
Algorithms for Linearly Ordered
Boolean Formulas

Christian Egeland

Department of Informatics

University of Bergen

A thesis submitted for the degree of

Master of Science

June 2016





Acknowledgements

First and foremost, I must thank my supervisor Jan Arne Telle at the Department of

Informatics at the University of Bergen, for all his help and guidance throughout the

process of writing this thesis.

I would also like to thank everyone in the algorithms group for their support and

motivation in my work. To Torstein Jarl Strømme, Vigdis Sveinsdottir and Lars Kristian

Hæhre, thank you for your help in reading and providing valuable comments. And last

but certainly not least, I am thankful for my friends and family, for their support through

my years of studying and through the whole process of researching and writing my thesis.

This would not have been possible without you. Thank you.





Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 New algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Car sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Preliminary Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.1 Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.2 Graph Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.3 Boolean Satisfiability Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Interval Ordering 9

2.1 Interval Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Exact algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Heuristic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Given two orders: merging algorithm . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.4 Given one order only: algorithm for q-CNF formulas . . . . . . . . . . . . . . 15

2.2 K-Interval Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Given two orders: the Mk merging algorithm . . . . . . . . . . . . . . . . . . 21

2.2.2 Heuristics algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 PS-width of interval ordered boolean formulas . . . . . . . . . . . . . . . . . . . . . . 23

3 Experimental results 25

i



3.1 Improving Mk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Shifting heuristic (SH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 SAT competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Results for SAT RACE 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 Results for SAT COMP 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.3 Significant practical instances . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Testing linear ordering heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Generating instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 SAT encodings for the Car Sequencing Problem 39

4.1 Car Sequncing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 CNF Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Sequential Counter Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.2 Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.3 Link Cars and Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.4 Complete Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.5 Example encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Benchmarking - Car Sequencing 45

5.1 CNF-SAT encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Complete instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Capacity and Cardinality constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Conclusions 51

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A Code repository 55

Bibliography 57

ii



Chapter 1

Introduction

In this thesis we consider a class of propositional boolean formulas on which various problems related

to satisfiability are efficiently solvable by a dynamic programming algorithm. The following chapters

mainly consists of two larger parts: in the first part we describe the class of boolean formulas we

are interested in and how to find them, and in the second part we investigate whether this class of

formulas have any practical implications.

In the remainder of this chapter we provide a complete thesis overview starting with a brief

background description of the chosen topic. In order to facilitate readability, full definitions are not

provided right away, but will follow in their respective chapters.

1.1 Background

The problem of deciding whether a propositional boolean formula can be evaluated to True is called

the Boolean Satisfiability Problem (SAT). SAT was the first problem shown to be NP-complete

(Cook, 1971), and has since contributed to several theoretical results in the field of computer science.

Besides being of great theoretical importance, it has many practical applications (e. g. planning

[1], Bounded Model Checking [2]). The problem of deciding how many different ways a boolean

formula can be satisfied is called the propositional model counting problem (#SAT), and if a boolean

formula is encoded into conjunctive normal form, then the problem of finding the maximum number

of clauses that can be satisfied in the formula is called Maximum Satisfiability Problem (MaxSAT).

These two extensions provide a greater modeling power than SAT, and their associated decision

problems are as well NP-complete. Given the computational complexity of these decision problems

in general, we would like to address a smaller class of instances that allow us to find faster class

specific algorithms. A new theoretical result given in [3] provides a polynomial time algorithm for

formulas whose incidence graphs are interval bigraphs, that may be of practical use. This algorithm

works in two stages: 1) Decomposing the boolean formula into an interval ordering and 2) Using the

decomposition to solve the instance by dynamic programming (DP).

1



1.2 New algorithms

As for this thesis, we started early in 2015 to explore if stage 1) Decomposing the boolean formula

into an interval ordering was of practical use, in particular 1a) whether there exists any practical

algorithm deciding if the boolean formula has an interval ordering?, and 1b) whether this could be

applied to some real-world problems? The known exact algorithms for stage 1 are polynomial but too

slow or too complicated, and as a consequence a Greedy Heuristic (GH) for this problem was given

[3] and tested on artificially generated instances. Deciding if a formula has an incidence graph, which

is an interval bigraph, amounts to finding a linear ordering of its clauses and variables, a so-called

interval order. Another approach to make 1a more practical is to reduce the problem complexity by

assuming we are given two separate linear orders for the clauses and variables of a boolean formula

and ask if there is a way to merge them together into an interval ordering. The first contribution

of this thesis, is giving a linear time algorithm (MIO, see section 2.1.3) solving this problem. This

result is then extended by an algorithm (CMIO, see section 2.1.4) that takes a linear ordering of the

variables only, and finds a clause ordering such that they can be merged into an interval ordering,

provided there exists an interval ordering respecting this variable ordering.

In late 2015 a new paper [4] extended the results of [3] to k-interval orders and gave a fast

algorithm merging to minimum k-interval order (Mk) given two separate linear orders. When merging

into a linear order where k = 0, we have an interval order thus encompassing the previous merging

algorithm. Considering that the value of k will be strongly affected by the two linear orders being

merged, we give a new heuristic algorithm, the Barycenter heuristic algorithm (BH), that produces

the input to Mk: i. e. two separate linear orders. Presumably, when merged by Mk, the resulting

ordering will have a k-value not too far from its optimum. We have also created a new algorithm

called the Shifting heuristic (SH), which optimizes the output of Mk. See section 1.3 for a short

description of SH. These new algorithms is our attempt to make part 1a feasible and giving us the

tools we need to answer part 1b. After the introduction of these algorithms we continue with an

empirical study. A simple overview of these algorithms is provided in the table below, describing

their input, output values and where they originated from. The symbols σ and ρ indicates a linear

ordering on the variables and clauses in a CNF formula.

2



Algorithm Input Output Origin
MIO G = (var, cla, E),

σ(var) and ρ(cla)
σ(var ∪ cla) New in this thesis

CMIO G = (var, cla, E),
σ(var)

σ(var ∪ cla) New in this thesis

GH G = (var, cla, E) σ(var ∪ cla) First given in paper [3]
Mk G = (var, cla, E),

σ(var) and ρ(cla)
σ(var ∪ cla) and k-value First given in paper [4]

BH G = (var, cla, E),
σ(var) and ρ(cla)

σ(var) and ρ(cla) First given in [5], but was
independently discovered in
this thesis.

SH G = (var, cla, E)
and σ(var ∪ cla)

σ(var ∪ cla) and k-value New in this thesis

Table 1.1: Overview of the algorithms presented in this thesis. Various combinations of some of these
algorithms are used in the experimental part for computing a total linear ordering and its k-value of
a CNF formula.

1.3 Experiments

In the experimental part of this thesis, we compare the various algorithms presented in this thesis by

applying them to a broad variation of boolean formulas, where the primary goal is to minimize k,

leading us towards classes of problems that have a nice linear structure. For the first experiment we

benchmark problem instances taken from different SAT competitions. These competitions have many

practical problem instances, allowing us to test a large amount of instances for linearity (i. e. finding

a linear ordering for which k-value is low). We then continue with comparing GH+Mk with BH+Mk

on the same artificially constructed instances used in [3], making it an ideal test to see how well they

both minimize k knowing the optimal value is zero. The BH algorithm is an iterative procedure

that (seems to) improve the k-value in a linear ordered CNF formula progressively by the number

of iterations and approach a local optimum. Given this observation, we run BH multiple times

varying the number of iterations for each tested instance. GH is an algorithm designed specifically

for creating a linear ordering on CNF formulas having an interval ordering, and as a result, we do

not expect BH+Mk to outperform GH on the artificially constructed instances from [3], but certainly

perform reasonably well on these instances. Based on early results from running experiments with

Mk, we discovered a negative consequence with a certain bias in the merging policy. This problem

lead us to a simple shifting heuristic (SH), that given an Mk-merged ordering, SH shifts clauses

based on a symmetry property and thereby improves the linear decomposition. We have included

additional tests using the combinations BH+Mk+SH and GH+Mk+SH, as they are able to lower

the k-value even further. We have provided a flowchart in figure 1.1 explaining how the experiments

are conducted.

3



Start
Read CNF Formula

And create incidence graph G

Which preprocessing 
Algorithm?GH

Solve MaxSATSolve #SAT
Which problem 

to solve?
MaxSAT#SAT

Output result

100

Mk 

Merge σ(VAR) and ρ(CLA) 
into a single total ordering

BH

1000 10000

How many 
iterations of BH?

Shift total 
ordering?

Input: Incidence Graph G
Output: total linear ordering σ 

SH
Input:    σ(VAR   CLA) 
Output: σ(VAR   CLA)

No

Yes

Extract CNF formula into 
two linear orders: 
σ(VAR) and ρ(CLA) 

Extract CNF formula into 
two linear orders: 
σ(VAR) and ρ(CLA) 

SO

Extract total linear ordering 
into two linear orders: 
σ(VAR) and ρ(CLA) 

Algorithm Decision Start/End
Extracting 
Procedure

Figure 1.1: Flowchart displaying algorithms used for benchmarking throughout this thesis.

4



1.4 Car sequencing

After benchmarking instances from the SAT competitions and the artificially constructed CNF

formulas that have an interval ordering, we go into a deeper analysis of a particular problem called

Car Sequencing. We follow the paper [6] and describe how they encode a CNF formula from an

instance of the car sequencing problem. After providing this description we create CNF formulas for

car sequencing instances and run the same benchmarking algorithms as for the SAT competitions

and artificially constructed CNF formulas. After this experimental part, we conclude the thesis with

the contributed results, as well as listing questions open for further investigation.

1.5 Preliminary Terminology

For the convenience of the reader we define the general terminology used throughout this thesis for

easy reference. More specific terminology is introduced in the appropriate chapters. Most of the

notation and definitions in this thesis follows a standard mathematical description.

1.5.1 Graph Theory

Graph A graph G is a pair (V,E) where V is the set of vertices and E is the set of edges in G. An

edge e is a binary relationship between two vertices u and v in G. Two vertices u and v are

adjacent if there ∃e ∈ E such that u and v are the endpoints of e.

Simple directed graph A graph is simple if it there are at most one edge between any pair of

vertices, and it is directed if each edge has an direction, i. e. for a vertex x and a vertex y, the

edge xy is an directed edge from x to y.

Subgraph A subgraph G′ is the graph obtained by taking a subset of vertices and edges from G,

denoted G′ ⊆ G.

Induced subgraph An induced subgraph H, of a graph G, is the graph obtained by taking any

S ⊆ V (G), and for every pair of vertices x, y ∈ S, if xy ∈ E(G), then xy ∈ E(H). This induced

subgraph H is denoted by G[S].

1.5.2 Graph Classes

As it is very unpractical to work with all graphs together, we separate them into classes. We would

then like to find more efficient algorithms for the specific classes.

Bipartite Graph Bipartite graphs (bigraphs) are a class of graphs where there exists a partition

of the vertices into two disjoint sets A and B such that every edge in G is adjacent to some

vertex u ∈ A and some vertex v ∈ B. Equivalently, a bipartite graph is a graph that is two

colored, that is for any edge each endpoint has opposite colors. For any graph G we can define

5



a bipartite subgraph by taking a subset of vertices A ⊆ V (G) and keeping only edges which

have an endpoint to a vertex in A and another in V (G)\A = Ā. We denote this bipartization

of the graph G by G[A, Ā[.

Figure 1.2: Bipartite graph

Interval Graph We say that a graph is an interval graph if we can assign a closed interval Iv on the

real line for each vertex v ∈ V (G) such that for any two vertex intervals Iu and Iv they intersect

if and only if uv ∈ E(G). An interval graph with its interval representation is illustrated in the

figure below. See chapter 2 and figure 2.3 for an example of an interval bigraph.

Figure 1.3: An interval graph with its interval representation

1.5.3 Boolean Satisfiability Problem

Propositional Boolean Formula A propositional boolean formula is a well formed mathematical

expression consisting of variables, parentheses and the operators AND, OR and NOT. The

variables can only take on boolean values, true or false.

SAT The boolean satisfiability problem, asks whether we can assign boolean values to variables in a

propositional boolean formula such that the formula is evaluated to true. In this thesis we will

only consider SAT encoded into CNF.

CNF Formula A propositional boolean formula in conjunctive normal form (CNF) consist of

conjunction of clauses, where each clause is a disjunction of literals contained in parenthesis.

A literal is a variable x or a negated variable ¬x. Example of a simple formula in CNF:

(x1 ∨¬x2)∧ (x2 ∨x3)∧ (¬x1 ∨¬x3). We let cla denote the clauses and var denote the variables

6



in the CNF formula. In this thesis we will only consider boolean CNF formulas encoded in the

DIMACS CNF format.

DIMACS CNF format The DIMACS CNF format is a widely used format for encoding CNF

formulas in text files.

The input file usually starts with comments, starting with the letter c. A line starting with p

defines the number of variables and clauses. Each of the next lines describes a clause: a positive

integer corresponds to a positive literal, while a negative integer corresponds to a negative

literal. Each of the clause lines ends with zero.

c A Sample .cnf file with 6 variables and 5 clauses.
p cnf 6 5
1 -2 3 0
-3 4 6 0
2 6 -1 0
-5 3 -4 0
5 -2 -6 0

This file encodes the following CNF formula:

(x1 ∨ ¬x2 ∨ x3) ∧ (¬x3 ∨ x4 ∨ x6) ∧ (x2 ∨ x6 ∨ ¬x1) ∧ (¬x5 ∨ x3 ∨ ¬x4) ∧ (x5 ∨ ¬x2 ∨ ¬x6)

Incidence graph of a CNF formula An incidence graph of a CNF formula F is the bipartite

graph I(F ) = (V,E) where V = cla(F ) ∪ var(F ) and for a variable x ∈ var(F ) and a clause

c ∈ cla(F ), then if x ∈ c we have xc ∈ E.

q-CNF formula A q-CNF formula is a CNF formula where each clause has exactly q literals.

MaxSAT The MaxSAT problem asks what the maximum number of clauses is in a CNF formula

that can be satisfied by some assignment to the variables.

#SAT The #SAT problem asks how many distinctive assignments satisfies a CNF formula.

1.6 Thesis structure

The reader should now be familiar with some of the terminology used throughout this thesis. In

chapter 2, we first introduce interval orderings for CNF formulas and explain why such orderings are

interesting. Secondly, we relax the properties of interval orderings to cover more CNF formulas, and

lastly, we present algorithms finding such orderings. Next, in chapter 3, we apply the algorithms

presented in chapter 2 to a wide range of SAT instances with the objective of trying to find real

world problems having close to linear structure. Based on the test results we provide an improvement

to these algorithms in chapter 3. In chapter 4, we go into depth of a particular problem called Car

Sequencing. The whole chapter describes how to encode a car-sequencing problem instance into an

equivalent boolean CNF formula, and in chapter 5 we measure how linear these formulas are with

7



respect to interval orderings. Finally, in chapter 6, a summary of the results and open problems is

provided.

8



Chapter 2

Interval Ordering

In this chapter we define (k-)interval ordering for CNF formulas and give algorithms finding such an

ordering if they exist, both with and without certain given linear orders on the variables and/or on

the clauses. The major advantage of finding such structural properties in a CNF formula is that we

can use it to apply efficient algorithms solving these instances. In section 2.1 we provide a formal

definition of an interval ordering and how such orderings may be found under various restrictions. In

section 2.2 we extend the definition of an interval ordering to a k-interval ordering, where the k-value

defines a class border (i. e. the higher the k-value is, the larger the class is. CNF formulas with an

interval ordering have k-value = 0). In section 2.3 we provide a full proof for an implicit result in [3]

for CNF formulas having an interval ordering.

2.1 Interval Ordering

Definition 2.1. A CNF formula has an interval ordering if it is possible to linearly order (ordering

of the elements is indicated by <) the variables and clauses such that for any variable x appearing in

clause C:

1. for any variable x′ where x < x′ < C then x′ also appears in C,

2. for any clause C ′ where C < C ′ < x then x also appears C ′.

Definition 2.2. A bigraph G = (A ∪B,E) is an interval bigraph if we can map every vertex from

A∪B into an interval on the real line such that for every u ∈ A and v ∈ B their interval intersects if

and only if uv ∈ E. See figure 2.3.

For completeness we give a full proof of the equivalence of these two notions.

Lemma 2.3. A CNF formula F has an interval ordering if and only if the incidence graph of F is

an interval bigraph.

Proof. ⇒ Assume we have a set Z = var(F ) ∪ cla(F ) and an interval ordering π on Z. We can

construct an interval bigraph I from π by first mapping the elements as they appear in π into the

9



intervals [i, i]. See figure 2.1 for an example. We continue the construction of I by extending the

intervals of each element in the following way: If zi represents a variable x, we extend the left endpoint

of the interval until it intersects all the clauses x occurs in that appear before zi in π. This ensures

that if a clause C containing x appears before x then their interval intersects. If zi represents a

clause C, then we extend the left interval until it intersects all the variables occurring in c, appearing

before zi in π. This ensures that if x appears before C in the ordering then their interval intersects.

By this procedure we add all the necessary edges in I(F ) to I only by extending the intervals in

one direction. See figure 2.3 for an example. It is easy to see that the graph is an interval graph, so

Figure 2.1: Interval graph

we need only to show that it is consistent with I(F ). By the construction we know that at least all

edges in I(F ) are present, and since π is an interval ordering there cannot be any other edges than

those in I(F ). By extending the interval to the left for a variable x, we know that all the clauses we

intersects must contain x (property 2 of an interval ordering). And by extending the interval for a

clause C, every variable we intersect must be a member of C (property 1 of an interval ordering).

Since the graph we are interested in is a bipartization between clauses and variables, we see that I is

indeed an interval bigraph.

⇐ To construct an interval ordering π from an interval bigraph I of I(F ), we order the vertices

by their rightmost endpoint on its intervals in increasing order. See figure 2.2 for an example. If

x1
c1
x2
x3
x4
c3
x5
x6
c4

Figure 2.2: Interval ordering from graph using right endpoints (highlighter in green):
(x1, c1, x2, x3, x5, x4, c3, x6, c4). Note that x5 < x4.

two intervals share the same rightmost point we choose one arbitrarily. To see that this procedure

10



is correct, consider whenever we add a variable x to the linear ordering, then for any clause C

intersecting x which is added later to the ordering, C must either end simultaneously or at a later

point than x. If the algorithm then positions any variable x′ between x and C, x′ must intersect C,

since it cannot end later than C ends or before x ends, preserving condition 1 of an interval ordering.

And if we have a clause C added to the ordering, then any variable x occurring in C added after C

in the linear ordering must end simultaneous or after C. Then for any other clause C ′ the algorithm

positions in between C and x in the linear ordering, C ′ cannot end before C ends or after x ends,

x will then intersect C ′ as well, preserving condition 2 of an interval ordering. This completes the

proof.

Example 2.4. F := (x1 ∨ x̄2) ∧ (x2 ∨ x̄3 ∨ x5) ∧ (x3 ∨ x̄4 ∨ x5). Labeling the clauses by ci where i

indicates the i-th clause in F . We can easily see that the following ordering: x1 c1 x2 x3 c2 c3 x4 x5 on

F is an interval ordering by looking at the bipartized interval representation, see figure 2.3.

x1

c1

x2

x3

c2

c3

x4

x5

Figure 2.3: Incidence graph of F to the left and its interval intersection model to the right, showing
that it is an interval bigraph.

2.1.1 Exact algorithm

Deciding whether a boolean formula can be linearly ordered into an interval ordering can be solved

in time O(|V ||E|6(|V |+ |E|)log|V |) by an algorithm published by Haiko Muller in 1997 [7]. A faster

algorithm claiming a runtime O(|V |(|V |+ |E|)) was posted on arxiv in 2012 [8]. We will not go into

details of these algorithms as they are polynomial but either too slow in practice or too complicated

for doing an implementation as part of this master’s thesis.

2.1.2 Heuristic algorithm

A greedy heuristic algorithm for finding a linear ordering on boolean formulas that hopefully is close

to an interval ordering was given in [3]. The algorithm is given below as we will compare this method

to other approaches later on.

11



Algorithm 2.1 GreedyOrder (GH)

input: G = (V = (cla, var), E), a bigraph
output: σ, a linear ordering on the vertices

L = ∅, R = V , i = 1
for all v ∈ V set Ldegree(v) = 0
while R is not empty do

choose v: from vertices in R with max Ldegree take one of smallest degree
σ(i) = v, increment i, add v to L and remove v from R
for all w ∈ R with vw ∈ E increment Ldegree(w)

end while

The GreedyOrder heuristic (GH) is a greedy algorithm which takes as input a bipartite graph

G = (cla, var, E), and outputs a linear ordering σ over all its vertices. For increasing values of i, GH

assigns σ(i) to be a vertex which has the highest number of already assigned neighbors, and among

these choosing one which has the fewest non-assigned neighbors.

2.1.3 Given two orders: merging algorithm

In this section we give an algorithm which solve a more restricted problem than the exact algorithms

in section 2.1.1, normally the problem where given two separate linear orderings for the clauses and

variables of a boolean formula, can these be merged together into an interval ordering while keeping

their respective orders? We consider this problem to be worthwhile researching as there might be

boolean formulas where a natural linear ordering of its variables, and a separate linear ordering of its

clauses are known. Another reason this can be valuable is that we can solve the general problem

in steps (i. e. we decide orders for the variables and clauses first, and then, if possible, merge them

together into an interval ordering), rather than in one complex algorithm. In this section we give an

exact algorithm solving this merging problem in time O(|V |+ |E|).

The merging algorithm takes as input: a bipartite graph G = (cla, var, E) and two linear orderings,

σ(var) = {x1, x2, ..., xn} and ρ(cla) = {c1, c2, ..., cm} , and then outputs: a total linear ordering

over var and clacorresponding to an interval ordering iff there exist an interval ordering respecting

σ(var) and ρ(cla). Before giving the actual merging algorithm we must define a few important graph

concepts and the graph structure prohibiting construction of an interval ordered boolean formula.

Definition 2.5. A forbidden structure of a graph class C is an induced subgraph H which breaks

certain properties of the graph structure. We call such structures an obstruction of the graph class C.

We have two such obstructions for an interval ordering arising from merging 2 orders, particularly

H1 and H2 illustrated in figure 2.4.

12



H1 :

A B

x y

H2 :

A B C

x y z

Figure 2.4: Obstructions when merging a boolean formula into an interval ordering. H1 to the left
and H2 to the right. The variables are x, y and z, while the clauses are A, B and C. Variables and
clauses are ordered such that x < y < z and A < B < C. A solid edge represents an edge from the
incidence graph, a dotted edge is non-edge in the incidence graph, while any other edge combination
can occur in the incidence graph.

Lemma 2.6 (Interval Ordering Obstructions). For a bigraph G = (A ∪ B,E) with linear orders

σ(A) and ρ(B), if either G[S] = H1 or G[S] = H2, for some S ⊆ V (G), then G[S] obstructs the

properties of an interval ordering arising from merging of σ(A) and ρ(B)

Proof. First, consider H1. By definition 2.1, we cannot order y after B since y ∈ A but y /∈ B.

Furthermore we have that we cannot order y before B, since x ∈ B but y /∈ B. As a result there are

no valid position for y to be ordered into. Next, consider H2, by definition 2.1, we must order z before

B since z ∈ A but z /∈ B. This gives us the following ordering x < y < C. However, given x ∈ C and

y /∈ C, y cannot be ordered before C, giving no valid position for y to be ordered into. We note that

the obstructions in Figure 2.6 and Lemma 2.7 appear in the paper [4] which was published while

work on this thesis was ongoing. However, the following algorithm for merging interval orderings

appear only in this thesis and was discovered independently by the author.

Lemma 2.7. For a bigraph G = (cla, var, E), with linear orders σ(var) = {x1, x2, ..., xn} and

ρ(cla) = {c1, c2, ..., cn}, there exist an Interval Ordering of the vertices arising from merging σ(var)

and ρ(cla) if and only if G does not contain any of the obstructions from lemma 2.6.

Proof. ⇒ By lemma 2.6 there cannot exist any such obstruction.

⇐ If the bipartite graph G does not induce any of the obstruction from lemma 2.6, we can merge

σ(var) and ρ(cla) together to form an interval ordering by the merging algorithm below. The

algorithm orders each variable from σ(var) into ρ(cla), while respecting the order σ(var).

13



Algorithm 2.2 MergeIntervalOrder

input: G = (cla, var, E), σ(A) = {x1, x2, ..., xn} and ρ(B) = {c1, c2, ..., cm}
output: Interval ordering on var ∪ cla respecting σ(var) and ρ(cla) if one exist.

Merge variables into ρ(B) preserving condition 1:
for j := 1 to n do

Insert xj into the lowest valid position in ρ(B) by the following rules:

• xj must be ordered after xj−1

• xj must be ordered after every clause C containing any variable xi where i < j for which
xj /∈ C (Condition 1 of interval ordering)

end for

Check for violation of condition 2:
for all xj ∈ ρ(B) do

Let A be the leftmost clause containing xj
if ∃ a clause B where A < B < xj and xj /∈ B then

return fail
end if

end for

return ρ(B)

Correctness: If the algorithm succeeds we clearly have an interval ordering, since both conditions

are preserved. (i. e. the first loop preserves the first condition, while the second loop verifies that

the second condition holds as well). However, if the algorithm fails we have ordered at least one

variable xj too far to the right in the ordering, violating condition 2. We now prove that we cannot

move xj further left to fix this violation. Without loss of generality, let z be the leftmost variable

in the ordering for which the algorithm fails. We then know that for some clause A and B, where

A < B < z, z appears in A, but not in B, violating condition 2. We use this property to show that

this gives us at least one of the obstructions H1 or H2:

1. If there exist some variable x where x < z, and x appears in B, we get the obstruction H1, and

we are unable to move z before B.

2. Assume there is no such variable as in 1, i. e. no variable x such that x < z and x ∈ B. Then

there must be some other clause, or clause and variable prohibiting z from being ordered before

B. This requires a four step case analysis.

(a) If we only have clauses between B and z then there must be some clause C where

B < C < z which has at least one variable y where y < z and y ∈ C but z /∈ C. This

gives us obstruction H1.

(b) If there are only variables between B and z then let y be the first variable after B such

that B < y < z. But given we assume B has no variables x where x < z, y would be

positioned before B, contradicting the order B < y.

14



(c) If there are both variables and clauses between B and z then these variables are never

positioned right after B by the argument in 2b. Let y be the first variable after B where

B < y < z and let C be the clause appearing before y. Since y was not ordered before

C, C must contain a variable x′ where x′ < C and x′ ∈ C. If not y would be positioned

before C. If z /∈ C we have the first obstruction H1. Since z ∈ A, z /∈ C and x′ ∈ C

where the orders are A < C and x′ < z. Assume therefore that z ∈ C, but this will give

us the obstruction H2. Since z ∈ A, z /∈ B, z ∈ C, y /∈ C and x′ ∈ C where the orders are

A < B < C and x′ < y < z. This completes the proof.

Runtime: To achieve O(|V |+ |E|) we describe the implementation we made for this algorithm.

First, consider the merging loop. The outer loop runs in time O(n). When positioning the

variables into ρ(cla) we will only need a single pass through the possible positions (this is because

we cannot change the two orderings). Giving us runtime O(n+m) = O(|V |). When validating a

position for some variable xj we can use a counter to represent the number of different clauses xj

must appear in (based on condition 1), and a boolean array over all clauses, where an clause element

is set to true if xj must appear in it (i. e. we try to position xj before clauses containing a variable xi

where i < j). This takes time O(deg(xj)) to validate a single position. We check if the clauses xj

are adjacent to contains the required ones, compare the ”hit” clauses with the counter. If it was

an invalid position, then we must increment the position until we change at least one clause from

true to false in the boolean array. For each next position check if the passed clause required xj ,

time O(1) using the boolean array. Continue until you match the required clauses. When a valid

position is found, update the boolean array based on condition 1. Positioning xj takes a total time

of O(deg(xj) + #checkedpositions). Given that we proceed with the next position if we found it

to be invalid for some variable the total time to validate all positions for all variables is at most

O(|cla|+ |var|+ |E|) = O(|V |+ |E|).

Second, consider the next loop for condition 2. Find clause A for the variable xj , then check if

xj appears in all clauses between them. There cannot be more than deg(xj) such clauses. For all

variables, we can check this condition in a total time O(|V |+ |E|). And the proof is complete.

2.1.4 Given one order only: algorithm for q-CNF formulas

We consider q-CNF formulas where every clause has q literals. In this section we present an algorithm

for finding an interval ordering for a q-CNF boolean formula φ when given a specific ordering for the

variables only, provided there exists an interval ordering of φ respecting the given ordering for the

variables. The algorithm works by finding a permutation of the clauses in φ, such that it can be

merged by the interval merging algorithm. The need for the restriction to q-CNF formulas becomes

apparent in the proof of Lemma 2.8, for Rule 3.

15



We have already proved that we can merge two orders for the clauses and variables given they

do not induce any of the obstructions in Lemma 2.6. Therefore our objective will be to resolve any

potential obstructions induced by the clauses over the given ordering on the variables. We define

three rules for handling the possible obstructions in Figure 2.6 that can arise between any pairs of

clauses A,B, or triples A,B,C.

• R1: If obstruction H1 can be formed then place B before A.

• R2: If obstruction H2 can be formed and B has additional edge to a variable before z, then

place B before A and C. (note that A and C are symmetric with respect to B, i. e. it does not

matter if A < C or C < A).

• R3: If obstruction H2 can be formed and B has no additional edges to variables before z, then

place B after A and C. (note that A and C are symmetric with respect to B, i. e. it does not

matter if A < C or C < A).

For rule R1, it is easy to see that for obstruction H1, B must appear before A in any clause ordering,

see figure 2.5 for an illustration. For obstruction H2 this seems non-trivial, but given we are not

allowed to change the ordering of the variables we can still decide how these clauses should be ordered

by a few observations.

A B

x y

⇒

AB

x y

Figure 2.5: H1 is resolved by moving clause B before clause A. A solid edge represents an edge
from the incidence graph, a dotted edge is non-edge in the incidence graph, while any other edge
combination can occur in the incidence graph.

Considering H2, we must find every clause B and order them either before or after A and C,

since B cannot be inserted in between. The following lemmas provides rules R2 and R3 for ordering

A, B and C.

Lemma 2.8. Given an incidence graph of a boolean q-CNF formula G = (cla, var, E) and a linear

ordering σ(var) = {x1, x2, ..., xn}, if the obstruction H2 can be formed, and B has an edge to a

variable appearing before z, B must be positioned before A and C.

Proof. Assume B has an edge to a variable x′ appearing before z where B is positioned after A and C.

We then immediately observe that the induced subgraph given by Az and Bx′ gives the obstruction

H1. See figure 2.6. As a result B must be ordered before A, and then again before C, giving us R2.

16



A B C

x y zx′
=

A BC

x y zx′

Figure 2.6: Obstruction H1 is highlighted in red. A solid edge represents an edge from the incidence
graph, a dotted edge is non-edge in the incidence graph, while any other edge combination can occur
in the incidence graph.

Lemma 2.9. Given an incidence graph of a boolean formula G = (cla, var, E) and a linear ordering

σ(var) = {x1, x2, ..., xn}, if the obstruction H2 can be formed, and B only has edges to variables

appearing after z, B must be positioned after A and C.

Proof. Given the obstruction H2 we know that the clause C must be positioned before the variable

y in any interval ordering (see rules for interval ordering). If we then position B before C, we know

C must contain every variable in B (see rules for interval ordering). If not we then observe that

for some variable x′, where x′ /∈ C that the induced subgraph given by Cx and Bx′ gives us the

obstruction H1. However, given every clause has the same size q, C cannot contain everything B

does, as well as the variable z. As a result B must be ordered after C, and then again after A, giving

us R3. See figure 2.7.

A B C

x y z x′

Figure 2.7: If B is positioned before C we get the obstruction H1 which is highlighted in red. A solid
edge represents an edge from the incidence graph, a dotted edge is non-edge in the incidence graph,
while any other edge combination can occur in the incidence graph..

We have now obtained three rules of ordering, R1, R2 and R3. To represent these rules over the

clauses, we can build a simple directed graph R where each clause is represented by a single vertex.

We add a directed edge from vertex A to vertex B in R iff one of the rules R1, R2 or R3 tells us that

A must be ordered before B in a final linear ordering of the clauses and variables.

Definition 2.10. (Rule graph) A simple directed graph R which represents the rules R1, R2 and

R3 over the clauses of a boolean formula is called a rule graph.

Lemma 2.11. A rule graph R must be acyclic to prevent any obstruction.

17



Proof. To make an interval ordering we need to position every clause and variables into a linear

ordering without admitting any of the obstructions H1 and H2. For any cycle C in R with vertices

v1, v2 . . . vt, where v1 points to v2 and so on, until vt, this means they must be ordered in this exact

order, and we cannot have an edge from vt pointing to v1 as it creates a contradiction, vt cannot be

both before and after v1.

Lemma 2.12. Given an acyclic rule graph we can order the clauses such that the clause ordering

does not induce any of the obstructions H1 or H2.

Proof. By topological sorting the acyclic rule graph we get a linear ordering of the clauses where

every edge is directed from left to right. This ordering then respects all the rules in the rule graph,

giving us no obstructions in the bipartite graph induced by this new clause ordering and the given

variable ordering σ. To see why this is true, let R be a rule graph with a topological sorting, then

consider the following:

1. For any clause A < B in the topological sorting, assume A and B induces the obstruction H1

over the variables ordering. Then by rule R1 B would have an edge from B to A, contradicting

A < B.

2. For any clause A < B < C in the topological sorting, assume A, B and C induces the obstruction

H2 over the variables ordering. Then by the rules R2 or R3 B would either have an edge from

B to A and C, or from A and C to B, contradicting A < B < C.

See [9] for a proof of a topological sorting algorithm and its runtime complexity.

The lemmas presented in this section give rise to the next theorem 2.13 for solving the problem of

recognizing an interval ordering in a boolean q-CNF formula, given a strict ordering for the variables.

Theorem 2.13. Given a q-CNF boolean formula φ with n variables and m clauses and a linear

ordering σ for the variables, we can in time O(q ·m3) find a permutation of the clauses, such that we

can merge them into an interval ordering, provided there exists an interval ordering of φ respecting σ.

Proof. We provide algorithm 2.3 for solving this problem, and prove it solves the problem in the

given time.

Correctness: The algorithm applies rules R1, R2 and R3 to construct the rule graph R. Applying

Lemmas 2.7, and 2.12 correctness follows.

Runtime: To prove this algorithm runs in time O(q ·m3), we need to prove that we can build the

rule graph R within this time bound. The rule graph is represented by an adjacency matrix such

that an edge insertion takes constant time. For each variable in σ(var), we store its positions

in the linear ordering into an array pos[] (i. e. if variable x4 is positioned as the fifth variable

18



from the left, we let pos[x4] = 5), takes time O(n). For each clause we store its lowest variable

position in in the variable ordering (i. e. if variable x is the leftmost variable appearing in a

clause C, store x in the array leftmostV ariableInClause[C]), takes time O(m · q). We will

need the following observation to prove the correctness of R1:

Observation 2.14. If two clauses C < C ′ induces an obstruction over a variable x ∈ C ′ and a

variable z ∈ C, such that x < z, then H1 will also be induced over any other variable x′ ∈ C ′

where x′ < x.

For R1 For each pair of clauses we check if they induce the obstruction H1 from the variable

ordering. We must consider each of the two orderings C < C ′ and C ′ < C. Start with

C < C ′ and do the following: let x be the leftmost variable in C ′ (using observation

2.14). Then if there exist a variable z ∈ C such that pos[x] < pos[z] and z /∈ C ′, add

the appropriate edge. Checking this takes time O(q), since we only need to consider one

variable from C ′ and every variable in C. Repeat this for C ′ < C. In total we get the run

time O(qm2).

For R2 and R3 Consider the obstruction H2. It takes time O(mq) to find every clause with the

property of C (i. e. for each clause find its most left variable x and its most right variable z

and see if the following is true: pos[z]− pos[x] > q − 1, then there is at least one variable

y inside this sequence such that C < y). For all variables in C that have the property of

z in H2 we find its corresponding clauses A and B. In total we have m− 1 such clauses.

Then for each clause B, do the following: check if its leftmost variable is positioned before

z (using array leftmostV ariableInClause), if all agree on the same direction, then we can

add the appropriate edges, if they disagree then all A’s must be both before and after B

which is not possible. This takes O(m2) time. Resulting in a total runtime O(q ·m3) which

completes the proof.

We believe that the runtime in theorem 2.3 can be reduced to O(q ·m2) by using more sophisticated

data structures. This is because in a simple graph there cannot exist more that m2 edges, but the

algorithm we have created add the same edge multiple times. This improvement is left for future

work.

2.2 K-Interval Ordering

In this section we follow the paper [4] and generalize the interval ordering for CNF formulas to

k-interval orderings. Note that an interval ordering is a 0-interval ordering. This will cover more

classes of CNF formulas, in fact any CNF formula has a k−interval ordering for some value of k, but

19



Algorithm 2.3 q-CNF MergeIntervalOrder

input: G = (cla, var, E) and a linear ordering σ(var) = {x1, x2, ..., xn}
output: an interval ordering on cla ∪ var iff an interval ordering exists respecting σ

R = cla . Graph with the clause nodes from G

For rule R1:
for each clause c ∈ cla do . Takes time: O(m)

for each clause c′ ∈ cla where c′ 6= c do . Takes time: O(m)
if c and c′ induce H1 then . Takes time: O(q)

add edge c→ c′ in R
end if

end for
end for

For rule R2 and R3:
for each clause c ∈ cla do . Takes time: O(m)

if c has the properties as C has in H2 then
for each variables in c having the property as z as in H2 do . Takes time: O(q)

find all A and B . Takes time: O(m), (done once)
if A 6= ∅ and B 6= ∅ then

if any B is adjecent to vertex before z then . Takes time: O(m), (done once)
add edges B → C and B → A in R . Takes time: O(m2)

else
add edges C → B and A→ B in R . Takes time: O(m2)

end if
end if

end for
end if

end for

if R can be topological sorted then . Takes time: O(m+ |E(R)|)
ρ = the topological sorted clause ordering
return interval ordering from merging σ and ρ with graph G

else
return ”impossible”

end if

the value k could be as large as the number of variables. We are interested in formulas having low

k-value as the underlying DP algorithms for solving MaxSAT and #SAT run exponentially in this

k-value. We do not know of any polynomial time exact algorithms for this problem in the general

case and will instead focus on limited structure. In [4] an algorithm is given for merging two linear

orders, one for the clauses and one for the variables, into a k-interval ordering such that the value of

k is minimized. This algorithm is similar to the merging algorithm presented in section 2.2, and for

k = 0 we have an interval ordering. Before describing this algorithm we start by a formal definition.

Definition 2.15. For any bipartite graph G = (cla, var, E), if we can add at most k edges to each

vertex in cla making it into an interval bigraph, then we define G as a k-interval bigraph. For a CNF

formula F , if its incidence graph is a k-interval bigraph, then F is a k-interval CNF formula. We

20



extend the interval ordering for such graphs to a k-interval ordering.

Lemma 2.16. A CNF formula is a k− interval CNF formula if and only if the clauses and variables

can be totally ordered such that: for any clause C there are at most k variables x not appearing in C

where either, C < x with some clause C ′ < C and x appearing in C ′, or x < C with some variable

x′ < x and x′ appearing in C.

Proof. Follows from definition 2.1 and 2.15.

Observation 2.17. Note that in lemma 2.16 an upper boundary on the k-value is given by number of

variables in the CNF formula. We will use this observation through the entire experimental part of

the thesis.

2.2.1 Given two orders: the Mk merging algorithm

Given an incidence graph G = (cla, var, E) and two linear orders, one for the clauses and one for the

variables, we can merge them into a total linear ordering in time O(k |E|) where k is minimized using

the Min k-interval merging (Mk) greedy algorithm. To find the minimized value of k we incrementally

test whether it is possible to merge the two orders using some value k, starting from 0. The algorithm

is given below. A proof of correctness and its runtime can be found in [4].

Algorithm 2.4 Min k-interval merging (Mk)

input: G = (cla, var, E), σ(A) = {x1, x2, ..., xn} and ρ(B) = {c1, c2, ..., cm}
output: minimum k such that the given orderings can be merged to a k-interval ordering

k = −1
L k = k + 1
start with the ordering x1, x2, ..., xn
for i := m down to 1 do

insert ci at the highest position below ci+1 where EdgesAdded(ci) ≤ k
if no such position exist then break out of loop and goto L

end for

2.2.2 Heuristics algorithm

To obtain a total linear ordering over a CNF formula with a low k-value by the Mk algorithm, we

need as input two linear orderings for the clauses and variables that, when merged by Mk, achieves a

low k-value. To find these two input orderings we introduce a heuristic procedure, the Barycenter

heuristic (BH), as computing the best linear orderings is probably not efficient. BH takes as input a

CNF formula, extracts two linear orderings over the clauses and variables simply by their ordering in

the CNF formula, and then reorders them to provide a good input to the Mk algorithm. BH reorders

the two linear orderings based on the following assumption:

• In a total linear ordering for a CNF formula having the lowest possible k-value, a clause will

not be too far away from the variables appearing in it.

21



This since the larger the separation is by non-member variables, the k-value generally increases. BH

works by alternating between reordering clauses and reordering variables based on their neighbors

average position (e. g. for a clause C, if Cs variables are in position 3,9,15, its average position

is 3+9+15
3 = 9). The new ordering for C is then based on this average position (e. g. a clause

with an average variable position 8 is ordered before a clause with an average variable position

9). By repeating this procedure for all clauses and then variables multiple times, we narrow the

gap between a clause and its variables. The number of iterations depends on the size of the

formula, but as the experimental chapter 3 reveals, we do not necessarily need to run BH until

convergence (i. e. k-value is not improved by applying more iterations) as it does not improve the

k-value substantial beyond a constant number of iterations. The BH algorithm algorithm runs in

Algorithm 2.5 Barycenter Heuristic (BH)

input: G = (cla, var, E), σ(var) = {x1, x2, ..., xn}, ρ(cla) = {c1, c2, ..., cm} and i = #iterations
output: ζ, a linear ordering on cla ∪ var

orderV ars = true

while i ≥ 0 do . Takes time: O(#iterations)
if orderV ars = true then

for each variable x in σ(var) do . Takes time: O(|n|)
Calculate the average position of all clauses x occurs in. . Time: O(deg(x))
Place x accordingly to its average position. . Sorting: O(log(n)n)

end for
orderV ars = false

else
for each clause C in ρ(cla) do . Takes time: O(|m|)

Calculate the average position of all variables C contains. . Time: O(deg(C))
Place C accordingly to its average position. . Sorting: O(log(m)m)

end for
orderV ars = true

end if
i = i− 1

end while

Run Mk on σ(var) and ρ(var), and return the merged total linear ordering:
Return Mk(G, σ′(var) and ρ′(cla)).

time O(#iterations · (max(n,m)2) · log(max(n,m))) which is sufficient for any of the tested boolean

formulas. When discovering the BH heuristic algorithm we found that it is also used as a heuristic

for a well known problem called Two-Sided Crossing Minimization(TSCM). This is also where the

Barycenter name came from. The TSCM problem asks to minimize the number of edge crossings in

the drawing of a bipartite graph where we fix each of the partition of vertices into two parallel layers.

See figure 2.8 for an illustration. The BH heuristic is an O(
√
n)-approximation algorithm for TSCM

[5].

22



ABCD EF

x1 x2 x3 x4 x5 x6

A B C D E F

x1 x2 x3 x4 x5 x6

Figure 2.8: Crossing minimization in a two-layered bigraph. In the left figure we have a bipartite
graph with multiple crossings. In the right we have the same bipartite graph, but with the minimum
number of crossings. In this case the minimum number of crossings is 0.

We thought it would be interesting to check whether the problem of finding a minimum k-interval

ordering and TSCM are equivalent in some way, e. g. if the crossings are decreased, does the k-value

decrease as well? However, we can show that this does not appear to be the case. In the figures

below we assume we have some subgraph G′ in the bipartite graph G where the number of crossings

is 4. If we reorder the top vertices in the graph the number of crossings is reduced by one, while the

k-value increases by one. This gives us the impression that we do not necessarily improve the k-value,

when the crossings are reduced.

A B C D

x1 x2 x3 x4

AB C D

x1 x2 x3 x4

Figure 2.9: The left figure has 4 crossings and k-value 2. In the right figure we have the same bigraph
with a different reordering of the top vertices giving us fewer crossings and k-value 3.

2.3 PS-width of interval ordered boolean formulas

We follow the presentation in paper [3].

Definition 2.18. For a CNF formula F with variables var and clauses cla, we define the ps-value

of F as done in [4]. Given an assignment τ on var, we let sat(F, τ) denote the inclusion maximal set

C ⊆ cla such that every clause in C is satisfied by τ . The set C is then called projection satisfiable.

The ps-value of a formula F is then the number of distinct projection satisfiable subsets given by

different assignments τ , i. e. |PS(F )|, where

PS(F ) = {sat(F, τ) : τ is an assignment of var} ⊆ 2cla.

We are interested in solving subproblems and combining them into a complete solution. This

can be done by making ”cuts” in a linear ordering on the clauses and variables of a CNF formula F .

Assume a linear ordering e1, e2, . . . , en+m on the clauses and variables in F . For any 1 ≤ i ≤ n+m,

we get two disjoint sub-formulas F1(i) and F2(i) crossing between e1, e2, . . . , ei and ei+1, . . . , en+m.

F1(i) is the subformula we get by removing from F any clause not in e1, . . . , ei and any literal of

23



any variable not in ei+1, . . . , en+m. F2(i) is just the opposite, that is, remove any clause from F

not in ei+1, . . . , en+m and any literal of any variable not in e1, . . . , ei. Let us demonstrate these

sub-formulas through the following example.

Example 2.19. Assume we have a CNF formula F with three clauses: c1 = (x1 ∨ x̄2 ∨ x4),

c2 = (x2 ∨ x̄3 ∨ x5) and c3 = (x3 ∨ x̄4 ∨ x5) with the following linear ordering: x1 c1 x2 x3 c2 c3 x4 x5.

Let us make a ”cut” in the ordering between x3 and c2, i. e. i = 4. Then F1(4) = (x4) and

F2(4) = (x2 ∨ x̄3) ∧ (x3)

We define the ps-width of this linear ordering to be the maximum ps-value of all the possible

subformulas F1(1), F2(1), F1(2), F2(2), . . . , F1(n+m), F2(n+m) crossing a cut in the ordering. Since

we want to minimize this width parameter we define the linear ps-width to be the minimized ps-width

over all possible orderings on var ∪ cla.

The following result is implicit in [3]. We give a full proof.

Theorem 2.20. Assume CNF formula F on m clauses has an interval ordering. Then the ps-width

of F is at most m+ 1

Proof. Consider an interval ordering on F . Take any cut. The clauses crossing the cut can then be

ordered C1 . . . , Cq such that any variable in Ci is also in Ci+1, this follows from the definition of an

interval ordering. We prove the theorem by induction on q. We let Fk denote the subformula having

exactly k clauses, C1, C2, . . . , Ck crossing the cut. We need to show that for any k, |PS(Fk)| ≤ k + 1.

If k = 1 then |PS(F1)| = 2, since either C1 is satisfied or not. By induction we assume this is

true for q = k, that is |PS(Fk)| ≤ k + 1. For q = k + 1, we get some new clause Ck+1 which

contains all variables that any of the prior clauses contains. For this new clause there is only a single

assignment to the variables that falsifies this new clause and every other assignment will satisfy it.

We then get that |PS(Fk+1)| ≤ |PS(Fk)|+ 1, adding one assignment that will falsify Ck+1 regardless

of what prior clauses are satisfied by this assignment. This means that by the induction assumption

|PS(Fk+1)| ≤ k + 2. This completes the proof.

24



Chapter 3

Experimental results

As previously mentioned in the introduction, the experimentation we conduct in this thesis consists

of comparing different algorithms by how well they minimize the k-value on various types of boolean

formulas. We start this chapter by introducing an additional algorithm which is used in combination

with those algorithms already presented in chapter 2. This new algorithm, called the shifting heuristic

(SH), takes as input a total linear ordering on the clauses and variables of a boolean formula, and

outputs a new optimized linear ordering. SH was a result of complications discovered when attempting

to solve MaxSAT and #SAT on the total linear ordering produced by the Mk-algorithm. Not only

did SH fix the problem in the Mk linear ordering, but often it would also reduce the k-value if we

allowed it to reorder the clause ordering.

After introducing SH, we first list all various algorithm combination we use for experimentation

throughout this thesis. We then continue with applying these on SAT instances taken from SAT

competitions, hoping to find solvable real-world problems. After plotting these results we list a few

instances we found which happen to have relatively low k-value compared to the number of variables.

We do not go into the details of these instances as they were found very late in writing this thesis.

The last experimentation we conduct is on crafted boolean formulas having an interval ordering.

These are purely artificial, but it is a good measure on how well these algorithm combinations perform

when we know they have k-value zero. Because of time and memory limitation, we mostly test

instances less than 1MB. See open problems section in the end of the thesis for this reason.

3.1 Improving Mk

When we first started experimenting with the different algorithms we noticed that we were often

unable to solve MaxSAT or #SAT within reasonable time limits using the linear ordering produced

by Mk. Even for small instances, where k was low, this appeared to be a problem. When investigating

these linear orders we discovered that the problem is twofold. In each iteration of Mk, a clause is

merged in the rightmost position as soon as it hits the threshold k while respecting the clause order

(See algorithm 2.4). We call this a right-positioning bias. The implications are then:

25



1. a lot of clauses will likely need to include many variables, resulting in poor running time.

2. these variables will usually appear before the clause itself in the ordering, resulting in a highly

asymmetrical linear ordering which is more complex to solve.

To be more precise about this increased complexity emerging from 2., we must first give a definition

followed by an example.

Definition 3.1. Given a k-interval ordering σ, for every clause C ∈ σ, we define kL to be the number

of variables x we must add to C where x < C, and we define kR to be the number of variables x we

must add to C where C < x.

Example 3.2. To illustrate the right-ordering bias, we ran Mk on a small crafted boolean formula

having an interval ordering. We gave Mk a random permutation on the variables and clauses, which

resulted in k = 29. The results are displayed in the table below.

23,0 20,0 17,0 16,0 13,0 10,2 14,2 5,2 6,2 10,2
5,3 3,3 4,3 12,0 9,0 12,0 20,1 5,3 9,0 21,3
3,5 12,0 4,0 5,2 12,0 4,0 14,2 4,0 5,2 20,1
13,0 9,0 12,0 24,0 4,3 13,0 13,0 9,0 13,0 13,0
10,2 10,2 9,0 9,0 14,2 23,6 16,0 13,0 14,2 14,2

Table 3.1: Each cell contains kL, kR for a unique clause in the linear ordering produced by Mk. Note
that kL is generally much higher than kR.

Solving #SAT on this particular instance gave us the following results:

Solving #SAT
Largest PS-set: 528000
Accumulated Left PS-set: 745
Accumulated Right PS-set: 3526439
Running time: 6.634 seconds.

In the example above we observed that kL is generally much higher than kR, and without going into

details of the DP algorithm for solving MaxSAT and #SAT, the problem caused by this asymmetry

is that this algorithm runs exponentially over these values, i. e. for some constant a > 1 and values

kL ≥ 0 and kR ≥ 0, it takes time O(poly · akL + poly · akR) to compute sub-formulas for cuts in the

linear ordering. In other words, the overall running time would be better if we made kL and kR more

symmetric, so that the running time would be more like O(poly · a
kL+KR

2 + poly · a
kL+KR

2 ). We do

not prove this argument formally, but give a proof of concept through an example.

We designed a simple shifting heuristic (SH) for handling this problem.

26



3.1.1 Shifting heuristic (SH)

The Shifting heuristic (SH) takes as input an incidence graph of a CNF formula and a total linear

ordering of its clauses and variables. Recall that the whole point of SH is to optimize the linear

ordering before running the DP algorithm for solving MaxSAT and #SAT. We implemented two

variants, one where we allow it to shift a clause passed other clauses, and thereby reorder the clause

ordering, and one which did not. When we allowed the algorithm to reorder the clauses we generally

observed that the k-value decreased. For that reason we will only use the SH variant that allows

reordering of the clauses when conducting experiments.

Algorithm 3.1 Shifting Heuristic (SH)

input: G = (cla, var, E), total ordering σ = {cla ∪ var}
output: σ, a linear ordering on cla ∪ var

repeat
for each clause C in σ do

Calculate kL and kR for C
if kL > kR then

Move C leftwards in σ, past
kL − kR

2
variables.

end if
end for

until no clause changed position

Example 3.3. Processing the total linear ordering from the previous example with SH gives us the

following improved k-values.

1,0 1,0 1,0 1,0 1,0 3,2 7,2 3,2 4,2 3,2
4,3 3,3 4,3 6,5 5,4 6,5 8,1 4,3 5,4 21,3
3,5 6,5 2,2 3,2 6,5 2,2 8,2 2,2 3,2 8,1
1,0 5,4 6,5 12,0 4,3 1,0 1,0 5,4 1,0 1,0
3,2 3,2 5,4 5,4 7,2 23,6 1,0 1,0 7,2 12,2

Table 3.2: Each cell contains kL, kR for a unique clause in the linear ordering after running SH.
Note that in this particular instance, max {kL + kR} is the same as before, but many kL values are
decreased.

Overall we observe a significant reduction in the number of variables added to the clauses. We

now solve #SAT on this new optimized ordering, giving us the following result:

Solving #SAT
Largest PS-set: 480
Accumulated Left PS-set: 931
Accumulated Right PS-set: 7354
Running time: 0.075 seconds.

Comparing with the previous ordering note that the runtime is now reduced by a factor of 88.

27



3.2 Algorithms

The following combination of algorithms that all rely heavily on the Mk algorithm from section

2.1.3 are tested on each SAT instance, and each of the artificially constructed CNF formula have an

interval ordering. All of these algorithms have the same output. Each algorithm finds a total linear

ordering over the clauses and variables in a CNF formula using the Mk algorithm in various ways.

For clarification, the reader should follow the flowchart provided in the introduction while reading

this section.

BH100+Mk Given a CNF formula as input, the algorithm extracts the clauses and variables into

two separate linear orders simply by their ordering in the CNF encoding. This means that

the first clause from the encoding is the first clause in the clause ordering, and so forth, and

the variable (a variable and its negation is treated the same way) from the first clause is the

first variable in the variable ordering, followed by the second, and so forth, without repeating

any of the variables. These two orders are then processed through the BH algorithm over 100

iterations which is then merged together into a total linear ordering by the Mk algorithm.

BH1000+Mk Identical to BH100+Mk, except for running 1000 iterations of BH.

BH10000+Mk Identical to BH100+Mk, except for running 10000 iterations of BH.

SO+Mk (Simple Order with Mk) Given a CNF formula as input, we extract the clauses and

variables into two separate linear orders as above. These two orders are then merged together

into a total linear ordering by the Mk algorithm.

GH+Mk Given a CNF formula as input, its incidence graph is processed through the greedy

heuristic algorithm, creating a total linear ordering for the clauses and variables. This ordering

is then extracted into two linear orderings preserving their respective orderings. These two

linear orderings are then merged together with the Mk algorithm.

BH100+Mk+SH The total linear ordering from BH100+Mk above is processed through the SH

algorithm where we allow reordering of the clauses.

BH1000+Mk+SH The total linear ordering from BH1000+Mk above is processed through the

SH algorithm where we allow reordering of the clauses.

BH10000+Mk+SH The total linear ordering from BH10000+Mk above is processed through

the SH algorithm where we allow reordering of the clauses.

GH+Mk+SH The total linear ordering from GH+Mk above is processed through the SH algo-

rithm where we allow reordering of the clauses.

28



For easy reference, we have listed each of the procedures used above in the table below, along with

their input and output values.

Algorithm Input Output
Extract variable and clause
orderings

CNF formula F σ(var) and ρ(cla)

Extract variable ordering CNF formula F σ(var)
BH G = (var, cla, E),

σ(var) and ρ(cla)
σ(var) and ρ(cla)

Mk G = (var, cla, E),
σ(var) and ρ(cla)

σ(var ∪ cla) and k-value

GH G = (var, cla, E) σ(var ∪ cla)
SH G = (var, cla, E)

and σ(var ∪ cla)
σ(var ∪ cla) and k-value

Table 3.3: Overview of the algorithms used in various combinations for computing a total linear
ordering and its k-value from a CNF formula.

3.3 SAT competition

The main purpose of the SAT competitions is to identify challenging benchmarks and promote

new solvers for the SAT-problem as well as comparing them against the best known solvers (see

satcompetition.org). We found that the SAT competitions were a particularly good source for many

practical real-world problems, and because all instances are encoded in DIMACS, we could simply

download any instance we wanted without any conversion. However, since the underlying problem is

to solve MaxSAT and #SAT we cannot compare our results directly, as these problems are harder

to solve. There are competitions entirely designated for MaxSAT and #SAT as well, but most of

the instances we found there were either too large or encoded in another format. We considered

converting the smaller instances into DIMACS, but avoided it since we had enough instances for

benchmarking. A SAT competition usually consists of three different tracks containing various types

of instances: random, industrial and crafted instances. We did only experiment with the industrial

and crafted instances. While an industrial instance is a problem taken from the industry for solving

some practical application, crafted instances often encode hard combinatorial problems which are

challenging to typical SAT solvers (this includes, e. g. instances arising from difficult puzzle games

(see satcompetition.org)). When running our algorithms on these instances we want to identify

practical problems that can be solved efficiently using the DP algorithm for solving MaxSAT and

#SAT, in which case, this new technique could possibly be preferred over previous existing methods.

The first benchmarking we do is on instances taken from the SAT RACE competition held in 2015.

We continue with benchmarking instances taken from SAT COMP 11.

The benchmarking results are plotted using a line chart. The vertical axis in the chart represents

the k-value found by the various algorithms of a total linear ordering using a logarithmic scale, while

the horizontal axis represents the different instances tested in increasing size from left to right. We

29



have also included a line representing the number of variables for each instance, allowing us to easily

compare the k-value to number of variables. It is worth noting that the lines in the charts do not

represent instances between them, it is simply a practical way to visualize the results.

3.3.1 Results for SAT RACE 15

The following figure displays the results after running the algorithms presented in section 3.2 over

selected instances from SAT RACE 15.

Figure 3.1: Results for 23 selected instances from SAT Race 2015. The horizontal axis represents each
instance tested sorted by their number of variables, and the vertical axis represents k-value found
by various algorithms. The black line in the chart represents an upper boundary for the k-value, in
terms of the number of variables in each instance.

In figure 3.1 we observe that BH10000+Mk+SH is generally the best tested algorithm for finding

a linear ordered of a CNF formula with the respect to minimum k-value. By increasing the number of

iterations in BH, the k-value is improved in some instances, but increasing the number of iterations

beyond 10000 did not improve k-value at all. The SO+Mk and the greedy heurstic GH+Mk overall

performs poorly, as the k-value is usually as high as the number of variables in the instance, rendering

them ineffective when decomposing these SAT instances. SH does a good job in reducing the k-value

on instances already processed by GH+Mk and BH10000+Mk. Some of these instances had a low

k-value compared to its number of variables, but still too high for any practical use. The single

instance ”dimacs” models a problem called symbolic simulation (see SAT RACE 2015), but since

we only had a single instance we are not able to say anything about it in general. We leave this for

future work.

30



Figure 3.2: Results for 20 selected instances from SAT COMP 11. The horizontal axis represents each
instance tested sorted by their number of variables, and the vertical axis represents k-value found
by various algorithms. The black line in the chart represents an upper boundary for the k-value, in
terms of the number of variables in each instance.

3.3.2 Results for SAT COMP 11

Each of the figures 3.2, 3.3 and 3.4 contains results over multiple SAT instances taken from SAT

COMP 11. They are ordered by increasing size, i. e. the first figure contains smaller instances than

the next, and so forth. We observe practically the same algorithmic results for instances tested in

SAT COMP 11 as for instances tested in SAT RACE 15. The BH10000+SH is generally the best

algorithm for minimizing k-value, while the worst is SO+Mk. GH+Mk performs almost as poorly as

SO+Mk. Some of these instances may be solved efficiently by the DP algorithm for solving MaxSAT

and #SAT. We describe them in the next section.

3.3.3 Significant practical instances

As the benchmarking results reveal, there are a few instances which have an exceptionally low k-value

compared to the number of variables in the boolean formula. Some of these values are still considered

to be high regarding the worst-case running time of the DP algorithm for MaxSAT and #SAT, but

can hopefully be further decreased by other techniques. As the experimental part of this thesis is

about recognizing boolean formulas for practical applications where this Dynamic Programming

procedure is more favorable than others, we think this is a valuable result. Specifically it reveals that

there exists practical problems which when encoded into a CNF formula have low k-value. In the

figure below we have selected instances from the benchmarking results found in SAT Comp 11 where

the k-value is very low compared to the number of variables. As the number of variables increases

for each of these instances, the k-value still remains low.

31



Figure 3.3: Results for 20 selected instances are taken from SAT COMP 11. The horizontal axis
represents each instance tested sorted by their number of variables, and the vertical axis represents
k-value found by various algorithms. The black line in the chart represents an upper boundary for
the k-value, in terms of the number of variables in each instance.

Figure 3.4: Results for 21 selected instances from SAT COMP 11. The horizontal axis represents each
instance tested sorted by their number of variables, and the vertical axis represents k-value found
by various algorithms. The black line in the chart represents an upper boundary for the k-value, in
terms of the number of variables in each instance.

32



Figure 3.5: Results for a series of CNF formulas which encodes a particular problem called the
Automata synchronization. Instances are selected from SAT COMP 11. The horizontal axis represents
the various instances tested, and the vertical axis represents the k-value found by various algorithms.
The black bar in the chart represents an upper boundary for the k-value, in terms of the number of
variables in each instance.

These particular instances encode a problem called Automata synchronization. As mentioned

earlier we will not conduct any in-depth analysis of the instances found in the SAT competitions,

but we will describe what the Automata synchronization problem is, since it was the best result we

found. The following description of automata synchronization is taken from [10, chapter 1, p.93] (we

assume the reader is familiar with finite automata):

Given a Deterministic Finite Automata (DFA) M = (Q,Σ, δ, q0, F ) and let h be some final state. A

synchronizing sequence for M is a string s ∈ Σ∗ where δ(q, s) = h for every q ∈ Q. (δ(q, s) is

extended to strings, so that δ(q, s) equals the state M ends up when M starts at state q and

reads unput s.) We say that M is synchronizable if it has a synchronizing sequence for some

state h.

3.4 Testing linear ordering heuristics

The CNF formulas that are tested in this section are generated by the same procedure as in [3]. To

hide the natural interval ordering from its construction, all instances are randomly permuted, giving

no advantage to either algorithm. The following subsections explain how such instances are generated,

what instance sizes are tested, and the results given by the different combinations of algorithms.

3.4.1 Generating instances

For testing purposes, we generate the following type of instances for which each clause has t literals.

A CNF formula on n variables and m clauses that has n+m intervals on a real line. Each interval is

generated by choosing left and right endpoints from 1 to 2(n+m).

- At step i, check which of the 4 cases below are legal (e. g. 3 is legal if there exists a live variable,

i. e. with left endpoint < i and no right endpoint) and randomly make one of the legal choices,

33



of the exception that case 4 is enforced for a live clause that at step i has accumulated exactly

t overlapping variable intervals.

1. Start interval of new variable with left endpoint i

2. Start interval of new clause with left endpoint i

3. End interval of randomly chosen live variable by right endpoint i

4. End interval of randomly chosen live clause by right endpoint i

By the end of the process, boundary conditions are enforced to reach exactly m clauses, with n

expected to be slightly smaller than m. For each clause interval we randomly choose each variable

with overlapping interval as being either positive or negative in this clause. The resulting CNF

formula will have an interval ordering given by the rightmost endpoint of these intervals.

3.4.2 Setup

To get a better understanding of how well these algorithms work for interval ordered formulas, we

generate a few variations, varying the clause size and the number of variables. We construct multiple

instances of the same size, since we do not expect that a single instance will represent all generated

instance of the same size. The average result is then plotted in a diagram, resulting in a simple

statistical measure.

3.4.3 Results

The benchmarking results are plotted using a line chart. The vertical axis in the chart represents the

k-value found by the various algorithms of a total linear ordering using a logarithmic scale, while

the horizontal axis represents the different instances tested in increasing size from left to right. It is

worth noting that the lines in the charts do not represent instances between them, it is simply a

practical way to visualize the results.

34



Figure 3.6: Benchmarking permuted type 2 interval ordering instances with clauses containing exactly
3 variables. Horizontal axis represents each instance tested sorted by their number of variables.
Vertical axis represents the k-value found by the various algorithms.

As seen in figure 3.6 BH+Mk is performing poorly on these instances compared to GH. By

shifting 100BH, 1000BH and GH we generally improve k-value with BH1000+SH not too far above

GH+Mk+SH.

Figure 3.7: Benchmarking permuted type 2 interval ordering instances with clauses containing
exactly 8 variables.Horizontal axis represents each instance tested sorted by their number of variables.
Vertical axis represents the k-value found by the various algorithms.

35



Figure 3.8: Benchmarking permuted type 2 interval ordering instances with clauses containing exactly
10 variables. Horizontal axis represents each instance tested sorted by their number of variables.
Vertical axis represents the k-value found by the various algorithms.

From figures 3.7 and 3.8 we observe that when increasing the clause size, the k-value increases a

great deal. Note that any combination of GH is still the best algorithm, while any combination with

BH is the worst.

Figure 3.9: Benchmarking permuted type 2 interval ordering instances with clauses containing exactly
15 variables. Horizontal axis represents each instance tested sorted by their number of variables.
Vertical axis represents the k-value found by the various algorithms.

From figure 3.9 we observe that when increasing the clause size further, GH+Mk is often worse

than BH1000+Mk. However, combining the GH+Mk with SH is still the very best algorithm for

36



these instances.

In general, any combination using GH performs the best over these types of formulas, especially

in combination with our SH algorithm. We think the reason for this is that the GH algorithm was

more or less adapted to these specific formulas, since GH performs poorly on most of the other types

of instances where k > 0, see sections 3.3.1 and 3.3.2.

37



38



Chapter 4

SAT encodings for the
Car Sequencing Problem

We ended the previous chapter with benchmarking results over many different SAT and artificially

constructed instances without going into details of any specific problem. In this chapter we will

shed some light on this matter by digging into a problem called car sequencing. We follow the paper

[6] which introduces some encodings of the car sequencing problem into a CNF formula based on

sequential counters. We try to explain the bare minimum for understanding how the car sequencing

problem is encoded, as most of the details are nontrivial and irrelevant for our purpose. In the next

chapter we continue with benchmarking of some sample problem instances to see if we can achieve a

linear ordering for its clauses and variables such that the k-value is low (i. e. it can be solved efficiently

by the DP algorithm solving MaxSAT and #SAT).

This chapter is organized as follows. Section 4.1 describes the car sequencing problem formally,

and introduces a pseudo boolean model for describing a problem instance. Section 4.2 then explains

how this model can be translated into a CNF formula.

4.1 Car Sequncing

The car sequencing problem asks whether if it is possible to schedule a sequence of cars on an

assembly line, for which different options are to be installed (e.g. radio, leather-seats, sun-roof, etc.)

under certain capacity limitations for each workstation. Cars are divided into classes, such that one

class may require radio and sun-roof to be installed, while another class require a different set of

options. The problem was first introduced by Parello et al. in 1986 [11] and has been shown to

be NP-complete [6]. Each workstation is responsible for installing a single option and its capacity

is limited by the number of consecutive cars, it can process. We say more formally that out of q

consecutive cars only u can have option o installed.

Before continuing with a more formal definition, we illustrate the problem by an example:

39



Example 4.1. Given a set of car classes C = {1, 2, 3} and options O = {radio, sun-roof}.

Class requirements are given by 1 = {∅}, 2 = {radio} and 3 = {radio, sun-roof}. The number of

cars to be produced are three of class 1, two of class 2 and two of class 3. Workstation ua

qa
= 1

2 and

ub

qb
= 1

5 . A valid solution is given by the following sequence: [3,1,2,1,2,1,3]. In fact, this is the only

valid solution, since cars of class 2 and 3 cannot be sequenced one after another, and each car of

class 3 must be separated by at least 4 cars of other classes.

We let C be the set of different car classes we want to assemble, and O be the set of available

options. For each class k ∈ C we denote the associated options required by Ok and the quantity of

cars to be produced by dk. For an option l ∈ Ok, l can only be installed on u out of q consecutive

cars, we will denote this restriction by ul/ql. We model this problem by a pseudo Boolean formula

as done in [6]. This model serves as a basis for the problem translation into CNF.

• We let the variable cki be set to true if a car of class k is at position i, and a variable oli denotes

an option l in position i. A solution to this problem is a total sequence of all cars not breaking any

of the subsequence restrictions.

The following equations describe a legal instance:

• Demand constraints: ∀k ∈ C
n∑

i=1

cki = dk

For every car class k ∈ C we must have positioned the exact required amount of cars in class k

into the total sequence.

• Capacity constraints: ∀l ∈ O with ratio ul/ql

n−ql∧
i=0

(

ql∑
j=1

oli+j ≤ ul)

In any subsequence of length ql we cannot install option l more than ul times.

In every positions i ∈ {1 . . . n} of the sequence it must hold:

• Link between classes and options: ∀k ∈ C

∀l ∈ Ok : cki − oli ≤ 0

∀l ∈ O ∧ l /∈ Ok : cki + oli ≤ 1

These two equations force the sequence to install correct options at each part of the sequence.

The first equation lets us only install an option l in a class k if there is a car requiring this

option there. The second prohibits the sequence of installing options not required by class k.

40



• We have exactly one car is in position i: ∑
k∈C

cki = 1

4.2 CNF Encoding

Given the pseudo boolean formula of an instance above, we must translate it into a boolean

CNF formula. The primary building blocks used for this are cardinality constraints of the form∑
i∈{1...n} xi = d and

∑
i∈{1...n} xi ≤ d.

We start by describing a way to translate the cardinality constraints as a variant of the sequential

encoding proposed by [12]. Then we show how to integrate the capacity constraint into these

sequential counters. Lastly we show how the demand and capacity constraints are used to encode

both classes and the available options to build a complete encoding of the problem.

4.2.1 Sequential Counter Encoding

In this section we provide a way to encode the following cardinality constraint used to represent

cumulative sums:
∑

i∈{1...n} xi = d where xi ∈ {0, 1} and d ∈ N is some fixed demand.

For each position i in the sequence, we define two types of variables:

1. xi is set to true if and only if an object x (i. e. class or option) is in position i.

2. si,j is set to true if and only if for any sequence [0, 1, . . . i], xi exists at least j times (for technical

reasons 0 ≤ j ≤ d+ 1).

The following set of clauses (1) to (5) define the sequential counter encoding

∀i ∈ {1 . . . n} ∀j ∈ {0 . . . d+ 1} :

¬si−1,j ∨ si,j (1)

xi ∨ ¬si,j ∨ si−1,j (2)

∀i ∈ {1 . . . n} ∀j ∈ {1 . . . d+ 1} :

¬si,j ∨ si−1,j−1 (3)

¬xi ∨ ¬si−1,j−1 ∨ si,j (4)

s0,0 ∧ s0,1 ∧ sn,d ∧ ¬sn,d+1 (5)

The variables si,j bound the cumulative sums for a sequence x1 . . . xi. The encoding of each si,j

can be visualized by viewing them as a two dimensional grid where the horizontal line represents

41



3 U U U U U U U U U
2 U ? ? ? ? ? ? ? ? L
1 U ? ? ? ? ? ? ? ? L
0 L L L L L L L L L

si,j 0 1 2 3 4 5 6 7 8 9 10

3 U U U U U U U U U
2 U 0 0 0 0 0 1 1 1 L
1 U 0 1 1 1 1 1 1 1 L
0 L L L L L L L L L

si,j 0 1 2 3 4 5 6 7 8 9 10
xi 0 0 1 0 0 0 0 1 0 0 0

Table 4.1: Before and after assigning values to the variables xi

positions in the sequence and the vertical line represents the cumulative sums. The two clauses (1)

and (3) enforce the counter to be monotonically increasing(i. e. non-decreasing), while clauses (2)

and (4) set the interaction between variables xi. When xi is true the counter increases at position i,

and when xi is false we prevent the counter to increase at position i. The last clause (5) sets some

initial values for the counter to start counting from 0 and the total sum at position n is equal to d.

Example 4.2. Table 4.1 shows the auxiliary variables si,j before and after assigning x2 and x7 to

true. We let d = 2 over a sequence of 10 variables. Cells marked with U/L (i. e. upper and lower

boundaries), including cells above and below U/L cells, are set to false prior assignment to any xi.

This is simply because they cannot be set to true. Cells marked with question marks are unassigned

variables.

4.2.2 Capacity

For each workstation we need to translate the capacity constraints into CNF. For each subsequence

of length q, there can be at most u true assignments. We express these capacity constraints by the

following sequence of cardinality expressions.

n−q∧
i=0

(
q∑

l=1

xi+l ≤ u

)
These expressions can be translated into CNF by creating individual sequential counters for each

subsequence. This will create independent auxiliary variables for each of the subsequences. However,

it is possible to encode a more global view into the demand constraint by integrating capacity of

each subsequence into the counter. The following expression gives a more global view.

(
n∑

l=1

xi+l ≤ u

)
∧

n−q∧
i=0

(
q∑

l=1

xi+l ≤ u

)
It is possible to reuse the auxiliary si,j variables used in the sequential counter and create the

following set of clauses: ∀i ∈ {q . . . n},∀j ∈ {u . . . d+ 1} :

¬si,j ∨ si−q,j−u (6)

These clauses will restrict the internal counting not to exceed the capacity constraints. If the variable

¬si,j is set to false, then we have not exceeded the capacity restriction. If it is set to true, then we

must make sure that the subsequence [i− q, . . . , i] can have an additional u objects.

42



4.2.3 Link Cars and Options

To complete the CNF translation we need to link the options with the respective car classes. We

make the following clauses to retain this relation: ∀i ∈ {1 . . . n},∧
k∈C
l∈Ok

¬cki ∨ oli (7)

∧
k∈C
l/∈Ok

¬cki ∨ ¬oli (8)

The two clauses above follow directly from the pseudo boolean formula in the previous section. In

the first clause, if there is a car of class k in position i then the literal ¬cki becomes false and the

literal oli must be true to satisfy this clause. This means we only install required options for this

class. The other clause makes sure that we do not install any option not required by the class.

∧
l∈O

(
¬cki ∨

∨
k∈Cl

¬oli

)
(9)

The clauses in equation 9 are used to ensure some propagation of variables. We do not explain why

this is, but since it is used in all encodings we have included it. Lastly, for each position in the

sequence an additional sequential counter is used to make sure that the number of cars is exactly one.

4.2.4 Complete Model

We translate the demand constraints for each class through cardinality constraints. For each option

l ∈ O it is possible to identify the implicit demand by adding up the demand of all classes Cl that

require this option.

dl =

n∑
i=1

oli =
∑
k∈Cl

dk

By this observation it is possible to use one capacity constraint for every class option since it will

also restrict the demand dk.

The paper [6] provides three CNF encodings E1, E2 and E3 used in their experimental section.

We describe them here as they have done, since we will encode problems into all three encodings.

• E1 translates each capacity constraint separately by the clauses (1) to (5) with a fresh set of

auxiliary variables.

• E2 translates the capacity constraints by clauses (6) and thus reuses the variables of the

sequential counter on the demand constraint.

• E3 combines E1 and E2.

43



4.2.5 Example encoding

In this section we encode a very simple car sequencing problem for the purpose of exemplifying the

CNF encoding.

Example 4.3. Given a set of classes C = {1, 2} and a single option O = {sun-roof}. Class

requirements are given by: class 1 = {∅} and class 2 = {sun-roof}. The workstation installing

air-condition can handle every second car arriving. For a demand of one class 1 car and two class 2

cars, the only valid sequence would be to separate class 2 cars with a class 1 car, given the following

sequence [2,1,2].

If we encode example 4.3 into CNF using the E2 encoding we get the following CNF formula

consisting of 35 variables and 90 clauses:

(x1∨ x̄2)(x̄3∨x4)(x5∨x3∨ x̄4)(x̄2∨x6)(x5∨x2∨ x̄6)(x̄7∨x8)(x5∨x7∨ x̄8)(x̄4∨x9)(x10∨x4∨ x̄9)(x̄6∨

x11)(x10∨x6∨x̄11)(x̄8∨x12)(x10∨x8∨x̄12)(x̄1∨x2)(x3∨x̄6)(x̄5∨x̄3∨x6)(x2x̄8)(x̄5∨x̄2∨x8)(x4x̄11)(x̄10∨

x̄4 ∨ x11)(x6 ∨ x̄12)(x̄10 ∨ x̄6 ∨ x12)(x3)(x̄7)(x4)(x̄8)(x11)(x̄12)(x3 ∨ x̄6)(x4 ∨ x̄11)(x13 ∨ x̄14)(x̄14 ∨

x15)(x16∨x14∨x̄15)(x̄17∨x18)(x16∨x17∨x̄18)(x̄15∨x19)(x20∨x15∨x̄19)(x̄18∨x21)(x20∨x18∨x̄21)(x̄13∨

x14)(x14∨x̄18)(x̄16∨x̄14∨x18)(x15∨x̄21)(x̄20∨x̄15∨x21)(x14)(x̄17)(x15)(x̄18)(x21)(x̄22)(x14∨x̄21)(x23∨

x̄24)(x̄24∨x25)(x26∨x24∨x̄25)(x̄27∨x28)(x26∨x27∨x̄28)(x̄25∨x29)(x30∨x25∨x̄29)(x̄28∨x31)(x30∨x28∨

x̄31)(x̄23∨x24)(x24∨x̄28)(x̄26∨x̄24∨x28)(x25∨x̄31)(x̄30∨x̄25∨x31)(x24)(x̄27)(x25)(x̄28)(x31)(x̄32)(x24∨

x̄31)(x̄1 ∨ x̄23)(x̄5 ∨ x̄26)(x̄10 ∨ x̄30)(x̄13 ∨ x23)(x̄16 ∨ x26)(x̄20 ∨ x30)(x̄23 ∨ x13)(x̄26 ∨ x16)(x̄30 ∨

x20)(x̄1 ∨ x33)(x̄13 ∨ x̄33)(x1 ∨ x13)(x̄5 ∨ x34)(x̄16 ∨ x̄34)(x5 ∨ x16)(x̄10 ∨ x35)(x̄20 ∨ x̄35)(x10 ∨ x20)

As we see the CNF encodings given in [6] for the car sequencing problem generates very large

formulas. It would be interesting to see if some other encoding could be given, maybe one geared

more directly to maintaining the linear constraints. We leave this for future work.

44



Chapter 5

Benchmarking - Car Sequencing

In this chapter we inspect the CNF encoding of the car sequencing problem presented in chapter 4

and analyse its complexity with respect to k-value. Our hope is that the linearity requirement (i. e.

cars are aligned onto a linear assembly line) of the car sequence problem gives us a boolean formula

with low k-value. To encode a problem instance into CNF we use the CNF-SAT encoder provided by

[6]. Section 5.1 describes the car sequencing problem instances as provided by CSPLib. In section

5.2 we encode some instances into CNF and measure their k-value using the same algorithms as in

section 3.2. We observe that the k-value of these problems increases as the instance size increases e. g.

more cars, options or classes. Given this result we continue in section 5.3 with testing sub-formulas

of these encodings, and observe that some of them are quite linear, i. e. k-value is low for capacity

and cardinality sub-formulas. In section 5.4 we summarize the results.

5.1 CNF-SAT encoder

The CNF-SAT encoder lets us encode instances in all of the three encodings mentioned in chapter

4. It also lets us separate the cardinality and capacity constraints into disjoint boolean formulas

allowing us to perform benchmarking separately.

The CNF-SAT encoder takes as input a data file in the following format:

• First line: number of cars; number of options; number of classes.

• Second line: capacity constraint for each option l in increasing order. i. e. the number of cars u

that can have option l installed in a sequence of consecutive cars q.

• Third line: for each of the capacity constraints l, the maximum block size q in increasing order.

• A line for each different class containing: class index number x; number of cars in class x; and

for each different option: 1 or 0 depending on whether class x requires the following option.

45



The following table illustrates the data file format:

10 5 6
1 2 1 2 1
2 3 3 5 5
0 1 1 0 1 1 0
1 1 0 0 0 1 0
2 2 0 1 0 0 1
3 2 0 1 0 1 0
4 2 1 0 1 0 0
5 2 1 1 0 0 0

Table 5.1: Example of a car sequencing problem with 10 cars, 5 options and 6 classes. The capacity
constraints are as follows from the first to the last option: 1

2 , 23 , 13 , 25 and 1
5 . Each of the next lines

describes the number of cars and options for a specific class. Example was given in [13].

5.2 Complete instances

The CNF-SAT encoder includes several problem instances where the number of cars varies from 100

to 400. Each of these instances are configured with roughly the same number of options and classes, 5

and 25, respectively. Instances with more than 100 cars quickly became too large for us to benchmark

when translated into CNF. As a result, we decided to alter some of these larger instances by reducing

the number of cars. We start by translating two problems into the three different encodings (E1,

E2 and E3) to provide some insight in what type of encoding tends to have the lowest k-value. We

continue by increasing the number of options and/or classes to see if this increases the k-value. The

last instances we benchmark in this section are various unmodified problems instances with 100 cars.

The following figures display the results after running the various algorithms on CNF encoded

car sequencing problems.

Figure 5.1: Results over two car sequencing problem instances of 25 cars encoded in all three
encodings (E1, E2 and E3). The Horizontal axis represents the instances tested, while the vertical
axis represents the k-value found by various algorithms. The black bar in the chart represents an
upper boundary for the k-value, in terms of the number of variables in each instance.

In figure 5.1 we have encoded modified P09 and P18 such that they only encode 25 cars. We see

46



that the best algorithm for minimizing k-value is BH10000+Mk+SH. The worst is SO+Mk. GH+Mk

and GH+Mk+SH is performing almost as poorly as SO+Mk. The k-values for these problems are

very high.

Figure 5.2: Results over two car sequencing problem instances of 50 cars encoded in all three
encodings (E1, E2 and E3). The Horizontal axis represents the instances tested, while the vertical
axis represents the k-value found by various algorithms. The black bar in the chart represents an
upper boundary for the k-value, in terms of the number of variables in each instance.

By increasing the number of cars in the same instances as in figure 5.1 we achieve even worse

results. The algorithms performance is similar to the previous ones.

Figure 5.3: Results over two car sequencing problem instances of 25 cars encoded in all three
encodings (E1, E2 and E3). The Horizontal axis represents the instances tested, while the vertical
axis represents the k-value found by various algorithms. The black bar in the chart represents an
upper boundary for the k-value, in terms of the number of variables in each instance. The instances
are marked with 1, 2 and 3. 1: increased options from 5 to 8. 2: increased classes from 10 to 13. 3: 1
and 2 combined.

In figure 5.3 we have increased the number of options and classes in the same instances as in

figure 5.1. We generally observe that the k-value is increased.

47



Figure 5.4: Results over two car sequencing problem instances of 100 cars encoded in E1. The
Horizontal axis represents the instances tested, while the vertical axis represents the k-value found
by various algorithms. The black bar in the chart represents an upper boundary for the k-value, in
terms of the number of variables in each instance.

When benchmarking some original instances, we see that the k-value increases even further, giving

us little hope for achieving low k-value for these encodings in general. Instead, we continue with

focusing on sub-formulas of these encodings in the next section, hoping that this achieves better

results.

5.3 Capacity and Cardinality constraints

In the two first figures in this section we have translated the capacity and cardinality constraints

for all of the instances we benchmarked in figures 5.1 and 5.2. Given that we achieved good results

on these, we decided to see if this can be scaled to larger instances. For this we chose the two first

instances in figure 5.4.

The following naming convention is used in the figures.

• CA are capacity constraint clauses.

• CNT are cardinality constraint clauses.

• CNT+CA are the two above combined.

48



Figure 5.5: Results over cardinality and capacity constraints of car sequencing instances with 25 and
50 cars encoded in E1. The Horizontal axis represents the instances tested, while the vertical axis
represents the k-value found by various algorithms. The black bar in the chart represents an upper
boundary for the k-value , in terms of the number of variables in each instance.

Figure 5.6: Results over cardinality and capacity constraints of car sequencing instances with 25 and
50 cars encoded in E1. The Horizontal axis represents the instances tested, while the vertical axis
represents the k-value found by various algorithms. The black bar in the chart represents an upper
boundary for the k-value , in terms of the number of variables in each instance.

The two figures above show that these types of sub formulas can achieve a very low k-value for small

instances. Any combination with BH works best. GH+Mk, GH+Mk+SH and SO perform poorly for

most of these formulas. In the next figure we increase the size of formulas, but only use the best

algorithms from the above figures.

49



Figure 5.7: Results over cardinality and capacity constraints of car sequencing instances 100 cars
encoded in E1. The Horizontal axis represents the instances tested, while the vertical axis represents
the k-value found by various algorithms. The black bar in the chart represents an upper boundary
for the k-value , in terms of the number of variables in each instance.

For capacity and cardinality constraints the k-values are very low when using BH+Mk and

BH+Mk+SH. This proves that our heuristics work very well for some types of CNF formulas,

especially these.

5.4 Conclusion

As the results reveal in this chapter, the k-values found by various algorithms for each of the complete

instances is way too high for us to efficiently solve them by the DP algorithm for solving MaxSAT

and #SAT. The reason for this is likely due to: 1) the heuristics we developed for minimizing the

k-values are not good enough for these CNF formulas, and 2) these CNF formulas cannot achieve low

k-value because the interaction between the clauses and variables are not very linear in respect of

k-value. For capacity and cardinality formulas the variables and clauses interact very tightly, i. e. any

clause in the ordering has mostly consecutive variables. In this way the heuristics works great. We

considered to check what types of instances of the car sequencing problem is typical in the industry,

but given we did not achieve low k-value for any of the complete instances we decided it was not

valuable. We hope that the cardinality and capacity formulas have some practical use in some other

situations.

50



Chapter 6

Conclusions

In this chapter we summarize the thesis results, and present open problems for future work.

6.1 Summary

In this thesis we have studied a class of propositional boolean formulas for which a DP algorithm [3]

may be used to solve MaxSAT and #SAT efficiently. To be more precise, we implemented various

algorithms for testing CNF formulas for linearity, and then experimented with these algorithms on

various CNF formulas hoping to find practical applications for which this method is favourable.

In chapter 2 we have presented most of the algorithms used for experimentation throughout this

thesis. We gave two new algorithms for recognizing CNF formulas that have an interval ordering given

restrictions on the variables, and/or for the clauses. Since we do not expect that there exists many

practical applications that have an interval ordering we provided various heuristics for computing a

k-interval ordering on the CNF formula, where hopefully, the k-value is low enough to be efficiently

solved by the dynamic programming algorithm for solving MaxSAT and #SAT. In the end of the

chapter we prove a theoretical result that the ps-width of a CNF formula F is at most m+ 1. This

result was given implicit in [3], but we have provided a full proof.

In chapter 3 we first gave the SH algorithm for optimizing the linear ordering that was produced

by the Mk algorithm. We observed that SH can make a huge difference when solving MaxSAT and

#SAT with the DP algorithm in [3]. It also had a nice side effect of reducing the k-value when

we allowed it to shift passed clauses, and thereby reordering the clauses. Through the experiments

we conducted we observed that the combined algorithms BH10000+Mk+SH was generally the best

algorithm in terms of achieving lowest possible k-value for instances taken from SAT competitions.

By using this algorithm we where able to discover a few problems for which the k-value was very low.

The BH10000+Mk+SH algorithm does not perform as well for the artificially constructed formulas

having an interval ordering as the GH+Mk+SH algorithm. The conclusion we draw from this is that

none of the algorithms we tested are overall the best algorithm for minimizing the k-value on all

instances. We suggest an improvement for this in the open problems section.

51



The results from the experiments conducted in chapter 5 show that the particular encodings we

presented for the car sequencing problem does not seem to have a low k-value for the car sequencing

problem in general. Even for very small instances the k-value we achieved by the various algorithm is

much too high for DP algorithm for solving MaxSAT and #SAT to handle. However, when applying

the various algorithm for sub-formulas of these encodings, particularly the cardinality and capacity

constraints clauses, we observed very good results. The best algorithm for minimizing the k-value on

all tested instances in this chapter is the BH+Mk+SH algorithm, while the algorithms GH+Mk and

GH+Mk+SH performed very poorly, often the k-value was as high as the number of variables in the

instance.

6.2 Open Problems

In this section we list open problems that came up while writing this thesis:

• In chapter 2 we developed an exact merging algorithm for finding an interval ordering in

q-CNF formulas when given a linear ordering on the variables only. This algorithm runs in

time O(q ·m3), but we believe that this can improved in the future with introducing a more

sophisticated data structure and new techniques.

• In the experimental section we found a few instances which had a low k-value found by the various

algorithms. These instances encode two different problems called Automata synchronization

and Symbolic simulation for which the DP algorithm for solving MaxSAT and #SAT may be

of practical use. One could compare our approach against other solvers to see if our approach

is more favourable.

• We noticed that for the algorithms we have presented in this thesis the results varies much

on the various CNF formulas tested (e. g. any combination with GH performs very well on

the artificially generated formulas, while BH+Mk+SH is generally the best for SAT and car

sequencing problems). To achieve better results in general, one could try to make a hybrid

algorithm out of GH and BH, i. e. let GH produce a linear ordering of the clauses and variables

for which we extract the two linear orderings on the clauses and variables and run BH+Mk+SH

on them. This could possibly be a better input to the BH algorithm instead of creating the

orders as they appear in the CNF formula.

• In the results from car sequencing problems we experienced that the BH+Mk+SH algorithm

performs very well on formulas encoding capacity and cardinality constraints. These formulas

may be of further interest, as they might be used in other problems where we can achieve low

k-value over the complete instance. One could go into the details of this encoding and study for

52



which kind of problems they are used (i. e. the sequential counter clauses), and then perform

similar experiments as we have done in this thesis.

• It would be interesting to see if some other encoding could be given for the car sequencing

problem, maybe one geared more directly to maintaining the linear constraints.

• It would be interesting to perform the same tests as we have done on CNF formulas where the

MaxSAT and #SAT problem is more relevant than instances from the SAT competition.

• The memory issues we have with the DP algorithm for solving MaxSAT and #SAT prohibited

us for measuring the k-value of CNF instances much larger than 1MB. One could create

a dedicated program for this purpose only, and thereby avoiding the large data structures

necessary for solving MaxSAT and #SAT.

53



54



Appendix A

Code repository

The algorithms proposed in this thesis have been implemented into the code developed by Sigve

Hortemo Sæther for solving MaxSAT and #SAT by dynamic programming on structured CNF

formulas. The extended code can be found on GitHub [14], while the code for the dynamic

programming algorithm for solving MaxSAT and #SAT was available at http://people.uib.no/

ssa032/pswidth/.

55

http://people.uib.no/ssa032/pswidth/
http://people.uib.no/ssa032/pswidth/


56



Bibliography

[1] H. Kautz and B. Selman. Planning as Satisability. Proceedings ECAI-92, 1992.

[2] Edmund Clarke Armin Biere, Alessandro Cimatti and Yunshan Zhu. Symbolic model checking

without BDDs. TACAS’99, 1999.

[3] Jan Arne Telle Sigve Hortemo Sæther and Martin Vatshelle. Solving #sat and MaxSAT by

dynamic programming. 2015.

[4] Sigve Hortemo Sæther Serge Gaspers, Christos Papadimitriou and Jan Arne Telle. On satisfia-

bility problems with a linear structure. 2015.

[5] S. Tagawa K. Sugiyama and M Toda. Methods for visual understanding of hierarchical systems.

IEEE Transactions on Systems, Man, and Cybernetics, SMC- 11(2), pages 109–125, 1981.

[6] Valentin Mayer-Eichberger and Toby Walsh. SAT Encodings for the Car Sequencing Problem.

2013.

[7] Haiko Muller. Recognizing interval digraphs and interval bigraphs in polynomial time. 1997.

[8] Arash Rafiey. Recognizing interval bigraphs by forbidden patterns. 2012.

[9] Charles E.; Rivest Ronald L.; Stein Clifford (2001) Cormen, Thomas H.; Leiserson. Section 22.4:

Topological sort. pages 549–552, 2001.

[10] Michael Sipser. Introduction to the Theory of Computation. 2013.

[11] Waldo C. Kabat Bruce D. Parello and L. Wos. Job-shop scheduling using automated reasoning:

a case study of the car sequencing problem. Journal of Automated Reasoning 2, pages 1–42,

1986.

[12] Carsten Sinz. Towards an Optimal CNF Encoding of Boolean Cardinality Constraints. CP,

pages 827–831, 2005.

[13] H. Simonis M. Dincbas and Pascal Van Hentenryck. Solving the car sequencing problem in

constraint logic programming. European Conference on Artificial Intelligence (ECAI-88), 1988.

57



[14] Christian Egeland. Extensions for the dp algorithm for solving MaxSAT and #sat developed by

sigve hortemo sæther, 2016.

58


	Master's Thesis
	Contents
	Introduction
	Background
	New algorithms
	Experiments
	Car sequencing
	Preliminary Terminology
	Graph Theory
	Graph Classes
	Boolean Satisfiability Problem

	Thesis structure

	Interval Ordering
	Interval Ordering
	Exact algorithm
	Heuristic algorithm
	Given two orders: merging algorithm
	Given one order only: algorithm for q-CNF formulas

	K-Interval Ordering
	Given two orders: the Mk merging algorithm
	Heuristics algorithm

	PS-width of interval ordered boolean formulas

	Experimental results
	Improving Mk
	Shifting heuristic (SH)

	Algorithms
	SAT competition
	Results for SAT RACE 15
	Results for SAT COMP 11
	Significant practical instances

	Testing linear ordering heuristics
	Generating instances
	Setup
	Results


	SAT encodings for the Car Sequencing Problem
	Car Sequncing
	CNF Encoding
	Sequential Counter Encoding
	Capacity
	Link Cars and Options
	Complete Model
	Example encoding


	Benchmarking - Car Sequencing
	CNF-SAT encoder
	Complete instances
	Capacity and Cardinality constraints
	Conclusion

	Conclusions
	Summary
	Open Problems

	Code repository
	Bibliography

