but
require additional external components and infrastructure to be realized.
For instance, a smart card could be used as a simple policy enforcement
point, given that we had a trusted third party available, and a functioning
public key infrastructure in place.

We were able to construct an Android library and a smart card applet for
secure communication, but there still remains research on the topic. Not
all functionality were implemented due to time constraints and technical
issues, but the framework foundations are in place so that extensions can be
quickly and easily implemented. Future work may include full scale testing
of our framework, additional development and testing on more technological
advanced smart cards.

Acknowledgments

Foremost, I would like to thank my supervisors Prof. Marcus Aloysius
Bezem and Federico Mancini for their engagement, cooperation and guid-
ance during my work on the thesis. Your support is greatly appreciated. I
would also like to thank Forsvarets Forskningsinstitutt for providing soft-
ware, equipment and resources which enabled me to perform research on
this topic.

Henrik Mathisen Sivertsgård

May 31, 2016

Contents

1 Introduction 1
1.1 Problem statement and motivation 1
1.2 Goals and research questions 2
1.3 Chapter organization . 3

2 Background 4
2.1 Smart card . 4

2.1.1 Smart card architecture and specifications 4
2.1.2 Communication standard for smart cards 6
2.1.3 Java Card . 10
2.1.4 Other smart card programming languages 13

2.2 Android operating system . 13
2.2.1 Smart card support in Android 14
2.2.2 Blackberry Priv . 15

2.3 Cryptography . 16
2.3.1 Public-key cryptography 16
2.3.2 Symmetric-key cryptography 19

2.4 Mobile technology vulnerabilities 20
2.4.1 Physical access . 20
2.4.2 Remote access . 20
2.4.3 External vulnerabilities 21
2.4.4 The result of infected or compromised devices 22

3 Smart Card Framework - Goals and Environment 23
3.1 Design goals . 24
3.2 Development tools and technology 24

3.2.1 Smart card . 24
3.2.2 Android application 30

3.3 Development flow . 32

I

4 Challenges and use cases 34
4.1 Binding card and mobile device 35

4.1.1 Problem description 35
4.1.2 Goals . 36
4.1.3 Key concepts . 36
4.1.4 Proposed solution . 39
4.1.5 Protocol analysis . 43
4.1.6 Cryptography evaluation 46
4.1.7 Potential attack vectors 46
4.1.8 Additions . 47

4.2 Mobile device keys . 48
4.2.1 Problem description 48
4.2.2 Goals . 48
4.2.3 Key concepts . 48
4.2.4 Generate keys on mobile device 50
4.2.5 Generate keys on server 51
4.2.6 Evaluation and comparison 52

4.3 Security policy enforcement 54
4.3.1 Definition . 54
4.3.2 Problem description 54
4.3.3 Goals . 54
4.3.4 Shift responsibility to a trusted party 55
4.3.5 Proposed solution . 55
4.3.6 Solution evaluation . 60
4.3.7 Potential attack vectors 61

5 Framework design and implementation 62
5.1 Java Card applet . 62

5.1.1 Extending the Java Card application 65
5.2 Android framework . 65

5.2.1 Achieving framework goals 66
5.2.2 Responsibility areas 67
5.2.3 3rd party libraries . 70
5.2.4 Framework functionality 70

6 Testing and use case implementation 77
6.1 Setup . 77

6.1.1 Equipment . 77
6.1.2 Limitations and problems 78

6.2 Tests . 79

II

6.2.1 Data Transfer Speed 79
6.2.2 Symmetric-key cryptography 83
6.2.3 Public-key cryptography 85
6.2.4 Binding card and mobile device 87
6.2.5 Limitations . 90
6.2.6 Conclusion . 92

7 Conclusion 93
7.1 Research questions . 93
7.2 Related work . 95
7.3 Experience . 95
7.4 Remarkable results . 98
7.5 Future work . 98

References 99

A Java Card code 105

B Android library 117

C Diagrams 123

D Framework installation 124
D.1 Smart card development environment 124
D.2 Smart card deployment . 125
D.3 Smart card testing . 125
D.4 Android development environment 126

III

List of Figures

2.1 Contact smart card and reader. 5
2.2 Smart card architecture . 6
2.3 Door lock using smart card to unlock. 9
2.4 Door lock using smart card to unlock with corresponding

APDU commands . 10
2.5 Micro SD card from Gemalto. 12
2.6 Java Card architecture . 12
2.7 Asymmetric key encryption/decryption using public-private

key pair. 17
2.8 Digital signing using public-private key pair. 18

3.1 Screenshot of Eclipse Java Card tools. 27
3.2 Deployment line using GlobalPlatformPro. 28
3.3 Select APDU sent to smart card via PyApduTool 29
3.4 Android Debug Bridge memory monitor connected to a run-

ning Android device. 31
3.5 Android Debug Bridge CPU monitor connected to a running

Android device. 31
3.6 Development flow of the smart card framework 33

4.1 Using a third party (Authority) to establish a trust relation-
ship between two parties (Application and smart card) lacking
trust. 37

4.2 Server, mobile device and smart card communication flow. . . 38
4.3 Verification package structure. 40
4.4 Sequence diagram for binding mobile device with smart card. 42
4.5 Screenshot of Android settings showing hardware-backed stor-

age “enabled”. 49
4.6 Smart card policy request. 57
4.7 Smart card policy response. 57

IV

4.8 Example policy APDU with two policies 59

5.1 Library package diagram. 67
5.2 Diagram showing which responsibilities the layers in an An-

droid application have. 69
5.3 Abstraction layer between Android activities and smart cards. 72
5.4 Simplified class diagram for Android Library. 75

6.1 Data flow of data transfer speed test for NFC. 79
6.2 Graphical representation of table 6.1. 81
6.3 Graphical representation of table 6.3. 84

C.1 Class diagram for Android Library. 123

D.1 Configuring Java Card kit 2.2.2 for Eclipse. 125

V

List of Tables

2.1 Command APDU layout. 7
2.2 Response APDU layout. 8

3.1 Evaluation Assurance Level 25
3.2 Available cryptographic algorithms in IDCore 3010 and ID-

Core 8030. 26

6.1 Table of NFC transfer speed test. 80
6.2 Table of micro SD transfer speed test. 82
6.3 Table of AES encryption speed test. 84
6.4 Table of digital signing (RSA) speed test. 86
6.5 Table of RSA encryption speed test. 86
6.6 Time required to install the application on the smart card. . 89
6.7 Time required to generate the verification package on the

smart card application. 89

VI

Listings

3.1 Install and deploy script for GlobalPlatformPro. 28
4.1 Obtaining storage status of keys using KeyInfo. 50
4.2 Generating RSA key-pair on Android device using KeyPair-

Generator . 51
4.3 Human-readable policies in JSON. 58
4.4 Pseudo code for interpreting policy APDU with Java Card. . 59
5.1 Pseudo code for javacard test application. 64
5.2 Java code example showing how to send and receive com-

mands to a NFC smart card. 71
5.3 Java code example showing how to send sign a message using

a NFC smart card. 73
6.1 Java Card failed signing. 90
A.1 SecureCard.java. 105
B.1 CommunicationController.java. 117

VII

Chapter 1

Introduction

1.1 Problem statement and motivation

The original use of mobile phones was to make calls and send text messages.
As mobile phones evolved into what we call smartphones, their possible fields
of application have increased, and with that the need for better security. In
today’s society we use smartphones to access our bank accounts, control
our cars and houses, identify ourselves, pay in shops, buy tickets and much
more. Modern smartphones do implement a lot of security, which is mainly
intended for the average private user. The innovation and potential of
smartphone technology has attracted the attention of other types of users
like military forces, governmental employees, health personnel, and others.
These new users handle more sensitive data and perform more critical tasks
than most normal users. In order to be able to adopt smartphones in these
settings, their integrated security mechanisms may not always be enough,
and additional technology and novel solutions are needed.

A specific problem of smartphones, and mobile devices in general, is that
they are much easier to lose or get stolen than stationary equipment. Mobile
devices are relatively easy to get physical access to as they are often left
unattended, even only if for a few minutes. In addition, one of the things
that makes mobile devices so great, is their ability to constantly be connected
to a network through either Wi-Fi, radio, Bluetooth, NFC or USB. This is a
double edged sword as it offers multiple entry points that an attacker can use
to get in even without physical access. One assumption one must make, is
that a motivated attacker will most likely be able to compromise the device

1

at some point. In a compromised device we cannot trust anything, not even
the operating system as an attacker may have root access. This possibility
is not something we can accept when particularly sensitive data is being
processed, stored and exchanged on the device. A common solution is to
encrypt the data on the device, but if the device is compromised one must
assume that the cryptographic keys are also compromised.

The reason why we chose to investigate smart cards as an additional secure
element, is that we believe that they can increase the security of smartphones
in the exact situation as described above. These cards have an internal
secure execution environment which can be used to generate, store and
use cryptographic keys, and since they are tamper resistant, they provide
protection against physical attacks. In addition, they have their own oper-
ating system that can run small customized applets which can be trusted to
execute critical task securely even if the mobile device is compromised.

In particular we look at what it is possible to achieve by using “off-the-shelf”
mobile devices deployed with an additional secure element like a smart card.
In other words, we are not interested in solutions that require a modification
of the mobile device, like having to flash a customized operating system in
order to enable additional modules or security mechanisms.

1.2 Goals and research questions

The overall goal of this thesis is to explore and evaluate the possibilities of
how smart cards and mobile devices can co-operate to achieve a higher level
of information security. To better understand what limitations there are, we
will need to create a framework for easy communication between a mobile
device and smart card. This will also include developing test applications
for both the mobile device and the smart card. The framework, mobile
application and smart card application, needs to be tested with as close to
real life use cases as possible.

In order to achieve this goal we will attempt to answer the following research
questions:

• “What are the limitations of smart cards in the context of hardware?”

• “What are the limitations of smart cards applications?”

2

• “What types of security threats are we able to mitigate by using a
smart card with an “off-the-shelf” mobile device?”

1.3 Chapter organization

Chapter 1 - Introduction Presents a problem statement, motivation
and research question for this master thesis.

Chapter 2 - Background Introduces all concepts needed for under-
standing how smart cards and relevant technology function. In addition, it
provides a basic understanding of the most common threats which a mobile
platform is exposed to.

Chapter 3 - Smart Card Framework - Goals and Environment
Discusses the high-level goals we have for the framework and describes the
tools and technologies we used when developing the framework.

Chapter 4 - Challenges and use cases In this chapter we identify
possible use cases for the application of smart cards to mobile security and
discuss which challenges must be solved to realize them.

Chapter 5 - Framework design and implementation Gives an overview
of how the Android library and smart card applet have been implemented
and structured.

Chapter 6 - Testing and use case implementation Shows the testing
environment for the smart cards and provides detailed testing results for
smart card limitations and use cases.

Chapter 7 - Conclusion Discusses the research questions that we have
established and what experiences we encountered during this master the-
sis.

3

Chapter 2

Background

In this chapter we will provide the background information necessary to un-
derstand how smart cards function and how they increase security on mobile
devices. In particular, we will cover smart card technology, relevant mobile
device technology (in our case Android OS), basic concepts of cryptography
and typical threats in the context of mobile devices.

2.1 Smart card

The term smart card refers to a card with an integrated circuit. In practice,
it is a miniature computer with limited computing power, which can process
information in a secure isolated environment and exchange data with the de-
vice that usually also provides it with the necessary power to operate.

2.1.1 Smart card architecture and specifications

The micro processor is able to perform tasks that involve processing input,
give ouput and storing small amounts of data. Smart cards vary in sizes
defined by the standards ISO/IEC 7810 [27] and ISO/IEC 7816 [28]. The
most common card dimensions are approximately 85x54 mm [38, Ch. 3.1].
The processing power of smart cards are between 25-32 MHz and sport
anywhere from 8Kbit to 128Kbit memory (EEPROM) [48].

The micro processor can be powered and communicate in two ways. Contact

4

smart cards have integrated contact pads. When the smart card is inserted
into a card reader the contact pads of the card reader provides power to the
micro processor via the contact pads of the smart card. The contact pads
also functions as a medium for transferring data. Contactless smart cards
uses radio-frequency induction to power the micro processor and to transmit
data between an antenna and the card. Most modern smart cards supports
both technologies (hybrid cards). Figure 2.1 shows a contact smart card and
reader.

An everyday example of a smart card is the modern credit and debit card.
Most of these cards are contact cards that require the user to insert the
card into a card reader, but newer cards are of the hybrid type, and have
the ability to communicate over radio frequencies. Credit and debit cards
utilizes the input/output capabilities of the smart card, but they also store
information on the card authenticating the users bank information.

Credit:Thiemo Schuff (CC BY 3.0 DE)

Figure 2.1: Contact smart card and reader.

In figure 2.2 we can see how the architecture of a smart card (NFC) is built
up. In the bottom we have the hardware of the smart card which includes

5

the ROM, EPROM, RAM and in the case of NFC cards the NFC receiver.
On top of the hardware is the operating system of the smart card. The
operating system has drivers installed along with API which it provides to
the virtual machine. On top of the virtual machine multiple applets are able
to run.

Figure 2.2: Smart card architecture

2.1.2 Communication standard for smart cards

Application Protocol Data Unit (APDU) is a standard that describes how
a smart card application should communicate with other applications (off-
card) and is defined by ISO7816-4 [26]. There are two types of APDU
messages: Command APDU and Response APDU [38, Ch. 8.3, Message
Structure: APDUS].

Command APDU is split into header and body. Refer to table 2.1 for
instruction explanation and summary. The header is mandatory for all
transactions and consists of 4 bytes that is split into CLA, INS, P1 and P2.
The body of a Command APDU is split into 3 parts; LC, Payload and LE.
LC is 1 byte, payload is maximum 255 bytes and LE is 1 byte.

Newer smart cards supports Extended APDU which allows the payload to
be up to a maximum of 65535 bytes. If the payload data is greater than

6

255 bytes LC must be 3 bytes where the first byte is 0x00 to denote that
the APDU is extended and the remaining 2 bytes denotes the length. If
extended APDU is used then LE consists of 2 bytes to account for longer
responses.

Name Number of bytes Description

CLA 1 Command type class, type of command

INS 1 Instruction code, command to run

P1 1 Free parameter

P2 1 Free parameter

LC 0, 1 or 3 Length of payload

Payload 0 - 65535 Payload data

LE 0, 1 or 2 Expected response length

Table 2.1: Command APDU layout.

Most Command APDUs falls into three abstract categories. The first cate-
gory is retrieving something stored on the smart card. Often this command
does not need any extra data (payload) and is characterized by INS, P1
and P2 deciding what data that is desired, and LE deciding what length the
response is. For example: we have a smart card applet and in the instruction
01 01 00 we have stored a 8 byte variable that we want to retrieve (LE is
08). In this case the payload is empty since our theoretical method does not
need any payload, but we will need to explicitly state that in the command
APDU (LC is 00). The Command APDU would then look like:

CA INS P1 P2 LC Payload LE

80 01 01 00 00 00

The second category is storing variables on the smart card. The charac-
teristics of the Command APDU differ from the first category by having
a LC and payload, but rarely needs any response apart from “success” or
“failure”. For example: our smart card applet let us store 8 byte in the
instruction 01 02 00. LC would then be 08 and the payload would contain
the 8 bytes we want to store. We set LE to 02 as we define 9000 as success
and 0999 as failure. The Command APDU would then look like:

CA INS P1 P2 LC Payload LE

80 01 02 00 08 5964574e704a593d 02

7

The third category is sending data to the smart card and have the smart card
process the data. In context of security, the best example of this category is
cryptographic functions. This category will use all variables of a Command
APDU (INS, P1 and P2 usage depends on application complexity). As an
example let us say that we want to send a Command APDU that request
the ciphertext of a clear text. The instruction is 01 03 00 and our cipher
algorithm in this case is very basic and “increments” byte values. LC and
LE is 8 byte. The Command APDU would then look like:

CA INS P1 P2 LC Payload LE

80 01 03 00 08 5964574e704a593d 08

Response APDU is split into body and response trailer. The body consist
of the response data and is at maximum 255 bytes or 65535 bytes depend-
ing on if extended APDU is used. All Response APDUs must contain a
response trailer of two bytes which denotes the processing status (error,
success, wrong format, etc.) of the Command APDU. Refer to table 2.2 for
definitions and summary.

Name Number of bytes Description

Response 0-65535 Response data

SW1+SW2 2 Command processing status

Table 2.2: Response APDU layout.

If everything is successful when processing a Command APDU with no
expected response data the Response APDU may look like:

Response data SW1 SW2

90 00

If we use the example from the third category of Command APDUs that
used ciphering as an example the Response APDU would look like:

Response data SW1 SW2

6065584f714b603e 90 00

To better understand when to use the Command APDUs and when to use
Response APDUs we can use the following example: A locked door has a
card reader connected to it. A person walks up to the door and presents his

8

contactless smart card to the reader. The card reader sends a Command
APDU to the card asking for the ID. The smart card processes the Command
APDU and sends a Response APDU back to the card reader containing the
ID of the person. This example is visualized in figure 2.3 and in figure 2.4
we have the same example, but with actual APDU commands.

Figure 2.3: Door lock using smart card to unlock.

On most smart cards there is an application manager which listen for a spe-
cial type of Command APDU: a Select APDU. The Select APDU contains
information on what type of smart card application a sender is trying to
communicate with and the job of the application manager is to activate the
correct application. Before communicating with a smart card the sender
should send out a Select APDU, if this step is skipped you run the risk of
sending information to the wrong smart card application. A Select APDU
sent to a smart card with application ID “0102030405060708090007” is
defined as:

CA INS P1 P2 LC Payload LE

00 A4 04 00 0B 0102030405060708090007

9

Figure 2.4: Door lock using smart card to unlock with
corresponding APDU commands

2.1.3 Java Card

In section 2.1 we described that smart cards are able to store data as well as
process input and output. All smart cards have their own operating system
that allows developers to write applications that run on the smart cards.
Smart cards are not limited to one applications per card, but are able to have
multiple applications installed. Traditionally it was not feasible to create
programs that ran on different smart cards as the micro processors were
manufacturer specific [57]. This created an environment where smart card
issuers and their developers were locked to a specific manufacturer.

The company Schlumberger [41], later joined by Sun Microsystems [33],
outlined Java Card 1.0. Java Card were to alleviate the problem of manu-
facturer specific code and to let developers write generic applications. Newer
Java Card version includes a development kit that provides a test environ-
ment and a converter tool that prepares the Java Card applet/program for
installation onto a smart card. The newest Java Card version is currently
3.0.5 [30].

The Java Card language is in practice a very basic version of the standard
Java language. Many Java classes and features are not present. For example:
int, double, long, java.lang.SecurityManager, threading and object cloning

10

[3]. The structure of the applets differs from standard Java applets. All
Java Card applets must implement:

• void install (byte [] barray, short bOffset, byte bLength)

• void process(APDU apdu).

Install is invoked when the applet is downloaded onto the smart card and
should register and initialize the applet [58]. Process is the entry point for
all requests to the application and where the applet specific logic is done
[59].

Garbage collection in the Java Card language differs from standard Java. In
standard Java, garbage collection is performed by the Java Virtual Machine
(JVM) and runs independently of the application. In Java Card objects are
stored in the persistent memory (EEPROM) and writing to this memory
is very time-consuming. As a result it was decided that there would be no
automatic garbage collection in Java Card and that garbage collection should
be invoked by the application itself. Deciding when to perform garbage
collection is very difficult as on one side it is resource intensive, while on the
other side you may risk running out of memory.

The fact that there is now a standardized smart card platform based on
Java Card technology, means that once an applet as been written, it can
be easily installed on different types of smart cards. For instance cards in
micro SD format as shown in Figure 2.5 and cards as shown in figure 2.1
would be able to run the same application (given that both support Java
Card).

Figure 2.6 shows how the general outline of smart card architecture (see
figure 2.2) translates to Java Card. The Loader/Installer is responsible for
installing the applet onto the smart card so that it can run in the Java Card
VM where as the Card Manager is responsible for activating the correct
applet and forwarding APDUs.

11

Figure 2.5: Micro SD card from Gemalto.

Figure 2.6: Java Card architecture

12

2.1.4 Other smart card programming languages

Besides Java Card, another widespread smart card operative system is MUL-
TOS [47]. MULTOS was the first open high security operating system that
supported multiple applets and supports the programming languages native
assembly (MEL), C and Java. Java Card and MULTOS differs from how
they handle applets shared space/memory on the smart cards. MULTOS
security targets are: Applets can only be loaded by the card issuer, applets
are segregated and secure package deployment. Java Card uses a secure
channel to distribute applications whereas MULTOS uses secure packaging.
The essence is that third parties can deploy new applets to the smart card
containing sensitive data. This is possible as the package is encrypted with
the public key of MULTOS (card unique) and thus you do not need a secure
channel [10, 46].

There exists a .NET version of a smart card OS started by Microsoft which
led to other versions developed by Gemalto and CardWerk. We will use Java
Card in this thesis as this is supported by our smart cards and is similar to
standard Java which is used in our mobile devices (refer to section 2.2).

2.2 Android operating system

Mobile operating system refers to the operating system running on a mobile
device (smartphones, GPS devices, tablets, etc.). In this thesis we will focus
mainly on smartphones and tablets since their capabilities are within our
scope and the fact that they often share the same operating system. For
practical reasons and because of time constraints we will restrict ourselves
to one mobile operating system and the operating system we chose is An-
droid.

Android is an open source licensed mobile operating system and is based on
one of the LTS (long-term support) branches of the Linux kernel. Google
Inc. [2] is the current developer of the mobile operating system and their
primary focus has been smartphones and tablets. In later years Google has
put resources into incorporating Android with TVs, wrist watches and cars.
In 2015 Q2 82,8 % of smartphones worldwide was shipped with a version of
the Android mobile operating system [49].

The Android mobile operating system supports applications that are written
in Java, GO and C/C++. The applications run in their own sandbox with

13

their own allocated memory space, but applications can also access shared
resources given permission to do so by the user.

Another reason for picking Android as our mobile platform is the flexibility
of the Android system and devices when it comes to secure element support.
iOS devices have no support for micro SD smart cards and Windows Phone
does not seem to have any libraries that support smart card communication.
Blackberry is an alternative, especially their latest iterations which is a
custom Android version, but due to their low market share they are not
representative in a “bring your own device” situation. We discuss the
Blackberry Priv more in depth in section 2.2.2.

2.2.1 Smart card support in Android

In Android version 2.3 (API level 9) NFC support was added which enabled
a mobile device to read NFC Data Exchange Format (NDEF) from NFC
devices/tags. In Android 2.3.3 (API level 10) the class IsoDep was added
which enabled mobile devices to send byte data via NFC to devices with NFC
support. This means that any device supporting API level 10 or higher and
with a NFC adapter can communicate with smart cards via NFC.

As mentioned in section 2.1.3 smart card applications can run on micro SD
cards. Mobile devices with a micro SD card slot can in theory communicate
with these types of smart cards, but Android has no native support for
communicating with them. This essentially means that the hardware is
there on some mobile devices, but developers lack the bridge between their
application to the hardware.

The Secure Element Evaluation Kit (SEEK) for the Android platform is an
open source project, maintained by Giesecke & Devrient GmbH [18], which
has a vision to make it easier to use secure elements in Android applications.
The framework enables access to a variety of secure elements such as SIM
cards, micro SD cards and embedded secure elements. Their final goal is to
have their library as an integrated part of the Android operating system such
that all new mobile devices comes with hardware-backed security support
[43]. Some mobile device manufactures have included this framework, but
there exists no documentation stating which devices have it, what channels
are open and how to access the secure elements. Often the case is that
only the channel to the mobile device SIM card is open meaning you cannot
access custom secure elements.

14

Even though SEEK is open source and gives us access to the source code
which would let us modify and tailor it to our needs, the main obstacle to
its adoption is that it must be compiled with the kernel. This translates
to creating, compiling and installing a custom operating system on our test
devices. However, we made it clear from the beginning that our goal is to
use off-the-shelf mobile devices. Another reason for not running a custom
version of an operating system, is that it requires an organization to maintain
and support it. From a security standpoint this is not viable as you will not
automatically get security updates and will be running an unofficial version
of an operating system. Running a custom operating system may also cause
issues for the users as some services may block the user if they detect it
(banking applications, proprietary applications, etc.).

As an alternative to flashing the operating system one can use proprietary
drivers from smart card manufacturers. Gemalto produces a Java library,
IDGo800, which is a cryptographic and communication middleware for their
smart cards (more on this in section 5.2.3). Installing/using third-party
applications/libraries to communicate with smart cards may not always be
the best option, as you make yourself dependent on a third-party. In essence,
opting for this solution results in a vendor lock. Security wise you should
not blindly trust a third-party and you may not have access to the software
if you wish to evaluate it.

2.2.2 Blackberry Priv

The Blackberry Priv by Blackberry is branded as a “secure smartphone” [9].
Blackberry’s states that all data on the device is hardware-encrypted, the
operating system performs a integrity check every time it boots, and that
Blackberry’s hardware suppliers are to be trusted. Blackberry Priv runs
a modified Android version and comes with native secure element support.
What this entails is that the Blackberry Priv may be the “off-the-shelf” solu-
tion we seek for both hardware and software (operating system) as we do not
need to run and maintain custom frameworks or flash the operating system
to communicate with secure elements as discussed in section 2.2.1.

The downside of opting for the Blackberry Priv is that we lock ourselves
to a specific vendor which defeats the “bring your own device” concept.
Another thing to keep in mind is that this is one single device, meaning
it would need to be reviewed as to whether it fits the organization needs
in terms of functionality and other characteristics (size, weight, battery,

15

etc.). The device is also rather expensive compared to devices with similar
specifications.

In this thesis we will not seek further investigation on the Blackberry Priv
and we will focus on more standardized smartphones, but it is important to
know that it exists for future research. Information on our test device can
be found in the chapter 6, section 6.1.1.

2.3 Cryptography

Cryptography is a method for protecting confidential data using complex
mathematics and computer science. Most cryptographic functions/algo-
rithms relies heavily on the fact that the mathematical problems which they
are based on are so complex that they are “unbreakable” without knowledge
of the encryption/decryption key.

2.3.1 Public-key cryptography

Public-key cryptography refers to a set of methods for asymmetric cryp-
tography. It is based on the concept that one entity (user, server, etc.)
generates a key pair consisting of one public key and one private key. Data
encrypted using the public key can only be decrypted by the private key
and due to the complexity of the keys it is improbable that the private key
can be generated from the public key. The public key, as the name suggests,
is publicly available for other entities. This combination allows entities to
communicate securely given that they have each others public key and their
private key is stored securely. Figure 2.7 shows how a sender can send a
message that only the receiver can read. Although it is important to note
that this operation is more resource intensive and time consuming compared
to symmetric key encryption/decryption.

One of the most common public-key cryptosystems is RSA, which is widely
used for secure communication. RSA builds on the principle of factorization
of the product of two prime numbers, or rather the difficulty of factorizing
the product. It is not impossible to factorize the product of two prime
numbers and there was a challenge by the RSA Laboratories where one
could win prizes for factorized RSA-keys [52], but the most complex RSA
that were cracked was 768-bit. Proving that RSA is secure is out of the
scope for this thesis. Other sources conclude that with long enough keys and

16

Figure 2.7: Asymmetric key encryption/decryption using
public-private key pair.

correct protocol implementation, the math behind RSA can be considered
secure [11, p. 194]. Information on the inner workings of RSA can be found
in the book “Understanding Cryptography” by Christof Paar and Jan Pelzl,
chapter 7 “The RSA Cryptosystem” [11].

Message authentication can also be done by public-key cryptography. First
the message is hashed using a secure hash function, for instance SHA-2 [39],
which creates a digest. The digest is then encrypted with the private key
and the “digital signature” is then sent with the original message. The
receiver can then verify the integrity of the message by computing the hash
of the message using the same secure hash function and decrypt the “digital
signature” using the senders public key. If they are a match the receiver can
with certainty conclude that the message has not been tampered with and
originates from the sender.

17

Figure 2.8: Digital signing using public-private key pair.

One of the key issues with public-key cryptography is verifying the identity
of the public key owner. Authentication is not a trivial matter and is solved
by using certificates to prove that the holder of the key is who they claim to
be. The certificates needs to be signed by a trusted third party whom both
the sender and receiver of the message trust. The mutual trust relationship
is a complex matter and is not a topic we will investigate further in this
thesis, but we will assume that it is possible to achieve.

18

2.3.2 Symmetric-key cryptography

Symmetric-key cryptography uses the same cryptographic key for both en-
cryption and decryption. There are two main areas of application for symmetric-
key cryptography; secure storage of data and secure communication. Secure
storage of data is the most straight forward of the two. An entity (user,
server, etc.) generates a key, encrypts the data using the key, stores the
key for future use and decrypts the data using the key whenever the entity
require the data. As long as the key is stored securely and the encryption
algorithm is secure the data can be stored in an unsecured environment. Se-
cure communication using symmetric-key is similar, but instead of the same
entity decrypting the data, the encrypted data is transmitted to a new entity
which decrypts it using the same key. This requires the key (known in this
case as shared secret) or key generation process to be known by both parties.
There are two methods for symmetric-key encryption/decryption. Stream
ciphering takes one byte at the time and encrypts/decrypts it whereas block
ciphering takes bigger chunks of data and encrypts/decrypts the data. Both
methods have their own weaknesses and strengths [11, Ch. 2.1.1].

Stream ciphering is fast and relatively simplistic to implement. This along
with the fact that it can encrypt byte by byte makes it very suitable for
use when plaintext data comes in unknown length and over time (streams).
Areas of application includes voice chat, video feed and http communication.
Disadvantages of stream ciphering is that if the algorithm is cracked then
it is susceptible to insertions and modifications as well as the fact that a
single plaintext symbol is represented as a single ciphertext symbol (limited
alteration).

Block cipher is a more complex and requires more overhead. First of all,
data must be divided into equal size blocks. The blocks cannot be too small
as they would be prone to dictionary attacks and not too big as this would
make the encryption/decryption process too resource intensive. In block
ciphers the block size must be fixed through the encryption process. This
will often result in redundant data. For example, 200-bit plaintext with a
64-bit block size will result in three blocks of 64-bit and a fourth block with
only 8 bit of “real” data and 56 bit of redundant bits. Since block ciphering
uses the previous block to cipher the current block it is possible to detect
tampering and faults, but this also results that data may be lost if a block
becomes corrupt.

Advanced Encryption Standard (AES) is one of the most common symmetric-

19

key cryptography methods. AES does not rely on number factorization
(opposed to RSA), but rather substitution and permutation using a key. It
can be seen as hashing data and being able to reverse the hashing using the
same key. There are currently no known analytic attacks against AES which
are less complex than brute-force attacks and consensus is that it is secure
as long as long enough keys are used.

2.4 Mobile technology vulnerabilities

Mobile technology vulnerabilities and attack vectors are numerous and be-
fore looking into how smart cards can help mitigate an alleviate threats we
will need to identify and characterize them.

2.4.1 Physical access

An attacker may gain physical access to the users mobile device through
theft or simply that the user misplaced the mobile device. With physical
access to the device an attacker would be able to retrieve data from the
device. A common defense against this is encrypting the data on the device,
but this requires the keys to be stored somewhere securely. If the keys are
not stored securely the result is that the data on the device may fall into
the wrong hands.

Apart from encrypting the device a more basic form of protection against
physical access is using screen locks along with disabling USB debugging
etc. What is important to remember is that if an attacker or organization
has enough time and resources they may at some point become successful
in breaking these security measures. This was recently proven correct by
the Federal Bureau of Investigation when they were able to hack into the
iPhone 5C used by one of the “San Bernardino shooters” after Apple refused
to help bypass the security measures [17].

2.4.2 Remote access

An often overlooked attack vector is badly implemented applications on
the mobile device. Inherently a lot of functionality is secure, but due to
negligence or bad planning functionality is implemented in a bad way. This

20

can include memory leaks, weak cryptography, open for code injections or
openly exposing private data to third parties. We classify these vulnerabil-
ities as “remote” vulnerabilities as an attacker rarely needs physical access
to exploit them. In the “Top 10 Mobile Risks 2014” from OWASP [35] most
of the bullets fall under this category. For instance, client side injection
allows attackers to remotely execute code on a user device by abusing poor
validation of resources.

In rare cases an application with flaws may expose other applications for
attacks, but there exists countermeasures to this, for instance that all ap-
plications run in their own sandbox. In Android, all applications run in
their own environment and applications can only access their own resources
and shared resources. The vulnerabilities mentioned above can potentially
enable sharing resources that was meant to be private.

2.4.3 External vulnerabilities

External vulnerabilities differs from remote access by that external vulner-
abilities are not tied to the device, they focus on data or information in
transit.

Communication is a vital part of modern systems; data is sent between
devices and between devices and servers. Sensitive data requires a secure
communication channel which cannot be tapped into by a third party. Se-
cure communication on public networks involves agreeing upon encryption
keys which the data should be encrypted with before being sent. Encrypting
the communication channel will protect against man-in-the-middle attacks,
but this requires both parties to authenticate themselves as encrypting the
data won’t help if you are sending the data directly to the attacker.

As mentioned above, a secure communication channel is useless if you are
sending the data directly to the attacker. A vital part of communication
security is being able to authenticate the parties in a communication trans-
action. If the attacker is able to impersonate another party by installing fake
certificates on the mobile device or by tricking the user into communicating
with the attacker the consequences can be of great significance. All exter-
nal parties should be treated as hostile or untrusted parties until proven
otherwise.

21

2.4.4 The result of infected or compromised devices

The type of virus or malware on an infected device can vary, some are harm-
less and serve more as an annoyance or trying to trick the user into visiting
bogus websites, but some are more malicious and will access private files and
information. From a security stand-point it is a disaster if a virus or malware
is able to read and modify data which is otherwise confidential.

Often the user will not know that their mobile device is infected and some
viruses or malware are very hard to detect by anti-virus. The “2015 Cheetah
Mobile Security Report” [1] reports that the number of viruses on Android
devices exceeds over 9,5 million and that the problem is growing. The fact
that there exists over 9,5 million viruses for Android shows that Android is
a sought after platform to compromise.

When designing and developing applications one should take into consid-
eration that the mobile device may be infected or compromised as well as
the possibility for the device to at some point become infected or compro-
mised.

22

Chapter 3

Smart Card Framework -
Goals and Environment

As mentioned in section 1.2 we want to create an Android framework al-
lowing easy development of applications that utilizes smart card capabil-
ities to enhance their security. The framework should implement basic
communication protocols for different smart cards and basic out-of-the-box
security functions. Both of these should be extendable so that developers can
implement their own smart card based security. We want to achieve this not
only for testing, but to be able to hand over a ready to use framework for any
parties interested so that further development and testing may continue. In
this chapter we will discuss the basis for the framework and the environment
we will use for creating it. The framework should lay the very foundation
needed for using the mobile device and smart card in a secure fashion. The
basic things we want to cover are:

• Secure communication

• Key management

• Basic encryption

If we manage to create a framework covering these three points we be-
lieve that we have a great starting point for further testing and develop-
ment.

23

3.1 Design goals

The framework should be functional and require little work to integrate
into an application. Therefore the basic design goals for the framework will
be:

• Easy to use.

• Little to no understanding of Java Card and smart cards required.

• Extendable.

Even though most users of our framework will have a basic understanding
of smart cards we believe that abstracting some central concepts will make
the framework easier to use. One of the concepts we abstract is APDU. As
a user/developer of the framework you can choose not to work with APDUs
and use pre-implemented methods.

As we cannot possibly predict all types of uses for the framework we will
also include a method for sending custom commands to the smart cards.
This ensures that developers do not feel limited in how they can use the
framework as well as catering to advanced users. More on the implemented
methods in section 5.2.

Along with the Android framework we will also provide a simple Java Card
applet that corresponds to the functionality we implement in the Android
framework. This applet should follow the same principles as the Android
framework, but will require some understanding of smart cards by the
developer.

3.2 Development tools and technology

3.2.1 Smart card

The first part of the complete framework is the application on the smart
card. This part of the framework will perform the tasks that we can place
on the smart card.

Java Card version
The cards we have support Java Card 2.2.2 and this is the version we will

24

target. A natural question is “Why don’t we target Java Card 3 and above?”.
Smart cards used for banking or handling other highly confidential data
needs to be evaluated under the Common Criteria [4, Ch. 26.3.2] standards.
Potentially an application may handle confidential data and as a result we
want smart cards with a Evaluation Assurance Level (EAL) 4 or above.
Achieving EAL4 or above is an expensive and long process and relatively
few products have this certification.

Level Description

1 Functionally Tested

2 Structurally Tested

3 Methodically Tested and Checked

4 Methodically Designed, Tested and Reviewed

5 Semiformally Designed and Tested

6 Semiformally Verified Design and Tested

7 Formally Verified Design and Tested

Table 3.1: Evaluation Assurance Level

Table 3.1 shows the difference between EAL levels. Comparing the EAL
levels is a rather hard task (other than looking at their name and what they
test) as there is no guarantee that what has been tested corresponds to the
real world [4, Ch. 26.3.3].

When we decided on Java Card 2.2.2. we had to consider if we wanted a
newer Java Card version with more functionality or if we wanted to comply
with government directives (EAL requirements). The obvious choice was
the latter as we have to comply with government directives.

The micro SD card we have access to are certified with EAL5, but only sup-
ports Java Card 2.2.2. [22]. This is also the case with the contact+contactless
cards we have access to [21]. The Java Card operating system supports “Java
Card v2.2.2 (3.0.1 for the Elliptic Curves algorithms)”, which means that
some of the cryptographic functionality of Java Card 3.0.1 is present. Refer
to table 3.2 for available cryptographic algorithms.

25

Type Supported algorithms

Symmetric-key cryptography 3DES (ECB, CBC), AES (128, 192, 256
bits)

Public-key cryptography RSA (up to 2048 (on-card generated), up
to 4096 (off-card generated))

Hashing SHA-1, SHA-224, SHA-256, SHA-384,
SHA-512

Elliptic curves ECC(up to p-521)

Table 3.2: Available cryptographic algorithms in IDCore
3010 and IDCore 8030.

Development environment
In order to develop applications for the smart cards we will be using Eclipse
3.2 with Java development kit version 1.6.45. In order to develop smart
card applications more easily we will use the Eclipse-JCDE plugin [14] which
provides a virtual runtime environment along with build tools. Even though
Eclipse 3.2 is severely outdated it provides the tools necessary to do the
job.

In figure 3.1 we can see the tools for generating the deployable smart card
application package (.cap file). The screenshot also shows how the editor
looks like any other Eclipse version. Even though this version of Eclipse
includes tools for sending and receiving APDUs to the application (testing),
we have decided not to use these tools as they proved themselves to be
unstable and not representative of real world use. This is mostly due to the
fact that the application is deployed to an emulator and does not have any
hardware limitations of a physical smart card.

26

Figure 3.1: Screenshot of Eclipse Java Card tools.

Deployment
We will be using GlobalPlatformPro (GP) [19] to deploy and manage applets
on the physical smart cards. GP is a command line tool and is compatible
with our hybrid Gemalto card with reader as well as the micro SD card. In
figure 3.2 we can see which part of the assembly line GP is responsible for.
GP takes the generated .cap file and deploys it to the smart card via the
card reader using the computer drivers.

There are three essential steps when deploying an application to a smart
card:

• Delete the smart card application along with the stored data.

• Delete the smart card package.

• Install the new smart card application.

To do this we will utilize a simple batch script which consisting of three

27

Figure 3.2: Deployment line using GlobalPlatformPro.

lines of code (listing 3.1). To gain access to the cards we need to provide
a key, set by the manufacturer. This requirement is an additional security
measure to verify that developers are supposed to have write access to the
smart cards. Lastly we supply the AID we wish to use for our application.
It is important to note that the AID must be unique and the installation
will not succeed if the AID is in use.

Listing 3.1: Install and deploy script for GlobalPlatformPro.

1 gp.exe -visa2 -key %KEY% -delete %AID%

2 gp.exe -visa2 -key %KEY% -delete %PACKAGEID%

3 gp.exe -visa2 -key %KEY% -install %PATH% -d

28

Test environment
To test the smart card application that is deployed on the physical cards
(without going through an Android application) we will be using PyApdu-
Tool [37]. PyApduTool is a tool for sending APDUs to a smart card through
a card reader or memory card reader and lets us observe how the card behave
when receiving and transmitting data.

Figure 3.3: Select APDU sent to smart card via PyApduTool

PyApduTool does not support extended APDU and this limits us to a
high degree when testing our smart card application. Testing through
PyApduTool does not test mobile device behavior such as: out of memory,
too much traffic or NFC limitations. Another key point is that it is difficult
to create test tools that works all smart cards as manufacturers make small
adjustments in their version of Java Card. The results was that we often
encountered weird errors with seemingly no clear cause. After the initial
basic testing, PyApduTool became obsolete and we had to test via an
Android application.

As a result we are very limited when it comes to testing the performance

29

of the smart cards. The only way of measuring resource usage on the
smart cards are with time stamps and by looking at the elapsed time do an
evaluation on the performance. This makes it difficult to identify bottlenecks
on the smart cards.

3.2.2 Android application

The second part of the framework is an Android library. The library will
serve as an intermediate between the Android application and the smart
card application.

Android version
When we started working on the Android library, our mobile devices were
running Android 4.4 (API level 19). By the end of this thesis Android 6.0
became more popular and we were able to migrate our framework to Android
6.0. The minimum SDK required for the library is API level 19 (Android
4.4) and the target SDK is API level 23 (Android 6.0). Google frequently
provides data on what Android versions their user base uses. As of May 2,
2016, Android version 4.4 to 6.0 covered approximately 78% of the users [6].
Our opinion is that covering 78% of the user base is a realistic and sufficient
goal.

IDE
Android Studio [7] is the official IDE for Android application development.
Android Studio is based on IntelliJ IDEA [24] and provides many automated
tools for building, deploying and publishing Android applications. Android
Studio ships with Android Debug Bridge (ADB). ADB is an interface for
communicating with virtual Android instances or physical Android devices.
ADB gives developers the ability to log output from applications as well as
monitor memory, GPU and CPU usage of the mobile device.

We utilize the log ability of ADB to great extent as it is more efficient in
our case to look at byte values rather than constructing complex graphical
user interface elements for our use cases. In essence, the log output from
ADB is our graphical user interface when testing the various functions of
the framework.

30

Test environment
To test the application we will be using the built in ADB in Android studio
as well as doing empirical tests on the Android device. Figure 3.4 and
3.5 shows runtime examples of the Android device. These monitor tools
gives us a clear indication if we are doing an operation the Android device
cannot handle or if we are trying to perform operations that are too resource
intensive.

Figure 3.4: Android Debug Bridge memory monitor
connected to a running Android device.

Figure 3.5: Android Debug Bridge CPU monitor
connected to a running Android device.

Even though ADB provides us with good resource usage tools we wish to
perform more informal tests using timers to get a feel for how long an
operation takes. We can use the built in Android class System and the
method nanoTime() to get an accurate start and stop time for an operation
and calculate elapsed time. This combined with visually inspecting the
running application can help us get an indication of how responsive the
application is when executing tasks.

31

3.3 Development flow

Recall the tools and technologies from the previous sections. Figure 3.6
shows the development process. The process is linear from top to bottom,
but it is important to note that we will need to develop for both the Android
application and smart card applet in parallel. By parallel we mean that in
order to test some new functionality we will need to implement functionality
on both platforms.

The figure clearly shows that everything concerning the Android side of
the framework is handled by Android Studio along with the Android SDK
except for the Gemalto library for micro SD support. Google has put a lot
of resources into streamlining the Android development process whereas we
are dependent on independent or proprietary software for smart card applet
development.

One important thing to note is that the figure shows that we cannot observe
any test results of the smart card. Observation of the smart card’s test
results must be done via the Android application (refer to section 7.3).

32

Figure 3.6: Development flow of the smart card framework

33

Chapter 4

Challenges and use cases

In this chapter we analyze some of the challenges one may face when trying
to use smart cards to enhance the security of Android mobile devices.
In chapter 2 we covered the attack vectors and vulnerabilities that exists
on the mobile device platform and we believe that smart cards can help
mitigate them. We have established that smart cards are able to run critical
operations in a secure and closed execution environment along with the
fact that they are tamper resistant. As a result they are perfectly suited
to generate and store cryptographic keys, perform cryptographic operations
such as verifying signature or encrypt sensitive data, or enforce strong access
control through PIN codes.

On the other hand, smart cards have limited computational power and
memory, they are passive elements meaning that they cannot initiate an
operation and must rely on external commands, as well as the fact that they
are not “aware of the outside world” except for pre-installed information or
the information they receive.

Based on these characteristics we have identified two main areas of use
where smart cards can be used to mitigate threats on the mobile device
platform:

1. Generate and store cryptographic keys to mitigate the threat of data
loss because of a stolen or lost device. Mobile devices that store cryp-
tographic keys without using smart cards or secure elements are prone
to key theft via operating system exploits or weak user passwords.

2. Use the smart card as a separate trusted operating system that can se-

34

curely handle the communication with off-card and off-device services
and enforce simple security policies. As it is a separate execution
environment, this can be achieved even if the mobile device operating
system is compromised.

However, in order to ensure that these proposed areas of use function as
intended, we will need to overcome some obstacles. First off we will need
to establish a trust relationship between the mobile device and smart card
in order to verify that they are meant to cooperate and lock/bind them
to each other. In section 4.1 we elaborate and investigate this challenge.
Secondly we will need to define how smart cards and mobile devices handle
the encryption keys needed for a secure solution. With this challenge the
best we can do is to have a “best effort approach”, meaning that we have
to trust that the solutions provided by the mobile platform are properly
implemented. Section 4.2 investigates this problem. Lastly, we describe how
policy enforcement might function using smart cards in section 4.3.

In the next chapter we will perform tests related to the proposed solutions.
Even though we were not able to fully implement and test all aspects, we
still chose to outline how they can be solved.

4.1 Binding card and mobile device

4.1.1 Problem description

One of the key challenges when utilizing smart cards with mobile devices is
establishing an initial trust relationship. How can the mobile device know
that it communicates with a certified smart card (company/department
issued) and how can the smart card know that it is interacting with a trusted
user on a mobile device? The biggest problem of the binding process is that
the smart card must trust the mobile device, as we have no way of knowing
if we are binding to a compromised mobile device. If the mobile device is not
initially compromised and we are able to use the smart card as a bootstrap
for trust, then the direct result is that we can use smart cards as a policy
enforcement point (PEP) and secure key storage/generation. To initialize
this trust relationship we need to perform a handshake where we verify that
all concerning parties can authenticate and authorize each other.

Binding the mobile device and smart card mainly protects against offline
attacks where the attacker tries to access resources on the mobile device or

35

smart card independently of each other. For instance if the attacker tries
to use the smart card with an un-paired device to access the stored keys on
the smart card.

4.1.2 Goals

By binding the smart card and phone together we wish to ensure that a
smart card can only be paired with one mobile device and that we are in
full control during the process. If we achieve this, then:

• The keys stored on the smart card cannot be retrieved or be used on
a different mobile device.

• Our application on the mobile device cannot be used without the smart
card that was paired with our mobile device.

• If the binding is successful we may be able to detect if the mobile
device becomes compromised on a later point and react to it (delete
keys on card, block communication, etc.).

This will mitigate vulnerabilities such as:

• Lost or stolen device.

• Unsecure communication channels.

• Authentication challenges.

4.1.3 Key concepts

To authenticate the two parties, smart card and mobile device, we will need a
third party which they both trust. We introduce a new party, the authority,
which acts as a trusted third party. The authority issues the smart cards
and employ the users. A direct consequence is that they both trust the
authority, otherwise we have no starting point. Since they both trust the
authority they can ask the authority to verify the other party as shown in
figure 4.1.

One thing that differentiates our challenge from traditional authentication
challenges is that the smart card is not able to communicate directly with
a trusted third party. All communication from our smart card to off card
applications or third parties must go through a mobile device. A technical

36

Figure 4.1: Using a third party (Authority) to establish a
trust relationship between two parties (Application and

smart card) lacking trust.

illustration of this relationship can be seen in figure 4.2 where the authority
is represented as a server. This drawback introduces a new problem which
we have to consider. How do we know if the mobile device relays infor-
mation between the server and smart card correctly in the authentication
process?

To address that all information flowing from the smart card has to go
through a possibly compromised mobile device, we can utilize the fact that
the authority we are trying to communicate with is also the smart card is-
suer. What this means is that we can pre-install the authority certificate and
public key on the smart card as well as retrieve the public key of the smart
card before handing the smart card to the user/employee. In other words,
the authority and the smart card have already exchanged all necessary
information to securely authenticate each other before deployment.

The mobile device will also need to authenticate with the authority so that
the smart card can trust the mobile device. In this process we will need
to make some assumptions. The first problem is that we need to ensure
that the mobile device communicates with the right server (authority). By
hardcoding the server URL in the mobile device application and making sure
that the user installs the right application on his device we can mitigate this
threat. To make sure that the user installs the right application we need a
secure distribution platform. By using Google Play as distribution platform,

37

Figure 4.2: Server, mobile device and smart card
communication flow.

we can minimize the risk that the user will download a rogue application
with the same name [36]. To further mitigate the risk of installing the
wrong application the user can disable the ability to side-load applications
and avoid using a rooted device.

Another possible attack we should defend against, is man-in-the-middle
attacks between the application and the server. If we assume that the user
was able to download the correct application we will need to secure the
communication channel. To secure the channel we will need to use Transport
Layer Security (TLS) [54] which also provides us with protection from replay
attacks [32, Ch. 9.2.2]. The only downside by using TLS in our case is that
we will need the server certificate to verify the server. Traditionally we will
need to either pre-install certificates on the mobile device (makes “bring
your own device” more difficult) or register with a certificate authority
(depend on third party). In our case the server certificate is already on
the smart card and we can install it on the mobile device. If the mobile
device is compromised the certificate may not be used at all or replaced by
a malicious certificate. This can be done as the smart card has no control

38

over the mobile device. However, as we describe later, we encrypt some
particular data with the public key of the authority on the smart card, and
we are thus not prone to man-in-the-middle attacks since the attack cannot
decrypt it.

Further we will need the user to authenticate with the authority. We have
two options in order to achieve this. First option is that users use a username
and password combination directly with the authority, but considering the
binding is normally a one time case a more simplified process may be to hand
out a one time code along with the smart card. One could also look into
distributing one time codes through e-mail or a text message (SMS).

The second option is that the user inputs a PIN to the smart card and
if the pin code is correct the smart card can verify that the user is the
user he claims to be. This option requires very little overhead and saves
a lot of resources in that regard. The problem with this approach is that
if the mobile device is already compromised, the PIN code may be stolen
before the user is able to bind the mobile device with the smart card. If the
PIN is one the user regularly uses an attacker may also be able to get the
information from the user via other means (social engineering, key loggers,
etc.). A one time PIN (OTP) may be a better option than a PIN although
this does add more overhead to the process.

The final requirement for the binding process, is that we have a crypto-
graphic mechanism that in practice binds the mobile device and smart card
together. We define the binding process to be done when both parties have
the public key of each other and have verified that the keys they have are in
fact the keys of the two parties. When this is completed, the mobile device
and smart card can mutually authenticate each other before initiating any
transaction involving sensitive data.

We have described how the parties can authenticate each other, but we will
need to describe this as a unified process (refer to section 4.1.4) and identify
attack vectors and weaknesses (refer to section 4.1.7).

4.1.4 Proposed solution

Pre-conditions
The authority issues the smart cards and administrates the server. During
the setup of the smart card the public key and certificate of the server must
be installed on the smart card. The public key of the smart card must also

39

be extracted and stored on the server. This creates a base for all future
processes.

Verification package
A verification package is a package containing all the information a third
party server needs to authenticate the smart card and mobile device. First
the mobile device public key and a newly generated AES key is signed by
the smart card. Then we encrypt the package with the public key of the
third party server. Figure 4.3 visualizes this structure.

Figure 4.3: Verification package structure.

We propose the following protocol for binding mobile devices and smart
cards:

Abbreviations
U - Users smart card
M - Mobile device
S - Server, representation of authority
H0 - Verification package

40

{Entity}pub - Public key of an entity (U, M, S)
{Entity}prv - Private key of an entity (U, M, S)
{AES}Entity+Entity - AES key of two entities (U, M, S)

1. Install the (correct) Android application the on mobile device (M) and
insert smart card (U).

2. M generates RSA key-pair and stores it securely on the device.

3. M sends Mpub to U and requests verification package (H0) from (U).

4. U asks for a PIN/OTP.

5. M provides PIN/OTP.

6. U generates H0 (refer to figure 4.3) and sends it to M.

7. M connects (URL is either hardcoded into application or from certifi-
cate) to the server (S) via TLS and sends (H0) to S.

8. S decrypts (H0) using Sprv and verifies the signature of U.

9. If everything is ok then S saves AES(M+U) for safekeeping, signs Mpub

and sends the signed Mpub to M.

10. M forwards the signed Mpub to U.

11. U verifies that Mpub was signed by S and if successful U sends Upub

to M.

41

Figure 4.4: Sequence diagram for binding mobile device
with smart card.

42

The end result of the transactions is that the smart card and mobile device
have shared their public keys through the trusted third party and can thus
communicate securely. The server will also have a record of the transactions
and the parties. If we chose to do so we can also save a backup of the first
symmetric key on the server.

Potentially we could add more steps to the process to further heighten the
security. In step 7 we could add that a user may need to answer a challenge
such as provide a one time password (OTP). This would add more overhead
and require more resources administrating.

A direct consequence of a successful binding is that the smart card is now
locked to the mobile device. Inserting the smart card into a different device
will simply not work due to the fact that the smart card has the public key
of the original device and they have already agreed upon a symmetric key.
To further enhance this trait, we require the mobile device to identify itself
if sensitive services are requested. This can be done by sending a challenge
from the smart card to the mobile device which requires the private key of
the original bound device to solve (e.g. challenge is encrypted with Mpub).
In addition since the smart card is able to securely communicate with the
authority the smart card can lock itself up and require a signed package from
the authority. This package could contain information regarding deletion of
keys, force a new binding, etc. We discuss this possibility further in section
4.3.

4.1.5 Protocol analysis

In this section we will justify and evaluate the parts of the solution that have
security implications. Steps that are present for the solution to function, but
with no security implications, will be skipped.

1. Install the (correct) Android application the on mobile device
(M) and insert smart card (U).
Installing the correct application is a vital part of the protocol. A malicious
application can spoof all communication between the smart card and the
mobile device, although it will not be able to compromise the communication
between the smart card and server because of their pre-shared public keys.
All user and application data that at some point is handled by the malicious
application would be considered compromised. As mentioned earlier we can

43

use Google Play as our distribution platform which will minimize the risks
involved.

2. M generates RSA key-pair and stores it securely on the mobile
device.
For the smart card to bind itself to a mobile device we need a unique
identifier or key that no other device is able to replicate or spoof. An RSA
key-pair provides this functionality as the mobile can use the private key
to sign data and the smart card can encrypt data with the mobile device
public key. Unless another mobile device is able to extract the private key
we are in the clear security wise. More on this and other solutions in section
4.2.

4. U asks for PIN/OTP
We chose to add a PIN code step to the binding process to add another layer
of security. The PIN code ensures that a person is verified by the employer to
perform the binding process. Using PIN codes is not a guaranteed measure
against someone unauthorized trying to carry out the binding process. The
important steps to make sure the PIN code process is secure are:

• The binding process should be carried out as soon as possible after
obtaining the PIN code to avoid someone leaking or losing the PIN
code.

• Add a limited number of tries for inputting the PIN code on the smart
code to mitigate brute-force attacks.

• In connection to the previous point; the PIN code length should cor-
respond to the number of tries.

5. M provides PIN/OTP.
At some point the user will need to supply the mobile device the PIN or OTP
in order for the mobile device to send it to the smart card. Theoretically an
attacker can have compromised the device and intercept the PIN/OTP to
use it with another device. This scenario is unlikely as the attacker will also
need to get the physical smart card before the binding process is completed.
Potentially an attacker can perform a denial of service attack in this step
and never let the binding process complete. In section 4.1.7 we discuss the
possibility to use Google SafetyNet to detect malware on the device.

44

6. U generates the verification package.
The smart card is a secure environment and should be in charge of generating
the verification package. We include the AES key for safekeeping on the
server incase the user loses the smart card. We sign the package using
the private key of the smart card so that the server can verify that it is a
legit smart card since the server has the public key. This step is necessary as
anyone would be able to send a verification package to the server as the server
public key is public. Lastly the smart card encrypts the verification package
using the server’s public key. The end product, the verification package, is
secure in the sense that only the server can read the data and the server can
authenticate the sender using the signature even if the application or TLS
connection have been compromised.

7. M connects to the server (S) and sends the verification package
to S.
The verification package is encrypted with the server’s public key. The direct
result is that even if the package is lost or leaked no third party would be
able to read the content. We will use TLS for the connection regardless as it
may be necessary to add additional functionality such as username-password
login to verify the user. To establish a TLS connection one would access
to the server certificate either via a third party certificate provider or via a
pre-installed certificate. TLS will also serve as a counter to replay-attacks
and man-in-the-middle attacks.

9. The server signs the public key of M.
If the signature of the smart card is in order we can proceed with generating
the response package. The server signs the public key of the mobile device.
This is done because of the need to confirm that the verification package
was indeed sent to the server. By letting the server sign a response which is
then forwarded to the smart card lets the smart card verify that the server
approved the user/mobile device.

11. U verifies that Mpub was signed by S and if successful U sends
Upub to M.
Even though public keys usually are publicly known we choose to keep the
public key of the smart card semi-public or on a “need to know basis”.
Using this technique we do not inherently make the solution secure, but
it does add another hurdle a potential attack will need to overcome. In

45

theory, the more steps an attacker will need to do; the higher the chance
for detecting him. By rotating the keys the effectiveness of this measure
increases substantially.

4.1.6 Cryptography evaluation

This solution relies heavily on correct use of protocols such as TLS (commu-
nication), cryptography such as RSA and AES, and correct key generation.
Section 2.3.1 and section 2.3.2 describes RSA and AES and why they are
secure. Assuming we use them correctly we can conclude that this part of
our solution is secure.

In the solution we mitigate man-in-the-middle attacks using TLS for secure
communication. TLS can utilize both RSA and AES and if we use strong
keys we deem it secure (assuming TLS 1.2) from a mathematical perspective.
If TLS is implemented correctly and does not allow for common attacks
(Heartbleed, DROWN [51], etc.) it is classified as “probably secure” or
“secure until proven otherwise”.

Correct key generation is discussed in section 4.2 and the conclusion is that it
is possible to securely generate keys. All cryptographic parts of the solution
is considered secure if done correctly and we can thus conclude that the
cryptography included in the solution is secure.

4.1.7 Potential attack vectors

Rogue technical party
The three technical parties involved are the server, the mobile device and
the smart card. As discussed previously “the authority” issues the smart
cards and administrates the server. Since the public keys and certificates are
exchanged before the smart card is distributed the server is able to detect
if there are a rogue/fake smart card trying to bind to a mobile device. If
the mobile device tries to connect to the wrong server (man-in-the-middle
attack, wrong URL, etc.) and the server tries to pose as a legit server, it will
not be able to complete the binding process due to needing the matching
private key for the public server key on the smart card.

Thus the only attack vector on technical parties is where the mobile device
is rogue. By rogue in the context of the mobile device we mean compromised
as in rooted or malware/spyware. In our solution we have no way of knowing

46

if the user is binding a rogue mobile device. The end result is that we have
securely bound the mobile device and smart card, but the mobile device
cannot be trusted.

To address this we need to do two things. First and foremost we need
to educate the user on mobile security and how they should not install
applications from untrusted sources etc. Secondly we can run tests on
the mobile device to try and detect if the mobile device is rooted or has
malware/spyware. This can prove to be hard as it is very difficult, if
not impossible, to detect malware/spyware which operate with root access.
Google has been working on a security framework, SafetyNet, which goal is
to detect if a device has been tampered with or is infected [40]. In order to
decide if this is sufficient we would have to do more research on SafetyNet
specifically.

Rogue user or administrator
Potentially we can have a rogue user which deliberately installs malware/spy-
ware on their mobile device to compromise our system. We will disregard
this case as if we have a rogue user we have bigger problems than a com-
promised mobile device. It is also important to note that any information
the mobile device receives the user is also likely to know regardless, and can
thus release this information independently of the mobile device.

The bigger problem would be a rogue administrator. The administrator
would have access to the initial setup of the smart cards and may extract
the private key of the server. Even though this has more impact than a rogue
user we are very limited on what we can to do protect against it. We can
make it near impossible to extract private keys, logging and require more
than one administrator, but it will still be possible to cause harm. Although
the same principle applies here: if you have a rogue administrator you have
bigger problems than smart card binding.

4.1.8 Additions

In step 9 and 10 of the proposed solution we can add a payload to the signed
Mpub. One of the uses for this payload may be to send information on how
the smart card should handle communication, key generation, encryption &
decryption as well as administration. More on this in section 4.3.

47

4.2 Mobile device keys

4.2.1 Problem description

Even though one of the features of the smart card is to store and manage
keys, we are still dependent on the mobile device being able to securely store
at least one set of keys. This is directly tied to the binding process of the
mobile device and the smart card which were discussed in section 4.1. The
problem lies in the fact that we assume that the key pair generated by the
mobile devices cannot be extracted and installed on another device and can
only be used by our application. The question is: how we can be sure that
this is the case? We have no way of proving that the keys are generated on
the mobile device. And even if we were, are they stored securely? We can
also envision that there might emerge other use cases at later stages which
require keys on the mobile device.

4.2.2 Goals

Our primary goals for mobile device keys are:

• Make sure that the device keys are actually on the device.

• Store keys securely, ensuring that they cannot be exported or used by
other applications or devices.

4.2.3 Key concepts

Android Keystore system
The Android Keystore system is a system that lets users and developers
store and access cryptographic keys and certificates on the mobile device.
The main goal of the system is to protect the keys against unauthorized
use and extraction. This is done by defining which applications that should
have access to the keys stored. E.g. application A generates and stores a key
and defines that the key is available to application A and B. If application C
tries to access the key the Android Keystore system blocks the action.

The applications do not have direct access to the keys. If an application
wants to perform a cryptographic operation it feeds the data to the operating
system which performs the cryptographic operation. If an application is

48

compromised an attacker gains access to the keys via the application, but
the attacker is not able to extract the keys as the keys are never present in
the application.

In early iterations the keys were stored in a software-protected file meaning
that only the Android Keystore had access to the data. This system had
a flaw in which any users or applications with root access could access
the Keystore file. The solution to this is using secure hardware such as
“Secure Element” (more or less a smart card) and “Trusted Execution
Environment (TTE)” [56]. If hardware-backed storage is enabled (as seen
in figure 4.5), it is not possible to extract keys even if the operating system
is compromised.

Figure 4.5: Screenshot of Android settings showing
hardware-backed storage “enabled”.

An application can check if the mobile device uses secure hardware for
key storage using the Android class KeyInfo. The KeyInfo class contains
all available information about a key and a single call to the method

49

isInsideSecureHardware() will determine the storage status. Listing 4.1
provides a sample implementation of this functionality. KeyInfo was added
in API 23 and requires Android version 6.0 or newer.

Listing 4.1: Obtaining storage status of keys using KeyInfo.

1 public boolean checkStatus(PrivateKey key){

2 KeyFactory factory = KeyFactory.getInstance(

3 key.getAlgorithm(), "AndroidKeyStore");

4 KeyInfo keyInfo;

5 try {

6 keyInfo = factory.getKeySpec(key, KeyInfo.class);

7 return keyInfo.isInsideSecureHardware();

8 } catch (InvalidKeySpecException e) {

9 // Not an Android KeyStore key.

10 }

11 return false;

12 }

4.2.4 Generate keys on mobile device

To generate keys on the mobile device an application must initialize the
classes KeyGenerator or KeyPairGenerator. KeyGenerator is used for
generating symmetric secret keys and the most notable supported algorithms
are AES(up to 256-bit), HmacSHA256 and HmacSHA512. As the name
suggest KeyPairGenerator is used for generating key-pairs. Pre API level
23 it was possible to generate DSA key-pairs, but the support was removed
in favour for more secure algorithms. The two main supported algorithms
are RSA (up to 4096-bit) and Elliptic Curve algorithms (P-224, P-256, p-384
and P-521).

Generating long keys may put some strain on the mobile device and should
either be done in an asynchronous thread or during a setup process on
first time launch of the application. However this should not be a deciding
factor of whether or not the mobile device should generate its own keys
as it is a one time process. Listing 4.2 shows how an application can use
KeyPairGenerator to generate a 4096-bit RSA key-pair.

50

Listing 4.2: Generating RSA key-pair on Android device using
KeyPairGenerator

1 public KeyPair generateKeyPair(){

2 KeyPairGenerator kpg = KeyPairGenerator.getInstance("RSA");

3 kpg.initialize(4096);

4 return kpg.generateKeyPair();

5 }

4.2.5 Generate keys on server

The Android Keystore system accepts PKCS#12 archive files which it then
stores on the mobile device. The PKCS#12 file can contain certificates, keys
and key pairs [34]. After the archive file is manually installed on the device,
applications that are authorized are free to use the keys via the Android
Keystore system. The consequence of this is that we do not have to rely on
the mobile device to generate the secure keys.

The most interesting characteristic of this solution is that a company or a
similar entity can have a dedicated server generating these archive files. The
server is able to run more security software than a mobile device and can be
treated as a secure environment for key generation.

The PKCS#12 archive file can be protected by a password and should
definitely be protected by one to be even considered secure. This does add
more overhead to the process of distributing the PKCS#12 files.

The biggest obstacle when using server generated keys is distribution. You
do not want to hand the PKCS#12 file to the user on a USB stick along with
a password on a notepad as you cannot be sure that the USB is destroyed or
wiped properly along with the password. The solution to this is hosting the
PKCS#12 file on a website. The only way to access the PKCS#12 file is
through a portal which requires two-factor authentication (or similar) which
limits user to only access the PKCS#12 file they are supposed to reach. The
file is then downloaded onto the mobile device and the users can install the
file from their device memory (see figure 4.5).

This solution does not remove the need for the users to know the password
for the PKCS#12 file and the file will still reside in the device memory. The
only solution to this is to have strict security policies where the memory is
wiped afterwards as well as removing the accessibility of the PKCS#12 file

51

on the server (from a users perspective).

One alternative when it comes to distributing the password for the PKCS#12
file is using a password generated from a seed (salt) located on the smart
card. By using this alternative, only user with access to the smart card is
able to install the PKCS#12 file on their mobile device. As an added security
mechanism the smart card can lock or delete the seed/password afterwards
and only be reset by an administrator. This would give us a certain degree
of control over which devices that can have the keys installed.

4.2.6 Evaluation and comparison

In the problem statement we pointed out the binding process being de-
pendent on the security of the keys generated and stored on the mobile
device. We know that we are able to store the keys securely on the mobile
device as long as hardware-backed storage is enabled and is being used.
It is also possible to check if a key is stored on hardware in an Android
application. In other words we have a solution to the storage issue: Use
a mobile device which supports hardware-backed storage and validate it in
the Android application using KeyInfo. The paper “Analysis of Secure Key
Storage Solutions on Android” by Tim Cooijmans, Joeri de Ruiter and Erik
Poll discusses hardware-backed storage further [53].

Security-wise the key generation on the mobile device and on a server is very
similar. If the key generation on the mobile device is done correctly with
properly generated secure initialization vectors the process is considered
secure. The only realistic attack vector on key generation is that the mobile
device is running a custom operating system which has it’s own implemen-
tation of how key generation is done. To address this scenario it may be
necessary to use Google’s security framework, SafetyNet, as mentioned in
section 4.1.7 when we discussed attack vectors on the binding process.

The biggest benefit of generating the mobile device keys on a remote and
secure server is that we can strengthen the insecure elements of the binding
process. In the proposed solution of the binding process (section 4.1.4) we
have to trust that the mobile device is a device that is supposed to perform
the binding process. For example if an attacker is able to get his hands
on a smart card before it is bound to a mobile device, he may try to start
the binding process with his own device. We counteract this with requiring
PIN code and the possibility of adding user authentication with the server.

52

If the mobile device keys are pre-generated by a server and installed by a
user on the mobile device, we can use these keys to verify that the device
is authenticated (as other devices does not have the keys). A consequence
of this is that we may be able to simplify some of the steps in the binding
process as we can trust the mobile device.

The drawbacks of pre-generating the keys, apart from more overhead, is the
distribution process, which can introduce new attack vectors. In section
4.2.5 we discussed how we could use a web server to distribute the keys.
What is also worth mentioning is that this solution requires a web server to
be maintained and protected. This system also places a lot of trust in the
user’s hands as he is responsible for deleting the PKCS#12 file as well as
not disclosing the password.

Another distribution solution is to have a trusted administrator install the
keys on the mobile device. For some organizations this could be cumbersome
as now all users will need to visit the “headquarters”. This is a direct
hindrance to the “Bring your own device”-idea and can potentially introduce
extra costs when it comes to human resourcing. Another key point to keep in
mind is what should the protocol be if the organization wishes to update all
keys? This would put a lot of stress on the distribution department.

However, we assume already that there is a trusted server involved in the
binding process, so the PKCS#12 file could simply be distributed together
with the response package described in section 4.1.4. This does imply that
we have solved the distribution of the server certificate issue which the
PKCS#12 can solve as it can contain the server certificate.

There is no definitive “best solution” to the key generation problem. It all
boils down to the question: “Can you afford the infrastructure needed for
server generated keys?” If the answer to that question is yes then there is a
lot to gain by using server generated keys as we have discussed above. Opting
for the cheaper solution, generate keys on mobile device, does not equal an
non-secure solution, but we do sacrifice some control of the process.

53

4.3 Security policy enforcement

4.3.1 Definition

A security policy defines what measures a system needs to follow in order
for the system, organization, group, etc. to be secure. Security policies are
not necessarily a technological restriction/rule and can exist as a socially
enforced rule. Examples of security policies are:

• All employees needs to have a background check.

• All company doors will be locked after 4 pm.

• Password must be changed once a month.

• Sensitive data must be encrypted with AES-256.

4.3.2 Problem description

Enforcing security policies via a mobile device is not a new concept and
there exist multiple third party solutions for enforcing them. One ex-
ample is Microsoft Exchange ActiveSync which enforces policies such as
minimum password length, disable camera and application blocking [8, 20].
ActiveSync utilizes the fact that a user must connect through Microsoft
Exchange Server in order to access company resources and verifies if the
mobile device has enforced the policies through the established connection
[16].

The problem in these types of solutions lies in the fact that you cannot trust
the mobile device to actually enforce the policies. How does the server know
if the mobile device is telling the truth about policy enforcement? What if
the mobile device says it requires the user to enter a password, but does not
enforce it?

4.3.3 Goals

By using smart cards in the context of policy enforcement we wish to achieve
the following:

• Policies are enforced.

54

• Not possible to spoof policy enforcement by the mobile device.

• Policies cannot be tampered with.

Optionally we want to achieve the following:

• Policies can be updated.

4.3.4 Shift responsibility to a trusted party

One way of making sure that policies are enforced is to give the responsibility
of the action to a trusted party. Imagine that company A have a policy
which requires their employees to update their password on their personal
computers once a month. If the user profiles only exists locally on the
computers, company A has no way of checking if the users update their
passwords and run the risk of the users saying they have updated the
password without doing so. To address this issue, the user profiles are
moved to company A’s server and the personal computers now do a lookup
for the user profiles on the server. In this case, A has control over the user
profiles and can check if the passwords are updated.

The limiting factor to a solution like this is that the trusted party might
not be able to perform the job. A trusted server might not be able to
enforce locking doors after 4pm just as a smart card is not able to perform
all jobs we want it to do. A big part of the job is to identify which part of a
security policy action we can move to the smart card to enforce the security
policy.

4.3.5 Proposed solution

Relevant policies for a smart card
The smart card is limited in what kind of policies it is able to enforce. It
cannot enforce policies regarding forcing the mobile device into doing things
only the mobile device controls. The smart card can provide vital data
needed for performing an action, but it is up to the mobile device to actually
perform the action. This effectively rules out policies such as, “The mobile
device must encrypt all files stored locally.”, since we can only provide the
keys to do so, but the mobile device has to perform the action. We have
to assume that the mobile device, more specifically the running application,
wants to perform the action.

55

The core abilities of a smart card are: generate keys, store keys, encrypt and
decrypt small amounts of data, sign data and store variables. We can make
the application rely on the keys generated and stored in the smart card and
as a result we have full control over the keys. The smart card can as a result
enforce policies such as key rotation, key size and key availability (unlock
key with PIN). A more general use case is to have the smart card refuse to
provide services or information to the application if certain conditions are
not met or if one suspect that the device might be compromised.

Installing policies
One disadvantage of using smart cards is that once an applet has been
installed it is a static application. It is not possible to add new code to a
running applet. What we can do is to program all policies we may wish to
utilize and disable them. With this technique we can dynamically turn on
and off policies, given that we are able to communicate with the card. The
first premise is to install all possible security policies we may need on the
smart card before shipping the smart card to the user. The second premise
is to translate all policies to a set of parameters which can be combined
logically to form rules. If both premises are met we are able to manipulate
the parameters and effectively changing the rules.

Enable and update policies
To enable policies or set parameters for the policies we require a protocol to
exchange information with the smart card from a server. One of challenges
we have is “How do we ensure that the mobile device relays policy updates
to the smart card?”. One solution is to have the smart card lock itself
and require a verification package from a trusted server after a number of
operations. It is important to note that the smart card have no concept of
time and therefore the smart card cannot use time to control lock cycles.
A way to ensure that the server is the only party that can provide the
verification package, is to utilize keys that are already on the smart card.
For example the public key of the server or the symmetric key exchanged
a the beginning of the binding protocol. The simplest way of doing this is
utilizing signed policy requests and policy response as shown in figure 4.6
and figure 4.7. The smart card sends a policy request to the server and the
server answers with a policy response.

56

Figure 4.6: Smart card policy request.

Figure 4.7: Smart card policy response.

Policy format
When designing the format of the policy package there are two things to
keep in mind. It should be human-readable for easy modification and not
deviate too far from a machine-readable format as the smart card will need
to interpret it. Another requirement to take into consideration is that data
being sent to the smart card, must be converted to hex.

We can utilize JSON to make human-readable policies and as an added
bonus JSON is readable for most programming languages. Listing 4.3 shows
how this can be structured.

57

Listing 4.3: Human-readable policies in JSON.

1 {
2 "policies": [

3 {
4 "id": "19",

5 "description": "PIN attempts",

6 "enabled": "true",

7 "attempts": "3"

8 },
9 {

10 "id": "21",

11 "description": "Keylength (AES)",

12 "enabled": "true",

13 "keyLength": "256"

14 }
15]

16 }

Recall section 2.1.2 where we described how a Command APDU must be
structured. In the header we can use INS as a flag for “policy update
instruction”, for instance 09. Next we have to look at what we technically
want to achieve:

1. Set boolean variable to true, depending on policy ID and “enabled”
flag.

2. Set other variable values.

In the body we will use the payload data field to send information on the
policy updates. The incoming data will be in byte format. Mapping bytes
to variables could normally be solved using HashMap and map entries with
<byte, Object>; the first parameter is the incoming byte command and
second parameter being the variable we want to manipulate. HashMap is not
a part of the Java Card API and we need to do our own hardcoded manual
mapping. The result is a rigid structure for policies.

The individual policies data structure needs to be carefully crafted and
specialized, but we should also focus on making it as dynamic as possible.
This is best described using an example. To demonstrate how it can be
done, we will use listing 4.3 as example data. The resulting APDU is figure
4.8 and it clearly shows that we have to hardcode how many fields a policy

58

will need.

Figure 4.8: Example policy APDU with two policies

When designing the smart card code for interpreting the policy APDU we
need a registry of some sort for keeping track of how much of the payload
each policy uses. Listing 4.4 uses figure 4.8 as incoming APDU.

Listing 4.4: Pseudo code for interpreting policy APDU with Java Card.

1 public class cardApplication extends Applet implements
ExtendedLength{

2 ...

3

4 //Policies

5 final short offset = 5;

6 short counter;

7

8 //Policy 13

9 boolean enabled13;

10 short attempts;

11

12 //Policy 21

13 boolean enabled21;

14 short keyLength;

15

16 public void process(APDU apdu) {

17 ...

18 byte[] buff = apdu.getBuffer();

19

20 switch(buff[ISO7816.OFFSET_INS]){

21 case 0x09:

22 counter = 6;

23 for(short i = 0; i < buff[offset]; i++){

59

24 if(buff[counter+1] == 13){

25 enabled13 = (buff[counter + 2] != 0);

26 attempts = buff[counter + 3];

27 }

28 else if(buff[counter+1] == 21){

29 enabled21 = (buff[counter + 2] != 0);

30 keyLength =

31 (short)((buff[counter+3]<<8)

32 | (buff[counter+4]))

33 }

34 counter += (1 + buff[counter]);

35

36 }

37 break;

38

39

40 ...

41

42 }

43 Send(apdu);

44 }

45

46 private void send(APDU apdu) {

47 //Package outgoing buffer

48 //Send response APDU

49 }

50 }

4.3.6 Solution evaluation

Section 4.3.5 described how a smart card can enforce policies and how to
manage policies. The solution is complex, intricate, requires a lot of overhead
and is very rigid. Despite these drawbacks, using a smart card for policy
enforcement could be well worth it. If an organization need a system where
they are in full control and that is tamper proof, a smart card solution is
viable option.

60

4.3.7 Potential attack vectors

Replay attack
As we are not encrypting the policy response from the server we run the risk
of an attacker replaying older policy responses to the smart card. This can
be mitigated by adding a version number or counter to the policy response.
All the smart card needs to do with this solution is keeping track of which
version it is currently on, and refuse policy responses with older version
numbers.

Policy disclosure
This proposed solution does not encrypt the policy response to save resources
on the server and on the smart card. A direct consequence of this is that
anyone receiving the policy response is able to read what policies are cur-
rently being enforced. For example, sharing how many password attempts
or minimum password length may not be something an organization wishes
to do. If this is a requirement for the organization the policy response should
also be encrypted with the public key of the smart card.

61

Chapter 5

Framework design and
implementation

This chapter gives an overview of the implementation of the Java Card applet
and Android framework we described in chapter 3. We include a discussion
of the high level design of the classes and interfaces the framework consists
of, the libraries used, what functionalities have been implemented and what
is left for future work.

5.1 Java Card applet

The Java Card side of the complete framework includes functionality for
performing basic data exchange with the Android application, basic cryp-
tography and operations needed to implement the binding protocol. The
goal of the smart card application was to create an autonomous and easy to
extend platform for future tests. This resulted in an application split into
three parts: initialization, data processing and finalization.

Initialization
As described in section 2.1.3 all Java Card applets must implement the
method Install. This method is invoked only once when the smart card
applet is installed. Install invokes the constructor of the smart card and
this is where all variables that need initialization are initialized. For instance
if the smart card application needs to generate keys or random numbers this

62

is where it is done as the constructor will be invoked only once. All buffers
that needs to be used should also be initialized here to avoid allocating
memory every time the application is activated. This method should also
be used to generate and store the unique RSA key pair that will identify the
smart card in all future transaction. Other cryptographic functions such as
signing, initialization vectors and PIN holders should also be instantiated
here.

Data processing
In the mandatory Process method (refer to section 2.1.3) all data processing
takes place. First a built in method in the Java Card API, selectingApplet(),
is invoked. This method checks if the incoming APDU is a SELECT APDU
and acts accordingly. If the incoming APDU is not a SELECT APDU the
incoming APDU is copied to a new buffer for easier data manipulation.
Next, we use a switch statement switching over the second byte, INS, to
determine which instruction we want to perform. After processing the data
and performing the work we want to do (sign data, encrypt, etc.) we copy
our response to the outgoing buffer. For this section we have defined a series
of basic operations that are needed to perform our tests and creates a basis
for more advanced functionality.

Finalization
At the end of the Process invocation we invoke the send method which
takes the data in the outgoing buffer, package it for sending and send it as
a response APDU. It is important to handle the outgoing buffer in the most
efficient and cleanest way possible, in order to avoid memory errors or other
faults.

The result
What we end up with is a test platform where we are only concerned with
declaring variables, initializing variables and writing code for the specific
test case. Listing 5.1 shows pseudocode for the Java Card application with
the extendable areas highlighted. The complete listing of the code is located
in appendix A.

63

Listing 5.1: Pseudo code for javacard test application.

1 public class cardApplication extends Applet implements

↪→ ExtendedLength{

2

3 //Variable declarations

4

5 private cardApplication() {

6 //Variable initialization

7 }

8

9 public void process(APDU apdu) {

10 //Process incoming APDU

11 if (selectingApplet()) {

12 return;

13 }

14 buff = apdu.getBuffer();

15

16 switch(buff[ISO7816.OFFSET_INS]){

17 case 0x00:

18 case 0x01:

19 ...

20 case 0xff:

21 default:

22

23 }

24 Send(apdu);

25 }

26

27 private void send(APDU apdu) {

28 //Package outgoing buffer

29 //Send response APDU

30 }

31 }

As seen in listing 5.1 we allow for 256 cases/uses of the smart card, but
if we include the use of P1 and P2 from section 2.1.2 there are in theory
2563 = 16777216 possible cases. This does not include the pre-implemented
methods which are explained in section 5.2. Their counterparts in the smart
card application have the following byte values:

• byte SEND U PUB MOD = (byte) 0x01;

• byte SEND U PUB EXP = (byte) 0x02;

64

• byte SIGN = (byte) 0x03;

• byte BINDING = (byte) 0x05;

• byte RSACRYPTO = (byte) 0x06;

• byte AESCRYPTO = (byte) 0x09;

RSACRYPTO and AESCRYPTO uses P1 to differentiates between encrypting and
decrypting. 0x01 for encryption and 0x02 for decryption. We will not go
into detail on how the individual cases are built up as their functionality
should be self-explanatory. Refer to Appendix A for Java Card code.

5.1.1 Extending the Java Card application

When adding more functionality to the Java Card application there are a
few things to keep in mind. First of all one should follow the recipe shown
in listing 5.1 to minimize clutter and to follow the principles of Java Card
programming. Secondly it is important to keep in mind that Java Card
does not have standard garbage collection (refer to section 2.1.3). A direct
consequence is that any extension or extra functionality added to the smart
card application may lead to “Out of Memory” errors.

Installation time of the smart card application may also be affected by extra
functionality. Key generation on the smart card is a relatively expensive
process, and one may find that it is not worth adding installation time to
the whole application for one function. One approach is to split functionality
in multiple applications. We will discuss this approach later in chapter 7,
section 7.5.

5.2 Android framework

We used the same approach on the Android framework as on the smart card
application; an autonomous and easy to extend platform for tests. This re-
sulted in a new library, “smartcardlibrary”, which sole purpose is to transmit
APDUs as easily as possible along with some essential functionality.

65

5.2.1 Achieving framework goals

In section 3.1 we described the goals of the framework. We wanted a frame-
work that was easy to use, preferably requiring little to no understanding
of smart cards, and at the same time be extendable. To achieve this, we
abstract as much as possible of the smart card aspect, and create controllers
that developers can utilize.

Figure 5.1 is a package diagram of the Android framework and the easiest
way of using the framework is to only focus on the Controller package.
More specifically one will only need to understand CommunicationController

to be able to communicate with smart cards (either via pre-implemented
methods or custom APDUs, this is described in 5.2.4). To accommodate
the need for more advanced functionality, or rather have the framework be
extendable, developers have, if they choose, direct access to the NFC and
mSD controllers in the same package.

The package diagram, figure 5.1, shows how the packages in the library are
structured.

66

Figure 5.1: Library package diagram.

5.2.2 Responsibility areas

In light of chapter 4 it is important to understand how the smart card
library fit into the bigger picture and what it is responsible of. In figure 5.2
we can see that there are 3 main “layers”; the Android operating system,
the Android application and the smart card library. Even though we define
these layers as separate entities, we are technically incorrect when stating so,

67

e.g., the smart card library is technically a part of the Android application
and thus they are the same layer. From a more abstract perspective the
separation of layers is more correct and can help give a better understanding
of the architecture.

The first layer is the Android operating system. The Android operating
system is in charge of persistent storage (if needed), key storage and key
generation. We discussed key storage and key generation in section 4.2 and
how it should be handled. It is also worth noting that the Android operating
system is responsible for running the Android application.

The second layer is the Android application. This layer is responsible
for serving the user interface to the user. This may include PIN input,
displaying sensitive data, etc. If the Android application handles sensitive
data it is vital that it disposes the information correctly after use.

The last layer is the smart card library. The smart card library handles the
incoming and outgoing communication with the smart cards. The smart
card library utilizes a temporary cache to achieve asynchronous communi-
cation with smart cards and as with the Android application, it is necessary
to clean out the temporary cache if sensitive data has been passing through
the library.

68

Figure 5.2: Diagram showing which responsibilities the
layers in an Android application have.

69

5.2.3 3rd party libraries

Gemalto provides a java library, IDGo800, for communicating and utilizing
built-in methods with their smart cards.

“IDGo 800 for Mobiles is a cryptographic middleware that sup-
ports the Gemalto IDPrime cards and Secure Elements on Mo-
bile platforms: Contact and contactless smart cards, MicroSD
cards, UICC-SIM cards, embedded Secure Elements (eSE) and
Trusted Execution Environment (TEE).”

(Gemalto.com [23])

The part of IDGo800 SDK we are interested in is very small and enables us
to send custom APDUs to micro SD smart cards.

We will be using the “android.nfc” package in order to communicate with
NFC smart cards. This package is included in the standard Android SDK
which in turns means that all Android devices with a NFC reader and
minimum API level 9 [5] can use our library.

5.2.4 Framework functionality

The first functionality we will describe of the implementation is “extendable”
or in other words, being able to send custom APDUs. Explaining how this is
implemented will give a better understanding of how the framework is built
up and makes it easier to understand the pre-implemented methods.

Custom APDUs
To send custom APDUs to a smart card, CommunicationController must
be instantiated and the application must know the application identifier of
the smart card application. Further the current activity must implement
NfCSmartcardControllerInterface or MSDSmartcardControllerInterface
(depending on smart card type) in order to be notified when the trans-
action is complete. Before continuing one will need to call the methods
setupNFCController or setupmSDController depending on the smart card.
Listing 5.2 shows an example implementation on how an activity may utilize
the library for sending custom commands to a NFC smart card.

70

Listing 5.2: Java code example showing how to send and receive
commands to a NFC smart card.

1

2 public class PayloadActivity extends AppCompatActivity

3 implements NFCSmartcardControllerInterface {

4 CommunicationController cc = new CommunicationController();

5 ...

6

7 private void initNFCCommunication(){

8 String AID = "0102030405060708090007";

9 String hexMessage = "95404F3FB1";

10 String INS = "06";

11 String p1 = "00";

12 String p2 = "00";

13 cc.setupNFCController(this, this);

14 cc.initNFCCommunication(AID, INS, p1, p2, hexMessage);

15 }

16

17 @Override

18 public void nfcCallback(final String completionStatus){

19 if(!completionStatus.equals("OK")){

20 return;

21 }

22 StorageHandler stHandler =

23 new StorageHandler(getApplicationContext());

24 String response =

25 stHandler.readFromFileAppDir(

26 FilePaths.tempStorageFileName

27);

28 }

29 }

In order for the library to perform an asynchronous transaction the library
will temporary save the responses from the cards to a file only accessible
by the running application. To retrieve the data the current activity should
use the included StorageHandler class as used in listing 5.2. The library
also provides the class, Converter, for converting between Strings, hex and
byte arrays.

Pre-implemented methods
Recall the areas we want to cover from the beginning of the chapter. The
functionality we have implemented so far are:

71

• Bind smart card to mobile device.

• Encrypt/decrypt data using RSA key on card.

• Encrypt/decrypt data using AES key on card.

• Get public key of the smart card.

• Sign data using the public key of the smart card.

To use these functionalities one would only need to create an Android
Activity, invoke either setupNFCController(...) or setupmSDController(...)
(depending on smart card), and utilize the desired methods. In figure 5.3 we
can see how CommunicationController is designed to be the abstraction
layer between Android activities and smart cards.

Figure 5.3: Abstraction layer between Android activities and smart cards.

The methods available are:

• public void disableNFC(...)

• public void signData(...)

• public void cryptoRSA(...)

• public void cryptoAES(...)

• public void getCardPubMod(...)

• public void getCardPubExp(...)

• public void bindingStepOne(...)

• public void bindingStepTwo(...)

• public void bindingStepThree(...)

72

The methods and their functionality should be self-explanatory except for
the binding process. The binding process is designed in three steps. First
step is to ask the smart card if it requires a PIN-code and how many attempts
are left. Second step requires a PIN-code and if this is correct the smart
card application will move on to step three. The last step is sending the
public key of the mobile device and getting the verification package from
section 4.1.4. More discussion on this matter in section 4.1.

Listing 5.3 shows how an activity can use the CommunicationController

to sign a simple message. The signData(...) method takes 3 param-
eters: CommunicationType, AID and the hex message to be signed. In
the method nfcCallback(...) the developer are free to do whatever they
want. Typically it is a good idea to check what the completionStatus string
is before trying to fetch the response data. Read appendix B for all method
signatures.

Listing 5.3: Java code example showing how to send sign a message using
a NFC smart card.

1

2 public class SigningActivity extends AppCompatActivity

3 implements NFCSmartcardControllerInterface {

4 CommunicationController cc = new CommunicationController();

5 ...

6

7 private void initNFCCommunication(){

8 String AID = "0102030405060708090007";

9 String message = "This message must be signed.";

10 String hexMessage = Converter.StringToHex(message);

11 cc.setupNFCController(this, this);

12 cc.signData(CommunicationType.NFC, AID, hexMessage)

13 }

14

15 @Override

16 public void nfcCallback(final String completionStatus){

17 if(!completionStatus.equals("OK")){

18 return;

19 }

20 StorageHandler stHandler = new StorageHandler(

21 getApplicationContext()

22);

23 String response = stHandler.readFromFileAppDir(

24 FilePaths.tempStorageFileName

25);

73

26 }

27 }

Available classes
Figure 5.4 provides a simplified and technical overview of how the Android
side of the library is built up. The classes seen in the simplified class
diagram 5.4 shows the three controller classes, CommunicationController,
NFCSmartCardController and MSDSmartCardController, we have imple-
mented along with their method signatures. The enum class CommunicationType
is used for indicating which type of communication one wishes to invoke
when using the methods of CommunicationController.

The two controllers, NFCSmartCardController and MSDSmartCardController,
can be used directly. If this is done, one cannot use the pre-implemented
methods in the Android library. The corresponding methods on the smart
card are still available, but with this approach one will need to construct the
APDUs manually and conform to their message structure. This approach
is still a viable way of using the framework, as both controllers provide a
method for sending data to the smart card using the parameters: card AID,
INS, P1, P2 and Payload. The method ensures that the APDU being sent to
the smart cards conform to the ISO standards of APDUs, but the developer
run the risk of invoking functionality that does not exist or with wrong
parameters.

Depending on which type of communication type one wishes to use, one will
need to implement the corresponding interface in the Android Activity as
we discussed earlier. This can be seen in action in listing 5.3.

The complete class diagram for the Android library can be found in Ap-
pendix C, figure C.1. This figure contains all implemented classes, interfaces
and enums. If there is a need to implement custom controllers for smart
card communication it is possible to use the classes which communicates
directly with the Gemalto library or the Android.nfc package. A potential
future need might be to add communication with a new type of smart card.
Classes such Converter, StorageHandler, ApduStatics and FilePaths

provide necessary functionality for APDU construction, message parsing
and asynchronous message handling. The package diagram in figure 5.1
shows how the specific smart card controllers include these classes.

We have deliberately not made any of the classes protected, meaning that

74

Figure 5.4: Simplified class diagram for Android Library.

all classes can be instantiate anywhere. This allows new frameworks or
new functionality to build on our work without having to edit the library.
Of course, this opens up the possibility for uses which are not possible to

75

execute. For example sending APDUs to a smart card without opening the
channel. We expect developers that chooses this path to have an under-
standing of how smart card communication must be built up.

76

Chapter 6

Testing and use case
implementation

In this chapter we describe the tests we designed and ran to evaluate the
cryptographic capabilities and performance of the smart cards, communi-
cation and compatibility between smart cards and Android, and possible
technical problems that may present themselves when using smart cards.
The implementation and tests took a lot of resources and time as it was
difficult to debug problems that occurred on the smart cards and in the third
party libraries we used. The remaining time was spent on implementing and
testing the binding protocol we described in section 4.1.

6.1 Setup

In order to do research on how smart cards can have an impact on mobile
data security and to perform an evaluation on how effective they are we need
to have a proper test environment. We define “proper test environment” as
an environment as close to reality as possible.

6.1.1 Equipment

Test device
The device we will be using for deploying the applications and performing
tests on is considered to be a mid-range device. The device is a Sony Xperia

77

M2 Aqua smartphone running Android 5.1.1 with the following relevant
specifications:

• Chipset: Qualcomm MSM8926-2 Snapdragon 400

• CPU: Quad-core 1.2 GHz Cortex-A7

• RAM: 1 GB

More information on the specifications of the phone can be found on
GSMArena.com [50].

Java smart card
We will be using two types of smart cards. The first type is a micro SD
memory card (IDCore 8030 MicroSD card) as shown in figure 2.5 produced
by Gemalto. The reason for using this card for testing is that Gemalto
delivers ready-to-use cards along with a framework for communicating with
them. The cards we will be using have nothing pre-installed on them and
we can freely deploy custom applications to the card. In order to use the
provided framework we need a key provided by Gemalto which has a validity
period of 120 days.

The second type of card we will be using is a contactless smart card with no
pre-installed software which is also provided by Gemalto [21] along with a
standard card reader. In this case we are not reliant on the framework pro-
vided by Gemalto as Android has built in support for NFC communication
in the standard SDK.

Both types of card are able to run the same application and thus makes it
very convenient when comparing their performance against each other.

6.1.2 Limitations and problems

We encountered problems with the library provided by Gemalto. The library
refused to function properly and returned error codes that we had no basis
for understanding. It was not possible to debug the library as the library
had been run through an obfuscator [13, Ch. 5], meaning that we could not
inspect the code to find the error. After a lot of back and forth between us
and Gemalto it became evident that they had provided us with the wrong
license key for the framework.

78

When we started testing the implementation it became evident that the
micro SD smart card we had did not support extended APDU. As a result
we are not able to perform tests that involve micro SD cards and extended
APDU. Limitations like these took up a lot of resources since we had no way
of knowing if they were actual limitations or if we were implementing our
solutions the wrong way. We needed to deplete all possible solutions and
alternatives before we could conclude with that they were limitations.

6.2 Tests

6.2.1 Data Transfer Speed

Description and motivation
Transfer speed is a very vital for part of the smart card interaction. If the
smart card application or the transportation layer is incapable of handling
large amounts of the data we will need to take that into account when
examining the usability of smart cards. In order to test and eliminate as
many variables as possible the smart card is programmed to receive data,
copy the incoming data to the buffer and send the exact same data in return.
Figure 6.1 describes this process using an NFC card as a platform for the
Java Card Applet.

Figure 6.1: Data flow of data transfer speed test for NFC.

79

The design of the tests was an iterative process. Transfer speed test was one
of the first tests we ran on the smart cards and we did not know beforehand
how much data a smart card would be able to handle. As a result we ended
up with 3 different configurations.

T1 configuration consists of the Android application sending 255 byte of
data to the smart card application, receive the response and write the
response to an internal file. This process is repeated until all of the data is
processed.

T2 configuration consist of the Android application sending data to the
smart card application using frames of size 255 byte until all data is sent.
Simultaneously the responses are written to an internal file using FileOut-
putStream (provided by the standard Java library).

T3 configuration consist of the Android application sending data to the
smart card application using frames of size 32768 byte until all data is
sent. Simultaneously the responses are written to an internal file using
FileOutputStream (provided by the standard Java library).

With some pre-testing it quickly became apparent that T1 configuration
is vastly inferior to T2 and T3. A non-asynchronous (not using streams)
Android application is not representative of the “real-world” and we decided
on not pursuing further test results using this configuration when we moved
over to Micro SD card testing.

NFC results

Data size (byte) T1 T2 T3

10000 3,8s 4,1s 3,6s

100000 41,3s 35,0s 24,7s

1000000 602,1s 361,3s 235,1s

Table 6.1: Table of NFC transfer speed test.

The tests results(table 6.1) show a significant improvement from T1 to T3.
The exception is when we are sending small amounts of data to the smart
card applet which suggest that the difference is miniscule. However, when
we upped the data size to 100.000 byte, T2 and T3 was 15% and 40%,
respectively, faster than T1. When sending 1.000.000 bytes of data T1

80

10000 100000 1000000
0

100

200

300

400

500

600

Data size (byte)

R
u

n
n

in
g

ti
m

e
(s

ec
o
n

d
s)

T1 Configuration
T2 Configuration
T3 Configuration

Figure 6.2: Graphical representation of table 6.1.

used 602,1s. T2 had an improvement of around 40% whereas T3 had an
improvement of around 60%. The test results clearly show that T3 is the
optimal configuration of the 3.

81

Micro SD results
We were not able to test T3 configuration as explained in section 6.1.2.

Data size (byte) T2 T3

10000 3,18s N/A s

100000 16,14s N/A s

1000000 142s N/A s

Table 6.2: Table of micro SD transfer speed test.

As we were not able to test T3 on micro SD cards we cannot compare the
configurations with each other. What we can do is compare the T2 results
for micro SD to the T2 results from the NFC section. The difference is not
that great with small amounts of data, but when we go up to 1.000.000 bytes
of data micro SD is 60% faster than the NFC card (361,3s to 142s). This
points in the direction of micro SD cards achieving better results than NFC
cards.

Conclusion
From table 6.1 and figure 6.2 we can learn that we are able to optimize the
data transfer and processing speed between the Android application and the
NFC card. It is also clear that when we are transmitting low amounts of
data there is virtually no difference between the configurations; T1, T2 and
T3. The differences are more prominent when the data amounts increase.
Even though we achieved an improvement of approximately 60 % from T1
to T3 when sending 1 MB of data, the process is still time consuming.

If we compare the test results for T2 configuration on the NFC card and
micro SD card we can clearly see an improvement on the micro SD card.
The micro SD card had a 60 % better running time over the NFC card when
sending 1 MB of data. Although we were not able to test configuration T3
on the micro SD card, results point in the direction of micro SD cards having
better performance than NFC cards. We are not able to confirm this and
thus cannot be treated as a fact.

Even though we are able to optimize and improve data transfer speeds, we
are still very far from transferring and processing large amounts of data
quickly. We have to take this into account when evaluating areas of use
for the smart card. Transfer and processing speed rules out many areas
concerning large amounts of data, such as full data encryption.

82

6.2.2 Symmetric-key cryptography

We want to discover the encryption abilities on the smart card and decide
if it is feasible to let the smart card handle the encryption of confidential
data. From the smart card documentation we know that we are able to use
AES to encrypt data, but we do not know how long it will take to encrypt
the data. We will need to perform a run time tests with different amounts
of data in order to determine the performance of the smart card. This
test will help us establish guidelines for how much data it is reasonable to
encrypt directly on the smart card without affecting the user experience of
an Android application.

Test setup
The framework we are using is designed around extended APDU and the
test platform we have designed in Java Card utilizes extended APDU. As
a result we are not able to use the micro SD cards (as described in section
6.1.2) and we will be using the NFC smart cards.

The encryption algorithm we will use is AES cipher algorithm with block
chaining (CBC). The version of Java Card that we are using along with our
smart cards limits us to using 128 bits keys and no padding. More specifically
the only working AES algorithm from javacard is ALG AES BLOCK 128 CBC NOPAD,
even though the Java Card documentation for Cipher supports more algo-
rithms [31]. Others have encountered the same discrepancy [44] suggesting
that only three of the twelve supported algorithms works, but there exists
no official information on the issue.

ALG AES BLOCK 128 CBC NOPAD is as the name suggest an algorithm with no
padding. The block size the AES algorithm expects is 16 byte and as a
result we will need to pad the data ourselves on the mobile device.

Results
The test results show that the encryption process of AES on smart card
is very close to being linear. Even though the relationship between time
and bytes processed is close to linear the encryption process is slow. The
processing power of the AES setup translates to roughly 500 bytes of data
per second.

83

Data size (byte) Elapsed time

16 0,15s

10000 20,18s

32000 61,81s

100000 183,78s

1000000 1835,49s

Table 6.3: Table of AES encryption speed test.

16 10000 32000 100000 1000000
0

500

1,000

1,500

2,000

Data size (byte)

R
u

n
n

in
g

ti
m

e
(s

ec
on

d
s)

Figure 6.3: Graphical representation of table 6.3.

Conclusion
From the test results we can learn that encrypting data on the NFC smart
card takes a lot of time. Encrypting 1MB of data uses approximately 30
minutes, which from a real world perspective is an unacceptable amount
of time. Using the NFC smart card for full encryption of user data is in
other words not achievable and we will need to look for other options for
encryption.

Encrypting 16 bytes of data uses 0,15 seconds. A use for the encryption
capabilities on the smart card may be to encrypt small amounts of data
such as GPS coordinates. GPS coordinates can be represented by only 16
bytes (depending on accuracy). One could also imagine that we will only

84

need to encrypt parts of a document, and as long as we keep the data size
small we can let the smart card do the encryption.

6.2.3 Public-key cryptography

Similarly to the symmetric-key encryption test we want to investigate the
feasibility of public-key encryption of sensitive data. The smart cards and
Java Card version we have supports RSA cryptography, but we will need to
run performance tests to confirm that it functions properly and finish within
a timely manner.

Another part of public-key cryptography we want to investigate is digital
signing. Being able to sign and verify data is an essential part of many
security mechanism and a vital part of what we wish to achieve by using
smart cards. If tests show that digital signing is unfeasible on smart cards
we will need to re-evaluate their use in a mobile device ecosystem.

Test setup
Just as with symmetric-key cryptography, we will be using the Android
framework we have created, which uses extended APDUs, and as a result
we cannot perform these tests on our micro SD cards.

For digital signing we will be using keys of length 512-bit and 2014-bit. Early
tests shows that key sizes greater than 1024-bit crashes our NFC cards (refer
to section 6.2.5). This is problematic as we wish to use longer keys, minimum
2048-bit and preferably up to 4096-bit, as this is what is recommended by
the industry [55]. Even though 1024-bit keys does not represent our goals, it
could point us in the right direction when it comes to feasibility. We use the
Signature class for signing with the algorithm ALG RSA SHA PKCS1 meaning
that we do not need to pad our data.

For RSA encryption we were able to test with both 512-bit keys and 2048-bit
keys. We will be using the Cipher class to perform the encryption, but one
important thing to note is that the plaintext sent in to the cipher function is
limited by the key size. 512-bit and 2048-bit keys are only able to process 52
byte and 244 byte of data respectively. This is because of the architecture
of RSA and iff we wish to encrypt more data we will need to split the data
in the Android application.

85

Results

Data size (byte) Elapsed time (512) Elapsed time (1024)

10000 0,74s 1,72s

32000 5,32s 5,98

100000 15,49s 16,26

1000000 141,79s 146,23

Table 6.4: Table of digital signing (RSA) speed test.

The test results from digital signing in table 6.4 shows that there are large
differences between small amounts of data and large amounts of data, but
the two key sizes perform very similar. The byte per second value for 10.000
byte is close to 13.000, whereas the byte per second value for 32.000 byte is
half of that with around 6000 byte per second. 100.000 byte has as expected
around the same byte per second value as 32.000. This is caused by the
fact that 100.000 byte is the same as 3 32.000 byte operations due to the
limitations of extended APDUs.

Data size (byte) Key size Elapsed time

52 512-bit 0,62s

144 2048-bit 1,33s

Table 6.5: Table of RSA encryption speed test.

Encrypting with RSA is an expensive operation and is clearly shown by table
6.5. We are at maximum able to encrypt 52 bytes of data with a key size
of 512-bit and 144 byte of data with 2048-bit keys at the time. Compared
to AES encryption the byte per second value is terrible. 512-bit keys have
byte per second value of around 70 byte and 2048-bit keys have a byte per
second value of around 108 byte. AES encryption from table 6.3, is able to
reach a byte per second value of around 500 byte.

Conclusion
We have learned two things from testing public-key cryptography on smart
cards. Digital signing on the smart card seem to be viable, at least with a
key size of 1024-bit. We are able to sign 10.000 byte of data in right under 2
seconds and from a “real world” perspective 10.000 byte is able to represent
a lot of information. However, we are not able to use digital signing for

86

signing large files such as images or videos. This problem can be solved by
signing hashes of the files instead of signing the files directly.

Encrypting data using RSA is not viable according to our test results. The
intention of RSA was never to be able to encrypt large amounts of data so
the test results are of no surprise to us. If we need to protect large amounts
of data, such as if we chose to encrypt the policy response data from section
4.3.5, we can use RSA encryption to encrypt a AES key which in turn is
used to encrypt the actual data. This is referred to as hybrid encryption
and is a common way of solving the issue where we have more data than we
are able to encrypt with RSA.

6.2.4 Binding card and mobile device

In section 4.1 we describe and motivate a solution where the we want to bind
a mobile device to a smart card. We find it important to do an empirical
test of the solution due to the fact that we have time constraints regarding
running time. The parts of the binding process we want to test is:

• Mobile device is able to transfer public key to smart card.

• Smart card can store the public key from the mobile device.

• Smart card can generate the verifaction package from section 4.1.4.

Implementation
In light of the parts of the binding process we want to test the outline of
the implementation are:

1. Mobile devices asks smart card if its authenticated with PIN.

2. Smart card responds with yes/no and amount of PIN tries remaining.

3. Mobile device prompts user for PIN and sends it to the smart card.

4. Smart card verifies PIN or the process skips back to step 2.

5. Mobile device sends it public key to the smart card.

6. Smart card generates the verification package (figure 4.3).

7. Smart card sends the verification package to the mobile device.

87

Due to the nature of smart cards we will need to hard code this protocol
into the android application and the smart card application. We will use
the P1 byte in the APDU to define which step of the process we are in,
respectively:

• 0x01 for step 1 and 2.

• 0x02 for step 3 and 4.

• 0x03 for step 5,6 and 7.

To manage PIN verification and management we will use OwnerPIN class
from the Java Card framework [12]. After the PIN is set on the card during
installation we can utilize the methods: isValidated() for checking if the
right PIN is already provided, check(byte[] pin, short offset, byte

length) for checking if the provided PIN is correct and getTriesRemaining()

for getting remaining tries.

All public keys are represented as byte arrays when they are transmitted
between the mobile device and the smart card. The format for the byte
array is |ModulusLength|Modulus|ExponentLength|Exponent| to allow for
extension of key length and dynamic importing. After the APDU is received
the public key is stored in a RSAPublicKey object for storage.

When we construct the verification package on the smart card we have to
convert all the keys on the smart card over to the same format as the mobile
device’s public key. After we have transformed all relevant keys (see figure
4.3) to byte arrays we can finally put them together, sign the package and
encrypt it with the public key of the server.

Configurations
Configuration 1 uses 512-bit keys as the public key between the mobile
device and smart card. Although we wish to use keys that are greater than
2048-bit we feel that this is a good starting point.

• NFC card

• 512-bit mobile device public key

• 512-bit smart card RSA key pair

• 2048-bit server public key

• 128-bit AES key

88

Configuration 2 uses 2048-bit keys as the public key between the mobile
device and smart card to simulate a real-world example.

• NFC card

• 2048-bit mobile device public key

• 2048-bit smart card RSA key pair

• 2048-bit server public key

• 128-bit AES key

Installation test
We want to find out if initializing the keys we need for generating the
verification package affects the installation of the smart cards. We will
deploy and install the smart card application using GlobalPlatfromPro and
time how long it takes. Our test limit is set to 100 tests. Table 6.6 shows that
the average and maximum times increases significantly from configuration
1 to configuration 2.

Configuration Average Maximum Minimum

1 24,28s 59s 9s

2 39,42 95s 13s

Table 6.6: Time required to install the application on the
smart card.

Run test
In this test we will generate the verification package. We will skip the
parts of the process involving user input (PIN code). Table 6.7 shows that
configuration used 1,2 seconds to generate a verification package.

Configuration Elapsed time

1 1,22s

2 N/A

Table 6.7: Time required to generate the verification
package on the smart card application.

89

6.2.5 Limitations

After implementing the solution some limitations and problems became ap-
parent. It is important to consider these when determining the effectiveness
of the solution.

Signing not working with 2048-bit key size
We encountered a bug when switching to “configuration 2”. The smart card
application started actually crashing, as not in responding with error codes,
but actually crashing and losing power. We managed to narrow it down to
the exact line of code the application crashes on (see listing 6.1).

At first we suspected that the packet was too big or some mismatch in
the parameters. The function still crashed with a smaller packet and all
parameters are of the correct length/type/value. It is also worth noting
that the 2048-bit key are properly initialized and working. Identifying the
problem is hard considering the only clues we have are:

• Signing crashes on different input data with 2048-bit key.

• No error codes - Hard crash.

After searching the Internet for others with the same problem it became
apparent that others have had troubles with signing. Some report that the
running time of their smart cards increase drastically when using to 2048-bit
keys [60]. We are not able to find any official sources on these issues, but
there seems to be an underlying problem or bug in Java Card or in the
hardware.

Listing 6.1: Java Card failed signing.

1 public class cardApplication extends Applet implements
ExtendedLength{

2

3 private RSAPublicKey k;

4 private Signature sig;

5

6 ...

7

8 private cardApplication() {

9 keys = new KeyPair(

10 KeyPair.ALG_RSA,

11 KeyBuilder.LENGTH_RSA_2048);

12 k = (RSAPublicKey) keys.getPublic();

90

13 sig = Signature.getInstance(

14 Signature.ALG_RSA_SHA_PKCS1,

15 false);

16

17 ...

18 }

19

20 public void process(APDU apdu) {

21 ...

22

23 signatureSize = sig.sign(

24 packet,

25 (short) 0,

26 (short) packetSize,

27 h0Unencrypted,

28 (short) 0);

29

30 ...

31 }

32

33 ...

34 }

Out of memory
We are dealing with many different byte arrays in our solution, and due to
the design of smart cards we will need to allocate memory for these byte
arrays when the smart card is initialized. The size of these byte arrays are
dependent on the key sizes we use. Allocating 5 byte arrays of length 500
(which is plenty for 2048-bit keys) is independently fine, but if the smart
card application allocates a lot of resource alongside this solution we need
to be careful of running out of memory.

It is important to include hidden memory sinks such as the RSAPublicKeys

and the encryption done by the Cipher class. We can just as easily run out
of memory by changing our key lengths as when allocating byte arrays.

Code rigidity
Because of the design of smart cards our implementation is heavily hard-
coded, and as a results is very rigid to change. For instance if the speci-

91

fication of the verification package change it will require excessive work to
reflect the changes. One will have to decide make a decision whether or
not this will happen often enough to counter the potential benefits of using
smart cards.

6.2.6 Conclusion

We have shown that the smart card area of responsibility in the binding
process is possible to perform. Test results show that the installation process
can be rather long (ranging from 9 seconds to 95 seconds), but that the
verification package generation is effective (∼1 second).

The installation process is a one time process and the keys we generate
during it are needed for other cryptographic operations on the card. We find
it safe to assume that this process is a cost we can afford. The verification
package generation process has such a low processing time that we can also
assume that we can afford it. Our conclusion is that the binding process is
feasible and that the reward, that smart card and mobile device is locked to
each other, greatly outscales the costs involved.

92

Chapter 7

Conclusion

The work that has been done in this thesis can be divided into three parts:
preparation, research and a technical part. The preparation part involved
researching and studying various publications, technical documentation and
internet articles to get an understanding of the technology and the problems
at hand.

In the research part we identified key questions and challenges for the
topic and proposed different possible solutions. The proposed solutions was
analyzed with argumentation from the preparation part in combination with
existing solutions.

The technical part involved developing a usable framework for mobile de-
vices and smart cards, as well as testing the proposed solutions from the
previous part. The testing involved implementing the proposed solutions
and evaluating their feasibility in the “real world”. Setting up a working
test environment turned out to be more time consuming than initially es-
timated and as a result we were not able to fully test all of the proposed
solutions.

7.1 Research questions

After working through all parts of this thesis we are able to answer the
research questions we presented in chapter 1.

• “What are the limitations of smart cards in the context of hardware?”

93

The hardware limitations of smart cards are very dependent on which
smart card you are using. Generally smart cards are limited when it
comes to computing power and this has a huge effect on how resource
intensive operations you are able to perform on the smart card. Secure
cryptography are very resource intensive and our test results show that
encrypting large amounts of data is unfeasible, both for public-key
cryptography (RSA) and symmetric-key cryptography (AES), at least
on NFC smart cards. We performed tests regarding transfer speed and
they show that the throughput of input/output are limited and that
we often run the risk of running out of memory with large amounts of
data.

• “What are the limitations of smart cards applications?”
We opted for using Java Card as our programming language. Our
version of Java Card does not support advanced datatypes. This
combined with the fact that all data being sent to/from the smart
card is byte values creates a rigid environment with hardcoded values.
Java Card does not support standard garbage collection and thus
applications needs to be extra careful when allocating memory.

• “What types of security threats are we able to mitigate by using a smart
card with an “off-the-shelf” mobile device?”
Even though smart cards have some areas with limitations we are able
to identify use cases where smart cards can be applicable. In use cases
involving cryptography a smart card can store the keys securely as well
as encrypt/decrypt small amounts of data. Due to the fact that smart
cards are tamper proof, meaning that you are not able to extract data
(keys), we are confident that smart cards can alleviate threats such as
stolen mobile devices and insecure communication channels.

We believe that smart cards can add an extra layer of security for
more advanced use cases. In this thesis we described and analyzed a
solution where we used smart cards as a basis for policy enforcement.
Our understanding is that this type of solution in conjunction with
traditional policy enforcement systems will enhance the security.

94

7.2 Related work

The most closely related paper to our work is “Plug-n-Trust: Practical
Trusted Sensing for mHealth” [29], which discusses the possibility to use
smart cards to ensure confidentiality of data from medical sensors on a
patient. There are a lot of similarities in their problem statements and
findings, such as the need for cryptography, attack vectors and establishing
trust in a limited environment. Their main area of application is to prepare
and send data to a backend service (off card/device) securely. The result is
that the paper’s goal differs from ours when it comes down to data flow and
system architecture which brings new problems to the table that we needed
to solve. For instance, the paper assumes that the operating system is able
to communicate with smart cards natively. This can be done as the required
libraries are integrated in a custom kernel, which is outside our scope as we
want to look at unmodified off-the-shelf mobile devices.

However, despite other works around smart cards and NFC security, there
does not seem to be any publicly accessible research on the challenges
involved when securing modern smartphones with smart cards as secure
elements. This is strange when there is a rising interest in using smart card
to enable the development of secure commercial mobile devices [42, 45].
This may be because of smart card technology is relatively old and thus the
interest faded over the years, or that most of the technology is proprietary
and as a result difficult to access. Other relevant work is mostly about the
technical details about Android support for secure elements [43, 15] and
proprietary commercial products for strong authentication [23].

7.3 Experience

During this thesis we have gained insight and experience when working with
smart cards. We believe sharing these experiences will increase the efficiency
for others working on the field in the future.

Getting started with smart card programming
Getting started with smart card programming can be difficult. After a few
years with object-oriented programming most programmers will start to get
comfortable using “quality of life” classes such as ArrayList and Enum. That
world gets turned up-side down when moving to Java Card. One is thrown

95

back to an older Java version and as a programmer you will need to rethink
how you solve problems and structure solutions. Most notable is the fact
that all incoming data is in the form of a byte array that must be mapped to
the correct datatypes. Missing functionality such as standard Java garbage
collection and standard data types (int, double, etc.), makes Java Card
programming cumbersome and requires time to adapt to.

Debugging smart card applications
Debugging smart card applications differs from standard debugging. Nor-
mally when debugging you are able to insert breakpoint, inspect variables
and monitor resource usage. The nature of smart cards is to be a secure and
closed environment and thus it is hard to monitor how an application be-
haves. The debugging method we have available is: deploy the application,
send data to it and see what the response is. If the response does not match
expected output, the best way to debug is creating manual breakpoints.
This can be done by adding a line of code returning the current value of
variables in order to figure out where the error might be. Sometimes the
smart card encounter runtime exceptions and sends a 2 byte response that
is mapped to an error message [25].

This type of debugging environment is exhausting and requires a lot of
resources. Often we spent time trying to pinpoint an error only to later found
out that the error code we got had nothing to with the actual problem. This
was especially notable with errors regarding memory usage. One of the best
advices concerning smart card debugging is: “Test often with a big array of
test data.”.

Java Card documentation
The documentation available is very technical. This is not by any means
a bad thing, but it do require developers to understand smart cards fully
before using the documentation. When comparing Android and Java Card
documentation, it is very apparent that Google has put a lot of effort
into having an educational approach to the concepts before diving into
the technical aspects. In the Java Card documentation there are very few
examples of usage, and we spent a lot of time trying to figure out how to
properly use classes and methods.

The gap between software and hardware is very apparent in the Java Card
documentation. We often encountered functionality that was supposed to

96

work, but did not work on our smart cards. The result of this was that when
we encountered bugs, we did not know if it was a programming mistake or
simply not supported by our smart cards. The best example of this was
when we tried to use the Cipher class with algorithms that proved to not
work on our smart cards (section 6.2.2).

Deploying smart card applications
Deploying smart card applications to a smart card is a time consuming
task. This became very apparent when working with micro SD smart cards.
Deploying a new version to micro SD required us to: remove mSD from
mobile device, insert mSD into the computer card reader, run install script,
wait on install script to finish, insert mSD into mobile device. Following
this procedure once in a while is not a big inconvenience, but in context of
debugging it become very tedious to spend 1,5 minutes switching around
the mSD card and waiting for the install script.

Literature
A lot of the existing literature on smart cards focuses on the two areas
banking and identification. Even though we share some use cases and
challenges with these areas we cannot directly apply their solutions to our
research. There are two reasons for this. The first reason is that smart cards
in banking and identification have a very narrow objective with what the
smart card’s responsibility is, whereas our smart cards have many different
responsibilities (authenticate, authorize, encrypt, key management, etc.).
The second reason is that in both banking and identification the smart
cards can rely on a third party (server) to verify every interaction, e.g., when
paying with debit card (smart card) a server verifies the money transaction.
After the initial binding of smart card and mobile device our solution’s goal
is that the smart card is independent.

The lack of literature on how other companies have solved similar problems
to the ones we encountered, may be that many consider secrecy of their
“setup” is a good way of keeping their system secure. For instance the
problem “How to bind a smart card to a mobile device”. Either companies
working with smart cards and mobile devices do not perform a binding or
they do not wish to disclose how they do it. We suspect the latter, but this
is pure speculation.

The consequence of this is that we have to approach the smart card field by

97

looking at hard facts. ISO standards, RFC standards and documentation
directly from the vendors are our main resources. Our experience shows
that gathering information directly from the vendor yields a better result
than looking at third-party literature as the vendor can provide updated
information. See the bibliography for what we consider the best sources for
information on the research topic.

7.4 Remarkable results

Apart from the experience gained from working with smart cards and mobile
device there is one limitation that we want to classify as extra interesting.
When looking at the Java Card documentation, the smart cards are sup-
posed to support the cryptographic functions RSA (2048-bit) and AES-256.
This is further confirmed by the documentation by Gemalto (ref. section
3.2.1). Our test results show that we are only able to use up to 1024-bit RSA
keys for signing and AES-128 for symmetric-key cryptography. The claimed
supported algorithms and actual working algorithms do not correspond,
which is worrying.

The consequence of this discrepancy is that organizations may find them-
selves unable to use smart cards, as the available cryptography does not meet
the industry standards. This realization could potentially happen late in the
development process when substantial amounts of resources have already
been used.

7.5 Future work

The research we have presented in this thesis is a good starting point
for developing custom security applications on the Android platform in
conjunction with smart cards. The test cases we have looked into point to
that micro SD cards have better performance than NFC cards, but our micro
SD cards did not support extended APDUs and thus we cannot confirm that
micro SD are better than NFC cards. More work on micro SD cards must
be performed in order to confirm these suspicions.

We encountered numerous bugs and limitations when working with smart
cards which we did not initially predict, and as a result the Android library
and the smart card application is not as polished and refined as we had hoped

98

it would be. This includes adding more pre-implemented functionality,
refactoring code to be more readable and optimize code to achieve better
performance. Additionally we believe it would be beneficial to look at the
possibility of not being dependent on the Gemalto framework (manufacturer
specific) for micro SD card communication.

Our evaluations of the proposed solutions are based on protocol analysis
and proof of concept. It would be of great interest to perform penetration
tests on the outlined solutions to confirm that: a) We are able to implement
all parts of the solution. b) We can show that the solution is methodically
tested against known attacks in today’s society.

99

Bibliography

[1] 2015 Cheetah Mobile Security Report. Last visited: 15.02.2016. 2016.
url: http://www.cmcm.com/article/share/2016-01-13/919.
html.

[2] About Google. Last visited: 13.01.2016. 2016. url: http : / / www .

google.com/about/.
[3] An Introduction to Java Card Technology - Part 1. Last visited: 19.11.2015.

2003. url: http://www.oracle.com/technetwork/java/javacard/
javacard1-139251.html.

[4] Ross Anderson. Security Engineering - A guide to building dependable
distributed systems, 2nd edition. Wiley, 2008. isbn: 978-0-470-06852-6.

[5] Android NFC, Requesting NFC Access in the Android Manifest. Last
visited: 13.01.2016. 2015. url: http://developer.android.com/

guide/topics/connectivity/nfc/nfc.html#manifest.
[6] Android Platform Versions - developer.android.com. Last visited: 08.05.2016.

2016. url: http://developer.android.com/about/dashboards/
index.html#Platform.

[7] Android Studio Overview. Last visited: 21.01.2016. 2015. url: http:
//developer.android.com/tools/studio/index.html.

[8] Android support for Microsoft Exchange in pure Google devices. Last
visited: 10.02.2016. 2013. url: https://static.googleusercontent.
com / media / www . google . com / no / /help / hc / images / android /

MicrosoftExchangePoliciesinAndroid.pdf.
[9] Blackberry Priv. Last visited: 16.05.2016. 2015. url: http://global.

blackberry.com/en/smartphones/priv-by-blackberry/overview.

html.
[10] Andrew Calafato. An analysis of the vulnerabilities introduced with

Java Card 3 Connected Edition. Wiley, 2010. isbn: 0-470-74367-0.
[11] Jan Pelzl Christof Paar. Understanding Cryptography. Springer, 2010.

isbn: 978-3-642-04100-6.

100

[12] Class OwnerPIN - Javacard documentation. Last visited: 28.03.2016.
2005. url: http://www.win.tue.nl/pinpasjc/docs/apis/jc222/
javacard/framework/OwnerPIN.html.

[13] Bruce Dang. Practical reverse engineering x86, x64, ARM, Windows
Kernel, reversing tools, and obfuscation. John Wiley and Sons, 2014.
isbn: 9781118787311.

[14] EclipseJCDE, Sourceforge.net. Last visited: 18.01.2016. 2008. url:
http://eclipse-jcde.sourceforge.net/.

[15] Nikolay Elenkov. Android Security Internals. No Starch Press, 2014.
isbn: 978-1-59327-581-5.

[16] Exchange ActiveSync - Overview. Last visited: 10.02.2016. 2015. url:
https://technet.microsoft.com/en-us/library/aa998357(v=

exchg.150).aspx#overview.
[17] FBI paid under 1 million dollars to unlock San Bernardino iPhone:

sources. Last visited: 18.05.2016. 2016. url: http://www.reuters.
com/article/us-apple-encryption-idUSKCN0XQ032.

[18] Giesecke and Devrient GmbH. Last visited: 29.04.2016. url: https:
//www.gi-de.com/en/index.jsp.

[19] GlobalPlatformPro, Github.com. Last visited: 18.01.2016. 2008. url:
https://github.com/martinpaljak/GlobalPlatformPro.

[20] Michael Van Horenbeeck and Peter De Tender. Microsoft Exchange
2013 Cookbook. Packt Publishing, 2013. isbn: 978-1-78217-062-4.

[21] IDCore 3010 – Rev B. Last visited: 20.05.2016. 2015. url: http://
www.gemalto.com/products/top_javacard/download/IDCore3010_

RevB_Product_Datasheet_July14.pdf.
[22] IDCore 8030 MicroSD card, Datasheet. Last visited: 20.05.2016. 2015.

url: http://www.gemalto.com/products/top_javacard/download/
IDCore8030_Datasheet.pdf.

[23] IDGo 800 Middleware and SDK for Mobile Devices. Last visited: 21.01.2016.
2016. url: http://www.gemalto.com/products/idgo_800/index.
html.

[24] IntelliJ IDEA. Last visited: 21.01.2016. 2016. url: https://www.

jetbrains.com/idea/.
[25] Interface ISO7816 - JavaCard constants. Last visited: 28.04.2016. 2005.

url: http : / / www . win . tue . nl / pinpasjc / docs / apis / jc222 /

javacard/framework/ISO7816.html.
[26] ISO 7816 Part 4: Interindustry Commands for Interchange. Last vis-

ited: 19.01.2016. 2015. url: http://www.cardwerk.com/smartcards/
smartcard_standard_ISO7816-4.aspx.

101

[27] ISO/IEC 7810:2003, Identification cards – Physical characteristics.
http://www.iso.org/iso/catalogue_detail?csnumber=31432.
Last visited: 18.11.2015. 2013.

[28] ISO/IEC 7816:1-2011, Identification cards – Integrated circuit cards –
Part 1: Cards with contacts – Physical characteristics. http://www.
iso.org/iso/home/store/catalogue_ics/catalogue_detail_

ics.htm?csnumber=54089. Last visited: 18.11.2015. 2011.
[29] Ron Peterson Jacob Sorber MinhoShin and Davic Kotz. Plug-n-Trust:

Practical Trusted Sensing for mHealth. Pages 309-322. ACM, 2012.
isbn: 978-1-4503-1301-8.

[30] Java Card Platform, Classic Edition 3.0.5. Last visited: 19.11.2015.
2015. url: https://docs.oracle.com/javacard/3.0.5/index.
html.

[31] Javacard documentation - Cipher class. Last visited: 09.03.2016. 2005.
url: http : / / www . win . tue . nl / pinpasjc / docs / apis / jc222 /

javacardx/crypto/Cipher.html.
[32] Rolf Oppliger. SSL and TLS : Theory and Practice. Artech House,

2009. isbn: 1-59693-447-6.
[33] Oracle and Sun Microsystems. Last visited: 05.03.2016. 2016. url:

https://www.oracle.com/sun/index.html.
[34] PKCS #12: Personal Information Exchange Syntax v1.1. Last visited:

25.04.2016. 2014. url: https://tools.ietf.org/html/rfc7292.
[35] Projects/OWASP Mobile Security Project - Top Ten Mobile Risks.

Last visited: 12.05.2016. 2014. url: https://www.owasp.org/index.
php / Projects / OWASP _ Mobile _ Security _ Project_ - _Top _ Ten _

Mobile_Risks.
[36] Protect against harmful apps, Google Play. Last visited: 08.02.2016.

2016. url: https : / / support . google . com / accounts / answer /

2812853?hl=en.
[37] pyApduTool User Guide. Last visited: 18.01.2016. 2015. url: http:

//javacardos.com/javacardforum/viewtopic.php?t=38.
[38] Wolfgang Rankl. Smart Card Handbook 4th Edition. Royal Holloway,

University of London, 2013. isbn: 978-0-470-74367-6.
[39] RFC4634, US Secure Hash Algorithms (SHA and HMAC-SHA). Last

visited: 15.01.2016. 2006. url: https://tools.ietf.org/html/

rfc4634.
[40] SafetyNet: Google’s tamper detection. Last visited: 08.02.2016. 2015.

url: https://koz.io/inside-safetynet/.
[41] Schlumberger Limited homepage. Last visited: 05.03.2016. 2016. url:

http://www.slb.com/.

102

[42] Sectra Tiger System. Last visited: 29.05.2016. url: http://communications.
sectra.com/security-solutions/tigers-r.

[43] Secure Element Evaluation Kit for the Android platform. Last visited:
29.04.2016. url: http://seek-for-android.github.io/.

[44] Securing Java Card applications, Part 2. Limits of Java Card cryp-
tography. Last visited: 09.03.2016. 2005. url: http://www.ibm.com/
developerworks/wireless/library/wi-satsa2/tmp0002.html#

IDAN1V3C.
[45] Secursmart - SECUSUITE FOR BLACKBERRY 10. Last visited:

29.05.2016. url: https://www.secusmart.com/en/for-public-
authorities/secusuite-for-blackberryr-10/.

[46] JAN KREMER CONSULTING SERVICES. MULTOS and JAVAC-
ARD. Last visited: 18.05.2016. url: http://jkremer.com/White%
20Papers/MULTOS%20and%20JAVACARD%20White%20Paper%20JKCS.

pdf.
[47] Smart Card Operating System. Last visited: 18.05.2016. 2015. url:

http://www.cardwerk.com/smartcards/smartcard_operatingsystems.

aspx.
[48] Smart Card Technology, The micromodule. CardWerk. Last visited:

04.03.2016. 2015. url: http://www.cardwerk.com/smartcards/

smartcard_technology.aspx.
[49] Smartphone OS Market Share, 2015 Q2. Last visited: 13.01.2016. 2015.

url: http://www.idc.com/prodserv/smartphone- os- market-

share.jsp.
[50] Sony Xperia M2 Aqua, GSMARENA. Last visited: 18.01.2016. 2014.

url: http://www.gsmarena.com/sony_xperia_m2_aqua-6582.php.
[51] The DROWN Attack. Last visited: 22.04.2016. 2016. url: https://

drownattack.com/.
[52] The RSA factoring challenge. Last visited: 22.04.2016. Unknown. url:

http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-

factoring-challenge-faq.htm#WhatIs.
[53] Joeri de Ruiter Tim Cooijmans and Erik Poll. Analysis of Secure Key

Storage Solutions on Android. In Proceedings of the 4th ACM Work-
shop on Security and Privacy in Smartphones and Mobile Devices
(SPSM ’14). Pages 11-20. ACM, 2014. isbn: 978-1-4503-3155-5.

[54] Transmission Control Protocol, rfc793. Last visited: 03.02.2016. 1981.
url: http://tools.ietf.org/html/rfc793.

[55] TWIRL AND RSA KEY SIZE. Last visited: 22.05.2016. 2003. url:
http://www.emc.com/emc-plus/rsa-labs/historical/twirl-

and-rsa-key-size.htm.

103

[56] Amit Vasudevan. Trustworthy Execution on Mobile Devices. Springer,
2013. isbn: 9781461481898.

[57] Writing a Java Card Applet - About Java Card Technology. Last vis-
ited: 18.11.2015. 2001. url: http://www.oracle.com/technetwork/
java/embedded/javacard/documentation/intro-139322.html#

whatjavac.
[58] Writing a Java Card Applet - Installing the Applet. Last visited: 19.11.2015.

2001. url: http://www.oracle.com/technetwork/java/embedded/
javacard/documentation/intro-139322.html#cinst.

[59] Writing a Java Card Applet - Processing Requests. Last visited: 19.11.2015.
2001. url: http://www.oracle.com/technetwork/java/embedded/
javacard/documentation/intro-139322.html#proreq.

[60] Yubico Forum - Slow RSA-2048 encryption/signing. Last visited: 06.04.2016.
2013. url: http://forum.yubico.com/viewtopic.php?f=26&t=
1207.

104

Appendix A

Java Card code

Listing A.1: SecureCard.java.

1 package henrik;

2

3 import javacard.framework.APDU;

4 import javacard.framework.Applet;

5 import javacard.framework.ISO7816;

6 import javacard.framework.ISOException;

7 import javacard.framework.OwnerPIN;

8 import javacard.framework.Util;

9 import javacard.security.CryptoException;

10 import javacard.security.KeyBuilder;

11 import javacard.security.KeyPair;

12 import javacard.security.RSAPrivateKey;

13 import javacard.security.RSAPublicKey;

14 import javacard.security.Signature;

15 import javacard.security.AESKey;

16 import javacardx.apdu.ExtendedLength;

17 import javacardx.crypto.*;

18 import javacard.security.*;

19 import javacard.framework.JCSystem;

20

21 public class SecureCard extends Applet implements ExtendedLength

↪→ {

22 //Try to allocate all variable here and do not create new

↪→ ones

23 //The Public/Private key pair that this card will use

24 private KeyPair keys;

105

25 private KeyPair sKeys; //PLACEHOLDER

26 //Signature object to sign with card private key

27 private Signature sig;

28 //Card Public key

29 private RSAPublicKey uPub;

30 //Card Private key

31 private RSAPrivateKey uPrv;

32 // To store data to be sent beck to host application

33 byte[] output = new byte[32767];

34 //for temporary storing data before copying into output

35 byte[] buff2 = new byte[2];

36 //For bigger data

37 byte[] bigArray;

38 //To store the size of the output buffer

39 short size;

40 //Length of signature or other short values

41 short len;

42 //Size of modulus and signature

43 final short keysize=64;

44

45 //Predefined Commands

46 private final byte SEND_U_PUB_MOD=(byte) 0x01;

47 private final byte SEND_U_PUB_EXP=(byte) 0x02;

48 private final byte SIGN=(byte) 0x03;

49 private final byte BINDING=(byte) 0x05;

50 private final byte RSACRYPTO=(byte) 0x06;

51 private final byte REFLECT=(byte) 0x08;

52 private final byte AESCRYPTO=(byte) 0x09;

53

54

55

56 //Cryptography

57 Cipher cipherRSA;

58 Cipher cipherAES;

59 byte[] cryptoBuffer;// = new byte[32767];

60

61 AESKey aesKey;

62 RandomData randomData;

63 byte[] rnd;

64

65

66 short policy13Offset = 6;

67

68

69 //Binding

106

70 byte pinIsPresentFlag;

71 OwnerPIN pincode;

72 final byte PIN_TRY_LIMIT = 0x03;

73 final byte PIN_SIZE = 0x04;

74 final byte INCOMING_PIN_OFFSET = 0x00;

75 byte[] h0Buffer = new byte[15000];

76 RSAPublicKey mPub;

77 RSAPublicKey sPub; //PLACEHOLDER

78

79

80 private SecureCard() {

81 //Instantiate all object the applet will ever need

82 try{

83

84 //Binding

85 pinIsPresentFlag = 0x00;

86 pincode = new OwnerPIN(PIN_TRY_LIMIT, PIN_SIZE);

87

88 byte[] pincombination = {0x01, 0x03, 0x03, 0x07};

89 pincode.update(pincombination, (short) 0, (byte) 0x04

↪→);

90

91

92

93

94 keys = new KeyPair(KeyPair.ALG_RSA, KeyBuilder.

↪→ LENGTH_RSA_512);

95 sKeys = new KeyPair(KeyPair.ALG_RSA, KeyBuilder.

↪→ LENGTH_RSA_2048);

96 //keys = new KeyPair(KeyPair.ALG_RSA, KeyBuilder.

↪→ LENGTH_RSA_2048);

97

98 //Set signature algorithm

99 sig = Signature.getInstance(Signature.

↪→ ALG_RSA_SHA_PKCS1, false);

100

101 sKeys.genKeyPair();

102 sPub = (RSAPublicKey) sKeys.getPublic();

103

104 mPub = (RSAPublicKey) KeyBuilder.buildKey(KeyBuilder.

↪→ TYPE_RSA_PUBLIC, (short) 512, false);

105

106 //Generate the card keys

107 keys.genKeyPair();

108 //Get the public key

107

109 uPub = (RSAPublicKey) keys.getPublic();

110

111 //Get the private key

112 uPrv = (RSAPrivateKey) keys.getPrivate();

113 //Initialize the signature object with card private

↪→ key

114 sig.init(uPrv, Signature.MODE_SIGN);

115

116 //Crypto RSA

117 cipherRSA = Cipher.getInstance(Cipher.ALG_RSA_PKCS1,

↪→ false);

118

119 //Crypto AES

120

121

122 cipherAES = Cipher.getInstance(Cipher.

↪→ ALG_AES_BLOCK_128_CBC_NOPAD, false);

123 aesKey = (AESKey) KeyBuilder.buildKey(KeyBuilder.

↪→ TYPE_AES, KeyBuilder.LENGTH_AES_128, false);

124 randomData = RandomData.getInstance(RandomData.

↪→ ALG_PSEUDO_RANDOM);

125 rnd = JCSystem.makeTransientByteArray((short)16,

↪→ JCSystem.CLEAR_ON_RESET);

126 randomData.generateData(rnd, (short)0, (short)rnd.

↪→ length);

127 aesKey.setKey(rnd, (short) 0);

128

129

130

131

132

133 }catch(CryptoException ex){

134 ISOException.throwIt((short)(ex.getReason()));

135 }catch(SecurityException ex){

136 ISOException.throwIt((short)(0x6F10));

137 }catch(Exception ex){

138 ISOException.throwIt((short)(0x6F20));

139 }

140

141

142

143 }

144

145 public static void install(byte[] bArray, short bOffset,

↪→ byte bLength) {

108

146 // GP-compliant JavaCard applet registration

147

148 new SecureCard().register();

149 }

150

151 public void process(APDU apdu) {

152 // Good practice: Return 9000 on SELECT

153 if (selectingApplet()) {

154 return;

155 }

156

157 byte[] buff = apdu.getBuffer();

158 short dataOffset = (short) 7; //Hardcoded as it cannot be

↪→ done dynamically (not working properly)

159

160

161 //Switch on the instruction code INS

162 switch (buff[ISO7816.OFFSET_INS]) {

163 case SEND_U_PUB_MOD:

164 //Retrieve the modulus, store it in the output byte

↪→ array and set the output length

165 size = uPub.getModulus(output, (short) 0);

166 break;

167 case SEND_U_PUB_EXP:

168 //Retrieve the public exponent, store it in the

↪→ output byte array and set the output length

169 size = uPub.getExponent(output, (short) 0);

170 break;

171 case SIGN:

172 short bytesReadSign = apdu.setIncomingAndReceive();

173 size = apdu.getIncomingLength();

174 short echoOffsetSign = (short)0;

175 while(bytesReadSign > 0){

176 Util.arrayCopyNonAtomic(buff, dataOffset, h0Buffer

↪→ , echoOffsetSign, bytesReadSign);

177 echoOffsetSign += bytesReadSign;

178 bytesReadSign = apdu.receiveBytes(dataOffset);

179 }

180 size = sig.sign(h0Buffer, (short) 0, bytesReadSign,

↪→ output, (short) 0);

181 break;

182 case (byte) BINDING:

183 byte p1 = buff[ISO7816.OFFSET_P1];

184

185 //First transaction

109

186 if(p1 == (byte) 0x01){

187 output[0] = 0x05; //Type of transaction

188 if(pincode.isValidated()){

189 output[1] = 0x01;

190 }

191 else{

192 output[1] = 0x00;

193 }

194

195 output[2] = pincode.getTriesRemaining(); //

↪→ PINIsOKFlag

196 size = (short) 3;

197 }

198

199 //Second transaction

200 else if(p1 == (byte) 0x02){

201

202 //SAFE COPY TO NEW BUFFER

203 short bytesRead = apdu.setIncomingAndReceive();

204 size = apdu.getIncomingLength();

205 short echoOffset = (short)0;

206 while(bytesRead > 0){

207 Util.arrayCopyNonAtomic(buff, dataOffset,

↪→ h0Buffer, echoOffset, bytesRead);

208 echoOffset += bytesRead;

209 bytesRead = apdu.receiveBytes(dataOffset);

210 }

211

212 pincode.check(h0Buffer, (short) 0, PIN_SIZE);

213 output[0] = 0x05; //Type of transaction

214

215 if(pincode.isValidated()){

216 output[1] = 0x09;

217 output[2] = 0x00;

218 size = (short) 3;

219

220 }

221 else{

222 output[1] = 0x00;

223 output[2] = pincode.getTriesRemaining();

224 size = (short) 3;

225 }

226 }

227

228 else if(p1 == (byte) 0x03){

110

229 // SAFE COPY TO NEW BUFFER

230 short bytesRead = apdu.setIncomingAndReceive();

231 short incomingLength = apdu.getIncomingLength();

232 short echoOffset = (short)0;

233 while(bytesRead > 0){

234 Util.arrayCopyNonAtomic(buff, dataOffset,

↪→ h0Buffer, echoOffset, bytesRead);

235 echoOffset += bytesRead;

236 bytesRead = apdu.receiveBytes(dataOffset);

237 }

238

239 short modLength = Util.makeShort((byte)0x00,

↪→ h0Buffer[0]);

240 short expLenghtPos = (short) ((short) modLength +

↪→ (short) 1);

241 short expLength = Util.makeShort((byte)0x00,

↪→ h0Buffer[expLenghtPos]);

242 short expStartPos = (short) (modLength + 2);

243

244 boolean mPubIsOK = false;

245

246 try{

247 mPub.setModulus(h0Buffer, (short) 1, modLength

↪→);

248 mPub.setExponent(h0Buffer, expStartPos,

↪→ expLength);

249 mPubIsOK = true;

250 }

251 catch(CryptoException ex){

252 output[0] = (byte) ex.getReason();

253 output[1] = (byte) 0x02;

254 size = 2;

255 break;

256 }

257 catch(Exception ex){

258 output[0] = (byte) 0x08;

259 output[1] = (byte) 0x08;

260 size = 2;

261 break;

262 }

263

264 if(mPubIsOK && pincode.isValidated()){

265 short totalsize = (short) (((short) ((short)

↪→ mPub.getSize() + (short) uPub.getSize

↪→ () + (short) aesKey.getSize()) / (short

111

↪→) 8) + 10); //10 in header DANGEROUS

266 byte[] packet = new byte[totalsize];

267 short outputSize = 0;

268

269 //AESKEY

270 aesKey.getKey(packet, (short) 0);

271 short AESKeyLength = (short) (aesKey.getSize()

↪→ /8);

272 //mPub

273 Util.arrayCopyNonAtomic(h0Buffer, (short) 0,

↪→ packet, AESKeyLength, (short)

↪→ incomingLength);

274 short AESmPubLenght = (short) (incomingLength

↪→ + AESKeyLength);

275 outputSize = AESmPubLenght;

276

277 byte[] tempUPubArr = new byte[incomingLength];

278

279 //uPub - modulus

280 short tempLength = uPub.getModulus(tempUPubArr

↪→ , (short)0);

281 packet[outputSize] = (byte)tempLength;

282 outputSize += 1;

283 Util.arrayCopyNonAtomic(tempUPubArr, (short)

↪→ 0, packet, (short) (AESmPubLenght+1),

↪→ tempLength);

284 outputSize += tempLength;

285

286 //uPub - exponent

287 tempLength = uPub.getExponent(tempUPubArr, (

↪→ short) 0);

288 packet[outputSize] = (byte)tempLength;

289 outputSize +=1;

290 Util.arrayCopyNonAtomic(tempUPubArr, (short)

↪→ 0, packet, (short) (outputSize),

↪→ tempLength);

291 outputSize += tempLength;

292

293 //Signing

294 short signatureSize = sig.sign(packet, (short)

↪→ 0, totalsize, h0Buffer, (short) 0);

295 short h0UnencryptedLength = (short) (

↪→ signatureSize + outputSize);

296

297 //Create unencrypted package

112

298 byte[] h0Unencrypted = new byte[

↪→ h0UnencryptedLength];

299 Util.arrayCopyNonAtomic(h0Buffer, (short) 0,

↪→ h0Unencrypted, (short) 0, signatureSize

↪→);

300 Util.arrayCopyNonAtomic(packet, (short) 0,

↪→ h0Unencrypted, signatureSize, totalsize

↪→);

301

302 //Encrypt with sPub

303 cipherRSA.init(sPub, Cipher.MODE_ENCRYPT);

304

305 try{

306

307 size = cipherRSA.doFinal(

308 h0Unencrypted,

309 (short) 0,

310 h0UnencryptedLength,

311 output,

312 (short)0);

313

314

315 }

316 catch(CryptoException ex){

317 output[0] = 0x09;

318 output[1] = (byte) ex.getReason();

319 size = 2;

320 }

321 }

322 else{

323 output[0] = 0x09;

324 output[1] = 0x09;

325 }

326

327 }

328 else if(p1 == (byte) 0x09){

329 pincode.resetAndUnblock();

330 output[0] = 0x05;

331 output[1] = 0x05;

332 size = (short) 2;

333 }

334

335

336

337 break;

113

338 case (byte) RSACRYPTO:

339 byte p1RSA = buff[ISO7816.OFFSET_P1];

340 if(p1RSA == (byte) 0x01){

341 cipherRSA.init(uPub, Cipher.MODE_ENCRYPT);

342 }

343 else if(p1RSA == (byte) 0x02){

344 cipherRSA.init(uPrv, Cipher.MODE_DECRYPT);

345 }

346

347 short bytesReadRSA = apdu.setIncomingAndReceive();

348 size = apdu.getIncomingLength();

349 short echoOffsetRSA = (short)0;

350 while(bytesReadRSA > 0){

351 Util.arrayCopyNonAtomic(buff, dataOffset,

↪→ cryptoBuffer, echoOffsetRSA, bytesReadRSA);

352 echoOffsetRSA += bytesReadRSA;

353 bytesReadRSA = apdu.receiveBytes(dataOffset);

354 }

355

356

357 size = cipherRSA.doFinal(

358 cryptoBuffer,

359 (short) 0,

360 size,

361 output,

362 (short)0);

363 break;

364

365 case (byte) REFLECT:

366

367 short bytesRead = apdu.setIncomingAndReceive();

368 //size = bytesRead;

369 size = apdu.getIncomingLength();

370 short echoOffset = (short)0;

371 while(bytesRead > 0){

372 Util.arrayCopyNonAtomic(buff, dataOffset, output,

↪→ echoOffset, bytesRead);

373 echoOffset += bytesRead;

374 bytesRead = apdu.receiveBytes(dataOffset);

375 }

376 break;

377

378 case (byte) AESCRYPTO:

379 byte p1AES = buff[ISO7816.OFFSET_P1];

380 if(p1AES == (byte) 0x01){

114

381 cipherAES.init(aesKey, Cipher.MODE_ENCRYPT);

382 }

383 else if(p1AES == (byte) 0x02){

384 cipherAES.init(aesKey, Cipher.MODE_DECRYPT);

385 }

386

387

388 short bytesReadECAES = apdu.setIncomingAndReceive();

389 size = apdu.getIncomingLength();

390 short echoOffsetECAES = (short)0;

391 while(bytesReadECAES > 0){

392 Util.arrayCopyNonAtomic(buff, dataOffset,

↪→ cryptoBuffer, echoOffsetECAES,

↪→ bytesReadECAES);

393 echoOffsetECAES += bytesReadECAES;

394 bytesReadECAES = apdu.receiveBytes(dataOffset);

395 }

396

397 try{

398 size = cipherAES.doFinal(

399 cryptoBuffer,

400 (short) 0,

401 (short) size,

402 output,

403 (short)0);

404 }

405 catch(CryptoException ex){

406 size = 2;

407 output[0] = (byte) ex.getReason();

408 output[1] = 0x02;

409 }

410

411 break;

412

413 default:

414 // good practice: If you don’t know the INStruction,

↪→ say so:

415 ISOException.throwIt(ISO7816.SW_INS_NOT_SUPPORTED);

416 }

417

418 send(apdu);

419 }

420

421 //Common method that sets the size of the output to the

↪→ global variable size and sends the content of the

115

↪→ global variable output

422 private void send(APDU apdu) {

423 apdu.setOutgoing();

424 apdu.setOutgoingLength(size);

425 apdu.sendBytesLong(output, (short) 0, size);

426 cleanBuffers();

427 }

428

429 private void cleanBuffers(){

430 h0Buffer = new byte[32767];

431 output = new byte[32767];

432 }

433 }

116

Appendix B

Android library

We chose to only include the CommunicationController in this appendix
as including all of the code for the library would exceed the sensible amount
of pages in an appendix. We recommend investigating the Android library
in an IDE for specifics on how classes are implemented.

Listing B.1: CommunicationController.java.

1 package com.master.henrik.controller;

2

3 import android.app.Activity;

4 import android.util.Log;

5

6 import com.master.henrik.shared.CommunicationType;

7 import com.master.henrik.shared.Converter;

8

9 import java.security.interfaces.RSAPublicKey;

10 import java.util.Arrays;

11

12 /**

13 * Created by Henri on 17.04.2016.

14 */

15 public class CommunicationController {

16

17 NFCSmartcardController nfcscc;

18 MSDSmartcardController msdscc;

19 final String TAG = "CommunicationController";

20 CommunicationType type = CommunicationType.NOTSET;

21

117

22 /**

23 *

24 * @param nfcSmartcardControllerInterface The interface

↪→ which the activity implements for asynchronous

↪→ communication between the smart card and activity..

25 * @param currentActivity

26 */

27 public void setupNFCController(

↪→ NFCSmartcardControllerInterface

↪→ nfcSmartcardControllerInterface, Activity

↪→ currentActivity) {

28 if(nfcscc == null) {

29 nfcscc = new NFCSmartcardController(

↪→ nfcSmartcardControllerInterface,

↪→ currentActivity);

30 }

31 type = CommunicationType.NFC;

32 }

33

34 public void initNFCCommunication(String cardAID, String INS

↪→ , String P1, String P2, String hexMessage){

35 Log.i(TAG, "Initiated NFCCommunication.");

36 nfcscc.sendDataToNFCCard(cardAID, INS, P1, P2,

↪→ hexMessage);

37 }

38

39 public void disableNFC(){

40 nfcscc.disableNFC();

41 }

42

43 /**

44 *

45 * @param msdSmartcardControllerInterface The interface

↪→ which the activity implements for asynchronous

↪→ communication between the smart card and activity.

46 * @param currentActivity

47 */

48 public void setupmSDController(

↪→ MSDSmartcardControllerInterface

↪→ msdSmartcardControllerInterface, Activity

↪→ currentActivity) {

49 if(msdscc == null) {

50 msdscc = new MSDSmartcardController(

↪→ msdSmartcardControllerInterface,

↪→ currentActivity);

118

51 }

52 type = CommunicationType.MSD;

53 }

54

55 public void initmSDCommunication(String cardAID, String INS

↪→ , String P1, String P2, String hexMessage){

56 Log.i(TAG, "Initiated MSDCommunication.");

57 msdscc.sendDataTomSDCard(cardAID, INS, P1, P2,

↪→ hexMessage);

58 }

59

60 public void bindingStepOne(String AID){

61 if(type.equals(CommunicationType.NFC)){

62 nfcscc.sendDataToNFCCard(AID, "05", "01", "00", "00

↪→ ");

63 }

64 else{

65 msdscc.sendDataTomSDCard(AID, "05", "01", "00", "00

↪→ ");

66 }

67 }

68

69 public void bindingStepTwo(String AID, String code){

70 if(type.equals(CommunicationType.NFC)){

71 nfcscc.sendDataToNFCCard(AID, "05", "02", "00",

↪→ code);

72 }

73 else{

74 msdscc.sendDataTomSDCard(AID, "05", "02", "00",

↪→ code);

75 }

76 }

77

78 public void bindingStepThree(String AID, RSAPublicKey mPub)

↪→ {

79 byte[] publicByteArrModTemp = mPub.getModulus().

↪→ toByteArray();

80 byte[] publicByteArrMod = Arrays.copyOfRange(

↪→ publicByteArrModTemp, 1, publicByteArrModTemp.

↪→ length); //Remove signed short

81 byte[] publicByteArrExp = mPub.getPublicExponent().

↪→ toByteArray();

82

83 String publicHexKeyMod = Converter.ByteArrayToHexString

↪→ (publicByteArrMod);

119

84 String modLength = Integer.toHexString(publicHexKeyMod.

↪→ length()/2);

85

86 Log.d(TAG, "Mod: " + publicHexKeyMod);

87 Log.d(TAG, publicHexKeyMod.length() +" : " + modLength)

↪→ ;

88

89 String publicHexKeyExp = Converter.ByteArrayToHexString

↪→ (publicByteArrExp);

90 String expLength = "0" + Integer.toHexString(

↪→ publicHexKeyExp.length()/2);

91 Log.d(TAG, "Exp: " + publicHexKeyExp);

92 Log.d(TAG, publicHexKeyExp.length() + " : " +expLength)

↪→ ;

93

94 String fullMessage = modLength + publicHexKeyMod +

↪→ expLength + publicHexKeyExp;

95

96

97 Log.d(TAG, "Fullmsg length: " + fullMessage.length());

98 Log.d(TAG, "Fullmsg: " + fullMessage);

99 nfcscc.sendDataToNFCCard(AID, "05", "03", "00",

↪→ fullMessage);

100 }

101

102 /**

103 * Sign data using smart card.

104 * @param type

105 * @param cardAID

106 * @param hexMessage

107 */

108 public void signData(CommunicationType type, String cardAID

↪→ , String hexMessage){

109 if(type.equals(CommunicationType.NFC)) {

110 nfcscc.sendDataToNFCCard(cardAID, "03", "00", "00",

↪→ hexMessage);

111 }

112 else{

113 msdscc.sendDataTomSDCard(cardAID, "03", "00", "00",

↪→ hexMessage);

114 }

115 }

116

117 /**

118 * Encrypt or decrypt data using RSA. Uses the smart card’s

120

↪→ keypair.

119 * @param type

120 * @param encrypt true for encrypt, false for decrypt.

121 * @param cardAID

122 * @param hexMessage

123 */

124 public void cryptoRSA(CommunicationType type, boolean

↪→ encrypt, String cardAID, String hexMessage){

125 String p1 = "02";

126 if(encrypt) {

127 p1 = "01";

128 }

129

130 if(type.equals(CommunicationType.NFC)) {

131 nfcscc.sendDataToNFCCard(cardAID, "06", p1, "00",

↪→ hexMessage);

132 }

133 else{

134 msdscc.sendDataTomSDCard(cardAID, "06", p1, "00",

↪→ hexMessage);

135 }

136 }

137

138 /**

139 * Encrypt or decrypt data using AES. Uses the smart card’s

↪→ symmetric key.

140 * @param type

141 * @param encrypt true for encrypt, false for decrypt.

142 * @param cardAID

143 * @param hexMessage

144 */

145 public void cryptoAES(CommunicationType type, boolean

↪→ encrypt, String cardAID, String hexMessage){

146 String p1 = "02";

147 if(encrypt) {

148 p1 = "01";

149 }

150

151 if(type.equals(CommunicationType.NFC)) {

152 nfcscc.sendDataToNFCCard(cardAID, "09", p1, "00",

↪→ hexMessage);

153 }

154 else{

155 msdscc.sendDataTomSDCard(cardAID, "09", p1, "00",

↪→ hexMessage);

121

156 }

157 }

158

159 /**

160 * Retrive the smart card public key modulus.

161 * @param type

162 * @param cardAID

163 */

164 public void getCardPubMod(CommunicationType type, String

↪→ cardAID){

165 if(type.equals(CommunicationType.NFC)) {

166 nfcscc.sendDataToNFCCard(cardAID, "01", "00", "00",

↪→ "00");

167 }

168 else{

169 msdscc.sendDataTomSDCard(cardAID, "01", "00", "00",

↪→ "00");

170 }

171 }

172

173 /**

174 * Retrive the smart card public key exponent.

175 * @param type

176 * @param cardAID

177 */

178 public void getCardPubExp(CommunicationType type, String

↪→ cardAID){

179 if(type.equals(CommunicationType.NFC)) {

180 nfcscc.sendDataToNFCCard(cardAID, "02", "00", "00",

↪→ "00");

181 }

182 else{

183 msdscc.sendDataTomSDCard(cardAID, "02", "00", "00",

↪→ "00");

184 }

185 }

186 }

122

Appendix C

Diagrams

Figure C.1: Class diagram for Android Library.

123

Appendix D

Framework installation

D.1 Smart card development environment

Setup guide for developing smart card applications using Eclipse 3.2.

1. Unzip “Smart card.zip”

2. Install Java Development Kit 6u45. Use “jdk-6u45-windows-i586.exe”
for 32-bit Windows. Other operating system versions can be
found at: http://www.oracle.com/technetwork/java/javase/

downloads/java-archive-downloads-javase6-419409.html#

jdk-6u45-oth-JPR

3. Copy the contents of “java card kit-2 2 2-windows” to a directory of
your choice.

4. Copy the contents of “eclipse-SDK-3.2.2-win32” to a directory of your
choice.

5. Copy the contents from “eclipse-jcde-0.2
plugins” into the plugin folder for Eclipse from previous step.

6. Start Eclipse using the batch script “RUN ME.bat”.

7. In the toolbar select “Java Card →Preferences” and make sure the
Java Card Development Kit path points to where the kit was installed.
Refer to figure D.1.

8. In the toolbar select “JCWDE →Preferences” and make sure the Java

124

Card Development Kit path points to where the kit was installed.
Refer to figure D.1.

Figure D.1: Configuring Java Card kit 2.2.2 for Eclipse.

D.2 Smart card deployment

Setup guide for deploying smart card applications using GlobalPlatformPro
(GP).

1. Copy the contents of “Smart card deployment” to a directory of your
choice.

2. Configure “runMe.bat” and point to the correct .cap file.

3. Run “runMe.bat” to delete and install your smart card application.

D.3 Smart card testing

Setup guide for testing smart card applications using PyAPDUTool.

1. Copy the contents of “Smart card test tools” to a directory of your
choice.

2. Run the tools.

125

D.4 Android development environment

Setup guide for developing Android applications with our smart card library
using Android Studio.

1. Download the newest version of Android Studio from http://

developer.android.com/sdk/index.html

2. Install Android SDK 6.0 using the Android SDK Manager.

3. Add the libraries “gPKIKeyStore” and “smartcardLibrary” to
your Android application. http://developer.android.com/sdk/

installing/create-project.html#ReferencingLibraryModule

4. Fix any potential path issues.

126

