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Abstract

Magnetic resonance diffusion tensor imaging (DTI) is bathadvanced imaging technique and
increasingly clinically important. DTI enables many opisoand parameters such as number of
slices, image matrix, slice thickness, diffusion weigpt{he. b-value), number of diffusion sensi-
tizing directions, and number of measurements (NEX) to kpdee averaged in each direction.

The aim of my master thesis project was to study which of s\bfferent combinations of
DTI sequence parameters gives the best estimation of thesidif tensor (D) and a geometric
measure of diffusion anisotropy - the fractional anisoyr(fA) index.

The DTI parameters subject to experimental control were:

(i) the number, K, of diffusion sensitizing gradient direcgpn
gk = (gkX; gkyang)T(k: 17 ey Kv K Z 6)1 and

(ii) the number of image excitations (NEX) used for averagingicheof the directions
k=1,...,K.

It is expected that both increasing K and NEX will increase dlnality of the images and the
voxel-wise diffusion tensor derived from these image detawvever, both factors are increasingly
time consuming. The task was then to experimentally detegwhich combination of (i) and (ii)
will give the best result for a fixed duration of measuremanét(approximately 7 min).

In this experiment we have used three different experinheetaps (protocols) for each of
the participating subjects, i.e. 1. K=6 and NEX =8; 2. K=18&NEX =4; 3. K=25 and NEX
=2. Time consumption for each of these protocols was apprataly 7 minutes. We compared
results from 5 healthy volunteers using a GE Signa 1.5 Test@&peed MR scanner. All subjects
were males (age: 24-29 years). Other parameters that wenaaon for all subjects were: 24 axial
slices covering the whole brain, 4mm slice thickness, 128dcquisition matrix (interpolated to
256x256), b=1000s/mm2.

To analyze the goodness and difference between the thréscpt® we calculated standard
deviation, mean and coefficient of variation of tissue die@i.e. WM, GM, CSF using SPM2)
fractional anisotropy values. We also plotted the standardation of FA, as a function of the
principal direction of diffusion in three dimensional @afusing spherical coordinates) and em-
ployed visual inspection of color-coded fractional anispy images as well. All this was done to
reveal differences in quality and direction dependentatami in FA between the three protocols.

From our data and analysis we found that there was, in whiteema slightly higher quality
for the protocol with K= 6 and NEX = 8 than for the other two mools, and for CSF with K=
25 and NEX = 2 the quality was slightly higher than using K=&l &EX = 8. However the
difference was too small to make any firm recommendationsdxai the three protocols. Since a
large number of directions enables more sophisticated/sisdle.g. diffusion spectrum imaging,
DSI) we recommend a protocol with a high number of directidosa given measurement time).
This is also in accordance with the latest recommendatmm fihe vendor of the scanner where
K=25 and NEX=1 is proposed in their standard DTI protocol.
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General Introduction

1.1 Diffusion of molecules

1.1.1 The diffusion process

Diffusionis a physical process that involves the transkai movement of molecules
from one part of space to another via thermally driven ranchoations called
Brownian motions. It can be illustrated by the classicaleskpent (see fig. 1.1)
in which a tall cylindrical container has its lower part fdlgvith iodine solution
and a column of clear water is poured on top in such a way thatongection
currents are set up. At first the colored part is separated fhe clear part by
a sharp, well-defined boundary. Later it is found that theempggart becomes
colored, the color getting fainter towards the top, while tbwer part becomes
correspondingly less intensely colored until a sufficiemtet has passed and the
whole solution appears uniformly colored. There is an ipdiable transfer of
iodine molecules from the lower to the upper part of the Vetsdeng place in
the absence of convection currents. The iodine is said te bHdfused into the
water. By replacing the iodine with particles small enoughiare the molecular
motions, but large enough to be visible under the microsciopell be possible
to observe that the motion of each molecule is random. Inwedgolution the
diffusing molecules will seldom meet and will therefore bed independently.
Each will constantly undergo collisions with solvent malkxs which sometimes
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Figure 1.1: The diffusion process

results in motion towards a region of higher concentratimhsometimes towards
a region of lower concentration, having no preferred diogct The motion of a
single molecule can be described in terms of a “random walk{ whilst it is
possible to calculate the mean-square distance travekediven interval of time
it is not possible to say in what direction that given molecwill move in that
time. The picture of the diffusion as a random motion proeesish has no pre-
ferred direction, has to be reconciled with the fact thatdifising particle is
nevertheless observed to move from a region of high coratgmrto a region of
low concentration. To illustrate this, imagine any horitadrsection in the solu-
tion and two thin, equal, elements of volume one just belod @me just above
the section. Even if itis not possible to predict which way particular diffusion
molecule will move in a given interval of time, it will be digeered that on the
average the same amount of molecules will cross the secpaanas from the
lower volume as will downwards from the upper volume. Thusypdy because
there are more diffusion molecules in the lower element ihahe upper one,
there is a net transfer from the lower to the upper side of éaian as a result of
random molecular motion.

1.1.2 Diffusion isotropy and anisotropy

In a given amount of time the distance the water moleculeusi& can be the
same in all directions or longer in some directions thanrsthEhe former case is
termed isotropic diffusion and the latter case anisotrdgfasion. In a pure liquid
where there are no hindrances to diffusion or in a sample evtiex barriers are
not coherently oriented water molecules diffuse isotralbycor nearly isotropi-
cally. In a sample with highly oriented barriers the diffusidistance depends
on which direction it spreads out, hence the water moleatilsse anisotrop-
ically. In this way, structural subtypes can be identifiemgy on the basis of
their diffusion characteristics and the anisotropy is diserelated to the geom-
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etry of the diffusion hindrances. In our case we study watfusion in tissue
using proton magnetic resonance diffusion tensor imaguig-DTI), where dif-
fusion characteristics such as isotropy and anisotropyedaéed to the geometry
and physico-chemical properties of local tissue micrdiiaecture.

1.1.3 The concept of eigenvectors and eigenvalues of a tenso
matrix

The six different components of the diffusion tensor arergefiaccording to the
scanner frame of reference, i.e. reference coordinatersyfstr the diffusion sen-
sitizing gradientg (see section 1.3). However, it is possible to transform the
calculated diffusion tensdD into another tensor matri® having off-diagonal
elements equal to zero, i.e. matrix diagonalizatiih= PDP~! if the column
vectors ofP aren linearly independent eigenvectorsdfand the diagonal entries
of D are the corresponding eigenvalues. We sayxa33matrix A has an eigen-
vectore and corresponding eigenvaldeif Ax= Ax where the eigenvecta for

I = 1 corresponding to the largest eigenvaluelenotes the principal direction of
diffusivity.

1.1.4 Remark on spatial transformation of DTI data

When registering DT-MR images, a spatial transformatiothefdata is applied.
However, it is well known that spatial transformation of ader field is different
from transformation of scalar images, because DTI cont@direstional informa-
tion which are affected by the transformation [1]. In thisgmraph we show how
the tissue-based principal diffusion direction (i.e. diren of eigenvector associ-
ated to the largest eigenvalue) can be preserved when agplyatial transforma-
tions consisting of a series of simple rotations of the xaryd z-axis.

Assume that R is the 3x3 rotation matrix representing thegarteansforma-
tion. Then it can be shown (e.g. [1]) that if each diffusionger D is replaced by
D’, defined by the similarity transform, D’ = RDRT, then themdiffusion tensors
D’ are consistent with the anatomical structures beingsfiamed. This is so be-
cause a similarity transform preserves the eigenvaluespaly the eigenvectors
are affected.

Before we present results from our MATLAB implementatiortlod similar-
ity transform, we give an example where the original imageassformed, and
where the values at each voxel in the transformed image iglgioopied from
the corresponding position in the original image using sortexpolation method
[2]. In Fig. 1.2 (b) we see that the fiber pathways in the cogall®sum no longer
points in the same direction as in the pre-transformed infageHowever, after
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proper reorientation of the tensor (using the above siitylaransform) we see
that the local tissue orientation is preserved (Fig. 1.2 (0)Fig. 1.3 we see the
effect of using the similarity transform for given tensor Bdarotation matrix R
(as implemented in MATLAB, where a fragment of the code i®giin appendix
B.1).

Figure 1.2: A 45° rotation of the DT-MRI image, with and without tensor reaoitition
(modified from [2]). (a) tensor glyph image (zoomed in arouhe corpus callosum),
(b) rotated image without recorientation of tensors, (cated image after reorientation of
tensors.

Prolate DT Rotated DT (xrot=45, yrot=0, zrot=10)

Isotropic diffusion / spherical DT

Figure 1.3: Atensor representing spherical diffusion, prolate diffnsand a tensor which
is rotated 45 around the x-axes and 1@round the z-axis.



GENERAL INTRODUCTION 5

1.2 Causes for anisotropy in the human brain

axon

| membrane myelin neurofilament

Figure 1.4: Myelin, theaxonal membranamicrotubulesandneurofilamentsre all longi-
tudinally oriented structures that could hinder waterusiibn perpendicular to the length
of the axon and cause the perpendicular diffusion coeffiden to be smaller than the
parallel diffusion coefficienD ||. Other postulated sources of diffusion anisotropy are
axonal transport and susceptibility-induced gradienéken from Beaulieu [3].

1.2.1 Myelin and axonal membranes

The interest in studying the white matter maturation andydimating diseases
such as multiple sclerosis with diffusion weighted MRI heslgably forced through
the unproven hypothesis of the time for anisotropic diffusinamely that the
myelin sheath encasing the axons is the primary source feotopy. The nu-
merous lipid bilayers of myelin have limited permeability water and would
be expected to hinder diffusion perpendicular to the fibeosenthan diffusion
in the parallel direction. If myelin were the sole source ofsatropy, then it
would be expected that diffusion would be much more isotrapa normal fiber
tract without myelin. In one of the first systematic studiestbe underlying
source of anisotropy, this was found not to be the case by|Reaand Allen
[5], who showed that water diffusion was significantly amiepic in a normal,
intact, non-myelinated olfactory nerve of the garfish. Tlegrée of anisotropy
in these excised nerve samples measured at room tempenasguite similar
to the anisotropy measureal vivo in humans, lending credibility to thia vitro
data, although the absolute ADC values were likely moddldte the excision
of the nerves and the temperature difference. This studyiged the first ev-
idence that myelin was not an essential component for anict diffusion in
neural fibers and that structural features of the axons oltlaer myelin are suffi-
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Figure 1.5: Diffusion barriers and ultrastructure of myelinated nefitsers. A is short for
axon, m for microtubulus, nf for neurofilaments, SR for snhoatdoplasmatic reticulum
and Al for axolemma. The images are taken from Petee. [4].

cient to give rise to anisotropy. This initial observatidraaisotropy in the intact
non-myelinated garfish olfactory nerve has subsequendy lbenfirmed in vari-
ous other models with non-myelinated neural fibers otyitro andin vivo [5].
Moreover, in a report by Gulart al. [6] diffusion tensor micro-imaging of the
spinal cord in an X-linked recessive Wistar rat mutant, \Wwhstiows near total
lack of myelination in its central nervous system, shows timgelination of white
matter is not a requirement for the presence of significarsiogmopic diffusion.
The anisotropy decreased only by about twenty percent inmmyelin deficient
rats relative to healthy rats and signified that the residtralctures, namely the
membranes of the numerous axons, are sufficient for angotdiffusion in this
model. However, the myelin deficit did alter the absolute Alzdlues. The in-
creased water mobility was more prevalent in the perpefaticlirection than in
the parallel. Hippet al. [7] and Neilet al. [8] showed respectively diffusion
anisotropy in non-myelinated fibers of the corpus callosueh @nterior limb of
the internal capsule in humans. Therefargsotropic water diffusion in neural
fibers must not be regarded as myelin specdicd the packed arrangement of
non-myelinated axons is sufficient to impede perpendiowkter diffusion and
generate anisotropy [9, 10, 11, 12, 13]. Gulahal. [6] pointed out that myeli-
nation can modulate the degree of anisotropy. Becauset diogaparisons of
anisotropy between unique fibers with different axon diargtdegree of myeli-
nation and fiber packing density are difficult, a quanti®tv qualitative determi-
nation of the relative importance of myelin, relative to the@nal membranes are
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difficult to assess. Thus for two given fiber tracts with etpualzed axons and
density, one with myelin and one without, it would still beegicted that myelin
would increase anisotropy due to greater hindrance to-atamal diffusion and
greater tortuosity for extra-axonal diffusion. Pierpaatlial. [14] had also diffi-
culty in attributing particular micro-structural featsréo explain the variability

in diffusion anisotropy observed amongst different whitster tracts in the adult
human brain. Sakumet al. [15] observed that anisotropy increases with brain de-
velopment in neonates. However, there are questions asdtheihthis signifies
myelination and/or just improved coherence of the fibertsac

1.2.2 Neurofibrils and fast axonal transport

Inside the axons is the complex and dense three-dimensgtagkeleton. It is
composed of longitudinally oriented and cylindrically plbd neurofibrils. These
are microtubules and neurofilaments, inter-connected @}l snmicrofilaments. If
the small and numerous neurofibrils presented sufficiensiphibarriers to hin-
der perpendicular water diffusion to a greater extent ttaalfel, these structures
could presumably cause anisotropic diffusion. In addijtifast axonal transport
is intimately linked to the presence of microtubules sineutar organelles (e.g.
mitochondria and vesicles) are transported by their att&ctt to mechanochem-
ical enzymes that pull the organelles along the microtubtilacks. Beaulieu

Figure 1.6: Diffusion barriers and axoplasmatic ultrastructure. Chigrsfor dense under-
coating, m for microtubules, mit for mitochondrion, nf foeurofilaments, SR for smooth
endoplasmatic reticulum, D for dense layer, r for ribosomdgor axolemma, AX for
axon hillock and At for axon-terminal. The images are takemfPeterst al. [4].

and Allen [5] evaluated the role of microtubules and fastretdransport in
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anisotropic diffusion by treating excised myelinated and-myelinated nerves of
the garfish with vinblastine. Vinblastine is known to depogrize microtubules
and inhibit fast axonal transport. The authors demonstrétat anisotropy was
preserved in all three types of nerve treated with vinbtessuggesting that micro-
tubules, of themselves, and the fast axonal transport doéytate are not the dom-
inant determinants of anisotropy. However, all three \asbihe-treated nerves
demonstrated absolute ADC decreases of approximatelp3@#sent in both the
parallel and perpendicular directions relative to thelfhggxcised nerves. This
finding was attributed to either an increase in free tubulre (nonomeric unit
of microtubules), the presence of vinblastine paracrgstéthin the axoplasm or
some degradation over the 48 hours that the nerves were seoher vinblastine
buffer. In Beaulieu and Allen [16] the influence of the nedesfientary cytoskele-
ton on water mobility was evaluated by making measuremenasoplasm with
minimal interference from membranes. This is possible bgn@ring the axo-
plasmic space in the isolated giant axon from squid, beddwesdiameter is much
greater than the one-dimensional (root-mean-square) Rbffladement (approx-
imately 1Jum)of a water molecule randomly diffusing over typical diffois times
used in NMR studies (approximately 3@. The conclusions from this work is
that the neurofilaments do not have a significant role in giffa anisotropy within
the axon. This points towardse importance of myelin and multiple axonal mem-
branesas the primary determinant of the observed anisotropy inah&bers.

1.2.3 Local magnetic susceptibility

Anisotropic water diffusion, as measured by MR-DTI, cangioly be caused
by local susceptibility-difference-induced gradientghe nerves and white mat-
ter. Trudeauwet al. [17] was the first to evaluate the potential contribution of
magnetic susceptibility to white matter anisotropy in apexkment on excised
porcine spinal cord at 4.7 T. In their experimental proceditrwas possible to
respectively minimize or maximize the background gradidmyt varying the ori-
entation of the fiber tracts parallel or perpendicular tostatic magnetic field,.
The ADCs measured parallel or perpendicular to the fibers feemd to be inde-
pendent of the fiber orientation relativeBg. Hence the induced gradients seem
not to play a role in the anisotropy of white matter diffusion

The independence of ADC and anisotropy on susceptibiitiuced gradi-
ents was also confirmed by Beaulieu and Allen [18]. Four ckffié nerves from
garfish and frog was excised and evaluated at 2.35 T by vatlgngrientation of
the fibers relative to the static magnetic field and by elitngathe background
gradients through the use of a spin-echo diffusion sequefrtbea specific bipo-
lar gradient pulse scheme. Clagkal. [19] extended this work to human brain
white matterin vivoat 1.5 T, and found no effect of local magnetic susceptybilit
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induced gradients on water diffusion.

1.2.4 Concluding remarks on biological causes for diffusio
anisotropy

By experimental elimination of the dominating role of fagbaal transport, the
axonal cytoskeleton of neurofibrils and microfilaments asxhl susceptibility-

difference-induced gradients, the intact membranes anéroeed to be the pri-

mary determinant of anisotropic water diffusion in neuréfs such as brain or
spinal cord white matter and nerve-bundles. The availabta do not permit

the dissection of the individual contributions of myelirdeaxonal membranes to
the degree of anisotropy, but the evidence suggests thdinatyen, although not

necessary for significant anisotropy, can modulate theegegfranisotropy.

1.3 Calculation of the diffusion tensor, D

In several earlier studies [5, 16, 18, 19] excised neural fiaenples would be
readily oriented parallel or perpendicular to the applieadgents (i.e. the labo-
ratory frame of reference) in order to simplify the measwrata of the principal

diffusion coefficients. This was done because it obviatedied for calculating
the full diffusion tensor and the signal to noise ratio (SMR} good. Then the ra-
tio of the parallel ADC over the perpendicular ADC is pregeihas an immediate
and intuitive feel for the degree of anisotropy.

The full tensor is needed to calculate the anisotropy for alevhrainin vivo.

1.3.1 Stejskal-Tanner equation system

Magnetic resonance diffusion tensor imaging (MR-DTI) ([4@1]) is sensitive
to molecular displacement along the axis of the diffusiensitizing gradients
applied in a standard Stejskal-Tanner pulsed-gradientegho (PGSE) experi-
ment [22]. Therefore, diffusion along different directsoim tissue can be readily
evaluated by varying the direction of the diffusion-se@sig gradients.

In DTI, image intensities are related to the relative mapitf endogenous
tissue water molecules. From diffusion measurements iaraédirections a dif-
fusion tensor is calculated for each voxel. The tensor dessthe local water dif-
fusion. To accomplish this, the Stejskal-Tanner imagirggisace [22] is typically
used. The Stejskal-Tanner sequence uses two strong grpdises, symmetri-
cally positioned around a 180efocusing pulse allowing for controlled diffusion
weighting, see figure 1.7. The first gradient pulse inducebas@ shift for all
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spins and the second gradient pulse reverses it. Thus tlse ghét will be can-
celed for static spins. But for spins that have completedaagé of location due
to Brownian motion during a time periatl, the phase shift will be different for
the two gradient pulses. This means that the gradient palgesot completely
refocused, which consequently results in a signal loss.pfineiples of MR-DTI
is described in more detail in appendix D. To eliminate theethelence of T1 and
T2 relaxation and spin density, at least two independensoreanents of diffu-
sion weighted images must be taken. The images must bedtiffeisensitized to
diffusion but remain identical in all other respect. To mga#hat, one measure-
ment without diffusion weighting and one with diffusion whting is typically
used to calculate diffusion with the following equation]22

S=Se PP (1.1)

HereD is the diffusion constant in the voxel is the observed signal intensity
without diffusion weighting (i.e. b=0) an8is the observed signal intensity with
diffusion weighting. The amount of diffusion weighting ivgn by the so-called
b-factor, introduced by Le Bihaet al. [23] and is defined as:

b = 252 (A—g) G2 (1.2)

wherey is the proton gyro magnetic ratio (42 MHz/Tesla for watertpnospin),
|G| is the strength (i.e. area) of the diffusion sensitizingdggat pulses and is
the time between diffusion gradient pulses. The diffusionstantD with unit

90-pulse 180—pulse Signal
G G
" i s
A VY e

A

Figure 1.7: The Stejskal-Tanner imaging sequence, see text for explasa

[m?/s], is also known as ADC (Apparent Diffusion Coefficient). Theenh ap-
parent is used to take into account that it is not a true measfuthe “intrinsic”
diffusion, but rather that the diffusion parameter depentthe interactions of the
diffusing water molecules with the tissue micro-structurethe volume element
(voxel) over a given diffusion time. It also emphasizes thatdiffusion parame-
ter generated from this procedure depends on the expeahtamtditions such as
the directiong of the sensitizing gradier. In the case of anisotropic diffusion
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Eqg. (1.1) has to be written in a more general form,

S— S V’0°1b—(3/3)g"Dy (1.3)

Remember that under the assumption that the probabilityodécalar Brow-
nian motion follows a multivariate Gaussian distributioveo the observation
time, the diffusion can be described by a3 tensor matrix, proportional to
the variance/co-variance of the Gaussian distributione diffusion tensoD is
characterized by nine elements:

DXX ny DXZ
DZX Dzy DZZ

. Here the diagonal elemerids,, Dyy andD_, define the diffusion constants along
the X, y and z-axes of the laboratory frame of reference, aedoff-diagonal
elementd;; represents the effect of a concentration gradient alongagise on
the diffusive displacement along an orthogonal axisFor water the diffusion
tensor is symmetric such thB%j = Dj; for i, ] = X,y,z. Accordingly, the water
diffusion tensomD is completely defined by the six elemenBy, Dyy, Dzz Dyy,
Dxz andDys.

The formula in Eq. (1.3) reverts to the isotropic case (EdL)jwith D = DI,
wherel is the identity matrix. By inserting normalized gradientias,g=g/|qg|,
we can write equation (1.3) using LeBihaldactor Eq.(1.2) as

S— Sye 708 (1.5)

In addition to the baseline imad®, there is thus a need for at least six
measurements, using different non-collinear gradiergatiions, to estimate the
symmetric 3x 3 diffusion tensoD. Therefore, at least seven images with dif-
ferent diffusion weightings and gradient directions neathe collected for each
slice in the data set. Figure 1.8 shows an example of a datétbeseven mea-
surements with the corresponding diffusion sensitizireglgant directions, where
{%,S1,...,S} represents the signal intensities in the presence of traignis
ok fork = 6. & is the signal intensity in the absence of a diffusion-sézisg
field gradient [go| = 0), which is the baseline measurement to which the remain-
ing measurement§, can be related. By inserting the gradiegtsand the signals
{&} into Eq. (1.3) we have

S = Soe Pk D (1.6)
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0 1 0 1 0 1 -1
g = 0 g = 1 g2 = 1 g3 = 0 g4 = | g5 = -1 g = 0
0 0 1 i} -1 0 1

Figure 1.8: Examples of sagittal diffusion measurements with corredpm magnetic
field gradients used for diffusion weighting. Courtesy oa&k[24].

It is now possible to calculate the full tensor from this systof equations:

In(S1) = In(S) — bg1 DG,

In(S2) = In(So) — b3 D,

In(Ss) = In(S) — b33 DGs, L.7)
In(S1) = In(So) — b§; Da, '
In(S5) = In(S) — b3 DGs,

In(Ss) = In (So) — b D

By solving this equation system for each voxel in the data(isete that allgy
column vectors are given by the sequence definition), it &siinbe to get the final
diffusion tensor field.

1.3.2 Aleast squares estimation method

For more than six diffusion sensitizing directions, ...,0k,...,0k for K > 6 a
least-squares estimation method for obtaining the diffuggnsoD is the obvious
choice. Below we give a short description, generalizingpsentinear regression
in 2D.

Simple Linear Regression

Let us look at a 2D example first. Say we have a linear relatipnsepresenting
a straight line, betweexandy, y = 1 + X, where the coefficient8; andf3, are
unknown. Moreover, the independent variable x (and thermtdga variably y) are
typically hampered with uncertainty, i.e. stochastic ables. Since a straight line
can be determined by two arbitrary points along that linis, abviously sufficient
to let only two arbitrary observatior(g;,y1) and(xp,y2) determineB; and 3. If
we then do a third observation, this poims, y3) will probably not lay directly on
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that straight line. The problem is, how are we going to take consideration the
third point, which do not lay on the line but none the less isnggortant as the
two other points in determining; andf»

Usually, it is not the case that the three poitts y1), (x2,¥2), (X3,y3) lay di-
rectly on the straight line. In least squares linear regoessve want the line is
positioned (determined froy, andf3,) in such a way that the sum of squares:

n

Q(P1.fz) = 3 (y(observedi—y(on the ling)?

=3 (-9 (1.8)

= Z(Yi —B1—Boxi)?

is minimal. By differentiating the sum of squares as a fuorctf 3, and 3, and
setting them to zero

0Q
B
0Q
B
we obtain the system of equations:

n'Blf_ixi ~B2=§yi

j Xi - 1+ _ixiz B2= _iXiYi

0
(1.9)
0

(1.10)

|
which has the solution:

b, = 2= (=X

DRI (1.11)

Br=y— X
Whenn = 2 we obtain the solution for a straight line through two psinin
statistics we usually employ the formalism of vectors andrives:

y=XB+e

Q=1ly—XpB[ (1.12)

=(y—XB)" (y—XB)
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Herey = (y1,...,yk)",B = (B1,B2)" andX is theK x 2 matrix where all the ele-
ments in the first column is 1 and the elements in the secomgreois(xy, . . ., %) " .
The solution of this problem is given by tin@rmal equations

-1

XTXB =Xy o XT(y=XB)=0 = B=(X"X)"XTy (1.13)

The last formula assumes théathas full rank.

Least square estimation method applied to the diffusion tesor

Now we want to do something analogously for the diffusiorstgn Assume we
have measurements/observatiG$or k=0,...,K; K = 6. We then calculate

_ %mgi (1.14)

S

If every observation was without errors and the diffusiondelovas exact, we
should have had

Yk

3 3 ,
yk=gIng=ZlZgLDug.‘(=w16; k
=1j=1

1,....K (1.15)

where y{ is denotes the direction of the diffusion sensitizing geatliandd =
(D11,...,D33)". WhenK = 6 this gives us six equations to determine the six un-
known elements in the:8 3 symmetrianatrixD. If K > 6, we will have too many
equations. As for the straight line in section 1.3.2 thistalway the possibility

to determine the tens@ exact. Instead we seek the values for the unknown that
minimizes the square sum:

K

K
Q=75 (h-9Da)’ =S (v~ o)
k=1 k=1

2
(1.16)
=(y-T8)" (y-ro)
=yly—25"TTy+3'r'ros
wherey = (y1,...,yk)", T = (y1,...,%)" andd = (D1g,...,D33)".

Now we will minimize Q with respect tad under the condition thak corre-
sponds to a symmetricx33 matrixD. We will differentiateQ with respect td.

dQ

dé
Sinceyk corresponds to a symmetric mat, this means that column number
four, seven and eight are superfluous and can be deletedamk@fl will then

0 (1.17)
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be six if the choice of diffusion sensitizing directions Hzeen wise. If these
columns inl are deleted it is important to delete element number foversand
eightind. Let us assume that the reduction has been done. Then we heateba
" with full rank and the solution will be:

5=("r) Ty (1.18)

It is important to note that the elemerdghat corresponds to non-diagonal ele-
ments in the matridD are paired such th& = D12+ D21 = 2D>1.

The method described above has been implemented in MATLABB e the
diffusion tensor for each voxel in the brain imaging volunsee appendix B for
details of the program.

1.3.3 Scalar rotationally invariant measures derived fromthe
diffusion tensor

This leaves us with a diffusion tensor that looks like thigath voxel:

DXX DXy DXZ
DZX DZy DZZ

In figure 1.9, the tensor for all voxels in slice #12 of subjdctis visualized. It

Figure 1.9: Visualization of the tensor. Data from subject JL.

gives little understanding to present the tensor data a®t@omponents. Instead
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the six-dimensional diffusion tensor information is magde different scalar
measures that gives a physically meaningful picture de@iat a grey scale map.
The rotationally invariance of the scalars means that thesssures are indepen-
dent of the orientation of both tissue structure and the ars@n plane. Images
which depict rotationally invariant measures will have Haene intensity for the
same anatomical location regardless of the orientatiomssti¢ (patient) in the
scanner and of the image scan plane. In contrast, neithe@leéheents in the dif-
fusion tensor nor a diffusion-weighted image measuredgatore single direction
is rotationally invariant.

Below follows a description of some types of scalar meascamézilated from
the diffusion tensor, used in the experimental part of thesis.

Mean diffusivity

In section 1.1.4 we depicted the RMS displacement (isogiibity surfaces) for
three different diffusion ellipsoids. The mean diffusyidenoted(D) is when
the average of the radii of the ellipsoid is used as a scaterfat the diffusion
ellipsoid. As an example th@®) in CSF (cerebrospinal fluid) is three times bigger
than the(D) in grey and white matter. The values are 20-3mn?/sfor CSF and
0.7 x 10~3mn?/sin grey and white matter. Th@) happens to be similar in grey
and white matter despite the fact that the diffusion is marisaropic in white
than in grey matter. ThéD) can be calculated simply by averaging the diagonal
elements of the diffusion tensor.

Dyx+ Dyy+D
<D>: xx §/y+ ZZ:TraCée(D) (120)

Maps which pixels represent the mean diffusiviB) is often called trace-maps.

Diffusion anisotropy

There are several other scalar measures that describesigwtropyof the dif-
fusion. Many of them are summarized in Skateal. [25]. Common to all
of them are that they depend on how anisotropic the diffusictnally is. That
is, how much the diffusion ellipsoid deviates from a sphe&multaneously
the anisotropy indices should be rotationally invarianticekhmeans that they
should be independent of the orientation of the diffusidipgbid. The diffu-
sion anisotropy indices are calculated from #igenvectorand the correspond-
ing eigenvalue®f the diffusion tensor. This is done by solving the chanastie
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equation.

DXX ny DXZ
DXZ Dyz DZZ

0 0
A0
0 A
(Dix—A Dy }

o o >

(1.21)

DXZ Dyz

This results in three eigenvectagsand three eigenvalues for i = 1,2, 3; i.e.
equation ((1.22)) yields:

Aer =M€, Aery= Ay, Aez=Aze3;

1.22
& #[0,0,0"; A1 >A>Azel. (1.22)

After the eigenvalues of the tensor has been calculateatjootlly invariant
anisotropy indices, which are no longer dependent on tleataiion of the tensor,
can be constructed. An intuitive definition of an anisotrapgex is the ratio
between the largesA{) and the smallesiAg) eigenvalue, i.e.

A
Aratio = )\—1 (1-23)
3
Aratio is equal to 1 if the diffusion tensor is isotropic. That is sscaéuse then
A1 = A2 = A3. HoweverA 4o is numerically unstable and predisposed for noise.

A more stable anisotropy index is thelative anisotropy index,RA defined as:

)2
RIE MR

_ 3
RA= NG 3 where A= %'Z\Ai (1.24)

The numerator is the standard deviation of the eigenvalwespe for the scale
factor of 1/1/2. The denominator is the mean diffusivity and is used to radize
with the size of the ellipsoid. TherefoRArepresents the ratio of the anisotropic
and the isotropic part db. RAwill be zero for isotropic diffusion and approach
1 whenA1 > Ao =~ A3. It is important to note that the normalization factor in Eq.
(1.24) differs from the original definition where the maximwalue forRAis v/2.

For the presentation of diffusion anisotropy as a grey soa@, the scale
factor is of no importance. But it is preferred that one ubessame scale reach-
ing from 0 to 1 while clearly stating the anisotropy index disehen reporting
anisotropy values in literature. Otherwise it will be harttecompare results and
draw conclusions.
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Another commonly used anisotropy index, which is also useithé experi-
ments reported in this thesis, is thiactional anisotropy indexFA. FAis defined
as follows:

FA— |2=22 where A =>F A (1.25)

FA measures the fraction of the total magnitudeDothat can be ascribed to
anisotropic diffusion and thus provides information abthé shape of the dif-
fusion tensor at each voxel [26]. The FA is based on the nozetlariance of
the eigenvalues. A FA value of "0" corresponds to a perfdoesp(i.e A1 = A =
A3 = A), whereas 1 represents ideal linear diffusion (Ae.= A,A2 = A3 = 0).
Well defined tracts have FA larger than 0.20. Few regions kvéarger than
0.90. The number gives us information of how asymmetric fiffesdon is but
says nothing of the direction. See figure 1.10 for a depiatican FA map.

Figure 1.10: Fractional anisotropy map for subject OB and slice number 12

Different anisotropy indices have slightly different pfoad interpretations and
several groups have demonstrated that different indidts di how strongly they
are affected by image noise. Foieansee [27], forTraceD) see [28], [29], for
RAsee [30] and [25], foFA see [27], [30] and [25].
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1.4 Motivation and problem formulation for this the-
Sis

The signal in MR-DTI is both weak and vulnerable to noise arida&ts, such
that the determination of the diffusion tenddrand the FA-index are subject to
uncertainty and errors. There are several methods thatecapdied during ac-
quisition to improve the signal strength and reduce noseincrease the signal
to noise ratio. Two of them are:

1. increasing the number of diffusion sensitizing gradairgctions

2. increasing the number of excitations used for averaditieX).

However both of these leads to an increase in the acquiditio®, and which
one is better is not generally known and partly scanner agdesee dependent.
In this work we wanted to explore the potentially significdifferences between
DTI head acquisitions obtained along the two different sypeschemes denoted
(1.) and (2.) below.

For a fixed number of measurement time (e.g. 6-7 minutes),

1. select as many averages (NEX) as possible with as fewsaffisensitizing
directions as necessary (e.g. K=6), against

2. select as many diffusion sensitizing directions (K) assgae with as few
averages as necessary (e.g. NEX=1-2).

To study this problem we have used three different DTI aggamsprotocols,
applied to five different subjects. If we denote K the numbleditfusion sen-
sitizing directions and NEX the number of excitations fayrel averaging (in
k-space), we designed comparative experiments with th@xolg combinations
(K=6 and NEX=8), (K=13 and NEX=4) and (K=25 and NEX=2).

To evaluate the respective resultge calculated the diffusion tens@ us-
ing a least square estimation method, see page 14 in sec8dh 1From the
eigensystem of the tensor, FA values were calculated mgghawhole brain.
Fractional anisotropy standard deviation and coefficiémaoation were calcu-
lated in tissue specific regions (GM, WM and CSF). To reveal dinectional
dependent differences in the FA values, 3D plots were madaewhe standard
deviation of the tissue specific FA values was plotted agaimesprincipal direc-
tion of diffusion, i.e. the direction of the eigenvector@fcorresponding to the
largest eigenvalue. Finally the FA maps were color-codetth separate colors
for the individual elements of the principal diffusion vecand careful inspection
were done to visually detect possible differences betweeiiK=6 and NEX=8),
(K=13 and NEX=4) and (K=25 and NEX=2) protocaols.






Material and Methods

2.1 Subjects

We have performed MR-DTI head examinations of five healthymeers, age
spanning from 24 to 29 years (mean age = 27 years). These eataused for
planning DTI protocols for routine clinical use. All subjeavere healthy deemed
normal without known CNS pathology, current or past, mddicapsychiatric
conditions. No medication or substance abuse were repdf@dmore detailed
information, see Table 2.1.

2.2 Scanner and imaging protocol

For DTI data acquisitions we used a General Electric Sigh& Echospeed MR
scanner equipped with EPI measurement techniques. Whailg brultislice DTI
acquisitions were performed using 24 axial slices (128xd@fuiisition matrix, in-
terpolated to 256x256, FOV=240mm, slice thickness 4mm watlyap). We used
b-values 0 %) and 1008/mn? (S,) and different number of diffusion sensitizing
directionsK = 6,13, 25 and number of excitations (NEX) per directigpfor sig-
nal averaging, i.e. NEX 8,4,2. The repetition times (TR) and echo times (TE)
varied slightly for the different protocols (cf. Table 2.1Jhe total acquisition
time for each DTI protocol lasted between 6 and 7 minutesTable 2.2). One
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additional subject (TN) was scanned on a Siemens Symphéiiystanner with
K =6 andK = 12 for fixed NEX=8 to assess the effect of increasing signal to
noise ratio on the diffusion tensor.

Subject parameters

Subject Weig ht[kg] age T F\’@g T R1374 T R2572 T E@}g T E1374 T E2572
EK 70 28 | 7400 | 7560 | 7400 | 85.2 85.2 85.2
OB 72 26 | 7400 | 7560 | 7400 | 85.2 85.2 85.2
JL 76 24 | 7400 | 7400 | 7560 | 98.8| 98.8| 98.8
OH 90 29 | 7400 | 7400 | 7560 | 98.6 98.6 98.6
SA 86 28 | 7400 | 7400 | 7560 | 100.6| 100.6| 100.6

Table 2.1: TR is repetition time, TE is echo time (both in [ms]), the strij#s 6, 8, 13, 4,
25 and 2 refers to the number of diffusion sensitizing diogst and number of excitations
in the three experimental setups (6 and 8, 13 and 4, 25 and 2).

Acquisition times

6dir SNEX | 13dir ANEX | 13dir SNEX | 25dir2ZNEX
OB 7:09 7:18 6:39
EK 7:09 9:04 6:39
JL 7:09 7:18 6:39
OH 7:09 7:18 6:39
SA 7:09 7:18 6:39

Table 2.2: Acquisition times for the five subjects and the respectiepisaces.

Diffusion sensitizing directions

The spatial directions of the diffusion sensitizing grauéay;, .. ., gk are given in
table 2.3. This information was obtained from files “deepthe pulse sequence
software on the GE scanner and follows the optimal choiséfofstbn sensitizing
directions proposed by Jones [31].

Software

Several programs and software tools (mostly MATLAB) haverbased in this
project. See Appendix A for details.



MATERIAL AND METHODS 23
6 dirs. 13 dirs. 25 dirs.

# X y Z X y Z X y Z

1| 0.707 0.000 0.707 -0.754 0.173 -0.633 0.532 0.104 -0.840
2 || -0.707 0.000 0.707 0.330 -0.372 0.867| 0.250 -0.722 0.645
3 || 0.000 0.707 0.707| -0.533 0.459 0.711] -0.634 -0.753 -0.177
4 || 0.000 0.707 -0.707 -0.687 -0.708 -0.163 -0.219 0.850 0.478
5| 0.707 0.707 0.00Q| -0.321 0.942 -0.101 -0.413 -0.780 0.470
6 || -0.707 0.707 0.000| 0.618 0.786 -0.018 0.734 -0.662 0.151
7 0.019 0.576 0.817] 0.936 0.054 0.347
8 0.311 -0.949 0.051] -0.333 -0.243 0.911
9 -0.883 0.314 0.350] 0.103 -0.992 -0.077
10 -0.038 -0.536 -0.843 -0.927 0.373 -0.049
11 0.184 0.469 -0.864 0.801 0.543 -0.250
12 0.937 0.004 0.35Q| -0.917 -0.262 0.301
13 0.814 -0.236 -0.531 -0.538 0.438 -0.720
14 -0.214 -0.665 -0.714
15 -0.124 -0.052 -0.991
16 0.274 0.960 -0.053
17 -0.443 0.878 -0.18(
18 0.024 0.369 0.929
19 0.568 0.637 0.521
20 0.931 -0.168 -0.324
21 -0.825 -0.182 -0.534
22 0.473 -0.630 -0.617
23 0.504 -0.129 0.854
24 0.149 0.689 -0.709
25 -0.695 0.344 0.631

Table 2.3: This table shows the x-,y- and z-coordinates for the diffusensitizing gra-
dient vectors with three decimals using 6, 13 and 25 dirastid@ he values were obtained
from thetensor.daffile as a part of the GE MR scanner software. Note that the i®eare

normalized, i.e/X2 +y2+ 72 = 1.
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2.3 Data analysis

2.3.1 Image format conversion

The acquisition data from the MR-scanner is stored as filEdGOM format. To
work with these data sets in MATLAB and SPM2 the images hawetoonverted
to other formats. A DTI dataset typically contains one imégeevery diffusion
sensitizing direction and one image without diffusion weigg per slice. Using
K = 6 diffusion sensitizing directions and 24 slices coverimgwhole brain, our
dataset will contairi6+1) - 24 = 168 images. In MATLAB we wanted to organize
the dataset as one single 4D-dti-volume which can be adsttessM[k, row, col,
slice] being the signal intensities in diffusion directikr=1,... K+ 1, row=
1,...,256, column cok 1,...,256 and in slice- 1,...,24. This is accomplished
with a MATLAB script (loaddti.m). We have also converted the DICOM data
to Analyze format, because this is the image-format SPM2.ug¢ée used nICE
[32] to organize the data iK + 1 blocks (e.g. one volume of 24 slice for each
direction) and saved each block to Analyze-format. Notéttmafirst block is the
S-volume.

2.3.2 Estimation of D from the image data

The M-data (M[1:K+1, 1:256, 1:256, 1:24]) consists of K+1aige volumes with

24 images (slices) in each. The first volume representb ta® acquisition, i.e.

S (= the Gth direction). Accordingly, there are K+1 image volumes witivater
diffusion measuremer§ for the k'th direction in each voxel (volume element).
For each voxel a diffusion tensbrwas calculated based upon the measurements
S, S,...,.&, for K > 6, as described in section 1.3.2. The result is a 5D tensor
volumeD[i, |, row, col, slice], wherei = 1,2,3 is the i'th row-element of the
diffusion tensor and = 1,2,3 is j'th column-element. Consequently the tensor
D is a matrix-valued 3D image volume that contains:a3symmetric matrix in
each voxel, see figure 1.9. From the tensor data the eigemsegte,, e3 and the
corresponding eigenvaluds > A, > A3 were calculated as described in section
1.1.3 and the equations (1.21) and (1.22).

2.3.3 Computing FA maps

From the water diffusion tensor volumB=D[i,j,row,col,slice] a scalar measure
for anisotropic diffusion, FA ([26]) (fractional anisoy), was calculated in each
voxel, giving a 3D FA map volume, see section 1.3.3 and figut® for further
explanations and examples.
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2.3.4 Tissue specific anisotropy parameters

To make it possible to calculate tissue specific FA valuesegenented the DT-
MRI images into white matter (WM), grey matter (GM) and cewoapinal fluid
(CSF).

Tissue Segmentation

SPM2 (see section A.3 for more details) was used to segmenbitveighted
S brain volume into the three tissue types, (see figure 2.1es@&hhree brain
volumes are probability masks, i.e. voxels with high praligbfor a specific
tissue will appear as white on the tissue specific image, eretsely, voxels with
low probability for a given tissue will appear as dark on theage. To reduce

Gray Matter

Figure 2.1: The S and the segmented volumes. Data from subject JL.

the number of voxels in which FA is calculated, a thresholdeavas set. This
was done in MATLAB (see Appendix A.1 and B.8). The threshadéle in our
experiments was set to 0.925 which means that every voxeided in the mask
has 92,5 % probability or higher of being the tissue specified

The collection of voxels in these restricted tissue masksewsed for the
tissue specific FA calculations.
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2.3.5 Standard deviation and CV of tissue specific FA

The first tissue specific parameters being calculated wenplsanean,
mear{FA), sample standard deviatiostd(FA), and coefficient of variation,
cV(FA) = std(FA) /mear{FA).

2.3.6 Uncertainty of FA, std(FAJP and o)

Signal to noise ratio (SNR) and other image degradation rapmitant for the
guality of the resulting FA map. One measure of this quabtyoi assess the di-
rectional dependence of the standard deviation of the EAstd(FA|0, @) ([24],
[33]), whereB and@ denote the azimuth- and elevation angles (spherical coor-
dinates), respectively of the principal diffusion directiin a given tissue spe-
cific voxel. This is so because the SNR, image degradaticch®iamerical errors
might depend on the number of averages (NEX), the selecfiahrectionsgy
and the number of diffusion sensitizing gradieKtsbeing used in the acquisi-
tion. Such noise and errors will propagate in the calcutatibthe eigensystem
of the diffusion tensor, and the FA value is directly deperdmn the principal
diffusion direction (i.e. direction of eigenvector belang to the largest eigen-
value) at the specific voxel. To obtain sufficient sampleb@different directions,
we have binned the samples into discrédeg)-values in steps oA = 15° and
Ag = 15°, and made surface plots sffd(FA) vs. n- A8, m- A wheren, mranges
from—6,...,0,...+6 and—12...,0,...,+12 respectively ané, ¢ ranges from
-90,...,0,...+490and-180,...,0,...,+180 respectively (see figure 2.2). Large
oscillations in the plot, implies high directional dependg of FA-variation and
more severe image degradation, and low variation, a smadtatglot, implies
higher quality.

Subject JL: 6 directions, nex=8

Figure 2.2: A three dimensional plot showing the standard deviatiorhefRA in white
matter for subject JL as a function of the azimuth anglend the elevation angle for
the largest eigenvector.
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2.3.7 Direction-dependent color-coding of the FA map

It is possible to superimpose directional information oa BEA map in terms of
color-coding ([34]). This is achieved by letting each of tleetor components in
the principal eigenvector of a voxel get a separate coler (ed, green and blue
respectively) and the FA value in the same voxel the streog#aturation of the
color. Thus thee; x element, i.e. right-left direction has the color-code ®d},
l.e. anterior-posterior direction has the color-code graede; ,, i.e. inferior-
superior direction has the color-code blue. When FA is ctosgero the strength
of the color is weak and when FA is close to one the color strergystrong.
Examples of a plain FA map and a corresponding color-codeth&p are shown
below in figure 2.3.

Figure 2.3: FA map to the left and the color-coded map to the right. Daienfsubject
OH K=25 and NEX=2.

The objective of color-coding of the FA map was to reveal i& @f the proto-
cols to be compared (cf. section 1.4) was visually bettan Hreother.

2.3.8 Eddy current correction

When a diffusion gradient is applied, there is a change irtdted magnetic field

B equivalent ta¥B/dt. This change induces an eddy current (EC) ([35]) which in
turn induces an extra magnetic field and the resulting Foueigonstructed image
gets geometrically distorted, and also a little blurrednc8ithis is dependent
on the diffusion sensitizing gradient, the stack of imaggs,,. .., S might be
slightly in mis-registration, i.e. not geometrically ated, and this will introduce
error in the voxel-wise calculations of the diffusion tenaad the FA value. The
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eddy current effect causes the diffusion gradient waveftrine smoother than
expected. To obtain the desired wavefoprg-emphasiss often used. That is,
the diffusion gradient is ramped up in a way that compendatabe change.

....... Applied current
Actual field

L1
L)
L}
L1
L
L1
L]
L

.

Figure 2.4: Upper part: Eddy current pre-emphasis. The dashed lineteletioe current
applied in the gradient coil. Due to eddy currents duringrtvap times, the actual field
gradient obtained differs from the nominal (solid line).wear part: Employing gradient
pre-emphasis the applied current during the ramps is adjissi that the actual magnetic
field gradient becomes close to the nominal shape indicateleodashed line on the top
figure. Courtesy of Skare [24].

Many MR scanner manufacturers have implemented a pre-esigphgstem
that is not typically sufficient to correct for the ECs indddey the very strong
diffusion gradients applied in the EPI sequence. Howewnesof the eddy cur-
rent components are approximately constant during theisitign and will give
linear effects. This is possible to correct by post-procgsmethods on the re-
constructed magnitude images. Methods for such geomeinieation are imple-
mented in the FSL software package 3.10, which is receni®ased. For all of
our results, correction of such possible geometric distodue to insufficient EC
compensation, was not performed. However, late in the proje used the newly
released FSL routines to assess the effect of “EC corréabiorone of our data
sets (subject OB). The results of this EC correction arerdssstin section 3.10.
See also Fig. 2.6.
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a) eddy current gradient k-space
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Figure 2.5: Eddy currents (EC) during the EPI readout. a) An EC in theesielection
direction will cause a linear phase shift in thedirection in k-space. This corresponds to
a shift of the object in the phase encoding direction (lygre the reconstructed image. b)
An EC in the frequency encoding directions will cause the#eg to be sheared resulting
in a shear of the object in the image in the phase encodingtidire c) Finally, an EC
in the phase encoding direction makes sampling density siface to change in thg
direction. This causes the effective FOV to change in the MRge, which is equivalent
to a scaling effect of the object. Courtesy of Skare [24].
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Figure 2.6: The left image shows FA based on geometric eddy current c@oreand
the right image shows FA without eddy current correctionbj&ct OB with K=25 and
NEX=2.



Experimental results

3.1 The original DTI acquisitions

In this section we present a selection of original recorddd @ata from five
volunteers and graphs and images associated to the varmeesging steps of our
evaluation study. The guiding principle has been to repotémtially significant
differences between image data obtained along the tworegtsgtuations: for a
fixed measurement timel) (select as many averages (NEX) as possible with as
few diffusion sensitizing directions as necessary (e.gard) (i) select as many
diffusion sensitizing directions as possible with as fewrages as necessary (e.g.
1-2).
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Figure 3.1: Typical diffusion weighted image volume, the diffusion siizing gradient
vector coordinates are (x,y,z)=(0.707, 0.000, 0.707).rnEsgbkce from slice number 1 to
24 is presented. Axial slice direction. Data from subject JL
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Figure 3.2: Typical diffusion weighted image for 6 diffusion sensitigidirections and 8
NEX, slice number 12 is selected from each volume to saveespaata from subject JL.
To see the diffusion sensitizing gradient vector coordiaaee table 2.3 page 23.

Figure 3.3: Typical diffusion weighted image for 13 diffusion sensitig directions and
4 NEX, slice number 12 is selected from each volume to saveespgaata from subject
JL. To see the diffusion sensitizing gradient vector cowatés see table 2.3 page 23.
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Figure 3.4: Typical diffusion weighted image for 25 diffusion senditig directions and
2 NEX, slice number 12 is selected from each volume to saveespaata from subject
JL. To see the diffusion sensitizing gradient vector cawatés see table 2.3 page 23.

3.2 Calculated diffusion tensors

One important stage in the processing chain of DTl imagelsascalculation of
the diffusion tensoD. The tensors are calculated as described in section 1.3.2
page 14.
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1) a)

2)

3)

4)

5)

Figure 3.5: The calculated tensors, slice number 12 only is used frorh efthe nine
volumes to save space. The three columns represents fromm tigfht the three sequences
used in the experiments a) 6 directions and 8 NEX, b) 13 daestand 4 NEX, c) 25
directions and 2 NEX and the five rows represents the five stebje OB, 2) EK, 3) JL,
4) OH and 5) SA respectively. If you see closely it is posstioldind that the tensors
are symmetric matrixes, i.e. the elements above the didgderments are equal to the
elements below the diagonal elements.
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The tensor field is a 3-D volume with a33 matrix associated to each voxel.

DXX DXy DXZ
DZX DZy DZZ

It is therefore possible to make a new brain volume contgimnly one of the
tensor elements in each voxel. This will give us nine new nag, which is
illustrated for subject OB, EK, JL, OH and SA in figure 3.5 p&ge

3.3 Fractional anisotropy maps

From the diffusion tensoD, we have calculated scalar maps of water diffusion
anisotropy, where the fractional anisotropy index (FAhis inost frequently used.
From such FA maps region and tissue specific values are oétienlated and
compared between clinical groups (having specific diagi@sid control groups.
We have therefore calculated and depicted FA maps for albobjects using the
different acquisition schemes.

FA is calculated from the eigenvalues as described in eguéli25) in section
1.3.3. FAis then a image volume containing an FA value in eacie!.

--.f:‘-" r.'t'lg'i{:ru !&'I“'

.TF*

Figure 3.6: This figure shows the calculated FA maps for the three seledmbinations
of sequence parameters. From left to right, 6 directions&MNEX, 13 directions and
ANEX and 25 directions and 2 NEX. Data from subject OB.
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G s B

Figure 3.7: This figure shows the calculated FA maps for the three seleximbinations
of sequence parameters. From left to right, 6 directions&MNEX, 13 directions and
4ANEX and 25 directions and 2 NEX. Data from subject EK.

Figure 3.8: This figure shows the calculated FA maps for the three selexmbinations
of sequence parameters. From left to right, 6 directions&MNEX, 13 directions and
ANEX and 25 directions and 2 NEX. Data from subject JL.
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I!.‘!-u'.|

e

Figure 3.9: This figure shows the calculated FA maps for the three seleximbinations
of sequence parameters. From left to right, 6 directions&MNEX, 13 directions and
ANEX and 25 directions and 2 NEX. Data from subject OH.

Figure 3.10: This figure shows the calculated FA maps for the three selemiebina-
tions of sequence parameters. From left to right, 6 dirastiand 8 NEX, 13 directions
and 4NEX and 25 directions and 2 NEX. Data from subject SA.
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3.4 The segmented volumes and the masks made from
them

In order to obtain tissue specific statistics of FA valueshaee performed prob-
abilistic tissue segmentation using SPM2. THgemage, see figure 3.11 top left,
which is the image without diffusion weighting (b=0), is segnted into the three
parts — grey matter, white matter and cerebrospinal fluiddeasribed in section
2.3.4 page 25. The three parts are visualized in figure 3fttdumn. These
images are probability masks. That means that in each vbret tis a certain
probability that the voxel represents a certain tissuealljoblack is associated to
a probability of 0 that the image voxel contains the speciéisue, totally white
represents a probability of 1 (100%) that the image voxeltaias the specific
tissue. To place a certainty and limitation on the numbeioskls in which FA is
calculated, a threshold value is set to produce the finaldispecific masks. The
threshold value in these experiments is set to 0.925. Thahshat there is 92.5
% probability that only the specific tissue is representethexmask. Then it is
possible to calculate tissue specific FA values. The finaknmaages are shown
below in figure 3.11 right column.

gVx  wVXx  cVX
EK | 37877 32022 25607
OB | 61886 42720 49298§
JL | 56466 39588 48377
OH | 41600 33623 40683
SA | 42594 24987 3517%

N

A

Table 3.1: The table shows the number of voxels in each mask using teshbld value
0.925. gVx is gray matter mask, wVx is white matter mask ang is\the mask obtained
from cerebrospinal fluid. It is important to note that the kzaspans the whole brain
volume.

To better illustrate the “the quality” of the tissue spedaifiasks we have made
depictions where the masks is superimposed ornSienage. Such composite
images are shown in figures 3.17, 3.18, 3.16, 3.19 and 3.28ufgect OB, EK,
JL, OH and SA respectively. Table 3.1 page 39 gives the nuofliezsue specific
voxels used for obtaining the FA statistics for each subject
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Figure 3.11: The segmented volumes and the masks. Data from subject OB.
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Figure 3.12: The segmented volumes and the masks. Data from subject EK.
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Figure 3.13: The segmented volumes and the masks. Data from subject JL.
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Figure 3.14: The segmented volumes and the masks. Data from subject OH.
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Figure 3.15: The segmented volumes and the masks. Data from subject SA.
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Figure 3.16: This figure demonstrates the location of the tissue speciisksion a non
diffusion weighted image (the b0 image). The top left imaga plain b0 image, the top
right shows the gray matter voxels, the bottom left the wimgdter voxels and the bottom
right the cerebrospinal fluid voxels. Only slice number 18hswn to save space. The
subject that is used to exemplify these results is JL.
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Figure 3.17: This figure demonstrates the location of the tissue speciisksion a non
diffusion weighted image (the b0 image). The top left imagea plain b0 image, the top
right shows the gray matter voxels, the bottom left the wimgdter voxels and the bottom
right the cerebrospinal fluid voxels. Only slice number 18hswn to save space. The
subject that is used to exemplify these results is OB.
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Figure 3.18: This figure demonstrates the location of the tissue speciisksion a non
diffusion weighted image (the b0 image). The top left imaga plain b0 image, the top
right shows the gray matter voxels, the bottom left the wimgdter voxels and the bottom
right the cerebrospinal fluid voxels. Only slice number 18hswn to save space. The
subject that is used to exemplify these results is EK.
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Figure 3.19: This figure demonstrates the location of the tissue speci#isksion a non
diffusion weighted image (the b0 image). The top left imagea plain b0 image, the top
right shows the gray matter voxels, the bottom left the wimgdter voxels and the bottom
right the cerebrospinal fluid voxels. Only slice number 18hswn to save space. The
subject that is used to exemplify these results is OH.
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Figure 3.20: This figure demonstrates the location of the tissue speciisksion a non
diffusion weighted image (the b0 image). The top left imaga plain b0 image, the top
right shows the gray matter voxels, the bottom left the wimgdter voxels and the bottom
right the cerebrospinal fluid voxels. Only slice number 18hswn to save space. The
subject that is used to exemplify these results is SA.
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3.5 FA distributions

A direct sample distribution of tissue specific FA-values given below for the
different DTI acquisition schemes. The distributions sihew many voxels that
holds the respective FA values in the specified masks. Asctegdrom known
tissue architecture of gray matter and white matter the Fdegs generally lower
for grey matter than for white matter. Cerebrospinal fluigven more isotropic
than grey matter and have even lower FA values as shown inghesf 3.21,
3.22 and 3.23. The distributions is nearly Gaussian, esahe¢or white matter.
Distribution plots will only be presented for one subjecttwe space.

FA distribution from gray matter mask
Subject JL: 6 directions and 8 NEX
3000 T T T T T T

2000 - 4
1000 |- h
0 " L I L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FA distribution from white matter mask
Subject JL: 6 directions and 8 NEX
1500 T T T T

1000

500

FA distribution from cerebro spinal fluid mask
Subject JL: 6 directions and 8 NEX
T T T

3000

2000

1000

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.21: FA distribution for the three tissue specific masks for scibjit, the se-
guence is 6 diffusion sensitizing directions and 8 NEX. Theamvalues for FA from top
to bottom is: 0.217, 0.510 and 0.167.
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FA distribution from gray matter mask
Subject JL: 13 directions and 4 NEX
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2000

0 L 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 14
FA distribution from white matter mask
Subject JL: 13 directions and 4 NEX
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FA distribution from cerebro spinal fluid mask
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Figure 3.22: FA distribution for the three tissue specific masks for scthjt, the se-
quence is 13 diffusion sensitizing directions and 4 NEX. Tiean values for FA from
top to bottom is: 0.205, 0.506 and 0.147.

FA distribution from gray matter mask
Subject JL: 25 directions and 2 NEX
T T T T T

| |
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FA distribution from white matter mask
Subject JL: 25 directions and 2 NEX
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FA distribution from cerebro spinal fluid mask
Subject JL: 25 directions and 2 NEX
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Figure 3.23: FA distribution for the three tissue specific masks for scibjit., the se-
quence is 25 diffusion sensitizing directions and 2 NEX. Tiean values for FA from
top to bottom is: 0.204, 0.502 and 0.152.
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3.6 The standard deviation, mean and coefficient of
variation of the FA

To further analyze the effect of DTI acquisition schemesatissue specific FA,
we have calculated standard deviation, mean and coeffiofevdriation (CV).
Normally the standard deviation of the FA values would halé tis a lot about
the differences in SNR for the three sequences. Since the vadaes shows such
variation we use the CV instead.

6dir 8NEX 13dir 4NEX 25dir  2NEX

# std mean cv std mean cv std mean cv

OBym || 0.076 0.151 0.504 0.073 0.136 0.535%0.069 0.133 0.51¢§
OBym || 0.111 0.347 0.319| 0.111 0.333 0.3330.110 0.337 0.32¢%
OBgst || 0.086 0.150 0.576 0.061 0.115 0.53(00.062 0.116 0.530

EKgm || 0.073 0.146 0.4970.063 0.123 0.508 0.063 0.129 0.493
EKwm || 0.114 0.361 0.316| 0.115 0.354 0.32%0.117 0.361 0.323
EKess || 0.094 0.145 0.648 0.060 0.106 0.5690.060 0.106 0.559

Jlgm | 0.090 0.217 0.4160.086 0.205 0.4220.089 0.204 0.43¢
JLwm || 0.142 0.510 0.279] 0.144 0.506 0.28%0.150 0.502 0.294
Jlest || 0.081 0.167 0.481| 0.075 0.147 0.5100.081 0.152 0.533%

OHgm || 0.098 0.210 0.466 0.098 0.200 0.4910.120 0.216 0.559%
OHym || 0.147 0.489 0.301| 0.147 0.472 0.3110.152 0.447 0.341
OHgst || 0.083 0.174 0.476| 0.100 0.164 0.6090.178 0.208 0.854

SAm || 0.127 0.258 0.4930.126 0.246 0.5130.134 0.240 0.55¢
SAwm || 0.132 0.434 0.305| 0.142 0.398 0.3570.148 0.380 0.39(
SAst || 0.119 0.240 0.496| 0.131 0.222 0.5910.152 0.223 0.681

Table 3.2: This table shows the standard deviation, the mean and tlecea® of vari-
ation for the fractional anisotropy values taken from thee¢hmasks for the three DTI
acquisition schemes for all five subjects.

Notice that for all subjects the lowest CV is obtained in whiatter using 6
diffusion directions and 8 NEX. However, the CV values fordifections and 4
NEX and 25 directions and 2 NEX are very close. Moreover, thleo€ECSF is
partly lower for 25 directions and 2 NEX compared to 6 direict and 8 NEX for
subject OB and EK, and partly higher for subject JL, OH and SiAce we expect
FA to be high and rather homogeneous throughout CSF, it éstbaronclude from
these data, which DTI acquisition scheme is generally best.
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3.7 Plotting graphics

The next step in our analysis has been to explore directideyaéndence in our
tissue specific FA calculations. With good quality data wewth expect the stan-
dard deviation of FA, std(FA), to be dependent on the degfeanisotropy in
tissue only and independent of the principal diffusion clien. By plotting the
standard deviation of FA as a function of the azim@tland elevationp of the
principal eigenvector, we obtain a kind of directional degent SNR for our three
DTI acquisition schemes. Great variation, a rough plot,liegdow SNR. Little
variation, a smooth or flat plot, implies high SNR and bettaaldy. Below plots,
describing the directional dependencies of the standasidtiten of the FA values
are drawn.

In each voxel in the image volume the FA and directional imfation from
the principal eigenvector is calculated. Voxels contajnpmincipal eigenvectors
with directions in certain intervals are grouped togethidre standard deviation
of the FA values from the voxels in such groups are plottednatjghe azimuth
6 and elevationp values, which are the direction of the principal eigenveato
spherical coordinates.

Plots for every subject is made, but only one subject will lesented in this
thesis to save space.

In gray matter, the three dimensional plots is smoother Bodiffusion sensi-
tizing directions with 4 NEX and 25 directions with 2 NEX th&or 6 diffusion
sensitizing directions with 8 NEX.

In white matter there is higher variation than in gray madied cerebrospinal
fluid. This is expected because white matter has higher tchresdity than the
other tissue substances. The plot for 13 directions with K NBows a little
smoother plot than for 6 directions with 8 NEX. The plot for @Bections and 2
NEX is even smoother than the plot above. But the downhilhfegatived values
is hard to explain.

In cerebrospinal fluid, the plot for 13 directions with 4 NEXamoother than
the other two plots.

But any of the difference is not large enough to have potetdianake any
conclusions in favor to one of the acquisition schemes.

3.7.1 Plots for gray matter
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Subject JL: 6 directions, nex=8

Subject JL: 13 directions, nex=4

=100 -200

Subject JL: 25 directions, nex=2

Figure 3.24: This 3D plot shows the standard deviation for the FA valuea asction

of the azimuth and elevationp for the largest eigenvector. Data from subject JL. The
plot at the top of the figure shows the results for the scarmagé parameter sequence
6 directions and 8 NEX, the middle plot 13 directions and 4 NE¥ bottom plot 25
directions and 2 NEX. The voxels which is chosen to evaluseHA are taken from the

gray matter mask.
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Std(FA) as a function of ~88.57 <= phi <= 89.68 (12 bins) and ~180.00 <= theta <= 180.00 (24 018
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Figure 3.25: This plot demonstrates the same as the 3D plot above in a 2D Pple
gray scale intensity differences indicate the variatioth@ standard deviation of FA as a
function of 8 and ¢. Data from subject JL and the three DTI sequences is displaye
rapid succession from top to bottom. The mask used is graienraask.
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mean(FA) as a function of ~88.57 <= phi <= 89.68 (12 bins) and ~180.00 <= theta <= 180.00 (2

mean(FA) as a function of -86.84 <= phi <= 89.57 (12 bins) and -180.00 <= theta <= 180.00 (2:
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Figure 3.26: This plot demonstrates the mean values of FA in the same masnine
standard deviation plot above.
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cv(FA) as a function of -88.57 <= phi <= 89.68 (12 bins) and -180.00 <= theta <= 180.00 (24

CV(FA) as a function of ~86.84 <= phi <= 89.57 (12 bins) and ~180.00 <= theta <= 180.00 (24
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Figure 3.27: This plot demonstrates the coefficient of variation, CV, lué £A values
in the same manner as the standard deviation plot almwWEA) = std(FA) /mear{FA).
That is the standard deviation relative to the mean value.QWis useful when there are
variations in the mean values.
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card(FA) as a function of ~88.57 <= phi <= 89.68 (12 bins) and ~180.00 <= theta <= 180.00 (24
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card(FA) as a function of ~86.94 <= phi <= 89.78 (12 bins) and ~180.00 <= theta <= 179.99 (24

Figure 3.28: This gray scale plot demonstrates how many voxels that Havesame
values for thed and @ angles.
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3.7.2 Plots for white matter

Subject JL: 6 directions, nex=8

Figure 3.29: This 3D plot shows the standard deviation for the FA valuea asction

of the azimuth@ and elevationp for the largest eigenvector. Data from subject JL. The
plot at the top of the figure shows the results for the scanmage parameter sequence
6 directions and 8 NEX, the middle plot 13 directions and 4 NE¥ bottom plot 25
directions and 2 NEX. The voxels which is chosen to evaluze=A are taken from the

white matter mask.
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std(FA) as a function of ~87.86 <= phi <= 89.68 (12 bins) and -179.98 <= theta <= 180.00 (24 0.18
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Figure 3.30: This plot demonstrates the same as the 3D plot above in a 2D ple
gray scale intesity differences indicate the variationhi@ $tandard deviation of FA as a
function of 8 and ¢. Data from subject JL and the three DTI sequences is disglaye
rapid succession from top to bottom. The mask used is whiteenraask.
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Figure 3.31: This plot demonstrates the mean values of FA in the same masnihe
standard deviation plot above.
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CV(FA) s a function of ~87.86 <= phi <= 89.68 (12 bins) and ~179.98 <= theta <= 180.00 (24
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Figure 3.32: This plot demonstrates the coefficient of variation, CV, ltd FA values
in the same manner as the standard deviation plot almwWEA) = std(FA)/mear{FA).
That is the standard deviation relative to the mean value.aWis useful when there are
variations in the mean values.
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Figure 3.33: This gray scale plot demonstrates how many voxels that Havesame

properties for theéd and @ angles.
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3.7.3 Plots for cerebrospinal fluid

Subject JL: 6 directions, nex=8

Subject JL: 13 directions, nex=4

-100" 200

Subject JL: 25 directions, nex=2

Figure 3.34: This 3D plot shows the standard deviation for the FA valuea asction

of the azimuth@ and elevationp for the largest eigenvector. Data from subject JL. The
plot at the top of the figure shows the results for the scanmage parameter sequence

6 directions and 8 NEX, the middle plot 13 directions and 4 NE bottom plot 25
directions and 2 NEX. The voxels which is chosen to evalua¢a=A are taken from the
cerebrospinal fluid mask.
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Figure 3.35: This plot demonstrates the same as the 3D plot above in a 2D Pple
gray scale intesity differences indicate the variationhi@ standard deviation of FA as a
function of 8 and ¢. Data from subject JL and the three DTI sequences is displaye
rapid succession from top to bottom. The mask used is cespimal fluid mask.
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mean(FA) as a function of ~87.81 <= phi <= 90.00 (12 bins) and ~180.00 <= theta <= 180.00 (2

mean(FA) as a function of -86.51 <= phi <= 89.96 (12 bins) and ~180.00 <= theta <= 180.00 (2

10
12
0.1
0.05
0.55

mean(FA) as a function of -88.41 <= phi <= 89,67 (12 bins) and ~180.00 <= theta <= 179.99 (2

10

12 015

Figure 3.36: This plot demonstrates the mean values of FA in the same masnine
standard deviation plot above.
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cv(FA) as a function of -87.81 <= phi <= 90.00 (12 bins) and -180.00 <= theta <= 180.00 (24

CV(FA) as a function of ~86.51 <= phi <= 89.96 (12 bins) and ~180.00 <= theta <= 180.00 (24

cv(FA) as a function of -88.41 <= phi <= 89.67 (12 bins) and -180.00 <= theta <= 179.99 (24

Figure 3.37: This plot demonstrates the coefficient of variation, CV, lué £A values
in the same manner as the standard deviation plot almwWEA) = std(FA) /mear{FA).
That is the standard deviation relative to the mean value.QWis useful when there are
variations in the mean values.
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card(FA) as a function of ~87.81 <= phi <= 90.00 (12 bins) and ~180.00 <= theta <= 180.00 (24
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Figure 3.38: This gray scale plot demonstrates how many voxels that Havesame
properties for thé® and @ angles.
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3.8 Color-coding of the FA maps

Others (Sarah Brockstedt, Lund) have discovered a mardifiafence between
DTI acquisition schemes with many directions and few avesagpmpared to few
directions and many averages by color-coding the FA maps @dm be achieved
when the eigenvectors in the different directions is giveéfeent colors. In the

example below x-direction\) is red, y-direction\fy) is green and z-direction
(Vy) is blue. The color intensity is given by the FA value.

Figure 3.39: Left image: ROI determined to calculate FA and directiomdibimation
from the eigenvectors and eigenvalues. Right image: Ther @ontour of the brain from
the ROI. Data from subject OH and the sequence contains f&idifi directions and 2
NEX.

Figure 3.40: FA map to the left and the color-coded map to the right. Botpsrslowing
subject OH and 25 diffusion directions and 2 NEX.
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Figure 3.41: FA map to the left with 6 diffusion directions and 8 NEX and FAjprto the
right with 25 directions and 2 NEX. Both maps showing subfekt

Figure 3.42: Color-coded map to the left with 6 diffusion directions andNEX and
color-coded map to the right with 25 directions and 2 NEX.Bataps showing subject
EK.
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Figure 3.43: FA map to the left with 6 diffusion directions and 8 NEX and FAjpto the
right with 25 directions and 2 NEX. Both maps showing subfeBt

Figure 3.44: Color-coded map to the left with 6 diffusion directions andNEX and
color-coded map to the right with 25 directions and 2 NEX.IBotaps showing subject
OB.
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Figure 3.45: FA map to the left with 6 diffusion directions and 8 NEX and FAjprto the
right with 25 directions and 2 NEX. Both maps showing subjict

Figure 3.46: Color-coded map to the left with 6 diffusion directions andNEX and
color-coded map to the right with 25 directions and 2 NEX.Bataps showing subject
JL.
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Figure 3.47: FA map to the left with 6 diffusion directions and 8 NEX and FAjto the
right with 25 directions and 2 NEX. Both maps showing subfeEt.

Figure 3.48: Color-coded map to the left with 6 diffusion directions andNEX and
color-coded map to the right with 25 directions and 2 NEX.IBotaps showing subject
OH.



74 CHAPTERS

Figure 3.49: FA map to the left with 6 diffusion directions and 8 NEX and FAjprto the
right with 25 directions and 2 NEX. Both maps showing subjeét

Figure 3.50: Color-coded map to the left with 6 diffusion directions andNEX and
color-coded map to the right with 25 directions and 2 NEX.Bataps showing subject
SA.
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3.9 Increased number of directions with constant NEX

By doing the same analysis as above on two sequences wignetiffnumber of
diffusion sensitizing directions and keeping the NEX canstwe want to ascer-
tain that the SNR will increase with increasing number oédiions. This time
analysis is done only for FA in white matter. See table 3.3faqude 3.51.

Subject niels: 6 directions, nex=8 Subject niels: 12 directions, nex=8

v" !
N

Std(FA)

Figure 3.51: This 3D plot shows the standard deviation for the FA values fasiction of

the azimuthd and elevationp for the largest eigenvector. The scanner used is a Siemens
and the acquisition matrix is 128128. The plot at the top of the figure shows the results
for the scanner image parameter sequence 6 directions arkeX8 tNe bottom plot 12
directions and 8 NEX. That means that the number of diffusimsitizing directions has
increased while the NEX has been held constant. The voxdtshvidichosen to evaluate
the FA are taken from the white matter mask.

TN | 6dirBNEX 12dir8BNEX
std | 0.0268 0.0208
cv | 0.2177 0.2046

Table 3.3: This table shows the standard deviation and the coefficierdraation for the
FA values for subject TN. The acquisitins in this data setlieen recorded at a Siemens
scanner, with a acquisition matrix 128128 and two different acquisition schemes. The
firstis 6 directions and 8 NEX and the second one is 12 direetivd 8 NEX. The results
from this experiment shows that increasing the number @ctivns only, and keeping
the NEX constant, will lower the standard deviation of the FAat means that the SNR
is higher and that the quality of the acquisitions increaglesn the number of directions
increases. This is as expected.
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3.10 FMRIB Software Library and Eddy Current
Correction

FSL is a comprehensive library of functional and structbrain image analysis
tools, written mainly by members of the Image Analysis GrdedRIB, Oxford,
UK. For details see [36] and [37].

With this software library it is possible to do the FA caldidas as has been
done in the work of this thesis in an easy and user-friendly wah GUI's
(Graphical User Interface). In addition it is possible toetlrly current correc-
tion on the image volumes, before FA is calculated. As exqzbetddy current
correction increases contrast and makes the image smodthexample of FA
images is calculated with FSL from the same dataset as usaar iwork using
subject OB. Only the results from the sequences 6 direcaods8 NEX and 25
directions and 2 NEX will be presented. See the figures 3.53, 8nd 3.52.

Figure 3.52: First row shows with ecc and second row without. First colishaws 6dir
8NEX and second column shows 25dir 2NEX.
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Figure 3.53: First row shows an axial slice, the second row shows a corslita and
the third row shows a sagittal slice .Left column with eddyrent correction and right
column without. The sequence is 6 directions and 8 NEX.
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Figure 3.54: First row shows an axial slice, the second row shows a corslita and
the third row shows a sagittal slice .Left column with eddyreat correction and right
column without. The sequence is 25 directions and 2 NEX.
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3.11 Summary of our results

Standard deviation of the FA values From the results of the calculation of the
standard deviation of tissue specific FA, we found that tig@eece with K=6 and
NEX=8 had slightly lower CV value than the other sequence®¥ery subject.
However, this difference in CV compared to the other pro®eas very small
and could not in itself bring a clear conclusion to our pratle

The 3D plots By careful inspection of the 3D plots, we found no visual dif-
ference large enough to make any conclusions in favor of ohlkeddquisition
scheme in favor of the others.

The color-coded images For subject EK it is possible to see a neater and more
distinct structure and a more precise coloring in the imaigie ehrections=25 and
NEX=2 than for the image with directions=6 and NEX=8. Thisspecially clear
at nine o’clock.

Subject OB at nine o’clock shows a more unambiguous, premiseique
coloring and the image is more homogeneously colored factdons=25 and
NEX=2.

For subject JL it is clear that the image showing directi@sand NEX=2 is
more smoothly delineated. This is easiest to see in theald@rigngular between
genu and splenium.

Subject OH has very different coloring in the central paftthe image. The
central triangular seems to connect the genu and splenigether for direc-
tions=25 and NEX=2 than for the directions=6 and NEX=8, wehtre central
part is green.

For subject SA the genu has a more mixed coloring for diresti@5 and
NEX=2, but the splenium and the central triangular seemsmontinuous for
directions=6 and NEX=2.

For all of the subjects the boundary seems more exposedtttdiss for the
image showing directions=25 and NEX=2 than for the other.






Discussion

The signal in MR-DTI is both weak and vulnerable to noise arida&ts, such
that the determination of the diffusion tenddrand the FA-index are subject to
uncertainty and errors. Among several methods that can pkedpo improve
signal strength and reduce noise we chose to explore if tlvere any poten-
tially significant differences between DTI head acquisit@btained (for a fixed
measurement time) when the number of diffusion sensitidingctions (K) was
maximized compared to the situation where the number otatkans (NEX) was
maximized.

4.1 Main results

From our analysis we found that there was a slightly highatityun white matter
results using a protocol with K=6 and NEX=8 than for the pcols using K=13
and NEX=4 or K=25 and NEX=2.

However in his thesis [24] Skare concludes from his secomepg88] that:
“Given the same total number of measurements, it is betterdasure the diffu-
sion in many directions rather than do more averages of DiMiswer directions.
Because of noise, the eigenvalues are not rotationallyianvia The accuracy of
the eigenvalues and diffusion anisotropy varies with theation of the tensor rel-
ative to the image plane. The smaller the number of direstimed, the larger the
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variation.” From our results, this conclusion is not clgatiblated since the differ-
ence instd(FA)/mear{FA) of white matter for the protocols (K=6 and NEX=8),
(K=13 and NEX=4) and (K=25 and NEX=2) were very small, i@V (FA)wm
ranging from 0279—0.319, 0285— 0.357 and (99— 0.390 respectively.

4.2 Strengths and weaknesses of our approach

4.2.1 Eddy current correction

Due to lack of time and software, we did not perform eddy aur(EC) correction
in our comparative study of protocols. As depicted in Sec8d.0, demonstrating
the effect of EC correction in a single subject OB (K=6 and NBXand (K=25
and NEX=2), we see that EC correction increases contrastietails and makes
the FA map smoother. To further explore the quality diffeenbetween high K or
high NEX, EC correction should be done previous to tensorfsdalculations.

4.2.2 Determination of the ROI and the segmentation process

For tissue specific analysis the definition of region of ies¢rROIs) is impor-
tant. In our case with FA maps, it is not wise to use the FA insaemselves
as this would be using the dependent variable to define.it§hif can definitely
impede the identification of abnormal tissue such as whitdenaegions with
low FA. Therefore it was decided to automate the definitiolRGfils based on a
To-weighted structural image. To our knowledge, probaldisssue segmenta-
tion of the §-image to obtain tissue specific FA-values has not prewolbisén
reported. Using the segmentor in SPM2 and simple thresigldve obtained a
large sample of GM, WM and CSF voxels that were in co-regisidr the other
DTI acquisitions that were used to calculate the tefisand the FA-values. The
S image from the protocol with K=6 and NEX=8 was used for seg&m,
since it had the highest SNR among all of g@mages that were acquired.

Because th&y-image data suffers from a substantially lower quality than
genuine 3D anatomy image (e.g. MPRAGE, 3D FLASH), the poa@iityjucan
possibly cause misclassification of tissues in the segrientarocess. It is there-
fore an alternative to acquire a full 3D anatomic data setlai®ed co-register with
the DTI data. However, this would lead to higher examinatiores and may be
hampered with mis-registration problems, if simple affirmsformations were
used as is most common [1].

Pfefferbaum and Sullivan has reported that systematieatiying or dilating
the circumference of the ROI by eliminating or adding pixelanargin of po-
tential error in the segmentation process is demonstr&@d [They state that:
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“This draws into question use of global analysis approackesh as statistical
parametric mapping (SPM), based on resizing of brain péwgna to a common
template without regard for partial voluming arising fronsmegistration that can
contribute significantly to DTl measures.”

4.2.3 Advantages with many directions

Many diffusion sensitizing directions enables so-calldfliion spectrum imag-
ing (DSI) which is an alternative yet effective approach fimapping the intra-
voxel structures of white matter, especially fiber crossjngsing a circular spec-
tral decomposition technique based on HARD MRI (Ztgral. [40]). Another
example which favor many diffusion sensitizing directiapposed to more aver-
ages of few directions, is high quality fiber tracking. It scessary to encode the
DTI acquisitions with many diffusion sensitizing direai®to get more reliable
trackings ([41]).

4.2.4 Suggestion for improvements

Apart from eddy current correction on the raw data beforeutating the tensor
and the FA index, better or more coils for parallel imaging{) will certainly
give better results, but depends on having the proper haedwahe MR scanner.
Another quality test in protocol comparison will be fiberdkang evaluation. By
the recently available synthetic DTI datasets [43], thedy@ss of a given tracking
algorithm could be established, which could then be apptiedreal DTI data set
from a single subject acquired with different DTI protocols

4.3 Future work — extending the assessment to fiber
tracking results

Further analysis would be to test the three DTI acquisiticimesnes on results
from fiber tracking. There exists several methods for fibectography based on
DTI data [44] [45] [46] [47] [48] [49] [50] and [51] . One of th is implemented

in FSL by FMRIB, which does probabilistic tracking ([36]).

4.3.1 Probabilistic tracking

Oxford Center for Functional Magnetic Resonance ImagingeBrain, FMRIB,
has developed a technique for characterizing the uncgrtagsociated with pa-
rameter estimates in diffusion weighted MRI, and for pragiam this uncertainty
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through the diffusion weighted data. This allows compotabf probability dis-
tributions on the location of the dominant fiber pathway stnet it is possible to
guantify the belief in the tractography results.

Analysis of diffusion weighted data normally involves thitifig of a model
of local diffusion to the data in each voxel. A weakness inhsan approach
is that the assumed model is of the diffusion profile and netuhderlying fiber
structure which are the parameters that are of real intéBestause there has been
no model proposed to predict, adopting a Bayesian framewwWw a specific
structure or distribution of fiber directions within a voxeill reflect itself in the
measured diffusion weighted MR signal, therefore, anynateto recreate the
fiber structure from such a profile is essentially an educgtess. Another issue
is that even when fitting a model of local diffusion, the réisigl parameters have
uncertainty associated with them.

FMRIB have presented a method for the full treatment of suchrecertainty.
They have shown, using Bayes’ equation along with well distadgd methods for
its numerical solution, that it is possible to form a comeletpresentation of the
uncertainty in the parameters in any generative model @igidn, in the form of
posterior probability density functions on these paramnsete

They then consider the uncertainty at a global level by outtj the theory
behind moving from the probability density functions (pdés local principal
diffusion direction to an estimate of the probability distition on global connec-
tivity. They choose to use a simple partial volume model taleidocal diffusion.
The reason for this choice is that it maximizes the chanceth®aeffect of di-
verging or splitting fibers will be seen as uncertainty in grancipal diffusion
direction, and not as a change in the diffusion profile. Thisd because such a
model only allows for a single fiber direction within a voxel.

The next stage is to define a model of global connectivitysThidone with
streamlining algorithms That is, given absolute knowledge of local fiber direc-
tions, connectivity is assumed between two points if, anl¢d dnthere exists a
connected path between them through the data. They siniply fir uncertainty
in fiber direction when computing streamlines by effectuapeatedly sampling
local pdfs to create streamlines, and regarding thesensliress as samples from
a global pdf. They choose to compute the local pdfs in a rigefashion given
the MR data.

An important result of their procedure is that the recoverednectivity dis-
tributions are strictly probability distributions on thermected pathway through
dominant fiber directions. That means that there is no expépresentation of
splitting or diverging fibers in either the local or global deb. They are strictly
inferring that the effect of fiber divergence within a voxeld. branching/crossing
fibers) must reveal itself as uncertainty in the princip&ugdion direction. How-
ever, because fiber divergence within a voxel is treated esrtainty in principal
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diffusion direction, this sensitivity to diverging and bhihing fibers will be de-
pendent on the experimental design. In general, the mooemattion in the MR
measurements, the lower the uncertainty in principal diffa direction.

This makes it possible to model tractography also in greytenabrticothala-
mic projection neurons. Even though the FA is low here.

Using the computational framework for probabilistic fibeadking, it would
be possible to assess the effect of using different DTI inzagglisition protocols
(i.,e. K=6 and NEX=8 vs. K=13 and NEX=4 vs. K=25 and NEX=2). However,
this would require much more computer resources and timarfalysis than was
available in this project. We have therefore limited ourseimake a few simple
experiments with the probabilistic tracking methods aggptio our own data.

4.3.2 Preliminary results from probabilistic tracking applied
to data from subject AL

We have done probabilistic tracking on one dataset, subjecusing a modi-
fied acquisition protocol on the 1.5 T GE Signa Echospeednsraat HDS, with
K=25 and NEX=2. For this case 9>-weighted (b=0) images were recorded in
order to improve tensor calculations (cf. [31] and [38]). Wso increased the
number of slices to 34, using a k-space acquisition matrB6sf96 (interpolated
to 256x256 display matrix), and isotropic voxel size of 23,3x2,3 mn?. We
will here remark that most published studies of fiber traglemploy 60 or more
slices with about 2.0 mm slice thickness (e.g [52]). Thelstwipt used for the
tensor calculations and tracking (accessing the routm&®iT*/FSL) is given in
Appendix B.11.

Figure 4.1 depicts a detail from the experimental resultsviing probabilistic
fiber tracks in the anterior corpus callosum region, supgosed on the corre-
sponding FA map. Initially, a bar-shaped seed-mask was atgmpiaced along
the whole corpus callosum in a para-sagittal plane. In Fig. we see the in-
tersection of this mask with an axial slice (small yellowtesle) close to the
genu part of the corpus callosum). The algorithms impleeeim FDT first per-
forms Markov Chain Monte Carlo sampling to build up disttibas on diffusion
parameters at each voxel of the brain (consuming about 2@ leowour Linux ma-
chine!). Then FDT was used to generate probabilistic stlieasin each voxel,
and finally compute a connectivity distribution, as seenign B.1. All brain vox-
els will have a value (though many of these may be zeaplesenting the number
of samples that pass through that voxel from the seed .n@sknectivity distri-
butions from multiple seed voxels in the mask are summedaduare this output,

*FDT-tools for low-level diffusion parameter reconstroctiand probabilistic tractography
(http://www.fmrib.ox.ac.uk/fsl/fdt)
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and the connectivity values depend on the number of voxetkdrseed mask.
Thus, the brightness of a pixel, spyrepresenting a streamline in Fig. 4.1 reflects
the area (number of voxels) within the seed mask that areapiglzonnected to

p.

At this early stage of our tracking experiments good resautits proper eval-
uation is hard to obtain, partly because we had little timg¢hnscanner to ex-
periment with higher spatial resolution and whole brainerage, combined with
good data quality. One flaw with the acquisition of the préskraset was that
our axial slices were hampered with some left-right ovddifay artifacts. By
switching the direction of the phase encoding and frequeammoding imaging
gradients in follow-up experiments, this artifact was netgent. However, these
new DTI-acquisitions were recorded for simple FA-calcolias, and had larger
slice thickness, less number of slices, and were spatiatlgppropriate for track-
ing experiments.

We will, as a next step, study the possibility of modifying @'l acquisition
protocol to be better suited for fiber tracking, and such tihatime consumption
of the sequence is compatible with clinical use.

As shown in Fig. 4.1 the correctness/quality of the fibertbg@aphy images
are difficult to interpret, and a more rigorous study shoutdude DTI protocols
with higher spatial resolution.

4.4 Conclusion

From our data, which are sparse, and evaluation methods,amelade that the
quality of the resulting diffusion tens@ and the FA maps are about the same
using protocols that favors number of directions (large ¥ded with number of
averages (few NEX), and protocols that favors number ota&tians (high NEX)
traded with number of directions (small K).

Since a large K enables more sophisticated analysis (effusthn spectrum
imaging, DSI) we recommend a protocol with many diffusiamsiizing direc-
tions. This is also in accordance with the latest recomm&addrom the vendor
of the scanner (i.e. after upgrade to Echospeed gradiemesyswhere K=25 and
NEX=1 are prescribed in their standard DTI protocol.
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FA with seed-mask

Tracking superimposed on FA

Figure 4.1: The results from probabilistic fiber tracking using the FBSL software
from Oxford’s FMRIB on MR-DTI data acquired in subject AL. &lspatial connectivity
matrix, shown as streamlines superimposed on the FA imaiipe ianterior part of corpus
callosum (CC), is related to a bar-shaped seed mask mamplatlgd along the CC. Part
of this seed-mask (small yellow rectangle) can be seen wheremask intersects one of

the axial slices (9/32)






Programs used in the work of this
thesis

A.1 MATLAB

MATLAB [53] is a high-level technical computing languagedainteractive environment for al-
gorithm development, data visualization, data analysid,raumerical computation. Using MAT-
LAB, one can solve technical computing problems faster thiin traditional programming lan-
guages, such as C, C++ and Fortran.

One can use MATLAB in a wide range of applications, includgignal image processing,
communications, control design, test and measuremengs)di@ modeling and analysis, and
computational biology. Add-on toolboxes (collections pgsial-purpose MATLAB functions,
available separately) extend the MATLAB environment tose@articular classes of problems in
these application areas.

MATLAB provides a number of features for documenting andristtgapof work. One can
integrate your MATLAB code with other languages and appiices, and distribute MATLAB
algorithms and applications.

A.2 nlICE

nICE — Image Control and Evaluation [32] — is a medical viayyianalysis and processing pack-
age developed with a view to ease of use and high performanaetandard Windows platform.
In addition to a wide range of basic image processing and/sisdlunctions, nICE provides com-
prehensive functionality for dynamic image analysis (epgrfusion) and processing/display of
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functional MRI (fMRI) data. For this purpose, nICE providessy data transfer to other fMRI
analysis software packages.

We used nICE to load the DTl images as DICOM-files and save te8&PM/Analyze format.
Separate volumes was made for each of the diffusion sengifilirections.

A.3 SPM2 (Statistical Parametric Mapping)

The SPM [54] was originally developed by Karl Friston and soéware package for the analysis
of brain imaging data sequences. The sequences can besadafenages from different cohorts,
or time-series from the same subject. SPM is based on MATLA®tions and subroutines.
Routines for probabilistic segmentation of high resolutinagnetic resonance brain images is
also implemented. Segmentation divides the brain into &y gnatter (GM), white matter (GM)
and cerebrospinal fluid (CSF) and other parts based on thgeiméensity.

The segmentation algorithm utilizes a priori probabilityaiges of GM, WM and CSF (range
0-1). Before segmentation each voxel in the image is mappéd £quivalent location in the a
priori probability images through a spatial transformatio

The iterative segmentation algorithm is based on maximketifiood 'mixture model’ clus-
tering algorithm. The algorithm is terminated when the d®in log-likelihood from the previous
iteration becomes negligible.

A.4 MRI-TOOLBOX

The toolbox makes it possible to, among other things, imff@tsegmented tissue volume from
analyze-format into MATLAB as a *.mat file. This makes it cemient to work with the seg-
mented tissue volumes in MATLAB. The mri-toolbox can be dvaded from here [55]. Search
for mri-toolbox.
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B.1 diffusionellipsoid.m

r = diffusionellipsoid(D, xrot, yrot, zrot, n)

% Axis rotation

Rx = [1, 0, 0; 0, cosd(xrot), sind(xrot); 0, -sind(xrot), cosd(xrot)];
Ry = [cosd(yrot), 0, -sind(yrot); 0, 1, 0; sind(yrot), 0, cosd(yrot)];
Rz = [cosd(zrot), sind(zrot), 0; -sind(zrot), cosd(zrot), 0; 0, 0, 1]1;

R = Rz*Ry*Rx; ¥ Resulting rotation matrix

[E, lambda] = eigs(D);

L = diag(lambda) ;

[x,y,2z] = 1lcl_ellipsd(L’, E, n);

D_rot = R*D*(R’);

[E_rot, lambda_rot] = eigs(D_rot);

L_rot = diag(lambda_rot);

[x_rot,y_rot,z_rot] = lcl_ellipsd(L_rot’, E_rot, m);

surfc(z,y,x) % Original diffusion ellipsoid, before spatial transformation
surfc(z_rot,y_rot,x_rot) % Diffusion ellipsoid after reorientation of tensor

[x,y,2z] = 1lcl_ellipsd(smax,nrm,n)

%  ELLIPSD(SA,NRM,N) plots ellipsoid with

%  semiaxes vector SA=[SAX SAY SAZ] and

% axes orientation given in the matrix NRM.

% N specifies dimension of coordinate matrices
% X, Y, Z (all NxN matrices
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B.2 runme.m

wd = pwd;
disp( ’Load DTI data from DICOM format...’);
cd Data\dti\KETIL_20040604\SA\SA25dir2NEX

dti_foer_nedskalering = double( loaddti( ’im’,24,26,1,true ));
cd( wd );
clear wd;

% Makes a section of the volume to place a limitation on the amount of
% memory used in the calculations

disp( ’ Scaling down dataset...’ );

dti = dti_foer_nedskalering(:,40:235,51:210,:); %SA

disp( ’> Computing diffusion-tensor for each voxel...’ );
D = difftensorlsq( dti );

disp( Computing norms from diffusion-tensor...’ );
disp( Computing FA norm...’ );
img_fa = dtnorm( D, ’fa’ );

Forloaddti.m see B.3 page 92, farifftensorlsq.m Ssee B.4 page 93 and fatnorm.m see B.6 page 95.

B.3 loaddti.m

function dti = loaddti( fileprefix, slices, directions, offset, debug )
% LOADDTI Load DTI volume data fra DICOM files

%  LOADDTI( fileprefix ) loads the DICOM-files beginning with ’prefix’
% from disk.

%  LOADDTI( fileprefix, slices ) assumes there are ’slices’ slices of
% images in the dataset. Default is 19.

% LOADDTI( fileprefix, slices, directions ) assumes there are
% ’directions’ directions in the dataset. Default is 7.

% LOADDTI( fileprefix, slices, directions, offset ) assumes the
%  first image is named ’sprintf(’YsY%d’, fileprefix, offset)’. Default
% is 1.

% LOADDTI( fileprefix, slices, directions, offset, debug ) shows
%  information about the loading process if ’debug’ is true.

% dti = LOADDTI(...) returns a volume containing the loaded data.

% size( dti ) = ’directions’ * rows * cols * ’slices’, where rows and
% cols are the number of rows and columns in each of the

%  DICOM-images, and ’directions’ and ’slices’ are inputparameters.

switch ( nargin )

case 1
dti = loaddti( fileprefix, 19 );
return;

case 2
dti = loaddti( fileprefix, slices, 7 );
return;

case 3
dti = loaddti( fileprefix, slices, directions, 1 );
return;

case 4
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dti = loaddti( fileprefix, slices, directions, offset, false );
return;
end

if (debug)
disp(’Loading DTI data...’);
end

for filenumber = offset : slices*directions
filename = sprintf(’%s%d’, fileprefix, filenumber);

floor( (filenumber - offset) / slices ) +1;
mod( (filenumber - offset) , slices ) +1;

dir
slc

info = dicominfo( filename );
dti( dir,:,:,slc) = dicomread( info );

if (debug)
disp( sprintf( ’ Reading file ¥%s...’, filename ));
disp( sprintf( *> Direction = %d’, dir ));

disp( sprintf( ’> Slice = %d’, slc ));
disp( sprintf( > File info’ ));
disp( sprintf( ? Filesize = Jd’, info.FileSize ));
% disp( sprintf( ? Minimum = %d’, info.SmallestImagePixelValue ));
% disp( sprintf( ? Maximum = %d’, info.LargestImagePixelValue ));
disp( sprintf( ° Resolution = %dx%d’, info.Rows, info.Columns ));
disp( sprintf( ? Date = %s’, info.FileModDate ));
end
end

B.4 difftensorlsg.m

function D = difftensorlsq( dti )

% DIFFTENSTORLSQ Calculates a diffusion tensor volume from a dti volume
% DIFFTENSTORLSQ( dti ) calculates a diffusion tensor for each

% voxel in the dataset ’dti’. ’dti’ is of resolution dirs x rows x

% cols x slcs. Let rows x cols x slcs represent the complete MRI

%  volume being examined. From these dirs values for each voxel in

%  the volume we can compute [Westin et al.( 2002)] a diffusion

% tensor. We will do this using Trygve Nilsens linear least squares
yA approach. See lecturenotes dated April 24.

% D = DIFFTENSORLSQ( ... ) returns a diffusion tensor calculated for
% each voxel in the volume. The tensor for each voxel will be a 3x3
% matrix, and therefore size( D ) = 3 x 3 x rows x cols x slcs.

b = 1000;
g = scandir( size( dti,1 ));

%% Translate dataset to minimum 1 to later avoid log(0)
dti = dti - min(min(min(min( dti )))) +1;

%% Transform to correct scale
dti = log( dti );
for dir = 1:size( g,2 )
y( dir,:,:,: ) = (dti( 1,:,:,: ) - dti( dir+l,:,:,: )) / b;
end

%% Calculate gamma-matrix
for row = 1:size( g,2 )
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gamma (row,:) = reshape( g(:,row) * g(:,row)’, [1 9]);
end

%% Remove duplicate columns to prevent singularity
gamma = uniquecols( gamma );

%% Precalculate matrix needed for analytical solution
M = inv( gamma’ * gamma ) * gamma’;

%% For each voxel, solve minimization analytically
for row = 1:size( dti,2 )
for col = 1:size( dti,3 )
for 1lvl = 1:size( dti,4 )
delta(:,row,col,lvl) = M * y( :,row,col,1lvl );
end
end
end

%% Convert vector pr voxel to symmetric matrix pr voxel

DC 1,1,:,:,: ) = delta( 1,:,:,: );

D( 1,2,: : ) = delta( 2,:,:,: ) * 0.5;

D( 1,3,: ) = delta( 3,:,:,: ) * 0.5;

D( 2,2,: ) = delta( 4,:,:,: );

D( 2,3, ) = delta( 5,:,:,: ) * 0.5;

D( 3,3,: ) = delta( 6,:,:,: );

D( 2,1,: ) =D( 1,2,:,:,: ); %k Symmetric
D( 3,1,: ) =D( 1,3,:,:,: ); %% Symmetric
D( 3,2,:,:,: ) =D( 2,3,:,:,: ); %% Symmetric

%% Remove duplicate columns from M
function U = uniquecols( M )
U= [1;
for col = 1:size( M,2 )
if “ismember( M(:,col)’, U’, ’rows’ )
U = [U, M(:,col)];
end
end

Forscandir.m see B.5 page 94.

B.5 scandir.m

function g = scandir( dircount, scannertype )

%% Do not count b=0 direction
dircount = dircount -1;

switch( dircount )

case 6
g = load( ’ge_6.txt’ )’;
return;

case 13
g = load( ’ge_13.txt’ )’;
return;

case 25
g = load( ’ge_25.txt’ )’;
return;

end
% The *.txt fils has been made from the information in the tensor.dat file
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B.6 dthorm.m

function V = dtnorm( D, normhandle )

% DTNORM Computes a volume norm for a diffusion tensor volume

%  DINORM( D, normhandle ) computes a norm from the diffusion tensor

% stored in each voxel of 5D ’D’, using the handle to the matrixnorm

% ’normhandle’. ’normhandle’ is the name of a function in the ’private’
%  subdirectory (without the extension).

% V= DTINORM( ... ) returns a volume where each voxel contains the
% norm of the corresponding diffusion tensor in °’D’. If size( D ) =
% m x n x rows x cols x slcs, then size( V ) = rows x cols x slcs.

%  Example:
% V = dtnorm( D, ’linear’ );

normhandle = str2func( normhandle );

for row = 1:size( D,3 )
for col = 1:size( D,4 )
for 1lvl = 1:size( D,5 )
d =D( :,:,row,col,lvl );
V( row,col,lvl ) = feval( normhandle, d );
end
end
end

B.7 fa.m

function value = fa( D )
lambda = flipud( sort( eig( D )));

value = 1/sqrt(2) * (sqrt( (lambda(1l)- lambda(2))~2 +
(lambda(2)- lambda(3))~2 + (lambda(l)- lambda(3))~2) /
sqrt( lambda(1)"2 + lambda(2)~2 + lambda(3)"2));

B.8 makemask.m

function mask = makemask ( volume, treshold, subject )

% MAKEMASK makes a binary mask from the volume ’volume’ with threshold from 0 to

% 1 and scales the volume to fit the img_fa volume of subject ’subject’.

)

% Example: mask = makemask( img_white, 0.95, ’JL’ ); gives us the binary mask from
% the volume img_white with treshold 0.95 and scales the volume for subject *JL’.

% Author: Ketil Oppedal May 2004
% revised: October 2004

volume = volume/max(max(max(volume)));

for i = 1:size(volume,3)

volume_rot = rot90(volume(:,:,1i));
volume_rot_tresh = im2bw(volume_rot(:,:), treshold);
mask(:,:,i) = reshape(volume_rot_tresh(:,:), size(volume,1), size(volume,2), 1);

end

B.9 fa-plotting

function fa_plotting_20041018(subj_id, nof_diff_dirs, nex)
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DELTA_DEG = 15; % Discretization ("binning") of the phi and theta angles

% for subject 0B

% loading data

data = ’.\ketils_workspaces\20040214\0B6dir8NEX .mat’;
load(data)

% importing the segmented brain volumes from analyze format

[gm, xx] = avw_img_read(’g:\Ketil\m-files\Data\dti\KETIL_20040214\0B\SPM_0B6dir8NEX\bO_segl’);
[wm, xx] = avw_img_read(’g:\Ketil\m-files\Data\dti\KETIL_20040214\0B\SPM_0B6dir8NEX\b0_seg2’);
[csf, xx] = avw_img_read(’g:\Ketil\m-files\Data\dti\KETIL_20040214\0B\SPM_0B6dir8NEX\bO_seg3’);

% making the tissue specific mask

gm_mask = makemask( gm.img, 0.925, ’0B’ );
wm_mask = makemask( wm.img, 0.925, ’0B’ );
csf_mask = makemask( csf.img, 0.925, ’0B’ );

% Make column vectors

img_fa_vec = reshape(img_fa, prod(size(img_fa)), 1);
vecoord_ph_vec = reshape(vecoord_ph, prod(size(vecoord_ph)), 1);
vecoord_th_vec = reshape(vecoord_th, prod(size(vecoord_th)), 1);
gm_mask_vec = reshape(gm_mask, prod(size(gm_mask)), 1);
wm_mask_vec = reshape(wm_mask, prod(size(wm_mask)), 1);
csf_mask_vec = reshape(csf_mask, prod(size(csf_mask)), 1);

% Extract positions within masks
N = length(img_fa_vec);
hgm
I = find(gm_mask_vec > 0);
vecoord_ph_vec_gm(1:length(I))=0;
vecoord_th_vec_gm(1:length(I))=0;
img_fa_vec_gm(1:length(I))=0;
for i=1:length(I)
vecoord_ph_vec_gm(i) = vecoord_ph_vec(I(i));
vecoord_th_vec_gm(i) = vecoord_th_vec(I(i));
img_fa_vec_gm(i) = img_fa_vec(I(i));
end
Jwm
J = find(wm_mask_vec > 0);
vecoord_ph_vec_wm(1:1length(J))=0;
vecoord_th_vec_wm(1:length(J))=0;
img_fa_vec_wm(1:length(J))=0;
for i=1:length(J)

vecoord_ph_vec_wm(i) = vecoord_ph_vec(J(i));
vecoord_th_vec_wm(i) = vecoord_th_vec(J(i));
img_fa_vec_wm(i) = img_fa_vec(J(i));

end

%hest

K = find(csf_mask_vec > 0);
vecoord_ph_vec_csf(1:1length(K))=0;
vecoord_th_vec_csf(1:1length(K))=0;
img_fa_vec_csf(1:1length(K))=0;
for i=1:length(K)
vecoord_ph_vec_csf (i) vecoord_ph_vec(K(i));
vecoord_th_vec_csf(i) = vecoord_th_vec(K(i));
img_fa_vec_csf(i) = img_fa_vec(K(i));

end

% Calculates std, mean og cv for the fa-values within the masks
std_fa_gm = std(img_fa_vec_gm);
mean_fa_gm = mean(img_fa_vec_gm);
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cv_fa_gm = std_fa_gm/mean_fa_gm;
std_fa_wm = std(img_fa_vec_wm);
mean_fa_wm = mean(img_fa_vec_wm);
cv_fa_wm = std_fa_wm/mean_fa_wm;
std_fa_csf = std(img_fa_vec_csf);
mean_fa_csf = mean(img_fa_vec_csf);
cv_fa_csf = std_fa_csf/mean_fa_csf;

% max and min for phi and theta

min_ph = min(vecoord_ph_vec_wm); max_ph = max(vecoord_ph_vec_wm);
min_th = min(vecoord_th_vec_wm); max_th = max(vecoord_th_vec_wm);

% rounded to integers
n_ph = round( (max_ph - min_ph)/DELTA_DEG);
n_th = round( (max_th - min_th)/DELTA_DEG );

% linspace(min_ph, max_ph, n_ph) generates a row vector of n_ph linearly

% equally spaced points between min_ph and max_ph.
ph = linspace(min_ph, max_ph, n_ph);
th = linspace(min_th, max_th, n_th);

% N = HISTC(X,EDGES), for vector X, counts the number of values in X
% that fall between the elements in the EDGES vector (which must contain
% monotonically non-decreasing values). N is a LENGTH(EDGES) vector

% containing these counts.

% [N,BIN] = HISTC(X,EDGES,...) also returns an index matrix BIN.
% vector, N(K) = SUM(BIN==K). BIN is zero for out of range values.

[nof_ph, bin_ph] = histc(vecoord_ph_vec_wm, ph);
[nof_th, bin_th] = histc(vecoord_th_vec_wm, th);

phdim = max(bin_ph);
thdim = max(bin_th);

fa_card(1:phdim,1:thdim)=0;
fa_mean(1:phdim,1:thdim)=0;
fa_std(1:phdim,1:thdim)=0;
fa_cv(1:phdim,1:thdim)=0;
for i_ph=1:phdim
for i_th=1:thdim
Kph = find(bin_ph == i_ph);
Kth = find(bin_th == i_th);
K = intersect(Kph, Kth);
cardK = length(K);
if cardK > 0
tmp_fa(l:cardK)=0;
for k=1:cardK
tmp_fa(k) = img_fa_vec_wm(K(k));
fa_bin{i_ph,i_th}.val{k} = tmp_fa(k);
end
fa_bin{i_ph,i_th}.idx = K;
fa_card(i_ph,i_th) = cardK;
fa_mean(i_ph,i_th) = mean(tmp_fa);
fa_std(i_ph,i_th) = std(tmp_fa);
fa_cv(i_ph,i_th) = std(tmp_fa)/mean(tmp_fa);
end
end
end

% Plotting

mx=1600; Y%mx=max(max(fa_card));
mn=0; %mn=min(min(fa_card));
fgi=figure(1);

If X is a
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set(fgl, ’Position’, [71 91 814 578]);

imagesc(fa_card, [mn mx]), colormap(gray), axis image, colorbar(’v’);

title(sprintf(’card(FA) as a function of
min_ph, max_ph, phdim, min_th, max_th, thdim));

mx=0.60; %mx=max(max(fa_mean));

mn=0; %mn=min(min(fa_mean));
fg2=figure(2);

set(fg2, ’Position’, [71 91 814 578]);

imagesc(fa_mean, [mn mx]), colormap(gray), axis image, colorbar(’v’);

title(sprintf(’mean(FA) as a function of
min_ph, max_ph, phdim, min_th, max_th, thdim));

mx=0.22; Y%mx=max(max(fa_std));

mn=0; %mn=min(min(fa_std));
fg3=figure(3);

set(£g3, ’Position’, [71 91 814 578]);

imagesc(fa_std, [mn mx]), colormap(gray), axis image, colorbar(’v’);

title(sprintf(’std(FA) as a function of
min_ph, max_ph, phdim, min_th, max_th, thdim));

mnx=-200;mxx=200;mny=-100;mxy=100;mnz=0;mxz=0.25;

fga4=figure(4);

set(fg4, ’Position’, [71 91 814 578]);

surfc(th,ph,fa_std), colormap(gray);

axis([mnx mxx mny mxy mnz mxz])

zlabel(’std(FA)’, °’FontSize’, 14)

xlabel(’\phi’, ’FontSize’, 18)

ylabel(’\theta’, ’FontSize’, 18)

title(sprintf(’Subject %s: %d directions, nex=Jd’,
subj_id, nof_diff_dirs, nex), ’FontSize’, 14)

mx=0.62; %mx=max(max(fa_cv));
mn=0; %mn=min(min(fa_cv));
fgb=figure(5);
set(fgb, ’Position’, [71 91 814 578]);
imagesc(fa_cv, [mn mx]), colormap(gray), axis image, colorbar(’v’);
title(sprintf(’cv(FA) as a function of
min_ph, max_ph, phdim, min_th, max_th, thdim));

B.10 dti-demo-all-slice.m

function r = dti_demo_all_slices_20041116(study,slice_no)
% dti_demo_all_slices_20041116.m

% Ex:

% r = dti_demo_all_slices_20041116(’0H25dir2NEX’, 12);

% Arvid Lundervold, NOV-2004

close all

%BASE_DIR = ’g:/Ketil/m-files/ketils_workspaces/20040214°;
BASE_DIR = ’g:/Ketil/m-files/ketils_workspaces/20040604°;

% load /mnt/cdrom/SA6dir8NEX.mat
% load d:/0H25dir2NEX.mat
cmd = sprintf(’load %s/%s.mat’, BASE_DIR, study); eval(cmd);

% D 5-D 3 3 196 160 24

CHAPTERB
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hoV 256x256x24

% dti 4-D 7 196 160 24
%  dti_foer_nedskalering 4-D 7 266 256 24
% img_fa 196x160x24

% img_linear 196x160x24

%  linmask 196x160x24  logical array

%  mask 196x160x24 double array

%  vecoord_ph 196x160x24 double array

% vecoord_th 196x160x24 double array

%  whitemask 196x160x24  logical array

%  wm_mask 196x160x24 logical array

DISP = 1;

SLICE = slice_no;

[D_nr, D_nc, nr, nc, ns] = size(D);
[nd, nr, nc, ns] = size(dti);
nd=nd-1;

L_THR = 100; % 300; % By inspection of histograms
D_slice = reshape(dti(2:nd+1,:,:,SLICE), nd, nr, nc);
[M] = lcl_make_brain_mask(D_slice, L_THR, DISP);

D_tensor = reshape(D(:,:,:,:,SLICE), D_nr, D_nc, nr, nc);
[EIGval, EIGvec] = lcl_compute_eigensystem(D_tensor, nr, nc);

txt = sprintf(’%s - slice %d’, study, slice_no);
[FA] = 1lcl_display_fractional_anisotropy(EIGval, nr, nc, M, txt, DISP);

[RGB] = 1lcl_display_diff_rgb(EIGval, EIGvec, FA, nr, nc, M, txt, DISP);

r.SLICE = SLICE;
r.M = M;

r.EIGval = EIGval;
r.EIGvec = EIGvec;
r.FA = FA;

r.RGB = RGB;

yA

% Local functions

function [EIGval, EIGvec] = lcl_compute_eigensystem(D_tensor, nr, nc)

x=zeros(9,nr*nc) ;
% for k=1:nd-1

% G_tilde_k = 1lcl_dual_tensor_basis_element(k, nd-1, diff_enc_dirs_6);
% x = x + ( ones(9,1)*reshape(beta_k(k,:),1,nr*nc) ) .x (
% reshape(G_tilde_k, 9, 1)*ones(1l,nr*nc) );
% end
k=0;
for i=1:3
for j=1:3
k=k+1;
x(k,:) = reshape(D_tensor(i,j,:,:), 1, nr*nc);

end
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end

D = x;

EIGval = zeros(3,nr*nc);

EIGvec = zeros(3,3,nr*nc); % zeros(9,nr*nc);

for i=1:nr*nc;
Di = reshape(D(:,i), 3,3);

[eigenvec, eigenval] = eig(Di); % eigs(Di) is much slower
[val, I] = sort(-diag(eigenval));
for j=1:3;
vec(1:3,j) = eigenvec(1:3,I(j));
end

EIGval(:,i) = -val;
EIGvec(:,:,i) = reshape(vec,3,3,1);
end

return

function [FA] = lcl_display_fractional_anisotropy(EIGval, nr, nc, M, txt, DISP)

fno = 120;

WIENER = O;
c = 1/sqrt(2);

FA_vec=zeros(1,nr*nc);
epsi = 1e-100;
for i=1:nr*nc;
11 = EIGval(1,i);
12 = EIGval(2,1i);
13 = EIGval(3,i);
numer = sqrt((11-12)*(11-12) + (12-13)*(12-13) + (11-13)*(11-13));
denumer = max(sqrt(l1x11+12%12+13%13), epsi);
%denumer = sqrt(11*11+12%12+13%13);
FA_vec(i) = c*numer/denumer; % min(c*numer/denumer, 1.0);
%if FA_vec(i) > 1.0001
% FA_vec(i) = Nalj;
%end
end

FA = reshape(FA_vec,nr,nc);

FA_M = FA .x M;

if DISP ==
mn = min(min(FA_M)); mx = max(max(FA_M));
figure(fno)
set(gcf, ’Position’, [485 265 840 687]);
if WIENER ==

[FA_wiener,NOISE] = wiener2(FA_M,[3 3]);
imagesc(FA_wiener, [mn mx]), axis image, axis off, colormap(gray);
else
imagesc(FA_M, [mn mx]), axis image, axis off, colormap(gray);
end
txt2 = sprintf(’%s min=%.2f, max=%.2f’, txt, mn, mx);
%title(txt2, ’FontSize’, 14)
pause(0.05)
end % DISP
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return

function [RGB] = lcl_display_diff_rgb(EIGval, EIGvec, FA, nr, nc, M, txt, DISP)
fno = 130;

WIENER = 0;
FA_vec = reshape(FA, 1, nr*nc);
RGB=zeros(nr,nc,3);
lambdal = zeros(1l,nr*nc);
vix = zeros(l,nr*nc);
vly = zeros(l,nr*nc);
viz = zeros(l,nr*nc);
for i=1:nr*nc;
lambdal(i) = EIGval(1,i);
x = EIGvec(1,1,i); % x-component of eigenvector corresponding to largest eigenvalue
y = EIGvec(2,1,i); % y-comp.
z EIGvec(3,1,i); % z-comp.
[x, y, 2z]17;
vn = v / sqrt(v’*v);
vix(i) = abs(FA_vec(i)*vn(1));
viy(i) = abs(FA_vec(i)*vn(2));
viz(i) = abs(FA_vec(i)*vn(3));

v

end

Vix = reshape(vix,nr,nc);
Viy = reshape(vly,nr,nc);
Viz = reshape(viz,nr,nc);

if WIENER ==
[R, noise_r] = wiener2(Vi1x,3,3); % ./ max(max(Vix));
[G, noise_g] = wiener2(V1ly,3,3); % ./ max(max(Viy));
[B, noise_b] = wiener2(Viz,3,3); % ./ max(max(Viz));
else
R

Vix; % ./ max(max(Vix));
= Viy; % ./ max(max(Viy));
B = Viz; % ./ max(max(Viz));

(]
|

end
R.M =R .x M
G.M =G .x M;
B_M =B .*x M;
RGB(:,:,1) = R ./ max(max(R));
RGB(:,:,2) = G ./ max(max(G));
RGB(:,:,3) = B ./ max(max(B));
RGB_M(:,:,1) = R_M ./ max(max(R));
RGB_M(:,:,2) = G_M ./ max(max(G));
RGB_M(:,:,3) = B_M ./ max(max(B));
if DISP == 1

figure(fno)

imshow(RGB_M) ;
set(gcf, ’Position’, [485 265 840 687]);
txt2 = sprintf(’%s R = FA*|vl_x|, G = FAx|vi_y|, B = FA*|vl_z|’, txt);
%title(txt2, °’FontSize’, 14)
pause (0.05)
end %DISP
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return

function [M] = lcl_make_brain_mask(D_slice, thr, DISP)

HSIZE = 5;
SIGMA = 3.0;
L_THRES = thr;
[nd, nr, nc] = size(D_slice);
im =zeros(nr,nc);
for d=1:nd
im = im + reshape(D_slice(d,:,:), nr, nc);
end

im = im/nd;

H = fspecial(’gaussian’, HSIZE, SIGMA);
iml = imfilter(im, H);

% 2-D order statistics filtering

%im2 = ordfilt2(iml, 1, ones(3,3));

im2 = imi;

mn = min(min(im2)); mx = max(max(im2));
M = roicolor(im2, L_THRES, mx);

% Outlined original image
im3 = bwperim(M);

im4 = im;
im4 (im3) = max(max(im2)); % 255;

if DISP ==
fno = 101;
figure(£fno)

set(gcf, ’Position’, [485 265 840 687]);
subplot(1,2,1)
imagesc(M, [0 1]), axis image, axis off, colormap(gray);
txt = sprintf(’ROI (for calculation of DTI)’);
%title(txt, ’FontSize’, 12)
subplot(1,2,2)
imagesc(im4, [mn mx]), axis image, axis off, colormap(gray);
txt = sprintf(’Outer contour of the brain: min=%.2f, max=Y%.2f’, mn, mx);
%title(txt, ’FontSize’, 12)
end J DISP

return

B.11 fsl-dtianal-34slices.sh

#!/bin/sh

# fsl_dtianal_34slices.sh

FSLDIR=/usr/local/fsl

. ${FSLDIR}/etc/fslconf/fsl.sh
PATH=${FSLDIR}/bin:${PATH}
export FSLDIR PATH
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CUR_DIR="pwd*

DATA_DIR=/home/mrdata/al_tracking_12052005/Analyze/
echo DATA_DIR=$DATA_DIR

cd $DATA_DIR

# Merges the DTI-data from several 3D Analyze images too a 4D dataset
avwmerge -t data_noecc.nii rb00.hdr b01.hdr b02.hdr b03.hdr b04.hdr b05.hdr
b06.hdr b07.hdr b08.hdr b09.hdr b10.hdr bll.hdr bl2.hdr bi13.hdr bl4.hdr
b15.hdr b16.hdr b17.hdr bi18.hdr b19.hdr b20.hdr b21.hdr b22.hdr b23.hdr
b24.hdr b25.hdr

# Eddy current correction on the dataset
eddy_correct data_noecc.nii data.nii 0

# Makes a non-DTI image by merging of the b0 data
avwmerge -t nodif_noecc.nii rb00.hdr

# Eddy current correction on the dataset
eddy_correct nodif_noecc.nii nodif.nii 0

# Brain extraction tool, deletes non-brain tissue from an image of the
# whole brain
bet2 nodif nodif_brain -m -v

# DTIFit fits a diffusion tensor model at each voxel and does eigen-
# decompsition and calcultaes among other tings FA

dtifit --data=data --out=dti --mask=nodif_brain_mask --bvecs=bvecs
--bvals=bvals --verbose

# Bayesian Estimation of Diffusion Parameters Obtained using Sampling
# Techniques. Bedpost runs Markov Chain Monte Carlo sampling to build
# up distributions on diffusion parameters at each voxel. It creates
# all the files necessary for running probabilistic tractography
bedpost

cd $CUR_DIR
echo CUR_DIR=$CUR_DIR

To learn more about the brain extraction tool used here €e [5






The Diffusion Equations

C.1 Basic Hypothesis and Mathematical Theory

Fick [57] recognized the obvious analogy between heat cotimiuand isotropic diffusion. Trans-
fer of heat is caused by random molecular motions as well. #taiffusion on a quantitative
basis by adopting the mathematical equation of heat comauderived earlier by Fourier [58].
The mathematical theory of diffusion in isotropic subsemis therefore based on the hypothesis
that the rate of transfer of diffusing substance throughitawea of a section is proportional to the
concentration gradient measured normal to the sectian, i.e

F = —DJC/dx (C.1)

whereF is the rate of transfer per unit area of secti®ithe concentration of diffusing substange,
the space coordinate measured normal to the sectio) &chlled the diffusion coefficient. With
diffusion taking place in dilute solutionB, can admissibly be taken as constant, and with diffusion
taking place in high polymers, it depends markedly on cotraéion. If F, the amount of diffusing
substance, an@ the concentration are expressed in terms of the same unitaoftiy, then it is
clear from equation (C.1) thd is independent of this unit and has dimensitesgtttime L.
The negative sign in equation (C.1) arises because difiusgzurs in the direction opposite to
that of increasing concentration.

It is important to accentuate that equation (C.1) only yadior an isotropic medium i.e. a
medium whose structure and diffusion properties in them@ghood of any point are the same
relative to all directions. Because of this symmetry, the/ftd diffusing substance at any point is
along the normal to the surface of constant concentratia@uth the point. As shown in C.3 this
is seldom true in an anisotropic medium for which the diffunsproperties depend on the direction
in which they are measured.
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C.2 Differential Equation of Diffusion

The fundamental differential equation of diffusion in aoti®pic medium is derived from equation
(C.1) as described below:

,"’C C’
2dz 2~
Dz 2
- ; -P >
davidz((F, -2 g ) | B  ddydz((F, +2 i)
2d 8
i -
M Ddx =" ~A

Figure C.1: Element of volume

Imagine an element of volume in the form of a rectangular lfEepiped whose sides are
parallel to the axes of coordinates and are of lengthsZlyand 21z Let the center of the element
be atP(x,y,z), where the concentration of diffusing substandg.itet ABCDandA'B'C'D’ be the
faces perpendicular to the axisx#fs in Figure C.1. Then the rate at which diffusing substance
enters the element through the fa&BCDin the planex— dxis given by

40Iydz(FX — %dx) (C.2)

whereFy is the rate of transfer through unit area of the correspangiane througt. Similarly
the rate of loss of diffusing substance through the #&C'D’ is given by

OFx
4dydz(Fx+ de) (C.3)

The contribution to the rate of increase of diffusing substain the element from these two faces
is thus equal to

JF

—8dxdydzﬁ (C.49)
Similarly from the other faces we obtain
oFy JoF;
—8dxdyde and — 8dxdydzo~’—Z (C.5)

But the rate at which the amount of diffusing substance iretement increases is also given by

—8dxdydzf9—? (C.6)

and hence we have immediately

J0C 0K 0Fy 0F, B
W+W+d—y+ﬁ_o (C.?)
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If the diffusion coefficient is constarf, Fy, F; are given by equation (C.1), and (C.7) becomes

oc 9°C 9°C 9°C
reducing simply to
oC _d%C

if diffusion is one—dimensional, i.e. if there is a gradieftoncentration only along theaxis.
Expression (C.1) and (C.9) are usually referred to as Ffaksand second laws of diffusion, since
they were first formulated by Fick [57] by direct analogy wiltle equations of heat conduction.

In many systems, e.g. the inter diffusion of metals or thudibn of organic vapors in high
polymer substancef) depends on the concentration of diffusing substa@cén this case, and
also when the medium is not homogeneous so Ehaaries from point to point, equation (C.7)
becomes

oc 0 oc 0 oc 0 oc
3= ox (DW) + ay <D0_y> + % (DE> (C.10)
whereD may be a function oxX,y,z, andC.

If D depends on time during which diffusion has been taking pat@&ot on any of the other
variables, i.e.

D= f(t), (C.11)
then on introducing a new time-scdlesuch that

dT = f(t)dt (C.12)
the diffusion equation becomes

oc_oic oc oc

aT o "oy T oz (C.13)

which is the same as equation (C.8) for a constant diffusiafficient equal to unity.

C.2.1 Diffusion in a Cylinder and a Sphere

Other forms of the above equations follow by transformatbroordinates, or by considering
elements of volume of different shape. Thus by putting

X =1rcos0,

C.14
y=rsiné, ( )

or by considering an element of volume of a cylinder of sidesd 8, dz we obtain the equation
for diffusion in a cylinder,

oc 1o oC Jd (DoC 0 oC
e 1 {a (rDE>+%<?%>+d—Z(rDE>] (C.15)
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in terms of the cylindrical coordinatesd,z The corresponding equation for a sphere in terms of
spherical polar coordinatesd, ¢ is obtained by writing

X =rsinfcosp
y=rsin@sing (C.16)
z=rcosf

or by considering an element of volume of a sphere of sittgsl 6, r sin6dg. It is

at {dr (D 0r>+sm9ﬁ<DS' né g ) S0 a(pz] (C.17)

The equations (C.15) (C.17) can be expressed in terms ofimemnclature of vector analysis as

‘;—ct: = div(D grad C) (C.18)

C.3 Anisotropic Media

Anisotropic media have different diffusion properties iffetent directions. Some common ex-
amples are crystals, textile fibers, and polymer films in Whiee molecules have a preferential
direction of orientation. For such a media it is not alwayefras was stated in C.1 for isotropic
media, that the direction of flow of diffusing substance atpoint is normal to the surface of con-
stant concentration through the point. This means thattequgC.1) must be replaced in general
by the assumptions

ocC ocC oC

—F=D1u1— ax Di2—- dy + DlSE
ocC ocC oc

—Fy =Do1— Ix + Dop— dy + D23E (C.19)
ocC ocC oC

—F,=Da1—_ ax D32—- dy + Dssﬁ

so thatF, for example, depends not only @C/dx but also ondC/dy anddC/dz. TheD’s
have the significance th&t;30C/0dz, for example, is the contribution to the rate of transfeihia t
x—direction due to the component of concentration gradiéme z-direction. Substituting from
equation (C.19) for th&’s in equation (C.7) we obtain

ac 02C 02C 02C 02C
5t ~Puge t D220—y2 +Dss5—5 + (D23t Daz) 5o ayoz
9%C 2
+ (Da1+ D13)H + (D12+D21) 5—- axdy (C.20)

if the D’s are taken as constant. The extension to non-confianis obvious from equation
(C.10). A transformation to rectangular coordinafeg, { can be found which reduces equation
(C.20) to

ac 9°C 9°C 9%C

E:Dldfz—'—Dz on? +D30—ZZ (C.21)
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This is the same transformation as that by which the ellghsoi

D11X% + Dagy? + D337 + (D23 + Da2)yzt-
(D314 D13)zx+ (D124 D21)xy = constant  (C.22)

is reduced to
D1&2+4 D,n? + D3Z? = constant (C.23)

The new axes may be called the principal axes of diffusionn@,, D3 the principal diffusion
coefficients. If we make the further transformation

&1 =¢&+/(D/Dy), n1=n+/(D/D2), {1={+/(D/Dg), (C.24)

whereD may be chosen arbitrarily, equation (C.21) becomes

2 2 2
oC <0C 0-C 0C>' (C.25)

ot \eez Tanz T a2

This has the same form as equation (C.8) for isotropic meatid, hence certain problems in
anisotropic media can be reduced to corresponding probilemsisotropic media. Whether or
not this can be done in a given case depends on the boundaditions. Thus it is possible

when the medium is infinite, or when it is bounded by planep@adicular to the principal axes
of diffusion so that the boundary conditions are of the feanilorm C = constant§ =0, & =1,

t > 0, for example, and similarly fon and . The problem of diffusion into an anisotropic
cylinder which has its axis alon§ and is bounded by planes perpendiculaé teeduces to the

corresponding problem in an isotropic cylinder provided= Ds.

Certain properties deduced by Carslaw and Jaeger [59] pagelRate the physical signif-
icance of the ellipsoid and also of the principal axes ofudifbn. Thus it can be shown that the
square of the radius vector of the ellipsoid in any direcisinversely proportional to the diffusion
coefficient normal to the surfaces of constant concentraiqoints where their normals are in
that direction. Hence the diffusion coefficieb\;, at right angles to surfaces whose normals have
direction cosine$, m, n relative to the principal axes of diffusion is given by

Dn = 12Dy + D, 4 n?D3 (C.26)

Carslaw and Jaeger further show that if there is symmetrytethe planeg = 0 andn = 0, then
the general relationships (C.19) for thé& reduce to

—Fs =D10C/3&, —F,=D,0C/dn, —F,=D1dC/d (C.27)

This simplification also occurs for other types of crystgtlphic symmetry. It means that the
flow through a surface perpendicular to a principal axis &fidion is proportional simply to the
concentration gradient normal to the surface as is the caissdtropic media.

C.3.1 Significance of Measurements in Anisotropic Media

Since in the majority of experiments designed to measurdfasain coefficient the flow is ar-
ranged to be one-dimensional one—dimensional one—dimealsiit is worth while to see how
such measurements are affected by anisotropy. If the @iffus one-dimensional in the sense that
a concentration gradient exists only along the directiox dfis clear from equation (C.20), since
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bothC anddC/dx are everywhere independentyfndz, that the diffusion is governed by the
simple equation

JCc 9°C

andD11 is the diffusion coefficient measured. If the direction dfubion is chosen to be that of a
principal axis, therD;1 is equal to one or the other of the principal diffusion coéffitsD4, D,

or D3. Otherwise the coefficiel®;; = Dy, related tdD;, D, D3, by equation (C.26) is measured.
This would be measured, for example, by an observation afateeof flow through a plane sheet
of a crystal cut so that its normal has direction cosides,() relative to the principal axes of
diffusion of the crystal. Similar remarks apply to a highymokr sheet in which there is both uni-
planar and uni-directional orientation, i.e. the moleswdee arranged with their long axes lying
mainly parallel to the plane of the sheet and all parallelte direction in that plane. The principal
axes of diffusion of such a sheet will be normal to the plare=shand along and perpendicular to
the preferred direction of orientation in that plane. Eviem ¢oncentration gradient exists in one
direction only, it is clear from equations (C.19) and (C.&®t the diffusion flow is not along this
direction unless it coincides with a principal axis of d#fon.



Diffusion gradients and the b-value

In DTI there is a need for diffusion gradients to encode diffn. Several pulse sequences has
incorporated such gradients. Former the Stejskal-Tanaksepscheme [22], implemented in a
spin echo pulse sequence as depicted in Figure D.1, hasteemist common type of diffusion
gradient design. Today the readout gradient is often regléy an EPI (Echo Planar Imaging)
readout train.

In the Stejskal-Tanner pulse scheme the first diffusionigrads applied between the exci-
tation pulse and the 180efocusing pulse. The second diffusion gradient is apfietiveen the
180 refocusing pulse and the echo.

In this way the diffusion gradients introduce phase shifthe spins as a function of position.
They can be applied in they or z direction or a linear combination of these. If the gradiearts
applied for example in thedirection, the phase shift due to the first gradient is

1))
¢1:y/G-zdt:y-G-6-zl (D.1)
0

wherez; is the position of spin or molecule which is assumed to bedstiing the timed when the
diffusion gradientis applied. The assumption is only vakkdong a® < A, which means that the
diffusion process must be negligible during the applicatdthe diffusion sensitizing gradients.
Because the gradient amplitude in human MR scanners iglintit 20— 50mT/ma fairly larged

is needed to obtain the desired diffusion weighting, so bieve-mentioned assumption is seldom
met. On the other hand, this assumption serves to providsianaderstanding of how thevalue

is derived.
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Figure D.1: Stejskal-Tanner diffusion gradients in a spin echo seqeefite duration

(0), amplitude ) and time shift between the gradienty &ffects the amount of diffusion
weighting — e.g. the “b” value. It is important to note thae tffusion gradient can be
applied on any of the three imaging axes or on a combinatidhesh. Courtesy of Skare
[24].

Time [S]

After the first diffusion gradient has been switched off, #88° refocusing pulse is applied.
The refocusing pulse changes the sign of the phases( —¢1). The second diffusion gradient
will then produce a phase shift of

A+O
¢2:y/G-zdt=y-G-6-22 (D.2)
A

wherez is the position of the spin during the application of the setdiffusion gradient. If the
spin is “static”, i.e. a spin that does not move between thatatkon pulse and the echo pulse,
21 = 2 and the net phase of the two diffusion gradients is

d=01+¢2=y-G-0(-zn+2)=0 (D.3)

For spins that diffuse a certain amount during the time watebetween the application of the
diffusion gradients, the phase will be non-zero. Becauedion is a random process it is neces-
sary to inspect the entire population of spins in each voRepending on the displacement path
along the diffusion gradient, each individual spin will gatertain net phase,. The resulting net
magnetizatioM for a voxel is the vector sum of the magnetic momentf each of theN spins
within that voxel

Nei¢
@i
2

This is illustrated in Figure D.2. In a hypothetical sitwatiwith no diffusion at alkp; = k which

M= u (D.4)
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Figure D.2: If the water molecules have diffused during the applicatibithe diffusion
sensitizing gradients the spins are dephasing randomheitransverse plane. The vec-
tor sum of all magnetic moments now results in a lower net reaigation (M). This is
in contrast to the situation with no diffusion where the netgmetization is unaffected.
Courtesy of Skare [24].

is a constant and the net magnetization would be maximal

s -k
g
le

Let P(z|z1,A)dz be the conditional probability of finding a spin, originafiatz; att = 0, be-
tweenz, andz + dz att = A. Then, by combining Eqg. (D.3), (D.4) and (D.5) we get

M=p =u-N (D.5)

M = Mo / & V80(2-2)p(2,| 2, A)d 2 (D.6)
whereP(z,|z1,A) for this 1D case is given by
P(r,t) = 1 . (2-z1)?/4DA (D.7)

VAnDA
Combining Eq. (D.6) and (D.7) gives the following

M _
Mo

Equation (D.8) shows the degree of signal attenuation dukffigssion as a function of gradient

amplitude, duration and time interval between the two difin gradients. The expression for the

VOGPAD _ g bD (D.8)

b value is herd = (yé-G)ZA, which again is only valid i® < A. In the same way as TE and
TR are parameters that controls the amounbeiveighting andT;-weighting respectively, does
theb-value control the diffusion weighting in an image.

A general expression for thevalue is

TE/ 2
M :e_ yZ_é (ég(t)dt) dt}D
0

—=e PP (D.9)
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whereT E is the echo time. This expression does not assumetiat and the diffusion gradients
may be more than two and can be combined without invaliddatiagexpression. For the Stejskal-
Tanner diffusion gradient scheme Fig. D.1, the diffusioadient functiorg(t) is

G ,0<t<?d
gt)= 0 ,0<t<A (D.10)
-G A<t<A+9d

Putting (D.10) into (D.9) will give us

A+_6 t 2 , 5
b:yzo/ (!g(t)dt) dt—...—(y-G-9) -<A_§) (D.11)

And so we have arrived at the familiar expression fortilvalue. If we now letd < A, Eq. (D.11)
becomes identical to tHefactor derived in Eq. (D.8).

The optimal value for b: Due to noise the choice dfvalue becomes important. If the
value is chosen to low, it will result in a diffusion inducedrsal attenuation that is comparable
to the variance of the diffusion weighted data. The implarais that the calculated diffusion
coefficient will be estimated with too low precision. In theverse example, if thb value is
chosen to high, the signal attenuation and the signal may loetow the system noise level.This
results in an underestimation for high values for the calga diffusion because the system noise
is higher than the true diffusion weighted signal.

We have chosen to useequally to 1008/mn?, because that is most often reported in litera-
ture, see for example [27], [60], [34], [25] and [24].
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