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Abstract

Magnetic resonance diffusion tensor imaging (DTI) is both an advanced imaging technique and
increasingly clinically important. DTI enables many options and parameters such as number of
slices, image matrix, slice thickness, diffusion weighting (i.e. b-value), number of diffusion sensi-
tizing directions, and number of measurements (NEX) to be k-space averaged in each direction.

The aim of my master thesis project was to study which of several different combinations of
DTI sequence parameters gives the best estimation of the diffusion tensor (D) and a geometric
measure of diffusion anisotropy - the fractional anisotropy (FA) index.

The DTI parameters subject to experimental control were:

(i) the number, K, of diffusion sensitizing gradient directions,
gk = (gkx,gky,gkz)

T(k = 1, . . . ,K;K ≥ 6), and

(ii) the number of image excitations (NEX) used for averaging in each of the directions
k = 1, . . . ,K.

It is expected that both increasing K and NEX will increase the quality of the images and the
voxel-wise diffusion tensor derived from these image data.However, both factors are increasingly
time consuming. The task was then to experimentally determine which combination of (i) and (ii)
will give the best result for a fixed duration of measurement time (approximately 7 min).

In this experiment we have used three different experimental setups (protocols) for each of
the participating subjects, i.e. 1. K=6 and NEX =8; 2. K=13 and NEX =4; 3. K=25 and NEX
=2. Time consumption for each of these protocols was approximately 7 minutes. We compared
results from 5 healthy volunteers using a GE Signa 1.5 Tesla Echospeed MR scanner. All subjects
were males (age: 24-29 years). Other parameters that were common for all subjects were: 24 axial
slices covering the whole brain, 4mm slice thickness, 128x128 acquisition matrix (interpolated to
256x256), b=1000s/mm2.

To analyze the goodness and difference between the three protocols we calculated standard
deviation, mean and coefficient of variation of tissue specific (i.e. WM, GM, CSF using SPM2)
fractional anisotropy values. We also plotted the standarddeviation of FA, as a function of the
principal direction of diffusion in three dimensional plots (using spherical coordinates) and em-
ployed visual inspection of color-coded fractional anisotropy images as well. All this was done to
reveal differences in quality and direction dependent variation in FA between the three protocols.

From our data and analysis we found that there was, in white matter, a slightly higher quality
for the protocol with K= 6 and NEX = 8 than for the other two protocols, and for CSF with K=
25 and NEX = 2 the quality was slightly higher than using K=6 and NEX = 8. However the
difference was too small to make any firm recommendations between the three protocols. Since a
large number of directions enables more sophisticated analysis (e.g. diffusion spectrum imaging,
DSI) we recommend a protocol with a high number of directions(for a given measurement time).
This is also in accordance with the latest recommendation from the vendor of the scanner where
K=25 and NEX=1 is proposed in their standard DTI protocol.
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1

General Introduction

1.1 Diffusion of molecules

1.1.1 The diffusion process

Diffusion is a physical process that involves the translational movement of molecules
from one part of space to another via thermally driven randommotions called
Brownian motions. It can be illustrated by the classical experiment (see fig. 1.1)
in which a tall cylindrical container has its lower part filled with iodine solution
and a column of clear water is poured on top in such a way that noconvection
currents are set up. At first the colored part is separated from the clear part by
a sharp, well-defined boundary. Later it is found that the upper part becomes
colored, the color getting fainter towards the top, while the lower part becomes
correspondingly less intensely colored until a sufficient time has passed and the
whole solution appears uniformly colored. There is an indisputable transfer of
iodine molecules from the lower to the upper part of the vessel taking place in
the absence of convection currents. The iodine is said to have diffused into the
water. By replacing the iodine with particles small enough to share the molecular
motions, but large enough to be visible under the microscope, it will be possible
to observe that the motion of each molecule is random. In a dilute solution the
diffusing molecules will seldom meet and will therefore behave independently.
Each will constantly undergo collisions with solvent molecules which sometimes
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Figure 1.1: The diffusion process

results in motion towards a region of higher concentration and sometimes towards
a region of lower concentration, having no preferred direction. The motion of a
single molecule can be described in terms of a “random walk”,and whilst it is
possible to calculate the mean-square distance traveled ina given interval of time
it is not possible to say in what direction that given molecule will move in that
time. The picture of the diffusion as a random motion processwhich has no pre-
ferred direction, has to be reconciled with the fact that thediffusing particle is
nevertheless observed to move from a region of high concentration to a region of
low concentration. To illustrate this, imagine any horizontal section in the solu-
tion and two thin, equal, elements of volume one just below and one just above
the section. Even if it is not possible to predict which way any particular diffusion
molecule will move in a given interval of time, it will be discovered that on the
average the same amount of molecules will cross the section upwards from the
lower volume as will downwards from the upper volume. Thus, simply because
there are more diffusion molecules in the lower element thanin the upper one,
there is a net transfer from the lower to the upper side of the section as a result of
random molecular motion.

1.1.2 Diffusion isotropy and anisotropy

In a given amount of time the distance the water molecule diffuses can be the
same in all directions or longer in some directions than others. The former case is
termed isotropic diffusion and the latter case anisotropicdiffusion. In a pure liquid
where there are no hindrances to diffusion or in a sample where the barriers are
not coherently oriented water molecules diffuse isotropically or nearly isotropi-
cally. In a sample with highly oriented barriers the diffusion distance depends
on which direction it spreads out, hence the water moleculesdiffuse anisotrop-
ically. In this way, structural subtypes can be identified simply on the basis of
their diffusion characteristics and the anisotropy is directly related to the geom-
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etry of the diffusion hindrances. In our case we study water diffusion in tissue
using proton magnetic resonance diffusion tensor imaging (MR-DTI), where dif-
fusion characteristics such as isotropy and anisotropy arerelated to the geometry
and physico-chemical properties of local tissue micro-architecture.

1.1.3 The concept of eigenvectors and eigenvalues of a tensor
matrix

The six different components of the diffusion tensor are defined according to the
scanner frame of reference, i.e. reference coordinate system for the diffusion sen-
sitizing gradientsgk (see section 1.3). However, it is possible to transform the
calculated diffusion tensorD into another tensor matrixD having off-diagonal
elements equal to zero, i.e. matrix diagonalization.D = PDP−1 if the column
vectors ofP aren linearly independent eigenvectors ofD and the diagonal entries
of D are the corresponding eigenvalues. We say a 3×3 matrix A has an eigen-
vectore and corresponding eigenvalueλ if Ax= λx where the eigenvectorei for
i = 1 corresponding to the largest eigenvalueλi denotes the principal direction of
diffusivity.

1.1.4 Remark on spatial transformation of DTI data

When registering DT-MR images, a spatial transformation ofthe data is applied.
However, it is well known that spatial transformation of a tensor field is different
from transformation of scalar images, because DTI containsdirectional informa-
tion which are affected by the transformation [1]. In this paragraph we show how
the tissue-based principal diffusion direction (i.e. direction of eigenvector associ-
ated to the largest eigenvalue) can be preserved when applying spatial transforma-
tions consisting of a series of simple rotations of the x-, y-and z-axis.

Assume that R is the 3x3 rotation matrix representing the image transforma-
tion. Then it can be shown (e.g. [1]) that if each diffusion tensor D is replaced by
D’, defined by the similarity transform, D’ = RDRT, then the new diffusion tensors
D’ are consistent with the anatomical structures being transformed. This is so be-
cause a similarity transform preserves the eigenvalues, and only the eigenvectors
are affected.

Before we present results from our MATLAB implementation ofthe similar-
ity transform, we give an example where the original image istransformed, and
where the values at each voxel in the transformed image is simply copied from
the corresponding position in the original image using someinterpolation method
[2]. In Fig. 1.2 (b) we see that the fiber pathways in the corpuscallosum no longer
points in the same direction as in the pre-transformed image(a). However, after
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proper reorientation of the tensor (using the above similarity transform) we see
that the local tissue orientation is preserved (Fig. 1.2 (c)). In Fig. 1.3 we see the
effect of using the similarity transform for given tensor D and rotation matrix R
(as implemented in MATLAB, where a fragment of the code is given in appendix
B.1).

(a) (b) (c)

Figure 1.2: A 45◦ rotation of the DT-MRI image, with and without tensor reorientation
(modified from [2]). (a) tensor glyph image (zoomed in aroundthe corpus callosum),
(b) rotated image without reorientation of tensors, (c) rotated image after reorientation of
tensors.
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1.2 Causes for anisotropy in the human brain

Figure 1.4: Myelin, theaxonal membrane, microtubulesandneurofilamentsare all longi-
tudinally oriented structures that could hinder water diffusion perpendicular to the length
of the axon and cause the perpendicular diffusion coefficient D ⊥ to be smaller than the
parallel diffusion coefficientD ‖. Other postulated sources of diffusion anisotropy are
axonal transport and susceptibility-induced gradients. Taken from Beaulieu [3].

1.2.1 Myelin and axonal membranes

The interest in studying the white matter maturation and demyelinating diseases
such as multiple sclerosis with diffusion weighted MRI has probably forced through
the unproven hypothesis of the time for anisotropic diffusion, namely that the
myelin sheath encasing the axons is the primary source for anisotropy. The nu-
merous lipid bilayers of myelin have limited permeability to water and would
be expected to hinder diffusion perpendicular to the fibers more than diffusion
in the parallel direction. If myelin were the sole source of anisotropy, then it
would be expected that diffusion would be much more isotropic in a normal fiber
tract without myelin. In one of the first systematic studies on the underlying
source of anisotropy, this was found not to be the case by Beaulieu and Allen
[5], who showed that water diffusion was significantly anisotropic in a normal,
intact, non-myelinated olfactory nerve of the garfish. The degree of anisotropy
in these excised nerve samples measured at room temperaturewas quite similar
to the anisotropy measuredin vivo in humans, lending credibility to thein vitro
data, although the absolute ADC values were likely modulated by the excision
of the nerves and the temperature difference. This study provided the first ev-
idence that myelin was not an essential component for anisotropic diffusion in
neural fibers and that structural features of the axons otherthan myelin are suffi-
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Figure 1.5: Diffusion barriers and ultrastructure of myelinated nervefibers. A is short for
axon, m for microtubulus, nf for neurofilaments, SR for smooth endoplasmatic reticulum
and Al for axolemma. The images are taken from Peterset al. [4].

cient to give rise to anisotropy. This initial observation of anisotropy in the intact
non-myelinated garfish olfactory nerve has subsequently been confirmed in vari-
ous other models with non-myelinated neural fibers bothin vitro and in vivo [5].
Moreover, in a report by Gulaniet al. [6] diffusion tensor micro-imaging of the
spinal cord in an X-linked recessive Wistar rat mutant, which shows near total
lack of myelination in its central nervous system, shows that myelination of white
matter is not a requirement for the presence of significant anisotropic diffusion.
The anisotropy decreased only by about twenty percent in themyelin deficient
rats relative to healthy rats and signified that the residualstructures, namely the
membranes of the numerous axons, are sufficient for anisotropic diffusion in this
model. However, the myelin deficit did alter the absolute ADCvalues. The in-
creased water mobility was more prevalent in the perpendicular direction than in
the parallel. Hüppiet al. [7] and Neil et al. [8] showed respectively diffusion
anisotropy in non-myelinated fibers of the corpus callosum and anterior limb of
the internal capsule in humans. Thereforeanisotropic water diffusion in neural
fibers must not be regarded as myelin specific, and the packed arrangement of
non-myelinated axons is sufficient to impede perpendicularwater diffusion and
generate anisotropy [9, 10, 11, 12, 13]. Gulaniet al. [6] pointed out that myeli-
nation can modulate the degree of anisotropy. Because direct comparisons of
anisotropy between unique fibers with different axon diameters, degree of myeli-
nation and fiber packing density are difficult, a quantitative or qualitative determi-
nation of the relative importance of myelin, relative to theaxonal membranes are
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difficult to assess. Thus for two given fiber tracts with equally sized axons and
density, one with myelin and one without, it would still be predicted that myelin
would increase anisotropy due to greater hindrance to intra-axonal diffusion and
greater tortuosity for extra-axonal diffusion. Pierpaoliet al. [14] had also diffi-
culty in attributing particular micro-structural features to explain the variability
in diffusion anisotropy observed amongst different white matter tracts in the adult
human brain. Sakumaet al. [15] observed that anisotropy increases with brain de-
velopment in neonates. However, there are questions as to whether this signifies
myelination and/or just improved coherence of the fiber tracts.

1.2.2 Neurofibrils and fast axonal transport

Inside the axons is the complex and dense three-dimensionalcytoskeleton. It is
composed of longitudinally oriented and cylindrically shaped neurofibrils. These
are microtubules and neurofilaments, inter-connected by small microfilaments. If
the small and numerous neurofibrils presented sufficient physical barriers to hin-
der perpendicular water diffusion to a greater extent than parallel, these structures
could presumably cause anisotropic diffusion. In addition, fast axonal transport
is intimately linked to the presence of microtubules since cellular organelles (e.g.
mitochondria and vesicles) are transported by their attachment to mechanochem-
ical enzymes that pull the organelles along the microtubules tracks. Beaulieu

Figure 1.6: Diffusion barriers and axoplasmatic ultrastructure. D is short for dense under-
coating, m for microtubules, mit for mitochondrion, nf for neurofilaments, SR for smooth
endoplasmatic reticulum, D for dense layer, r for ribosomes, Al for axolemma, AX for
axon hillock and At for axon-terminal. The images are taken from Peterset al. [4].

and Allen [5] evaluated the role of microtubules and fast axonal transport in
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anisotropic diffusion by treating excised myelinated and non-myelinated nerves of
the garfish with vinblastine. Vinblastine is known to depolymerize microtubules
and inhibit fast axonal transport. The authors demonstrated that anisotropy was
preserved in all three types of nerve treated with vinblastine suggesting that micro-
tubules, of themselves, and the fast axonal transport they facilitate are not the dom-
inant determinants of anisotropy. However, all three vinblastine-treated nerves
demonstrated absolute ADC decreases of approximately 30-50 percent in both the
parallel and perpendicular directions relative to the freshly excised nerves. This
finding was attributed to either an increase in free tubulin (the monomeric unit
of microtubules), the presence of vinblastine paracrystals within the axoplasm or
some degradation over the 48 hours that the nerves were immersed in vinblastine
buffer. In Beaulieu and Allen [16] the influence of the neurofilamentary cytoskele-
ton on water mobility was evaluated by making measurements in axoplasm with
minimal interference from membranes. This is possible by examining the axo-
plasmic space in the isolated giant axon from squid, becausethe diameter is much
greater than the one-dimensional (root-mean-square) RMS displacement (approx-
imately 11µm)of a water molecule randomly diffusing over typical diffusion times
used in NMR studies (approximately 30ms). The conclusions from this work is
that the neurofilaments do not have a significant role in diffusion anisotropy within
the axon. This points towardsthe importance of myelin and multiple axonal mem-
branesas the primary determinant of the observed anisotropy in neural fibers.

1.2.3 Local magnetic susceptibility

Anisotropic water diffusion, as measured by MR-DTI, can possibly be caused
by local susceptibility-difference-induced gradients inthe nerves and white mat-
ter. Trudeauet al. [17] was the first to evaluate the potential contribution of
magnetic susceptibility to white matter anisotropy in an experiment on excised
porcine spinal cord at 4.7 T. In their experimental procedure, it was possible to
respectively minimize or maximize the background gradients by varying the ori-
entation of the fiber tracts parallel or perpendicular to thestatic magnetic fieldB0.
The ADCs measured parallel or perpendicular to the fibers were found to be inde-
pendent of the fiber orientation relative toB0. Hence the induced gradients seem
not to play a role in the anisotropy of white matter diffusion.

The independence of ADC and anisotropy on susceptibility-induced gradi-
ents was also confirmed by Beaulieu and Allen [18]. Four different nerves from
garfish and frog was excised and evaluated at 2.35 T by varyingthe orientation of
the fibers relative to the static magnetic field and by eliminating the background
gradients through the use of a spin-echo diffusion sequencewith a specific bipo-
lar gradient pulse scheme. Clarket al. [19] extended this work to human brain
white matterin vivo at 1.5 T, and found no effect of local magnetic susceptibility
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induced gradients on water diffusion.

1.2.4 Concluding remarks on biological causes for diffusion
anisotropy

By experimental elimination of the dominating role of fast axonal transport, the
axonal cytoskeleton of neurofibrils and microfilaments and local susceptibility-
difference-induced gradients, the intact membranes are confirmed to be the pri-
mary determinant of anisotropic water diffusion in neural fibers such as brain or
spinal cord white matter and nerve-bundles. The available data do not permit
the dissection of the individual contributions of myelin and axonal membranes to
the degree of anisotropy, but the evidence suggests that myelination, although not
necessary for significant anisotropy, can modulate the degree of anisotropy.

1.3 Calculation of the diffusion tensor, D

In several earlier studies [5, 16, 18, 19] excised neural fiber samples would be
readily oriented parallel or perpendicular to the applied gradients (i.e. the labo-
ratory frame of reference) in order to simplify the measurements of the principal
diffusion coefficients. This was done because it obviated the need for calculating
the full diffusion tensor and the signal to noise ratio (SNR)was good. Then the ra-
tio of the parallel ADC over the perpendicular ADC is presented as an immediate
and intuitive feel for the degree of anisotropy.

The full tensor is needed to calculate the anisotropy for a whole brainin vivo.

1.3.1 Stejskal-Tanner equation system

Magnetic resonance diffusion tensor imaging (MR-DTI) ([20], [21]) is sensitive
to molecular displacement along the axis of the diffusion-sensitizing gradients
applied in a standard Stejskal-Tanner pulsed-gradient spin-echo (PGSE) experi-
ment [22]. Therefore, diffusion along different directions in tissue can be readily
evaluated by varying the direction of the diffusion-sensitizing gradients.

In DTI, image intensities are related to the relative mobility of endogenous
tissue water molecules. From diffusion measurements in several directions a dif-
fusion tensor is calculated for each voxel. The tensor describes the local water dif-
fusion. To accomplish this, the Stejskal-Tanner imaging sequence [22] is typically
used. The Stejskal-Tanner sequence uses two strong gradient pulses, symmetri-
cally positioned around a 180◦ refocusing pulse allowing for controlled diffusion
weighting, see figure 1.7. The first gradient pulse induces a phase shift for all
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spins and the second gradient pulse reverses it. Thus the phase shift will be can-
celed for static spins. But for spins that have completed a change of location due
to Brownian motion during a time period∆, the phase shift will be different for
the two gradient pulses. This means that the gradient pulsesare not completely
refocused, which consequently results in a signal loss. Theprinciples of MR-DTI
is described in more detail in appendix D. To eliminate the dependence of T1 and
T2 relaxation and spin density, at least two independent measurements of diffu-
sion weighted images must be taken. The images must be differently sensitized to
diffusion but remain identical in all other respect. To manage that, one measure-
ment without diffusion weighting and one with diffusion weighting is typically
used to calculate diffusion with the following equation [22]

S= S0e−bD (1.1)

HereD is the diffusion constant in the voxel,S0 is the observed signal intensity
without diffusion weighting (i.e. b=0) andS is the observed signal intensity with
diffusion weighting. The amount of diffusion weighting is given by the so-called
b-factor, introduced by Le Bihanet al. [23] and is defined as:

b = γ2δ 2
(

∆− δ
3

)

|G|2 (1.2)

whereγ is the proton gyro magnetic ratio (42 MHz/Tesla for water proton spin),
|G| is the strength (i.e. area) of the diffusion sensitizing gradient pulses and∆ is
the time between diffusion gradient pulses. The diffusion constantD with unit

Figure 1.7: The Stejskal-Tanner imaging sequence, see text for explanations.

[m2/s], is also known as ADC (Apparent Diffusion Coefficient). The term ap-
parent is used to take into account that it is not a true measure of the “intrinsic”
diffusion, but rather that the diffusion parameter dependson the interactions of the
diffusing water molecules with the tissue micro-structures in the volume element
(voxel) over a given diffusion time. It also emphasizes thatthe diffusion parame-
ter generated from this procedure depends on the experimental conditions such as
the directiong of the sensitizing gradientG. In the case of anisotropic diffusion
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Eq. (1.1) has to be written in a more general form,

S= S0e−γ2δ 2[∆−(δ/3)]gTDg (1.3)

Remember that under the assumption that the probability of molecular Brow-
nian motion follows a multivariate Gaussian distribution over the observation
time, the diffusion can be described by a 3× 3 tensor matrix, proportional to
the variance/co-variance of the Gaussian distribution. The diffusion tensorD is
characterized by nine elements:

D =







Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz






(1.4)

. Here the diagonal elementsDxx, Dyy andDzzdefine the diffusion constants along
the x, y and z-axes of the laboratory frame of reference, and the off-diagonal
elementsDi j represents the effect of a concentration gradient along oneaxis i on
the diffusive displacement along an orthogonal axisj. For water the diffusion
tensor is symmetric such thatDi j = D ji for i, j = x,y,z. Accordingly, the water
diffusion tensorD is completely defined by the six elements:Dxx, Dyy, Dzz, Dxy,
Dxz andDyz.

The formula in Eq. (1.3) reverts to the isotropic case (Eq. (1.1)) with D = DI ,
whereI is the identity matrix. By inserting normalized gradient vectors,ĝ= g/|g|,
we can write equation (1.3) using LeBihan’sb-factor Eq.(1.2) as

S= S0e−bĝTDĝ (1.5)

In addition to the baseline imageS0, there is thus a need for at least six
measurements, using different non-collinear gradient directions, to estimate the
symmetric 3×3 diffusion tensorD. Therefore, at least seven images with dif-
ferent diffusion weightings and gradient directions need to be collected for each
slice in the data set. Figure 1.8 shows an example of a datasetwith seven mea-
surements with the corresponding diffusion sensitizing gradient directions, where
{S0,S1, . . .,S6} represents the signal intensities in the presence of the gradients
gk for k ≧ 6. S0 is the signal intensity in the absence of a diffusion-sensitizing
field gradient (|g0| = 0), which is the baseline measurement to which the remain-
ing measurementsSk can be related. By inserting the gradientsgk and the signals
{Sk} into Eq. (1.3) we have

Sk = S0e−bĝT
k Dĝk (1.6)
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Figure 1.8: Examples of sagittal diffusion measurements with corresponding magnetic
field gradients used for diffusion weighting. Courtesy of Skare [24].

It is now possible to calculate the full tensor from this system of equations:

ln(S1) = ln(S0)−bĝT
1 Dĝ1,

ln(S2) = ln(S0)−bĝT
2 Dĝ2,

ln(S3) = ln(S0)−bĝT
3 Dĝ3,

ln(S4) = ln(S0)−bĝT
4 Dĝ4,

ln(S5) = ln(S0)−bĝT
5 Dĝ5,

ln(S6) = ln(S0)−bĝT
6 Dĝ6.

(1.7)

By solving this equation system for each voxel in the data set(note that allgk

column vectors are given by the sequence definition), it is possible to get the final
diffusion tensor field.

1.3.2 A least squares estimation method

For more than six diffusion sensitizing directions,g1, . . . ,gk, . . . ,gK for K > 6 a
least-squares estimation method for obtaining the diffusion tensorD is the obvious
choice. Below we give a short description, generalizing simple linear regression
in 2D.

Simple Linear Regression

Let us look at a 2D example first. Say we have a linear relationship, representing
a straight line, betweenx andy, y= β1+β2x, where the coefficientsβ1 andβ2 are
unknown. Moreover, the independent variable x (and the dependent variably y) are
typically hampered with uncertainty, i.e. stochastic variables. Since a straight line
can be determined by two arbitrary points along that line, itis obviously sufficient
to let only two arbitrary observations(x1,y1) and(x2,y2) determineβ1 andβ2. If
we then do a third observation, this point(x3,y3) will probably not lay directly on
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that straight line. The problem is, how are we going to take into consideration the
third point, which do not lay on the line but none the less is asimportant as the
two other points in determiningβ1 andβ2

Usually, it is not the case that the three points(x1,y1),(x2,y2),(x3,y3) lay di-
rectly on the straight line. In least squares linear regression, we want the line is
positioned (determined fromβ1 andβ2) in such a way that the sum of squares:

Q(β1,β2) =
n

∑
i=1

(y(observed)−y(on the line))2

=
n

∑
i=1

(yi − ŷi)
2

=
n

∑
i=1

(yi −β1−β2xi)
2

(1.8)

is minimal. By differentiating the sum of squares as a function of β1 andβ2 and
setting them to zero

∂Q
∂β1

= 0

∂Q
∂β2

= 0
(1.9)

we obtain the system of equations:

n ·β1+
n

∑
i=1

xi ·β2 =
n

∑
i=1

yi

n

∑
i=1

xi ·β1+
n

∑
i=1

x2
i ·β2 =

n

∑
i=1

xiyi

(1.10)

which has the solution:

β̂2 =
∑n

i=1(xi − x̄)yi

∑n
i=1(xi − x̄)2

β̂1 = ȳ− β̂2 x̄

(1.11)

When n = 2 we obtain the solution for a straight line through two points. In
statistics we usually employ the formalism of vectors and matrices:

y = Xβ +e

Q = |y−X β |2

= (y−Xβ )T (y−Xβ )

(1.12)
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Herey = (y1, . . . ,yK)T ,β = (β1,β2)
T andX is theK×2 matrix where all the ele-

ments in the first column is 1 and the elements in the second column is(x1, . . . ,xK)T .
The solution of this problem is given by thenormal equations

XTXβ = XTy ⇔ XT (y−Xβ ) = 0 ⇒ β̂ =
(

XTX
)−1

XTy (1.13)

The last formula assumes thatX has full rank.

Least square estimation method applied to the diffusion tensor

Now we want to do something analogously for the diffusion tensor. Assume we
have measurements/observationsSk for k = 0, . . . ,K; K ≧ 6. We then calculate

yk =
1
b

log
S0

Sk
(1.14)

If every observation was without errors and the diffusion model was exact, we
should have had

yk = gT
k Dgk =

3

∑
i=1

3

∑
j=1

gi
kDi j g

j
k = γT

k δ ; k = 1, . . . ,K (1.15)

whereγT
k is denotes the direction of the diffusion sensitizing gradient andδ =

(D11, . . . ,D33)
T . WhenK = 6 this gives us six equations to determine the six un-

known elements in the 3×3 symmetricmatrixD. If K > 6, we will have too many
equations. As for the straight line in section 1.3.2 this takes away the possibility
to determine the tensorD exact. Instead we seek the values for the unknown that
minimizes the square sum:

Q =
K

∑
k=1

(

yk−gT
k Dgk

)2
=

K

∑
k=1

(

yk− γT
k δ

)2

= (y−Γδ )T (y−Γδ )

= yTy−2δ TΓTy+δ TΓTΓδ

(1.16)

wherey = (y1, . . . ,yK)T , Γ = (γ1, . . . ,γK)T andδ = (D11, . . . ,D33)
T .

Now we will minimizeQ with respect toδ under the condition thatδ corre-
sponds to a symmetric 3×3 matrixD. We will differentiateQ with respect toδ .

dQ
dδ

= 0 (1.17)

Sinceγk corresponds to a symmetric matrixGk, this means that column number
four, seven and eight are superfluous and can be deleted. The rank ofΓ will then



GENERAL INTRODUCTION 15

be six if the choice of diffusion sensitizing directions hasbeen wise. If these
columns inΓ are deleted it is important to delete element number four, seven and
eight inδ . Let us assume that the reduction has been done. Then we have amatrix
Γ with full rank and the solution will be:

δ̂ =
(

ΓTΓ
)−1ΓTy (1.18)

It is important to note that the elementsδ that corresponds to non-diagonal ele-
ments in the matrixD are paired such thatδ2 = D12+D21 = 2D21.

The method described above has been implemented in MATLAB tosolve the
diffusion tensor for each voxel in the brain imaging volume.See appendix B for
details of the program.

1.3.3 Scalar rotationally invariant measures derived fromthe
diffusion tensor

This leaves us with a diffusion tensor that looks like this ineach voxel:

D =







Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz






(1.19)

In figure 1.9, the tensor for all voxels in slice #12 of subjectJL is visualized. It

Figure 1.9: Visualization of the tensor. Data from subject JL.

gives little understanding to present the tensor data as tensor components. Instead
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the six-dimensional diffusion tensor information is mapped to different scalar
measures that gives a physically meaningful picture depicted as a grey scale map.
The rotationally invariance of the scalars means that thesemeasures are indepen-
dent of the orientation of both tissue structure and the image scan plane. Images
which depict rotationally invariant measures will have thesame intensity for the
same anatomical location regardless of the orientation of tissue (patient) in the
scanner and of the image scan plane. In contrast, neither theelements in the dif-
fusion tensor nor a diffusion-weighted image measured along one single direction
is rotationally invariant.

Below follows a description of some types of scalar measurescalculated from
the diffusion tensor, used in the experimental part of this thesis.

Mean diffusivity

In section 1.1.4 we depicted the RMS displacement (iso-probability surfaces) for
three different diffusion ellipsoids. The mean diffusivity denoted〈D〉 is when
the average of the radii of the ellipsoid is used as a scale factor of the diffusion
ellipsoid. As an example the〈D〉 in CSF (cerebrospinal fluid) is three times bigger
than the〈D〉 in grey and white matter. The values are 2×10−3mm2/s for CSF and
0.7×10−3mm2/s in grey and white matter. The〈D〉 happens to be similar in grey
and white matter despite the fact that the diffusion is more anisotropic in white
than in grey matter. The〈D〉 can be calculated simply by averaging the diagonal
elements of the diffusion tensor.

〈D〉 =
Dxx+Dyy+Dzz

3
=

Trace(D)

3
(1.20)

Maps which pixels represent the mean diffusivity〈D〉 is often called trace-maps.

Diffusion anisotropy

There are several other scalar measures that describes theanisotropyof the dif-
fusion. Many of them are summarized in Skareet al. [25]. Common to all
of them are that they depend on how anisotropic the diffusionactually is. That
is, how much the diffusion ellipsoid deviates from a sphere.Simultaneously
the anisotropy indices should be rotationally invariant which means that they
should be independent of the orientation of the diffusion ellipsoid. The diffu-
sion anisotropy indices are calculated from theeigenvectorsand the correspond-
ing eigenvaluesof the diffusion tensor. This is done by solving the characteristic
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equation.

det(D−λ I) = det













Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz






−







λ 0 0
0 λ 0
0 0 λ













= det







Dxx−λ Dxy Dxz

Dxy Dyy−λ Dyz

Dxz Dyz Dzz−λ






= 0

(1.21)

This results in three eigenvectorsei and three eigenvaluesλi for i = 1,2,3; i.e.
equation ((1.22)) yields:

Ae1 = λ1e1, Ae2 = λ2e2, Ae3 = λ3e3;

ei 6= [0,0,0]T; λ1 ≥ λ2 ≥ λ3 ∈ ℜ.
(1.22)

After the eigenvalues of the tensor has been calculated, rotationally invariant
anisotropy indices, which are no longer dependent on the orientation of the tensor,
can be constructed. An intuitive definition of an anisotropyindex is the ratio
between the largest (λ1) and the smallest (λ3) eigenvalue, i.e.

Aratio =
λ1

λ3
(1.23)

Aratio is equal to 1 if the diffusion tensor is isotropic. That is so because then
λ1 = λ2 = λ3. HoweverAratio is numerically unstable and predisposed for noise.
A more stable anisotropy index is therelative anisotropy index,RA, defined as:

RA=
1√
6

√

∑
i=1,2,3

(

λi − λ̄
)

2

λ̄
where λ̄ =

1
3

3

∑
i=1

λi (1.24)

The numerator is the standard deviation of the eigenvalues except for the scale
factor of 1/

√
2. The denominator is the mean diffusivity and is used to normalize

with the size of the ellipsoid. ThereforeRArepresents the ratio of the anisotropic
and the isotropic part ofD. RAwill be zero for isotropic diffusion and approach
1 whenλ1 ≫ λ2 ≈ λ3. It is important to note that the normalization factor in Eq.
(1.24) differs from the original definition where the maximum value forRAis

√
2.

For the presentation of diffusion anisotropy as a grey scalemap, the scale
factor is of no importance. But it is preferred that one uses the same scale reach-
ing from 0 to 1 while clearly stating the anisotropy index used when reporting
anisotropy values in literature. Otherwise it will be harder to compare results and
draw conclusions.
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Another commonly used anisotropy index, which is also used in the experi-
ments reported in this thesis, is thefractional anisotropy indexFA. FA is defined
as follows:

FA =

√

√

√

√

√

√

3
2

∑
i=1,2,3

(

λi − λ̄
)

2

∑
i=1,2,3

λ 2
i

where λ̄ =
1
3

3

∑
i=1

λi (1.25)

FA measures the fraction of the total magnitude ofD that can be ascribed to
anisotropic diffusion and thus provides information aboutthe shape of the dif-
fusion tensor at each voxel [26]. The FA is based on the normalized variance of
the eigenvalues. A FA value of "0" corresponds to a perfect sphere (i.e.λ1 = λ2 =
λ3 = λ ), whereas 1 represents ideal linear diffusion (i.e.λ1 = λ ,λ2 = λ3 = 0).
Well defined tracts have FA larger than 0.20. Few regions haveFA larger than
0.90. The number gives us information of how asymmetric the diffusion is but
says nothing of the direction. See figure 1.10 for a depictionof an FA map.

Figure 1.10: Fractional anisotropy map for subject OB and slice number 12.

Different anisotropy indices have slightly different physical interpretations and
several groups have demonstrated that different indices differ in how strongly they
are affected by image noise. Formeansee [27], forTrace(D) see [28], [29], for
RAsee [30] and [25], forFA see [27], [30] and [25].
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1.4 Motivation and problem formulation for this the-
sis

The signal in MR-DTI is both weak and vulnerable to noise and artifacts, such
that the determination of the diffusion tensorD and the FA-index are subject to
uncertainty and errors. There are several methods that can be applied during ac-
quisition to improve the signal strength and reduce noise i.e. increase the signal
to noise ratio. Two of them are:

1. increasing the number of diffusion sensitizing gradientdirections

2. increasing the number of excitations used for averaging (NEX).

However both of these leads to an increase in the acquisitiontime, and which
one is better is not generally known and partly scanner and sequence dependent.
In this work we wanted to explore the potentially significantdifferences between
DTI head acquisitions obtained along the two different types of schemes denoted
(1.) and (2.) below.

For a fixed number of measurement time (e.g. 6-7 minutes),

1. select as many averages (NEX) as possible with as few diffusion sensitizing
directions as necessary (e.g. K=6), against

2. select as many diffusion sensitizing directions (K) as possible with as few
averages as necessary (e.g. NEX=1-2).

To study this problem we have used three different DTI acquisition protocols,
applied to five different subjects. If we denote K the number of diffusion sen-
sitizing directions and NEX the number of excitations for signal averaging (in
k-space), we designed comparative experiments with the following combinations
(K=6 and NEX=8), (K=13 and NEX=4) and (K=25 and NEX=2).

To evaluate the respective resultswe calculated the diffusion tensorD us-
ing a least square estimation method, see page 14 in section 1.3.2. From the
eigensystem of the tensor, FA values were calculated mapping the whole brain.
Fractional anisotropy standard deviation and coefficient of variation were calcu-
lated in tissue specific regions (GM, WM and CSF). To reveal any directional
dependent differences in the FA values, 3D plots were made where the standard
deviation of the tissue specific FA values was plotted against the principal direc-
tion of diffusion, i.e. the direction of the eigenvector ofD corresponding to the
largest eigenvalue. Finally the FA maps were color-coded with separate colors
for the individual elements of the principal diffusion vector and careful inspection
were done to visually detect possible differences between the (K=6 and NEX=8),
(K=13 and NEX=4) and (K=25 and NEX=2) protocols.
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Material and Methods

2.1 Subjects

We have performed MR-DTI head examinations of five healthy volunteers, age
spanning from 24 to 29 years (mean age = 27 years). These data were used for
planning DTI protocols for routine clinical use. All subjects were healthy deemed
normal without known CNS pathology, current or past, medical or psychiatric
conditions. No medication or substance abuse were reported. For more detailed
information, see Table 2.1.

2.2 Scanner and imaging protocol

For DTI data acquisitions we used a General Electric Signa 1.5T Echospeed MR
scanner equipped with EPI measurement techniques. Whole brain, multislice DTI
acquisitions were performed using 24 axial slices (128x128acquisition matrix, in-
terpolated to 256x256, FOV=240mm, slice thickness 4mm withno gap). We used
b-values 0 (S0) and 1000s/mm2 (Sk) and different number of diffusion sensitizing
directionsK = 6,13,25 and number of excitations (NEX) per directiongk for sig-
nal averaging, i.e. NEX= 8,4,2. The repetition times (TR) and echo times (TE)
varied slightly for the different protocols (cf. Table 2.1). The total acquisition
time for each DTI protocol lasted between 6 and 7 minutes (cf.Table 2.2). One
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additional subject (TN) was scanned on a Siemens Symphony 1.5T scanner with
K = 6 andK = 12 for fixed NEX=8 to assess the effect of increasing signal to
noise ratio on the diffusion tensor.

Subject parameters

Subject weight[kg] age TR6,8 TR13,4 TR25,2 TE6,8 TE13,4 TE25,2

EK 70 28 7400 7560 7400 85.2 85.2 85.2
OB 72 26 7400 7560 7400 85.2 85.2 85.2
JL 76 24 7400 7400 7560 98.8 98.8 98.8
OH 90 29 7400 7400 7560 98.6 98.6 98.6
SA 86 28 7400 7400 7560 100.6 100.6 100.6

Table 2.1: TR is repetition time, TE is echo time (both in [ms]), the subscripts 6, 8, 13, 4,
25 and 2 refers to the number of diffusion sensitizing directions and number of excitations
in the three experimental setups (6 and 8, 13 and 4, 25 and 2).

Acquisition times

6dir 8NEX 13dir 4NEX 13dir 5NEX 25dir2NEX

OB 7:09 7:18 6:39
EK 7:09 9:04 6:39
JL 7:09 7:18 6:39
OH 7:09 7:18 6:39
SA 7:09 7:18 6:39

Table 2.2: Acquisition times for the five subjects and the respective sequences.

Diffusion sensitizing directions

The spatial directions of the diffusion sensitizing gradientsg1, . . . ,gK are given in
table 2.3. This information was obtained from files “deep” inthe pulse sequence
software on the GE scanner and follows the optimal choise of diffusion sensitizing
directions proposed by Jones [31].

Software

Several programs and software tools (mostly MATLAB) have been used in this
project. See Appendix A for details.
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6 dirs. 13 dirs. 25 dirs.

# x y z x y z x y z

1 0.707 0.000 0.707 -0.754 0.173 -0.633 0.532 0.104 -0.840
2 -0.707 0.000 0.707 0.330 -0.372 0.867 0.250 -0.722 0.645
3 0.000 0.707 0.707 -0.533 0.459 0.711 -0.634 -0.753 -0.177
4 0.000 0.707 -0.707 -0.687 -0.708 -0.163 -0.219 0.850 0.478
5 0.707 0.707 0.000 -0.321 0.942 -0.101 -0.413 -0.780 0.470
6 -0.707 0.707 0.000 0.618 0.786 -0.018 0.734 -0.662 0.151
7 0.019 0.576 0.817 0.936 0.054 0.347
8 0.311 -0.949 0.051 -0.333 -0.243 0.911
9 -0.883 0.314 0.350 0.103 -0.992 -0.077
10 -0.038 -0.536 -0.843 -0.927 0.373 -0.049
11 0.184 0.469 -0.864 0.801 0.543 -0.250
12 0.937 0.004 0.350 -0.917 -0.262 0.301
13 0.814 -0.236 -0.531 -0.538 0.438 -0.720
14 -0.214 -0.665 -0.716
15 -0.124 -0.052 -0.991
16 0.274 0.960 -0.053
17 -0.443 0.878 -0.180
18 0.024 0.369 0.929
19 0.568 0.637 0.521
20 0.931 -0.168 -0.324
21 -0.825 -0.182 -0.534
22 0.473 -0.630 -0.617
23 0.504 -0.129 0.854
24 0.149 0.689 -0.709
25 -0.695 0.344 0.631

Table 2.3: This table shows the x-,y- and z-coordinates for the diffusion sensitizing gra-
dient vectors with three decimals using 6, 13 and 25 directions. The values were obtained
from thetensor.datfile as a part of the GE MR scanner software. Note that the vectors are
normalized, i.e.

√

x2 +y2 +z2 = 1.
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2.3 Data analysis

2.3.1 Image format conversion

The acquisition data from the MR-scanner is stored as files inDICOM format. To
work with these data sets in MATLAB and SPM2 the images have tobe converted
to other formats. A DTI dataset typically contains one imagefor every diffusion
sensitizing direction and one image without diffusion weighting per slice. Using
K = 6 diffusion sensitizing directions and 24 slices covering the whole brain, our
dataset will contain(6+1) ·24= 168 images. In MATLAB we wanted to organize
the dataset as one single 4D-dti-volume which can be addressed as M[k, row, col,
slice] being the signal intensities in diffusion directionk = 1, . . . ,K + 1, row=
1, . . . ,256, column col= 1, . . . ,256 and in slice= 1, . . . ,24. This is accomplished
with a MATLAB script (loaddti.m). We have also converted the DICOM data
to Analyze format, because this is the image-format SPM2 uses. We used nICE
[32] to organize the data inK + 1 blocks (e.g. one volume of 24 slice for each
direction) and saved each block to Analyze-format. Note that the first block is the
S0-volume.

2.3.2 Estimation of D from the image data

The M-data (M[1:K+1, 1:256, 1:256, 1:24]) consists of K+1 image volumes with
24 images (slices) in each. The first volume represents theb = 0 acquisition, i.e.
S0 (= the 0′th direction). Accordingly, there are K+1 image volumes with awater
diffusion measurementSk for the k’th direction in each voxel (volume element).
For each voxel a diffusion tensorD was calculated based upon the measurements
S0,S1, . . . ,SK, for K ≥ 6, as described in section 1.3.2. The result is a 5D tensor
volumeD[i, j, row, col, slice], wherei = 1,2,3 is the i’th row-element of the
diffusion tensor andj = 1,2,3 is j’th column-element. Consequently the tensor
D is a matrix-valued 3D image volume that contains a 3×3 symmetric matrix in
each voxel, see figure 1.9. From the tensor data the eigenvectorse1,e2,e3 and the
corresponding eigenvaluesλ1 ≥ λ2 ≥ λ3 were calculated as described in section
1.1.3 and the equations (1.21) and (1.22).

2.3.3 Computing FA maps

From the water diffusion tensor volume,D=D[i,j,row,col,slice] a scalar measure
for anisotropic diffusion, FA ([26]) (fractional anisotropy), was calculated in each
voxel, giving a 3D FA map volume, see section 1.3.3 and figure 1.10 for further
explanations and examples.
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2.3.4 Tissue specific anisotropy parameters

To make it possible to calculate tissue specific FA values we segmented the DT-
MRI images into white matter (WM), grey matter (GM) and cerebrospinal fluid
(CSF).

Tissue Segmentation

SPM2 (see section A.3 for more details) was used to segment the T2-weighted
S0 brain volume into the three tissue types, (see figure 2.1). These three brain
volumes are probability masks, i.e. voxels with high probability for a specific
tissue will appear as white on the tissue specific image, and reversely, voxels with
low probability for a given tissue will appear as dark on the image. To reduce

S0(b = 0) Gray Matter

White Matter Cerebrospinal Fluid

Figure 2.1: TheS0 and the segmented volumes. Data from subject JL.

the number of voxels in which FA is calculated, a threshold value was set. This
was done in MATLAB (see Appendix A.1 and B.8). The threshold value in our
experiments was set to 0.925 which means that every voxel included in the mask
has 92,5 % probability or higher of being the tissue specified.

The collection of voxels in these restricted tissue masks were used for the
tissue specific FA calculations.
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2.3.5 Standard deviation and CV of tissue specific FA

The first tissue specific parameters being calculated were sample mean,
mean(FA), sample standard deviation,std(FA), and coefficient of variation,
cv(FA) = std(FA)/mean(FA).

2.3.6 Uncertainty of FA, std(FA|θ and φ )

Signal to noise ratio (SNR) and other image degradation are important for the
quality of the resulting FA map. One measure of this quality is to assess the di-
rectional dependence of the standard deviation of the FA, i.e. std(FA|θ ,φ) ([24],
[33]), whereθ andφ denote the azimuth- and elevation angles (spherical coor-
dinates), respectively of the principal diffusion direction in a given tissue spe-
cific voxel. This is so because the SNR, image degradations and numerical errors
might depend on the number of averages (NEX), the selection of directionsgk

and the number of diffusion sensitizing gradientsK, being used in the acquisi-
tion. Such noise and errors will propagate in the calculation of the eigensystem
of the diffusion tensor, and the FA value is directly dependent on the principal
diffusion direction (i.e. direction of eigenvector belonging to the largest eigen-
value) at the specific voxel. To obtain sufficient samples in the different directions,
we have binned the samples into discrete (θ ,φ )-values in steps of∆θ = 15◦ and
∆φ = 15◦, and made surface plots ofstd(FA) vs. n ·∆θ ,m·∆φ wheren,m ranges
from−6, . . . ,0, . . .+6 and−12, . . . ,0, . . . ,+12 respectively andθ ,φ ranges from
−90, . . . ,0, . . .+90 and−180, . . . ,0, . . . ,+180 respectively (see figure 2.2). Large
oscillations in the plot, implies high directional dependency of FA-variation and
more severe image degradation, and low variation, a smooth or flat plot, implies
higher quality.
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Figure 2.2: A three dimensional plot showing the standard deviation of the FA in white
matter for subject JL as a function of the azimuth angleθ and the elevation angleφ for
the largest eigenvector.
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2.3.7 Direction-dependent color-coding of the FA map

It is possible to superimpose directional information on the FA map in terms of
color-coding ([34]). This is achieved by letting each of thevector components in
the principal eigenvector of a voxel get a separate color (i.e. red, green and blue
respectively) and the FA value in the same voxel the strengthor saturation of the
color. Thus thee1,x element, i.e. right-left direction has the color-code red,e1,y,
i.e. anterior-posterior direction has the color-code green ande1,z, i.e. inferior-
superior direction has the color-code blue. When FA is closeto zero the strength
of the color is weak and when FA is close to one the color strength is strong.
Examples of a plain FA map and a corresponding color-coded FAmap are shown
below in figure 2.3.

Figure 2.3: FA map to the left and the color-coded map to the right. Data from subject
OH K=25 and NEX=2.

The objective of color-coding of the FA map was to reveal if one of the proto-
cols to be compared (cf. section 1.4) was visually better than another.

2.3.8 Eddy current correction

When a diffusion gradient is applied, there is a change in thetotal magnetic field
B equivalent to∂B/∂ t. This change induces an eddy current (EC) ([35]) which in
turn induces an extra magnetic field and the resulting Fourier-reconstructed image
gets geometrically distorted, and also a little blurred. Since this is dependent
on the diffusion sensitizing gradient, the stack of imagesS0,S1, . . . ,SK might be
slightly in mis-registration, i.e. not geometrically aligned, and this will introduce
error in the voxel-wise calculations of the diffusion tensor and the FA value. The
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eddy current effect causes the diffusion gradient waveformto be smoother than
expected. To obtain the desired waveform,pre-emphasisis often used. That is,
the diffusion gradient is ramped up in a way that compensatesfor the change.

Figure 2.4: Upper part: Eddy current pre-emphasis. The dashed line denotes the current
applied in the gradient coil. Due to eddy currents during theramp times, the actual field
gradient obtained differs from the nominal (solid line). Lower part: Employing gradient
pre-emphasis the applied current during the ramps is adjusted so that the actual magnetic
field gradient becomes close to the nominal shape indicated by the dashed line on the top
figure. Courtesy of Skare [24].

Many MR scanner manufacturers have implemented a pre-emphasis system
that is not typically sufficient to correct for the ECs induced by the very strong
diffusion gradients applied in the EPI sequence. However, some of the eddy cur-
rent components are approximately constant during the acquisition and will give
linear effects. This is possible to correct by post-processing methods on the re-
constructed magnitude images. Methods for such geometric correction are imple-
mented in the FSL software package 3.10, which is recently released. For all of
our results, correction of such possible geometric distortion due to insufficient EC
compensation, was not performed. However, late in the project we used the newly
released FSL routines to assess the effect of “EC correction” on one of our data
sets (subject OB). The results of this EC correction are described in section 3.10.
See also Fig. 2.6.
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Figure 2.5: Eddy currents (EC) during the EPI readout. a) An EC in the slice selection
direction will cause a linear phase shift in theky direction in k-space. This corresponds to
a shift of the object in the phase encoding direction (herey) in the reconstructed image. b)
An EC in the frequency encoding directions will cause the k-space to be sheared resulting
in a shear of the object in the image in the phase encoding direction. c) Finally, an EC
in the phase encoding direction makes sampling density of k-space to change in theky

direction. This causes the effective FOV to change in the MR image, which is equivalent
to a scaling effect of the object. Courtesy of Skare [24].
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Figure 2.6: The left image shows FA based on geometric eddy current correction and
the right image shows FA without eddy current correction. Subject OB with K=25 and
NEX=2.



3

Experimental results

3.1 The original DTI acquisitions

In this section we present a selection of original recorded DTI data from five
volunteers and graphs and images associated to the various processing steps of our
evaluation study. The guiding principle has been to report potentially significant
differences between image data obtained along the two extreme situations: for a
fixed measurement time, (i) select as many averages (NEX) as possible with as
few diffusion sensitizing directions as necessary (e.g. 6)and (ii ) select as many
diffusion sensitizing directions as possible with as few averages as necessary (e.g.
1-2).
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Figure 3.1: Typical diffusion weighted image volume, the diffusion sensitizing gradient
vector coordinates are (x,y,z)=(0.707, 0.000, 0.707). Every slice from slice number 1 to
24 is presented. Axial slice direction. Data from subject JL.
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Figure 3.2: Typical diffusion weighted image for 6 diffusion sensitizing directions and 8
NEX, slice number 12 is selected from each volume to save space. Data from subject JL.
To see the diffusion sensitizing gradient vector coordinates see table 2.3 page 23.

Figure 3.3: Typical diffusion weighted image for 13 diffusion sensitizing directions and
4 NEX, slice number 12 is selected from each volume to save space. Data from subject
JL. To see the diffusion sensitizing gradient vector coordinates see table 2.3 page 23.
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Figure 3.4: Typical diffusion weighted image for 25 diffusion sensitizing directions and
2 NEX, slice number 12 is selected from each volume to save space. Data from subject
JL. To see the diffusion sensitizing gradient vector coordinates see table 2.3 page 23.

3.2 Calculated diffusion tensors

One important stage in the processing chain of DTI images is the calculation of
the diffusion tensorD. The tensors are calculated as described in section 1.3.2
page 14.
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1) a) b) c)

2)

3)

4)

5)

Figure 3.5: The calculated tensors, slice number 12 only is used from each of the nine
volumes to save space. The three columns represents from left to right the three sequences
used in the experiments a) 6 directions and 8 NEX, b) 13 directions and 4 NEX, c) 25
directions and 2 NEX and the five rows represents the five subjects 1) OB, 2) EK, 3) JL,
4) OH and 5) SA respectively. If you see closely it is possibleto find that the tensors
are symmetric matrixes, i.e. the elements above the diagonal elements are equal to the
elements below the diagonal elements.
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The tensor field is a 3-D volume with a 3×3 matrix associated to each voxel.

D =







Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz






(3.1)

It is therefore possible to make a new brain volume containing only one of the
tensor elements in each voxel. This will give us nine new volumes, which is
illustrated for subject OB, EK, JL, OH and SA in figure 3.5 page35.

3.3 Fractional anisotropy maps

From the diffusion tensorD, we have calculated scalar maps of water diffusion
anisotropy, where the fractional anisotropy index (FA) is the most frequently used.
From such FA maps region and tissue specific values are often calculated and
compared between clinical groups (having specific diagnosis) and control groups.
We have therefore calculated and depicted FA maps for all oursubjects using the
different acquisition schemes.

FA is calculated from the eigenvalues as described in equation (1.25) in section
1.3.3. FA is then a image volume containing an FA value in eachvoxel.

Figure 3.6: This figure shows the calculated FA maps for the three selected combinations
of sequence parameters. From left to right, 6 directions and8 NEX, 13 directions and
4NEX and 25 directions and 2 NEX. Data from subject OB.
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Figure 3.7: This figure shows the calculated FA maps for the three selected combinations
of sequence parameters. From left to right, 6 directions and8 NEX, 13 directions and
4NEX and 25 directions and 2 NEX. Data from subject EK.

Figure 3.8: This figure shows the calculated FA maps for the three selected combinations
of sequence parameters. From left to right, 6 directions and8 NEX, 13 directions and
4NEX and 25 directions and 2 NEX. Data from subject JL.
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Figure 3.9: This figure shows the calculated FA maps for the three selected combinations
of sequence parameters. From left to right, 6 directions and8 NEX, 13 directions and
4NEX and 25 directions and 2 NEX. Data from subject OH.

Figure 3.10: This figure shows the calculated FA maps for the three selected combina-
tions of sequence parameters. From left to right, 6 directions and 8 NEX, 13 directions
and 4NEX and 25 directions and 2 NEX. Data from subject SA.
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3.4 The segmented volumes and the masks made from
them

In order to obtain tissue specific statistics of FA values, wehave performed prob-
abilistic tissue segmentation using SPM2. TheS0-image, see figure 3.11 top left,
which is the image without diffusion weighting (b=0), is segmented into the three
parts – grey matter, white matter and cerebrospinal fluid – asdescribed in section
2.3.4 page 25. The three parts are visualized in figure 3.11 left column. These
images are probability masks. That means that in each voxel there is a certain
probability that the voxel represents a certain tissue. Totally black is associated to
a probability of 0 that the image voxel contains the specific tissue, totally white
represents a probability of 1 (100%) that the image voxel contains the specific
tissue. To place a certainty and limitation on the number of voxels in which FA is
calculated, a threshold value is set to produce the final tissue specific masks. The
threshold value in these experiments is set to 0.925. That means that there is 92.5
% probability that only the specific tissue is represented inthe mask. Then it is
possible to calculate tissue specific FA values. The final mask images are shown
below in figure 3.11 right column.

gVx wVx cVx

EK 37877 32022 25607
OB 61886 42720 49298
JL 56466 39588 48372
OH 41600 33623 40683
SA 42594 24987 35175

Table 3.1: The table shows the number of voxels in each mask using the threshold value
0.925. gVx is gray matter mask, wVx is white matter mask and cVx is the mask obtained
from cerebrospinal fluid. It is important to note that the masks spans the whole brain
volume.

To better illustrate the “the quality” of the tissue specificmasks we have made
depictions where the masks is superimposed on theS0-image. Such composite
images are shown in figures 3.17, 3.18, 3.16, 3.19 and 3.20 forsubject OB, EK,
JL, OH and SA respectively. Table 3.1 page 39 gives the numberof tissue specific
voxels used for obtaining the FA statistics for each subject.
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S0(b = 0)

Gray Matter (GM) GM-mask

White Matter (WM) WM-mask

Cerebrospinal Fluid (CSF) CSF-mask

Figure 3.11: The segmented volumes and the masks. Data from subject OB.



EXPERIMENTAL RESULTS 41

S0(b = 0)

Gray Matter (GM) GM-mask

White Matter (WM) WM-mask

Cerebrospinal Fluid (CSF) CSF-mask

Figure 3.12: The segmented volumes and the masks. Data from subject EK.
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S0(b = 0)

Gray Matter (GM) GM-mask

White Matter (WM) WM-mask

Cerebrospinal Fluid (CSF) CSF-mask

Figure 3.13: The segmented volumes and the masks. Data from subject JL.
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S0(b = 0)

Gray Matter (GM) GM-mask

White Matter (WM) WM-mask

Cerebrospinal Fluid (CSF) CSF-mask

Figure 3.14: The segmented volumes and the masks. Data from subject OH.
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S0(b = 0)

Gray Matter (GM) GM-mask

White Matter (WM) WM-mask

Cerebrospinal Fluid (CSF) CSF-mask

Figure 3.15: The segmented volumes and the masks. Data from subject SA.
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Figure 3.16: This figure demonstrates the location of the tissue specific masks on a non
diffusion weighted image (the b0 image). The top left image is a plain b0 image, the top
right shows the gray matter voxels, the bottom left the whitematter voxels and the bottom
right the cerebrospinal fluid voxels. Only slice number 12 isshown to save space. The
subject that is used to exemplify these results is JL.
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Figure 3.17: This figure demonstrates the location of the tissue specific masks on a non
diffusion weighted image (the b0 image). The top left image is a plain b0 image, the top
right shows the gray matter voxels, the bottom left the whitematter voxels and the bottom
right the cerebrospinal fluid voxels. Only slice number 12 isshown to save space. The
subject that is used to exemplify these results is OB.
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Figure 3.18: This figure demonstrates the location of the tissue specific masks on a non
diffusion weighted image (the b0 image). The top left image is a plain b0 image, the top
right shows the gray matter voxels, the bottom left the whitematter voxels and the bottom
right the cerebrospinal fluid voxels. Only slice number 12 isshown to save space. The
subject that is used to exemplify these results is EK.
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Figure 3.19: This figure demonstrates the location of the tissue specific masks on a non
diffusion weighted image (the b0 image). The top left image is a plain b0 image, the top
right shows the gray matter voxels, the bottom left the whitematter voxels and the bottom
right the cerebrospinal fluid voxels. Only slice number 12 isshown to save space. The
subject that is used to exemplify these results is OH.
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Figure 3.20: This figure demonstrates the location of the tissue specific masks on a non
diffusion weighted image (the b0 image). The top left image is a plain b0 image, the top
right shows the gray matter voxels, the bottom left the whitematter voxels and the bottom
right the cerebrospinal fluid voxels. Only slice number 12 isshown to save space. The
subject that is used to exemplify these results is SA.
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3.5 FA distributions

A direct sample distribution of tissue specific FA-values are given below for the
different DTI acquisition schemes. The distributions showhow many voxels that
holds the respective FA values in the specified masks. As expected from known
tissue architecture of gray matter and white matter the FA values is generally lower
for grey matter than for white matter. Cerebrospinal fluid iseven more isotropic
than grey matter and have even lower FA values as shown in the figures 3.21,
3.22 and 3.23. The distributions is nearly Gaussian, especially for white matter.
Distribution plots will only be presented for one subject tosave space.
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Figure 3.21: FA distribution for the three tissue specific masks for subject JL, the se-
quence is 6 diffusion sensitizing directions and 8 NEX. The mean values for FA from top
to bottom is: 0.217, 0.510 and 0.167.
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Figure 3.22: FA distribution for the three tissue specific masks for subject JL, the se-
quence is 13 diffusion sensitizing directions and 4 NEX. Themean values for FA from
top to bottom is: 0.205, 0.506 and 0.147.
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Figure 3.23: FA distribution for the three tissue specific masks for subject JL, the se-
quence is 25 diffusion sensitizing directions and 2 NEX. Themean values for FA from
top to bottom is: 0.204, 0.502 and 0.152.
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3.6 The standard deviation, mean and coefficient of
variation of the FA

To further analyze the effect of DTI acquisition schemes on the tissue specific FA,
we have calculated standard deviation, mean and coefficientof variation (CV).
Normally the standard deviation of the FA values would have told us a lot about
the differences in SNR for the three sequences. Since the mean values shows such
variation we use the CV instead.

6dir 8NEX 13dir 4NEX 25dir 2NEX

# std mean cv std mean cv std mean cv

OBgm 0.076 0.151 0.504 0.073 0.136 0.535 0.069 0.133 0.518
OBwm 0.111 0.347 0.319 0.111 0.333 0.333 0.110 0.337 0.328
OBcs f 0.086 0.150 0.576 0.061 0.115 0.530 0.062 0.116 0.530
EKgm 0.073 0.146 0.497 0.063 0.123 0.508 0.063 0.129 0.493
EKwm 0.114 0.361 0.316 0.115 0.354 0.325 0.117 0.361 0.323
EKcs f 0.094 0.145 0.648 0.060 0.106 0.569 0.060 0.106 0.559
JLgm 0.090 0.217 0.416 0.086 0.205 0.422 0.089 0.204 0.439
JLwm 0.142 0.510 0.279 0.144 0.506 0.285 0.150 0.502 0.299
JLcs f 0.081 0.167 0.481 0.075 0.147 0.510 0.081 0.152 0.533

OHgm 0.098 0.210 0.466 0.098 0.200 0.491 0.120 0.216 0.555
OHwm 0.147 0.489 0.301 0.147 0.472 0.311 0.152 0.447 0.341
OHcs f 0.083 0.174 0.476 0.100 0.164 0.609 0.178 0.208 0.856

SAgm 0.127 0.258 0.493 0.126 0.246 0.513 0.134 0.240 0.559
SAwm 0.132 0.434 0.305 0.142 0.398 0.357 0.148 0.380 0.390
SAcs f 0.119 0.240 0.496 0.131 0.222 0.591 0.152 0.223 0.681

Table 3.2: This table shows the standard deviation, the mean and the coefficient of vari-
ation for the fractional anisotropy values taken from the three masks for the three DTI
acquisition schemes for all five subjects.

Notice that for all subjects the lowest CV is obtained in white matter using 6
diffusion directions and 8 NEX. However, the CV values for 13directions and 4
NEX and 25 directions and 2 NEX are very close. Moreover, the CV of CSF is
partly lower for 25 directions and 2 NEX compared to 6 directions and 8 NEX for
subject OB and EK, and partly higher for subject JL, OH and SA.Since we expect
FA to be high and rather homogeneous throughout CSF, it is hard to conclude from
these data, which DTI acquisition scheme is generally best.



EXPERIMENTAL RESULTS 53

3.7 Plotting graphics

The next step in our analysis has been to explore directionaldependence in our
tissue specific FA calculations. With good quality data we should expect the stan-
dard deviation of FA, std(FA), to be dependent on the degree of anisotropy in
tissue only and independent of the principal diffusion direction. By plotting the
standard deviation of FA as a function of the azimuthθ and elevationφ of the
principal eigenvector, we obtain a kind of directional dependent SNR for our three
DTI acquisition schemes. Great variation, a rough plot, implies low SNR. Little
variation, a smooth or flat plot, implies high SNR and better quality. Below plots,
describing the directional dependencies of the standard deviation of the FA values
are drawn.

In each voxel in the image volume the FA and directional information from
the principal eigenvector is calculated. Voxels containing principal eigenvectors
with directions in certain intervals are grouped together.The standard deviation
of the FA values from the voxels in such groups are plotted against the azimuth
θ and elevationφ values, which are the direction of the principal eigenvector in
spherical coordinates.

Plots for every subject is made, but only one subject will be presented in this
thesis to save space.

In gray matter, the three dimensional plots is smoother for 13 diffusion sensi-
tizing directions with 4 NEX and 25 directions with 2 NEX thanfor 6 diffusion
sensitizing directions with 8 NEX.

In white matter there is higher variation than in gray matterand cerebrospinal
fluid. This is expected because white matter has higher directionality than the
other tissue substances. The plot for 13 directions with 4 NEX shows a little
smoother plot than for 6 directions with 8 NEX. The plot for 25directions and 2
NEX is even smoother than the plot above. But the downhill fornegativeθ values
is hard to explain.

In cerebrospinal fluid, the plot for 13 directions with 4 NEX is smoother than
the other two plots.

But any of the difference is not large enough to have potential to make any
conclusions in favor to one of the acquisition schemes.

3.7.1 Plots for gray matter
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Figure 3.24: This 3D plot shows the standard deviation for the FA values asa function
of the azimuthθ and elevationφ for the largest eigenvector. Data from subject JL. The
plot at the top of the figure shows the results for the scanner image parameter sequence
6 directions and 8 NEX, the middle plot 13 directions and 4 NEX, the bottom plot 25
directions and 2 NEX. The voxels which is chosen to evaluate the FA are taken from the
gray matter mask.
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std(FA) as a function of −88.57 <= phi <= 89.68 (12 bins) and  −180.00 <= theta <= 180.00 (24 bins)
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Figure 3.25: This plot demonstrates the same as the 3D plot above in a 2D plot. The
gray scale intensity differences indicate the variation inthe standard deviation of FA as a
function of θ andφ . Data from subject JL and the three DTI sequences is displayed in
rapid succession from top to bottom. The mask used is gray matter mask.
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mean(FA) as a function of −88.57 <= phi <= 89.68 (12 bins) and  −180.00 <= theta <= 180.00 (24 bins)
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mean(FA) as a function of −86.94 <= phi <= 89.78 (12 bins) and  −180.00 <= theta <= 179.99 (24 bins)
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Figure 3.26: This plot demonstrates the mean values of FA in the same manner as the
standard deviation plot above.
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cv(FA) as a function of −88.57 <= phi <= 89.68 (12 bins) and  −180.00 <= theta <= 180.00 (24 bins)
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Figure 3.27: This plot demonstrates the coefficient of variation, CV, of the FA values
in the same manner as the standard deviation plot above.cv(FA) = std(FA)/mean(FA).
That is the standard deviation relative to the mean value. The CV is useful when there are
variations in the mean values.



58 CHAPTER3

card(FA) as a function of −88.57 <= phi <= 89.68 (12 bins) and  −180.00 <= theta <= 180.00 (24 bins)
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Figure 3.28: This gray scale plot demonstrates how many voxels that have the same
values for theθ andφ angles.
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3.7.2 Plots for white matter
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Figure 3.29: This 3D plot shows the standard deviation for the FA values asa function
of the azimuthθ and elevationφ for the largest eigenvector. Data from subject JL. The
plot at the top of the figure shows the results for the scanner image parameter sequence
6 directions and 8 NEX, the middle plot 13 directions and 4 NEX, the bottom plot 25
directions and 2 NEX. The voxels which is chosen to evaluate the FA are taken from the
white matter mask.



60 CHAPTER3

std(FA) as a function of −87.86 <= phi <= 89.68 (12 bins) and  −179.98 <= theta <= 180.00 (24 bins)
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Figure 3.30: This plot demonstrates the same as the 3D plot above in a 2D plot. The
gray scale intesity differences indicate the variation in the standard deviation of FA as a
function of θ andφ . Data from subject JL and the three DTI sequences is displayed in
rapid succession from top to bottom. The mask used is white matter mask.
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mean(FA) as a function of −87.86 <= phi <= 89.68 (12 bins) and  −179.98 <= theta <= 180.00 (24 bins)
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mean(FA) as a function of −87.57 <= phi <= 89.48 (12 bins) and  −179.99 <= theta <= 180.00 (24 bins)
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Figure 3.31: This plot demonstrates the mean values of FA in the same manner as the
standard deviation plot above.
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cv(FA) as a function of −87.86 <= phi <= 89.68 (12 bins) and  −179.98 <= theta <= 180.00 (24 bins)
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Figure 3.32: This plot demonstrates the coefficient of variation, CV, of the FA values
in the same manner as the standard deviation plot above.cv(FA) = std(FA)/mean(FA).
That is the standard deviation relative to the mean value. The CV is useful when there are
variations in the mean values.
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card(FA) as a function of −87.86 <= phi <= 89.68 (12 bins) and  −179.98 <= theta <= 180.00 (24 bins)
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card(FA) as a function of −87.57 <= phi <= 89.48 (12 bins) and  −179.99 <= theta <= 180.00 (24 bins)
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Figure 3.33: This gray scale plot demonstrates how many voxels that have the same
properties for theθ andφ angles.
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3.7.3 Plots for cerebrospinal fluid
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Figure 3.34: This 3D plot shows the standard deviation for the FA values asa function
of the azimuthθ and elevationφ for the largest eigenvector. Data from subject JL. The
plot at the top of the figure shows the results for the scanner image parameter sequence
6 directions and 8 NEX, the middle plot 13 directions and 4 NEX, the bottom plot 25
directions and 2 NEX. The voxels which is chosen to evaluate the FA are taken from the
cerebrospinal fluid mask.
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std(FA) as a function of −87.81 <= phi <= 90.00 (12 bins) and  −180.00 <= theta <= 180.00 (24 bins)
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std(FA) as a function of −88.41 <= phi <= 89.67 (12 bins) and  −180.00 <= theta <= 179.99 (24 bins)
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Figure 3.35: This plot demonstrates the same as the 3D plot above in a 2D plot. The
gray scale intesity differences indicate the variation in the standard deviation of FA as a
function of θ andφ . Data from subject JL and the three DTI sequences is displayed in
rapid succession from top to bottom. The mask used is cerebrospinal fluid mask.
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mean(FA) as a function of −87.81 <= phi <= 90.00 (12 bins) and  −180.00 <= theta <= 180.00 (24 bins)
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mean(FA) as a function of −88.41 <= phi <= 89.67 (12 bins) and  −180.00 <= theta <= 179.99 (24 bins)
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Figure 3.36: This plot demonstrates the mean values of FA in the same manner as the
standard deviation plot above.
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cv(FA) as a function of −87.81 <= phi <= 90.00 (12 bins) and  −180.00 <= theta <= 180.00 (24 bins)
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Figure 3.37: This plot demonstrates the coefficient of variation, CV, of the FA values
in the same manner as the standard deviation plot above.cv(FA) = std(FA)/mean(FA).
That is the standard deviation relative to the mean value. The CV is useful when there are
variations in the mean values.
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card(FA) as a function of −87.81 <= phi <= 90.00 (12 bins) and  −180.00 <= theta <= 180.00 (24 bins)
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Figure 3.38: This gray scale plot demonstrates how many voxels that have the same
properties for theθ andφ angles.
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3.8 Color-coding of the FA maps

Others (Sarah Brockstedt, Lund) have discovered a marginaldifference between
DTI acquisition schemes with many directions and few averages compared to few
directions and many averages by color-coding the FA map. This can be achieved
when the eigenvectors in the different directions is given different colors. In the
example below x-direction (Vx) is red, y-direction (Vy) is green and z-direction
(Vz) is blue. The color intensity is given by the FA value.

Figure 3.39: Left image: ROI determined to calculate FA and directional information
from the eigenvectors and eigenvalues. Right image: The outer contour of the brain from
the ROI. Data from subject OH and the sequence contains 25 diffusion directions and 2
NEX.

Figure 3.40: FA map to the left and the color-coded map to the right. Both maps showing
subject OH and 25 diffusion directions and 2 NEX.
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Figure 3.41: FA map to the left with 6 diffusion directions and 8 NEX and FA map to the
right with 25 directions and 2 NEX. Both maps showing subjectEK.

Figure 3.42: Color-coded map to the left with 6 diffusion directions and 8NEX and
color-coded map to the right with 25 directions and 2 NEX. Both maps showing subject
EK.
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Figure 3.43: FA map to the left with 6 diffusion directions and 8 NEX and FA map to the
right with 25 directions and 2 NEX. Both maps showing subjectOB.

Figure 3.44: Color-coded map to the left with 6 diffusion directions and 8NEX and
color-coded map to the right with 25 directions and 2 NEX. Both maps showing subject
OB.
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Figure 3.45: FA map to the left with 6 diffusion directions and 8 NEX and FA map to the
right with 25 directions and 2 NEX. Both maps showing subjectJL.

Figure 3.46: Color-coded map to the left with 6 diffusion directions and 8NEX and
color-coded map to the right with 25 directions and 2 NEX. Both maps showing subject
JL.
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Figure 3.47: FA map to the left with 6 diffusion directions and 8 NEX and FA map to the
right with 25 directions and 2 NEX. Both maps showing subjectOH.

Figure 3.48: Color-coded map to the left with 6 diffusion directions and 8NEX and
color-coded map to the right with 25 directions and 2 NEX. Both maps showing subject
OH.
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Figure 3.49: FA map to the left with 6 diffusion directions and 8 NEX and FA map to the
right with 25 directions and 2 NEX. Both maps showing subjectSA.

Figure 3.50: Color-coded map to the left with 6 diffusion directions and 8NEX and
color-coded map to the right with 25 directions and 2 NEX. Both maps showing subject
SA.
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3.9 Increased number of directions with constant NEX

By doing the same analysis as above on two sequences with different number of
diffusion sensitizing directions and keeping the NEX constant, we want to ascer-
tain that the SNR will increase with increasing number of directions. This time
analysis is done only for FA in white matter. See table 3.3 andfigure 3.51.
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Figure 3.51: This 3D plot shows the standard deviation for the FA values asa function of
the azimuthθ and elevationφ for the largest eigenvector. The scanner used is a Siemens
and the acquisition matrix is 128×128. The plot at the top of the figure shows the results
for the scanner image parameter sequence 6 directions and 8 NEX, the bottom plot 12
directions and 8 NEX. That means that the number of diffusionsensitizing directions has
increased while the NEX has been held constant. The voxels which is chosen to evaluate
the FA are taken from the white matter mask.

TN 6dir8NEX 12dir8NEX

std 0.0268 0.0208
cv 0.2177 0.2046

Table 3.3: This table shows the standard deviation and the coefficient of variation for the
FA values for subject TN. The acquisitins in this data set hasbeen recorded at a Siemens
scanner, with a acquisition matrix 128×128 and two different acquisition schemes. The
first is 6 directions and 8 NEX and the second one is 12 directins and 8 NEX. The results
from this experiment shows that increasing the number of directions only, and keeping
the NEX constant, will lower the standard deviation of the FA. That means that the SNR
is higher and that the quality of the acquisitions increaseswhen the number of directions
increases. This is as expected.
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3.10 FMRIB Software Library and Eddy Current
Correction

FSL is a comprehensive library of functional and structuralbrain image analysis
tools, written mainly by members of the Image Analysis Group, FMRIB, Oxford,
UK. For details see [36] and [37].

With this software library it is possible to do the FA calculations as has been
done in the work of this thesis in an easy and user-friendly way with GUI’s
(Graphical User Interface). In addition it is possible to doeddy current correc-
tion on the image volumes, before FA is calculated. As expected eddy current
correction increases contrast and makes the image smoother. An example of FA
images is calculated with FSL from the same dataset as used inour work using
subject OB. Only the results from the sequences 6 directionsand 8 NEX and 25
directions and 2 NEX will be presented. See the figures 3.53, 3.54 and 3.52.

Figure 3.52: First row shows with ecc and second row without. First columnshows 6dir
8NEX and second column shows 25dir 2NEX.
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Figure 3.53: First row shows an axial slice, the second row shows a coronalslice and
the third row shows a sagittal slice .Left column with eddy current correction and right
column without. The sequence is 6 directions and 8 NEX.
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Figure 3.54: First row shows an axial slice, the second row shows a coronalslice and
the third row shows a sagittal slice .Left column with eddy current correction and right
column without. The sequence is 25 directions and 2 NEX.
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3.11 Summary of our results

Standard deviation of the FA values From the results of the calculation of the
standard deviation of tissue specific FA, we found that the sequence with K=6 and
NEX=8 had slightly lower CV value than the other sequences for every subject.
However, this difference in CV compared to the other protocols was very small
and could not in itself bring a clear conclusion to our problem.

The 3D plots By careful inspection of the 3D plots, we found no visual dif-
ference large enough to make any conclusions in favor of one DTI acquisition
scheme in favor of the others.

The color-coded images For subject EK it is possible to see a neater and more
distinct structure and a more precise coloring in the image with directions=25 and
NEX=2 than for the image with directions=6 and NEX=8. This isespecially clear
at nine o’clock.

Subject OB at nine o’clock shows a more unambiguous, preciseor unique
coloring and the image is more homogeneously colored for directions=25 and
NEX=2.

For subject JL it is clear that the image showing directions=25 and NEX=2 is
more smoothly delineated. This is easiest to see in the central triangular between
genu and splenium.

Subject OH has very different coloring in the central parts of the image. The
central triangular seems to connect the genu and splenium together for direc-
tions=25 and NEX=2 than for the directions=6 and NEX=8, where the central
part is green.

For subject SA the genu has a more mixed coloring for directions=25 and
NEX=2, but the splenium and the central triangular seems more continuous for
directions=6 and NEX=2.

For all of the subjects the boundary seems more exposed to distortions for the
image showing directions=25 and NEX=2 than for the other.





4

Discussion

The signal in MR-DTI is both weak and vulnerable to noise and artifacts, such
that the determination of the diffusion tensorD and the FA-index are subject to
uncertainty and errors. Among several methods that can be applied to improve
signal strength and reduce noise we chose to explore if therewere any poten-
tially significant differences between DTI head acquisitions obtained (for a fixed
measurement time) when the number of diffusion sensitizingdirections (K) was
maximized compared to the situation where the number of excitations (NEX) was
maximized.

4.1 Main results

From our analysis we found that there was a slightly higher quality in white matter
results using a protocol with K=6 and NEX=8 than for the protocols using K=13
and NEX=4 or K=25 and NEX=2.

However in his thesis [24] Skare concludes from his second paper [38] that:
“Given the same total number of measurements, it is better tomeasure the diffu-
sion in many directions rather than do more averages of DWIs in fewer directions.
Because of noise, the eigenvalues are not rotationally invariant. The accuracy of
the eigenvalues and diffusion anisotropy varies with the direction of the tensor rel-
ative to the image plane. The smaller the number of directions used, the larger the
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variation.” From our results, this conclusion is not clearly violated since the differ-
ence instd(FA)/mean(FA) of white matter for the protocols (K=6 and NEX=8),
(K=13 and NEX=4) and (K=25 and NEX=2) were very small, i.e.CV(FA)wm

ranging from 0.279−0.319, 0.285−0.357 and 0.299−0.390 respectively.

4.2 Strengths and weaknesses of our approach

4.2.1 Eddy current correction

Due to lack of time and software, we did not perform eddy current (EC) correction
in our comparative study of protocols. As depicted in Section 3.10, demonstrating
the effect of EC correction in a single subject OB (K=6 and NEX=8) and (K=25
and NEX=2), we see that EC correction increases contrast anddetails and makes
the FA map smoother. To further explore the quality differences between high K or
high NEX, EC correction should be done previous to tensor andFA calculations.

4.2.2 Determination of the ROI and the segmentation process

For tissue specific analysis the definition of region of interest (ROIs) is impor-
tant. In our case with FA maps, it is not wise to use the FA images themselves
as this would be using the dependent variable to define itself. This can definitely
impede the identification of abnormal tissue such as white matter regions with
low FA. Therefore it was decided to automate the definition ofROIs based on a
T2-weighted structural image. To our knowledge, probabilistic tissue segmenta-
tion of theS0-image to obtain tissue specific FA-values has not previously been
reported. Using the segmentor in SPM2 and simple thresholding, we obtained a
large sample of GM, WM and CSF voxels that were in co-registerwith the other
DTI acquisitions that were used to calculate the tensorD and the FA-values. The
S0 image from the protocol with K=6 and NEX=8 was used for segmentation,
since it had the highest SNR among all of theS0 images that were acquired.

Because theS0-image data suffers from a substantially lower quality thana
genuine 3D anatomy image (e.g. MPRAGE, 3D FLASH), the poor quality can
possibly cause misclassification of tissues in the segmentation process. It is there-
fore an alternative to acquire a full 3D anatomic data set andlater co-register with
the DTI data. However, this would lead to higher examinationtimes and may be
hampered with mis-registration problems, if simple affine transformations were
used as is most common [1].

Pfefferbaum and Sullivan has reported that systematicallyeroding or dilating
the circumference of the ROI by eliminating or adding pixels, a margin of po-
tential error in the segmentation process is demonstrated [39]. They state that:
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“This draws into question use of global analysis approaches, such as statistical
parametric mapping (SPM), based on resizing of brain parenchyma to a common
template without regard for partial voluming arising from mis-registration that can
contribute significantly to DTI measures.”

4.2.3 Advantages with many directions

Many diffusion sensitizing directions enables so-called diffusion spectrum imag-
ing (DSI) which is an alternative yet effective approach formapping the intra-
voxel structures of white matter, especially fiber crossings, using a circular spec-
tral decomposition technique based on HARD MRI (Zhanet al. [40]). Another
example which favor many diffusion sensitizing directionsopposed to more aver-
ages of few directions, is high quality fiber tracking. It is necessary to encode the
DTI acquisitions with many diffusion sensitizing directions to get more reliable
trackings ([41]).

4.2.4 Suggestion for improvements

Apart from eddy current correction on the raw data before calculating the tensor
and the FA index, better or more coils for parallel imaging ([42]) will certainly
give better results, but depends on having the proper hardware in the MR scanner.
Another quality test in protocol comparison will be fiber tracking evaluation. By
the recently available synthetic DTI datasets [43], the goodness of a given tracking
algorithm could be established, which could then be appliedto a real DTI data set
from a single subject acquired with different DTI protocols.

4.3 Future work – extending the assessment to fiber
tracking results

Further analysis would be to test the three DTI acquisition schemes on results
from fiber tracking. There exists several methods for fiber tractography based on
DTI data [44] [45] [46] [47] [48] [49] [50] and [51] . One of them is implemented
in FSL by FMRIB, which does probabilistic tracking ([36]).

4.3.1 Probabilistic tracking

Oxford Center for Functional Magnetic Resonance Imaging ofthe Brain, FMRIB,
has developed a technique for characterizing the uncertainty associated with pa-
rameter estimates in diffusion weighted MRI, and for propagating this uncertainty
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through the diffusion weighted data. This allows computation of probability dis-
tributions on the location of the dominant fiber pathway suchthat it is possible to
quantify the belief in the tractography results.

Analysis of diffusion weighted data normally involves the fitting of a model
of local diffusion to the data in each voxel. A weakness in such an approach
is that the assumed model is of the diffusion profile and not the underlying fiber
structure which are the parameters that are of real interest. Because there has been
no model proposed to predict, adopting a Bayesian framework, how a specific
structure or distribution of fiber directions within a voxelwill reflect itself in the
measured diffusion weighted MR signal, therefore, any attempt to recreate the
fiber structure from such a profile is essentially an educatedguess. Another issue
is that even when fitting a model of local diffusion, the resulting parameters have
uncertainty associated with them.

FMRIB have presented a method for the full treatment of such an uncertainty.
They have shown, using Bayes’ equation along with well established methods for
its numerical solution, that it is possible to form a complete representation of the
uncertainty in the parameters in any generative model of diffusion, in the form of
posterior probability density functions on these parameters.

They then consider the uncertainty at a global level by outlining the theory
behind moving from the probability density functions (pdfs) on local principal
diffusion direction to an estimate of the probability distribution on global connec-
tivity. They choose to use a simple partial volume model to model local diffusion.
The reason for this choice is that it maximizes the chance that the effect of di-
verging or splitting fibers will be seen as uncertainty in theprincipal diffusion
direction, and not as a change in the diffusion profile. This is so because such a
model only allows for a single fiber direction within a voxel.

The next stage is to define a model of global connectivity. This is done with
streamlining algorithms. That is, given absolute knowledge of local fiber direc-
tions, connectivity is assumed between two points if, and only if, there exists a
connected path between them through the data. They simply allow for uncertainty
in fiber direction when computing streamlines by effectively repeatedly sampling
local pdfs to create streamlines, and regarding these streamlines as samples from
a global pdf. They choose to compute the local pdfs in a rigorous fashion given
the MR data.

An important result of their procedure is that the recoveredconnectivity dis-
tributions are strictly probability distributions on the connected pathway through
dominant fiber directions. That means that there is no explicit representation of
splitting or diverging fibers in either the local or global model. They are strictly
inferring that the effect of fiber divergence within a voxel (e.g. branching/crossing
fibers) must reveal itself as uncertainty in the principal diffusion direction. How-
ever, because fiber divergence within a voxel is treated as uncertainty in principal
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diffusion direction, this sensitivity to diverging and branching fibers will be de-
pendent on the experimental design. In general, the more information in the MR
measurements, the lower the uncertainty in principal diffusion direction.

This makes it possible to model tractography also in grey matter corticothala-
mic projection neurons. Even though the FA is low here.

Using the computational framework for probabilistic fiber tracking, it would
be possible to assess the effect of using different DTI imageacquisition protocols
(i.e. K=6 and NEX=8 vs. K=13 and NEX=4 vs. K=25 and NEX=2). However,
this would require much more computer resources and time foranalysis than was
available in this project. We have therefore limited ourself to make a few simple
experiments with the probabilistic tracking methods applied to our own data.

4.3.2 Preliminary results from probabilistic tracking applied
to data from subject AL

We have done probabilistic tracking on one dataset, subjectAL, using a modi-
fied acquisition protocol on the 1.5 T GE Signa Echospeed scanner at HDS, with
K=25 and NEX=2. For this case 5T2-weighted (b=0) images were recorded in
order to improve tensor calculations (cf. [31] and [38]). Wealso increased the
number of slices to 34, using a k-space acquisition matrix of96×96 (interpolated
to 256×256 display matrix), and isotropic voxel size of 2,3×2,3×2,3 mm3. We
will here remark that most published studies of fiber tracking employ 60 or more
slices with about 2.0 mm slice thickness (e.g [52]). The shell-script used for the
tensor calculations and tracking (accessing the routines in FDT∗/FSL) is given in
Appendix B.11.

Figure 4.1 depicts a detail from the experimental results showing probabilistic
fiber tracks in the anterior corpus callosum region, superimposed on the corre-
sponding FA map. Initially, a bar-shaped seed-mask was manually placed along
the whole corpus callosum in a para-sagittal plane. In Fig. 4.1 we see the in-
tersection of this mask with an axial slice (small yellow rectangle) close to the
genu part of the corpus callosum). The algorithms implemented in FDT first per-
forms Markov Chain Monte Carlo sampling to build up distributions on diffusion
parameters at each voxel of the brain (consuming about 20 hours on our Linux ma-
chine!). Then FDT was used to generate probabilistic streamlines in each voxel,
and finally compute a connectivity distribution, as seen in Fig. 4.1. All brain vox-
els will have a value (though many of these may be zero)representing the number
of samples that pass through that voxel from the seed mask. Connectivity distri-
butions from multiple seed voxels in the mask are summed to produce this output,

∗FDT–tools for low-level diffusion parameter reconstruction and probabilistic tractography
(http://www.fmrib.ox.ac.uk/fsl/fdt)
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and the connectivity values depend on the number of voxels inthe seed mask.
Thus, the brightness of a pixel, sayp, representing a streamline in Fig. 4.1 reflects
the area (number of voxels) within the seed mask that are probably connected to
p.

At this early stage of our tracking experiments good resultsand proper eval-
uation is hard to obtain, partly because we had little time onthe scanner to ex-
periment with higher spatial resolution and whole brain coverage, combined with
good data quality. One flaw with the acquisition of the present dataset was that
our axial slices were hampered with some left-right over-folding artifacts. By
switching the direction of the phase encoding and frequencyencoding imaging
gradients in follow-up experiments, this artifact was not present. However, these
new DTI-acquisitions were recorded for simple FA-calculations, and had larger
slice thickness, less number of slices, and were spatially not appropriate for track-
ing experiments.

We will, as a next step, study the possibility of modifying our DTI acquisition
protocol to be better suited for fiber tracking, and such thatthe time consumption
of the sequence is compatible with clinical use.

As shown in Fig. 4.1 the correctness/quality of the fiber tractography images
are difficult to interpret, and a more rigorous study should include DTI protocols
with higher spatial resolution.

4.4 Conclusion

From our data, which are sparse, and evaluation methods, we conclude that the
quality of the resulting diffusion tensorD and the FA maps are about the same
using protocols that favors number of directions (large K) traded with number of
averages (few NEX), and protocols that favors number of excitations (high NEX)
traded with number of directions (small K).

Since a large K enables more sophisticated analysis (e.g. diffusion spectrum
imaging, DSI) we recommend a protocol with many diffusion sensitizing direc-
tions. This is also in accordance with the latest recommendation from the vendor
of the scanner (i.e. after upgrade to Echospeed gradient system), where K=25 and
NEX=1 are prescribed in their standard DTI protocol.
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FA with seed-mask

Tracking superimposed on FA

Figure 4.1: The results from probabilistic fiber tracking using the FDT/FSL software
from Oxford’s FMRIB on MR-DTI data acquired in subject AL. The spatial connectivity
matrix, shown as streamlines superimposed on the FA image inthe anterior part of corpus
callosum (CC), is related to a bar-shaped seed mask manuallyplaced along the CC. Part
of this seed-mask (small yellow rectangle) can be seen wherethe mask intersects one of
the axial slices (9/32)
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Programs used in the work of this
thesis

A.1 MATLAB
MATLAB [53] is a high-level technical computing language and interactive environment for al-
gorithm development, data visualization, data analysis, and numerical computation. Using MAT-
LAB, one can solve technical computing problems faster thanwith traditional programming lan-
guages, such as C, C++ and Fortran.

One can use MATLAB in a wide range of applications, includingsignal image processing,
communications, control design, test and measurements, financial modeling and analysis, and
computational biology. Add-on toolboxes (collections of special-purpose MATLAB functions,
available separately) extend the MATLAB environment to solve particular classes of problems in
these application areas.

MATLAB provides a number of features for documenting and sharing of work. One can
integrate your MATLAB code with other languages and applications, and distribute MATLAB
algorithms and applications.

A.2 nICE
nICE – Image Control and Evaluation [32] – is a medical viewing, analysis and processing pack-
age developed with a view to ease of use and high performance an a standard Windows platform.
In addition to a wide range of basic image processing and analysis functions, nICE provides com-
prehensive functionality for dynamic image analysis (e.g.perfusion) and processing/display of
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functional MRI (fMRI) data. For this purpose, nICE provideseasy data transfer to other fMRI
analysis software packages.

We used nICE to load the DTI images as DICOM-files and save themas SPM/Analyze format.
Separate volumes was made for each of the diffusion sensitizing directions.

A.3 SPM2 (Statistical Parametric Mapping)
The SPM [54] was originally developed by Karl Friston and is asoftware package for the analysis
of brain imaging data sequences. The sequences can be a series of images from different cohorts,
or time-series from the same subject. SPM is based on MATLAB functions and subroutines.
Routines for probabilistic segmentation of high resolution magnetic resonance brain images is
also implemented. Segmentation divides the brain into to gray matter (GM), white matter (GM)
and cerebrospinal fluid (CSF) and other parts based on the image intensity.

The segmentation algorithm utilizes a priori probability images of GM, WM and CSF (range
0-1). Before segmentation each voxel in the image is mapped to its equivalent location in the a
priori probability images through a spatial transformation.

The iterative segmentation algorithm is based on maximum likelihood ’mixture model’ clus-
tering algorithm. The algorithm is terminated when the change in log-likelihood from the previous
iteration becomes negligible.

A.4 MRI-TOOLBOX
The toolbox makes it possible to, among other things, importthe segmented tissue volume from
analyze-format into MATLAB as a *.mat file. This makes it convenient to work with the seg-
mented tissue volumes in MATLAB. The mri-toolbox can be downloaded from here [55]. Search
for mri-toolbox.
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MATLAB-code and additional
shell scripts

B.1 diffusionellipsoid.mr = diffusionellipsoid(D, xrot, yrot, zrot, n)% Axis rotationRx = [1, 0, 0; 0, 
osd(xrot), sind(xrot); 0, -sind(xrot), 
osd(xrot)℄;Ry = [
osd(yrot), 0, -sind(yrot); 0, 1, 0; sind(yrot), 0, 
osd(yrot)℄;Rz = [
osd(zrot), sind(zrot), 0; -sind(zrot), 
osd(zrot), 0; 0, 0, 1℄;R = Rz*Ry*Rx; % Resulting rotation matrix[E, lambda℄ = eigs(D);L = diag(lambda);[x,y,z℄ = l
l_ellipsd(L', E, n);D_rot = R*D*(R');[E_rot, lambda_rot℄ = eigs(D_rot);L_rot = diag(lambda_rot);[x_rot,y_rot,z_rot℄ = l
l_ellipsd(L_rot', E_rot, m);surf
(z,y,x) % Original diffusion ellipsoid, before spatial transformationsurf
(z_rot,y_rot,x_rot) % Diffusion ellipsoid after reorientation of tensor[x,y,z℄ = l
l_ellipsd(smax,nrm,n)% ELLIPSD(SA,NRM,N) plots ellipsoid with% semiaxes ve
tor SA=[SAX SAY SAZ℄ and% axes orientation given in the matrix NRM.% N spe
ifies dimension of 
oordinate matri
es% X, Y, Z (all NxN matri
es
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B.2 runme.mwd = pwd;disp( 'Load DTI data from DICOM format...');
d Data\dti\KETIL_20040604\SA\SA25dir2NEXdti_foer_nedskalering = double( loaddti( 'im',24,26,1,true ));
d( wd );
lear wd;% Makes a se
tion of the volume to pla
e a limitation on the amount of% memory used in the 
al
ulationsdisp( ' S
aling down dataset...' );dti = dti_foer_nedskalering(:,40:235,51:210,:); %SAdisp( ' Computing diffusion-tensor for ea
h voxel...' );D = difftensorlsq( dti );disp( ' Computing norms from diffusion-tensor...' );disp( ' Computing FA norm...' );img_fa = dtnorm( D, 'fa' );
Forloaddti.m see B.3 page 92, fordifftensorlsq.m see B.4 page 93 and fordtnorm.m see B.6 page 95.

B.3 loaddti.mfun
tion dti = loaddti( fileprefix, sli
es, dire
tions, offset, debug )% LOADDTI Load DTI volume data fra DICOM files% LOADDTI( fileprefix ) loads the DICOM-files beginning with 'prefix'% from disk.%% LOADDTI( fileprefix, sli
es ) assumes there are 'sli
es' sli
es of% images in the dataset. Default is 19.%% LOADDTI( fileprefix, sli
es, dire
tions ) assumes there are% 'dire
tions' dire
tions in the dataset. Default is 7.%% LOADDTI( fileprefix, sli
es, dire
tions, offset ) assumes the% first image is named 'sprintf('%s%d', fileprefix, offset)'. Default% is 1.%% LOADDTI( fileprefix, sli
es, dire
tions, offset, debug ) shows% information about the loading pro
ess if 'debug' is true.%% dti = LOADDTI(...) returns a volume 
ontaining the loaded data.% size( dti ) = 'dire
tions' * rows * 
ols * 'sli
es', where rows and% 
ols are the number of rows and 
olumns in ea
h of the% DICOM-images, and 'dire
tions' and 'sli
es' are inputparameters.swit
h ( nargin )
ase 1dti = loaddti( fileprefix, 19 );return;
ase 2dti = loaddti( fileprefix, sli
es, 7 );return;
ase 3dti = loaddti( fileprefix, sli
es, dire
tions, 1 );return;
ase 4
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es, dire
tions, offset, false );return;endif (debug)disp('Loading DTI data...');endfor filenumber = offset : sli
es*dire
tionsfilename = sprintf('%s%d', fileprefix, filenumber);dir = floor( (filenumber - offset) / sli
es ) +1;sl
 = mod( (filenumber - offset) , sli
es ) +1;info = di
ominfo( filename );dti( dir,:,:,sl
) = di
omread( info );if (debug)disp( sprintf( ' Reading file %s...', filename ));disp( sprintf( ' Dire
tion = %d', dir ));disp( sprintf( ' Sli
e = %d', sl
 ));disp( sprintf( ' File info' ));disp( sprintf( ' Filesize = %d', info.FileSize ));% disp( sprintf( ' Minimum = %d', info.SmallestImagePixelValue ));% disp( sprintf( ' Maximum = %d', info.LargestImagePixelValue ));disp( sprintf( ' Resolution = %dx%d', info.Rows, info.Columns ));disp( sprintf( ' Date = %s', info.FileModDate ));endend
B.4 difftensorlsq.mfun
tion D = difftensorlsq( dti )% DIFFTENSTORLSQ Cal
ulates a diffusion tensor volume from a dti volume% DIFFTENSTORLSQ( dti ) 
al
ulates a diffusion tensor for ea
h% voxel in the dataset 'dti'. 'dti' is of resolution dirs x rows x% 
ols x sl
s. Let rows x 
ols x sl
s represent the 
omplete MRI% volume being examined. From these dirs values for ea
h voxel in% the volume we 
an 
ompute [Westin et al.( 2002)℄ a diffusion% tensor. We will do this using Trygve Nilsens linear least squares% approa
h. See le
turenotes dated April 24.%% D = DIFFTENSORLSQ( ... ) returns a diffusion tensor 
al
ulated for% ea
h voxel in the volume. The tensor for ea
h voxel will be a 3x3% matrix, and therefore size( D ) = 3 x 3 x rows x 
ols x sl
s.b = 1000;g = s
andir( size( dti,1 ));%% Translate dataset to minimum 1 to later avoid log(0)dti = dti - min(min(min(min( dti )))) +1;%% Transform to 
orre
t s
aledti = log( dti );for dir = 1:size( g,2 )y( dir,:,:,: ) = (dti( 1,:,:,: ) - dti( dir+1,:,:,: )) / b;end%% Cal
ulate gamma-matrixfor row = 1:size( g,2 )



94 CHAPTERBgamma(row,:) = reshape( g(:,row) * g(:,row)', [1 9℄);end%% Remove dupli
ate 
olumns to prevent singularitygamma = unique
ols( gamma );%% Pre
al
ulate matrix needed for analyti
al solutionM = inv( gamma' * gamma ) * gamma';%% For ea
h voxel, solve minimization analyti
allyfor row = 1:size( dti,2 )for 
ol = 1:size( dti,3 )for lvl = 1:size( dti,4 )delta(:,row,
ol,lvl) = M * y( :,row,
ol,lvl );endendend%% Convert ve
tor pr voxel to symmetri
 matrix pr voxelD( 1,1,:,:,: ) = delta( 1,:,:,: );D( 1,2,:,:,: ) = delta( 2,:,:,: ) * 0.5;D( 1,3,:,:,: ) = delta( 3,:,:,: ) * 0.5;D( 2,2,:,:,: ) = delta( 4,:,:,: );D( 2,3,:,:,: ) = delta( 5,:,:,: ) * 0.5;D( 3,3,:,:,: ) = delta( 6,:,:,: );D( 2,1,:,:,: ) = D( 1,2,:,:,: ); %% Symmetri
D( 3,1,:,:,: ) = D( 1,3,:,:,: ); %% Symmetri
D( 3,2,:,:,: ) = D( 2,3,:,:,: ); %% Symmetri
%% Remove dupli
ate 
olumns from Mfun
tion U = unique
ols( M )U = [℄;for 
ol = 1:size( M,2 )if ~ismember( M(:,
ol)', U', 'rows' )U = [U, M(:,
ol)℄;endend
Fors
andir.m see B.5 page 94.

B.5 scandir.mfun
tion g = s
andir( dir
ount, s
annertype )%% Do not 
ount b=0 dire
tiondir
ount = dir
ount -1;swit
h( dir
ount )
ase 6g = load( 'ge_6.txt' )';return;
ase 13g = load( 'ge_13.txt' )';return;
ase 25g = load( 'ge_25.txt' )';return;end% The *.txt fils has been made from the information in the tensor.dat file
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B.6 dtnorm.mfun
tion V = dtnorm( D, normhandle )% DTNORM Computes a volume norm for a diffusion tensor volume% DTNORM( D, normhandle ) 
omputes a norm from the diffusion tensor% stored in ea
h voxel of 5D 'D', using the handle to the matrixnorm% 'normhandle'. 'normhandle' is the name of a fun
tion in the 'private'% subdire
tory (without the extension).%% V = DTNORM( ... ) returns a volume where ea
h voxel 
ontains the% norm of the 
orresponding diffusion tensor in 'D'. If size( D ) =% m x n x rows x 
ols x sl
s, then size( V ) = rows x 
ols x sl
s.%% Example:% V = dtnorm( D, 'linear' );normhandle = str2fun
( normhandle );for row = 1:size( D,3 )for 
ol = 1:size( D,4 )for lvl = 1:size( D,5 )d = D( :,:,row,
ol,lvl );V( row,
ol,lvl ) = feval( normhandle, d );endendend
B.7 fa.mfun
tion value = fa( D )lambda = flipud( sort( eig( D )));value = 1/sqrt(2) * (sqrt( (lambda(1)- lambda(2))^2 + ...(lambda(2)- lambda(3))^2 + (lambda(1)- lambda(3))^2) / ...sqrt( lambda(1)^2 + lambda(2)^2 + lambda(3)^2));
B.8 makemask.mfun
tion mask = makemask ( volume, treshold, subje
t )% MAKEMASK makes a binary mask from the volume 'volume' with threshold from 0 to% 1 and s
ales the volume to fit the img_fa volume of subje
t 'subje
t'.%% Example: mask = makemask( img_white, 0.95, 'JL' ); gives us the binary mask from% the volume img_white with treshold 0.95 and s
ales the volume for subje
t 'JL'.% Author: Ketil Oppedal May 2004% revised: O
tober 2004volume = volume/max(max(max(volume)));for i = 1:size(volume,3)volume_rot = rot90(volume(:,:,i));volume_rot_tresh = im2bw(volume_rot(:,:), treshold);mask(:,:,i) = reshape(volume_rot_tresh(:,:), size(volume,1), size(volume,2), 1);end
B.9 fa-plottingfun
tion fa_plotting_20041018(subj_id, nof_diff_dirs, nex)
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retization ("binning") of the phi and theta angles% for subje
t OB% loading datadata = '.\ketils_workspa
es\20040214\OB6dir8NEX.mat';load(data)% importing the segmented brain volumes from analyze format[gm, xx℄ = avw_img_read('g:\Ketil\m-files\Data\dti\KETIL_20040214\OB\SPM_OB6dir8NEX\b0_seg1');[wm, xx℄ = avw_img_read('g:\Ketil\m-files\Data\dti\KETIL_20040214\OB\SPM_OB6dir8NEX\b0_seg2');[
sf, xx℄ = avw_img_read('g:\Ketil\m-files\Data\dti\KETIL_20040214\OB\SPM_OB6dir8NEX\b0_seg3');% making the tissue spe
ifi
 maskgm_mask = makemask( gm.img, 0.925, 'OB' );wm_mask = makemask( wm.img, 0.925, 'OB' );
sf_mask = makemask( 
sf.img, 0.925, 'OB' );% Make 
olumn ve
torsimg_fa_ve
 = reshape(img_fa, prod(size(img_fa)), 1);ve
oord_ph_ve
 = reshape(ve
oord_ph, prod(size(ve
oord_ph)), 1);ve
oord_th_ve
 = reshape(ve
oord_th, prod(size(ve
oord_th)), 1);gm_mask_ve
 = reshape(gm_mask, prod(size(gm_mask)), 1);wm_mask_ve
 = reshape(wm_mask, prod(size(wm_mask)), 1);
sf_mask_ve
 = reshape(
sf_mask, prod(size(
sf_mask)), 1);% Extra
t positions within masksN = length(img_fa_ve
);%gmI = find(gm_mask_ve
 > 0);ve
oord_ph_ve
_gm(1:length(I))=0;ve
oord_th_ve
_gm(1:length(I))=0;img_fa_ve
_gm(1:length(I))=0;for i=1:length(I)ve
oord_ph_ve
_gm(i) = ve
oord_ph_ve
(I(i));ve
oord_th_ve
_gm(i) = ve
oord_th_ve
(I(i));img_fa_ve
_gm(i) = img_fa_ve
(I(i));end%wmJ = find(wm_mask_ve
 > 0);ve
oord_ph_ve
_wm(1:length(J))=0;ve
oord_th_ve
_wm(1:length(J))=0;img_fa_ve
_wm(1:length(J))=0;for i=1:length(J)ve
oord_ph_ve
_wm(i) = ve
oord_ph_ve
(J(i));ve
oord_th_ve
_wm(i) = ve
oord_th_ve
(J(i));img_fa_ve
_wm(i) = img_fa_ve
(J(i));end%
sfK = find(
sf_mask_ve
 > 0);ve
oord_ph_ve
_
sf(1:length(K))=0;ve
oord_th_ve
_
sf(1:length(K))=0;img_fa_ve
_
sf(1:length(K))=0;for i=1:length(K)ve
oord_ph_ve
_
sf(i) = ve
oord_ph_ve
(K(i));ve
oord_th_ve
_
sf(i) = ve
oord_th_ve
(K(i));img_fa_ve
_
sf(i) = img_fa_ve
(K(i));end% Cal
ulates std, mean og 
v for the fa-values within the masksstd_fa_gm = std(img_fa_ve
_gm);mean_fa_gm = mean(img_fa_ve
_gm);



MATLAB- CODE AND ADDITIONAL SHELL SCRIPTS 97
v_fa_gm = std_fa_gm/mean_fa_gm;std_fa_wm = std(img_fa_ve
_wm);mean_fa_wm = mean(img_fa_ve
_wm);
v_fa_wm = std_fa_wm/mean_fa_wm;std_fa_
sf = std(img_fa_ve
_
sf);mean_fa_
sf = mean(img_fa_ve
_
sf);
v_fa_
sf = std_fa_
sf/mean_fa_
sf;% max and min for phi and thetamin_ph = min(ve
oord_ph_ve
_wm); max_ph = max(ve
oord_ph_ve
_wm);min_th = min(ve
oord_th_ve
_wm); max_th = max(ve
oord_th_ve
_wm);% rounded to integersn_ph = round( (max_ph - min_ph)/DELTA_DEG);n_th = round( (max_th - min_th)/DELTA_DEG );% linspa
e(min_ph, max_ph, n_ph) generates a row ve
tor of n_ph linearly% equally spa
ed points between min_ph and max_ph.ph = linspa
e(min_ph, max_ph, n_ph);th = linspa
e(min_th, max_th, n_th);% N = HISTC(X,EDGES), for ve
tor X, 
ounts the number of values in X% that fall between the elements in the EDGES ve
tor (whi
h must 
ontain% monotoni
ally non-de
reasing values). N is a LENGTH(EDGES) ve
tor% 
ontaining these 
ounts.% [N,BIN℄ = HISTC(X,EDGES,...) also returns an index matrix BIN. If X is a% ve
tor, N(K) = SUM(BIN==K). BIN is zero for out of range values.[nof_ph, bin_ph℄ = hist
(ve
oord_ph_ve
_wm, ph);[nof_th, bin_th℄ = hist
(ve
oord_th_ve
_wm, th);phdim = max(bin_ph);thdim = max(bin_th);fa_
ard(1:phdim,1:thdim)=0;fa_mean(1:phdim,1:thdim)=0;fa_std(1:phdim,1:thdim)=0;fa_
v(1:phdim,1:thdim)=0;for i_ph=1:phdimfor i_th=1:thdimKph = find(bin_ph == i_ph);Kth = find(bin_th == i_th);K = interse
t(Kph, Kth);
ardK = length(K);if 
ardK > 0tmp_fa(1:
ardK)=0;for k=1:
ardKtmp_fa(k) = img_fa_ve
_wm(K(k));fa_bin{i_ph,i_th}.val{k} = tmp_fa(k);endfa_bin{i_ph,i_th}.idx = K;fa_
ard(i_ph,i_th) = 
ardK;fa_mean(i_ph,i_th) = mean(tmp_fa);fa_std(i_ph,i_th) = std(tmp_fa);fa_
v(i_ph,i_th) = std(tmp_fa)/mean(tmp_fa);endendend% Plottingmx=1600; %mx=max(max(fa_
ard));mn=0; %mn=min(min(fa_
ard));fg1=figure(1);
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(fa_
ard, [mn mx℄), 
olormap(gray), axis image, 
olorbar('v');title(sprintf('
ard(FA) as a fun
tion ofmin_ph, max_ph, phdim, min_th, max_th, thdim));mx=0.60; %mx=max(max(fa_mean));mn=0; %mn=min(min(fa_mean));fg2=figure(2);set(fg2, 'Position', [71 91 814 578℄);images
(fa_mean, [mn mx℄), 
olormap(gray), axis image, 
olorbar('v');title(sprintf('mean(FA) as a fun
tion ofmin_ph, max_ph, phdim, min_th, max_th, thdim));mx=0.22; %mx=max(max(fa_std));mn=0; %mn=min(min(fa_std));fg3=figure(3);set(fg3, 'Position', [71 91 814 578℄);images
(fa_std, [mn mx℄), 
olormap(gray), axis image, 
olorbar('v');title(sprintf('std(FA) as a fun
tion ofmin_ph, max_ph, phdim, min_th, max_th, thdim));mnx=-200;mxx=200;mny=-100;mxy=100;mnz=0;mxz=0.25;fg4=figure(4);set(fg4, 'Position', [71 91 814 578℄);surf
(th,ph,fa_std), 
olormap(gray);axis([mnx mxx mny mxy mnz mxz℄)zlabel('std(FA)', 'FontSize', 14)xlabel('\phi', 'FontSize', 18)ylabel('\theta', 'FontSize', 18)title(sprintf('Subje
t %s: %d dire
tions, nex=%d', ...subj_id, nof_diff_dirs, nex), 'FontSize', 14)mx=0.62; %mx=max(max(fa_
v));mn=0; %mn=min(min(fa_
v));fg5=figure(5);set(fg5, 'Position', [71 91 814 578℄);images
(fa_
v, [mn mx℄), 
olormap(gray), axis image, 
olorbar('v');title(sprintf('
v(FA) as a fun
tion ofmin_ph, max_ph, phdim, min_th, max_th, thdim));
B.10 dti-demo-all-slice.mfun
tion r = dti_demo_all_sli
es_20041116(study,sli
e_no)% dti_demo_all_sli
es_20041116.m% Ex:% r = dti_demo_all_sli
es_20041116('OH25dir2NEX', 12);% Arvid Lundervold, NOV-2004
lose all%BASE_DIR = 'g:/Ketil/m-files/ketils_workspa
es/20040214';BASE_DIR = 'g:/Ketil/m-files/ketils_workspa
es/20040604';% load /mnt/
drom/SA6dir8NEX.mat% load d:/OH25dir2NEX.mat
md = sprintf('load %s/%s.mat', BASE_DIR, study); eval(
md);% ==>% D 5-D 3 3 196 160 24



MATLAB- CODE AND ADDITIONAL SHELL SCRIPTS 99% V 256x256x24% dti 4-D 7 196 160 24% dti_foer_nedskalering 4-D 7 256 256 24% img_fa 196x160x24% img_linear 196x160x24% linmask 196x160x24 logi
al array% mask 196x160x24 double array% ve
oord_ph 196x160x24 double array% ve
oord_th 196x160x24 double array% whitemask 196x160x24 logi
al array% wm_mask 196x160x24 logi
al arrayDISP = 1;SLICE = sli
e_no;[D_nr, D_n
, nr, n
, ns℄ = size(D);[nd, nr, n
, ns℄ = size(dti);nd=nd-1;L_THR = 100; % 300; % By inspe
tion of histograms ...D_sli
e = reshape(dti(2:nd+1,:,:,SLICE), nd, nr, n
);[M℄ = l
l_make_brain_mask(D_sli
e, L_THR, DISP);D_tensor = reshape(D(:,:,:,:,SLICE), D_nr, D_n
, nr, n
);[EIGval, EIGve
℄ = l
l_
ompute_eigensystem(D_tensor, nr, n
);txt = sprintf('%s - sli
e %d', study, sli
e_no);[FA℄ = l
l_display_fra
tional_anisotropy(EIGval, nr, n
, M, txt, DISP);[RGB℄ = l
l_display_diff_rgb(EIGval, EIGve
, FA, nr, n
, M, txt, DISP);r.SLICE = SLICE;r.M = M;r.EIGval = EIGval;r.EIGve
 = EIGve
;r.FA = FA;r.RGB = RGB;%==========================================================================% Lo
al fun
tions%--------------------------------------------------------------------------fun
tion [EIGval, EIGve
℄ = l
l_
ompute_eigensystem(D_tensor, nr, n
)x=zeros(9,nr*n
);% for k=1:nd-1% G_tilde_k = l
l_dual_tensor_basis_element(k, nd-1, diff_en
_dirs_6);% x = x + ( ones(9,1)*reshape(beta_k(k,:),1,nr*n
) ) .* (% reshape(G_tilde_k, 9, 1)*ones(1,nr*n
) );% endk=0;for i=1:3for j=1:3k=k+1;x(k,:) = reshape(D_tensor(i,j,:,:), 1, nr*n
);end



100 CHAPTERBendD = x;EIGval = zeros(3,nr*n
);EIGve
 = zeros(3,3,nr*n
); % zeros(9,nr*n
);for i=1:nr*n
;Di = reshape(D(:,i), 3,3);[eigenve
, eigenval℄ = eig(Di); % eigs(Di) is mu
h slower[val, I℄ = sort(-diag(eigenval));for j=1:3;ve
(1:3,j) = eigenve
(1:3,I(j));endEIGval(:,i) = -val;EIGve
(:,:,i) = reshape(ve
,3,3,1);endreturn%--------------------------------------------------------------------------fun
tion [FA℄ = l
l_display_fra
tional_anisotropy(EIGval, nr, n
, M, txt, DISP)fno = 120;WIENER = 0;
 = 1/sqrt(2);FA_ve
=zeros(1,nr*n
);epsi = 1e-100;for i=1:nr*n
;l1 = EIGval(1,i);l2 = EIGval(2,i);l3 = EIGval(3,i);numer = sqrt((l1-l2)*(l1-l2) + (l2-l3)*(l2-l3) + (l1-l3)*(l1-l3));denumer = max(sqrt(l1*l1+l2*l2+l3*l3), epsi);%denumer = sqrt(l1*l1+l2*l2+l3*l3);FA_ve
(i) = 
*numer/denumer; % min(
*numer/denumer, 1.0);%if FA_ve
(i) > 1.0001% FA_ve
(i) = NaN;%endendFA = reshape(FA_ve
,nr,n
);FA_M = FA .* M;if DISP == 1mn = min(min(FA_M)); mx = max(max(FA_M));figure(fno)set(g
f, 'Position', [485 265 840 687℄);if WIENER == 1[FA_wiener,NOISE℄ = wiener2(FA_M,[3 3℄);images
(FA_wiener, [mn mx℄), axis image, axis off, 
olormap(gray);elseimages
(FA_M, [mn mx℄), axis image, axis off, 
olormap(gray);endtxt2 = sprintf('%s min=%.2f, max=%.2f', txt, mn, mx);%title(txt2, 'FontSize', 14)pause(0.05)end % DISP



MATLAB- CODE AND ADDITIONAL SHELL SCRIPTS 101return%--------------------------------------------------------------------------fun
tion [RGB℄ = l
l_display_diff_rgb(EIGval, EIGve
, FA, nr, n
, M, txt, DISP)fno = 130;WIENER = 0;FA_ve
 = reshape(FA, 1, nr*n
);RGB=zeros(nr,n
,3);lambda1 = zeros(1,nr*n
);v1x = zeros(1,nr*n
);v1y = zeros(1,nr*n
);v1z = zeros(1,nr*n
);for i=1:nr*n
;lambda1(i) = EIGval(1,i);x = EIGve
(1,1,i); % x-
omponent of eigenve
tor 
orresponding to largest eigenvaluey = EIGve
(2,1,i); % y-
omp.z = EIGve
(3,1,i); % z-
omp.v = [x, y, z℄';vn = v / sqrt(v'*v);v1x(i) = abs(FA_ve
(i)*vn(1));v1y(i) = abs(FA_ve
(i)*vn(2));v1z(i) = abs(FA_ve
(i)*vn(3));endV1x = reshape(v1x,nr,n
);V1y = reshape(v1y,nr,n
);V1z = reshape(v1z,nr,n
);if WIENER == 1[R, noise_r℄ = wiener2(V1x,3,3); % ./ max(max(V1x));[G, noise_g℄ = wiener2(V1y,3,3); % ./ max(max(V1y));[B, noise_b℄ = wiener2(V1z,3,3); % ./ max(max(V1z));elseR = V1x; % ./ max(max(V1x));G = V1y; % ./ max(max(V1y));B = V1z; % ./ max(max(V1z));endR_M = R .* M;G_M = G .* M;B_M = B .* M;RGB(:,:,1) = R ./ max(max(R));RGB(:,:,2) = G ./ max(max(G));RGB(:,:,3) = B ./ max(max(B));RGB_M(:,:,1) = R_M ./ max(max(R));RGB_M(:,:,2) = G_M ./ max(max(G));RGB_M(:,:,3) = B_M ./ max(max(B));if DISP == 1figure(fno)imshow(RGB_M);set(g
f, 'Position', [485 265 840 687℄);txt2 = sprintf('%s R = FA*|v1_x|, G = FA*|v1_y|, B = FA*|v1_z|', txt);%title(txt2, 'FontSize', 14)pause(0.05)end %DISP



102 CHAPTERBreturn%--------------------------------------------------------------------------fun
tion [M℄ = l
l_make_brain_mask(D_sli
e, thr, DISP)HSIZE = 5;SIGMA = 3.0;L_THRES = thr;[nd, nr, n
℄ = size(D_sli
e);im =zeros(nr,n
);for d=1:ndim = im + reshape(D_sli
e(d,:,:), nr, n
);endim = im/nd;H = fspe
ial('gaussian', HSIZE, SIGMA);im1 = imfilter(im, H);% 2-D order statisti
s filtering%im2 = ordfilt2(im1, 1, ones(3,3));im2 = im1;mn = min(min(im2)); mx = max(max(im2));M = roi
olor(im2, L_THRES, mx);% Outlined original imageim3 = bwperim(M);im4 = im;im4(im3) = max(max(im2)); % 255;if DISP == 1fno = 101;figure(fno)set(g
f, 'Position', [485 265 840 687℄);subplot(1,2,1)images
(M, [0 1℄), axis image, axis off, 
olormap(gray);txt = sprintf('ROI (for 
al
ulation of DTI)');%title(txt, 'FontSize', 12)subplot(1,2,2)images
(im4, [mn mx℄), axis image, axis off, 
olormap(gray);txt = sprintf('Outer 
ontour of the brain: min=%.2f, max=%.2f', mn, mx);%title(txt, 'FontSize', 12)end % DISPreturn
B.11 fsl-dtianal-34slices.sh#!/bin/sh# fsl_dtianal_34sli
es.shFSLDIR=/usr/lo
al/fsl. ${FSLDIR}/et
/fsl
onf/fsl.shPATH=${FSLDIR}/bin:${PATH}export FSLDIR PATH
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king_12052005/Analyze/e
ho DATA_DIR=$DATA_DIR
d $DATA_DIR# Merges the DTI-data from several 3D Analyze images too a 4D datasetavwmerge -t data_noe

.nii rb00.hdr b01.hdr b02.hdr b03.hdr b04.hdr b05.hdrb06.hdr b07.hdr b08.hdr b09.hdr b10.hdr b11.hdr b12.hdr b13.hdr b14.hdrb15.hdr b16.hdr b17.hdr b18.hdr b19.hdr b20.hdr b21.hdr b22.hdr b23.hdrb24.hdr b25.hdr# Eddy 
urrent 
orre
tion on the dataseteddy_
orre
t data_noe

.nii data.nii 0# Makes a non-DTI image by merging of the b0 dataavwmerge -t nodif_noe

.nii rb00.hdr# Eddy 
urrent 
orre
tion on the dataseteddy_
orre
t nodif_noe

.nii nodif.nii 0# Brain extra
tion tool, deletes non-brain tissue from an image of the# whole brainbet2 nodif nodif_brain -m -v# DTIFit fits a diffusion tensor model at ea
h voxel and does eigen-# de
ompsition and 
al
ultaes among other tings FAdtifit --data=data --out=dti --mask=nodif_brain_mask --bve
s=bve
s--bvals=bvals --verbose# Bayesian Estimation of Diffusion Parameters Obtained using Sampling# Te
hniques. Bedpost runs Markov Chain Monte Carlo sampling to build# up distributions on diffusion parameters at ea
h voxel. It 
reates# all the files ne
essary for running probabilisti
 tra
tographybedpost .
d $CUR_DIRe
ho CUR_DIR=$CUR_DIR
To learn more about the brain extraction tool used here see [56].





C

The Diffusion Equations

C.1 Basic Hypothesis and Mathematical Theory
Fick [57] recognized the obvious analogy between heat conduction and isotropic diffusion. Trans-
fer of heat is caused by random molecular motions as well. He put diffusion on a quantitative
basis by adopting the mathematical equation of heat conduction derived earlier by Fourier [58].
The mathematical theory of diffusion in isotropic substances is therefore based on the hypothesis
that the rate of transfer of diffusing substance through a unit area of a section is proportional to the
concentration gradient measured normal to the section, i.e.

F = −D∂C/∂x (C.1)

whereF is the rate of transfer per unit area of section,C the concentration of diffusing substance,x
the space coordinate measured normal to the section, andD is called the diffusion coefficient. With
diffusion taking place in dilute solutions,D can admissibly be taken as constant, and with diffusion
taking place in high polymers, it depends markedly on concentration. IfF , the amount of diffusing
substance, andC the concentration are expressed in terms of the same unit of quantity, then it is
clear from equation (C.1) thatD is independent of this unit and has dimensionslength2time−1.
The negative sign in equation (C.1) arises because diffusion occurs in the direction opposite to
that of increasing concentration.

It is important to accentuate that equation (C.1) only yields for an isotropic medium i.e. a
medium whose structure and diffusion properties in the neighborhood of any point are the same
relative to all directions. Because of this symmetry, the flow of diffusing substance at any point is
along the normal to the surface of constant concentration through the point. As shown in C.3 this
is seldom true in an anisotropic medium for which the diffusion properties depend on the direction
in which they are measured.
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C.2 Differential Equation of Diffusion
The fundamental differential equation of diffusion in an isotropic medium is derived from equation
(C.1) as described below:

Figure C.1: Element of volume

Imagine an element of volume in the form of a rectangular parallelepiped whose sides are
parallel to the axes of coordinates and are of lengths 2dx,2dyand 2dz. Let the center of the element
be atP(x,y,z), where the concentration of diffusing substance isC. LetABCDandA′B′C′D′ be the
faces perpendicular to the axis ofx as in Figure C.1. Then the rate at which diffusing substance
enters the element through the faceABCD in the planex−dx is given by

4dydz

(

Fx−
∂Fx

∂x
dx

)

(C.2)

whereFx is the rate of transfer through unit area of the corresponding plane throughP. Similarly
the rate of loss of diffusing substance through the faceA′B′C′D′ is given by

4dydz

(

Fx +
∂Fx

∂x
dx

)

(C.3)

The contribution to the rate of increase of diffusing substance in the element from these two faces
is thus equal to

−8dxdydz
∂Fx

∂x
(C.4)

Similarly from the other faces we obtain

−8dxdydz
∂Fy

∂y
and −8dxdydz

∂Fz

∂z
(C.5)

But the rate at which the amount of diffusing substance in theelement increases is also given by

−8dxdydz
∂C
∂ t

(C.6)

and hence we have immediately

∂C
∂ t

+
∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z
= 0 (C.7)
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If the diffusion coefficient is constant,Fx,Fy,Fz are given by equation (C.1), and (C.7) becomes

∂C
∂ t

= D

(

∂ 2C
∂x2 +

∂ 2C
∂y2 +

∂ 2C
∂z2

)

(C.8)

reducing simply to

∂C
∂ t

= D
∂ 2C
∂x2 (C.9)

if diffusion is one–dimensional, i.e. if there is a gradientof concentration only along thex-axis.
Expression (C.1) and (C.9) are usually referred to as Fick’sfirst and second laws of diffusion, since
they were first formulated by Fick [57] by direct analogy withthe equations of heat conduction.

In many systems, e.g. the inter diffusion of metals or the diffusion of organic vapors in high
polymer substances,D depends on the concentration of diffusing substance,C. In this case, and
also when the medium is not homogeneous so thatD varies from point to point, equation (C.7)
becomes

∂C
∂ t

=
∂
∂x

(

D
∂C
∂x

)

+
∂
∂y

(

D
∂C
∂y

)

+
∂
∂z

(

D
∂C
∂z

)

(C.10)

whereD may be a function ofx,y,z, andC.
If D depends on time during which diffusion has been taking placebut not on any of the other

variables, i.e.

D = f (t), (C.11)

then on introducing a new time-scaleT such that

dT = f (t)dt (C.12)

the diffusion equation becomes

∂C
∂T

=
∂ 2C
∂x2 +

∂ 2C
∂y2 +

∂ 2C
∂z2 (C.13)

which is the same as equation (C.8) for a constant diffusion coefficient equal to unity.

C.2.1 Diffusion in a Cylinder and a Sphere
Other forms of the above equations follow by transformationof coordinates, or by considering
elements of volume of different shape. Thus by putting

x = r cosθ ,

y = r sinθ ,
(C.14)

or by considering an element of volume of a cylinder of sidesdr, rdθ ,dz, we obtain the equation
for diffusion in a cylinder,

∂C
∂ t

=
1
r

[

∂
∂ r

(

rD
∂C
∂ r

)

+
∂

∂θ

(

D
r

∂C
∂θ

)

+
∂
∂z

(

rD
∂C
∂z

)]

(C.15)
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in terms of the cylindrical coordinatesr,θ ,z. The corresponding equation for a sphere in terms of
spherical polar coordinatesr,θ ,φ is obtained by writing

x = r sinθ cosφ
y = r sinθ sinφ

z= r cosθ
(C.16)

or by considering an element of volume of a sphere of sidesdr, rdθ , r sinθdφ . It is

∂C
∂ t

=
1
r2

[

∂
∂ r

(

Dr2 ∂C
∂ r

)

+
1

sinθ
∂

∂θ

(

Dsinθ
∂C
∂θ

)

+
D

sin2 θ
∂ 2C
∂φ2

]

(C.17)

The equations (C.15) (C.17) can be expressed in terms of the nomenclature of vector analysis as

∂C
∂ t

= div(D grad C) (C.18)

C.3 Anisotropic Media
Anisotropic media have different diffusion properties in different directions. Some common ex-
amples are crystals, textile fibers, and polymer films in which the molecules have a preferential
direction of orientation. For such a media it is not always true, as was stated in C.1 for isotropic
media, that the direction of flow of diffusing substance at any point is normal to the surface of con-
stant concentration through the point. This means that equation (C.1) must be replaced in general
by the assumptions

−Fx = D11
∂C
∂x

+D12
∂C
∂y

+D13
∂C
∂z

−Fy = D21
∂C
∂x

+D22
∂C
∂y

+D23
∂C
∂z

−Fz = D31
∂C
∂x

+D32
∂C
∂y

+D33
∂C
∂z

(C.19)

so thatFx, for example, depends not only on∂C/∂x but also on∂C/∂y and∂C/∂z. The D’s
have the significance thatD13∂C/∂z, for example, is the contribution to the rate of transfer in the
x–direction due to the component of concentration gradienti the z–direction. Substituting from
equation (C.19) for theF ’s in equation (C.7) we obtain

∂C
∂ t

= D11
∂ 2C
∂x2 +D22

∂ 2C
∂y2 +D33

∂ 2C
∂z2 +(D23+D32)

∂ 2C
∂y∂z

+(D31+D13)
∂ 2C
∂z∂x

+(D12+D21)
∂ 2C
∂x∂y

(C.20)

if the D’s are taken as constant. The extension to non-constantD’s is obvious from equation
(C.10). A transformation to rectangular coordinatesξ ,η ,ζ can be found which reduces equation
(C.20) to

∂C
∂ t

= D1
∂ 2C
∂ξ 2 +D2

∂ 2C
∂η2 +D3

∂ 2C
∂ζ 2 (C.21)
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This is the same transformation as that by which the ellipsoid

D11x
2 +D22y

2 +D33z
2 +(D23+D32)yz+

(D31+D13)zx+(D12+D21)xy= constant (C.22)

is reduced to

D1ξ 2 +D2η2 +D3ζ 2 = constant (C.23)

The new axes may be called the principal axes of diffusion andD1,D2,D3 the principal diffusion
coefficients. If we make the further transformation

ξ1 = ξ
√

(D/D1), η1 = η
√

(D/D2), ζ1 = ζ
√

(D/D3), (C.24)

whereD may be chosen arbitrarily, equation (C.21) becomes

∂C
∂ t

= D

(

∂ 2C

∂ξ 2
1

+
∂ 2C

∂η2
1

+
∂ 2C

∂ζ 2
1

)

. (C.25)

This has the same form as equation (C.8) for isotropic media,and hence certain problems in
anisotropic media can be reduced to corresponding problemsin anisotropic media. Whether or
not this can be done in a given case depends on the boundary conditions. Thus it is possible
when the medium is infinite, or when it is bounded by planes perpendicular to the principal axes
of diffusion so that the boundary conditions are of the familiar formC = constant,ξ = 0, ξ = l ,
t > 0, for example, and similarly forη and ζ . The problem of diffusion into an anisotropic
cylinder which has its axis alongξ and is bounded by planes perpendicular toξ reduces to the
corresponding problem in an isotropic cylinder providedD2 = D3.

Certain properties deduced by Carslaw and Jaeger [59] page 29 indicate the physical signif-
icance of the ellipsoid and also of the principal axes of diffusion. Thus it can be shown that the
square of the radius vector of the ellipsoid in any directionis inversely proportional to the diffusion
coefficient normal to the surfaces of constant concentration at points where their normals are in
that direction. Hence the diffusion coefficient,Dn, at right angles to surfaces whose normals have
direction cosinesl ,m,n relative to the principal axes of diffusion is given by

Dn = l2D1 +m2D2 +n2D3 (C.26)

Carslaw and Jaeger further show that if there is symmetry about the planesξ = 0 andη = 0, then
the general relationships (C.19) for theF ’s reduce to

−Fξ = D1∂C/∂ξ , −Fη = D2∂C/∂η , −Fζ = D1∂C/∂ζ (C.27)

This simplification also occurs for other types of crystallographic symmetry. It means that the
flow through a surface perpendicular to a principal axis of diffusion is proportional simply to the
concentration gradient normal to the surface as is the case for isotropic media.

C.3.1 Significance of Measurements in Anisotropic Media
Since in the majority of experiments designed to measure a diffusion coefficient the flow is ar-
ranged to be one-dimensional one–dimensional one—dimensional, it is worth while to see how
such measurements are affected by anisotropy. If the diffusion is one-dimensional in the sense that
a concentration gradient exists only along the direction ofx, it is clear from equation (C.20), since
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bothC and∂C/∂x are everywhere independent ofy andz, that the diffusion is governed by the
simple equation

∂C
∂ t

= D11
∂ 2C
∂x2 (C.28)

andD11 is the diffusion coefficient measured. If the direction of diffusion is chosen to be that of a
principal axis, thenD11 is equal to one or the other of the principal diffusion coefficientsD1, D2

or D3. Otherwise the coefficientD11 = Dn, related toD1, D2, D3, by equation (C.26) is measured.
This would be measured, for example, by an observation of therate of flow through a plane sheet
of a crystal cut so that its normal has direction cosines (l ,m,n) relative to the principal axes of
diffusion of the crystal. Similar remarks apply to a high polymer sheet in which there is both uni-
planar and uni-directional orientation, i.e. the molecules are arranged with their long axes lying
mainly parallel to the plane of the sheet and all parallel to one direction in that plane. The principal
axes of diffusion of such a sheet will be normal to the plane sheet, and along and perpendicular to
the preferred direction of orientation in that plane. Even if a concentration gradient exists in one
direction only, it is clear from equations (C.19) and (C.25)that the diffusion flow is not along this
direction unless it coincides with a principal axis of diffusion.



D

Diffusion gradients and the b-value

In DTI there is a need for diffusion gradients to encode diffusion. Several pulse sequences has
incorporated such gradients. Former the Stejskal-Tanner pulse scheme [22], implemented in a
spin echo pulse sequence as depicted in Figure D.1, has been the most common type of diffusion
gradient design. Today the readout gradient is often replaced by an EPI (Echo Planar Imaging)
readout train.

In the Stejskal-Tanner pulse scheme the first diffusion gradient is applied between the exci-
tation pulse and the 180◦ refocusing pulse. The second diffusion gradient is appliedbetween the
180◦ refocusing pulse and the echo.

In this way the diffusion gradients introduce phase shifts of the spins as a function of position.
They can be applied in thex,y or z direction or a linear combination of these. If the gradientsare
applied for example in thezdirection, the phase shift due to the first gradient is

ϕ1 = γ
δ

∫

0

G ·zdt= γ ·G ·δ ·z1 (D.1)

wherez1 is the position of spin or molecule which is assumed to be still during the timeδ when the
diffusion gradient is applied. The assumption is only validas long asδ ≪ ∆, which means that the
diffusion process must be negligible during the application of the diffusion sensitizing gradients.
Because the gradient amplitude in human MR scanners is limited to 20−50mT/ma fairly largeδ
is needed to obtain the desired diffusion weighting, so the above-mentioned assumption is seldom
met. On the other hand, this assumption serves to provide a basic understanding of how theb-value
is derived.
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Figure D.1: Stejskal-Tanner diffusion gradients in a spin echo sequence. The duration
(δ ), amplitude (G) and time shift between the gradients (∆) affects the amount of diffusion
weighting – e.g. the “b” value. It is important to note that the diffusion gradient can be
applied on any of the three imaging axes or on a combination ofthem. Courtesy of Skare
[24].

After the first diffusion gradient has been switched off, the180◦ refocusing pulse is applied.
The refocusing pulse changes the sign of the phase (ϕ1 ⇒ −ϕ1). The second diffusion gradient
will then produce a phase shift of

ϕ2 = γ
∆+δ
∫

∆

G ·zdt= γ ·G ·δ ·z2 (D.2)

wherez2 is the position of the spin during the application of the second diffusion gradient. If the
spin is “static”, i.e. a spin that does not move between the excitation pulse and the echo pulse,
z1 = z2 and the net phase of the two diffusion gradients is

ϕ = ϕ1 + ϕ2 = γ ·G ·δ (−z1+z2) = 0 (D.3)

For spins that diffuse a certain amount during the time interval between the application of the
diffusion gradients, the phase will be non-zero. Because diffusion is a random process it is neces-
sary to inspect the entire population of spins in each voxel.Depending on the displacement path
along the diffusion gradient, each individual spin will geta certain net phase,ϕ j . The resulting net
magnetizationM for a voxel is the vector sum of the magnetic momentsµ of each of theN spins
within that voxel

M = µ

∣

∣

∣

∣

∣

N

∑
j=1

ei·ϕ j

∣

∣

∣

∣

∣

(D.4)

This is illustrated in Figure D.2. In a hypothetical situation with no diffusion at allϕ j = k which
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Figure D.2: If the water molecules have diffused during the applicationof the diffusion
sensitizing gradients the spins are dephasing randomly in the transverse plane. The vec-
tor sum of all magnetic moments now results in a lower net magnetization (M). This is
in contrast to the situation with no diffusion where the net magnetization is unaffected.
Courtesy of Skare [24].

is a constant and the net magnetization would be maximal

M = µ

∣

∣

∣

∣

∣

N

∑
j=1

ei·k
∣

∣

∣

∣

∣

= µ ·N (D.5)

Let P(z2|z1,∆)dz2 be the conditional probability of finding a spin, originating at z1 at t = 0, be-
tweenz2 andz2 +dz2 at t = ∆. Then, by combining Eq. (D.3), (D.4) and (D.5) we get

M = M0

∫

ei·γGδ (z2−z1)P(z2|z1,∆)dz2 (D.6)

whereP(z2|z1,∆) for this 1D case is given by

P(r ,t) =
1√

4πD∆
·e−(z2−z1)

2/4D∆ (D.7)

Combining Eq. (D.6) and (D.7) gives the following

M
M0

= e−(γ·δ ·G)2·∆·D = e−b·D (D.8)

Equation (D.8) shows the degree of signal attenuation due todiffusion as a function of gradient
amplitude, duration and time interval between the two diffusion gradients. The expression for the

b value is hereb =
(

γδ̇ ·G
)2

∆, which again is only valid ifδ ≪ ∆. In the same way as TE and

TR are parameters that controls the amount ofT2-weighting andT1-weighting respectively, does
theb-value control the diffusion weighting in an image.

A general expression for theb-value is

M
M0

= e
−

[

γ2
TE
∫

0

(

t
∫

0
g(t′)dt′

)2

dt

]

·D
= e−b·D (D.9)
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whereTE is the echo time. This expression does not assume thatδ ≪∆ and the diffusion gradients
may be more than two and can be combined without invalidatingthe expression. For the Stejskal-
Tanner diffusion gradient scheme Fig. D.1, the diffusion gradient functiong(t) is

g(t) =











G ,0≤ t < δ
0 ,δ ≤ t < ∆

−G ,∆ ≤ t < ∆ + δ
(D.10)

Putting (D.10) into (D.9) will give us

b = γ2

∆+δ
∫

0





t
∫

0

g(t ′)dt′





2

dt = . . . = (γ ·G ·δ )2 ·
(

∆− δ
3

)

(D.11)

And so we have arrived at the familiar expression for theb value. If we now letδ ≪ ∆, Eq. (D.11)
becomes identical to theb factor derived in Eq. (D.8).

The optimal value for b: Due to noise the choice ofb value becomes important. If theb
value is chosen to low, it will result in a diffusion induced signal attenuation that is comparable
to the variance of the diffusion weighted data. The implication is that the calculated diffusion
coefficient will be estimated with too low precision. In the reverse example, if theb value is
chosen to high, the signal attenuation and the signal may drop below the system noise level.This
results in an underestimation for high values for the calculated diffusion because the system noise
is higher than the true diffusion weighted signal.

We have chosen to useb equally to 1000s/mm2, because that is most often reported in litera-
ture, see for example [27], [60], [34], [25] and [24].
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