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Abstract Each year, hundreds of thousands of

farmed Atlantic salmon escape from fish farms into

the wild. Some of these escapees enter freshwater, and

manage to interbreed with native populations. To

hinder further genetic introgression in native popula-

tions, the use of sterile triploid salmon within

commercial aquaculture is being examined. However,

if triploid escapees migrate into freshwater, they may

still have ecological impacts on local populations. In

the present study, we used microsatellite DNA geno-

typing to determine the ploidy of 3794 farmed

escapees captured in 17 Norwegian rivers in the

period 2007–2014. Although a previous study has

reported an average of 2 % triploids in Norwegian fish

farms during this exact period, here, we only observed

7 (0.18 %) triploids among the escapees captured in

freshwater. In addition, we identified three trisomic

escapees. For the triploids where the within-river

capture location was determined, they were only

observed in the lower reaches and not on the spawning

grounds. It is concluded that propensity for triploid

Atlantic salmon to migrate into freshwater following

escape from a fish farm is significantly lower than for

normal diploid salmon escapees. Therefore, commer-

cial production of triploids should not only be seen as

an effective way of stopping genetic introgression, it

will also significantly reduce the numbers of escapees

entering rivers, which in turn limits ecological inter-

actions and potential disease transmission.
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Introduction

The Atlantic salmon (Salmo salar L.) aquaculture

industry has a number of environmental challenges, of

which farmed escapees and their potential genetic

interaction with wild conspecifics represents one of

the most significant (Taranger et al. 2015). Each year,

hundreds of thousands of farmed salmon escape into

the wild. While many of these disappear never to be

seen again (Skilbrei et al. 2015a), some enter fresh-

water and spawn with wild salmon (Lura and Saegrov

1991; Saegrov et al. 1997). As a result, genetic

Electronic supplementary material The online version of
this article (doi:10.1007/s10530-016-1066-9) contains supple-
mentary material, which is available to authorized users.

K. A. Glover (&) � J. B. Bos � A. S. Madhun �
A. G. E. Sørvik � L. Unneland � B. B. Seliussen �
Ø. Skaala � O. T. Skilbrei � Y. Tang � V. Wennevik

Institute of Marine Research, Bergen, Norway

e-mail: kevin.glover@imr.no

K. A. Glover

Sea Lice Research Centre, Department of Biology,

University of Bergen, Bergen, Norway

K. Urdal
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changes, caused by introgression of non-native farmed

salmon, have been documented in native Atlantic

salmon populations in Ireland, Canada and Norway

(Clifford et al. 1998b; Crozier 1993; Glover et al.

2013, 2012; Skaala et al. 2006).

As one of the measures to mitigate the potential

effects of genetic interactions with wild populations,

commercial production of triploid salmon, that are

sterile and therefore unable to produce viable off-

spring, is being explored. The procedures to induce

triploidy are relatively straightforward and have been

used in a number of experiments (e.g., Frenzl et al.

2014; Leclercq et al. 2011; Taylor et al. 2014).

However, while triploid salmon are sterile, they can

still develop secondary sexual characteristics, and it

has been demonstrated that farmed triploid males can

successfully coax normal diploid wild females to mate

with them (Fjelldal et al. 2014). This could lead to

many of the eggs being unfertilized depending upon

the numbers of wild males also present during

spawning. Therefore, if there are large numbers of

triploid farmed salmon on the spawning grounds,

genetic interactions could be replaced by ecological

interactions instead.

As Atlantic salmon aquaculture is primarily based

upon freshwater production in tanks on land, and

marine production in cages, the majority of fish

escaping from aquaculture installations occur during

the marine phase of the production cycle. Therefore, in

order for triploid escapees to disturb spawning in

rivers (Fjelldal et al. 2014), they first need to migrate

into freshwater. Immature diploid farmed Atlantic

salmon escapees have been documented to occasion-

ally enter freshwater soon after escape from marine

cages (Madhun et al. 2015; Skilbrei et al. 2015a).

However, freshwater migration in salmon is primarily

linked with adult maturation, and it is therefore

possible that sterile triploid escapees will display

reduced motivation to enter freshwater. An experi-

mental study to evaluate this was conducted in Ireland

by releasing groups of diploid and triploid salmon

smolts into the sea (Cotter et al. 2000). The results of

that study demonstrated that adult return rates to

freshwater were significantly lower (approximately 4

times) in the triploid experimental group. In a recent

study of spontaneous triploidy (i.e., triploids that arise

from a random event during development as opposed

to a deliberate protocol), it was demonstrated that the

Norwegian aquaculture industry had produced

approximately 2 % spontaneous triploids in the period

2007–2014, and for the first time, demonstrated that

triploid salmon, originating from a commercial fish

farm entered a river (Glover et al. 2015). However, the

authors concluded that it would be essential to analyse

a larger number of escapees in rivers in order to

determine the relative frequency of this behavior.

Scales are often sampled from salmon that have

been captured by angling in rivers. These can be read

to differentiate between farmed escapees and wild fish

(Fiske et al. 2006; Lund and Hansen 1991). Thereafter,

these scales can be used to isolate DNA in order to

address a wide variety of evolutionary and conserva-

tion questions (Glover et al. 2012; Karlsson et al.

2011; Nielsen and Hansen 2008; Nielsen et al. 1997).

Recently, identification of triploid Atlantic salmon,

using microsatellite DNA genotyping was validated

against other triploid identification methods that

require fresh tissues (Glover et al. 2015). Conse-

quently, it is now possible to go back into historical

scale archives in order to identify and investigate the

frequency of triploid Atlantic salmon escapees in

rivers.

The overall aim of the present study was to

determine the frequency of triploid farmed salmon

escapees in Norwegian rivers in the period

2007–2014, and, compare this to the observed fre-

quency of triploid salmon in Norwegian farms in the

same period (2 %) (Glover et al. 2015). In order to

achieve this, we used microsatellite genotyping to

determine the ploidy of 3794 farmed Atlantic salmon

escapees captured in 17 Norwegian rivers.

Materials and methods

Samples

The samples of farmed escaped salmon, upon which

the present study is based, originate from 17 rivers in

the western part of Norway in the period 2007–2014

(Fig. 1). A description of the number of samples by

year is available (Supplementary information 1).

The first and primary source of the samples is the

historical scale archives owned by the Norwegian

company Rådgivende Biologer AS. This company has

conducted an extensive sampling of farmed and wild

salmon in a variety of rivers in the west of Norway

since the early 1990s. These samples are donated to
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the company by anglers who take the samples

themselves once they have killed the fish for personal

consumption. Thus, the samples were collected on a

voluntary basis from dead fish killed as part of a

licensed recreational activity (angling). The authors of

this work have therefore not played any part in this

specific sampling.

The second and minor source of samples for this

study originate from farmed salmon captured and

killed in a new trapping facility located in the river

Etne in the west of Norway. The upstream trap is in

place as part of a conservation plan to protect the local

salmon population in the river from further genetic

interactions with farmed escapees. The putatively

identified farmed salmon (based upon morphological

characteristics) are humanly killed by a sharp blow to

the head. Thereafter, their identification is confirmed

by scale reading (Lund and Hansen 1991).

Genotyping

DNA was isolated from 1 to 3 fish scales in 96 well

format using either of the following two DNA

isolation methods. The DNeasy blood and tissue kit

from Qiagen, or the HotSHOT method (Truett et al.

2000). In both cases, either the manufacturers’

instructions or the publicatiońs standard description

of the method were implemented. Each DNA extrac-

tion plate contained at least 2 blank cells as negative

controls to enable their unique identification.

Eighteen microsatellite loci were amplified for each

fish. These included the following loci amplified in

three multiplex reactions (for specific PCR conditions

see Supplementary information 2): SSsp3016 (Gen-

bank no. AY372820), SSsp2210, SSspG7, SSsp2201,

SSsp1605, SSsp2216 (Paterson et al. 2004), Ssa197,

Ssa171, Ssa202 (ÓReilly et al. 1996), SsaD157,

Fig. 1 Location of the 17 Norwegian rivers in which the frequency of triploid Atlantic salmon escapees was investigated in the period

2007–2014
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SsaD486, SsaD144 (King et al. 2005), Ssa289, Ssa14

(McConnell et al. 1995), SsaF43 (Sanchez et al. 1996),

SsaOsl85 (Slettan et al. 1995),MHC I (Grimholt et al.

2002) MHC II (Stet et al. 2002). PCR products were

analysed on an ABI 3730 Genetic Analyser and sized

by a 500LIZTM size-standard. Automatically binned

alleles were manually checked by two researchers. All

putatively identified triploid salmon were genotyped

twice for validation. Individual salmon that were not

successfully genotyped C10 of the 18 loci were

removed from the data set (with the exception of one

clearly triploid salmon genotyped for 9 loci, see

Supplementary information 1).

Identified triploids (see below) were sexed genet-

ically using the sdY gene (Eisbrenner et al. 2014; Yano

et al. 2012). Individuals displaying amplicons of exon

2 and 4 were designated as males. Amplicons were

identified on the ABI 3730 Genetic Analyser using

identical conditions to amplify microsatellites

described above.

Protocol for triploid identification using

microsatellites

Microsatellite genotyping to identify triploid Atlantic

salmon has recently been validated against flow cytom-

etry and red blood cell diameter analyses (Glover et al.

2015). We have therefore used an identical protocol to

identify the triploid salmon here. In short, we reported an

individual as triploid where it displayed three alleles at

two or more of the loci genotyped. Fish displaying more

than 3 alleles were regarded as potentially polluted

samples, and fish that displayed 3 alleles at just one of the

loci were regarded as trisomic. Examples of how the

genotyping data look in a normal diploid, a triploid and a

trisomic salmon are presented in Supplementary infor-

mation 3. The described approach to identify triploid

salmon is also identical to a study of spontaneous

triploids in cultured Atlantic salmon in a Baltic fish

hatchery (Ozerov et al. 2010), and is similar to

approaches used for identification of triploids in other

organisms in the wild (Darvill et al. 2012; Garner et al.

2008; Hernandez-Urcera et al. 2012; Liebert et al. 2004).

Results

DNA was isolated from a total of 3941 samples

collected from 17 rivers in the period 2007–2014. Of

these, 3794 (96 %) individual samples were geno-

typed at 10 or more of the 18 microsatellite loci. The

raw genotypic data for all of these 3794 individuals are

provided (Supplementary information 1). Only these

individuals are included in the present analyses.

Sample drop-out is normal in all genetic data sets,

and based upon previous studies where we have

genotyped triploid salmon both in a pedigree based

material (Solberg et al. 2013), and samples that were

cross-validated against non-genetic ploidy determina-

tion methods (Glover et al. 2015), it is concluded that

sample drop-out is random and not connected to

ploidy.

A total of 7 (0.18 %) triploid, and 3 (0.08 %)

trisomic farmed salmon escapees were observed

among the samples captured in rivers (Tables 1, 2).

Concentrating on the triploid escapees, these were

only observed in four of the studied rivers, and only in

the last years of the sampling period (i.e., 2010–2014).

Both males (5) and females (2) were identified. Four of

the escapees were captured in the river Oselva in 2014.

The triploid escapees captured in the river Oselva in

2014 were fish of a similar size, and it is not unlikely

that may have originated from the same farm source.

The exact within-river location of capture of the

triploid escapees was available for five of the triploids

observed in freshwater (Table 2). All five of these

triploids were captured in the lower stretches of their

respective rivers. In addition, all of the triploids with

available data were less than 2 kg.

Discussion

This is the first study to investigate the relative

frequency of diploid and triploid farmed Atlantic

salmon escapees in rivers. Based upon genetic-ploidy

determination of 3794 escapees re-captured in 17

rivers in the period 2007–2014, the following main

results are presented: (1) Only 7 (0.18 %) of the

escapees analysed were triploid, which is approxi-

mately 10-fold lower than the frequency observed in

Norwegian farms in this time-period (2 %) (Glover

et al. 2015). Working on the premise that ploidy does

not influence likelihood of escape from a net pen, this

study clearly demonstrates significantly reduced moti-

vation of triploids to migrate into freshwater following

escape from a farm when compared with diploid

escapees. (2) Where the within-river location of
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capture was recorded, triploids were only observed in

the lower sections or estuarine parts of the rivers. This

further suggests reduced motivation to ascend rivers.

(3) Triploids were only observed in three of the 8

sampling years, and only in 4 of the 17 rivers

investigated. This suggests that entry of triploid

escapees to freshwater is unpredictable, and that it is

potentially triggered by specific conditions. Based

upon these observations, we conclude that commercial

production of triploid Atlantic salmon will not only

function as an effective barrier to stop further gene

flow to wild populations, it would reduce the numbers

of farmed escapees entering rivers. In turn, this would

reduce other environmental impacts on wild popula-

tions in freshwater, such as ecological interactions and

possible disease transmission.

Genetic interactions between farmed escaped

Atlantic salmon and wild conspecifics is a topic that

has generated an entire field of research (Ferguson

et al. 2007). Farmed salmon have probably been

escaping from aquaculture installations since the very

start of the industry in the early 1970s, and long-term

studies have observed escapees in rivers over many

years (Fiske et al. 2006). Both the pioneering studies

Table 1 Total numbers of

samples successfully

genotyped, years sampled,

and number of triploid and

trisomic escapees observed

per river

River Years sampled Total N N per year N triploid N trisomic

Vikja 8 572 29–140 0 0

Suldal 8 797 55–184 1 0

Eidselva 8 354 8–109 1 1

Daleelva 8 150 4–48 0 1

Oselva 8 622 28–190 4 1

Kinso 5 188 31–45 0 0

Storelva Arna 7 36 1–11 0 0

Sogndalselva 6 45 1–19 0 0

Bjerkreimselva 4 128 6–69 0 0

Vorma 7 73 2–29 0 0

Opo 3 84 22–31 1 0

Mosnes 5 75 3–42 0 0

Eidfjord 5 81 5–28 0 0

Gloppen 7 130 4–32 0 0

Årøy 7 52 2–14 0 0

Jølstra 7 93 4–45 0 0

Etne 2 314 155–159 0 0

Total 8 3794 7 3

Table 2 Biological, capture and genetic data for the 7 triploid escapees captured in rivers

River Date of

capture

Location in river L (cm) W (kg) K Comments Sex No. of genetic

markers scored

No. of genetic

markers with

3 alleles

Oselva 15.08.14 Lower/brackish – – – Smalla Male 16 5

Oselva 21.09.14 Lower/brackish 46 0.7 0.72 Female 16 6

Oselva 15.10.14 Lower/brackish 47 – – Male 16 3

Oselva 02.11.14 Lower/brackish 56 1.6 0.91 Male 18 8

Opo 28.08.14 – 42 0.6 0.81 Female 9b 3

Eidselva 2010 – – – – Male 18 2

Suldal 29.09.13 Lower 52 1.4 1.0 Male 18 5

a Based upon size of fish scale collected, this individual was similar in size to the other triploids captured in this river in this year
b This individual was only genotyped at 9 loci in total. Sex determined genetically
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conducted in Ireland (Clifford et al. 1998a, b; Crozier

1993), as well as more recent and extensive studies

conducted in Norway (Glover et al. 2013, 2012;

Skaala et al. 2006), have demonstrated genetic

changes in native populations as a result of farmed

escapees interbreeding. Furthermore, studies con-

ducted in the wild have clearly demonstrated reduced

fitness of the offspring of farmed escapees (Fleming

et al. 2000; McGinnity et al. 2003; Skaala et al. 2012),

and the underlying genomic causes of this are starting

to be identified (Besnier et al. 2015). Clearly, while a

switch to triploid production will not be able to reverse

introgression that has already occurred, hindering

further erosion of genetic integrity in native popula-

tions is important. This is especially so given the fact

that domestication of farmed Atlantic salmon is

ongoing, and the genetic differences between farmed

and wild salmon in important fitness related traits, for

example growth, continues to diverge with successive

generations (Glover et al. 2009; Solberg et al. 2012).

The results of the present study, together with an

earlier study involving release of triploid and diploid

smolt groups in Ireland (Cotter et al. 2000), strongly

suggest that commercial production of triploid salmon

will not only hinder further genetic interactions with

wild populations, it is likely that the frequency of

escapees in rivers will drop significantly due to their

apparent reduced motivation for freshwater migration.

Thus, triploid production should also be viewed as a

strategy to limit other interactions with both juvenile

and adult wild salmon in rivers, such as spawning

competition and potential disease transmissions. For

example, a recent study has demonstrated that virus-

infected farmed escaped salmon enter rivers, and thus

represent a potential disease transmission threat to

wild salmon populations (Madhun et al. 2015). If the

salmon aquaculture industry was based upon produc-

tion of triploid salmon, then the opportunity for

transmission of diseases to juvenile and young fish in

rivers may be significantly reduced as a result of their

limited motivation for migration into freshwater.

The low number of triploid escapees observed in

freshwater in this study precluded the ability to

determine trends of this occurrence. However, despite

the fact that secondary sexual characteristics were not

recorded for these triploid fish, their size and capture

location within the rivers (lower stretches) is typical of

immature farmed Atlantic salmon that enter freshwater

soon after escape from a farm (Madhun et al. 2015;

Skilbrei et al. 2015a, b). Thus, while triploid male

salmon that have developed secondary sexual charac-

teristics can partake in spawning (Fjelldal et al. 2014),

the evidence presented here indicates that where

triploids enter freshwater, their distribution in the river

is typical of immature diploid escapees, and it is

unlikely that they would attempt to partake in and

therefore disruptwild fish spawning.Wecannot exclude

the possibility that some individuals would nevertheless

migrate further upstream and attempt to spawn.

In the period in which the present study was

conducted, almost no deliberate commercial produc-

tion of triploid Atlantic salmon occurred. However,

recent developments in production techniques have

solved some of the early challenges experienced with

commercial production of triploids (Fjelldal and

Hansen 2010; Fraser et al. 2012; Frenzl et al. 2014;

Leclercq et al. 2011; Taylor et al. 2015). In Norway,

which is the world́s largest Atlantic salmon producing

country, recent government licensing schemes have

encouraged companies to initiate triploid production

at a commercial level. It is therefore likely that the

frequency of triploid Atlantic salmon production in

Norway will expand in the coming years. The results

of this study support this development in order to

hinder further genetic introgression as well as poten-

tial ecological and disease interactions with wild

populations in rivers.
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