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ABSTRACT 

 

Northeast Atlantic Mackerel (Scomber scombrus) is one of the largest and 

economically most valuable fish stocks in the world.  However, due to a large 

area of distribution, low acoustic backscatter and highly dynamic and migratory 

behaviour between several Exclusive Economic Zones (EEZs), reliable 

abundance estimation and fish stock assessment are difficult and include a large 

level of uncertainty. In order to reduce uncertainties in the mackerel stock 

abundance estimates, a new pelagic trawl methodology and standardized swept-

area surveys for mackerel abundance estimation was established in 2011. The 

new method included development of a new surface trawling method and a new 

trawl, the multipurpose pelagic ecosystem trawl (Multpelt 832). However, 

various uncertainty is still linked to the new trawl methodology. This thesis uses 

Deep Vision images, GoPro videos and total catch data from a methodological 

cruise conducted in June 2015 as well as catch data from the 2015 International 

Ecosystem Summer Survey in the Nordic Seas (IESSNS) in order to investigate 

the demanding curved trawl method used in the IESSNS survey today. The 

analyses conducted show that the curved trawling method did not have 

significantly different catch rates or length distribution compared to less 

demanding straight forward trawling. Consequently, a change of the trawling 

method used in the IESSNS survey from a curved to a straight forward trawling 

procedure is recommended in order to simplify trawling. Furthermore, analyses 

of mackerel distribution during the methodological survey indicate small shoaling 

and loosely aggregating behaviour within individual hauls. Patchiness rarely led 

to only a single or few aggregations being encountered over the course of 30-

minute-long hauls, supporting the use of a swept area survey for mackerel in this 

location and time. The swept area method in the IESSNS survey therefore seems 

to be a reliable and consistent method for abundance estimation of NEA 

mackerel.  
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1. INTRODUCTION 

1.1  ASSESSMENT OF FISH STOCKS IN NORTHEAST ATLANTIC 

WATERS  

 

Numerous widely distributed fish stocks in the Northeast Atlantic and in 

Norwegian waters, such as Northeast Atlantic (NEA) mackerel (Scomber 

scombrus) and Norwegian Spring Spawning (NSS) herring (Claupea harengus 

L.) are advised through the International Council for the Exploration of the Sea 

(ICES), and management decisions are made by the different coastal states within 

the Northeast Atlantic Fishery Commission (NEAFC). The fisheries management 

in Norway is based on stock assessment plans that estimate the long-term impacts 

of different management plans on fish abundance, state of the stock and 

exploitation level (ICES, 2015). Norway shares most of its large pelagic fish 

stocks with other countries due to their highly migratory and widely distributed 

behavior. This leads to pronounced international research collaboration on e.g. 

NSS herring and NEA mackerel. For the majority of NEA fish stocks both 

fisheries dependent (data collected during commercial fishing) and fisheries 

independent (scientific survey data) data are used for the assessment (Gunderson, 

1993). However, both methods are susceptible to possible biases and 

uncertainties. Fisheries dependent data rely heavily on the correct catch reporting 

of commercial fishermen and the allocation of their fishing effort (Gunderson, 

1993; Cook, 1997; Maunder and Punt, 2004). This is especially true for pelagic 

schooling species, due to concentration of fishing effort limited in areas with high 

densities of fish schools, size selectivity of fishing gear and increased fishing 

efficiency over time (technological creep) (Fréon et al., 1993; Maunder and Punt, 

2004; Hentati-Sundberg et al., 2014). Fishery independent data are expensive and 

time consuming to collect (Fréon et al., 1993; Gunderson, 1993) and often have 

some inconsistencies in survey practices (gear, survey dates, weather conditions, 

etc.), gear and vessel avoidance and only partly covering the fish stock’s entire 

distribution area (Mesnil et al., 2009). In order to overcome possible biases and 
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uncertainties of both methods, assessments often use a combination of fishery 

dependent and fishery independent data. 

 

In order to be able to evaluate potential challenges regarding the assessment of fish stocks, it 

is important to consider and provide insight into the species’ biology and behaviour.  A 

possible way to go, is applying underwater camera technology, which has improved a lot 

during the last few decades (Graham et al., 2004) and offers several advantages over 

traditional capture-based fishery independent sampling. There are different kinds of 

underwater camera technology available, but some of the most suitable are Cam-Trawl 

(Williams et al., 2010) and Deep Vision (DV, (Rosen et al., 2013)), which are stereo camera 

systems specially developed for optical underwater observations inside fishing trawls. These 

camera systems, along with cheaper GoPro cameras (GoPro Inc, San Mateo, USA)  are 

starting to work their way into assessment surveys, and gives the opportunity to collect high 

resolution data that can be applied to questions such as efficiency in different trawling 

methods and fine-scale fish distribution thorough the ocean.  

 

1.2 NORTHEAST ATLANTIC (NEA) MACKEREL 

 

NEA mackerel is a fast swimming, widely distributed, highly migratory pelagic fish species 

(Hamre, 1980; Trenkel et al., 2014). Mackerel play a key ecological role in oceanic and 

coastal ecosystems and now support one of the most valuable commercial fisheries in the 

North Atlantic (Jansen et al., 2014; Trenkel et al., 2014). The total catches of NEA mackerel 

reached 1.4 million tonnes in 2014 (ICES, 2015), and the 2015 export value of mackerel in 

Norway, was a staggering 450 million EUR (4.1 billion NOK) in 2014 and 410 million EUR 

(3.8 billion NOK) in 2015 (Aandahl and Johnsen, 2016). The population has rapidly increased 

in abundance and expanded its geographic distribution during the last decade (Nøttestad et al., 

2015) and has recently been recorded as far north as Svalbard during  extensive northward 

feeding migrations (Berge et al., 2015; Nøttestad et al., 2015).    

 

It is challenging to perform good and reliable fish stock assessment, especially 
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with species such as NEA mackerel, which have a very large distribution area 

and migrate between several Economic Exclusive Zones (EEZ’s). This often 

leads to political and economic disagreement between nations, and scientific 

cooperation on an international level is needed to work it out (ICES, 2014b; 

Nøttestad et al., 2016b).  Acoustic surveys for NEA mackerel are difficult due to 

low levels of acoustic backscatter (mackerel lack a of swim bladder), high density 

shoals which can lead to acoustic shadowing (except for loose aggregations 

during the feeding season) and distributions high in the water column (Nøttestad 

et al., 2016a) which can be above the surface acoustic dead zone (Korneliussen, 

2010; MacLennan and Simmonds, 2013) and are very close to the vessel where 

avoidance is likely to be strongest (Slotte et al., 2007). 

   

1.3 SURVEYS OF NORTH EAST ATLANTIC MACKEREL 

 

NEA mackerel have had a rapid geographic expansion into northern and western 

parts of the Nordic seas during the last decade (Berge et al., 2015; Nøttestad et 

al., 2016b), and only a small amount of reliable fisheries independent data are 

presently used in the stock assessment (ICES, 2014b). The fishery-independent 

data collected earlier was a spawning stock biomass index from the  triennial 

international mackerel egg survey (ICES, 2015) and a Norwegian tag recapture 

study run since 1968 (Tenningen et al., 2011). Since fishing quotas for mackerel 

are set on an annual basis, the egg survey conducted only every three years has 

been far from an optimal solution for such a valuable fish stock. Furthermore, egg 

surveys do not provide data on the age distribution in the stock (Gunderson, 

1993) or uncertainty estimates (Nøttestad et al., 2016b). Data on tag and 

recapture from 1980 to 2006 is included in the assessment for NEA mackerel in 

ICES (ICES, 2014a). However, the tag and recapture data is partly fishery 

dependent, since the recapture is done by commercial fishermen, and as with 

most tag and recapture programs, the majority of tagged fish are never recovered. 

A new radio-frequency identification tagging method (RFID) was introduced in 

2011 and will be evaluated at the next intermediate benchmark in 2017 (ICES, 
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2015).  

 

In order to reduce uncertainty about the size of the stock ICES encouraged and 

requested establishment of a new pelagic trawl methodology for mackerel 

abundance estimation and assessment purposes in 2010 (ICES, 2013; ICES, 

2014b; ICES, 2015). A new surface trawling method and a trawl called 

multipurpose pelagic ecosystem trawl (Multpelt 832), were developed. The new 

survey was called the International Ecosystem Summer Survey in the Nordic 

Seas (IESSNS) and uses the swept area principle with a pelagic trawl which is 

similar to the demersal swept area trawl sampling used on different demersal 

stocks (Nøttestad et al., 2012; ICES, 2013; Nøttestad et al., 2016b).  The swept 

area principle is based on apportioning the total catch amount over a known area 

trawled with constant trawl opening and trawl efficiency, and can be expressed 

by the following equation (Kotwicki et al., 2011). 

𝐶𝑎𝑡𝑐ℎ (𝐾𝑔)

𝐴𝑟𝑒𝑎 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 (𝐾𝑚2)
∗  𝑋𝑇𝑟𝑎𝑤𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = swept area index (kg/km2).  

 

Adult mackerel is the main target species and the survey is limited to a five week 

period from July to August each year, when mackerel is believed to be distributed 

in the upper parts of the water column, feeding on zooplankton and other prey 

organisms near the surface (Langøy et al., 2012; Bachiller et al., 2016; Nøttestad 

et al., 2016a). The survey has been conducted since 2012 by Norway, Iceland and 

the Faroe islands, using four vessels to simultaneously cover the entire North 

Atlantic between 60°N and 73°N from Greenland to Norway. The  survey is 

coordinated in space and time and all vessels use the same trawl construction and 

rigging and standardized trawling speed, time, etc. (Nøttestad et al., 2011; 

Nøttestad et al., 2012; Nøttestad et al., 2013; Nøttestad et al., 2015; Nøttestad et 

al., 2016b). Acoustic data are also collected from multifrequency echosounder 

and multibeam sonars during the survey (see Nøttestad et al. 2015), but are not 

included directly for stock assessment purposes for mackerel. 

The IESSNS survey provides data on distribution, abundance, migration, ecology 
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and aggregation of NEA mackerel (Nøttestad et al., 2016a; Nøttestad et al., 

2016b). The results go through an ICES benchmark process before it is accepted 

and are put into a model with other kinds of survey data including the Norwegian 

tag recapture studies, egg and larval survey and an international bottom trawl 

survey (IBTS) which gives an recruitment index (ICES, 2014b). The final 

assessment is done through a state‐space assessment model (SAM), which also 

uses fishery dependent data including catch at age and abundance index (ICES, 

2014b; ICES, 2015). 

 

There is, however, some uncertainty surrounding the IESSNS survey’s 

methodology and especially around the effect of a curved trawling method. One 

possibility is that herding to the sides by the vessel will lead to increased catch, 

which could overestimate the mackerel density in the sea (Nøttestad et al., 2015). 

There is also the concern that different vessels have different catchability, which 

may create bias in the data due to the four vessels used in the IESSNS survey in 

order to cover such a large area over a relatively short period of time. Discussions 

whether mackerel is distributed evenly enough throughout the ocean during the 

feeding season in summer to be used as a swept area index on abundance, are 

also a heated topic. A highly aggregated and patchy distribution may lead to a 

need for many more trawl stations or result in bias in the final assessment 

(Nøttestad et al., 2016b).  

 

1.4 OBJECTIVES  

 

The International Ecosystem Summer Survey in the Nordic Seas (IESSNS) has a 

need for several investigations and possible improvements surrounding different 

parts of the swept area methodology for abundance estimation of NEA mackerel. 

Access to new underwater technology, IESSNS catch data and a week-long 

methodology cruise conducted ahead of the 2015 survey makes it possible to do a 

lot of investigations with the aim of improving the methodology and reduce the 
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uncertainties. The major aim of this thesis is to study aspects of the pelagic 

trawling technique (curved trawling versus straight forward trawling) used during 

the IESSNS survey and it is divided into two parts: 

 

The primary objective is to determine whether the current IESSNS protocol with 

curved trawling, specifying a constant starboard turn in order to keep the trawl 

outside of the wake zone (propel water), is necessary. Trawling in a constant turn 

is believed to reduce vessel avoidance and result in less bias in the catch data. 

However, it is an awkward way of pelagic trawling and it is challenging to 

maintain the trawl’s symmetry when trawling in strong currents or poor weather.  

 

The secondary objective is to study how mackerel is distributed in the ocean as 

reflected in how even passage rates through the trawl are throughout the duration 

of the pelagic trawling. A swept area trawl survey based upon sampling at pre-

assigned stations is most suitable when the target fish are evenly distributed in the 

trawl’s path (see Nøttestad et al. 2015). More heterogeneous and patchy 

distribution leads to a higher need of more trawl samples and generally results in 

higher bias in the sampled trawl data (Gunderson, 1993).  
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2 MATERIALS AND METHODS 

2.1 GEAR RIGGING AND OPERATION  

2.1.1 TRAWL RIGGING 

 

The pelagic trawl used in the surveys was the Multpelt 832 trawl shown in figure 

2.1, which was constructed. The trawl was developed as a standardized sampling 

trawl for the IESSNS survey by the cooperating national institutes form Norway, 

Faroe Islands and Iceland (ICES, 2013; Nøttestad et al., 2016b). The Multpelt 

832 is made of polyamide with an opening circumference of 832 m and mesh 

sizes from 16 m in the front and wings, to 40mm at the codend. The trawl is 

operated at 5 knots (speed over ground, measured by GPS) with 80 m sweeps 

(Dyneema) and 350 m warps (Dyneema) (figure 2.2) (ICES, 2013; ICES, 2014b). 

A 4.6 m
2
 kite at the center of the headline provides lift and buoys attached to the 

intersection between the sweeps and the wing tips provide lift to the wings.  This 

ensures that the entire headline is kept at the surface so fish do not escape over 

the trawl. 

 



13 

 

Figure 2.1. Illustration of the Multpelt 832 with fishing line, headline, top, bottom and side 

panels and side lines. 

 

A chain of 400 kg was attached to the lower wing tips.  SeaFlex trawl doors 

(Egersund trål AS, Egersund, Norway) with an area of 7,5m
2
 were adjusted to get 

a door spread at 110-120 m and a depth of 20 m, resulting in a foot rope depth of 

30-35m and wing spread of approximately 65m. A fish lock was attached in front 

of the codend to prevent fish from swimming back forward inside the trawl 

during heaving. The fish lock is constructed with a panel of netting where the 

leading edge is attached to the codend roof and the other end is loose. During 

trawling, the water flow causes the panel to lay against the codend roof. As the 

speed is reduced during hauling, the loose end of the panel falls down to the 

bottom of the codend, preventing fish from swimming forward. This is important 

because fish allowed to swim forward in the trawl can especially under heaving 

potentially escape through large meshes or through the opening of the trawl.  
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Figure 2.2. Schematic illustration of the multpelt 832 with gear and vessel, seen from the 

side. The multpelt 832 is rigged with 350 m warp, 80m sweeps, buoys, a kite and 400 chain 

weights on each lower wing.  

 

2.1.2 TRAWL OPERATION 

 

Two types of trawling techniques with the same trawl rigging were applied: 

straight forward trawling (classic trawling) and curved trawling. Trawling time 

varied from 14 – 45 minutes, but was standardized to number or weight of fish 

per 30 minutes to allow comparisons between the hauls. Towing speed was 5 

knots for all investigations. 

 

During straight forward trawling, the trawl ends up in the middle of the vessel 

wake and is then trawling the same area as the vessel has passed over. When 

trawling in a curved manner, the trawl is operated in a specific way (Figure 2.3.) 

After 350 m of warps is released from the vessel, it turns slightly (approximately 

5 degrees) to starboard. The turn is kept throughout sampling period, with small 

adjustments to the vessel’s course so the surface float on the port upper wing tip 

stays approximately 20 m on the starboard side of the propeller wake. This places 

the port door in the vessel’s wake, positioning the trawl entirely to starboard of 

the wake. The vessel maintains a straight forward course during heaving in order 

to bring the trawl onboard.  
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Figure 2.3. Illustration of curved trawling. The trawl is set in a straight line, and when 

shooting (setting out) is done the vessel goes into a turn. The turn lasts until the trawling 

period (usually 30 minutes) is done, before it straightens out again during heaving. 

 

2.2 DATA COLLECTION 

 

Data analysis in this thesis was collected from the 2015 IESSNS survey and a week-long 

methodological cruise right before the IESSNS survey began. Total catch data with species 

distribution was collected in both surveys, while DV data and GoPro videos were only 

collected during the Methodological cruise. The study used four different vessels and a test 

after vessel effect was done. In addition, tests were conducted to if there was any difference 

between starting the with curved trawling followed by trawling in a straight line and starting 

with a straight forward trawling before trawling in a curved procedure.  

 

Having two cruises plus variations in how data was collected on each cruise resulted in four 

different types of comparative data.  The first type of data was collected from total catch 

weight data when several hauls were collected at one location, which made for more than one 

pair of alternating trawl hauls. The second type of data were collected from total catch with 

only one alternating trawl pair done at each location. Similarly, DV entrance rate data were 
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collected both with only one alternating trawl pair for each location and with more than one 

alternating trawl pair collected from each location. The different comparisons, including the 

number of replicates of each type of comparison, are illustrated in Table 2.1. A test was done 

to look for any differences in results between the methods.  

 

Table 2.1. Overview of the different methods of collecting comparative data, including the 

effective number of alternating hauls comparisons for each method. 

 

 

2.2.1 METHODOLOGICAL CRUISE 

 

Data was collected during a methodological cruise aimed at improving the trawling technique 

used on the IESSNS survey in order to increase the precision of the survey and reduce 

possible sources of bias. Trawling was conducted from 22th to 28th June, 2015 along the 

Norwegian coastline between 60°N and 61°N on board the Norwegian vessels R/V “G.O. 

Sars” (77.5 m, 8100kw power) and M/V “Brennholm” (75.4m, 9300 kW power) (Figure 2.4). 
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Figure 2.4. Trawl haul stations during the methodological cruse. The data was collected with 

R/V ”G.O.Sars” and M/V ”Brennholm” and includes as a combination of hauls where Deep 

Vision data were collected and hauls without Deep Vision where comparisons were made 

using total catch weight. 

 

Eleven pelagic trawl hauls were conducted by R/V “G.O.Sars” with the DV unit, 

six of which were suitable for further quantitative analyses (Table 2.2). This 

made for ten pairs of alternating hauls (curved and straight forward trawling).  
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Table 2.2. Overview of stations with Deep Vision data collection, methodological cruise R/V 

“G.O.Sars”. 

 

 

There were several reasons for excluding the remaining hauls including technical 

difficulties with the DV unit and the trawl along with inconsistency in the trawl 

operations as multiple experiments were being carried out during the cruise. 

Hauls were divided into periods where trawling occurred in a straight forward 

line and periods where trawling occurred in a curve track. Four of the hauls had 

one period with straight forward pelagic trawling and one period with curved 

trawling (one pair of alternating hauls). The last haul (199) had three periods on 

each type of trawling method, which made for five comparable alternating pairs 

instead of one each as the other hauls gave (Table 2.1). This is because each 

trawling method could be compared to the trawling method conducted both 

before and after. No biological samples from the DV unit hauls was used in this 

in this study, as fish lengths could be measured directly from the DV images. 

Also, the trials with the DV included a split placed just in front of the codend to 

reduce the total catch which could introduce error if the size of the fish escaping 

through the split was not completely random. The split allowed excess fish to 

escape and was used because of a limited need for biological samples and to 

prevent large catches since the DV hauls were sometimes several hours in 
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duration.  Haul 195 and 196 was two different test combined into one haul. The 

first period (195) was conducted during straight forward trawling with the head 

rope at 30 m depth (the kite was deactivated and floats at the wing tips were 

removed) in order to look for fish under 30 meters, while the second period 

(196), which was used in this study, was done in the surface as the other hauls. 

The codend was not emptied between the deep and shallow periods, resulting in 

combined catch from this set of hauls. Review of Deep Vision data showed that 

no fish were captured during the deep trawling period.  

 

After the eleven trawl hauls were done with the DV unit, it was removed from the 

trawl, the split was sewn shut and nine total catch hauls were conducted with R/V 

“G.O.Sars” and M/V “Brennholm” (Table 2.3). The hauls were collected in the 

same area as the DV hauls (Figure 2.1) following the same trawling procedure. 

Total catch weight was compared between the different methods of trawling and 

100 fish were randomly subsampled from the catch and used to determine species 

composition and length distribution  following standard Institute of Marine 

Research protocol (Mjanger et al., 2011).  Length data from station 204 was not 

found in the database following the cruise, so the length comparison between 204 

and 205 was removed. In addition, the total catch at station 3 (Brennholm) was 

only 60 fish, all of which were measured for length distribution analysis. The 

nine hauls made for five pairs of comparable total weight measurements  

 

Table 2.3. Overview of stations, total catch weight data collection, methodological cruise R/V 

“G.O.Sars” and M/V “Brennholm”.  
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2.2.1.2 VIDEO AND PICTURE COLLECTION 

 

During the methodological cruise, stereo pictures were collected with the DV unit and video 

was collected using GoPro cameras.  

 

2.2.1.2.1 DEEP VISION UNIT 

 

The Deep Vision (DV)  is a frame containing a calibrated stereo camera, a pair of 

strobe lights, battery and a PC for controlling the cameras and saving the images 

which are downloaded to a computer onboard the vessel at the end of each haul 

(Rosen et al., 2013). It was only used in the methodological cruise. The Deep 

Vision frame is mounted 3 m in front of the codend, and has nets which force all 

fish to pass through the camera’s field of view before entering the codend (see 

Figure 2.5). Every passing fish is photographed at least once, due to the five 

pictures per second taken by the DV unit stereo camera. The pictures are full 

colour and well lit, which makes it easy to determine passing species by visual 

inspection. The stereo pictures can be used to measure fish length, using the Deep 

Vision software (developed by Scantrol Deep Vision AS).  
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Figure 2.5. Deep Vision (DV) unit underwater mounted in the multpelt 832 trawl (top) and 

on the way on board after a trawl haul (bottom). 

 

2.2.1.2.1 GOPRO CAMERAS 

 

GoPro HERO3 and HERO4 action cameras were used in the methodological 

cruise and collected video data inside the trawl 65 m forward of the Deep Vision 

unit (between 200 mm and 400 mm meshes). The cameras have a wide field of 

view and are suited for underwater observation where there is enough natural 

light. The footage shows clear silhouettes of fish which makes it a good tool for 

counting rates, but it is hard to determine species. The cameras were placed 

inside a metal cage for protection, which was attached to the trawl meshes of the 
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under panel by using a thin rope (figure 2.6, left). Differences between mackerel 

and herring are most apparent from a dorsal view, but a camera mounted in the 

over panel, looking down, would have insufficient illumination to pick out fish 

from the darkness of the water column. 

 

 

Figure 2.6. GoPro cameras attached to the under panel of the trawl (left), GoPro video taken 

from the camera pointing up (middle) and GoPro video taken from the camera pointing 

backwards (right). GoPro video was collected in colors, but converted to black and white in 

order to improve contrast for analysis. 

 

Two GoPro cameras were used, one pointing upward and the other pointing 

backward (Figure 2.6, middle and right). The upwards pointing camera was used 

to get video of fish silhouettes, but it did not cover the whole cross section of the 

trawl. Backwards orientation provided video with a larger field of view, and the 

camera faced backwards to prevent fish, jellyfish, or other objects from covering 

the lens.  During analysis of the video data it became clear that the images from 

the backwards facing camera had insufficient contrast to be sure that every fish 

was counted and that no fish were double-counted. Analysis using a combination 

of the two cameras proved to be too challenging and too time consuming for the 

small amount of additional information gained, so the backward facing camera 

analyses were cut out. A third GoPro camera was placed 3 meters ahead of the 

Deep Vision in order to see if fish accumulated in front of the Deep Vision, but 

data from this camera were not analyzed quantitatively. Locations of the GoPro 

cameras and Deep Vision are illustrated in Figure 2.7. 
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Figure 2.7 Schematic illustration of the Multpelt 832 seen from the side. Two GoPro cameras 

were attached at the intersection of 200 mm and 400 mm meshes (arrow A) and the DV unit 

plus a third GoPro camera were attached at the very end of the trawl where the codend 

attaches (arrow B).  One camera at location A pointed straight upwards while one pointed 

backwards. The single camera at location B pointed forward in the trawl. 

 

2.2.1.3 ANALYSIS 

 

The DV data were used to investigate if there were any differences in the catch 

rate and length distribution during curved and straight forward trawling. In 

addition, the DV data was used in a distribution analysis to look how the 

mackerel was distributed in the sea over the time- and distance scale of a single 

haul and, in combination with the GoPro data, to do a fish size over time analysis. 

This was done to test whether differences in swimming capacity lead to size 

related differences in aggregation in front of the DV unit. A flow rate analysis 

was also done to investigate if water flow in the aft portion of the trawl was 

different between straight and curved trawling. This was because the curved 

trawling has a slightly shorter trawl path compared to the straight forward and 

therefore moves slightly more slowly through the water even if the vessel has the 

same towing speed. The total catch data and length distribution taken during the 
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last five comparisons (Table 2.3), was analyzed together with a larger set of 

similar data collected during the 2015 IESSNS survey. 

 

2.2.1.3.1 CATCH ANALYSIS 

 

A simple image viewing software (Windows photo viewer, Microsoft Corporation) was 

used to count entrance rates, record behavior and identify species in the images collected 

by the Deep Vision because these analyses did not require stereo photos and it is more 

difficult to quickly scan through images using the Deep Vision software (each 30 minutes 

of trawling generated 9 000 image pairs). The analysis was based on visual assessment, 

and the fish were counted when they left the screen on the codend side of the DV unit 

(Figure 2.8). In order to avoid double-counting fish that swam forward through the DV, 

the next fish passing out on the codend side was not counted, and thus took the place of 

the forward-swimming fish instead of being counted. To be sure that straight forward and 

curved trawling were separated in the comparing study, only the 14 final minutes of the 

trawling period were analyzed. This left a 15 – 30 minutes period to clean out fish from 

the previous trawling method and transition period.  
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Figure 2.8. Example picture taken by the DV unit showing 20 mackerel. Fish arrive from the 

right (vessel side) and depart on the left side before entering the codend.   

 

2.2.1.3.1 DV LENGTH ANALYSIS 

 

Deep Vison Software was used to measure mackerel length in all of the DV hauls 

in both curved and straight forward trawling. The Deep Vison Software uses the 

paired stereo images from the DV stereo camera to create a three dimensional 

coordinate system.  A point is placed in right picture using a mouse click, and the 

software finds the matching point in the left picture using a pattern recognition 

algorithm. The point is then given coordinates, and when a new point is made the 

software will estimate the length between the points. When possible, three points 

were used on each fish in order to best follow the lateral line. More than three 

points were used for heavily bent fish. Since the software must find matching 

points on the fish, it is not possible to measure total length for species with forked 

tails such as mackerel and all Deep Vision length measurements are therefore 
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fork length. An example length measurement is shown in Figure 2.9  

 

 

Figure 2.9. Deep Vision software being used to measure a mackerel along the yellow line 

leading from snout to pectoral fin to tail.  Calculated length (208 mm) is indicated in the 

yellow box in lower left corner. 

 

In some cases, only parts of a fish were visible in an image, or the fish was 

oriented on the camera axis, which makes it impossible to pinpoint both snout 

and tail. In many of these cases, partial measurements could be made from 

sequential pictures and added to calculate length of the entire fish. When this was 

not the case (approximately 5 % of the fish) the fish could not be measured. The 

length distributions were compared using a Kolmogorov-Simonov test to 

investigate if there were any differences in length distribution between curved 

and straight forward trawling. Cumulative distribution plots were generated for 

every comparison and were used to determine which way length composition 

differed in the hauls where Kolmogorov-Simonov test results were statistically 

significant. 
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2.2.1.3.3 DISTRIBUTION ANALYSIS 

 

The entrance rates were also used for an investigation of how the mackerel was distributed 

in the sea, by looking at how fish entered the DV unit over the last 14 minutes of each 

trawling period. A plot was made to show the number of fish entering per minute for every 

second minute during the last 14 minutes of each method of trawling (total number of fish 

entering in 7 minutes). This made it possible to see if the distribution was uniform or 

aggregated by looking at how the entrance percentage changes over the seven data points. The 

closer each minute total is to 14.3 % (1/7), the more evenly distributed is the fish. However, 

this analysis was designed to investigate large differences over a relatively short time period 

and is not a quantitative analysis, so it has limitations in terms of detecting small differences 

and trends.      

  

2.2.1.3.4 DELAY ANALYSIS  

 

The comparative analysis using DV unit will not work if fish aggregated in front 

of the DV unit, so two of the hauls (PT 197 and PT 199) were chosen for a study 

to compare how long distinct aggregations took to pass between GoPro camera 

position A (between 200 and 400mm meshes) and the DV unit 64 meters farther 

back in the trawl. A 10-15 minute interval with minimal amount of herring was 

chosen, since it was difficult to distinguish between mackerel and herring in the 

GoPro videos, and the entrance rates in each location were compared. The two 

intervals which fulfilled these criteria were both straight forward towing periods. 

Cameras attached on the vessel side of the DV unit were also used to look for 

aggregation of fish right in front of the DV unit. VLC Media Player (VideoLan 

organization, http://www.videolan.org/vlc/) was used for playing videos from the 

GoPro cameras. The settings were adjusted to black and white, and the contrast 

was turned up to better visualize the silhouette from fish passing overhead of the 

camera. The video was used to look for behaviour and accumulation of fish both 

at the seam between 200 and 400mm meshes and directly ahead of the DV unit.  
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2.2.1.3.5 FISH SIZE OVER TIME ANALYSIS 

 

A size over time analysis was done to look for any size related order of passage 

within a group. The analyses was performed by following a group of mackerel 

from a point where there was a ten seconds gap without fish in the DV unit, and 

ended after a 10 second gap without fish. All of the analyzed periods were taken 

during straight forward trawling from hauls 193, 197 and 199a. This was because 

the analysis was done together with the delay analysis, so the hauls ended in the 

same periods. Analysis of 193 was ultimately rejected from the delay analysis 

due to the presence of a large amount of herring, which made accurate GoPro 

counts impossible.        

  

2.2.1.3.6 WATER FLOW ANALYSIS 

 

The water flow was measured inside the DV unit using the same technique as fish 

length measurements, except that passive object were targeted instead of fish. 

Jellyfish and krill were pinpointed in two consecutive pictures (time difference of 

0.200 seconds) and the coordinates were noted down and the distance moved was 

calculated. Five passive objects from each of the DV unit hauls 

(192,193,194,195-196, 197 and 199 a, b and c) and from both the alternating 

trawling techniques were measured for speed. This made for 80 flowrate 

measurements where equation 2.1 (below) was used to calculate flowrate.  

 

  𝐹𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑇𝑖𝑚𝑒
 

Equation 2.1. Calculation of flow rate through the DV unit 
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2.2.2 IESSNS SURVEY 

 

In addition to the methodological cruise, data collected during the 2015 IESSNS 

survey are included in this thesis. The IESSNS survey data consists of catch 

weight and length distributions from twenty-four alternating hauls where straight 

and curved trawling were carried out with only a short gap in time and space 

between. The data were sampled with three different survey vessels, R/V “Árni 

Friðriksson” (70m,4300 kW power), M/V “Brennholm” and M/V “Eros” (77,5m, 

7400 kW power). However, length distribution data from Árni Friðriksson was 

excluded from the study as it was not accessible through the IESSNS database. 

This left eleven alternating hauls containing length distribution. Two of the 

comparisons had a zero catch in the curved trawling method, and were removed 

from the analysis as outliers and because they would result in undefined or 

infinite ratios. Ultimately, twenty alternating haul pairs could be used for 

comparisons (Table 2.4). In nine of the locations, only one alternating pair was 

conducted while the two Greenlandic locations had two and seven sets of 

alternating hauls (Table 2.1).  

 

Table 2.4. Overview of stations, total catch weight data collection, IESSNS survey R/V “Árni 

Friðriksson”, M/V “Brennholm” and M/V “Eros” 
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2.2.3.1 STUDY AREA 

 

Twenty-two of the hauls (eleven sets of comparisons) were carried out in 

Norwegian zone and the rest in Greenlandic zone (See figure 2.10). 
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Figure 2.10. Locations of comparative trawl haul stations during the IESSNS survey.  R/V 

”Árni Friðriksson” collected the data near Greenland, and M/W ”Eros” and M/V 

”Brennholm” collected the data near Norway. Map from Nøttestad et al. (2015). 

 

2.2.3.1 ANALYSIS 

 

Total catch weight and length distributions measured during the cruise were used for a 

comparison analysis between curved and straight forward trawling following the same 

procedures described for the methodology cruise in section 2.2.1 above.   
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2.3 STATISTICAL ANALYSIS 

 

A number of different statistical tests were used in the analyses, which included 

investigations to look for sampling effects due to vessel, start method (whether 

straight or curved trawling was done first) and whether haul comparisons were 

one-to-one or one-to-many (data from during several hauls at one location, all the 

Árni Friðriksson data). The effect of the different sampling techniques was tested 

by finding the percentage of hauls which had a higher catch of mackerel in the 

curved trawling and using a single sample t-test to determine if the result was 

statistically significant. A generalized linear mix model (GLMM) was run to see 

whether counts from the alternating straight and curved trawl technique differ 

with the assumption of a skewed distribution pattern (quasi-Poisson distribution 

was selected because the data is over-dispersed counts). The nonparametric 

Kolmogorov-Smirnov test was used to look for differences in length distribution 

between paired straight and curved hauls. In addition, the distribution percentages 

were statistically tested by a single sample t-test to look if the average entrance 

rate differed from the mean percentage (14.3%). The flowrate data was 

statistically tested by running an Anova on a linear model.  Wilcoxon signed- 

rank t-test was chosen to see whether the total catch data differed between 

straight and curved trawling. A binomial test was done to look after statistical 

difference between the number of hauls which got higher catch (or counts) during 

the curved trawling compared to straight forward trawling. The same test was 

used to look for differences between number of hauls with a significant smaller 

length distribution in mackerel during curved trawling compared to straight 

forward trawling. A power analysis was done to look at how many comparisons 

would have been necessary to find a significant difference between the catches 

(or counts) in straight and curved trawling given the distributions in the datasets 

collected. The software package R version 3.1.2 was used in all statistical 

analysis and most of the plotting.  All the statistical tests assumed significance 

level at p < 0.05. 
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3 RESULTS 

3.1 SAMPLING EFFECTS 

3.1.1 VESSEL EFFECT 

 

Differences in the relative catches between curved and straight trawling for each 

of the four vessels are shown in Figure 3.1. Árni Friðriksson had three of nine 

comparable hauls with higher catches using the curved trawling, Brennholm had 

three out of seven, Eros had three out of six, and G.O.Sars had five out of thirteen 

comparable hauls with higher catches using the curved trawling. Based on a one 

sided t-test, no significant vessel effect was found (p = 0.09).  
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Figure 3.1. Catch proportions (straight forward / curved trawling) for the different vessels. 

Values > 1 indicate higher catches with straight forward trawling, values < 1 indicate higher 

catches with curved trawling. 

 

3.1.2 IMPACT OF START TRAWLING METHOD 

 

During this study, 22 out of 35 comparisons started with the curved trawling, and 

the rest (13 out of 35) started with straight forward trawling (Figure 3.2). Sixty-

nine percent of the comparable alternating hauls starting with straight forward 

trawling ended up with higher catches in the straight forward trawling method 

and fifty-five % of the stations starting with the curved trawling pattern ended up 

with a higher catch in the straight forward hauls. No significant catch difference 

was found between starting the comparable alternating hauls with straight 

forward trawling versus curved trawling (p = 0.34, one sided t-test).  
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Figure 3.2. Overview over the proportions of catch in straight forward / curved trawling 

according to the order in which comparison hauls were carried out. Values > 1 indicate higher 

catches with straight forward trawling, values < 1 indicate higher catches with curved 

trawling. 

 

3.1.3 COMPARISONS OF ALTERNATING TRAWLING DATA 

 

Four different types of alternating trawling data were collected during this study 

(Table 2.4). The straight forward trawling had a higher number of hauls with 

higher catch compared to the curved trawling in all of the haul comparisons 

(Weight >1 pairs = 66%, Weight 1 pair = 50%, DV >1 pairs = 80% and DV 1 

pair = 60%) (Figure 3.3). This indicates a slightly better performance during 

straight forward trawling but no significant statistically difference in performance 

was found between the four different alternating trawl data methods (p = 0.11, 
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one sided t-test).  

 

Figure 3.3. Overview of the proportions of catch in straight forward / curved trawling by 

method (single or alternating hauls, total weight or DV hauls). Values > 1 indicate higher 

catches with straight forward trawling, values < 1 indicate higher catches with curved 

trawling. 

 

3.2 DEEP VISION AND GOPRO ANALYSIS (METHODOLOGICAL CRUISE)  

3.2.1 COMPARISON BETWEEN STRAIGHT FORWARD- AND CURVED 

TRAWLING USING DV COUNTS 
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The comparison between straight forward and curved trawling using the DV unit 

to count fish showed no statistically significant difference between the two 

methods (p = 0.65). This was based on a GLMM with an assumption of over 

dispersion and a skewed distribution in the data. Therefore the GLMM was run 

with a Quasi-Poisson distribution. The straight forward trawling had a higher 

median value of mackerel catch rates, but the curved trawling had a higher spread 

as shown in Figure 3.4. Even though we did not find any statistically significant 

differences between the two trawling methods, the straight forward trawling had 

almost 15% higher mean value (605 mackerel per haul) then the curved trawling 

(528 mackerel per haul), indicating a trend towards higher catches in the straight 

forward trawling. Due to some uncertainty of most appropriate distribution 

pattern to apply to the data, additional nonparametric statistical tests were run and 

still no significant difference was found (Appendix A).    
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Figure 3.4. Straight forward towing has a lower spread and slightly higher mean and median 

of fish entrance rate compared to curved towing, but the difference was not statistically 

significant. The dotted line crossing both boxes represents mean count rate in curved trawling 

and the solid line crossing both represents the mean count rate during straight trawling. The 

solid lines within each box represent median value. 

 

3.2.2 LENGTH DISTRIBUTION (DEEP VISION DATA) 

 

An analysis of the length distribution in curved and straight forward trawling combined across 

all ten stations showed no significant difference based on a Kolmogorov-Smirnov test (p = 

0.055). However, this p value is very close to the chosen cutoff of at 0.05 and could indicate a 

trend towards smaller fish caught during straight forward trawling (Figure 3.5). A significant 

length difference was found in four out of ten stations (197 p = 0.0008, 199a p = 0.00007, 
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199ab p  = 0.016 and 199c p = 0.0006, Kolmogorov-Smirnov test). Furthermore, three of the 

stations (197, 199ab and 199c) had significantly smaller fish in the straight forward trawling 

compared to in the curved trawling, whereas the last haul (199a) had significantly smaller fish 

in the curved trawling compared to the straight forward trawling (Appendix B). 

 

 

Figure 3.5. Cumulative distribution of all the DV length data during straight forward and 

curved trawling. The p values represent the difference between the length distributions in the 

alternating pairs (Kolmogorov-Smirnov test).       

 

3.2.3 MACKEREL DISTRIBUTION ANALYSIS 

 

Analyses of how mackerel were distributed over time within hauls were put 

forward in order to show how mackerel may be distributed in the sea. The 
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proportion entering during each 1 minute interval did not significantly differ from 

the predicted 14.3% (p = 0.99, one sided t-test). More interesting was that the 

data shows a wave like entrance rate of the mackerel (Figures 3.5 and 3.6). If the 

entrance rate had been evenly distributed around 14.3% in all of the seven 

measuring points, as in the haul “Curved 197”, it would be fair to say the 

distribution was next to uniform. However, this was generally not the case and 

indicates that mackerel enter the DV unit in small shoals and loose aggregations. 

This is especially visible in hauls “Curved 193”, “Straight 199a”, “Curved 199a”, 

“Straight 199b” and “Curved 199b”. This tendency was also observed in GoPro 

videos taken 65 meters in front of the DV unit, so it appears unrelated to the 

presence of the DV. There is no noticeable distribution difference between 

straight forward hauls (Figure 3.6) and curved hauls Figure 3.7). However, the 

alternating pairs seem to have a more similar distribution to one another than to 

hauls outside their set of comparisons. This was especially visible in hauls 192, 

196, 197 and 199c.  
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Figure 3.6. Proportion of mackerel from straight trawling passing through the DV unit over 

time, straight trawling method. The proportion is recorded every second minute during the 

last 14 minutes of each method of trawling. Dotted line at 14.3 % indicates how a steady flow 

of fish would appear. 
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Figure 3.7. Proportion of mackerel from curved trawling passing through the DV unit over 

time, curved trawling method. The proportion is recorded every second minute during the last 

14 minutes of each method of trawling. Dotted line at 14.3 % indicates how a steady flow of 

fish would appear (see for example “Curved 197”). 

 

3.2.4 DELAY ANALYSIS 

 

The delay analysis from hauls 197 and 199 shows that mackerel uses 130-190 

seconds to pass the 65 meters between where the GoPro cameras was placed at 

the 200 / 400 mm and the Deep Vision at the beginning of the codend (Figure 
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3.8). This was based on four different peaks in the pattern of fish passage rate 

over time, found in both GoPro and DV entrance rates. Assuming a water flow of 

2.6 m sec-1 (5 knots), a passive object would be expected to use 25 seconds to 

cover this distance. In haul 197, a lumpfish (Cyclopterus lumpus) was traced 

from the GoPro camera to the DV unit. The lumpfish, which is assumed to be a 

passive object and showed no signs of swimming in the GoPro video, used 31 

seconds from the GoPro camera to the DV unit. This is 24 % longer time than the 

predicated time of 25 seconds, and could be due to slowly swimming against the 

trawling direction or being slowed as it contacted trawl meshes while moving 

back in the trawl. The width of the DV based curves are wider than the GoPro 

based curves, which indicate that small groups of fish are getting more and more 

elongated during their travel into the trawl. The GoPro camera was mounted three 

meters ahead of the DV unit showed no noticeable aggregation of fish there, so it 

appears that the elongation is not due to fish accumulating directly in front of the 

DV unit.   
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Figure 3.8. Number of mackerel entering every 5 seconds in both DV unit (solid line) and 

GoPro camera placed 65 meters in front of the DV unit (dotted line). Based on the peaks, 

mackerel uses 130 to 190 seconds to pass this distance. The arrows represent the peaks, 

labeled by letter (peak ID) and number (1 = GoPro, 2 = DV). The upper figure is from haul 

197 and the lower figure is from haul 199. 

 

3.3. TOTAL CATCH ANALYSIS (METHODOLOGICAL CRUISE AND IESSNS 

SURVEY) 

3.3.1 CATCH WEIGHTS 

 

The comparison between straight forward and curved trawling using the total 
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catch data of mackerel showed no significant differences in total catches (kg 

mackerel) between the two methods (p = 0.43) based on a Wilcoxon signed- rank 

t-test. The straight forward trawling had a higher spread and a marginally higher 

median, as shown in Figure 3.9. The straight forward trawling had a 53% higher 

mean value (1551 kg) compared to the curved trawling (1016 kg), indicating a 

trend towards higher catches in the straight forward trawling. Non-parametric 

tests also did not show significant differences between the two trawling methods 

(Appendix C).    

 

 

Figure 3.9. Catch weights from the IESSNS survey indicate that straight towing has higher 

mean, spread and a slightly higher median in catch than curved towing, but the difference is 

not statistically significant. The dotted line crossing both boxes represents mean catch weight 

in curved trawling and the solid line crossing both represents the mean catch weight during 

straight trawling. The solid lines within each box represent median values. 
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3.3.2 LENGTH DISTRIBUTION (TOTAL CATCH DATA)  

 

A comparative analysis of the length distribution from total catch data in curved and straight 

forward trawling showed no significant differences when all of the fifteen comparison  were 

tested in a combined test (p = 0.10, Kolmogorov-Smirnov test). However, this is a low p value 

and could indicate a trend towards smaller fish caught during curved forward trawling (Figure 

3.10).There was a significant length difference in ten out of fifteen stations when they were 

analyzed individually using a Kolmogorov-Smirnov test (see Appendix D). Four of the hauls 

(IESSNS survey locations 9, 10 and 12 (Table 2.4) and methodological cruise station 205-206 

(table 2.3)) had significant smaller fish in the straight forward trawling, while IESSNS survey 

locations 3, 4, 5, 8 and 11 (Table 2.4) had significantly smaller fish in the curved trawling. 

Methodological cruise station 3-4 also had a statistically significant difference in length 

distribution, but here it is hard to determine which trawl technique had the smallest fish. 

Contributing to the difficulty is the fact that the total catch in one of the comparative hauls 

was just 60 fish, so its length distribution is less well defined (Table 2.3, haul 3).  
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Figure 3.10. Cumulative distribution of all total catch length data during straight forward and 

curved trawling. The p values represent the difference between the length distributions in the 

alternating pairs (Kolmogorov-Smirnov test).        

 

3.4 COMBINED METHODOLOGICAL CRUISE AND IESSNS SURVEY 

ANALYSIS   

3.4.1 COMBINED COMPARISON BETWEEN STRAIGHT FORWARD- AND 

CURVED TRAWLING 

 

The different sampling method made it hard to combine the total catch data and 

the count data in a statistical way. However, a binomial test was possible. The 

straight forward trawling had higher catches or counts in 21 out of 35 

comparisons (Figure 3.11) but the results of the binomial test indicated that this 



48 

was not a statistically significant result (p = 0.2).  

 

 

 

Figure 3.11. Catch proportions (straight forward / curved trawling) of the total catch and DV 

count data comparisons. Proportions > 1 represent comparisons with higher catches or counts 

with straight forward trawling and proportions < 1 indicate greater catches or counts with 

curved trawling.   
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3.4.2 COMBINED LENGTH DISTRIBUTION (DV AND MEASURED CATCH) 

 

A binomial test based on the number of comparisons which had statistically significant 

differences in length distributions showed a near even split between whether the difference 

was for larger or smaller individuals (p = 1). This indicates that there is no difference between 

the size of fish captured in curved and straight forward trawling. More detail is provided in 

Appendices B and D. 
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4 DISCUSSION 

 

No statically significant differences were observed in either catch amounts or length 

distributions between straight forward and curved trawling in this study. Although this is a 

“negative” result, it is interesting because curved trawling is believed to reduce avoidance 

behavior. It also suggests that the trawling operations during the IESSNS survey can be 

simplified by switching to the straight forward method without affecting the surveys outcome. 

 

4.1 SHORTCOMINGS WITH DATA COLLECTION 

 

The main concern with regard to the data collection was the time delay between 

the compared alternating (straight forward and curved) trawl hauls. When total 

catch data were collected during the IESSNS cruse, the time between the hauls 

was from two to three hours since the trawl had to be heaved, emptied, and set 

back out between hauls. This raises the question whether the hauls are strictly 

comparable or not. Deep Vision (DV) count rates from the methodological cruse 

also had a difference in time, but it was much less at 30 to 45 minutes. Although 

DV count rate seemed to be better fitted for comparison, it is not a perfect 

analysis due to the time consuming analysis the DV data required when 

compared to the relative quick method of measuring total weight data collected in 

the total catch analysis. Another problem is uncertainty in species determination, 

especially in the GoPro videos, but also sometimes in the DV unit pictures. In 

some of the pictures and videos, individual fish were unfavorable oriented such 

that the species determination was based entirely on body shape, and not color 

and other species specific traits. Nevertheless, it is hard to imagine an 

experimental setup that would have less offset in biases, especially concerning 

time and space, than using the DV unit.  

  

One option for an experimental setup could be to conduct parallel trawling with 
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two vessels in the same area at the same time, although this would introduce 

other potential sources of error including vessel and gear effects due to  different 

noise levels in different vessels, different captains operating the vessels 

differently, etc (Simmonds and MacLennan, 2005; Nøttestad et al., 2016a). 

Although the vessel analysis did not show any significant vessel effect at the 0.05 

level, the low p value (p = 0.09) suggest that a difference may in fact exist. In 

addition, the data was collected during conditions with natural light (day, dawn 

and dusk), but trawling in the IESSNS survey also occurs at night. This could 

affect the avoidance behaviour in mackerel, and lead do difference in 

catchability. For Norwegian spring spawning herring, vessel avoidance is 

particularly strong during dusk (Vabø et al., 2002) and Baltic herring have been 

shown to have a much stronger gear avoidance during day (Suuronen et al., 

1997).    

 

An abiotic factor that might influence catchability is temperature, which is 

believed to have several effects on fish, such as swimming capacity (Hurst, 

2007), swimming speed (Dickson et al., 2002), size distribution (Nøttestad et al., 

2016a), geographical distribution (Jansen and Gislason, 2011; Astthorsson et al., 

2012), predator avoidance (Reynolds, 1977). However, temperature is not 

included in this thesis. Furthermore, mackerel are shown to be tolerant to a wide 

range of temperatures (6-25ºC) during summer in the Nordic seas (Nøttestad et 

al. 2016b), suggesting temperature to be of minor importance to the main results.    

   

Combing the four types of haul data (table 2.1) was somewhat cumbersome, but 

was done in order to increase the number of comparisons between curved- and 

straight forward trawling and to get a greater spatial and temporal range. No 

statistically significant differences in methods were found, but a p value of 0.11 is 

close to significant. Another potential source of bias is the lack of consistency 

with regard to which trawl method (curved- and straight forward trawling 

procedure) was used in the start of the alternating trawl hauls, but the p value 

(0.34) indicates the impact is far from statistically significant. Although no 

significant difference was found, future studies should keep to one method of 
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data collection with a 50/50 distribution of starting with curved and straight 

forward trawling and in addition try to reduce the differences in time and space 

between the haul pairs. This should be considered for the upcoming IESSNS 

survey in July-August 2016. Despite the greater amount of time required to 

analyze the data, DV unit count rate is the recommended sampling method due to 

the shorter interval between comparisons. If the IESSNS survey chooses not to 

change the trawling method due to lack of sufficient proof, to high spread in the 

data or number of comparative hauls, a new methodological survey is 

recommended. Such a survey should at least collect 70-80 DV hauls, but based 

on a review of the power analysis (Appendix E), the ideal number of hauls is 

higher. Alternatively, there could be collected around 30-40 additional pairs of 

hauls comparing total catch weight where the time between the alternations is 

kept to a minimum. Such data could easily be collected during the IESSNS 

survey.   

  

4.2 CATCH COMPARISON: STRAIGHT- FORWARD AND CURVED 

TRAWLING 

 

The comparison analysis showed no significant differences in total catch between 

the two methods of trawling. As a result, based on the main results from this 

study it is recommended to change the current IESSNS methodology from curved 

to straight forward trawling. Changing the trawling methodology could lead to a 

break in the time series, so further investigations and more comparisons might be 

needed before drawing a final conclusion. However, since the IESSNS is a 

relatively new cruise it makes most sense to make any change soon before a 

greater time series is built up using the curved trawling technique.  

 

The lack of difference was surprising but can be explained by the distribution, 

density and behaviour of mackerel during the summer feeding season when the 

data was collected. Mackerel and other pelagic fish species have been shown to 

prioritize feeding over antipredator behaviour during this time of year (Fréon et 
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al., 1993; Nøttestad et al., 1996; Nøttestad et al., 2016a). The mackerel could be 

less affected by noise, vibration and visual stimuli from the vessel and gear at this 

time of year, resulting in no significant difference between the two trawling 

methods.  Another reason could simply be that the mackerel respond to the 

vessel, but calm down, started feeding again and resume natural behavior and 

distribution between the time the vessel passes and the trawl arrives. At the 

standard trawling speed, it takes 135 seconds between when the vessel passes and 

when the trawl doors arrive. The time is probably longer for free swimming fish, 

due to the herding effect which generally makes pelagic fish swim along with the 

vessel’s direction (Misund and Aglen, 1992).  

 

Both of the trawling techniques have potential drawbacks and the main drawback 

during curved trawling is believed to be asymmetric and more variable trawl 

geometry compared to straight forward trawling. This is a result of sometimes 

significant trawl door depth differences recorded during towing (John Willy 

Valdemarsen, personal communication). Asymmetry in the door depth and trawl 

geometry which could create escape routes for the fish and differences in warp 

and trawl vibration between the two sides of the trawl, altering herding effect and 

possibly increasing fish fear response including the likelihood that they will 

escape over, under and on the sides of the trawl wings and underneath the ground 

rope. Similar effects were found in other studies on several species of pelagic fish 

(Misund and Aglen, 1992; Misund et al., 1999) and the importance of trawl 

geometry is shown by the expensive measuring systems commercial fishermen 

by to monitor the trawls geometry to make constant adjustments in an attempt to 

keep the trawl symmetric in order to optimize catching efficiency. Noise is also 

known to radiate from the vessel and the noise has a characteristic butterfly wing 

like noise shape from the vessel bow (Misund and Aglen, 1992; Simmonds and 

MacLennan, 2005), with a sound maximum on the side of the vessel. This could 

impact pelagic fish and result in an increase in avoidance behaviour on the side of 

the vessel since fish has been observed to search for low level of noise (Misund 

and Aglen, 1992). Catches when trawling in a curved manner may also be 

reduced because of increased escapes through the very large (up to 16 m) meshes 

in the front portion of the trawl, especially on the starboard side of the trawl. This 
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is due to a port side approach of the gear, which leads to a starboard preference in 

the swimming direction (Misund and Aglen, 1992). Furthermore, the limited 

underwater visual range, which is assumed to be maximum 40 m (Tyler, 1967), 

means only a portion of the fish and maybe only one individual actually sees the 

large meshes at the front of the trawl and the rest just follows the initiators 

response and do not actually see the trawl before later. In addition, the curved 

path of the trawl could lead tired and/or slow swimming mackerel to simply pass 

out through the large meshes in the front portion of the trawl. However, since the 

turn is only 5 degrees, the magnitude of the effect might be low and equivalent to 

abiotic factors which equally effects bout straight forward and curved trawling, as 

ocean currents.  

 

The main concern around the straight forward trawling is increased avoidance 

behavior due to exposure to visual and sound stimuli from the wake, vessel and 

the propeller whose cavitation, is the primary source of vessel noise (Ona and 

Godø, 1990). The propeller, together with the rest of the vessel, could also scare 

fish away even before the vessel reaches the fish. Avoidance behaviour due to 

diving, which is a common avoidance behaviour (Misund and Aglen, 1992), may 

also be higher during straight forward trawling compared to curved trawling since 

the strong stimulus of the vessel passes directly over. However, zero mackerel 

was observed through the DV unit in the deeper haul (195) conducted with the 

headline at 30 m depth during the methodological cruise. Diving behaviour could, 

however, vary depending on conditions such as depth of the thermocline.  

 

Although no significant differences were observed between the two different 

trawling methods, there was a trend towards higher catches in the straight 

forward way of trawling. This is unexpected since the curved trawling technique 

was developed to reduce avoidance, increase catch rates and give a better and 

more representative description of the fish stock. If a valid trend exists, it could 

be a result of pure coincidence, or a combination of several different reasons 

working together and could differ due to changes in natural conditions and fish 

behaviour. The most plausible explanation is a result of reduced predator 
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avoidance as a result of the summer feeding season (Nøttestad et al., 2016a), 

leading to insignificant vessel avoidance and a slightly worse curved trawling 

performance due to sub-optimal trawl geometry. However, the trend is small and 

even if it is true it supports the recommendation to switch to straight forward 

trawling.     

 

4.3 LENGTH COMPARISON: STRAIGHT- FORWARD AND CURVED 

TRAWLING 

 

No statistically significant difference was found between length distributions in curved and 

straight forward trawling when comparing all of the hauls together (DV and total catch 

separated). This is an important result because a difference in length distributions between 

curved and straight forward trawling could lead to biased abundance estimation leading to 

inaccurate assessment advice due to wrong and skewed age structure. It is especially 

important if the trawling procedure is going to change because this will have an impact on the 

annual age structure development. This is not to say that the surface trawling technique is not 

biased in the sizes it captures, just that there is no difference between trawling straight 

forward and in a curve. Size distribution was examined in greater detail by looking at each of 

the alternating haul comparisons individually and no consistent differences were found.  In 

the comparisons where differences in length distributions were statistically significantly, it 

was equally likely that the larger fish would be in the curved trawling hauls or the straight 

forward ones. These results are consistent with the lack of change in age structure results from 

the mackerel survey when it switched from straight forward trawling with a commercial 

pelagic trawl to trawling with the Multpelt 832 in a curved trawling procedure between 2011 

and 2012 (Nøttestad et al., 2016b). However, due to the importance of length distribution and 

low p values in the length distribution analysis on all of the DV data and all of the total catch 

data combined (p = 0.055 and p = 0.1), the collection of additional data is recommended.  

 

4.4. MACKEREL DISTRIBUTION ANALYSIS 
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Mackerel seems to enter the trawl in small and rather loose aggregations and 

passages of individual fish were rare, indicating that mackerel has a certain 

shoaling and aggregation behavior during the summer feeding season. Similar 

observations were found in the GoPro cameras further in front in the trawl and in 

the delay analysis (Figure 3.8). There were also hauls with zero catch (removed 

from the analysis), which could support the theory about an aggregating 

behaviour. This suggests that the swept area method may lead to a certain amount 

of bias in the final assessment, but its effect is probably low compared to other 

sources of biases such as escape during low trawling speed (especially during 

deployment and hauling of the trawl), time series inconsistency and variation of 

survey coverage as well as inconsistency in  trawl and trawling procedures, etc. 

(Nøttestad et al., 2016b). Previous studies as (Godø et al., 2004; Iversen, 2004; 

Nøttestad et al., 2016a) have concluded that NEA mackerel have reduced shoal 

forming behaviour during summer feeding season compared to the other seasons 

during the year. Therefore, this study suggests that the swept area method as a 

suitable method for the IESSNS survey and furthermore to be used for abundance 

estimation of NEA mackerel into the assessment. There are however, some 

assumptions, uncertainty and limitations in this analysis 

 

The restricted geographical area from where the data was collected is a limitation 

of this study. The location does not necessarily represent the whole mackerel 

distribution area. The analysis also uses entering percentages, which could be 

misleading since it does not take number of fish which enters the DV unit, into 

account. If the entrance of mackerel is low, the fish could enter within a short 

period of time, giving the impression that mackerel distribution in the sea is 

heavily aggregated. Furthermore, the analysis assumes that the observed patterns 

of mackerel passing through the Deep Vision reflect their distribution as they 

entered the trawl (fish entering the trawl alone do not form groups inside the 

trawl and fish entering in groups do not spread out inside the trawl) The delay 

analysis showed, however, a wider curve in the DV observations, which indicates 

an elongation of the fish aggregations the closer the fish swim towards the 

codend. Such an effect will give the impression that the mackerel stock is more 

evenly distributed, which is a drawback with the analysis. It is however 
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reasonable to believe that vessel and gear avoidances together with the trawl 

constriction itself leads to aggregation of fish. Such aggregating effects is found 

in several studies and an example is vertical compression and diving responses of 

midwater schools between the vessel and the trawl (Taylor, 1968; Misund and 

Aglen, 1992). This leads to more aggregation and herding of fish, which could 

create an impression that mackerel is more aggregated than they are in their 

natural state before entering the trawl. 

 

Although, some elongation occurs, it is not enough to have a huge impact on the 

distribution analysis and no such effect is found in the size over time analysis 

(Appendix F). Vessel and gear avoidance leading to aggregation is however more 

concerning, but it is hard to estimate the actual impact of such an aggregation. 

However, for assessment purposes related to swept area technique, these 

uncertainties are probably low, compared to other sources of biases such as 

escape of fish not behind the fish lock during low trawling speed during 

deployment and heaving of the trawl, time series inconsistency and variation of 

survey coverage as well as inconsistency in  trawl and trawling procedures, etc. 

(Nøttestad et al., 2016b).  

 

4.5 DELAY ANALYSIS 

 

The fish seem to flow through the trawl in a relative constant manner, probably 

with an increased swimming behaviour along the trawling direction as the trawl 

constrict and this may lead to some elongated of fish aggregations. According to 

video collected with the GoPro camera in front of the DV unit, no noticeable 

aggregation occurred as a result of the DV unit. However, the elongation together 

with other limitations with the delay analysis will be a source of some error in all 

the DV analyses performed during this study, particularly the distribution 

analysis. The main limitation with the delay analysis is the estimation of the 

GoPro entrance rate. Only 31 -55 % of the fish observed in the DV unit were 
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observed in the GoPro camera. This means a majority part of the fish are outside 

the vertically oriented GoPro camera’s field of view. It is also hard to determine 

species through the GoPro camera, due to a low location of the camera which 

only detects silhouettes of the fish against the bright water surface. This made it 

necessary to locate almost homogenous mackerel shoals for the analysis. A small 

proportion of the fish were not counted in the GoPro camera, assuming that the 

fish was a herring based on the slimmer body shape and that the fish passed 

quickly due to low swimming speed or exhibited other swimming behavior 

characteristic for herring such as erratic swimming near the trawl meshes in what 

appeared to be a search for escape.     

 

The wider shape of the DV graph is assumed to indicate aggregation of fish. This 

is probably due to decreasing width of the trawl that forces the fish closer 

together. To maintain distance between the fish, aggregations must elongate in 

the direction of trawling. This behavior could be increased in response to the 

flashing lights mounted inside the DV unit. In addition, because of an increase in 

swimming capacity with an increase in fish size (He, 1993), the smallest fish in a 

small shoal should be expected to pass first and the larger fish afterwards. 

However, the size over time analysis indicates no such effect (Appendix F). It 

could also be a result of high fluctuation of DV flowrate (Appendix G). This 

could be a result of several shoals are piled together over the time period, leading 

to a fading of such effects in the data or relatively short time interval (145-555 

seconds), which might not be long enough to show such a pattern. As mentioned 

above, studies have observed vertical compression and diving response of 

midwater schools between the vessel and the trawl (Taylor, 1968; Misund and 

Aglen, 1992). This could lead to more aggregation and herding of fish, with 

groups of different sized fish clumping together. The difference in size leads to 

difference in swimming capacity that elongates the aggregation. This could also 

influence of the passage rate. The natural schooling behaviour could force small 

fish to swim faster than they normally do, or make large fish reduce their 

swimming speed. Furthermore, fish tend to school with individuals of similar 

size, reducing the variation of size inside a particular school of fish (Pitcher et al., 

1985; Hemelrijk and Kunz, 2005).  
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4.6 CONCLUSION AND RECOMMENDED FUTURE INVESTIGATIONS 

 

No significant difference in catch or length was found between the two different 

trawling methods; straight forward and curved trawling. However, the dataset is 

somewhat limited so further investigations are recommended since the result 

suggest the trawling technique in the IESSNS survey should be changed. DV 

count rates are considered the best way of collection additional data due to the 

efficient and accurate data it provides as well as the low time between 

comparisons and the possibility to conduct several alternating pair hauls within a 

short time span (up to five alternating hauls within three hours). However, DV 

data requires a huge amount of analysis, so development of a robust method to 

reduce the analysis time is recommended.  

 

A possible solution could be to count the number of fish in every tenth picture in 

the DV unit (two seconds) and make a ratio between these every ten pictures and 

fish swimming through within a minute. This would save technicians or scientists 

a lot of time. Another option is to introduce image analysis systems with auto 

counting and recognition of species. There exist several studies on these kind of 

systems (Spampinato et al., 2008; Spampinato et al., 2010; Shortis et al., 2013), 

and it should be possible to implement DV pictures or GoPro videos in such 

programs. It might also be possible to introduce a multi-frequency echo sounders 

to collect data and separate species inside the trawl and then count the fish with 

the right acoustic signature (Korneliussen and Ona, 2003; Korneliussen, 2010). 

Furthermore, a combination of acoustic data and videos inside the trawl could be 

possible using a so called acoustic-optical system, which combines an acoustic 

system with a low-light camera to verify fish species (Ryan et al., 2009).      

 

Alternatively, further total catch comparisons could be carried out where the time 

between the alternations is kept to a minimum. Additional data from either DV 

count rates or total catch comparisons could easily be collected during the regular 

IESSNS. The best possible trawling design while comparing the different 
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trawling methods uses one vessel to get rid of potential vessel effects and 

conducts the hauls in a range of different temperatures and different locations 

which represent the geographical area sampled during the IESSNS survey. The 

hauls should also be 50/50 distribution between starting in curved trawling and 

straight forward trawling. Future studies should also sample randomly through 

day and night, because this could have an effect on catchability. 

 

This study considers mackerel distribution to be sufficiently uniform distributed 

to use the swept area methodology as a way to estimate abundance of NEA 

mackerel.  However, any future analyses should reduce the intervals were fish 

was counted and the spaces without data between the counted minute intervals 

should also be reduced or removed. An example setup could consist of a 

continuous interval where entrance of fish is recorded every 10 second, or 

alternatively every other 10 second. Such an experiment could be conducted 

during pair-trawling, where two vessels pull the trawl (one pulling the port warp 

and the other the starboard warp) and the trawl passes in the gap between the 

vessels. This should reduce avoidance effect from the vessel and then better 

describe the natural distribution pattern.   

 

A new delay analysis should contain of time periods from both curved and 

straight forward trawling. It could also be an advantage to choose an area without 

herring, since this makes the GoPro analysis much easier. The fish size over time 

analysis would be improved by increasing the time span of the analysis and 

including hauls from both of the trawling methods. 
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APPENDIX A ADDITIONAL STATISTICAL ANALYSIS FOR ENTERING 

RATE COMPARISONS 

 

Some difficulties occurred regarding the determination of the DV count datas 

distribution. The distribution was skewed and therefore, most likely a Poisson 

distribution which was presented in the thesis. Wilcoxon signed- rank t-test was 

run as an additional test and it showed no significant differences (p = 0.70). 

Wilcoxon signed- rank t-test were chosen since it is a statistically non-parametric 

hypothesis test for comparison between two related or paired samples.   
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APPENDIX B LENGTH DISTRIBUTION (DEEP VISION) 

 

A comparative analysis was done to compare the length distribution in curved and straight 

forward trawling. No significant differences were found between curved and straight forward 

trawling, when all of the ten length distributions for each trawling method were tested in a 

combined test (p = 0.055). There was a significant length difference in four out of eight hauls 

based on a Kolmogorov-Smirnov test (Figure B-1, Figure B-2). Two of the comparisons (197, 

199ab and 199c) had significant smaller fish in the straight forward trawling, while the last 

(199a) had significantly smaller fish in the curved trawling compared to in the straight 

forward trawling (Figure B-2).  

 

 

Figure B-1. Cumulative length distribution of all non-significant length distributions 

differences in the Deep Vision data (Table 2.2). Each line is based on the length distribution 

of 100 fish measured by the DV Software. The p values are results from a Kolmogorov-

Smirnov test comparing difference between the length distributions in the alternating pairs.   
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Figure B-2. Cumulative length distribution of all significant length distributions differences 

in the DV data (Table 2.2). Each line is based on the length distribution of 100 fish measured 

by the DV Software. The p values represent the difference between the length distributions in 

the alternating pairs (Kolmogorov-Smirnov test).  
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APPENDIX C ADDITIONAL STATISTICAL ANALYSIS FOR TOTAL CATCH 

COMPARISONS 

 

Difficulties occurred during the determination of the total catch datas distribution 

pattern. Therefore, a non-parametric test between two related or paired samples 

was presented in the study. However, total catch data is usually assumed to be 

normal distributed, so a paired t-test was run as an additional test (p = 0.24). 
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APPENDIX D  LENGTH DISTRIBUTION (TOTAL CATCH) 

 

A comparative analysis was done to compare the length distribution from total catch data in 

curved and straight forward trawling. No significant differences were found between curved 

and straight forward trawling when all of the twenty-four length distributions for each 

trawling method were tested in a combined test (p = 0.10). There was a significant length 

difference in ten out of fifteen hauls based on a Kolmogorov-Smirnov test. Four of the 

stations (locations 9, 10 and 12 and station 205-206) had significantly smaller fish in the 

straight forward trawling, whereas locations 3, 4, 5, 8 and 11 had significantly smaller fish in 

the curved trawling (Figures D-1, D-2 and D-3). The last station which had a significant 

difference was comparison 3-4 from Brennholm (Table 2.3), but it was hard to determine 

which trawl technique had the smallest fish due to large disruptive length distribution in haul 

203. However, this station included haul 3 which only had length measurements form 60 fish 

due to a small which may have been insufficient to give a reliable length distribution. 

 

 

 

Figure D-1. Cumulative length distribution of all total catch analysis from the methodological 

cruise except 204-205 (Table 2.3). Each line is based on the length distribution of 100 fish 
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measured by the DV Software. The p values represent the difference between the length 

distributions in the alternating pairs (Kolmogorov-Smirnov test). 

 

Figure D-2. Cumulative length distribution of all total catch analysis from Eros during the 

IESSNS survey (Table 2.4). Each line is based on the length distribution of 100 fish measured 

by the DV Software. The p values represent the difference between the length distributions in 

the alternating pairs (Kolmogorov-Smirnov test). 
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Figure D-3. Cumulative length distribution of the total catch analysis from Brennholm during 

the IESSNS survey (table 2.4). Each line is based on the length distribution of 100 fish 

measured by the DV Software. The p values represent the difference between the length 

distributions in the alternating pairs (Kolmogorov-Smirnov test). 
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APPENDIX E POWER ANALYSIS 

 

The power of a test is the probability of rejecting the null hypothesis which for this study 

means the probability of a certain amount of samples showing a significant difference 

between the two trawling methods given the data analyzed. This thesis operates with 95 % 

confidence interval, which is also the probability applied for the different trawling methods 

analyzed in this thesis.  Given these conditions, the count analysis based upon Deep Vision 

data needs 569 pared samples to have a 95 % probability of showing a statistical significant 

difference between the two methods. The high requirement of samples reflected in the results 

of the power analysis indicates a relatively little difference between the trawling methods 

(Figure 3.4).  However, given the same requirements, total weight analysis only needs 66 

pared samples. This is due to a high variance and a 53% difference in mean value, which 

reduces the number of samples to get high statistical power (figure 3.9). Plotted power 

analysis shows how the power increases with an increase in sample size (Figure E-1). 

 

 

Figure E-1. Increase in statistical power with increasing sample size. The graph on the left 

side is from the comparison in the DV count rates data and the right graph is form the total 

weight data. 
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APPENDIX F SIZE OVER TIME 

  

Analysis of fish length over time did not show any clear pattern indicating size 

related swimming capacity (Figure F-1). Linear model of average length as a 

function of elapsed time shows no significant relationship (R² = 0.002 (haul 193), 

0.087 (haul 197) and 0.004 (haul 199)) However, the analysis follows several 

small groups of mackerel and the size structure within groups of fish is shown to 

be similar with greater variation between groups. The analysis was only run from 

145 to 555 seconds, and this may be too short of an interval to detect differences 

in the length distribution over time due to swimming capacity. Furthermore, the 

analysis is only based on straight forward hauls and the result could differ during 

curved trawling.     
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Figure F-1. Linear model of average length as a function of elapsed time for mackerel 

passing through the DV unit, hauls 193, 197 and 199.  
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APPENDIX G FLOW RATE IN THE DV UNIT 

 

The water flowrate through the DV unit seems to be heavily reduced. The mean 

flow rate in the straight forward trawling was 1.6 m/s compared to 1.5 m/s in the 

curved trawling. However, a negligible difference between curved and straight 

forward trawling was found and is shown in figure G-1.  The flowrate spread was 

almost the same in the different hauls and no statistically significant difference 

was found (p = 0.63, Anova). Even if the flow rates seem to be similar in the 

different trawling methods, the high spread indicates a high variation in flow rate 

thought the DV unit. The spread in the straight forward trawling was 0.4-2.4 m/s 

and curved trawling had a spread between 0.4 – 2.6 m/s. The large difference 

between the towing speed and the water flowrate in the DV unit could be due to 

measuring errors, actual reduced flowrate due to pressure wave in front of the DV 

unit, reduced jellyfish speed and last but not least flowrate reduction for objects 

which rea near the camera in the DV channel (Rosen, 2013). 
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Figure G-1. Flow rate of passive organisms inside the DV unit during the different trawling 

methods. Trawling speed was 2.6 m sec-1 (speed over ground from GPS). The analysis was 

based on five samples in each method from each haul (40 samples per method), and the 

passive objects were jellyfish and small shrimps. There is no statistically significant 

difference between the two methods.  


