
UNIVERSITY OF BERGEN

MASTER THESIS

SQUIDS
Software Quality Issue Detection System

-
Development of an Eclipse plug-in for automated detection of

software maintainability problems

Author:
Lars Alberto Vangsnes CABRERA

Supervisor:
Prof. Solveig BJØRNESTAD

A thesis submitted in fulfilment of the requirements
for the degree of Master

in the

Department of Information Science and Media Studies

June 1, 2016

Keywords:
Software, Quality, Maintainability, CISQ, Eclipse, plug-in,

static source code analysis, usability, performance,
Abstract Syntax Tree (AST), Java

http://www.uib.no/en
http://www.uib.no/en/infomedia

There are two ways of constructing a software design: One way is to make it so simple that
there are obviously no deficiencies and the other way is to make it so complicated that there are
no obvious deficiencies.

– Sir Charles Antony Richard Hoare

ii

Abstract

Software quality can make a large impact on the cost and speed of development, as well as on
what functionality can be delivered in time. Techniques, tools and models exist for measuring
and improving software quality. Static code analyzers are programs which can be used to
identify quality problems in the source code of software. The CISQ Specifications for Automated
Quality Characteristic Measures provide a set of measures for automatic analysis, which can be
implemented into a static code analyzer. Maintainability is a characteristic of software quality,
and is one of four characteristics in the CISQ specification. Two implementations of the CISQ
specification exist, where one of them, called MUSE, implements the maintainability
characteristic. However, neither are available as plug-ins for an Integrated Development
Environment (IDE).

In this study, a software artifact named SQUIDS (Software Quality Issue Detection System)
was developed as a plug-in for the Eclipse IDE. This was done in order to find out how a
static code analyzer can be developed to find maintainability problems in software source code,
based on a standard, with focus on correctness, usability and performance. SQUIDS analyzes
Java source code, finds maintainability problems defined by the CISQ specification, marks the
problems in the source code editor, and provides a software quality score according to the
specification.

The software artifact was evaluated by comparing results with the MUSE software (Plösch,
Schürz, and Körner, 2015), providing an example of and discussing how maintainability
problems can be visualized to the user, and evaluating performance by measuring the time it
takes SQUIDS to analyze five existing open-source software projects. The results show that
SQUIDS and MUSE find different problems for most of the CISQ measures, that the way
SQUIDS visualizes maintainability problems works, but may not be optimal for a larger
number of problems, and that although the performance of SQUIDS proved to be lower than
desired, makes it usable while developing software.

Further research and development is recommended to improve the correctness, usability and
performance of SQUIDS. A method for comparing and verifying the analysis results of
SQUIDS and MUSE has been proposed and used for a selection of the CISQ measures.
Further verification of the analysis results could therefore be conducted using the method.

SQUIDS is available as an open-source software project on GitHub, and can be installed and
used in Eclipse to identify maintainability problems in Java software source code.

iii

https://github.com/larsac07/SQuIDS

Acknowledgements
During the past year, my supervisor Solveig Bjørnestad has kept my thinking straight,
and encouraged me to always do my best. Without her expertise, personal library of
software engineering, direct speech, pep talks and inspiring random chats, this thesis
would never be what it is. For that, I express my deepest gratitude.

I wish to thank my fiancée and our son for taking care of me during stressful days
and weeks, and reminding me that no matter the struggle, there is always a warm hug
which makes it better.

My good friend Morten Oftedal also deserves my gratitude for suggestions,
discussions, debugging, listening to anxiety rants and helping me take my mind off
work once in a while by doing something creative.

I thank Severin Schürz for providing me with the raw data results from Plösch,
Schürz, and Körner’s study, which was imperative in comparing my results. I also
thank Bjørnar Tessem for reassuring me that the project seemed feasible, and for
guiding me in comparing my results.

Finally, to all my friends who have seen me only sporadically and asked me how I have
been doing during the past year, I thank you for thinking of me, and I hope to spend
more time with all of you again soon.

v

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Techniques for Maintainability . 1
1.2 Static Code Analyzers . 2
1.3 Research Questions . 3
1.4 Organization of the Thesis . 3

2 Theory 5
2.1 Software Engineering . 5

2.1.1 Software Requirements . 5
2.1.2 Scenarios . 6
2.1.3 User Stories . 6
2.1.4 Software Design . 7
2.1.5 Software Response Time . 8
2.1.6 Integrated Development Environment 9
2.1.7 eXtreme Programming . 10
2.1.8 Unit Testing . 11
2.1.9 Software Engineering Summary 14

2.2 Software Quality . 14
2.2.1 Models and Quality Characteristics 14

2.3 Software Maintainability . 15
2.3.1 Maintainability in Use . 15
2.3.2 Maintainability Metrics . 16
2.3.3 Related Research on Maintainability Metrics 17

2.4 Software Quality Analysis . 18
2.4.1 Abstract Syntax Tree and Tokens 18
2.4.2 Architectural Layers . 19
2.4.3 Coupling . 22
2.4.4 Instructions . 23
2.4.5 Lines of Code . 23
2.4.6 Cyclomatic Complexity . 24
2.4.7 CISQ Specifications for Automated Quality Characteristic

Measures . 25
2.4.8 Efficiency Measurement of Java Android Code 29
2.4.9 Tools . 29
2.4.10 On the Validity of the IT-CISQ Quality Model for Automatic

Measurement of Maintainability 30
2.5 Chapter Summary . 33

vii

3 Research Method 35
3.1 Design Science Research . 35

3.1.1 Guideline 1: Design as an Artifact 35
3.1.2 Guideline 2: Problem Relevance 35
3.1.3 Guideline 3: Design Evaluation . 37
3.1.4 Guideline 4: Research Contributions 37
3.1.5 Guideline 5: Research Rigor . 38
3.1.6 Guideline 6: Design as a Search Process 38
3.1.7 Guideline 7: Communication of Research 38

3.2 Research Design . 39
3.2.1 Using DSR . 39
3.2.2 Development Method . 39
3.2.3 Research Evaluation . 41

3.3 Chapter Summary . 44

4 Development Process 45
4.1 User Scenarios . 45

4.1.1 Scenario 1: Evaluate own software 45
4.1.2 Scenario 2: Evaluate external software 46

4.2 Requirements . 46
4.2.1 Functional Requirements . 46
4.2.2 Nonfunctional Requirements . 47
4.2.3 User Stories . 47

4.3 Design . 48
4.3.1 Context Diagram . 48
4.3.2 Class Diagram . 48
4.3.3 Process Diagram . 49

4.4 Tools . 49
4.4.1 Programming Language . 51
4.4.2 JavaParser . 51
4.4.3 Eclipse PDE . 52
4.4.4 Other tools . 53

4.5 Technical Challenges . 53
4.5.1 Ambiguous CISQ Terms . 53
4.5.2 JavaParser Weaknesses . 56

4.6 Iterations . 56
4.6.1 Iteration 1 . 57
4.6.2 Iterations 2-11 . 57
4.6.3 Iterations 12-15 . 61
4.6.4 Iteration 16 . 61

4.7 Chapter Summary . 64

5 Results 65
5.1 Implementation . 65

5.1.1 Functionality . 66
5.1.2 Extensibility . 66
5.1.3 CISQ Measures implemented . 67
5.1.4 CISQ Compliance Requirements met 67

5.2 Analysis Results . 68
5.3 Performance . 69

viii

5.3.1 Setup Details . 69
5.3.2 Measures . 70
5.3.3 Performance Test Results . 70

5.4 Unit Test Coverage . 72
5.5 Chapter Summary . 74

6 Discussion 75
6.1 Discussion of Methods . 75

6.1.1 Size Measures . 75
6.1.2 Performance Test Amount . 76
6.1.3 Performance Test Points . 76
6.1.4 Unit Test Formality . 77
6.1.5 Informed Argument . 77

6.2 Discussion of the CISQ Specification . 77
6.2.1 Ambiguous Terms . 77
6.2.2 Source Code Size Metrics . 78
6.2.3 Improving Maintainability . 78

6.3 SQUIDS Implementation . 78
6.3.1 Ignored Measure . 79
6.3.2 Not Using the Visitor Pattern . 79

6.4 Comparison of Results with MUSE . 80
6.4.1 Detailed Comparison . 81

6.5 Answering the Research Questions . 84
6.5.1 Research Question 1 . 84
6.5.2 Research Question 2 . 85
6.5.3 Research Question 3 . 87

6.6 Validity . 89
6.6.1 Internal Validity . 89
6.6.2 External Validity . 90

6.7 Chapter Summary . 91

7 Conclusions 93
7.1 Thesis Summary . 93
7.2 Research Contribution . 93
7.3 Further Research and Development . 95

7.3.1 Further Evaluation . 95
7.3.2 Further Development of SQUIDS 96
7.3.3 Query-Language for ASTs . 97
7.3.4 Automated Quality Assessment 98

Bibliography 99

A User Stories 105

B CISQ Measure Implementation Differences 109

C Measure Class Diagram 111

D Performance Test Result Tables 113

E Comparisons of Problem Counts 119

ix

F Manual Inspection of Results from MUSE and SQUIDS 123
F.1 M06 . 123
F.2 M17 . 125

x

List of Figures

2.1 Context diagram example . 7
2.2 Class diagram example . 8
2.3 BPMN diagram example . 9
2.4 XP Project . 10
2.5 Black Box vs. White Box testing . 12
2.6 Software Product Quality Characteristics 15
2.7 Example of an AST. 19
2.8 Visitor Pattern example . 20
2.9 Presentation-Domain-Data Layering. 21
2.10 Layered architecture view . 21
2.11 Software Product Quality . 26
2.12 Tool architecture . 32

3.1 Information Systems Research Framework 36

4.1 User Scenario 1 . 45
4.2 User Scenario 2 . 46
4.3 Context Diagram . 48
4.4 Class Diagram . 49
4.5 High-level process diagram . 50
4.6 Low-level process diagram . 50
4.7 JavaParser . 52
4.8 PoC of visualizing quality problems . 57
4.9 SQUIDS settings . 62
4.10 SQUIDS warnings in Eclipse editor . 62
4.11 SQUIDS warnings in Problems view . 63
4.12 SQUIDS report in custom CISQ Report view 63
4.13 SQUIDS progress indicator . 64

5.1 SQUIDS Commands . 65

6.1 Overlapping problem markers . 86

C.1 Measure Class Hierarchy . 112

xi

List of Tables

2.1 Examples of Java tokens . 18
2.2 CodeCounter™ LOC calculation . 24
2.3 CISQ Maintainability Measure Elements 26
2.4 CISQ Maintainability Measures . 27
2.5 Implemented Performance Efficiency Measures 29
2.6 Unclear Maintainability Measures . 31

3.1 DSR Research Guidelines . 36
3.2 Design Evaluation Methods . 37
3.3 Application of the seven DSR guidelines 40
3.4 Performance Test Setup . 44

5.1 SQUIDS analysis results . 69
5.2 Performance per project . 71
5.3 Performance per project per 10 files . 71
5.4 Performance Average . 72
5.5 SQuIDS unit tests Line- and Mutation Coverage 73

6.1 Comparison totals . 81
6.2 SQUIDS velocities . 88

D.1 SQUIDS performance analyzing Checkstyle 114
D.2 SQUIDS performance analyzing JabRef 115
D.3 SQUIDS performance analyzing Log4j . 116
D.4 SQUIDS performance analyzing RSSOwl 117
D.5 SQUIDS performance analyzing TV-Browser 118

E.1 Comparison of problem counts in Checkstyle 120
E.2 Comparison of problem counts in JabRef 120
E.3 Comparison of problem counts in Log4j 121
E.4 Comparison of problem counts in RSSOwl 121
E.5 Comparison of problem counts in TV-Browser 122
E.6 Comparison totals with TV-Browser . 122

F.1 Notes from manual inspection of M06 findings 123
F.2 Notes from manual inspection of M17 findings 125

xiii

List of Abbreviations

API Application Programming Interface
AST Abstract Syntax Tree
CBO Coupling Between Object classes
CC Cyclomatic Complexity
DSR Design Science Research
IDE Integrated Development Environment
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
ISO International Standards Organisation
IS Information System
IT Information Technology
JVM Java Virtual Machine
LOC or SLOC (Software) Lines Of Code
LLOC Logical Lines Of Code
PDE Plug-in Development Environment
PLOC Physical Lines Of Code
PoC Proof of Concept
regex regular expressions
SQuIDS Software Quality Issue Detection System
UML Unified Modeling Language
VCS Version Control System
XP eXtreme Programming

xv

Chapter 1

Introduction

An important aspect of software engineering is software quality. While there have been
many disagreeing definitions of what software quality is, poor software quality has
caused companies to lose almost US$60 billions each year. Either the software does
not deliver the promised features and functionality, or it has defects which leads to
downtime, slow operation or time-consuming maintenance (Bessin, 2004; Pressman,
2010).

Maintainability is a characteristic of software quality, and describes a software
program’s degree at which it is easy to maintain. In other words, a given software
program’s maintainability is how easy it is to perform changes on it, thus a measure of
how maintainable it is (Bourque and Fairley, 2014, c. 10). With the rapidly evolving
technology of the 21st century, software is expected to see numerous larger changes
and maintenance over its lifecycle, with changed objectives or newly discovered
challenges, leading to added or substituted functionality. This requires software to be
maintainable, in order to reduce costs and deliver software faster.

The reality is that maintainability of evolving software tends to decrease over time
(Bakota et al., 2012, p. 316), and according to Martin (2009), programmers “are
constantly reading old code as part of the effort to write new code”. With this in mind,
how do we make software maintainable?

1.1 Techniques for Maintainability

There are numerous techniques available to ensure software maintainability. In
software engineering, some of those techniques are (Sommerville, 2011):

• Software design: By providing a rigorous software design as documentation, the
software may become more maintainable. In addition, the software may be

1

2 Chapter 1. Introduction

developed as maintainable due to the design itself

• Code inspections: Groups of developers review the code, and look for
weaknesses. Problems related to maintainability may be detected in these
sessions

• Refactoring: Developers improve the source code’s structure and organization.
This activity can be used to detect maintainability issues

While these techniques can be used to find maintainability problems in the source
code, they rely on rigorously defined methods and may require much time and effort
in order to keep the software maintainable. Additionally, design documentation is
only useful for this purpose if it is frequently maintained, updated and correct in
relation to the software. As a remedy for this, can detection of maintainability
problems be standardized and automated?

1.2 Static Code Analyzers

Static code analyzers are computer programs which can automatically detect and
present violations against defined rules in the software source code, using predefined
rules for coding rules and standards. (Broeckman and Notenboom, 2003; Chirilă and
Creţu, 2012). These can be used for automatic detection of software quality problems,
and thereby maintainability problems. Examples of such analyzers are:

• AWARE
• Checkstyle
• PMD
• SonarQube
• The MUSE software developed by Plösch, Schürz, and Körner (2015)
• Software developed by Satrijandi and Widyani (2015)

The first four analyzers are available as plug-ins for the Eclipse IDE. However,
AWARE is focused on reliability, which is another characteristic of software quality,
and the only available downloads are older versions which are no longer supported.
In addition, these four analyzers are not based on any standard. On the other hand,
the last two software programs are based on the CISQ Specifications for Automated
Quality Characteristic Measures, which consist of descriptions of metrics for the four
software quality characteristics reliability, performance efficiency, security and
maintainability. MUSE, which is developed by Plösch, Schürz, and Körner (2015),
implements the maintainability characteristic, whereas the software developed by

http://www.realsearchgroup.org/aware/index.php
http://checkstyle.sourceforge.net/
https://pmd.github.io/
http://www.sonarqube.org/
http://www.eclipse.org/

Chapter 1. Introduction 3

Satrijandi and Widyani (2015) implements the performance efficiency characteristic.
These programs are however not available for download.

1.3 Research Questions

This brings us to the problem: No static code analyzer is based on an existing standard,
can automatically detect maintainability problems and is available as a plug-in for an
IDE. Therefore, this research project will intend to create such a software as a proof
of concept. Additional goals are to find out if such a software could be expected to
have an acceptable performance, so that software developers would be willing to use
it during their day-to-day work, and how problems that are found may be displayed
to the user. The overarching research question for this project is consequently:

How can a static code analyzer for maintainability, based on an existing standard, be developed
as a plug-in for an IDE, such as Eclipse, with focus on correctness, performance and usability?

This leads to the following research questions:

Q1 - How can a static code analyzer be developed as an Eclipse plug-in which, based
on a standard, detects maintainability problems in a software project?

Q2 - How can such an implementation visualize maintainability problems in a
software project to the user?

Q3 - Can such an implementation give a performance which makes it usable during
development?

1.4 Organization of the Thesis

This thesis has started with a presentation of the background and a description of the
problem. In Chapter 2, relevant theory and related research will be presented.
Following, the research methods and the research design of this project are explained
in Chapter 3. Chapter 4 presents the development process of the software, and the
results are presented in Chapter 5. Chapter 6 discusses the research results in relation
to research methods and relevant theory, answers the research questions, and
challenges the validity of the research results. Chapter 7 presents conclusions and
further research.

Chapter 2

Theory

This chapter introduces important concepts in software engineering and software quality
analysis and presents related research.

2.1 Software Engineering

Software Engineering implies the use of engineering in the management of software.
It is a systematic, disciplined and quantifiable approach to software development,
operation and maintenance, with techniques for software specification, design and
evolution (Sommerville, 2011, p. 5; Bourque and Fairley, 2014, p. xxi). The following
subsections describe some of these techniques.

2.1.1 Software Requirements

A software requirement is a description of a feature which the software must comply
with to solve a real world problem. The requirements of a software system are
typically generated from various people in an organization, and people who are
somehow involved with the operational environment of the software. Requirements
are identified as either functional (individual features) or nonfunctional (system level
requirements) (Bourque and Fairley, 2014).

Bourque and Fairley (2014) define functional requirements as functions which the
system must execute, whereas nonfunctional requirements are constraints on the
software, or quality requirements. Further division of nonfunctional requirements
include requirements on performance, maintainability, safety, reliability, security and
interoperability.

5

6 Chapter 2. Theory

There are a number of techniques for eliciting (sometimes referred to as discovering)
requirements, such as the following (Sommerville, 2011, c. 4, Bourque and Fairley, 2014,
c. 1):

• Interviews
• Scenarios
• Use cases
• User stories
• Prototypes

2.1.2 Scenarios

One technique for requirement elicitation is to create scenarios. A scenario is an
example of how a system may be interacted with. An outline of the interaction is
written first, and more details are added during the elicitation process. The
information in the description of a scenario may contain:

• The system’s and users’ expectations when the interaction starts
• The normal event flow
• Possible errors and handling of them
• Information of other possibly simultaneous activities
• The state of the system at the end of the interaction

Multiple scenarios are created to cover different interactions, levels and details of the
system (Sommerville, 2011, p. 105).

2.1.3 User Stories

Writing user stories is another requirements elicitation (i.e. collection) technique used
in adaptive development methods such as agile methods. In contrast to detailed, low-
level descriptions of requirements, a user story is a short, high-level description written
with terms which are understandable for the customer (Bourque and Fairley, 2014,
p. 38; Wells, 1999c).

User stories are typically written in the following pattern: As a <role>, I want
<goal/desire> so that <benefit>. With this approach, which will be used in the project, it
contains only the relevant information needed for a developer to implement the story,
and to estimate how large the workload will be. User stories are meant to reduce the
chances that a requirement becomes invalid as the project progresses (Bourque and
Fairley, 2014, p. 38).

Chapter 2. Theory 7

FIGURE 2.1: Example of a library system context diagram, from Vliet
(2007).

2.1.4 Software Design

Software design is a creative process where requirements are turned into system
components and the relationships between them (Sommerville, 2011, p. 194).
Techniques for designing software include, amongst others, context diagrams, UML
class diagrams and process diagrams (Vliet, 2007, p. 343). UML (Unified Modeling
Language) is a collection of graphical elements used to notate the description and
design of software. It is an open standard regulated by the Object Management Group
(OMG), and is mainly intended for designing object-oriented software.

2.1.4.1 Context Diagrams

A context diagram is a high-level model of the intended context of the system. It is used
to provide a description of the interaction between the system and the environment,
and are drawn as data flow diagrams, which contain specific notations for data stores,
data flows, processes and external entities. Contrary to data flow diagrams, context
diagrams may contain only a single process, which indicates the system in question.
(Vliet, 2007, p. 349). An example context diagram is illustrated in Fig. 2.1, depicting a
library system.

2.1.4.2 Class Diagrams

The classes of objects in a system and the relationships between them can be modeled
with a UML class diagram. In UML, classes are displayed as nodes (boxes), and
relationships as edges (arrows). Classes may be drawn as boxes with one
compartment for name, one for attributes (fields) and one for operations (methods).
Class diagrams are made to describe the static structure of a system (Fowler, 2004,
p. 35; Vliet, 2007). Fig. 2.2 illustrates an example of a small class diagram.

8 Chapter 2. Theory

FIGURE 2.2: Example of UML a class diagram, from Vliet (2007).

2.1.4.3 BPMN Diagrams

The Business Process Modeling and Notation (BPMN) is a notation standard used to
create process diagrams of information systems, and is intended to communicate to a
wide audience (Object Management Group, 2011). Fig. 2.3 is an example BPMN
diagram of a patient-doctor collaboration process.

2.1.5 Software Response Time

Users have certain expectations when it comes to the response time of software.
Nielsen (1993) specifies three human perceptional time limits for software systems:

• 0.1 second - the maximum time it can take for the user to feel an instant reaction
from the system. The result is the only feedback necessary

• 1.0 second - The user no longer feels that the system provides instant reaction,
but keeps the flow of thought uninterrupted up until this limit. Feedback other
than the result should normally not be necessary

• 10 seconds - The user’s attention on the dialog is kept until this limit. Beyond this
limit, users should be provided with feedback which indicates how much time is
remaining to complete the operation, so they can perform other tasks in the
meantime. If the response time is highly variable, feedback is especially
important to give during the operation, as the users will not know when to
expect it to be done

Chapter 2. Theory 9

FIGURE 2.3: Example of a BPMN diagram (Object Management Group,
2011, p. 25).

A percentage of the operation performed, a percentage-done indicator, should be
provided when the operation takes more than 10 seconds. If the amount of work in an
operation cannot be calculated on beforehand, this may not be possible, but an
indication of what has been done can still be given. For example, in an application
which performs a complex algorithm with certain steps which are iterated an
unknown number of times to achieve an optimal result (e.g. genetic algorithm), the
number of iterations and the state of the result can be provided to the user per
iteration (Nielsen, 1993).

2.1.6 Integrated Development Environment

After setting the requirements and designing the software, the software is often
developed in an Integrated Development Environment (IDE). An IDE is a system of
development tools used by programmers for creating software. Beyond a source code
editor, an IDE typically features compilation and error reporting directly in the editor,
version control system integration, tools for building, testing and debugging the code,
abstract representations of programs, and automatic transformation and generation of
code for refactoring (Bourque and Fairley, 2014, c. 3, p. 12). An example is the Eclipse
IDE, which is used to develop software in many programming languages, though
usually Java (The Eclipse Foundation, 2016).

10 Chapter 2. Theory

FIGURE 2.4: eXtreme Programming Project (Wikimedia Commons,
2001).

2.1.7 eXtreme Programming

Software development can be managed using a defined development method.
eXtreme Programming (XP) is an agile software development method which focuses
on communication, simplicity, feedback, respect, and courage. Daily face-to-face
communication and having the development team work together on all parts of
development is intended create the best solution to the problem. Developers should
simplify the software by only focusing on what is needed. Working software should
always be delivered in order to provide and retrieve feedback to and from the
customer. Mutual respect between development team members, the customer and
management is important, and the development team must both accept responsibility
for and receive authority over their code. Developers should be honest about progress
and problems, and not be afraid to adapt to changes (Wells, 2009).

In XP, development is divided into iterations (see Fig. 2.4), consisting of planning,
coding, testing and evaluation. Iterations last optimally one week and should not
exceed three weeks, and the length should be kept constant throughout development
(Wells, 1999c). User stories are written (see Section 2.1.3), and make the basis of an
iteration. An XP iteration planning meeting consists of selecting priority user stories
and failed acceptance tests (user stories which did not pass acceptance) to include in
the iteration, dividing them into programming tasks, and estimating implementation
time for tasks (Wells, 1999a). User stories are estimated in story points, which are used
to estimate how much work can be done during an iteration, and to calculate the
project velocity at the end of an iteration. This is done by simply adding up the story
points completed during an iteration. The project velocity can be used for estimating

Chapter 2. Theory 11

how much work can be expected during future iterations (Wells, 1999b).

2.1.8 Unit Testing

A software program’s functional behavior can be tested and evaluated by creating
unit tests. Software may be decomposed into units of functions, and unit tests are
written to test those units, to ensure that the program’s functionality behaves as
intended. Creating unit tests requires specification of input values for each unit, and
asserting the expected behavior (Sen, Marinov, and Agha, 2005, p. 263). Snippet 2.1 is
an example of a unit test case for the method add() in a Java class called Money, using
the JUnit framework.

Snippet 2.1: Example unit test method for a Java program (adapted from
junit.org).

1 @Test

2 public void simpleAdd() {

3 // Two Money objects are created

4 Money m12CHF= new Money(12, "CHF");

5 Money m14CHF= new Money(14, "CHF");

6
7 // The expected result is specified.

8 Money expected= new Money(26, "CHF");

9
10 // The actual result is created.

11 // The m14CHF object is the unit input value.

12 // The result object is the unit output value.

13 Money result= m12CHF.add(m14CHF);

14
15 // It is assured that the expected result is equal to the actual result.

16 // If not, JUnit reports the test as failed.

17 assertTrue(expected.equals(result));

18 }

In XP (see Section 2.1.7), a programmer should write the unit test before the unit itself.
This is a practice also known as the Test First Principle (TFP), and aims to save
development time, by knowing when the code works as intended (Wells, 2000).

2.1.8.1 Black Box vs. White Box

One manner of unit testing is known as functional testing, or Black Box, which are test
design techniques where the system is subjected to input, and the output is analyzed
according to the expected behavior. In contrast to White Box techniques, where the
focus is on the knowledge of the system’s internal structure, Black Box techniques only

http://junit.org/
http://junit.org/junit4/cookbook.html

12 Chapter 2. Theory

FIGURE 2.5: Black Box vs. White Box testing (Adopted from
softwaretestinggenius.com).

focus on expected output from a provided input (Broeckman and Notenboom, 2003,
p. 115). The difference is illustrated in Fig. 2.5.

2.1.8.2 Boundary Value Analysis

The principle of a boundary value analysis test technique is to detect programming
errors in logic related to boundaries. A typical mistake is using the wrong comparison
operator, such as < (less than), when the correct operator should have been <= (less
than or equal to). The boundary values should therefore be tested with two test cases
per boundary, surrounding the boundary values (Broeckman and Notenboom, 2003,
p. 119).

For example, in a computer game, where the health points of a Player object can be
altered using a method called setHealth(int health), there is an infinite amount
of possible input values1. However, the Player can only have a minimum of 0, and
maximum of 100 health points. Therefore, the boundary values for setHeatlh() are 0
and 100:

Example 2.1
0 ≤ health ≤ 100

The test cases for the setHealth() method should therefore be:
1In Java, however, the smallest possible value for an integer (int) is -2147483648, and the maximum

2147483647.

http://m.softwaretestinggenius.com/?page=details&url=white-box-unit-testing-a-bottom-up-approach-of-software-testing

Chapter 2. Theory 13

1. assert that health is set to 0 when input value is -1
2. assert that health is set to 0 when input value is 0
3. assert that health is set to 100 when input value is 100
4. assert that health is set to 100 when input value is 101

Additionally, a third test case per boundary (two extra test cases in total) can be added
to ensure thoroughness, testing values which are just within the equivalence partition
of the boundary value (Broeckman and Notenboom, 2003, p. 119):

5. assert that health is 1 when input value is 1
6. assert that health is 99 when input value is 99

These additions can detect an error where the programmer erroneously wrote 0 ==

health (health equal to 0) instead of 0 <= health (health less than or equal to 0),
and vice versa for 100.

2.1.8.3 Test Formality

A test design can have formal or informal rules on how tests are written. A formal
test design specifies strict rules on which test cases and how the test cases should be
written, making sure that the tester does not forget important aspects to test. Whereas
this limits the test quality to the quality of the test specification, an informal test design
allows the tester to be creative, and not rely on the quality of the test specification.
The disadvantage of an informal approach is that the test coverage cannot be derived
from the test design, leaving the possibility that the tester forgot something important
(Broeckman and Notenboom, 2003, p. 120).

2.1.8.4 Unit Test Coverage

Two techniques for evaluating how much of the code the unit tests cover in a software
are measuring code coverage and performing mutation tests (sometimes referred to as
mutation coverage). Code coverage is a measure of how much of the software source
code is covered by unit tests. One version of code coverage is line coverage, where the
number of covered lines in the source code is the unit of measurement (Rojas et al.,
2015, p. 97). Mutation testing is a method of creating mutations of the source code
with logical errors to see if the errors are caught by the unit tests or not (Li,
Praphamontripong, and Offutt, 2009, p. 222). An existing tool which performs both
line coverage measurement and mutation testing is the software PITEST (sometimes
abbreviated as PIT).

http://pitest.org/

14 Chapter 2. Theory

2.1.9 Software Engineering Summary

Applying software engineering techniques to software development provides a
structured approach to specifying the requirements of the software, designing it and
developing it. The techniques ensure that the scope and intention of the software is
thoroughly defined and able to be evaluated, and that the software is developed
efficiently.

2.2 Software Quality

As stated in Chapter 1, Software quality is an ambiguous term, and it has seen many
definitions over the years. One definition, cited from the ISO/IEC 25010:2011
standard, is the “capability of software product to satisfy stated and implied needs
under specified conditions” (Bourque and Fairley, 2014, c. 10, p. 1). A more general
definition is “An effective software process applied in a manner that creates a useful
product that provides measurable value for those who produce it and those who use
it” (Pressman, 2010, p. 400).

Bourque and Fairley (2014) state that software quality is achieved by conforming to all
the requirements of the software, and refer to recent definitions, which underline that
the quality of the software depends on is requirements.

From an ethical point of view, there is an expectation that software engineers have a
cultural relationship to software quality. This includes the knowledge of the
relationship between quality, time and cost, and the trade-offs between them (Bourque
and Fairley, 2014, c. 10, pp. 2-3).

2.2.1 Models and Quality Characteristics

In order to discuss, plan and rate software quality, several models of software quality
characteristics have been created, each with its own taxonomy of quality
characteristics. One of these models is the model standardized in ISO/IEC 25010,
which consists of eight software product quality characteristics, illustrated in Fig. 2.6
(Bourque and Fairley, 2014, c. 10, p. 3). The ISO/IEC 25010 standard is part of the
ISO/IEC 25000 series System and Software Quality Requirements and Evaluation
(SQuaRE) from 2011. The series replaces the ISO 9126 standards from 1991 (CISQ,
2012, p. 5).

Chapter 2. Theory 15

FIGURE 2.6: Software Product Quality Characteristics from ISO/IEC
25010 (Iso25000.com, 2015).

2.3 Software Maintainability

One of the software quality characteristics in the SQuaRE model (see Section 2.2.1) is
maintainability. As with the term software quality, ISO/IEC has also provided various
definitions of software maintainability over the years (Bourque and Fairley, 2014, c. 5,
p. 5; IEEE Standards Association, 2006, p. 3; IEEE Standards Association, 2010, p. 204;
CISQ, 2012, p. 9; ISO/IEC, 2011, p. 9). The definitions are similar in terms of
semantics. However, the latest definition is alone in including the intended maintainers
of the software as a specification: “The degree of effectiveness and efficiency with
which a product or system can be modified by the intended maintainers.” (CISQ,
2012, p. 9; ISO/IEC, 2011).

In other words, the maintainability of a software is a rating of how little effort is
required by its intended maintainers to perform modifications on it, i.e. how
maintainable the software is.

2.3.1 Maintainability in Use

It is often difficult for developers to achieve maintainability while creating software,
because other activities require their attention and are prioritized to meet deadlines.
Additionally, software documentation and test environments may be lacking due to
disregard of the maintainer’s requirements. As a result, the software becomes even
harder to maintain. On the other hand, matured and systematic tools and processes
can increase the maintainability of the software by aiding the developers (Bourque and
Fairley, 2014, c. 5, p. 5).

Bourque and Fairley (2014) list the following measures for software maintenance:

• Analyzability - measures of the maintainer’s effort or resources expended in

16 Chapter 2. Theory

trying either to diagnose deficiencies or causes of failure or to identify parts that
need to be modified.

• Changeability - measures of the maintainer’s effort associated with
implementing a specified modification.

• Stability - measures of the unexpected behavior of software, including that
encountered during testing.

• Testability - measures of the maintainer’s and users’ effort in trying to test the
modified software.

In addition, Bourque and Fairley mention the size, complexity and understandability
of the software.

2.3.2 Maintainability Metrics

There are numerous established metrics for measuring software maintainability2. For
instance, Sjøberg, Anda, and Mockus (2012) list the following:

• Lines Of Code (LOC): A count of the total number of code lines in the software
(see Section 2.4.5)

• Number of comments
• Cyclomatic complexity (CC): A measure of the complexity of a single software

module (see Section 2.4.6)
• Halstead’s Volume: A measure of the size of the software

A multitude of other metrics exist, such as the metrics in the taxonomy of software
maintainability metrics created by Oman and Hagemeister (1992), the object-oriented
software maintainability metrics categorized by Saraiva, Soares, and Castor (2013),
and the metrics for automatic maintainability measurement in the CISQ Specifications
for Automated Quality Characteristic Measures (CISQ, 2012). Common between these
works are metrics concerning complexity and size, while their differences relate to the
objective and scope of the research, and detail of the metrics.

Oman and Hagemeister (1992) define 49 metrics, create a taxonomy of them, and
propose a method for calculating a maintainability index of a software, based on the
metrics. Saraiva, Soares, and Castor (2013) categorize 570 metrics, but do not list all of
them, and give no definitions, as the objective of their paper is simply to categorize
known metrics in order to make the process of building a catalog of object-oriented

2Although, Sommerville (2011) claims there are no metrics for maintainability.

Chapter 2. Theory 17

software maintainability metrics accurate and reliable. CISQ (2012) list only 21 metrics
for software maintainability, and provide little or no definition of them. However, the
goal of the specification is to provide a list of metrics which can be automatically
measured, and where violations of the metrics have a high severity of impact on the
software, i.e. the level of harm a violation causes on maintenance or operation of the
software.

Since many of the metrics require system- and programming language-specific
thresholds (e.g. how many LOC are too many) and weights (e.g. the impact of the
metrics on the Maintainability Index (Oman and Hagemeister, 1992, p. 343)), the use
of fuzzy logic-based algorithms for setting them have been proposed (Dahiya,
Chhabra, and Kumar, 2007; Chen and Liu, 2009).

2.3.3 Related Research on Maintainability Metrics

in Using Metrics to Evaluate Software System Maintainability, Coleman et al. (1994)
intend to demonstrate automated software maintainability analysis and how it can be
applied in decision-making related to software.

2.3.3.1 Tools

The researchers used the HPMAS software maintainability assessment system, a
hierarchical multidimensional assessment model created by HP (Hewlett Packard).
The model was run on 11 industrial software systems.

2.3.3.2 Model

The article refers to a hierarchical model by Oman and Hagemeister, which divides
maintainability into three underlying dimensions or attributes (Coleman et al., 1994,
p. 45):

1. The control structure, which includes characteristics pertaining to the way the
program or system is decomposed into algorithms

2. The information structure, which includes characteristics pertaining to the choice
and use of data structure and dataflow techniques

3. Typography, naming and commenting, which includes characteristics pertaining to
the typographic layout, naming and commenting of code

18 Chapter 2. Theory

2.3.3.3 Conclusions

Results from their analysis conform with “engineers’ intuition about the
maintainability of the (sub)system components”. However, the automated analysis
provided a deeper understanding, and supported the engineer’s opinions with
additional data. Automated maintainability analysis can be conducted at all levels of
the system; at component, sub-system and whole system level (Coleman et al., 1994,
p. 49).

2.4 Software Quality Analysis

This section contains descriptions of concepts and tools used for analyzing software in
order to assess its quality, in addition to related research.

2.4.1 Abstract Syntax Tree and Tokens

An Abstract Syntax Tree (AST) is a representation of code as a tree, where each tree
node is a construct of the source language, containing zero or more children nodes (see
in Fig. 2.7). Unnecessary syntactic details like punctuation or whitespace is omitted,
whereas order, structure and types are gathered as tokens (keywords) and maintained
in the tree format (Jones, 2003, p. 2; Lucas, 2006; Grune, 2012). Examples of such tokens
in the Java programming language are listed in Table 2.1.

TABLE 2.1: Examples of Java tokens.

Token Explanation
int Primitive type
"Hello!" String literal
1 Integer literal
public Access modifier

While ASTs and tokens are concepts often used in compiler software, they provide a
structured view of the relationships between the constructs in a software system, which
can be used to answer questions such as:

• “how many new variables are introduced in this function?”
or

• “Is there a loop within a loop, which is within another loop?”

Chapter 2. Theory 19

FIGURE 2.7: Example of an Abstract Syntax Tree adopted from an article
at ics.com

2.4.1.1 Visitor Pattern

A typical technique of traversing ASTs is using the programming pattern Visitor
(Rashid and Pottier, 2012, p. 324; Nystrom, Clarkson, and Myers, 2003, p. 142). A
visitor is a class which performs an operation on another object. The object accepts the
visitor with an accept(Visitor visitor) method, which in turn calls either of the
visitor’s visit(...) methods, depending on which type the object is, by the
principle of method overloading. For example, if the visited object is an instance of the
class ClassA, the visitor’s visit(ClassA classA) method, and the
visit(ClassB classB) method if the visited object is a ClassB instance (see
Fig. 2.8). This makes type-casting unnecessary, as the static type checking is
performed automatically, and type-specific operations can be performed by the visitor
(Kerievsky, 2004).

2.4.2 Architectural Layers

A software system may be divided into logical layers of components, which helps
sorting the different responsibilities of the components (Mitra, 2008; MSDN, 2009; Xu
and Wan, 2015). It is recommended to maintain a structured layer architecture in
order to keep the software maintainable (Mitra, 2008; CISQ, 2012, p. 25; Fowler, 2015;
MSDN, 2009).

http://www.ics.com/blog/introduction-clang-part-2
http://www.ics.com/blog/introduction-clang-part-2

20 Chapter 2. Theory

FIGURE 2.8: Example diagram of a visitor pattern (adapted from
Kerievsky (2004))

A popular layer architecture is the Three-Tier Architecture model, (see Fig. 2.9). This
model divides software in three layers (Fowler, 2015; Xu and Wan, 2015):

1. presentation / interface layer
2. domain / business layer
3. data / persistence layer

Some software engineering scholars and professionals distinguish between the terms
layer and tier, while others refer to them synonymously. MSDN states that there is an
important difference between the two – that layers are logical groupings of
components, whereas tiers refer to the physical locations of components on separate
machines or networks (MSDN, 2009). Xu and Wan refer to the tiers in the Three-Tier
Architecture model as not necessarily being physical locations, but rather logical
layers (Xu and Wan, 2015, p. 1).

Fowler (2015) and Mitra (2008) emphasize the importance of keeping the dependencies
between layers from above to below – that a layer should only access layers below,
and not above. Mitra also distinguishes between horizontal and vertical layers (see
Fig. 2.10), where vertical layers may depend on, or be dependable by, one or more
horizontal layers.

Chapter 2. Theory 21

FIGURE 2.9: Presentation-Domain-Data Layering (Fowler, 2015).

FIGURE 2.10: Layered architecture view depicting an SOA reference
architecture (Mitra, 2008).

22 Chapter 2. Theory

2.4.3 Coupling

One of the measures of software maintainability often referred to is coupling, where
Coupling Between Object classes (CBO) from Chidamber and Kemerer (1994) is a well-
known metric (Muthanna et al., 2000, p. 1; Lincke, Lundberg, and Löwe, 2008, p. 134;
Shen, Zhang, and Zhao, 2008, p. 1; Saraiva, Soares, and Castor, 2013, p. 85; Plösch,
Schürz, and Körner, 2015, p. 328).

The principle of coupling is the interdependency between parts of a system design,
e.g. objects in an object-oriented system design. An object can be represented in the
following manner (Chidamber and Kemerer, 1994, p. 479):

Definition 2.1
Object X = 〈x, p(x)〉

where z is the substantial individual and p(x) is the finite collection of its properties.

Formally, object coupling is defined as the following (Chidamber and Kemerer, 1994,
p. 479):

Definition 2.2
Coupling

Let X = 〈x, p(x)〉 and Y = 〈y, p(y)〉 be two objects.

function p(x) = {MX} ∪ {IX}

function p(y) = {MY } ∪ {IY }

where {Mi} is the set of methods and {Ii} is the set of instance variables of object i. Any action
by {MX} on {MY } (call to a method in object Y) or {IY } (call to an instance variable in Y),
or, vice versa, any action by {MY } on {MX} or {IX} constitutes coupling.

Chidamber and Kemerer’s CBO measures the coupling of a class by counting the
number of other classes to which it is coupled (Chidamber and Kemerer, 1994, p. 486).
Using Definition 2.1 and Definition 2.2, an example of the CBO of the class of object X
is:

Example 2.2
CBO

Let Z = 〈z, p(z)〉 be another object.

function p(z) = {MZ} ∪ {IZ}

where there is an action by {MX} on {MY } and {IZ}, gives the class of the object X a CBO of
2.

Chapter 2. Theory 23

2.4.4 Instructions

Oman and Hagemeister (1992) and CISQ (2012) refer to the term instruction in relation
to measures for software maintainability. In computer science, an instruction is a
method of passing from one state of a computer to another. A state is any combination
of values in the elements of the computer’s memory. Therefore, an instruction alters
the computer’s memory, thus changing its state. Following is a formal definition of
instructions (Maurer, 1966, p. 227):

Definition 2.3 Let M and B be finite sets.
Let S be the sets of all mappings S : M → B.
Let g be a set of maps I : S → S.

then the 4-tuple (M,B,S, g) is a finite complete computer. The set M is the memory of the
computer; the set B is called the base set; the members S ⊂ S are called the states; and the
members I ∈ g are called the instructions.

2.4.5 Lines of Code

A measure of the size of software which is recurring in scientific literature concerning
maintainability metrics is Lines of Code (LOC) (e.g. Oman and Hagemeister, 1992;
Lincke, Lundberg, and Löwe, 2008; Bagheri and Gasevic, 2011; CISQ, 2012). It is
sometimes referred to as Software Lines of Code (SLOC) or Kilo Lines of Code
(KLOC), as in thousands of LOCs.

Nguyen et al. (2007) conclude that there is no standardized definition of how to count
lines of code, and lists two measures of LOC as the most popular and accepted:
physical LOC (PLOC) and logical LOC. While physical LOC counts all lines except lines
which are blank or consist of only comments, logical LOC counts statements, which is
independent of the physical format of the code (Nguyen et al., 2007, p. 5). The
following example of two code snippets are adopted from Nguyen et al. (2007):

Snippet 2.2: With brackets and indentation

1 // Check if a number is positive

2 if (x > 0) {

3 System.out.println("x is positive");

4 }

and

24 Chapter 2. Theory

TABLE 2.2: Results from CodeCounter™ analysis of the snippets.

Code Visible
LOC

Physical
LOC

Logical
LOC

Snippet 2.2 4 3 2
Snippet 2.3 4 1 2

Snippet 2.3: Without brackets and indentation

1 // Check if a number is positive

2 if (x > 0) System.out.println("x is positive");

These code blocks perform the same tasks, but have a different number of visible lines,
and may therefore produce a different LOC value depending on which LOC counting
tool is used. Nguyen et al. (2007) suggest the USC CodeCount™ measure as an LOC
counting standard. USC CodeCount™ counts the number of statements in the source
code, where statements are considered as blocks of code which perform some action
at runtime or direct compilers while compiling. As an example, the CodeCounter™
tool was downloaded and used to analyze the two snippets. According to the tool,
Snippet 2.2 has a physical LOC of 3, whereas Snippet 2.3 has only 1, and both have a
logical LOC of 2 (see Table 2.2).

2.4.6 Cyclomatic Complexity

The McCabe Cyclomatic Complexity (CC) metric (1976) is a measure of the
complexity of a single software module, and is referenced in multiple maintainability
related articles (e.g. Bagheri and Gasevic, 2011, p 586; Saraiva, Soares, and Castor,
2013, p. 85; Plösch, Schürz, and Körner, 2015, p. 328).

The metric analyzes the software’s control flow graph – a description of the logic
structure of a software module. A software module is considered as a function,
subroutine or any design component featuring a call/return mechanism. The control
flow graph contains nodes and edges, where the nodes are computational statements
or expressions, and the edges are transfers of control between the nodes (McCabe,
Wallace, and Watson, 1996, p. 7). The complexity of a software module can be
calculated by counting the number of edges and subtracting from it the number of
nodes and adding 2. Formally, the following definition applies (McCabe, Wallace, and
Watson, 1996, p. 10):

Definition 2.4 Let e be the number of edges and let n be the number of nodes in a software module.

The CC v(G) of a control flow graph G is defined as:

function v(G) = e− n+ 2

Chapter 2. Theory 25

A simpler calculation is done by simply counting the number of decision predicates
and adding 1: v(G) = p + 1. Decision predicates are considered as nodes with exactly
two edges emerging from them (McCabe, Wallace, and Watson, 1996, p. 23). Below is a
simple example method:

Snippet 2.4: Example method with cyclomatic complexity of

1 public static int max(int x, int y) {

2 if (x > y) {

3 return x;

4 }

5 else if (y > x) {

6 return y;

7 }

8 else {

9 return x;

10 }

11 }

This method in Snippet 2.4 contains 2 decision predicates: if (x > y) and else if

(y > x). Therefore, the CC of the above software module is v(G) = p + 1 = 2 + 1 =

3. By using the more complex calculation on the same example, the CC is the same:
v(G) = e− n+ 2 = 11− 10 + 2 = 3.

2.4.7 CISQ Specifications for Automated Quality Characteristic Measures

The Consortium for IT Software Quality (CISQ) released a paper in 2012 describing
“. . . a specification for automating the measurement of four Software Quality
Characteristics - Reliability, Performance Efficiency, Security, and Maintainability”
(CISQ, 2012, p. 3). Each characteristic includes a number of measures for calculating
violations of rules of good architecture and coding practice related to that
characteristic. CISQ is an industry-led initiative comprised of IT industry
professionals. It was launched in 2009 by the Carnegie Mellon Software Engineering
Institute (SEI) and the Object Management Group (OMG) (see Software Engineering
Institute, 2009). Its goal is to introduce a computable metrics standard to use in
measuring software quality and size (CISQ - Consortium for IT Software Quality).

2.4.7.1 ISO/IEC 25010

The characteristics in the CISQ specification confine to the ISO/IEC 25010 standard
for system and software quality models (see Section 2.2.1). Where ISO/IEC 25010
defines eight Software Quality Characteristics, four of them are included in the CISQ
specification, highlighted in orange in Fig. 2.11 (CISQ, 2012, p. 7).

26 Chapter 2. Theory

FIGURE 2.11: Software Product Quality Characteristics from ISO/IEC
25010 (CISQ, 2012, p. 7)

TABLE 2.3: Format of the CISQ Maintainability Measure Elements (CISQ, 2012, pp. 25–29).

Issue Quality Rule Quality Measure
Issue 1: In a layered
architecture functions
should be strictly
allocated to layers and
maintain a strict
hierarchy of calling
between layers (utility
layer excepted).

Rule 1: Functions only
communicate (exchange
data) with functions
belonging to an adjacent
layer. Functions do not
directly exchange data
with functions that are
not in adjacent layers (no
layer skipping/bridging).

Measure 1: # of functions
that span layers.

Measure 2: # of
layer-skipping calls.

Rule 2: Avoid too many
horizontal layers.

Measure 3: # of layers
(threshold
4 ≤#Layers ≤ 8).

The CISQ specification extends the four characteristics “. . . to the detail required to
create measures for each Quality Characteristic that can be computed from statically
analyzing the source code.” (CISQ, 2012, p. 6), and divides them into issues, rules and
measures (see Table 2.3). The results from the measures return a characteristic “score”
to identify the problem areas of the software design. The rules are standardized (not
specific for any programming language), to make an unambiguous quality score.

2.4.7.2 Maintainability Measures

21 measures for maintainability are included in the specification, listed in Table 2.4.

Chapter 2. Theory 27

TABLE 2.4: CISQ Maintainability Measures

CISQ Measure Description
M01 # of functions that span layers.
M02 # of layer-skipping calls.
M03 # of layers (threshold 4 ≤#Layers ≤ 8).
M04 # of files that contain 100+ consecutive duplicate tokens.
M05 # of unreachable functions.
M06 # of classes with inheritance levels ≥ 7.
M07 # of classes with ≥ 10 children.
M08 # of instances of multiple inheritance of concrete

implementation classes (threshold > 1).
M09 # of methods that are directly using fields from other classes.
M10 # of variables declared public.
M11 # of functions that have a fan-out ≥ 10.
M12 # of objects with coupling > 7.
M13 # of cyclic calls between packages.
M14 # of functions with > 2% commented out instructions.
M15 # files with > 1000 LOC.
M16 # of instances of indexes modified within its loop.
M17 # of GO TOs, CONTINUE, and BREAK outside the switch.
M18 # of functions with cyclomatic complexity ≥ a language

specific threshold (table to be inserted).
M19 # of methods with ≥ 7 data or file operations.
M20 # of functions passing ≥ 7 parameters.
M21 # of hard coded literals except (−1, 0, 1, 2, or literals

initializing static or constant variables).

2.4.7.3 Compliance

The CISQ specification features a section defining required attributes and inputs for an
implementation to claim compliance with the specification (CISQ, 2012, p. 11):

Automated The CISQ-specification states: “. . . the analysis of the source code and the
actual counting must be fully automated”. This means that an implementation
cannot only provide an interface where statistics are shown, but an automatic
analysis based on the data must also be included.

Objective The analysis must be repeatable: “Two independent analyses of the same
application must produce the same counts for each of the Quality Measure
Elements measured as part of a Software Quality Characteristic”.

Transparent All required inputs and all generated outputs must be clearly listed to the
user. Object Management Group suggests: “Implementations of this specification
are encouraged to provide a list of inputs and outputs at interim stages of the
analysis process”.

28 Chapter 2. Theory

Verifiable An implementation must “. . . state the assumptions/heuristics it uses with
sufficient detail so that the calculations may be independently verified by third
parties.”. Inputs that are used must also be “. . . clearly described and itemized so
that the can be audited by a third party”. A document with assumptions and the
inputs used must therefore also be provided.

Required inputs To claim compliance, an implementation must also require the
following inputs:

1. The entire source code for the application being analyzed

2. Documentation or information about how the layers of tiers in the design of
the application [are structured] and how functions are allocated to them

3. Information about whether the design is based on DOM or SAX in order to
evaluate multiple inheritance mechanisms

4. A list of vetted3 libraries [that] are being used to “neutralize” input data

5. What routines / API calls are being used for remote authentication, to any
custom initialization and cleanup routines, to synchronize resources, or to
neutralize accepted file types or the names of resources

6. The encryption algorithms that are being used

2.4.7.4 Software Quality Calculation

The specification proposes a formula for calculating the score for each quality
characteristic. The mathematical definition provided is (CISQ, 2012, p. 28):

Definition 2.5
Quality

Characteristic
Score

QCj =
n∑

k=1

(Quality Measure Elementjk)

where j is a quality characteristic and jk is a quality measure element within that characteristic.

Described in basic terms, the score for one quality characteristic is the sum of rule
violations found for each of its quality measure elements (see Table 2.3). For example,
the quality score for the maintainability of a program is the sum of all violations in the
program which are found by the maintainability measures.

3Trusted and verified by a larger community

Chapter 2. Theory 29

TABLE 2.5: CISQ Performance Efficiency Measures implemented by Satrijandi and Widyani
(2015).

CISQ Measure Description
P02 # of SELECTS done through sequential searches
P03 # of complex queries on very large tables, where complex

query =≥ 5 joins, sub-queries ≥ 3

P04 # of indices in very large tables > 3

P05 # of very large tables with 33 indices
P06 ratio of # child objects of DOM compared to child objects of

SAX (DOM / SAX < 1.0)
P07 # of loops with expensive operations
P08 # of initializations inside static blocks
P11 # of unmatched allocation/de-allocations of memory for

objects
P12 # of additional immutable objects
P13 # of object references that lack a destructor/finalize function
P15 # of static variables/collections/objects that are not

singletons

2.4.8 Efficiency Measurement of Java Android Code

This study, by Satrijandi and Widyani (2015), proposes the use of the CISQ
Specifications for Automated Quality Characteristic Measures for evaluating
efficiency of Java Android code. The static analysis tool PMD was used to analyze the
existing application Daily Money with the added measures implemented from the
CISQ specification (Satrijandi and Widyani, 2015, p. 1).

2.4.8.1 Measures

While the CISQ specification includes 16 measures for performance efficiency, 11 of
them were implemented in the project. The remaining five are measures 1, 9, 10, 14
and 16, and were excluded because the researchers deemed them as not applicable to
Java Android code (Satrijandi and Widyani, 2015, p. 2). The implemented measures are
listed in Table 2.5.

2.4.9 Tools

Satrijandi and Widyani (2015) list four static code analysis tools:

• Checkstyle

• Findbugs

30 Chapter 2. Theory

• PMD

• Android Lint

PMD was chosen due to its analysis approach using lexical analysis or AST,
extendability, documentation, active development, and community (Satrijandi and
Widyani, 2015).

2.4.9.1 Evaluation Methods

Three evaluation methods were used: unit tests, stress tests and benchmarking tests.
The unit tests were created to make sure the rules were implemented correctly to
specification, while the stress tests were run to verify that the measures still worked
properly on large scale test cases. The benchmarking tests displayed the speed of the
measures (Satrijandi and Widyani, 2015).

2.4.9.2 Conclusions

The researchers conclude that the CISQ performance efficiency measures were
successfully implemented for analyzing Java Android code, and that static code
analysis can reduce the work effort during testing phases of developing Java Android
applications (Satrijandi and Widyani, 2015, p. 5).

2.4.10 On the Validity of the IT-CISQ Quality Model for Automatic
Measurement of Maintainability

Plösch, Schürz, and Körner have created an implementation of the Quality
Characteristic maintainability called MUSE Understand Scripting Engine (MUSE) as a
tool to study the validity of the CISQ Specifications for Automated Quality
Characteristic Measures. The study focuses on maintainability due to importance of
the characteristic, and because the authors had access to data gathered from earlier
assessment which could be used to validate the standard (Plösch, Schürz, and Körner,
2015, p. 326).

Chapter 2. Theory 31

TABLE 2.6: CISQ maintainability measures deemed as unclear by Plösch, Schürz, and Körner
(2015).

M1, M2, M3 We assume that every function or method is always part of a layer.
The implementation of a function or method is allowed to call
functions or methods from direct upper or lower layers, but not from
layers that are far away. In order to automatically calculate this
measure, it has to be assured (by configuration) that each function or
method (or its more high-level constructs like classes or packages) is
assigned to exactly one layer.

M8 No meaningful implementation possible for Java. For this reason M8
is not considered anymore.

M11 The fan-out is calculated by summing up the number of called
functions (methods) and the number of member variables set.

M12 For the calculation of the object coupling we rely on the well-known
metric Coupling Between Object (CBO) as specified in [13]. M18 As
threshold value for the cyclomatic complexity, we assume a value of
10 as proposed by McCabe [14] and because of the widespread use
of this threshold value.

M19 We allow explicit specification for each project which packages or
classes contain data or file operations.

2.4.10.1 Unclear Measures

The CISQ maintainability measures were “... not exact enough...” (Plösch, Schürz, and
Körner, 2015), so the authors have made assumptions about the measures which were
found to be unclear (M1, M2, M3, M8, M11, M12, M18 and M19), explained in Table 2.6.

2.4.10.2 Tools

MUSE uses the commercial code analyzer Understand to extract information about the
code. MUSE analyzes the data from Understand and produces an XML file with the
results, using one Perl module for each measure to detect the issues. Fig. 2.12 illustrates
the architecture of the tool (Plösch, Schürz, and Körner, 2015).

2.4.10.3 Evaluation of Applicability of the CISQ Specification

By implementing the CISQ specification as the MUSE software, Plösch, Schürz, and
Körner evaluate the applicability of the specification through comparison with their
own quality model, Expert Centered Method for Internal Software Quality (EMISQ). The
comparison between the models used a benchmarking-based approach, where five
open-source projects were analyzed by MUSE and compared against an existing base

32 Chapter 2. Theory

FIGURE 2.12: Tool architecture for implementing IT-CISQ measures
(Plösch, Schürz, and Körner, 2015)

of other open-source projects. The following five open-source projects were evaluated
with the software (Plösch, Schürz, and Körner, 2015, p. 330):

• Log4j version 1.2.15
• JabRef version 2.3.1
• TVBrowser version 2.2.5
• RSSOwl version 1.2.4
• Checkstyle version 4.4

The data used for benchmarking was the count of rule violations for each
maintainability measure per project, normalized by a set of provided size metrics. The
same approach was made with the EMISQ model, and a comparison of the resulting
ranks of the open-source projects was made. Both models concluded that Checkstyle
was the best project, ranking as #1, and JabRef was the worst, ranking at #5, in terms of
software quality.

2.4.10.4 Conclusions

Plösch, Schürz, and Körner assess the CISQ standard to be implementable. The results
from their tool correlate with results from previous research with manual expert
evaluations. However, the authors claim that the CISQ maintainability measurements
cover less aspects of maintainability than the EMISQ model, and that they are “... only
partially suitable for improvement programs...” (Plösch, Schürz, and Körner, 2015,
p. 334).

Chapter 2. Theory 33

2.5 Chapter Summary

This chapter has presented theory and related research within software engineering
and software quality analysis. Software engineering comprises structured techniques
for specifying, designing and developing software. Analyzing the quality, and
specifically the maintainability of software is possible with existing models, standards
and metrics which can be calculated automatically through defined algorithms. Two
partial implementations of the CISQ Specifications for Automated Quality Characteristic
Measures have been made. The configured version of PMD by Satrijandi and Widyani
(2015) implements the performance efficiency characteristic for Java Android-based
software, and the MUSE software by Plösch, Schürz, and Körner (2015) implements
the maintainability characteristic for Java-based software.

Chapter 3

Research Method

In this chapter, the research and development methods practiced in this research project
are presented and explained. First, the Design Science Research (DSR) framework is
presented, where the seven guidelines of DSR by Hevner et al. (2004) is detailed. After
this, the research evaluation method is described, and lastly, the research design is
presented.

3.1 Design Science Research

DSR is a research methodology framework for researching Information Systems (IS)
and Software Engineering, where research questions are answered by modeling and
implementing a solution. In addition to solving the research questions, such a solution
can be used as a more practical guideline or example for the commercial industry,
which in turn can further develop the solution for a larger scope (Hevner et al., 2004)
(see Fig. 3.1). Hevner et al. describe seven guidelines for Design-Science Research, as
shown in Table 3.1 and described in further detail in the subsections below.

3.1.1 Guideline 1: Design as an Artifact

It is important that a DSR-project leads to “a purposeful IT artifact” (Hevner et al.,
2004, p. 82); a proof-of-concept which is described to such an extent that feasibility of
the design process and of the designed product is demonstrated.

3.1.2 Guideline 2: Problem Relevance

A DSR-project must be relevant to the problem space, in the sense that the research
must relate to problems and opportunities in the intended domain (Hevner et al.,

35

36 Chapter 3. Research Method

FIGURE 3.1: Information Systems Research Framework (Hevner et al.,
2004, p. 80).

TABLE 3.1: Design-Science Research Guidelines (Hevner et al., 2004, p. 83).

Guideline Description
1: Design as an Artifact Design-science research must produce a viable artifact in

the form of a construct, a model, a method, or an
instantiation.

2: Problem Relevance The objective of design-science research is to develop
technology-based solutions to important and relevant
business problems.

3: Design Evaluation The utility, quality, and efficacy of a design artifact must
be rigorously demonstrated via well-executed
evaluation methods.

4: Research
Contributions

Effective design-science research must provide clear and
verifiable contributions in the areas of the design artifact,
design foundations, and/or design methodologies.

5: Research Rigor Design-science research relies upon the application of
rigorous methods in both the construction and
evaluation of the design artifact.

6: Design as a Search
Process

The search for an effective artifact requires utilizing
available means to reach desired ends while satisfying
laws in the problem environment.

7: Communication of
Research

Design-science research must be presented effectively
both to technology-oriented as well as
management-oriented audiences.

Chapter 3. Research Method 37

TABLE 3.2: DSR Design Evaluation Methods (Hevner et al., 2004, p. 86).

Evaluation type Subtypes
1. Observational Case Study: Study artifact in depth in business environment

Field Study: Monitor use of artifact in multiple projects
2. Analytical Static Analysis: Examine structure of artifact for static

qualities (e.g., complexity)
Architecture Analysis: Study fit of artifact into technical IS
architecture
Optimization: Demonstrate inherent optimal properties of
artifact or provide optimality bounds on artifact behavior
Dynamic Analysis: Study artifact in use for dynamic
qualities (e.g., performance)

3. Experimental Controlled Experiment: Study artifact in controlled
environment for qualities (e.g., usability)
Simulation: Execute artifact with artificial data

4. Testing Functional (Black Box) Testing: Execute artifact interfaces to
discover failures and identify defects
Structural (White Box) Testing: Perform coverage testing of
some metric (e.g., execution paths) in the artifact
implementation

5. Descriptive Informed Argument: Use information from the knowledge
base (e.g., relevant research) to build a convincing argument
for the artifact’s utility
Scenarios: Construct detailed scenarios around the artifact to
demonstrate its utility

2004, p. 85). In other words, in IS research, a DSR-project must facilitate further
advancements for the community which facilitated the project, so that further
development and research can be performed.

3.1.3 Guideline 3: Design Evaluation

The DSR artifact must be thoroughly evaluated. These methods require a set of
evaluation metrics - attributes of the artifact which can be measured and are
appropriate to the problem space. It is also crucial that the evaluation methods that
are selected match the designed artifact and the selected evaluation metrics (Hevner
et al., 2004, p. 85). In Table 3.2, the five types (and subtypes) of design evaluation
methods Hevner et al. (2004) are described.

3.1.4 Guideline 4: Research Contributions

Not only must the project provide knowledge and insight to the community which
facilitated the project, but the project must contribute to the domain of the design

38 Chapter 3. Research Method

artifact, knowledge of the design construction, or methodologies for evaluation.
Assessment of contribution relies on criteria focusing on representational fidelity and
implementability. This means the artifact must clearly represent the environment of
business and technology used in the research, and be implementable in the real world.
In addition, the project must also be a well-contributing solution to an important
problem in the commercial environment (Hevner et al., 2004, p. 87).

3.1.5 Guideline 5: Research Rigor

A DSR-project must be well-balanced between rigor and relevance, in that too rigorous
methods for creation and evaluation can result in low relevance, and that too imprecise
or flexible methods can result in low validity of the data, which indirectly also lowers
relevance. (Hevner et al., 2004).

3.1.6 Guideline 6: Design as a Search Process

A DSR-project is an iterative search for a satisfactory solution to a problem. It is not
required, and arguably not possible, to specify all the possible design solutions to an
IS-problem, but the continuous, iterative create/evaluate cycle (or Generate/Test
Cycle) provides an organic way of finding a solution which satisfies as an answer to
the problem, and confines itself to the boundaries of the identified laws of the system.
It is not the main goal to figure out why the artifact works, but that it works, and how
(Hevner et al., 2004).

3.1.7 Guideline 7: Communication of Research

Since a DSR-project is required to contribute to both technology-oriented and
management-oriented audiences, tailoring the communication of the research is
particularly important. While technology-oriented audiences are looking for precise
details for implementing the artifact in an organization, management-oriented
audiences need a different set of details to decide whether or not to commit to
constructing or purchasing the artifact for their organization. Therefore, with a set of
two very different main audiences, the project must be described in such a way that it
provides the necessary information for both implementation and integration (Hevner
et al., 2004, p. 90).

Chapter 3. Research Method 39

3.2 Research Design

This section explains how the research questions (see Section 1.3) will be answered
using the DSR framework, development methods, and evaluation and validation
techniques, resulting in the design, implementation and evaluation of the open-source
software SQUIDS. First, a repetition of the research questions:

Q1 - How can a static code analyzer be developed as an Eclipse plug-in which, based
on a standard, detects maintainability problems in a software project?

Q2 - How can such an implementation visualize maintainability problems in a
software project to the user?

Q3 - Can such an implementation give a performance which makes it usable during
development?

3.2.1 Using DSR

Since this research project focuses on the design and implementation of an IT solution
to a problem, the Design Science Research framework (see Section 3.1) is chosen as
the research method. In order to answer the research questions (see Section 1.3), the
project will follow the seven DSR guidelines from Hevner et al. (2004) (see Table 3.1).
Application of the DSR guidelines in the project is described in Table 3.3.

3.2.2 Development Method

Answering Q1 (see Section 1.3) and developing the artifact requires a structured
method for software development. In order to manage the development of the
software, a development method with a set of processes and techniques will be used.
These are primarily collected from the agile method eXtreme Programming (XP) (see
Section 2.1.7), although some modifications are made to better suit a development
team of one.

3.2.2.1 User Stories

Requirements for SQUIDS will be written as user stories (see Section 2.1.3), using the
usual pattern: As a <role>, I want <goal/desire> so that <benefit>. The roles will be either
developer who is using the software, or future collaborator engaged in further

40 Chapter 3. Research Method

TABLE 3.3: Application of the seven DSR guidelines.

Guideline Application
1: Design as an
Artifact

An open-source software named SQUIDS (Software Quality
Issue Detection System) will be developed as an artifact,
implementing the CISQ maintainability characteristic.

2: Problem
Relevance

Since a tool for analyzing software maintainability is to be
developed to address software quality problems in software
development, the research will be relevant to the problem
space.

3: Design
Evaluation

The artifact will be evaluated by combining dynamic
analysis, functional testing, and informed arguments from
existing research (see TABLE 3.2).

4: Research
Contributions

A practical, implementable (installable) tool for software
developers will be contributed, as well as a description of
how it was designed and developed to facilitate further
research.

5: Research Rigor By using methods for design, development, evaluation and
validation, the research will be rigorous.

6: Design as a
Search Process

The software will be developed in iterations, searching for
answers to the research questions. Q2 is especially relevant
to this guideline, as the speed of SQUIDS is important if it is
to be used often during a software development project.
Therefore, optimization of the performance of the artifact
will be iteratively improved throughout development.

7: Communication
of Research

This guideline will be followed with a modification - the
communication of the research must not only be tailored for
both technology-oriented and management-oriented
audiences, but also for the academic readers in the
committee which will evaluate this thesis.

development or using parts of the software for other purposes. This way, both
intended users and the relevant people in the software community (see Section 3.1.4)
are considered during development.

3.2.2.2 Iterative Development

To ensure being able to improve the design according to DSR guideline 6 (see
Section 3.1.6) and quickly respond to change (agility), development of SQUIDS will
be divided into iterations. As mentioned in Section 3.2.1, optimization of the
performance of the software will be iteratively improved upon, as an increasing
amount of the CISQ maintainability measures are implemented. In order to keep user
stories small enough for one developer, and keep progress visible, iterations will be
set to one week in this project. Iteration planning will be conducted at the start of each
iteration. In the project, user stories will only be broken down into tasks when

Chapter 3. Research Method 41

needed. This is to avoid spending too much time on planning, as the project has only
one developer.

3.2.2.3 Estimation and Project Velocity

User stories will be estimated, and project velocity measured during development to
assess how much work can be completed, and at the end of the project, how much
work is needed for creating the artifact. This will answer a part of Q1, where a measure
of the workload for the development of a software is part of determining how it may
be implemented.

In contrast to what is proposed for XP, user stories will not be estimated in the linear 1,
2 or 3 week scale (Wells, 1999c). Instead, a more fine-grained, progressive scale inspired
by Cohn (2006) will be used:

• 1 story point: 1-4 hours
• 2 story points: 1⁄2-1 day
• 4 story points: 1-2 days
• 8 story points: 2-5 days
• 16 story points: 1-2 weeks

This scale allows for smaller user stories and visualizing the uncertainty of how much
work the larger user stories are, by doubling the points for each step. The story points
will not only function as an indicator of how much work is remaining or completed. It
will also be used for calculating the project velocity.

3.2.3 Research Evaluation

As stated in Section 3.2.1, evaluation of the artifact SQUIDS will be a combination of
dynamic analysis, functional testing and informed arguments. The performance of
SQUIDS will be measured by letting it analyze existing software projects and
measuring the time it uses compared to the project sizes, giving a dynamic analysis of
the artifact. The implemented measures will be validated with Black Box unit tests,
thus performing a functional test. Compliance with the required attributes and inputs
in the CISQ specification, and comparison of results between related work and
SQUIDS will be providing an informed argument (descriptive) of the artifact’s utility
and correctness.

42 Chapter 3. Research Method

3.2.3.1 CISQ Specification Compliance

As a part of answering Q1, compliance to the CISQ specification will be evaluated
according to how well the CISQ maintainability measures which are implemented,
and the requirements listed in the specification (see Section 2.4.7.3). However,
irrelevant requirements for a partial implementation (only maintainability measures)
will be ignored. Additionally, CISQ maintainability measure M08: # of instances of
multiple inheritance of concrete implementation classes (threshold > 1) does not apply to
Java. In the Java programming language, a class cannot extend multiple
implementation classes, which makes this CISQ measure obsolete (Oracle, 2015b).

3.2.3.2 Unit Test Validation

Black Box unit tests (see Section 2.1.8) will be written for the CISQ measures to
determine the validity of their implementations. These will test whether or not the
implementations of the CISQ measures may fail to meet the definition of the quality
measure.

The unit test design for SQUIDS requires each unit tests for implemented CISQ
measures to:

1. Be written before the implementation, thus following TFP (see Section 2.1.8)
2. Test the analyzeNode() method which is present in every CISQ measure
3. Cover all expected boundary values and types of input which should generate

issues
4. Have a line coverage of ≥ 90%, ensuring that the most important parts of the

measure is testable

Additionally, other possible weaknesses will be handled for individual CISQ measures.
This gives the test design a semi-formal approach.

The quality of the tests will themselves be tested with line coverage analysis and
mutation testing, using the PITEST plug-in for Eclipse1. The PITEST analysis will be
limited to the unit tests written for the CISQ measures, using the standard settings of
PITEST.

1The PITEST plug-in for Eclipse is called Pitclipse: https://github.com/philglover/pitclipse

https://github.com/philglover/pitclipse

Chapter 3. Research Method 43

3.2.3.3 Comparison of Results with Related Work

To further validate the implementation of the CISQ maintainability measures in this
research project, the same projects analyzed by the MUSE tool (see Section 2.4.10) will
be analyzed with SQUIDS, and the results will be compared with the raw results from
MUSE. The raw results were not available in Plösch, Schürz, and Körner (2015), but
were provided by Schürz (2016) over e-mail. The software projects and versions are:

• Checkstyle version 4.4 2

• JabRef version 2.3.1 3

• Log4j version 1.2.15 4

• RSSOwl version 1.2.4 5

• TVBrowser version 2.2.6 (2.2.5 used by Plösch, Schürz, and Körner (2015) was not
available) 6

The TV-Browser project may be excluded from this comparison, since the version used
by Plösch, Schürz, and Körner (2015) is no longer available. First, a simple count of
maintainability problems found in the software projects by the two analyzers will be
compared per measure, and discussed. Secondly, individual problems reported by a
selection of CISQ measures will be manually inspected with the following purposes:

1. Search for erroneously reported problems (false positives) and unreported, real
problems (false negatives)

2. Discuss the correctness of MUSE and SQUIDS
3. Provide a means of validating the correctness of SQUIDS

In order to discuss individual findings, results from SQUIDS must be converted to the
same XML format as the results from MUSE, and a software must be created to find
problems which are only reported by one of the implementations.

3.2.3.4 Visualizing Maintainability Problems to a User

SQUIDS will be implemented with a working example of how maintainability issues
can be visualized to a user, to answer Q2. The project will not seek an optimal solution
to this problem, but provide a proof-of-concept and discuss its strengths and
weaknesses compared to other possible solutions.

2https://logging.apache.org/log4j/1.2/source-repository.html commit 3fb7ae8e (Git)
3https://logging.apache.org/log4j/1.2/source-repository.html
4https://logging.apache.org/log4j/1.2/source-repository.html revision 569611 (SVN)
5https://logging.apache.org/log4j/1.2/source-repository.html
6https://sourceforge.net/projects/tvbrowser/files/TV-Browser Releases. . .

https://github.com/checkstyle/checkstyle
https://sourceforge.net/projects/jabref/files/jabref/2.3.1/
https://logging.apache.org/log4j/1.2/source-repository.html
http://iweb.dl.sourceforge.net/project/rssowl/rssowl classic 1.0 (do not use)/1.2.4/rssowl_1_2_4_src.tar.gz
https://sourceforge.net/projects/tvbrowser/files/TV-Browser Releases (older Java 1.4)/2.2.6/tvbrowser-2.2.6.tar.gz/download

44 Chapter 3. Research Method

3.2.3.5 Measuring Performance

Q3 requires that the performance of the artifact is optimized. Using all the open-source
software projects which were analyzed by MUSE (see Section 3.2.3.3), the performance
of SQUIDS will be measured according to the time it uses on analyzing the projects,
and the project sizes. On the same computer setup (see Table 3.4), for each project,
the time used by SQUIDS to analyze the project compared with the number of Java
files and the total physical LOC (see Section 2.4.5) in the project will be measured, to
provide an indication of SQUIDS’s performance. Before evaluation, this analysis will
be used to target problematic areas in SQUIDS in order to improve performance.

TABLE 3.4: Setup for performance testing of SQUIDS.

Computer make and model Lenovo Yoga 2 Pro
Memory 7.7GB RAM
Processor Intel® Core™ i7-4500U CPU @ 1.80GHz

× 4
Operating system Ubuntu 15.10
Java version Java SE 1.8 (Oracle Java 8)
Environment Eclipse 4.5.2 (Mars.2) build ID

20160218-0600 with VM arguments
-Dosgi.requiredJavaVersion=1.8

-Xms40m -Xmx512m

Active programs and services
• Google Chrome 50.0.2661.75 beta

(64-bit)
• Document Viewer 3.16.1
• WiFi (Intel® Wireless-N 7260 802.11

b/g/n)

3.3 Chapter Summary

This chapter has presented the Design Science Research (DSR) framework, and how it
will be used to answer the research questions. A software named SQUIDS (Software
Quality Issue Detection System) will be developed using practices from eXtreme
Programming. Correctness of SQUIDS will be tested with unit testing, comparison
with MUSE (Plösch, Schürz, and Körner, 2015) and manual inspection of analysis
results. Performance will be tested to see if an acceptable speed can be achieved, and a
working example of how maintainability issues can be displayed to a user will be
implemented.

Chapter 4

Development Process

This chapter describes how the software SQUIDS was designed and developed. It
details how requirements were specified and implemented, how the software was
modeled, and which technical and theoretical challenges were encountered during the
17 iterations of development.

4.1 User Scenarios

The intended users for SQUIDS are Java developers using the Eclipse IDE. The IDE
was chosen due to personal experience. The two user scenarios are explained in the
following subsections.

4.1.1 Scenario 1: Evaluate own software

The first scenario, illustrated in Fig. 4.1, is a developer using the software to receive
feedback on the code quality of the software under development. In this scenario, the
goal of the developer is to identify maintainability problems while programming, to
reduce future maintenance effort.

FIGURE 4.1: Developer using the software to improve code quality.

45

46 Chapter 4. Development Process

FIGURE 4.2: Developer evaluating a software before purchasing.

4.1.2 Scenario 2: Evaluate external software

The second scenario, illustrated in Fig. 4.2, is a developer using the software to
evaluate external software. In this scenario, the goal of the developer is to get a view
of how maintainable an available software is, thus helping in decision making when
considering external software to use in a development project. Using a more
maintainable external software reduces the risk of future maintenance effort (Coleman
et al., 1994, p. 46). This may be especially useful when considering unfamiliar,
open-source libraries.

4.2 Requirements

Software requirements (see Section 2.1.1) were specified for SQUIDS in order to define
a structured scope of functionality. Due to time constraints, the project did not collect
requirements from interaction with people, such as user testing or organizational
involvement. However, the requirements of SQUIDS were specified for the intended
users, based on the user scenarios. In addition, requirements were collected directly
from the CISQ compliance-list and the maintainability measures, as implementation
of the maintainability characteristic was the main goal of the project.

4.2.1 Functional Requirements

The final functional requirements of SQUIDS are listed below.

1. The software must be able to detect all CISQ maintainability problems according
to the CISQ maintainability measures, except M08 (see Section 3.2.3.1)

Chapter 4. Development Process 47

2. The software must be configurable to specify the architectural layers in the
software under analysis

3. The software must be configurable to specify which packages and classes contain
database or file operations

4. The software must be able to display the problems to the user with the following
information:

(a) The problem description
(b) The location in the source code where the problem occurs

5. The software must provide a separate report for each project, including:
(a) The counts of rule violations for the CISQ maintainability measures
(b) The QCj score for the maintainability characteristic (see Section 2.4.7.4)

4.2.2 Nonfunctional Requirements

The final nonfunctional requirements of SQUIDS are listed below.

1. The software should be installable as an Eclipse IDE plug-in
2. The software should need as little configuration by the user as possible
3. Problems must be visualized in an manner which makes it easy for the user to

identify the section of code to improve.
4. The software should be usable by developers for other purposes, such as

developing a plug-in for another IDE
(a) The software should be released as an open-source project
(b) The part of the software which deals only with analyzing files should be

platform- and framework-independent
5. Analysis of a software project should be performed quickly.

(a) A project of 10 Java files and a total of 1,000 physical LOC should take less
than 1 second to analyze, where 100 Java files for 10,000 physical LOC
should take less than 10 seconds (Complexity should be linear or less, i.e.
O(n))

(b) A visual percentage-done indicator should be provided (see Section 2.1.5)

4.2.3 User Stories

For SQUIDS, requirements were written as user stories (see Section 2.1.3) for both the
CISQ maintainability measures and the plug-in’s functionality required by users. The
final list of user stories for the plug-in is displayed in Appendix A, in the order they
were implemented. User stories 4-7 and 9-26 are direct adaptations from the CISQ

48 Chapter 4. Development Process

maintainability measures. For example, the CISQ maintainability measure 2: # of layer-
skipping calls is adapted into user story 4: As a developer I want to be notified about layer-
skipping calls so that I can improve code architecture.

4.3 Design

Software design is a creative process where customer requirements are turned into
system components and the relationships between them (Sommerville, 2011, p. 194).
The design of SQUIDS was developed through iterations, and underwent many
changes during development. In the following sections, the final context- and class
diagrams for SQUIDS are displayed.

4.3.1 Context Diagram

A context diagram is a high-level model of the interaction between the system and the
environment (Vliet, 2007, p. 357). As shown in Fig. 4.3, SQUIDS communicates with
the Eclipse IDE alongside other plug-ins. The Eclipse IDE gives access to source code
files and the ability to add visible markers in the Eclipse editor.

FIGURE 4.3: SQUIDS context diagram.

4.3.2 Class Diagram

Fig. 4.4 displays a UML class diagram (see Section 2.1.4.2) of the relations between the
classes in SQUIDS, with fields and private methods hidden. Static methods and

Chapter 4. Development Process 49

classes are underlined, and abstract methods and classes are italic. A detailed UML
class diagram of the inheritance hierarchy of the Measure classes is available in
Appendix C.

FIGURE 4.4: SQUIDS class diagram.

4.3.3 Process Diagram

The high-level process in SQUIDS is illustrated as a BPMN diagram (see
Section 2.1.4.3) in Fig. 4.5. The user requests an analysis of the code, which initiates
the plug-in. SQUIDS requests files from the Eclipse IDE, analyzes them, and creates
problem markers, which the Eclipse IDE displays in the editor. The subtask of
analyzing files is displayed in Fig. 4.6. For each node in each file, all measures are run,
and create issues if problems are found, which are added to a list.

4.4 Tools

Developing SQUIDS required a certain set of tools in order to implement the CISQ
maintainability measures to a useful tool for developers. This section explains how
and why these were used.

50 Chapter 4. Development Process

FIGURE 4.5: High-level BPMN process diagram of SQUIDS.

FIGURE 4.6: Low-level BPMN process diagram of file analysis in
SQUIDS.

Chapter 4. Development Process 51

4.4.1 Programming Language

The programming language Java was selected both as the language for implementing
the software, and as the language which the software would be able to analyze. In
other words, write in Java to analyze Java. The choice of implementation language
was made due to both personal expertise in Java, and that the language is platform-
independent (Oracle, 2015a), which means that any operating system supporting Java,
would also support the software. These reasons also apply to the choice of language
to analyze. Additionally, the strong typing in Java (Cornell University, 2005) was an
important aspect, as it makes analysis more feasible.

4.4.2 JavaParser

In order to implement the CISQ maintainability measures, a way to analyze code had
to be selected.

4.4.2.1 Regex

One option which was considered early in development was using Regular
Expressions (regex), a text pattern-matching technology. Its usage is in concept
creating a search pattern, following the regex syntax, feeding it text, and receiving a
list of matching results. The technology is widespread in programming practice, and
is often an effective and easily implementable solution for text-search and -editing
(Goyvaerts, 2015).

While regex could have been used to implement many, or perhaps all of the measures,
it would be difficult to create a fast and maintainable solution using regex for all the
measures. A regex solution would have to search the same text for each measure in
order to identify different problems, resulting in a performance-heavy and time
consuming analysis. Furthermore, some measures are concerned with the
relationships between constructs such as packages, classes and methods. This means
either searching through multiple files or searching the same file more than once per
measure, or both.

4.4.2.2 Abstract Syntax Tree

Instead of searching for patterns in text, creating and traversing Abstract Syntax Trees
(AST) (see Section 2.4.1) of the Java files proved to be a strategy which could handle

52 Chapter 4. Development Process

FIGURE 4.7: Example excerpt from a JavaParser-produced AST.

complex queries on code. Several open-source tools for generating AST from Java files
exist, such as:

• JavaParser
• Eclipse JDT
• javalang
• jLaTo

The JavaParser library1 was selected over the other alternatives for having both
available documentation (in Javadoc) and a richer Application Programming Interface
(API) than the others. An example of how the AST produced by JavaParser is
structured, is illustrated in Fig. 4.7.

4.4.3 Eclipse PDE

The Eclipse Plug-in Development Environment (PDE) is an addition to the Eclipse IDE
which extends it with a tool suite for creating, running, testing and deploying plug-ins
for Eclipse. This extension, along with the Eclipse IDE as platform, were chosen as the
development environment, being the only combination found suitable for developing
Eclipse plug-ins.

1JavaParser version 2.3.0 was used.

https://github.com/javaparser/javaparser
http://www.eclipse.org/jdt/
https://github.com/rpau/javalang
https://github.com/ptitjes/jlato
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html

Chapter 4. Development Process 53

4.4.4 Other tools

Additionally, the following tools were used in the project:

• Git - A version control system (VCS) used for systematically saving the project
online.

• SmartGitHg - A Graphical User Interface (GUI) client for visually managing Git

• Bitbucket - A web-based hosting service for Git (or Mercurial, another VCS)

• Trello - A web-based project management application. Used in the project as a
virtual whiteboard, to manage iterations and user story progress

• Apache Maven - A build automation tool. Used in the project for handling
dependencies to for example the JavaParser library.

4.5 Technical Challenges

The project encountered some challenges with the CISQ specification and the
JavaParser library during development, which is important to note for future research
involving either resources.

4.5.1 Ambiguous CISQ Terms

Some of the terms used in the CISQ maintainability measures are ambiguous, and
definitions are neither included within the document, nor referenced externally. Some
measures therefore required further research. Plösch, Schürz, and Körner (2015) touch
upon most of the same issues in their article On the Validity of the IT-CISQ Quality
Model for Automatic Measurement of Maintainability. Their assumptions and
conclusions proved valuable in specifying the terms.

4.5.1.1 Layer

The first three CISQ maintainability measures (M1, M2 and M3) (see Table 2.4), which
all concern architectural layers in software (see Section 2.4.2). With no provided
definition of layers in the CISQ specification, it was difficult to implement the
measures as intended by the specification.

54 Chapter 4. Development Process

In SQUIDS, layers are considered as defined by MSDN (2009), Xu and Wan (2015) and
Mitra (2008), and subscribe to the assumptions of Plösch, Schürz, and Körner (2015)
about how functions or methods are assigned to layers, and how they should behave
with functions or methods from other layers. Differences between the terms layer and
tier are not taken into account, as their distinctions are inconclusive, and instead
referred to both as layer.

Mitra’s definition of horizontal layers complies with the rest of the definitions of layers
and the horizontal layers from the CISQ maintainability rule 2. For the span of this
thesis, MSDN’s mention of sub layers and Mitra’s definition of vertical layers are
ignored for simplicity.

4.5.1.2 Token

Measure 4: # files that contain 100+ consecutive duplicate tokens, is a measure of the
amount of code duplication in a project (CISQ, 2012, p. 26). The term token was
interpreted as Java keywords, identifiers, separators, operators and literals. In other
words, comments and whitespace is not considered (see Section 2.4.1).

4.5.1.3 Object Coupling

Measure 12: # of objects with coupling > 7, did not specify which method for evaluating
object coupling (see Section 2.4.3) should be used. Like Plösch, Schürz, and Körner
(2015), the metric Coupling Between Object from Chidamber and Kemerer (1994) was
implemented.

4.5.1.4 Method vs. Function

Measures 1, 5, 9, 11, 14, 18, 19 and 20 use the terms method or function, with no
indication of a difference between the two subjects. After an email correspondence
with CISQ (Douziech, 2016), it was clarified that the terms were ambiguous, and that
they were synonymous in the context of the specification. Earlier implementations of
the associated measures discriminated between the two terms, and therefore had to be
altered.

Chapter 4. Development Process 55

4.5.1.5 Commented Out Instruction

Measure 14: # of functions with > 2% commented out instructions, uses the term instruction,
which is ambiguous without further specification. In relation to software source code,
it could be any of the following:

• an instructional comment to code maintainers
• a single line of code (see Section 4.5.1.6)
• a computer instruction (see Section 2.4.4)
• a reference to Java Virtual Machine (JVM) instructions (Oracle, 2016).

For simplicity, this measure was implemented to detect AST nodes which are of the
type Expression from the JavaParser library. Expression nodes are pieces of code
which accesses, modifies or compares variables or values. This is not the same as JVM
instructions, but the list of JVM instructions shares many related items with the list of
Expression subclasses.

4.5.1.6 Lines of Code

The term LOC (see Section 2.4.5) is used in Measure 15: # files > 1000 LOC. Due to
time constraints, and for simplicity, the measure was implemented to simply count
the PLOC, i.e. all the non-empty lines which are not only comments. In other words,
empty lines and comments are ignored.

4.5.1.7 Cyclomatic Complexity

Following Plösch, Schürz, and Körner (2015), SQUIDS uses McCabe, Wallace, and
Watson’s Cyclomatic Complexity metric (see Section 2.4.6) for Measure 18: # functions
with cyclomatic complexity ≥ a language specific threshold (table to be inserted). The
threshold value was set to 10, as in Plösch, Schürz, and Körner (2015).

4.5.1.8 Data or File Operation

Measure 19: # of methods with ≥ 7 data or file operations concerns methods with
operations on databases or files. In order to support analysis of software using
external libraries with data or file operations, simply looking for the built-in
Java-methods with such operations is insufficient. Plösch, Schürz, and Körner (2015)
present a solution where classes and packages containing such operations can be

http://www.javadoc.io/doc/com.github.javaparser/javaparser-core/2.3.0

56 Chapter 4. Development Process

specified. By creating a Graphical User Interface (GUI) for settings, the solution was
adapted in this implementation.

4.5.2 JavaParser Weaknesses

The JavaParser library proved to have some weaknesses in documentation and
functionality, which increased the time spent on using it.

The available javadoc lacked descriptions of almost all classes and methods.
Understanding expected behavior of classes and methods was in some cases difficult,
and manual inspection of its source code was therefore necessary to ensure correct
behavior.

The AST generated by JavaParser (see Fig. 4.7) is created file-by-file, and therefore
contains no direct references between classes. References between the use of a class or
variable and the declaration of the class or variable were also not available. A lot of
time was therefore spent on creating the helper class JavaParserHelper with
assisting functions needed to analyze source code.

The original location of tree nodes in the source code is stored as a matrix of line- and
column numbers, which is unfortunate for an Eclipse plug-in. In Eclipse, markers are
created with start- and end-indexes of the source code, as if each file was one long
line. Additionally, tab-characters are treated by JavaParser as exactly eight spaces. A
custom function for converting lines and columns to indexes, columnsToIndexes()
was required to correctly mark the location of the problem found visually in the Eclipse
editor. This function directly translates tab-characters to eight spaces, which is not only
prone to change if JavaParser changes, but will also mark problems in wrong locations
if the source files do not use tab-characters for indentation.

4.6 Iterations

The duration of each iteration was set to one week. The first iteration was week 43,
2015, and the last iteration was week 6, 2016. The project had three phases of
development: Creating a Proof of Concept, Creating system architecture and Implementing
measures. The following sections describe the iterations grouped by these phases.

Chapter 4. Development Process 57

4.6.1 Iteration 1

The goal of the first iteration was to create a Proof of Concept (PoC) of the ability to find
a CISQ Quality Issue (see Table 2.3) and display a warning in the Eclipse editor.
Implementing a maintainability measure and performing it with the JavaParser were
not the focus of the PoC. Therefore, the simple CISQ Reliability measure 1 “# of
exception handling blocks such as Catch and Finally blocks that are empty” was
implemented using regex (see Section 4.4.2.1).

The sole user story (see Section 4.2.3) for the first iteration was defined as: “As a
developer I want to be notified about empty catch-blocks so that I can improve
exception handling” (see Appendix A for all user stories), and had the following
sub-tasks:

• Plug-in shell
• Find error
• Report error
• Place Marker on error (line)
• Create and run tests

The PoC was successful, which meant that collecting Java files in a project from an
Eclipse plug-in, finding a specific pattern and displaying it as a warning in the editor
was perfectly possible. The result is shown in Fig. 4.8.

FIGURE 4.8: CISQ Quality Issue warning Proof of Concept.

4.6.2 Iterations 2-11

Weeks 44 through 53, 2015 comprised the second phase of development. Having
created a PoC (see Section 4.6.1), the next step was to develop a more maintainable
and efficient system architecture for implementing measures. Additionally, more

58 Chapter 4. Development Process

measures had to be implemented in order to inspect how multiple measures behaved
in the system. This was expressed in user stories 2 through 7 (see Appendix A).

The classes Handler, IssueFinder, JavaParserHelper (see Section 4.5.2) and
Measure were the most important components in the system. Additionally, an
abstract unit test class MeasureTest was created to facilitate standardized unit testing
of measures.

The Measure class (see Snippet 4.1) most prominently requires each subclass to call its
constructor which accepts a Map<String, Object> object for storing settings, and to
implement the analyzeNode() method which is called recursively for each Node in
the AST by IssueFinder. analyzeNode() requires the Node being analyzed, a string-
representation of the file being analyzed and the list of all Java files (CompilationUnit-
objects) in the project. The file string is required in order to correctly calculate the
location of the Node when marking a found problem (see Section 4.5.2). The list of
all the Java files is necessary for CISQ measures which rely on relationships between
classes2.

By the end of the iterations in this phase, it also became apparent that the
analyzeNode() method must be able to return multiple problems in case a CISQ
measure finds multiple problems with a single Node.

Snippet 4.1: The Measure class

1 /**
2 * The {@link Measure} class represents each CISQ Automated Quality

3 * Characteristic Measures. It features the simple method

4 * {@link #analyzeNode(Node, String)} which is called for every

5 * {@link com.github.javaparser.ast.Node Node} in the project's AST.

6 *
7 * @author Lars A. V. Cabrera

8 */

9 public abstract class Measure {

10
11 private Map<String, Object> settings;

12
13 /**
14 * Creates a new {@link MeasureTest} with settings.

15 *
16 * @param settings

17 * - an optional map of settings which might be required for

18 * certain measures.

19 */

20 public Measure(Map<String, Object> settings) {

21 if (settings == null) {

22 settings = new HashMap<>();

23 }

24 this.settings = settings;

25 }

26

2CISQ measures M04, M05, M06, M07, M09, M12 and M13 all concern relations between classes

Chapter 4. Development Process 59

27 /**
28 * Analyzes a {@link Node} and the original file string (if required)

29 * according to a specific measure, and returns a list of issues. The list

30 * can contain 0, 1 or > 1 elements. This method is called for each node

31 * in the entire AST, so analysis efficiency is important.

32 *
33 * @param node

34 * - the Node to be analyzed

35 * @param fileString

36 * - the original source file string

37 * @param compilationUnits

38 * - a list of all the CompilationUnit objects in the current

39 * project.

40 * @return a List of Issue objects, containing none, one or many

element(s),

41 * but cannot be null.

42 */

43 public abstract List<Issue> analyzeNode(Node node, String fileString,

List<CompilationUnit> compilationUnits);

44
45 /**
46 * Returns the settings map which was provided when initializing this

47 * measure.

48 *
49 * @return the settings map which was provided when initializing this

50 * measure

51 */

52 public Map<String, Object> getSettings() {

53 return this.settings;

54 }

55
56 /**
57 * Returns a description of the type of issue this measure can find, i.e.

58 * the quality measure implemented by the measure.

59 *
60 * @return the type of issue this measure can find

61 */

62 public abstract String getMeasureElement();

63
64 /**
65 * Returns the name of the quality characteristic which the measure

belongs

66 * to.

67 */

68 public abstract String getQualityCharacteristic();

69
70 }

Unit tests were standardized by creating the MeasureTest class, which all unit test
classes had to extend. CISQMM06ClassInheritanceLevelTest (see Snippet 4.2) is the
unit test class for CISQ measure M06 (CISQMM06ClassInheritanceLevel), and gives
an example of the way boundary values are tested in SQUIDS. MeasureTest provides
two standard methods for testing if a measure finds problems with a specific Node or
not. Both methods subjects the Measure to input, where findIssue() asserts that an
issue was found when analyzing the node, and skipIssue() asserts that an issue was

60 Chapter 4. Development Process

not found.

Snippet 4.2: Example unit test file for CISQ maintainability measure 6
(shortened for readability)

1 /**
2 * Unit test class for {@link CISQMM06ClassInheritanceLevel}

3 *
4 * @author Lars A. V. Cabrera

5 */

6 public class CISQMM06ClassInheritanceLevelTest extends MeasureTest {

7
8 private CompilationUnit classIL6;

9 // ...

10
11 @Before

12 public void setUp() throws Exception {

13 this.issueFinder.getMeasures().clear();

14 this.issueFinder.putMeasure(new CISQMM06ClassInheritanceLevel(new

HashMap<>()));

15
16 // Load test files

17 File class1 = new File("res/test/inheritance/levels/Class1.java");

18 // ...

19
20 // Parse test files

21 CompilationUnit class1CU = JavaParser.parse(class1);

22 // ...

23
24 // Add parsed test files to list

25 List<CompilationUnit> compilationUnits = new ArrayList<>();

26 compilationUnits.add(class1CU);

27 // ...

28 this.issueFinder.setCompilationUnits(compilationUnits);

29
30 this.classIL6 = class7CU; // Inheritance level: 6

31 this.classIL7 = class8CU; // Inheritance level: 7

32 this.classIL8 = class9CU; // Inheritance level: 8

33
34 this.classIL6String = IOUtils.fileToString(class7);

35 this.classIL7String = IOUtils.fileToString(class8);

36 this.classIL8String = IOUtils.fileToString(class9);

37 }

38
39 /**
40 * Let classes with inheritance level of 6 pass (6 < threshold).

41 * Uses

42 * {@link MeasureTest#skipIssue(com.github.javaparser.ast.Node, String)}

43 */

44 @Test

45 public void skipClassIL6() {

46 skipIssue(this.classIL6, this.classIL6String);

47 }

48
49 /**
50 * Report a problem for classes with inheritance level 7 (7 == threshold).

51 * Uses

52 * {@link MeasureTest#findIssue(com.github.javaparser.ast.Node, String)}

53 */

54 @Test

Chapter 4. Development Process 61

55 public void findClassIL7() {

56 findIssue(this.classIL7, this.classIL7String);

57 }

58
59 /**
60 * Report a problem for classes with inheritance level 8 (8 > threshold).

61 * Uses

62 * {@link MeasureTest#findIssue(com.github.javaparser.ast.Node, String)}

63 */

64 @Test

65 public void findClassIL8() {

66 findIssue(this.classIL8, this.classIL8String);

67 }

68
69 /**
70 * Used in superclass {@link MeasureTest} to determine if the correct

issue

71 * was found.

72 */

73 @Override

74 public String getIssueType() {

75 return CISQMM06ClassInheritanceLevel.ISSUE_TYPE;

76 }

77 }

4.6.3 Iterations 12-15

The last phase of development was conducted during weeks 1 through 4, 2016. The
main goal of this phase was to implement the remaining measures, providing a report
of the QCj quality score (see Section 2.4.7.4), and ending the development stage of the
project. Additionally, a GUI providing the user a means to change settings was
created (see Fig. 4.9), and CISQ maintainability problems were updated to be
displayed as warnings (see Fig. 4.10 and Fig. 4.11). The QCj quality score report was
implemented with a simple custom Eclipse view (see Fig. 4.12). User stories 8 through
27 were completed during these iterations.

4.6.4 Iteration 16

After all CISQ measures were implemented, initial correctness- and performance tests
were performed with SQUIDS running analysis on the five open-source projects
discussed in Section 3.2.3.3. Iteration 16 was added primarily to fix bugs
(programming errors) in the source code of SQUIDS which caused system crashes,
incorrect results and slow analysis. These bugs were not detected before by the unit
tests and running analysis of the example project. First, bugs which made the system
crash when analyzing the projects were fixed. Afterwards, comparing the counts of

62 Chapter 4. Development Process

FIGURE 4.9: The SQUIDS settings-page displayed to the user in Eclipse.

FIGURE 4.10: Eight CISQ maintainability problems displayed in Eclipse
editor.

Chapter 4. Development Process 63

FIGURE 4.11: CISQ maintainability problems displayed in the Eclipse
Problems view.

FIGURE 4.12: Report of violation counts displayed in a custom view
called CISQ Report.

64 Chapter 4. Development Process

FIGURE 4.13: SQUIDS provides a percentage-done indicator in the
bottom toolbar (red) and a progress-meter in the Eclipse Progress view.

problems reported for each CISQ measure with MUSE led a manual inspection of the
CISQ measures which were considered as complex and had a very different result
from MUSE. Both erroneously reported problems (false positives) and undetected
problems (false negatives) were found, which led to improvements on the specific
CISQ measures causing them. Finally, major performance improvements were made
on CISQ measures which were exceptionally slow, such as M04 and M13.

Additionally, user story 28 was written and implemented, (see Appendix A) which
provided a percentage-done indicator in the Eclipse Progress view and bottom toolbar
when analyzing the project (see Fig. 4.13). This was added, as it became clear that four
of the five open-source projects could not be analyzed within Nielsen’s 10 seconds-limit
(see Section 2.1.5) (Nielsen, 1993).

4.7 Chapter Summary

SQUIDS was created based on 19 of the 21 CISQ maintainability measures.
Requirements were written based on user scenarios and the list of compliance
requirements in the CISQ specification. The requirements and measures were then
adapted to user stories, and the software was designed with context-, UML class- and
BPMN diagrams in order to model environmental, structural and functional design.

Java and Eclipse were used together with the Eclipse PDE for development. The
approach of using ASTs for source code analysis proved mostly uncomplicated.
However, some weaknesses with the chosen tool (JavaParser) combined with some
undefined terms in the CISQ specification caused development to slow down at times.

The resulting software is an Eclipse plug-in, with implementations for all the 20
applicable CISQ maintainability measures3, which provides in-line problem markers
in the source code editor, the Eclipse Problems view and a custom Eclipse view with a
report of the quality score per project.

3M08 was not applicable to Java software (see Section 3.2.3.1).

Chapter 5

Results

This chapter presents the research results of this project, comprising implementation
completeness of the CISQ Specification, performance numbers, unit test coverage and
comparison of analysis results with the MUSE software. How the results meet the
functional and nonfunctional requirements of SQUIDS (see Section 4.2) is also briefly
presented. In this chapter, the term measure is used both for the measures of result
analysis (e.g. performance measures, size measures etc.) and for the implemented
CISQ maintainability measures. For clarity, when referring to the latter, the term CISQ
measure is used.

5.1 Implementation

The resulting software artifact of this project is SQUIDS, an installable plug-in for the
Eclipse IDE, meeting nonfunctional requirement #1 (see Section 4.2.2). It analyzes the
source files of Java projects according to 20 of the 21 CISQ maintainability measures.
This meets functional requirement #1 (see Section 4.2.1).

FIGURE 5.1: SQUIDS Commands: Analyze selected projects (red) and
Analyze all projects (blue)

65

66 Chapter 5. Results

5.1.1 Functionality

It features two commands; One for analyzing all projects in the workspace, and one for
analyzing just the selected projects (see Fig. 5.1). In addition, it provides a page in each
project’s properties-window (see Fig. 4.9), where settings can be altered for:

• which measures to include. The default setting is all implemented measures

• how the logical layers of the application’s design are structured. Defaults to no
layers. This meets functional requirement #2 (see Section 4.2.1)

• which classes or packages include data or file operations. Defaults to Java data
and file packages java.io.*, java.nio.* and java.sql.*, and the JavaParser
class from the JavaParser library which is known to contain file handling. This
meets functional requirement #3 (see Section 4.2.1)

• which files and folders to ignore (e.g. test files)

However, most Java projects would not require additional configuration than
installing the plug-in, due to the provided default settings, thus meeting
nonfunctional requirement #2 (see Section 4.2.2).

Analysis of a Java project triggers a background process running SQUIDS, where
CISQ maintainability problems are added to the list of warnings in the Problems view
of Eclipse as they are found (see Fig. 4.11). The problems are marked with the line
number where the problem occurs, and the source code is marked in the entire
problem area (see Fig. 4.10). This meets functional requirement #4 (see Section 4.2.1)
and nonfunctional requirement #3 (see Section 4.2.2).

5.1.2 Extensibility

In order to follow the fourth DSR guideline of contributing to both the community of
scientific researchers and IT-professionals who facilitated the project (see Section 3.1.4),
the API of SQUIDS is designed for extensibility in three ways:

1. Additional quality measures may be added by extending the Measure class (see
Section 4.3.2 and Fig. 4.4), and existing CISQ measures may be turned on or off
via the settings (see Section 5.1.1)

2. Additional information may be passed on to new measures, via the settings

parameter in the analyzeNode() method in the Measure class.

Chapter 5. Results 67

3. The IssueFinder class and its dependencies, such as the Measure and
JavaParserHelper classes are independent of IDE and operating system, and
may therefore be used to implement similar plug-ins for other IDEs or tools

Therefore, nonfunctional requirement #4 is met (see Section 4.2.2). SQUIDS is however
not designed to be extended for other programming than Java, languages, since as of
now it highly depends on the JavaParser library.

5.1.3 CISQ Measures implemented

All CISQ maintainability measures were implemented, except for M08: # of instances of
multiple inheritance of concrete implementation classes (threshold > 1), which is obsolete for
Java software (see Section 3.2.3.1).

5.1.4 CISQ Compliance Requirements met

The CISQ specification’s list of required attributes and inputs (see Section 2.4.7.3) were
followed to the extent of a partial implementation of the specification (only the
maintainability measures).

5.1.4.1 Automated

SQUIDS is fully automated for all CISQ measures except M02, M03, which require a
description of the architectural layers in the project, and M19, which requires a list of
classes or packages containing data or file operations. As stated by the specification,
this is allowed.

5.1.4.2 Objective

Two independent analyses by SQUIDS of a Java project produces the same result for
each CISQ measure each time. SQUIDS does not rely on fuzzy logic, which means that
a given input (source code) will always result in exactly one output.

68 Chapter 5. Results

5.1.4.3 Transparent

Each required configuration input is listed in the project properties-window (see
Fig. 4.9), which, along with the source code visible in the Eclipse IDE, confines the list
of required input for analysis. The output (problems found) is listed in the
Problems-view (see Fig. 4.11) and visible in the Editor-view in Eclipse (see Fig. 4.10).

5.1.4.4 Verifiable

All implemented CISQ measures are commented with Javadoc, where the assumptions
and considerations used in analysis are explained.

5.1.4.5 Required Inputs

As stated by the specification, both the entire source code of, and the information
about architectural layers in, the application being analyzed is required. The last four
required inputs are however not required in SQUIDS, as they would be redundant in
a partial implementation (only the maintainability characteristic).

5.2 Analysis Results

The final SQUIDS analysis results of the five open-source Java projects is displayed in
Table 5.1. Each row displays the counts of CISQ rule violations found by an
implemented CISQ measure for each of the open-source Java projects (see
Section 3.2.3.3). Based on the Total-row, which is equal to the QCj score of the
maintainability characteristic for each project (see Section 2.4.7.4), the following list
ranks the projects from most maintainable to least:

1. Checkstyle 4.4
2. Log4j 1.2.15
3. TV-Browser 2.2.6
4. JabRef 2.3.1
5. RSSOwl 1.2.4

CISQ measure M06 found the smallest count of maintainability problems: a single
instance of a class in the TV-Browser project which had an inheritance level of seven
or higher (see Table 2.4). M21 reported a large amount of problems, totaling on 60,496
reported instances of hard-coded literals.

Chapter 5. Results 69

TABLE 5.1: SQUIDS results from analysis of the five open-source Java projects.

Rule violations
CISQ

Measure
Checkstyle

4.4
JabRef

2.3.1
Log4j
1.2.15

RSSOwl
1.2.4

TV-
Browser

2.2.6
M04 3 10 2 4 13
M05 113 134 68 82 251
M06 0 0 0 0 1
M07 3 7 1 3 3
M09 0 336 17 540 45
M10 0 192 4 175 38
M11 148 808 162 524 1,065
M12 110 204 24 53 77
M13 0 767 104 1,329 805
M14 5 274 29 5 56
M15 0 10 1 3 2
M16 46 75 7 3 94
M17 56 188 21 53 110
M18 59 215 23 114 178
M20 3 11 4 4 28
M21 1,018 12,046 1,578 34,432 11,422
Total 1,564 15,277 2,045 37,324 14,188

5.3 Performance

The performance of SQUIDS was measured by the time used for analysis by each of 16
CISQ measures. The remaining four implemented CISQ measures, M01, M02, M03 and
M19 were not used, as they require manual configuration of the architectural layers and
data or file operations used in the projects. This configuration would require intricate
knowledge about the projects, which was not available.

5.3.1 Setup Details

Time was measured by getting the system time directly before and after each call to the
method analyzeNode() for each CISQ measure, and summing it up after analysis was
complete (see Snippet 5.1). This was done instead of simply measuring the time taken
for each project, to measure the performance of each CISQ measure:

70 Chapter 5. Results

Snippet 5.1: Getting the time used by each CISQ measure

1 // Get the time before the call

2 long startTime = System.currentTimeMillis();

3
4 // Perform the call

5 List<Issue> measureIssues = measure.analyzeNode(rootNode, fileString,

this.compilationUnits);

6
7 // Get the time after the call

8 long stopTime = System.currentTimeMillis();

9 // The difference is the time taken by this CISQ measure for this node

10 long elapsedTime = stopTime - startTime;

11 // Add the time taken to the total time taken by the CISQ measure

12 addTimeToMeasure(measure, elapsedTime);

This measurement was done each time on the same computer, for each of the five open-
source Java projects (see Section 3.2.3.5), with some other active programs and services
to simulate a normal running environment for SQUIDS (see Table 3.4).

5.3.2 Measures

The measures used for calculating the performance on each of the five open-source Java
projects were:

• Size: Number of Java files, physical LOC (PLOC) and average PLOC

• Time per CISQ measure: Seconds used and seconds used per 10 files

• Problems: The number of problems found per CISQ measure

5.3.3 Performance Test Results

The results from the performance test (see Table 5.4) revealed that the implemented
measures were approximate to the time limit of 1 second per 10 files in nonfunctional
requirement #5 (see Section 4.2.2). However, as can be seen in Table 5.2 and Table 5.3,
the time SQUIDS uses does not increase linearly with size, which the requirement
specified. Additionally, the average total time of analysis was 2.310 seconds, which
does not meet the requirement. Log4j, with 168 Java files and a total of 20,784 PLOC,
took 4.054 seconds to analyze, while RSSOwl, with 201 Java files and about 3 times the
total PLOC as Log4j, took 79.634 seconds - more than 19 times as long. It is evident
that the number of problems found has a high impact on the performance. RSSOwl
proved to have about 18 times as many problems as Log4j.

Chapter 5. Results 71

TABLE 5.2: SQUIDS performance for each of the five open-source projects.

Project Java files Total PLOC Problems Total time
Log4j 1.2.15 168 20,784 2,068 4.054
Checkstyle 4.4 272 30,827 1,601 9.176
TV-Browser 2.2.6 653 86,903 14,536 33.200
JabRef 2.3.1 421 60,564 15,851 53.226
RSSOwl 1.2.4 201 65,540 37,554 79.634

TABLE 5.3: SQUIDS performance for each of the five open-source projects per 10 files.

Project Java files
(total)

PLOC per 10
files

Problems
per 10 files

Time per 10
files (s)

Log4j 1.2.15 168 1,237.14 123.10 0.299
Checkstyle 4.4 272 1,133.35 58.86 0.250
TV-Browser 2.2.6 653 1,330.83 222.60 0.658
JabRef 2.3.1 421 1,438.57 376.51 1.413
RSSOwl 1.2.4 201 3,260.70 1,868.36 4.582

Exceptionally fast CISQ measures are M06, M10, M17 and M20, at around 2
milliseconds per 10 files (see Table 5.4), where the average is 65 milliseconds. Notably
slow CISQ measures are M04, M12 and M21, taking between 259 and 424 milliseconds
per 10 files. The differences may be partially attributed to the number of problems
found by the CISQ measures (see Table 5.1), but the slow M04 found a small amount
of problems. A larger factor for the performance of M04 (and others) is that it simply
requires complex analysis in order to find problems.

72 Chapter 5. Results

TABLE 5.4: Average SQUIDS performance from the five open-source projects. (see
Appendix D for detailed results per project).

CISQ measure Time used (s) Time per 10 files
(s)

M04 10.675 0.311

M05 0.465 0.014

M06 0.026 0.001

M07 3.797 0.111

M09 0.662 0.019

M10 0.079 0.002

M11 0.949 0.028

M12 3.828 0.112

M13 0.752 0.022

M14 0.217 0.006

M15 0.227 0.007

M16 0.716 0.021

M17 0.086 0.003

M18 2.022 0.059

M20 0.023 0.001

M21 16.749 0.488

Measure timea 41.275 1.203

Parsing time 0.755 0.022

Marking time 35.703 1.041

Other operations 1.513 0.044

Total time 79.245 2.310

aTotal time used by the CISQ measures

5.4 Unit Test Coverage

The unit tests written for SQUIDS follow the principle of Black Box testing (see
Section 2.1.8). Each CISQ measure has a dedicated test class which subjects it to
different kinds of inputs, and asserts that the output is as expected. For CISQ
measures with threshold values, e.g. M11: # of functions that have a fan-out ≥ 10,
boundary values are tested with three test cases, meaning that the CISQ measure is
subjected to fan-out counts of 9, 10 and 11 (see Section 2.1.8.2), and a problem
reported by M11 should be found when subjected to either 10 or 11, but not 9.

Chapter 5. Results 73

TABLE 5.5: Line- and Mutation Coverage for unit tests created for implemented CISQ
maintainability measures

CISQ
Measure

Line
Coverage

Mutation
Coverage

M01 100% 75%

M02 100% 96%

M03 100% 80%

M04 100% 68%

M05 92% 87%

M06 100% 83%

M07 100% 85%

M09 90% 79%

M10 100% 86%

M11 99% 87%

M12 96% 81%

M13 95% 63%

M14 93% 79%

M15 100% 100%

M16 97% 82%

M17 100% 86%

M18 94% 85%

M19 100% 92%

M20 100% 100%

M21 92% 77%

SuperClass1a 100% 100%

SuperClass2b 99% 82%

SuperClass3c 100% 0%

Total 97% 82%

aClass CISQMMLayerDependentMeasure is the superclass of CISQ measures M01, M02 and M03.
bClass CISQMMTypeDependentMeasure is the superclass of CISQ measures M05, M09, M11, M12, M13,

M16, M19 and M21.
cClass CISQMaintainabilityMeasure is the superclass of CISQ measures M04, M06, M07, M10, M14,

M15, M17, M18, M20, CISQMMLayerDependentMeasure and CISQMMTypeDependentMeasure

The unit test requirements in the test design were met (see Section 3.2.3.2). Which types
of input to test was never formalized, and additional test cases for the CISQ measures
were made on a per CISQ measure basis, making the test design semi-formal. The 20
implemented CISQ measures have a total of 164 unit test cases, of which none fail. The
line coverage analysis and mutation tests performed with PITEST resulted in a total line
coverage of 97%, where no CISQ measure had a line coverage below 90% (see Table 5.5),
which follows the 4th unit test requirement. The total mutation coverage was 82%.

74 Chapter 5. Results

5.5 Chapter Summary

SQUIDS implements the CISQ maintainability characteristic to specification, although
one of the maintainability measures (M08) was ignored due to redundancy (see
Section 5.1.3). The compliance requirements of the CISQ specification are met for a
partial implementation of the specification (only the maintainability characteristic).
The required inputs for analysis are configurable in a visual editor of project
properties, and the required outputs are visible as a list of problems found, and as
markings directly in the source code editor in the Eclipse IDE.

The average performance of the CISQ measures in SQUIDS is close to the required
speed, superseding the limit of less than 1 second with 200 milliseconds for analysis of
10 files. The average total time of analysis was unfortunately 2.310 seconds, thus not
meeting the requirement. Instead of a linear complexity, where the double amount of
files should only take the double amount of time to analyze, the complexity is
exponential.

The 164 unit test cases developed for SQUIDS are semi-formal Black Box tests written
for each implemented CISQ measure, where border values for thresholds are always
analyzed.

All functional and nonfunctional requirements were met, with the exception of
nonfunctional requirement #5, where the performance of SQUIDS failed to meet the
target speed and complexity.

Chapter 6

Discussion

This chapter discusses the methods and theory used in the project, including the CISQ
specification, and challenges the implementation of the software artifact SQUIDS.
Following, the research questions are answered, and finally, the validity of this study
is examined.

6.1 Discussion of Methods

Using the DSR framework as a research method proved suitable for this project, which
was expected when the project’s goal was to create and describe the development of an
IT artifact which solves a specific task (Hevner et al., 2004).

The seven guidelines of DSR were followed throughout research and development.
Specifically guidelines 2-4 were helpful in both research and development. Guideline
2: Problem relevance; and 3: Research contributions made an impact on development. The
focus on creating an implementable solution which contributes to the software quality
community increased the work on the expandability and usability of the API of
SQUIDS, even though those traits were not essential to the research questions.
Guideline 3: Design evaluation provided a categorization of available evaluation
techniques, where three of them were chosen for evaluating SQUIDS.

6.1.1 Size Measures

The size measures used in the dynamic analysis of SQUIDS’s performance do not by
themselves provide an exact prediction of performance, as the number of problems
found was a highly influential factor. For example, the TV-Browser project had a
larger count of total PLOC than the RSSOwl project (see Table 5.2), and over three
times the number of files, but the RSSOwl project took more than twice as long as

75

76 Chapter 6. Discussion

TV-Browser to analyze. A reasonable explanation is that the number of problems
found in RSSOwl has a high impact on the time it takes to complete analysis: RSSOwl
has over twice the number of problems as TV-Browser. This relation may not be the
same for all cases, such as with the projects Checkstyle and Log4j, where Checkstyle
has roughly 3/4 the number of problems as Log4j, but took more than twice the time
to analyze. Nonetheless, the impact of problems present in a project is
notable.Table 5.3 shows that the number of Java files, total count of LOC, and
problems found in a project, are all variables which influence the performance of
SQUIDS.

6.1.2 Performance Test Amount

Performance test results are gathered from the average of three single analyses per
project, to ensure that the results were less dependent of system (computer) status at
test time. For example, if the computer was receiving updates at the exact time when
a certain project was being analyzed, that project would take longer to analyze, as the
completion time of any task in a computer is influenced by the amount and complexity
of other simultaneous tasks. The amount of analyses performed per project may be
debatable, though the differences between the analyses were small enough to assume
that additional tests would not add more information.

6.1.3 Performance Test Points

Performance measuring was divided between the time taken by the CISQ measures,
the time taken by the JavaParser library to parse the source files, the time taken by
Eclipse to mark the problems in the files, and the rest of the SQUIDS logic. While the
total time it takes to analyze a project is the focus of the performance measuring of
SQUIDS, this separation was done to find which parts of the application that are most
time consuming. This way, certain parts of the application may be targeted for
performance improvement with a specific solution, thus supporting future
development. For example, exceptionally slow CISQ measures could be targeted for
improvement. Additionally, the time it takes JavaParser to parse all the source files
may be decreased by not parsing each file in the project anew for each analysis, and
instead keep track of all changes made since last analysis, and simply re-parse the
changed files.

Chapter 6. Discussion 77

6.1.4 Unit Test Formality

The test technique applied in unit testing of SQUIDS was kept semi-formal (see
Section 3.2.3.2 and Section 2.1.8). Keeping a more formalized test technique could
have resulted in a larger test coverage. For example, if the test technique specified that
each (subclass of) Measure should be tested for each method, and given each possible
input, line coverage and mutations killed in mutation testing could be improved (see
Section 5.4). Unfortunately, this would cost a substantial amount of time, which this
project could not afford. However, a total line coverage of 97% and a mutation
coverage of 82% can be considered as acceptable for this project.

6.1.5 Informed Argument

Making an informed argument on the basis of comparing results with Plösch, Schürz,
and Körner (2015) has some weaknesses. The CISQ measures implemented in the
MUSE software and their results are not verified by any third party. Therefore, a
comparison does not provide a view of how correct SQUIDS is, but rather how similar
it is to another implementation.

6.2 Discussion of the CISQ Specification

There are a few concerns with the CISQ specification which may impact the validity of
an implementation. These issues will be exhibited in this section.

6.2.1 Ambiguous Terms

The ambiguous terms in the CISQ specification (see Section 4.5.1) introduces a
problem with the correctness of the implementation. If a term in the specification is
misunderstood, the implementation may produce results which were not intended by
the specification. For example, if the term cyclomatic complexity in the CISQ
specification does not refer to McCabe’s Cyclomatic Complexity (1976), SQUIDS may
calculate the cyclomatic complexity of a method differently than what was intended
by the specification (see Section 2.4.6). On the other hand, relying on the assumptions
on some of the terms made by Plösch, Schürz, and Körner (2015), and specifying the
calculation techniques implemented in SQUIDS both in the source code and this
thesis, the external validity of the project is maintained on this point.

78 Chapter 6. Discussion

6.2.2 Source Code Size Metrics

The only size metric in the CISQ specification is the LOC of each file. While the
specification states that the quality measure elements (metrics) in the specification
were selected due to high impact (CISQ, 2012, p. 12), the total system size is not
covered by the specification. If the LOC of each file in a project is under 1,000, the
CISQ specification would still not consider it to be a problem, even if the total LOC in
the project is in the number of millions. On the other hand, a large total LOC of a
project is considered to be a problem (Nguyen et al., 2007; Sjøberg, Anda, and Mockus,
2012). Implementing another measure which can detect this problem would be of little
difficulty, as the already implemented CISQ measure M15: # of files > 1000 LOC could
be used to sum the total LOC of a software project.

6.2.3 Improving Maintainability

In contrast to concluding that the CISQ specification could be used for quality
evaluations, Plösch, Schürz, and Körner (2015) argue that its coverage of aspects of
maintainability deems it only “partially suitable for improvement programs”
compared to their own EMISQ model (see Section 2.4.10). In other words, it is less
suitable for recommending improvements to a software, because it may fail to identify
numerous problems related to maintainability. Scenario 1 (see Section 4.1.1) is
therefore threatened by this claim, while scenario 2 (see Section 4.1.2) is strengthened.
On the other hand, scenario 1 requires SQUIDS to run at an acceptable speed, which
is difficult if there are too many CISQ measures analyzing the code. On that matter, it
is possible to say that the CISQ specification is still suitable for controlling
maintainability during development, but is not recommended for improving existing
code.

6.3 SQUIDS Implementation

There are primarily two subjects related to the implementation of SQUIDS which need
further elaboration: One of the CISQ maintainability measures was ignored, and while
the recognized programming pattern Visitor could have simplified the API of SQUIDS,
it was not used.

Chapter 6. Discussion 79

6.3.1 Ignored Measure

While CISQ measure M08 was ignored in the implementation of the specification (see
Section 3.2.3.1), an implementation could still have been made. The JavaParser library
representation of a class or interface is the class ClassOrInterfaceDeclaration,
featuring the method getExtends(), which provides a list of superclasses. Providing
a list is meant for interfaces, which may extend multiple interfaces1, though a CISQ
measure could be developed to look for objects of the class
ClassOrInterfaceDeclaration which are not interfaces (using the method
isInterface()) and have an extension list containing more than one element.
However, an actual implementation was never made because of testability: It is not
possible for JavaParser to parse a class which has multiple superclasses2. In other
words, an implementation could be made, but tests could not have been made to
ensure correctness.

6.3.2 Not Using the Visitor Pattern

The Measure class does not use the Visitor pattern which is often used for traversing
ASTs (see Section 2.4.1). It could very well have been used, as the JavaParser library
allows for AST nodes to be accessed by classes extending the
GenericVisitorAdatper<R,A> class by calling the accept() method on the node,
and providing the CISQ measure as a parameter value (see Snippet 6.1).

Snippet 6.1: Hypothetical use of Visitor pattern

1 for(Measure cisqMeasure : measures) {

2 // The node accepts a class which extends

3 // GenericVisitorAdatper<R,A> and returns

4 // a list of problems. Additional info may

5 // be added as the second parameter.

6 List<Issue> issues = node.accept(cisqMeasure, info);

7 }

The implementation required the string representation of the file being analyzed in
order to correctly calculate the position of the node (see Section 4.5.2). Additionally, a
complete list of the other files in the project was required in order to implement
measures which regard relations between files (e.g. M06, M07 or M09). The accept()
method which in turn calls the visit() method on the provided visitor accepts a

1Interfaces use the extends keyword to extend multiple interfaces. Therefore, the getExtends()

method must retrieve a list, as the ClassOrInterfaceDeclaration class does not discriminate between
the two. However, a getImplements() method is also available, which is redundant for interfaces.

2Attempting to parse a file with a class with multiple superclasses with JavaParser throws
the following exception: com.github.javaparser.ParseException: A class cannot extend more

than one other class

80 Chapter 6. Discussion

single additional parameter, which could be used to add the string representation and
list of other files, by packaging them into another object (see Snippet 6.2).

Snippet 6.2: Hypothetical CISQ measure using Visitor pattern

1 class CISQMeasure extends

2 GenericVisitorAdapter<List<Issue>, Map<String, Object>> {

3
4 @Override

5 public List<Issue> visit(Node node, Map<String, Object> info) {

6 List<Issue> issues = new LinkedList<>();

7
8 // Get the string representation of

9 // the file being analyzed.

10 String fileString = (String) info.get("file");

11
12 // Get the list of other files (as

13 // CompilationUnits).

14 List<CompilationUnit> otherFiles = (List<CompilationUnit>)

15 info.get("comp_units");

16 // ...

17 // Analyze the node and return issues

18 // if problems are found.

19 // ...

20 return issues;

21 }

22 }

23 }

This was, unfortunately, only discovered late in development and was dropped, as
refactoring to the Visitor pattern would require too much effort close to the deadline.
Snippet 6.1 and Snippet 6.2 do however display the opportunity of improving SQUIDS
by refactoring to the Visitor pattern, which would “simplify what is complicated, and
[...] make [the] code better at communicating its intention” (Kerievsky, 2004, p. 6).

6.4 Comparison of Results with MUSE

The raw results from the MUSE software (Plösch, Schürz, and Körner, 2015),
provided by Schürz (2016) revealed that their implementation of the CISQ measures
gives a result with many differences from SQUIDS (see Table 6.1). While there were
CISQ measures with equal amounts of problems found between the two
implementations, the analysis of the TV-Browser project shared no correspondence
with the analysis by MUSE (see Appendix E.5), which may be caused by different
versions of the project in the two result sets. Therefore, the TV-Browser project is
omitted in the totals table (see Table 6.1). Tables for each project, and totals with the
TV-Browser project included are available in Appendix E.

Chapter 6. Discussion 81

TABLE 6.1: Comparison of total numbers of problems found per CISQ measure between
SQUIDS and MUSE (Schürz, 2016), without the TV-Browser project.

CISQ
measure

SQUIDS
count

MUSE count Difference

M04 19 0 19
M05 397 47 350
M06 0 17 17
M07 14 14 0
M09 893 1,712 819
M10 371 371 0
M11 1,642 1,150 492
M12 391 766 375
M13 2,200 183 2,017
M14 313 600 287
M15 14 31 17
M16 131 16 115
M17 318 241 77
M18 411 237 174
M20 22 22 0
M21 49,074 49,562 488
Total 56,210 54,969 1,241

CISQ measures M07, M10 and M20 produced the same number of problems in MUSE
and SQUIDS. M21 found a similar number of problems in each implementation, where
SQUIDS found 49,074 and MUSE 49,562. M09, M11, M12, M14, M15, M17 are more
different, while the last five, M04, M05, M06, M13 and M16 are proportionally the most
different CISQ measures. M04 and M06 are points of interest, where MUSE found no
problems for M04, and SQUIDS found 22 problems, and vice versa for M06.

6.4.1 Detailed Comparison

By manually inspecting and comparing the maintainability problems which SQUIDS
found and MUSE did not, and vice versa, major differences between some
implementations of the CISQ measures were found. The comparison was made
possible by creating XML reports3 with the same format as the raw results from
MUSE, and finding the exact locations of problems which were only reported by one
analyzer, using a program developed for this specific purpose4. The program searches
the XML reports from SQUIDS and MUSE for problems which are only reported by
one of the implementations. This is done by creating IDs for the problems, consisting
of the CISQ measure, file number and line number (e.g.

3XML reports were created with the XMLWriter class
4The program used for finding problems reported by only SQUIDS or MUSE is available at

https://github.com/larsac07/CISQAnalyzerComparator

https://github.com/larsac07/CISQAnalyzerComparator

82 Chapter 6. Discussion

M06:JABREF_ROOT/src/java/net/sf/jabref/FileHistory.java:9), and
excluding problems with IDs which exist in the reports of both implementations. The
remaining problems are only reported by one of them.

Where a detailed review of each problem which was only reported by one of the
implementations would require too much effort for the scope of this thesis, the
comparison was limited to a small sample of CISQ measures. Assumptions about the
other CISQ measures are available in Appendix B. M04 was selected to look at why
SQUIDS found 19 problems for M04, and MUSE none. M06 was selected for the same
reason, where SQUIDS did not find any problems for M06, whereas MUSE found 17.
Additionally, M17 was selected because the difference between the number of
problems found by SQUIDS and MUSE was relatively low, and considering it is easy
to determine whether a problem is valid (true positive) or mistakenly reported (false
positive), by manual inspection of the source code. Notes from the manual inspection
are available in Appendix F.

6.4.1.1 Problems for M04

SQUIDS was the only implementation which found problems for M04. Additionally,
the way SQUIDS reports problems for M04 makes it hard to manually inspect results:
In M04, SQUIDS converts each file to a sequence of tokens (see Section 2.4.1), and looks
for duplicates. Duplicates are reported, but exact locations are not calculated. M04
should therefore be improved before performing a manual comparison with another
CISQ implementation. Why MUSE did not find any problems for M04 is unknown, but
may be attributed to a different interpretation of the specification or another definition
of tokens.

6.4.1.2 Problems for M06

All the problems reported for M06: # of classes with inheritance levels ≥ 7 were found in
classes which either directly or indirectly extend classes from the Java Swing package
(javax.swing) or the JGoodies library
(com.jgoodies.uif_lite.panel.SimpleInternalFrame). The problems were only
reported by MUSE (SQUIDS found no problems), and each problem counted an
inheritance level of exactly 7. If the inheritance level is counted locally, i.e. only
inheritance from the classes in the project is counted, none of the classes which were
reported by MUSE have an inheritance level of 7 or higher. Contrarily, if the
inheritance from classes outside the project is counted, all the reported classes have an
inheritance level of exactly 6. This is due to some of the classes in the Swing package

Chapter 6. Discussion 83

having a high inheritance level to start with, such as JMenu, which has an inheritance
level of 5. If the Object class is counted, the reported classes have an inheritance level
of 7. The CISQ specification has been interpreted differently by the two
implementations.

6.4.1.3 Problems for M17

Between the two implementations, there were 225 identical problems reported for M17:
of GO TOs, CONTINUE, and BREAK outside the switch. There were no problems for
M17 reported by MUSE which SQUIDS did not also report. On the contrary, there
were 93 problems which only SQUIDS reported. The reason this number is higher than
the difference of 77 (see Table 6.1) is that the manual inspection revealed that MUSE
sometimes report duplicate problems. For example, the break statement on line 182
in the class ExecutableStatementCountCheck5 in the Checkstyle project is reported
twice. Continuing on the 93 problems only detected by SQUIDS, certain conditions
around the findings were noted. The problems which MUSE did not report were one
or more of the following:

• break or continue with a label
• break or continue which is located within an else if-statement
• break or continue which is located within an if-statement which in turn is

located within a switch-statement
• break or continue which is located within an if-statement in a final or

anonymous inner class

On another note, SQUIDS reports 4 instances of a break with a label, within one or
more if-statements, within a switch-statement with the same label, thereby making
it explicit that the break belongs to the switch, and not a surrounding loop (see
example in Snippet 6.3). In the example in Snippet 6.4 below, no label is provided.
This makes the segment less readable, as the relation of the break is not explicit, and
must be decoded and understood by the reader. It is debatable and arguably a
question of definition whether this is the case for the labeled example as well. The
CISQ specification provides no further explanation, but it can be argued that even
when a label is present, the code is over-complicated due to surrounding a break

inside an if-statement.
5Located at CHECKSTYLE_ROOT/src/com/puppycrawl/tools/checkstyle/checks/sizes/

ExecutableStatementCountCheck.java

84 Chapter 6. Discussion

Snippet 6.3: Break with a label inside an if inside a switch with the same
label.

1 for (int i = 0; i < array.length; i++) {

2 label_1: switch (variable) {

3 case 1:

4 if (condition) {

5 break label_1;

6 }

7 // ...

8 }

9 }

Snippet 6.4: Break inside an if inside a switch.

1 for (int i = 0; i < array.length; i++) {

2 switch (variable) {

3 case 1:

4 if (condition) {

5 break;

6 }

7 // ...

8 }

9 }

6.5 Answering the Research Questions

Having thoroughly discussed the methods, theory and implementation of the CISQ
specification, the research questions may be answered using the research design
described in Section 3.2, and the results presented in Chapter 5.

6.5.1 Research Question 1

How can a static code analyzer be developed as an Eclipse plug-in which, based on a
standard, detects maintainability problems in a software project?

The software artifact SQUIDS implements the maintainability characteristic of the
CISQ Specifications for Automated Quality Characteristic Measures, which conforms to the
ISO/IEC 25010 standard. As concluded by Plösch, Schürz, and Körner (2015), the
maintainability measures in the specification are possible to automate in a software.
Unlike their MUSE software, SQUIDS is developed as an open-source, installable
plug-in for the Eclipse IDE.

Chapter 6. Discussion 85

Following are the key technologies which together comprise the implementation of
SQUIDS:

• The JavaParser library (see Section 4.4.2.2)
• AST traversal (see Section 2.4.1)
• The CISQ specification (see Section 2.4.7)
• The Eclipse PDE (see Section 4.4.3)

The cornerstone of the functionality in SQUIDS is using the JavaParser library to create
ASTs of the source code. While traversing the ASTs, each tree node is analyzed by each
CISQ measure where maintainability problems may be found. Combining the API
of JavaParser with a set of helper methods (see JavaParserHelper in Section 4.5.2)
and the Eclipse PDE, provides the functionality necessary to implement a static code
analyzer for maintainability measures, based on the CISQ specification.

In Chapter 4, the design and development of SQUIDS describes how it was
implemented.

6.5.2 Research Question 2

How can such an implementation visualize maintainability problems in a software
project to the user?

The maintainability problems found by SQUIDS are reported in three locations in the
Eclipse IDE:

• The source code editor (see Fig. 4.10)
• The Problems-view (see Fig. 4.11)
• A custom Eclipse-view called CISQ Report (see Fig. 4.12)

Problems are marked using Eclipse’s IMarker API, which is accessed by creating an
IMarker from an IFile, and setting values for predefined attributes (see Snippet 6.5).
Eclipse then takes this information, and adds markers to the source code editor (see
Fig. 4.10) and the Problems-view (see Fig. 4.11).

86 Chapter 6. Discussion

FIGURE 6.1: Two different problem markers are overlapping in the
Eclipse source code editor.

Snippet 6.5: Using the IMarker API

1 // ...

2 IMarker m = iFile.createMarker("SQuIDS.javaqualityissue");

3 m.setAttribute(IMarker.LINE_NUMBER, errorLineNumber);

4 m.setAttribute(IMarker.MESSAGE, message);

5 m.setAttribute(IMarker.PRIORITY, IMarker.PRIORITY_NORMAL);

6 m.setAttribute(IMarker.SEVERITY, IMarker.SEVERITY_WARNING);

7 m.setAttribute(IMarker.CHAR_START, startIndex);

8 m.setAttribute(IMarker.CHAR_END, endIndex);

6.5.2.1 Source Code Editor

In the source code editor, overlapping problems have proven to be an issue (see
Fig. 6.1), where the problem reported last covers the other, making it invisible. One
solution could be to gather overlapping problems into single problems which contain
lists. A different approach is to create another custom view of the problems, which
could contain a list of problems where selecting a problem highlights the problem area
in the source code editor.

6.5.2.2 Problems View

While the Eclipse Problems-view is the standard location for viewing errors and
warnings (see Fig. 4.11), it may not be optimal for displaying maintainability
problems. It has been noticed during testing that a large amount of problems makes it
difficult for the view to display them. A large amount of problems makes the view
slow, and may cause the entire IDE to freeze when scrolling through the list. As an
alternative, a customized view for maintainability problems could be created, where
optimization on computer memory and processor usage could be prioritized.

Chapter 6. Discussion 87

6.5.2.3 Usability Tests Recommended

Common for these issues, is that identifying optimal manners of displaying this kind
of information to the intended users is needed. Further research and development on
the project should therefore involve usability testing to improve on this part of the GUI,
as well as the rest. One way of presenting maintainability problems in an IDE has been
presented in this thesis, while other alternatives could be better. Yet, it is a proof-of-
concept on displaying maintainability problems found by a plug-in in an IDE, using
standard, provided tools.

6.5.3 Research Question 3

Can such an implementation give a performance which makes it usable during
development?

The speed of analysis in a software which follows the structure of SQUIDS mainly
depends on variables which can be identified before analysis. These variables are the
amount and complexity of measures, and the size of the project(s) being analyzed.
In addition, a variable which is harder to identify on beforehand, is the amount of
problems to be found in the software to be analyzed, which also proved to make an
impact on the analysis performance.

Dividing the stopwatch-approach of the performance testing into specific parts of
SQUIDS (see Section 3.2.3.5) provided an indication of which variables affected which
parts of the system, and how. First, a repetition of the different times which were
recorded:

• Parsing: The time it takes the JavaParser library to parse all the source files in a
project

• Analysis: The time it takes each CISQ measure to analyze all the source files in a
project

• Marking: The time it takes to mark all the problems found in a project in the
Problems-view and editor of Eclipse

• Rest: The rest of the time it takes to analyze a project (Total time minus the above)

• Total: The total time it takes to analyze a project

A repetition of the variables affecting the performance of SQUIDS:

88 Chapter 6. Discussion

TABLE 6.2: The time SQUIDS uses to analyze each of the five open-source projects.

Project # of CISQ
measures

Total PLOC
of source files

of problems
found

Total analysis
time (s)

Log4j 16 20,784 2,068 9.009
Checkstyle 16 30,827 1,601 11.108
JabRef 16 60,564 15,851 84.089
TV-Browser 16 86,903 14,536 103.181
RSSOwl 16 65,540 37,554 188.839

• Amount of CISQ measures

• Total LOC of source files

• Amount of problems found

– The types of problems found

The performance test results (see Section 5.3) showed that the amount of CISQ
measures used for analysis and the total LOC of the source files affect the time used
for analyzing files and marking problems. Especially slow CISQ measures make a
great impact on analysis. The time used on parsing the source files is directly
connected to the total LOC of the source files being analyzed: The more code to parse,
the more time it takes. The amount of problems to be found in the software being
analyzed is directly responsible for the time used on marking the problems. Due to
the structure of SQUIDS, that amount also influences the time used on analysis, as
each implemented CISQ measure uses time on reporting the problems found. In
addition, the types of problems to be found affects both analysis and marking. If the
software being analyzed contains a large amount of a problem which is found by a
slow-working CISQ measure, this may have a significant impact.

To answer this research question, results from analyzing the five open-source test
projects and the performance tests are be used together in Table 6.2 to indicate which
velocities can be expected from a software such as SQUIDS. With only one of the
projects (Checkstyle) analyzed below the 10-second limit for keeping the user’s
attention to the dialog (see Section 2.1.5), it is reasonable to conclude that when
analyzing larger projects, the attention of the user will be lost. However, a progress
indicator with percentage-done is displayed to the user (see Fig. 4.13), so that other
tasks may be attended to in the meantime. With an average analysis time of ≈ 79

seconds for the five test projects, the developer may still use SQUIDS multiple times
during a workday without making a large impact on the amount of time dedicated to
programming. This is without calculating the work effort saved later by removing
maintainability problems found with the software early.

Chapter 6. Discussion 89

6.6 Validity

The resulting software artifact and its test results mainly corresponds to expectations
and the intention of the research design of this project. Nevertheless, there may be
weaknesses in this project, either internally, or for external purposes.

6.6.1 Internal Validity

The internal validity concerns relate to providing a proper answer for Q2, and the
correctness of the implemented CISQ Measures.

6.6.1.1 Properly Answering Q2

Although Q2 only requires an example of how maintainability problems can be
displayed (see Section 1.3), this study did not explore multiple solutions, but rather
developed one solution, and committed to it. According to Hevner et al. (2004), this is
not problematic, as DSR is intended to find a satisfactory solution, “without explicitly
specifying all possible solutions”. Still, as discussed in Section 6.5.2, the evaluation the
solution of Q2 could be improved with usability tests.

6.6.1.2 Correctness of Implemented CISQ Measures

It cannot be guaranteed that the 20 implemented CISQ maintainability measures in
SQUIDS are 100% correct implementations of the CISQ specification, due to three
reasons:

• The specification contained ambiguous terms

• SQUIDS produces different results from the MUSE software developed by
Plösch, Schürz, and Körner (2015)

• The results from Plösch, Schürz, and Körner are not verified by any third-party

As presented in Section 4.5.1 and discussed in Section 6.2.1, there were ambiguous
terms in the CISQ specification, which could mean that many of the implementations
of the CISQ measures in SQUIDS are incorrect from what was intended by the
specification. The comparison of analysis results with Plösch, Schürz, and Körner (see
Section 6.4) revealed that there are implemented CISQ measures which are excessively

90 Chapter 6. Discussion

different between SQUIDS and MUSE. However, no evidence has been found that the
raw results from Plösch, Schürz, and Körner are verified by any third party. This
means that if CISQ measures in MUSE are incorrect from the specification, the
comparison of analysis results from SQUIDS and MUSE cannot contribute to the
understanding of the correctness of either software.

6.6.2 External Validity

In order to make use of the results from this study, a few considerations have to be
made. In both the analysis results and performance tests, only five existing software
projects and only 16 out of 20 implemented CISQ measures were used.

6.6.2.1 Test Subjects Not Representative

The five software projects6 were chosen because of their usage in the article which was
used for comparison, but may not be representable for the average software project. As
noted by Plösch, Schürz, and Körner (2015), the projects are all open-source, which may
differ from “industrial strength projects”. Testing more software projects, especially
larger projects for industrial use, would be a great improvement to the tests performed
in this project.

6.6.2.2 Ignored CISQ Measures

As stated in Section 5.3, only 16 out of the 20 implemented CISQ maintainability
measures were used for gathering result data from analysis of the five open-source
projects and the performance tests. Not providing data from the remaining four CISQ
measures is a threat to the external validity if other research projects do, and wish to
compare results. Hypothetically, if this study was to include them, it would either
have to analyze software projects which the researcher has intricate knowledge of, or
make the same compromises as Plösch, Schürz, and Körner’s Variant B of their study
(2015). In this variant, automatic detection of architectural layers is provided by an
external tool called Classycle in order to operationalize CISQ measures M01-M03.
However, according to Plösch, Schürz, and Körner, Classycle does unfortunately not
produce the same description of the layering as the actual layering. A list of the
standard Java JDK packages and classes which contain file or data operations is
provided for CISQ measure M19, but other packages and classes of the same nature

6TV-Browser was ignored in comparing results (see Section 6.4).

Chapter 6. Discussion 91

are not considered. Performing tests with variant B would only provide less accurate
results.

6.6.2.3 Reproducing Setup

Performance testing was performed on a single machine, as detailed in Table 3.4.
Therefore, results may vary if another setup is used. Since other machines have not
been used, the impact of the different attributes of a setup cannot be calculated.
Therefore, if a comparison on performance is to be made with SQUIDS attempting to
recreate the setup in this project as close as possible is recommended.

6.7 Chapter Summary

This chapter has examined the methods and relevant theory in the study, discussed
the implementation of the CISQ specification, compared the results with Plösch,
Schürz, and Körner (2015), as well as answered the research questions and discussing
the validity of the results.

Chapter 7

Conclusions

This chapter starts with a brief summary of the thesis, before presenting the research
contributions made. Finally, recommendations for further research and development
is given.

7.1 Thesis Summary

This thesis has documented a research project using the Design Science Research
framework, which resulted in the software artifact SQUIDS. The artifact was
developed in order to examine how an Eclipse plug-in which automatically detects
problems related to software maintainability, and visualize them to the user, in an
acceptable time, can be developed.

The development process of SQUIDS is described by its requirements, scenarios,
design and 17 iterations. Its correctness and performance were monitored in each
iteration, based on making the software analyze a small project. By the end of the 16th

iteration, five existing open-source projects were analyzed by SQUIDS, and the data
revealed incorrect results and slow performance, resulting in an additional iteration of
improvements. The final results show acceptable performance and correctness,
although improvement areas were identified. At the end of the thesis, the methods
and theory used in the project are discussed, and the research questions are answered
based on the test results.

7.2 Research Contribution

The DSR framework specifies in its fourth guideline (see Section 3.1.4) that the
research must make a research contribution. This study contributes to the research

93

94 Chapter 7. Conclusions

areas software engineering and software quality analysis, and specifically the
automation of the maintainability characteristic in the CISQ specification, which is
based on the ISO/IEC 25010 standard. Previous research exists in this area, although
no other study was found which attempts to implement such a tool as a plug-in, while
keeping its performance in mind1.

The study has contributed the following results:

• A software artifact called SQUIDS: A plug-in for the Eclipse IDE which
automatically analyzes Java source code and detects problems related to
software maintainability, in accordance with the CISQ specification. It was
found that analysis results from SQUIDS differed from another implementation
of the same specification, with the same analysis subjects (the five open-source
projects). This suggests that either or both implementations contain erroneously
implemented metrics (CISQ measures).

• Proof that such a software may deliver results in an acceptable time. It is
nevertheless shown that the type of analysis which is demanded by many of the
metrics (CISQ measures) in the CISQ specification is time consuming, and that
optimization and compromises have to be made to ensure satisfactory
performance.

• An example and discussion of how software quality problems may be displayed
to a user. It has been noted that the solution in the artifact may not be optimal,
and that usability testing should be used to find a better solution.

• A method to compare and verify results between different implementations of the
CISQ specification (see Section 3.2.3.3 and Section 6.4). By using the method for a
selected set of metrics, it was found that the MUSE software failed to find some
maintainability problems which were detected by SQUIDS (see Section 6.4.1.3). It
was also found that MUSE counts inheritance levels differently than SQUIDS, on
account to different interpretations of the CISQ specification (see Section 6.4.1.2).

In addition, the study provides a description of how the software artifact was designed
and developed, so that other researchers and developers may use the information to
software for similar purposes. SQUIDS is also available as an open-source project at
https://github.com/larsac07/SQuIDS.

1Satrijandi and Widyani (2015) focus on performance, but does not implement the maintainability
characteristic

https://github.com/larsac07/SQuIDS

Chapter 7. Conclusions 95

7.3 Further Research and Development

During the project, some limitations and issues in the study were found. These provide
opportunities for new research topics which may be of interest for further research.

7.3.1 Further Evaluation

The study was found to have three limitations which could be resolved by further
research:

• Results not verified by third party
• Test subjects may not be representative
• Usability testing was not performed

7.3.1.1 Verification of Results

The correctness of the implemented metrics in the CISQ specification cannot be
guaranteed, for three reasons:

• The results from SQUIDS have not been verified by a third party
• Comparison of results with the MUSE software created by Plösch, Schürz, and

Körner (2015) showed different results
• The results from MUSE have not been verified by a third party

Therefore, a complete verification of the results of SQUIDS or MUSE, or a comparison
with a software whose results are verified should be conducted. However, the
detailed comparison of the results from selected CISQ measures in SQUIDS and
MUSE found that MUSE fails to detect some maintainability problems which
SQUIDS finds, reports duplicate problems and and makes different assumptions
about the scope of inheritance levels (see Section 6.4). The comparison can also be
replicated for other measures by using the same method, as described in
Section 3.2.3.3.

7.3.1.2 Analyzing More Representative Subjects

The software projects which were analyzed (see Section 3.2.3.5) were all open-source,
and there were only five of them2 (see Section 6.6.2.1). In addition, four implemented

2Only four used to compare results with MUSE.

96 Chapter 7. Conclusions

CISQ measures were ignored when analyzing the projects, because they required
intimate knowledge of the projects. Analysis of a larger amount of projects, varying
between open-source and proprietary software, where the knowledge required for the
ignored CISQ measures is available, would provide a more complete and realistic
result.

7.3.1.3 Usability Testing

Although the DSR framework does not require optimal solutions (Hevner et al., 2004,
p. 89), the manner of displaying maintainability problems to users could be improved
by performing usability tests on different solutions, such as the alternatives noted in
Section 6.5.3.

7.3.2 Further Development of SQUIDS

SQUIDS could be improved as a software on four areas:

• Performance
• CISQ specification completeness
• Using the Visitor pattern
• Support for other programming languages

7.3.2.1 Improving performance

The average performance of SQUIDS could be improved by reducing the amount of
files and CISQ measures for every analysis. By running a complete analysis only once,
and keeping track of changes made to files, the files which have not been changed
since the last analysis do not have to be parsed by JavaParser anew. In addition, many
of the CISQ measures are only concerned with individual files, in contrast to others,
where changes in one file may influence whether there is an issue in another file.
Therefore, if each Measure is given an attribute (field) for its scope, CISQ measures
may be filtered out if they do not need to reanalyze unchanged files, thus using less
time and improving performance.

Chapter 7. Conclusions 97

7.3.2.2 Completing the CISQ Specification

Where SQUIDS contains implementations of only one fourth of the CISQ specification
(the maintainability characteristic), implementing CISQ measures for another, or the
rest of the specification, would be a large improvement on SQUIDS’s usage area.

7.3.2.3 Refactoring to the Visitor Pattern

As noted in Section 6.3.2, the Visitor pattern, which is both supported and used by the
JavaParser library, could be used to simplify and familiarize the Measure class for other
developers.

7.3.2.4 Support for Other Programming Languages

SQUIDS currently only supports analysis of Java source code (see Section 5.1.2). In
order to support other languages, the Measure and IssueFinder classes (see Fig. 4.3.2)
need to be refactored to not depend on JavaParser-specific classes, as the JavaParser
library only supports Java source code. This means that a generic representation of
ASTs must be used, for example with ANTLR. Some CISQ measures may need to be
generalized, while others may need language-specific implementations. Additionally,
if a hypothetical programming language cannot be represented as ASTs, it would not
be recommended to extend SQUIDS for that language, as traversing ASTs is the central
design of SQUIDS.

7.3.3 Query-Language for ASTs

It has been found that implementing source code analysis for Java using an AST
analysis approach, though feasible, is at times complicated to express, especially when
the provided AST has limited information (see Section 4.5.2). It would be interesting
to see if an alternative approach could be developed, where a query-language for
ASTs, or a language more suitable for the relations between nodes in an AST would be
used to express the CISQ measures. An example query, as an implementation of CISQ
measure M10, could look like the following: <variable> <hasModifier> <public>.
Points of interest would be to see if such an implementation would be easier to both
develop and maintain, or have a higher/lower performance.

http://www.antlr.org/index.html

98 Chapter 7. Conclusions

7.3.4 Automated Quality Assessment

Within the research area of automated software quality analysis, there should be focus
on developing more quality measures which can be automated. As Plösch, Schürz,
and Körner (2015) points out, there are software quality models with a wider range of
metrics. Additionally, a query-language for ASTs, as described in Section 7.3.3, could
also be used to express the rules in a software quality model.

Bibliography

Bagheri, Ebrahim and Dragan Gasevic (2011). “Assessing the Maintainability of
Software Product Line Feature Models using Structural Metrics”. In: Software
Quality Journal 19.3, 579–612. ISSN: 09639314. DOI:
10 . 1007 / s11219 - 010 - 9127 - 2. URL:
http://link.springer.com/article/10.1007/s11219-010-9127-2.

Bakota, T et al. (2012). “A cost model based on software maintainability”. In: Software
Maintenance (ICSM), 2012 28th IEEE International Conference on, 316–25. DOI:
10 . 1109 / ICSM . 2012 . 6405288. URL: http :

//ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6405288.
Bessin, Geoffrey (2004). The business value of software quality. URL: https://www.ibm.
com/developerworks/rational/library/dec04/bessin/.

Bourque, Pierre and Richard E. Fairley (2014). Guide to the software engineering body of
knowledge (swebok). Ed. by Pierre Bourque and Richard E. Fairley. 3.0. IEEE Computer
Society, 335. ISBN: 0769551661. DOI: 10.1234/12345678. URL: http://www.
computer.org/web/swebok/v3http://www.mendeley.com/research/

guide-software-engineering-body-knowledge-swebok/.
Broeckman, Bart and Edwin Notenboom (2003). Testing Embedded Software. 1st ed.

Addison-Wesley, 348. ISBN: 0321159861.
Chen, Jing and Xuyan Liu (2009). “Software Maintainability Metrics Based on the Index

System and Fuzzy Method”. In: 2009 1st International Conference on Information Science
and Engineering, ICISE 2009, 5117–20. ISBN: 9780769538877. DOI: 10.1109/ICISE.
2009.1073. URL: http://ieeexplore.ieee.org/xpl/articleDetails.
jsp?arnumber=5454554.

Chidamber, Shyam R. and Chris F. Kemerer (1994). “A Metrics Suite for Object Oriented
Design”. In: IEEE Transactions on Software Engineering 20.6, 476–93. URL: http://
ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=295895.

Chirilă, Ciprian-Bogdan and Vladimir Creţu (2012). “A Set of Java Metrics for
Software Quality Tree Based on Static Code Analyzers”. In: Applied Computational
Intelligence in Engineering and Information Technology. Ed. by Radu-Emil Precup et al.
1st ed. Springer. Chap. 12, 147–62. URL:
http://link.springer.com/content/pdf/10.1007/978-3-642-28305-

5{_}12.pdf.

99

http://dx.doi.org/10.1007/s11219-010-9127-2
http://link.springer.com/article/10.1007/s11219-010-9127-2
http://dx.doi.org/10.1109/ICSM.2012.6405288
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6405288
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6405288
https://www.ibm.com/developerworks/rational/library/dec04/bessin/
https://www.ibm.com/developerworks/rational/library/dec04/bessin/
http://dx.doi.org/10.1234/12345678
http://www.computer.org/web/swebok/v3 http://www.mendeley.com/research/guide-software-engineering-body-knowledge-swebok/
http://www.computer.org/web/swebok/v3 http://www.mendeley.com/research/guide-software-engineering-body-knowledge-swebok/
http://www.computer.org/web/swebok/v3 http://www.mendeley.com/research/guide-software-engineering-body-knowledge-swebok/
http://dx.doi.org/10.1109/ICISE.2009.1073
http://dx.doi.org/10.1109/ICISE.2009.1073
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5454554
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5454554
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=295895
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=295895
http://link.springer.com/content/pdf/10.1007/978-3-642-28305-5{_}12.pdf
http://link.springer.com/content/pdf/10.1007/978-3-642-28305-5{_}12.pdf

100 BIBLIOGRAPHY

CISQ. CISQ - Consortium for IT Software Quality. URL: http://it-cisq.org/ (visited
on 01/14/2016).

– (2012). CISQ Specifications for Automated Quality Characteristic Measures. URL: http:
//it-cisq.org/wp-content/uploads/2012/09/CISQ-Specification-

for - Automated - Quality - Characteristic - Measures . pdf (visited on
11/27/2015).

Cohn, Mike (2006). Agile Estimating and Planning. Addison-Wesley, 308. URL: http://
synchronit.com/downloads/books/AgileEstimatingandPlanning.pdf.

Coleman, Don et al. (1994). “Using Metrics to Evaluate Software System
Maintainability”. In: Computer 27.8, 44–49. ISSN: 0018-9162. DOI:
10 . 1109 / 2 . 303623. URL: http :

//ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=303623.
Cornell University (2005). Strong versus weak typing. URL: http://www.cs.cornell.
edu/courses/cs1130/2012sp/1130selfpaced/module1/module1part4/

strongtyping.html (visited on 02/11/2016).
Dahiya, S. Singh, J.K. Chhabra, and S. Kumar (2007). “Use of Genetic Algorithm for

Software Maintainability Metrics’ Conditioning”. In: 15th International Conference on
Advanced Computing and Communications (ADCOM 2007). Vol. 136119, 87–92. ISBN: 0-
7695-3059-1. DOI: 10.1109/ADCOM.2007.69. URL: http://ieeexplore.ieee.
org/xpl/articleDetails.jsp?arnumber=4425956.

Douziech, Philippe-Emmanuel (2016). CISQ Question. Email correspondence.
Fowler, Martin (2004). UML Distilled. 3rd ed. Addison-Wesley, 167. ISBN: 0-321-19368-7.
– (2015). PresentationDomainDataLayering. URL: http :

//martinfowler.com/bliki/PresentationDomainDataLayering.html

(visited on 12/31/2015).
Goyvaerts, Jan (2015). Regular-Expressions.info. URL:
http://www.regular-expressions.info/ (visited on 02/10/2016).

Grune, Dick (2012). Modern Compiler Design. New York, NY: Springer New York, 736.
ISBN: 978-1-4614-4699-6. DOI: 10 . 1007 / 978 - 1 - 4614 - 4699 - 6. URL:
http : / / www . academiaworld . net / wp -

content/uploads/2015/08/Modern-Compiler-Design-2e.pdf.
Hevner, Alan R. et al. (2004). Design Science in Information Systems Research. URL: http:
//wise.vub.ac.be/thesis{_}info/design{_}science.pdf (visited on
02/29/2016).

IEEE Standards Association (2006). “Software Life Cycle Processes -Maintenance
ISO/IEC 14764 IEEE Std 14764-2006”. In: ISO/IEC 14764:2006 (E) IEEE Std
14764-2006 Revision of IEEE Std 1219-1998), 0_1–46. DOI:
10.1109/IEEESTD.2006.235774.

– (2010). “Systems and software engineering — Vocabulary ISO/IEC/IEEE
24765:2010”. In: ISO/IEC/IEEE 24765:2010, 1–418. DOI:

http://it-cisq.org/
http://it-cisq.org/wp-content/uploads/2012/09/CISQ-Specification-for-Automated-Quality-Characteristic-Measures.pdf
http://it-cisq.org/wp-content/uploads/2012/09/CISQ-Specification-for-Automated-Quality-Characteristic-Measures.pdf
http://it-cisq.org/wp-content/uploads/2012/09/CISQ-Specification-for-Automated-Quality-Characteristic-Measures.pdf
http://synchronit.com/downloads/books/Agile Estimating and Planning.pdf
http://synchronit.com/downloads/books/Agile Estimating and Planning.pdf
http://dx.doi.org/10.1109/2.303623
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=303623
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=303623
http://www.cs.cornell.edu/courses/cs1130/2012sp/1130selfpaced/module1/module1part4/strongtyping.html
http://www.cs.cornell.edu/courses/cs1130/2012sp/1130selfpaced/module1/module1part4/strongtyping.html
http://www.cs.cornell.edu/courses/cs1130/2012sp/1130selfpaced/module1/module1part4/strongtyping.html
http://dx.doi.org/10.1109/ADCOM.2007.69
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4425956
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4425956
http://martinfowler.com/bliki/PresentationDomainDataLayering.html
http://martinfowler.com/bliki/PresentationDomainDataLayering.html
http://www.regular-expressions.info/
http://dx.doi.org/10.1007/978-1-4614-4699-6
http://www.academiaworld.net/wp-content/uploads/2015/08/Modern-Compiler-Design-2e.pdf
http://www.academiaworld.net/wp-content/uploads/2015/08/Modern-Compiler-Design-2e.pdf
http://wise.vub.ac.be/thesis{_}info/design{_}science.pdf
http://wise.vub.ac.be/thesis{_}info/design{_}science.pdf
http://dx.doi.org/10.1109/IEEESTD.2006.235774

BIBLIOGRAPHY 101

10 . 1109 / IEEESTD . 2010 . 5733835. URL:
http://ieeexplore.ieee.org/servlet/opac?punumber=5733833.

Iso25000.com (2015). ISO 25010. URL: http://iso25000.com/index.php/en/
iso-25000-standards/iso-25010?limit=3{\&}limitstart=0 (visited on
05/20/2016).

ISO/IEC (2011). Systems and software engineering — Systems and software Quality
Requirements and Evaluation (SQuaRE) — System and software quality models. DOI:
ISO / IECFDIS25010 : 2010(E). URL:
http://www.iso.org/iso/catalogue{_}detail.htm?csnumber=35733

(visited on 03/04/2016).
Jones, Joel (2003). Abstract Syntax Tree Implementation Idioms. URL:
http : / / www . hillside . net / plop / plop2003 / Papers / Jones -

ImplementingASTs.pdf (visited on 02/11/2016).
Kerievsky, Joshua (2004). Refactoring to Patterns. Pearson Higher Education, 367. ISBN:

0321213351.
Li, N, U Praphamontripong, and J Offutt (2009). “An Experimental Comparison of

Four Unit Test Criteria: Mutation, Edge-Pair, All-Uses and Prime Path Coverage”.
In: Software Testing, Verification and Validation Workshops, 2009. ICSTW ’09.
International Conference on, 220–29. DOI: 10.1109/ICSTW.2009.30.

Lincke, Rüdiger, Jonas Lundberg, and Welf Löwe (2008). “Comparing Software
Metrics Tools”. In: Proceedings of the 2008 international symposium on Software testing
and analysis - ISSTA ’08, 131. URL:
http://portal.acm.org/citation.cfm?doid=1390630.1390648.

Lucas, Jason (2006). Thoughts on the Visual C++ Abstract Syntax Tree (AST) | Visual C++
Team Blog. URL: https://blogs.msdn.microsoft.com/vcblog/2006/08/
16/thoughts-on-the-visual-c-abstract-syntax-tree-ast/ (visited on
02/11/2016).

Martin, Robert (2009). Clean code : a handbook of Agile software craftsmanship. Vol. 1, 464.
ISBN: 0132350882. URL:
http://portal.acm.org/citation.cfm?id=1388398.

Maurer, Ward Douglas (1966). “A Theory of Computer Instructions”. In: J. ACM 13.2,
226–35. ISSN: 0004-5411. DOI: 10.1145/321328.321334. URL: http://doi.
acm.org/10.1145/321328.321334.

McCabe, T J (1976). “A Complexity Measure”. In: IEEE Transactions on Software
Engineering SE-2.4, 308–20. ISSN: 0098-5589. DOI: 10.1109/TSE.1976.233837.

McCabe, T.J., D.R. Wallace, and A.H. Watson (1996). “Structured Testing: A Testing
Methodology Using the Cyclomatic Complexity Metric”. In: NIST Special Publication
500.235, 1–124. ISSN: 00831883. DOI: 800.638.6316. URL: http://www.mccabe.
com/pdf/mccabe-nist235r.pdf.

http://dx.doi.org/10.1109/IEEESTD.2010.5733835
http://ieeexplore.ieee.org/servlet/opac?punumber=5733833
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010?limit=3{\&}limitstart=0
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010?limit=3{\&}limitstart=0
http://dx.doi.org/ISO/IEC FDIS 25010:2010(E)
http://www.iso.org/iso/catalogue{_}detail.htm?csnumber=35733
http://www.hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs.pdf
http://www.hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs.pdf
http://dx.doi.org/10.1109/ICSTW.2009.30
http://portal.acm.org/citation.cfm?doid=1390630.1390648
https://blogs.msdn.microsoft.com/vcblog/2006/08/16/thoughts-on-the-visual-c-abstract-syntax-tree-ast/
https://blogs.msdn.microsoft.com/vcblog/2006/08/16/thoughts-on-the-visual-c-abstract-syntax-tree-ast/
http://portal.acm.org/citation.cfm?id=1388398
http://dx.doi.org/10.1145/321328.321334
http://doi.acm.org/10.1145/321328.321334
http://doi.acm.org/10.1145/321328.321334
http://dx.doi.org/10.1109/TSE.1976.233837
http://dx.doi.org/800.638.6316
http://www.mccabe.com/pdf/mccabe-nist235r.pdf
http://www.mccabe.com/pdf/mccabe-nist235r.pdf

102 BIBLIOGRAPHY

Mitra, Tilak (2008). Documenting software architecture, Part 3: Develop the architecture
overview. en. URL:
http://www.ibm.com/developerworks/library/ar-archdoc3/.

MSDN (2009). Chapter 5: Layered Application Guidelines. URL:
https://msdn.microsoft.com/en-us/library/ee658109.aspx (visited
on 01/01/2016).

Muthanna, S et al. (2000). “A Maintainability Model for Industrial Software Systems
using Design Level Metrics”. In: Seventh Working Conference on Reverse Engineering
- Proceedings, 248–56. ISBN: 0-7695-0881-2. DOI: 10.1109/WCRE.2000.891476.
URL: http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=
891476.

Nguyen, Vu et al. (2007). A SLOC Counting Standard. URL: http://sunset.usc.
edu/TECHRPTS/2007/usc-csse-2007-737/usc-csse-2007-737.pdf

(visited on 11/22/2015).
Nielsen, Jakob (1993). Response Times: The 3 Important Limits. URL: https://www.
nngroup.com/articles/response-times-3-important-limits/ (visited
on 05/27/2016).

Nystrom, Nathaniel, Michael R Clarkson, and Andrew C Myers (2003). “Compiler
Construction: 12th International Conference, CC 2003 Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2003 Warsaw,
Poland, April 7–11, 2003 Proceedings”. In: ed. by Görel Hedin. Berlin, Heidelberg:
Springer Berlin Heidelberg. Chap. Polyglot: 138–52. ISBN: 978-3-540-36579-2. DOI:
10 . 1007 / 3 - 540 - 36579 - 6 _ 11. URL:
http://dx.doi.org/10.1007/3-540-36579-6{_}11.

Object Management Group (2011). Business Process Model and Notation. URL: http:
//www.omg.org/spec/BPMN/2.0/PDF.

Oman, Paul and Jack Hagemeister (1992). “Metrics for Assessing a Software System’s
Maintainability”. In: Proceedings Conference on Software Maintenance 1992. IEEE
Comput. Soc. Press, 337–44. ISBN: 0-8186-2980-0. DOI:
10 . 1109 / ICSM . 1992 . 242525. URL: http :

//ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=242525.
Oracle (2015a). About the Java Technology. URL: http://docs.oracle.com/javase/
tutorial/getStarted/intro/definition.html (visited on 02/10/2016).

– (2015b). “Multiple Inheritance of State, Implementation, and Type”. In: URL:
https : / / docs . oracle . com / javase / tutorial / java / IandI /

multipleinheritance.html.
– (2016). The Java Virtual Machine Instruction Set. URL: https://docs.oracle.com/
javase/specs/jvms/se7/html/jvms-6.html (visited on 02/22/2016).

Plösch, R., S. Schürz, and C. Körner (2015). “On the Validity of the IT-CISQ Quality
Model for Automatic Measurement of Maintainability”. In: Computer Software and
Applications Conference (COMPSAC), 2015 IEEE 39th Annual. IEEE Computer Society,

http://www.ibm.com/developerworks/library/ar-archdoc3/
https://msdn.microsoft.com/en-us/library/ee658109.aspx
http://dx.doi.org/10.1109/WCRE.2000.891476
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=891476
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=891476
http://sunset.usc.edu/TECHRPTS/2007/usc-csse-2007-737/usc-csse-2007-737.pdf
http://sunset.usc.edu/TECHRPTS/2007/usc-csse-2007-737/usc-csse-2007-737.pdf
https://www.nngroup.com/articles/response-times-3-important-limits/
https://www.nngroup.com/articles/response-times-3-important-limits/
http://dx.doi.org/10.1007/3-540-36579-6_11
http://dx.doi.org/10.1007/3-540-36579-6{_}11
http://www.omg.org/spec/BPMN/2.0/PDF
http://www.omg.org/spec/BPMN/2.0/PDF
http://dx.doi.org/10.1109/ICSM.1992.242525
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=242525
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=242525
http://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html
http://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html
https://docs.oracle.com/javase/tutorial/java/IandI/multipleinheritance.html
https://docs.oracle.com/javase/tutorial/java/IandI/multipleinheritance.html
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-6.html
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-6.html

BIBLIOGRAPHY 103

326 –334. URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?
arnumber=7273636http://ieeexplore.ieee.org/stamp/stamp.jsp?

tp={\&}arnumber=7273636.
Pressman, Roger S. (2010). Software Engineering: A Practitioner’s Approach. 7th ed.

McGraw-Hill Higher Education, 895. ISBN: 978–0–07–337597–7. URL:
http://nlp.chonbuk.ac.kr/SE/pressman07book.pdf.

Rashid, Muhammad and Bernard Pottier (2012). “Visitor-based application analysis
methodology for early design space exploration”. In: Design Automation for
Embedded Systems 16.4, 319–38. ISSN: 1572-8080. DOI:
10 . 1007 / s10617 - 013 - 9111 - 8. URL:
http://dx.doi.org/10.1007/s10617-013-9111-8.

Rojas, José Miguel et al. (2015). “Search-Based Software Engineering: 7th International
Symposium, SSBSE 2015, Bergamo, Italy, September 5-7, 2015, Proceedings”. In:
ed. by Márcio Barros and Yvan Labiche. Cham: Springer International Publishing.
Chap. Combining, 93–108. ISBN: 978-3-319-22183-0. DOI:
10 . 1007 / 978 - 3 - 319 - 22183 - 0 _ 7. URL:
http://dx.doi.org/10.1007/978-3-319-22183-0{_}7.

Saraiva, Juliana, Sérgio Soares, and Fernando Castor (2013). “Towards a Catalog of
Object-Oriented Software Maintainability Metrics”. In: International Workshop on
Emerging Trends in Software Metrics, WETSoM, 84–87. ISBN: 9781467363310. DOI:
10 . 1109 / WETSoM . 2013 . 6619342. URL: http :

//ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6619342.
Satrijandi, Nugroho and Yani Widyani (2015). Efficiency Measurement of Java Android

Code. DOI: 10 . 1109 / ICODSE . 2014 . 7062696. URL: http :

//ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=7062696

(visited on 03/03/2016).
Schürz, Severin (2016). Comparing results with On the Validity of the IT-CISQ Quality

Model for Automatic Measurement of Maintainability. Email correspondence.
Sen, Koushik, Darko Marinov, and Gul Agha (2005). “Cute”. In: ACM SIGSOFT

Software Engineering Notes 30.5, 263. ISSN: 01635948. DOI:
10 . 1145 / 1095430 . 1081750. URL:
http://portal.acm.org/citation.cfm?doid=1095430.1081750.

Shen, Haihao, Sai Zhang, and Jianjun Zhao (2008). “An Empirical Study of
Maintainability in Aspect-Oriented System Evolution Using Coupling Metrics”. In:
2008 2nd IFIP/IEEE International Symposium on Theoretical Aspects of Software
Engineering, 233–36. DOI: 10.1109/TASE.2008.17. URL: http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4549910.

Sjøberg, Dag I K, Bente Anda, and Audris Mockus (2012). “Questioning Software
Maintenance Metrics: A Comparative Case Study”. In: Proceedings of the ACM-IEEE
International Symposium on Empirical Software Engineering and Measurement. ESEM
’12. New York, NY, USA: ACM, 107–10. ISBN: 978-1-4503-1056-7. DOI:

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7273636 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp={\&}arnumber=7273636
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7273636 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp={\&}arnumber=7273636
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7273636 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp={\&}arnumber=7273636
http://nlp.chonbuk.ac.kr/SE/pressman07book.pdf
http://dx.doi.org/10.1007/s10617-013-9111-8
http://dx.doi.org/10.1007/s10617-013-9111-8
http://dx.doi.org/10.1007/978-3-319-22183-0_7
http://dx.doi.org/10.1007/978-3-319-22183-0{_}7
http://dx.doi.org/10.1109/WETSoM.2013.6619342
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6619342
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6619342
http://dx.doi.org/10.1109/ICODSE.2014.7062696
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=7062696
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=7062696
http://dx.doi.org/10.1145/1095430.1081750
http://portal.acm.org/citation.cfm?doid=1095430.1081750
http://dx.doi.org/10.1109/TASE.2008.17
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4549910
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4549910

104 BIBLIOGRAPHY

10 . 1145 / 2372251 . 2372269. URL:
http://doi.acm.org/10.1145/2372251.2372269.

Software Engineering Institute (2009). Carnegie Mellon SEI and OMG Announce the
Launch of CISQ—The Consortium for IT Software Quality (www.it-cisq.org). URL:
http://www.sei.cmu.edu/newsitems/cisq.cfm (visited on 01/14/2016).

Sommerville, Ian (2011). Software Engineering. URL:
https://acadndtechy.files.wordpress.com/2015/01/software{_

}engineering{_}9th{_}edition{_}.pdf (visited on 02/15/2016).
The Eclipse Foundation (2016). Eclipse desktop & web IDE. URL:
http://www.eclipse.org/ide/ (visited on 02/12/2016).

Vliet, Hans van (2007). Software Engineering: Principles and Practice. 3rd ed. Wiley, 560.
URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
128.2614{\&}rep=rep1{\&}type=pdf.

Wells, Don (1999a). Iteration Planning. URL: http://www.extremeprogramming.
org/rules/iterationplanning.html (visited on 02/27/2016).

– (1999b). Project Velocity. URL: http://www.extremeprogramming.org/rules/
velocity.html (visited on 02/28/2016).

– (1999c). User Stories. URL: http://www.extremeprogramming.org/rules/
userstories.html (visited on 02/12/2016).

– (2000). Test First. URL:
http://www.extremeprogramming.org/rules/testfirst.html (visited
on 05/21/2016).

– (2009). XP Values. URL: http://www.extremeprogramming.org/values.html
(visited on 05/23/2016).

Wikimedia Commons (2001). XP-feedback. URL: https://en.wikipedia.org/
wiki/File:XP-feedback.gif (visited on 03/24/2016).

Xu, Baolin and Shiming Wan (2015). The Design Strategy of Component Method in
Three-Tier Architecture. DOI: 10 . 1109 / ICISCE . 2015 . 116. URL: http :

//ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7120656

(visited on 01/01/2016).

http://dx.doi.org/10.1145/2372251.2372269
http://doi.acm.org/10.1145/2372251.2372269
http://www.sei.cmu.edu/newsitems/cisq.cfm
https://acadndtechy.files.wordpress.com/2015/01/software{_}engineering{_}9th{_}edition{_}.pdf
https://acadndtechy.files.wordpress.com/2015/01/software{_}engineering{_}9th{_}edition{_}.pdf
http://www.eclipse.org/ide/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.128.2614{\&}rep=rep1{\&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.128.2614{\&}rep=rep1{\&}type=pdf
http://www.extremeprogramming.org/rules/iterationplanning.html
http://www.extremeprogramming.org/rules/iterationplanning.html
http://www.extremeprogramming.org/rules/velocity.html
http://www.extremeprogramming.org/rules/velocity.html
http://www.extremeprogramming.org/rules/userstories.html
http://www.extremeprogramming.org/rules/userstories.html
http://www.extremeprogramming.org/rules/testfirst.html
http://www.extremeprogramming.org/values.html
https://en.wikipedia.org/wiki/File:XP-feedback.gif
https://en.wikipedia.org/wiki/File:XP-feedback.gif
http://dx.doi.org/10.1109/ICISCE.2015.116
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7120656
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7120656

Appendix A

User Stories

All user stories, except stories 1-3 and 7, are direct adaptations from the CISQ
Maintainability Measures.

1. As a developer I want to be notified about empty catch-blocks so that I can
improve exception handling

2. As a developer or future collaborator, I want the library to provide for AST
analysis so that a measure can handle complex queries and improve speed and
maintainability

3. As a developer or future collaborator I want the IssueFinder class and the
Measure subclasses to be independent of the Eclipse framework, so that I may
use it for other purposes

4. As a developer I want to be notified about layer-skipping calls so that I can
improve code architecture

5. As a developer I want to be notified about too many horizontal layers so that I
can improve code architecture

6. As a developer I want to be notified about functions that span layers so that I can
improve code architecture

7. As a developer or future collaborator I want to be able to change, disable and
add measures so that I can look for just certain issues or configure the software
for other models

8. As a developer I want to be notified about files > 1000 LOC

9. As a developer I want to be notified about functions passing ≥ 7 parameters

105

106 Appendix A. User Stories

10. As a developer I want to be notified about variables declared public, so that I can
improve data access encapsulation

11. As a developer I want to be notified about functions that have a fan-out ≥ 10, so
that I can reduce coupling between modules

12. As a developer I want to be notified about methods that are directly using fields
from other classes so that I can improve data access encapsulation

13. As a developer I want to be notified about functions with > 2% commented out
instructions so that I can reduce coupling between modules

14. As a developer I want to be notified about GO TOs, CONTINUE, and BREAK
outside the switch

15. As a developer I want to be notified about hard coded literals except (-1, 0, 1, 2 or
literals initializing static or constant variables)

16. As a developer I want to be notified about classes with ≥ 10 children

17. As a developer I want to be notified about files that contain 100+ consecutive
duplicate tokens

18. As a developer I want to be notified about methods with ≥ 7 data or file
operations

19. As a developer I want to be notified about functions with cyclomatic complexity
≥a language specific threshold (table to be inserted)

20. As a developer I want to be notified about unreachable functions

21. As a developer I want to be notified about classes with inheritance levels ≥ 7

22. As a developer I want measures to not discriminate between the terms method
and function

23. As a developer I want to be notified about objects with coupling > 7

24. As a developer I want to be notified about cyclic calls between packages

25. As a developer I want to be notified about instances of indexes modified within
its loop

26. As a developer I want to change settings and inputs via a GUI

Appendix A. User Stories 107

27. As a developer I want a report of the total counts of rule violations per project

28. As a developer I want a percentage-done indicator of the analysis, so that if it
indicates a long time, I may perform other tasks in the meantime

Appendix B

CISQ Measure Implementation
Differences

M04 - It seems there are differences in definitions of tokens

M05 - SQUIDS does not detect method- and constructor-calls correctly: does not
detect classes of objects produced by method-calls

M06 - While SQUIDS considers scope of inheritance as local, it seems MUSE follows
the trail through imported libraries as well

M07 - TVBrowser the only anomaly. Different versions of TVBrowser analyzed

M09 - SQUIDS does not detect classes of objects produced by method-calls, and does
not consider direct access from anonymous classes as a violation

M10 - TVBrowser the only anomaly. Different versions of TVBrowser analyzed

M11 - SQUIDS counts throwing of exceptions as well as method calls, object creations
(new Object(...);) and explicit constructor invocations (this() / super())

M12 - SQUIDS does not detect method- and constructor-calls correctly: does not
detect classes of objects produced by method-calls

M13 - Cyclic calls between packages are reported differently

M14 - Commented out instructions analyzed differently

M15 - LOC calculated differently

M16 - MUSE does not consider modification of variables unless it is directly modifying

109

110 Appendix B. CISQ Measure Implementation Differences

the value as it accesses the array, e.g. finds array[i + 1];, but does not find i

+= 1; array[i];

M17 - Jump statements may be defined differently are reported per jump statement in
SQUIDS, and per control-flow block (if, for, while, etc.) in MUSE

M18 - SQUIDS and MUSE consider control flow statements differently

M20 - TVBrowser the only anomaly. Different versions of TVBrowser analyzed

M21 - MUSE does not consider empty strings as hard coded literals

Appendix C

Measure Class Diagram

111

112 Appendix C. Measure Class Diagram

F
IG

U
R

E
C

.1:H
ierarchy

ofthe
M
e
a
s
u
r
e

classes

Appendix D

Performance Test Result Tables

113

114 Appendix D. Performance Test Result Tables

TABLE D.1: SQUIDS performance analyzing Checkstyle 4.4.

Measure Time used (s) Time used per 10 files (s)
M04 3.771 0.139
M05 0.201 0.007
M06 0.003 0.000
M07 1.005 0.037
M09 0.063 0.002
M10 0.004 0.000
M11 0.126 0.005
M12 0.449 0.017
M13 0.033 0.001
M14 0.067 0.002
M15 0.102 0.004
M16 0.280 0.010
M17 0.045 0.002
M18 0.133 0.005
M20 0.013 0.000
M21 0.503 0.018
Analysis time (measures
total)

6.798 0.250

Parsing time 0.321 0.012
Marking time 2.843 0.105
Other operations 1.146 0.042
Total time 11.108 0.408

Appendix D. Performance Test Result Tables 115

TABLE D.2: SQUIDS performance analyzing JabRef 2.3.1.

Measure Time used (s) Time used per 10 files (s)
M04 12.875 0.306
M05 0.598 0.014
M06 0.034 0.001
M07 6.720 0.160
M09 0.564 0.013
M10 0.202 0.005
M11 1.082 0.026
M12 17.245 0.410
M13 0.450 0.011
M14 0.510 0.012
M15 0.358 0.009
M16 0.884 0.021
M17 0.193 0.005
M18 4.247 0.101
M20 0.017 0.000
M21 13.496 0.321
Analysis time (measures
total)

59.475 1.413

Parsing time 0.637 0.015
Marking time 23.007 0.546
Other operations 0.970 0.023
Total time 84.089 1.997

116 Appendix D. Performance Test Result Tables

TABLE D.3: SQUIDS performance analyzing Log4j 1.2.15.

Measure Time used (s) Time used per 10 files (s)
M04 2.463 0.147
M05 0.137 0.008
M06 0.002 0.000
M07 0.430 0.026
M09 0.037 0.002
M10 0.002 0.000
M11 0.178 0.011
M12 0.047 0.003
M13 0.095 0.006
M14 0.070 0.004
M15 0.079 0.005
M16 0.190 0.011
M17 0.014 0.001
M18 0.083 0.005
M20 0.003 0.000
M21 1.199 0.071
Analysis time (measures
total)

5.029 0.299

Parsing time 0.213 0.013
Marking time 3.578 0.213
Other operations 0.189 0.011
Total time 9.009 0.536

Appendix D. Performance Test Result Tables 117

TABLE D.4: SQUIDS performance analyzing RSSOwl 1.2.4.

Measure Time used (s) Time used per 10 files (s)
M04 20.800 1.035
M05 0.445 0.022
M06 0.019 0.001
M07 1.733 0.086
M09 2.271 0.113
M10 0.142 0.007
M11 2.227 0.111
M12 0.278 0.014
M13 1.360 0.068
M14 0.172 0.009
M15 0.241 0.012
M16 0.898 0.045
M17 0.069 0.003
M18 1.668 0.083
M20 0.026 0.001
M21 59.755 2.973
Analysis time (measures
total)

92.104 4.582

Parsing time 0.532 0.026
Marking time 95.195 4.736
Other operations 1.008 0.050
Total time 188.839 9.395

118 Appendix D. Performance Test Result Tables

TABLE D.5: SQUIDS performance analyzing TV-Browser 2.2.6.

Measure Time used (s) Time used per 10 files (s)
M04 13.466 0.206
M05 0.946 0.014
M06 0.073 0.001
M07 9.095 0.139
M09 0.375 0.006
M10 0.045 0.001
M11 1.133 0.017
M12 1.123 0.017
M13 1.823 0.028
M14 0.267 0.004
M15 0.357 0.005
M16 1.328 0.020
M17 0.110 0.002
M18 3.981 0.061
M20 0.056 0.001
M21 8.791 0.135
Analysis time (measures
total)

42.969 0.658

Parsing time 2.071 0.032
Marking time 53.890 0.825
Other operations 4.251 0.065
Total time 103.181 1.580

Appendix E

Comparisons of Problem Counts

119

120 Appendix E. Comparisons of Problem Counts

TABLE E.1: Comparison of problem counts in Checkstyle 4.4.

CISQ Measure SQUIDS count MUSE count Difference
M04 3 0 3
M05 113 8 105
M06 0 0 0
M07 3 3 0
M09 0 5 5
M10 0 0 0
M11 148 107 41
M12 110 90 20
M13 0 0 0
M14 5 18 13
M15 0 1 1
M16 46 6 40
M17 56 47 9
M18 59 20 39
M20 3 3 0
M21 1,018 1,029 11
Total 1,564 1,337 227

TABLE E.2: Comparison of problem counts in JabRef 2.3.1.

CISQ Measure SQUIDS count MUSE count Difference
M04 10 0 10
M05 134 8 126
M06 0 12 12
M07 7 7 0
M09 336 708 372
M10 192 192 0
M11 808 594 214
M12 204 407 203
M13 767 70 697
M14 274 525 251
M15 10 14 4
M16 75 7 68
M17 188 123 65
M18 215 133 82
M20 11 11 0
M21 12,046 12,410 364
Total 15,277 15,221 56

Appendix E. Comparisons of Problem Counts 121

TABLE E.3: Comparison of problem counts in Log4j 1.2.15.

CISQ Measure SQUIDS count MUSE count Difference
M04 2 0 2
M05 68 8 60
M06 0 4 4
M07 1 1 0
M09 17 53 36
M10 4 4 0
M11 162 101 61
M12 24 83 59
M13 104 16 88
M14 29 48 19
M15 1 3 2
M16 7 2 5
M17 21 21 0
M18 23 13 10
M20 4 4 0
M21 1,578 1,587 9
Total 2,045 1,948 97

TABLE E.4: Comparison of problem counts in RSSOwl 1.2.4.

CISQ Measure SQUIDS count MUSE count Difference
M04 4 0 4
M05 82 23 59
M06 0 1 1
M07 3 3 0
M09 540 946 406
M10 175 175 0
M11 524 348 176
M12 53 186 133
M13 1,329 97 1,232
M14 5 9 4
M15 3 13 10
M16 3 1 2
M17 53 50 3
M18 114 71 43
M20 4 4 0
M21 34,432 34,536 104
Total 37,324 36,463 861

122 Appendix E. Comparisons of Problem Counts

TABLE E.5: Comparison of problem counts in TV-Browser 2.2.6.

CISQ Measure SQUIDS count MUSE count Difference
M04 13 0 13
M05 251 12 239
M06 1 2 1
M07 3 2 1
M09 45 65 20
M10 38 35 3
M11 1,065 702 363
M12 77 438 361
M13 805 364 441
M14 56 59 3
M15 2 4 2
M16 94 3 91
M17 110 89 21
M18 178 91 87
M20 28 29 1
M21 11,422 12,957 1,535
Total 14,188 14,852 664

TABLE E.6: Comparison of total numbers of problems found per CISQ measure between
SQUIDS and MUSE (Schürz, 2016), with the TV-Browser project.

CISQ Measure SQUIDS count MUSE count Difference
M04 32 0 32
M05 648 59 589
M06 1 19 18
M07 17 16 1
M09 938 1,777 839
M10 409 406 3
M11 2,707 1,852 855
M12 468 1,204 736
M13 3,005 547 2,458
M14 369 659 290
M15 16 35 19
M16 225 19 206
M17 428 330 98
M18 589 328 261
M20 50 51 1
M21 60,496 62,519 2,023
Total 70,398 69,821 577

Appendix F

Manual Inspection of Results from
MUSE and SQUIDS

F.1 M06

TABLE F.1: Notes from manual inspection of M06 findings. All problems were reported by
MUSE.

File path Notes
JABREF_ROOT/src/java/net/sf/

jabref/FileHistory.java:9

extends Java Swing class JMenu.
w/Object: 7, w.o/Object: 6

JABREF_ROOT/src/java/net/sf/

jabref/HelpContent.java:53

extends Java Swing class JTextPane.
w/Object: 7, w.o/Object: 6

JABREF_ROOT/src/java/net/sf/

jabref/SearchManager2.java:44

extends SidePaneComponent which
extends JGoodies class
SimpleInternalFrame. w/Object: 7,
w.o/Object: 6

JABREF_ROOT/src/java/net/sf/

jabref/collab/FileUpdatePanel.

java:11

extends SidePaneComponent which
extends JGoodies class
SimpleInternalFrame. w/Object: 7,
w.o/Object: 6

JABREF_ROOT/src/java/net/sf/

jabref/groups/GroupSelector.java

:43

extends SidePaneComponent which
extends JGoodies class
SimpleInternalFrame. w/Object: 7,
w.o/Object: 6

JABREF_ROOT/src/java/net/sf/

jabref/gui/MainTable.java:479

extends GeneralRenderer which extends
Java Swing class
DefautTableCellRenderer. w/Object:
7, w.o/Object: 6

Continued on next page

123

124 Appendix F. Manual Inspection of Results from MUSE and SQUIDS

Table F.1 – continued from previous page
File path Notes

JABREF_ROOT/src/java/net/sf/

jabref/gui/MainTable.java:494

extends GeneralRenderer which extends
Java Swing class
DefautTableCellRenderer. w/Object:
7, w.o/Object: 6

JABREF_ROOT/src/java/net/sf/

jabref/imports/CiteSeerFetcher.

java:46

extends SidePaneComponent which
extends JGoodies class
SimpleInternalFrame. w/Object: 7,
w.o/Object: 6

JABREF_ROOT/src/java/net/sf/

jabref/imports/

CiteSeerFetcherPanel.java:38

extends SidePaneComponent which
extends JGoodies class
SimpleInternalFrame. w/Object: 7,
w.o/Object: 6

JABREF_ROOT/src/java/net/sf/

jabref/imports/GeneralFetcher.

java:24

extends SidePaneComponent which
extends JGoodies class
SimpleInternalFrame. w/Object: 7,
w.o/Object: 6

JABREF_ROOT/src/java/net/sf/

jabref/imports/MedlineFetcher.

java:32

extends SidePaneComponent which
extends JGoodies class
SimpleInternalFrame. w/Object: 7,
w.o/Object: 6

JABREF_ROOT/src/java/net/sf/

jabref/util/CaseChangeMenu.java

:31

extends Java Swing class JMenu.
w/Object: 7, w.o/Object: 6

RSSOWL_ROOT/src/java/net/

sourceforge/rssowl/controller/

forms/Hyperlink.java:51

extends AbstractHyperlink which
extends Eclipse SWT class Canvas.
w/Object: 7, w.o/Object: 6

LOG4J_ROOT/src/main/java/org/

apache/log4j/lf5/viewer/

LogFactor5ErrorDialog.java:33

extends LogFactor5Dialog which
extends Java Swing class JDialog.
w/Object: 7, w.o/Object: 6

LOG4J_ROOT/src/main/java/org/

apache/log4j/lf5/viewer/

LogFactor5InputDialog.java:38

extends LogFactor5Dialog which
extends Java Swing class JDialog.
w/Object: 7, w.o/Object: 6

LOG4J_ROOT/src/main/java/org/

apache/log4j/lf5/viewer/

LogFactor5LoadingDialog.java:31

extends LogFactor5Dialog which
extends Java Swing class JDialog.
w/Object: 7, w.o/Object: 6

Continued on next page

Appendix F. Manual Inspection of Results from MUSE and SQUIDS 125

Table F.1 – continued from previous page
File path Notes

LOG4J_ROOT/src/main/java/org/

apache/log4j/lf5/viewer/

categoryexplorer/

CategoryNodeEditorRenderer.java

:31

extends CategoryNodeRenderer which
extends Java Swing class
DefaultTreeCellRenderer. w/Object:
7, w.o/Object: 6

F.2 M17

TABLE F.2: Notes from manual inspection of M17 findings. All problems were reported by
SQUIDS.

File path Notes
CHECKSTYLE_ROOT/src/checkstyle/

com/puppycrawl/tools/checkstyle/

api/ScopeUtils.java:125

break inside else if inside for

CHECKSTYLE_ROOT/src/checkstyle/

com/puppycrawl/tools/checkstyle/

api/ScopeUtils.java:129

break inside else if inside for

CHECKSTYLE_ROOT/src/checkstyle/

com/puppycrawl/tools/checkstyle/

api/ScopeUtils.java:160

break inside else if inside for

CHECKSTYLE_ROOT/src/checkstyle/

com/puppycrawl/tools/checkstyle/

api/ScopeUtils.java:164

break inside else if inside for

CHECKSTYLE_ROOT/src/checkstyle/

com/puppycrawl/tools/checkstyle/

api/ScopeUtils.java:208

break inside else if inside for

CHECKSTYLE_ROOT/src/checkstyle/

com/puppycrawl/tools/checkstyle/

api/ScopeUtils.java:212

break inside else if inside for

CHECKSTYLE_ROOT/src/checkstyle/

com/puppycrawl/tools/checkstyle/

api/TokenTypes.java:3354

continue inside if inside for inside
static block

CHECKSTYLE_ROOT/src/checkstyle/

com/puppycrawl/tools/checkstyle/

checks/coding/

FinalLocalVariableCheck.java:112

break inside if inside switch

Continued on next page

126 Appendix F. Manual Inspection of Results from MUSE and SQUIDS

Table F.2 – continued from previous page
File path Notes

CHECKSTYLE_ROOT/src/checkstyle/

com/puppycrawl/tools/checkstyle/

checks/duplicates/

StrictDuplicateCodeCheck.java

:422

continue inside if inside for (final
class)

CHECKSTYLE_ROOT/src/checkstyle/

com/puppycrawl/tools/checkstyle/

checks/duplicates/

StrictDuplicateCodeCheck.java

:429

continue inside if inside if inside for
(final class)

JABREF_ROOT/src/java/net/sf/ext/

BrowserLauncher.java:423

continue inside if inside try inside for
inside switch

JABREF_ROOT/src/java/net/sf/

jabref/AuthorList.java:361

break with label inside if inside
switch with same label

JABREF_ROOT/src/java/net/sf/

jabref/AuthorList.java:363

break with label inside if inside
switch with same label

JABREF_ROOT/src/java/net/sf/

jabref/AuthorList.java:367

break with label inside if inside if
inside switch with same label

JABREF_ROOT/src/java/net/sf/

jabref/AuthorList.java:371

break with label inside if inside
switch with same label

JABREF_ROOT/src/java/net/sf/

jabref/BasePanel.java:745

break with label inside if inside for
with same label (anonymous inner class)

JABREF_ROOT/src/java/net/sf/

jabref/BasePanel.java:932

break inside if inside for (anonymous
inner class)

JABREF_ROOT/src/java/net/sf/

jabref/ContentSelectorDialog2.

java:263

continue with label inside if inside
for with same label

JABREF_ROOT/src/java/net/sf/

jabref/GeneralTab.java:165

break with label inside if inside for
with same label

JABREF_ROOT/src/java/net/sf/

jabref/JabRef.java:674

continue with label inside if inside
for inside for with same label

JABREF_ROOT/src/java/net/sf/

jabref/JabRefFrame.java:1993

break with label inside if inside if
inside for with same label

JABREF_ROOT/src/java/net/sf/

jabref/JabRefFrame.java:1995

break with label inside if inside for
with same label

JABREF_ROOT/src/java/net/sf/

jabref/Util.java:1316

continue inside if inside for

Continued on next page

Appendix F. Manual Inspection of Results from MUSE and SQUIDS 127

Table F.2 – continued from previous page
File path Notes

JABREF_ROOT/src/java/net/sf/

jabref/Util.java:911

continue with label inside if inside if
inside if inside for inside for with
same label

JABREF_ROOT/src/java/net/sf/

jabref/Util.java:924

continue with label inside if inside if
inside for inside if inside foreach
with same label

JABREF_ROOT/src/java/net/sf/

jabref/bst/BibtexNameFormatter.

java:100

continue inside if with sibling switch

inside if inside while

JABREF_ROOT/src/java/net/sf/

jabref/bst/BstLexer.java:854

break with label inside if inside
switch inside do while with same
label

JABREF_ROOT/src/java/net/sf/

jabref/bst/BstLexer.java:944

break with label inside if inside
switch inside do while with same
label

JABREF_ROOT/src/java/net/sf/

jabref/bst/BstParser.java:103

break with label inside if inside
switch inside do while with same
label

JABREF_ROOT/src/java/net/sf/

jabref/bst/BstParser.java:1079

break with label inside if inside
switch inside do while with same
label

JABREF_ROOT/src/java/net/sf/

jabref/bst/BstParser.java:660

break with label inside if inside
switch inside do while with same
label

JABREF_ROOT/src/java/net/sf/

jabref/bst/VM.java:838

break inside if inside do while

JABREF_ROOT/src/java/net/sf/

jabref/collab/ChangeScanner.java

:139

continue with label inside if inside
for with same label

JABREF_ROOT/src/java/net/sf/

jabref/collab/ChangeScanner.java

:152

continue with label inside if inside if
inside for with same label

JABREF_ROOT/src/java/net/sf/

jabref/collab/ChangeScanner.java

:275

break with label inside if inside for
with same label

JABREF_ROOT/src/java/net/sf/

jabref/collab/ChangeScanner.java

:329

continue with label inside if inside if
inside for inside for with same label

Continued on next page

128 Appendix F. Manual Inspection of Results from MUSE and SQUIDS

Table F.2 – continued from previous page
File path Notes

JABREF_ROOT/src/java/net/sf/

jabref/collab/ChangeScanner.java

:368

break with label inside if inside for
with same label

JABREF_ROOT/src/java/net/sf/

jabref/export/layout/

LayoutHelper.java:524

break inside while

JABREF_ROOT/src/java/net/sf/

jabref/export/layout/format/

HTMLChars.java:58

break with label inside if inside if
with same label

JABREF_ROOT/src/java/net/sf/

jabref/export/layout/format/

RTFChars.java:57

break with label inside if inside if
with same label

JABREF_ROOT/src/java/net/sf/

jabref/export/layout/format/

RTFChars.java:89

break with label inside if inside if
with same label

JABREF_ROOT/src/java/net/sf/

jabref/export/layout/format/

WrapFileLinks.java:118

break inside if inside switch inside
foreach

JABREF_ROOT/src/java/net/sf/

jabref/export/layout/format/

WrapFileLinks.java:151

break inside if inside switch inside
foreach

JABREF_ROOT/src/java/net/sf/

jabref/external/

FileLinksUpgradeWarning.java:198

break with label inside if inside for
inside for with same label

JABREF_ROOT/src/java/net/sf/

jabref/groups/GroupSelector.java

:1289

break inside for

JABREF_ROOT/src/java/net/sf/

jabref/gui/

EntryCustomizationDialog2.java

:201

continue inside if inside for

JABREF_ROOT/src/java/net/sf/

jabref/gui/

ImportInspectionDialog.java:538

break inside if inside for

JABREF_ROOT/src/java/net/sf/

jabref/imports/

BiblioscapeImporter.java:256

continue inside if inside if inside
while

Continued on next page

Appendix F. Manual Inspection of Results from MUSE and SQUIDS 129

Table F.2 – continued from previous page
File path Notes

JABREF_ROOT/src/java/net/sf/

jabref/imports/BibtexParser.java

:190

break inside while

JABREF_ROOT/src/java/net/sf/

jabref/imports/BibtexParser.java

:496

break inside if inside while

JABREF_ROOT/src/java/net/sf/

jabref/imports/CopacImporter.

java:118

continue inside if inside for

JABREF_ROOT/src/java/net/sf/

jabref/imports/CsaImporter.java

:244

continue inside if inside while

JABREF_ROOT/src/java/net/sf/

jabref/imports/IsiImporter.java

:273

continue with label inside if inside if
inside for with same label

JABREF_ROOT/src/java/net/sf/

jabref/imports/IsiImporter.java

:283

continue inside if inside if inside for
with a label

JABREF_ROOT/src/java/net/sf/

jabref/imports/IsiImporter.java

:293

continue with label inside if inside if
inside for with same label

JABREF_ROOT/src/java/net/sf/

jabref/imports/JstorImporter.

java:56

break with label inside if inside while
with same label

JABREF_ROOT/src/java/net/sf/

jabref/imports/MedlineFetcher.

java:312

break inside if inside for

JABREF_ROOT/src/java/net/sf/

jabref/imports/MedlineFetcher.

java:323

break inside if inside for

JABREF_ROOT/src/java/net/sf/

jabref/imports/

OpenDatabaseAction.java:304

break with label inside if inside if
with same label

JABREF_ROOT/src/java/net/sf/

jabref/imports/

OpenDatabaseAction.java:308

break with label inside if inside for
inside if with same label

Continued on next page

130 Appendix F. Manual Inspection of Results from MUSE and SQUIDS

Table F.2 – continued from previous page
File path Notes

JABREF_ROOT/src/java/net/sf/

jabref/imports/

SilverPlatterImporter.java:80

continue with label inside if inside
for with same label

JABREF_ROOT/src/java/net/sf/

jabref/imports/

SilverPlatterImporter.java:85

continue with label inside if inside
for with same label

JABREF_ROOT/src/java/net/sf/

jabref/imports/SixpackImporter.

java:96

continue with label inside if inside
while with same label

JABREF_ROOT/src/java/net/sf/

jabref/imports/TextAnalyzer.java

:45

continue with label inside if inside
for with same label

JABREF_ROOT/src/java/net/sf/

jabref/imports/TextAnalyzer.java

:54

break with label inside if inside if
inside if inside for with same label

JABREF_ROOT/src/java/net/sf/

jabref/imports/TextAnalyzer.java

:89

break with label inside if inside for
with same label

JABREF_ROOT/src/java/net/sf/

jabref/labelPattern/

LabelPatternUtil.java:476

continue with label inside if inside
inside while with same label

JABREF_ROOT/src/java/net/sf/

jabref/labelPattern/

LabelPatternUtil.java:479

continue with label inside if inside
for inside while with same label

JABREF_ROOT/src/java/net/sf/

jabref/search/

SearchExpressionLexer.java:112

continue with label inside if with
sibling switch inside for with same
label

JABREF_ROOT/src/java/net/sf/

jabref/search/

SearchExpressionLexer.java:256

break with label inside if inside
do while with same label

JABREF_ROOT/src/java/net/sf/

jabref/search/

SearchExpressionLexer.java:300

break with label inside if inside
do while with same label

JABREF_ROOT/src/java/net/sf/

jabref/search/

SearchExpressionTreeParser.java

:189

continue inside if with sibling switch

inside for

Continued on next page

Appendix F. Manual Inspection of Results from MUSE and SQUIDS 131

Table F.2 – continued from previous page
File path Notes

JABREF_ROOT/src/java/net/sf/

jabref/util/XMPUtil.java:1210

break inside if inside switch

JABREF_ROOT/src/java/net/sf/

jabref/util/XMPUtil.java:1228

break inside if inside switch

JABREF_ROOT/src/java/net/sf/

jabref/util/XMPUtil.java:1237

break inside if inside switch

JABREF_ROOT/src/java/net/sf/

jabref/util/XMPUtil.java:696

continue inside if inside for

JABREF_ROOT/src/java/net/sf/

jabref/util/XMPUtil.java:715

continue inside if inside for

JABREF_ROOT/src/java/net/sf/

jabref/util/XMPUtil.java:734

continue inside if inside for

JABREF_ROOT/src/java/net/sf/

jabref/util/XMPUtil.java:762

continue inside if inside for

JABREF_ROOT/src/java/net/sf/

jabref/util/XMPUtil.java:824

continue inside if inside for

RSSOWL_ROOT/src/java/net/

sourceforge/rssowl/controller/

RSSOwlLoader.java:316

break inside if inside for

RSSOWL_ROOT/src/java/net/

sourceforge/rssowl/controller/

dialog/SelectCategoryDialog.java

:522

break inside if inside for

RSSOWL_ROOT/src/java/net/

sourceforge/rssowl/controller/

statusline/StatusLineAnimator.

java:86

break inside if inside while

RSSOWL_ROOT/src/java/net/

sourceforge/rssowl/controller/

thread/FeedDiscoveryManager.java

:281

break with label inside catch inside
while inside while with same label

RSSOWL_ROOT/src/java/net/

sourceforge/rssowl/controller/

thread/FeedQueueLoader.java:116

break with label inside if inside while
with same label

RSSOWL_ROOT/src/java/net/

sourceforge/rssowl/controller/

thread/FeedQueueLoader.java:95

break with label inside if inside while
with same label

Continued on next page

132 Appendix F. Manual Inspection of Results from MUSE and SQUIDS

Table F.2 – continued from previous page
File path Notes

RSSOWL_ROOT/src/java/net/

sourceforge/rssowl/controller/

thread/FeedSearchManager.java

:312

break with label inside catch inside
while inside while with same label

RSSOWL_ROOT/src/java/net/

sourceforge/rssowl/controller/

tray/SystemTrayAlert.java:396

break inside catch inside while

RSSOWL_ROOT/src/java/net/

sourceforge/rssowl/util/shop/

XMLShop.java:451

break inside if inside while

LOG4J_ROOT/src/main/java/org/

apache/log4j/Dispatcher.java:101

break inside catch inside
synchronized(bf) inside while

LOG4J_ROOT/src/main/java/org/

apache/log4j/config/

PropertyGetter.java:71

continue inside if inside for

LOG4J_ROOT/src/main/java/org/

apache/log4j/config/

PropertySetter.java:128

continue inside if inside for

LOG4J_ROOT/src/main/java/org/

apache/log4j/net/SocketAppender.

java:404

break inside synchronized(this) inside
while

	Abstract
	Acknowledgements
	Introduction
	Techniques for Maintainability
	Static Code Analyzers
	Research Questions
	Organization of the Thesis

	Theory
	Software Engineering
	Software Requirements
	Scenarios
	User Stories
	Software Design
	Software Response Time
	Integrated Development Environment
	eXtreme Programming
	Unit Testing
	Software Engineering Summary

	Software Quality
	Models and Quality Characteristics

	Software Maintainability
	Maintainability in Use
	Maintainability Metrics
	Related Research on Maintainability Metrics

	Software Quality Analysis
	Abstract Syntax Tree and Tokens
	Architectural Layers
	Coupling
	Instructions
	Lines of Code
	Cyclomatic Complexity
	CISQ Specifications for Automated Quality Characteristic Measures
	Efficiency Measurement of Java Android Code
	Tools
	On the Validity of the IT-CISQ Quality Model for Automatic Measurement of Maintainability

	Chapter Summary

	Research Method
	Design Science Research
	Guideline 1: Design as an Artifact
	Guideline 2: Problem Relevance
	Guideline 3: Design Evaluation
	Guideline 4: Research Contributions
	Guideline 5: Research Rigor
	Guideline 6: Design as a Search Process
	Guideline 7: Communication of Research

	Research Design
	Using DSR
	Development Method
	Research Evaluation

	Chapter Summary

	Development Process
	User Scenarios
	Scenario 1: Evaluate own software
	Scenario 2: Evaluate external software

	Requirements
	Functional Requirements
	Nonfunctional Requirements
	User Stories

	Design
	Context Diagram
	Class Diagram
	Process Diagram

	Tools
	Programming Language
	JavaParser
	Eclipse PDE
	Other tools

	Technical Challenges
	Ambiguous CISQ Terms
	JavaParser Weaknesses

	Iterations
	Iteration 1
	Iterations 2-11
	Iterations 12-15
	Iteration 16

	Chapter Summary

	Results
	Implementation
	Functionality
	Extensibility
	CISQ Measures implemented
	CISQ Compliance Requirements met

	Analysis Results
	Performance
	Setup Details
	Measures
	Performance Test Results

	Unit Test Coverage
	Chapter Summary

	Discussion
	Discussion of Methods
	Size Measures
	Performance Test Amount
	Performance Test Points
	Unit Test Formality
	Informed Argument

	Discussion of the CISQ Specification
	Ambiguous Terms
	Source Code Size Metrics
	Improving Maintainability

	SQuIDS Implementation
	Ignored Measure
	Not Using the Visitor Pattern

	Comparison of Results with MUSE
	Detailed Comparison

	Answering the Research Questions
	Research Question 1
	Research Question 2
	Research Question 3

	Validity
	Internal Validity
	External Validity

	Chapter Summary

	Conclusions
	Thesis Summary
	Research Contribution
	Further Research and Development
	Further Evaluation
	Further Development of SQuIDS
	Query-Language for ASTs
	Automated Quality Assessment

	Bibliography
	User Stories
	CISQ Measure Implementation Differences
	Measure Class Diagram
	Performance Test Result Tables
	Comparisons of Problem Counts
	Manual Inspection of Results from MUSE and SQuIDS
	M06
	M17

