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The origin and extreme diversification of the animal nervous system is a central

question in biology. While most of the attention has traditionally been paid

to those lineages with highly elaborated nervous systems (e.g. arthropods,

vertebrates, annelids), only the study of the vast animal diversity can deliver

a comprehensive view of the evolutionary history of this organ system.

In this regard, the phylogenetic position and apparently conservative

molecular, morphological and embryological features of priapulid worms

(Priapulida) place this animal lineage as a key to understanding the evolution

of the Ecdysozoa (i.e. arthropods and nematodes). In this study, we character-

ize the nervous system of the hatching larva and first lorica larva of the

priapulid worm Priapulus caudatus by immunolabelling against acetylated

and tyrosinated tubulin, pCaMKII, serotonin and FMRFamide. Our results

show that a circumoral brain and an unpaired ventral nerve with a caudal

ganglion characterize the central nervous system of hatching embryos. After

the first moult, the larva attains some adult features: a neck ganglion, an intro-

vert plexus, and conspicuous secondary longitudinal neurites. Our study

delivers a neuroanatomical framework for future embryological studies in

priapulid worms, and helps illuminate the course of nervous system evolution

in the Ecdysozoa.
1. Introduction
The animal nervous system is the specialized set of cells, tissues and organs

responsible for integrating external and internal stimuli and coordinating ade-

quate responses. During evolutionary time, the nervous system has acquired an

astonishing level of complexity in bilaterally symmetrical animals (Bilateria),

with the appearance of centralized and highly organized neural clusters,

such as brains and nerve cords [1]. The presence of centralized nervous sys-

tems in distantly related bilaterian groups has raised a vivid debate on the

homology (common ancestry) of these structures [2–11], and therefore about

the morphological and functional diversification of the nervous system across

bilaterian lineages. Insects, and to a minor extent other arthropods, have

been key players in almost all these controversies, due to the tripartite organiz-

ation of their brains and the presence of prominent anterior neuropils called

mushroom bodies. These two sophisticated neural features have been homolo-

gized with similar anatomical structures in vertebrates and annelids [2,4–7,12],

and thus used as argument for the presence of circuit ground patterns that

also characterize brains in lineages that have diverged from the last common

bilaterian ancestor. However, a proper understanding of the evolution of

the arthropod nervous system also requires a detailed morphological, embryologi-

cal and molecular investigation of often-neglected related bilaterian lineages, in
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particular those that occupy informative nodes in the phylo-

geny. Such studies will reveal a better understanding of the

evolutionary changes that led to nervous system diversity and

how the nervous system architecture relates to the molecular

and behavioural repertoire.

Arthropods, onychophorans and tardigrades (Panar-

thropoda), together with nematodes and nematomorphs

(Nematoida), are members of the Ecdysozoa [13]. Recently,

molecular phylogenies have placed the priapulid worms

(Priapulida), kinorhynchs and loriciferans in a group called

Scalidophora, as the sister group taxa to the remaining

ecdysozoans (i.e. nematoids and panarthropods) [14–17].

Priapulids, commonly referred to as penis worms, are exclu-

sively marine, mud-dwelling or interstitial animals [18,19].

Despite being among the most abundant fossils in the Early

Cambrian [20–22], Priapulida comprise only 19 known

extant species [18,19,23]. Adults are sausage-shaped, annu-

lated worms with bodies divided into an anterior retracting

introvert with a terminal mouth, and a posterior trunk with

a terminal anus and, in some species, a caudal appendage

[19]. After external fertilization, priapulid eggs undergo

holoblastic radial cleavage, deuterostomic development and

formation of a ventral mouth, which are all inferred ancestral

characters for the Ecdysozoa [24–27]. Embryonic development

results in the formation of a larva, which matures into the adult

worm through successive rounds of moulting [28–31]. Mor-

phological and developmental evidence, together with their

slow rate of molecular evolution [32] and phylogenetic position

support the role of priapulid worms as a key group to under-

standing the earliest steps of ecdysozoan evolution, and thus

deducing ancestral characters to morphologically more diverse

ecdysozoan taxa, such as insects.

Studies on the nervous system of the Priapulida are, how-

ever, scarce, and mostly focused on adult stages or mature

larval stages [30,33–37]. Only recently, immunohistological

techniques have been applied to adult specimens of the meio-

benthic species Tubiluchus troglodytes in order to study the

nervous system [38]. In adults and mature priapulid larvae,

the central nervous system (CNS) is intraepidermal and com-

prises a circumoral brain, an unpaired ventral nerve cord

and two main ganglia, the neck ganglion at the joint between

the introvert and the trunk and the caudal ganglion at the most

posterior region of the body [38,39]. Notably, descriptions of a

putative priapulid from the Mid-Cambrian, Ottoia prolifica [22],

identify a paired reflective strand along the ventral midline

and have been interpreted as a paired ventral cord [40]. Associ-

ated with the CNS, there are nerve plexuses in the pharynx,

body wall and caudal appendage, as well as a stomatogastric

nerve plexus in the digestive tract [33–35,38,41]. Immunodetec-

tion of serotonin and RFamide-like peptides demonstrated the

presence of different neural subpopulations in almost all com-

ponents of the priapulid nervous system [38]. In contrast with

our current knowledge of the more mature stages, virtually

nothing is known about the embryonic development and

early post-embryonic morphology of the nervous system of

priapulid worms, which are ultimately essential to understand-

ing the evolution of the great diversity of nervous systems

observed in other representatives of the Ecdysozoa.

To gain a better knowledge of the early stages of nervous

system formation in priapulid worms, we analysed the

immunostaining domains of five antibodies commonly used

to characterize neural structures in ecdysozoan animals

[2,38,42–51] in hatching larvae and first lorica larvae of the
species Priapulus caudatus Lamarck, 1816. Immunodetection

of acetylated tubulin, tyrosinated tubulin, phosphorylated

calcium/calmodulin-dependent protein kinase II (pCaMKII),

serotonin and FMRF-like peptides (FLPs) demonstrates that

the nervous system of hatching priapulid embryos consists

of a circumoral brain, a main ventral nerve, a caudal ganglion

and several less conspicuous neurite bundles associated with

the buccal scalids, neck and sensory trunk tubuli. The first

moulting event implies a significant maturation of the

nervous system, with a general increase in the number of

neuronal cells and nerve fibres, and the appearance of the

neck ganglion. Our study is an important contribution to

the study of the Priapulida and improves our understanding

of the diversification of the nervous system in the Ecdysozoa,

and thus of the evolution of some of the most elaborated

neural structures found in animals.
2. Material and methods
(a) Animal collection, fertilization and larva fixation
Adult gravid specimens of P. caudatus were collected from

Gullmarsfjorden (Fiskebäckskil, Sweden) during the autumn.

Dissection of the gonads, fertilization of the oocytes and culture

of the embryos were performed as described elsewhere [24].

Embryos hatched 9 days after fertilization, and hatching larvae

moulted to the first lorica larvae approximately two weeks there-

after, without any added food source. Before fixation, larvae

were relaxed in 0.1% tricaine in filtered seawater (FSW) for

30 s, and immediately fixed in 4% paraformaldehyde (PFA) in

FSW for 1 h at room temperature. Fixative was washed out in

phosphate buffered saline (PBS) with 0.1% Tween-20 (PTw)

before storage in 0.1% sodium azide in PTw at 48C.

(b) Immunohistochemistry
Fixed hatching and first lorica larvae were washed three

times for 5 min in PTw to remove sodium azide, and perforated

afterwards with a thin needle to allow antibody penetration

through the larval cuticle. Perforated larvae were transferred

into PBS with 0.5% Triton X-100 (PTx) for permeabilization

for 2 h at room temperature, and subsequently blocked in 1%

bovine serum albumin (BSA) in PTx for 2 h at room tempera-

ture. Before adding the primary antibody, larvae were blocked in

10% normal goat serum (NGS) in PTx twice for half an hour.

The analysed primary antibodies (mouse anti-acetylated tubulin

(Sigma, #T6793), mouse anti-tyrosinated tubulin (Sigma,

#T9028), rabbit anti-pCaMKII (Santa Cruz Biotechnology,

#sc-12886), rabbit anti-serotonin (Sigma, #S5545) and rabbit

anti-FMRFamide (Immunostar, #20091)) were diluted 1 : 100 in

10% NGS in PTx and incubated for approximately 40 h at 48C.

Continuous washes in 1% BSA in PTx for approximately 7 h

to remove the primary antibody were followed by blocking

in 10% NGS in PTx twice for half an hour and incubation in

Alexa-conjugated secondary antibody diluted 1 : 250 in 10% NGS

in PTx for approximately 40 h at 48C. Finally, secondary antibodies

were washed out in PTx, and if needed nuclei were counterstained

with Sytox Green.

(c) Imaging
Stained larvae were cleared in Murray’s reagent and representative

specimens were scanned with a Leica SP5 confocal laser-scanning

microscope. Images were analysed in FIJI and PHOTOSHOP CS6

(Adobe), and figure plates made with ILLUSTRATOR CS6 (Adobe).

Brightness/contrast and colour balance adjustments were always

applied to the whole image, not parts.

http://rstb.royalsocietypublishing.org/
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Figure 1. Localization of acetylated tubulin in P. caudatus larvae. (a – e) Maximal z-projections of confocal stacks of whole mount larvae stained against acetylated
tubulin (AcTub, in grey) and counterstained with the nuclear marker Sytox Green (red, in a and c). (a) The hatching larva of P. caudatus shows a circumoral brain
(yellow arrows) and neural commissures at the neck region (neck ganglion; blue arrowheads). The oral scalids and the posterior sensory trunk tubuli are also
innervated. (b) Detail of the region indicated by a dashed rectangle in (a). Thin neural fibres (white arrowheads) project from the sensory trunk tubuli towards
the introvert. (c) After the first moult, a well-developed ventral nerve cord (green arrowheads) connects the circumoral brain (yellow arrows) with the posterior
region of the trunk. The neck ganglion (blue arrowheads) appears more distinct. (d ) The introvert region of the first lorica larva is rich in neural fibres, with a dense
innervation of the scalids from the brain area (black dashed circle; main ventral nerve indicated by green arrowheads and the neck commissures by blue arrow-
heads). (e) Similar to the anterior scalids, the posterior lorica tubuli are strongly innervated, with thin fibres (white arrowheads) projecting from them longitudinally
towards the anterior region and posteriorly towards the anal opening, where they meet with the ventral nerve (green arrowheads). In all cases, the asterisk indicates
the position of the mouth. (a,b) are lateral views, and (c – e) are ventral views. lt, lorica tubulus; nt, neck tubulus; sc, scalids; tt, trunk tubulus. Scale bars, 25 mm in
(a,b,d,e); 50 mm in (c).
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3. Results
(a) The early larval nervous system of Priapulus

caudatus
The hatching larva of P. caudatus has a functional anterior

introvert with seven primary plus one to three secondary

oral scalids (feeding and predatory teeth), a short neck

region with a pair of tubuli and a posterior trunk with

approximately four trunk tubuli, probably of sensory func-

tion [28]. Internally, the hatching larva possesses a well-

developed muscular and digestive system [26]. Acetylated

tubulin immunoreactivity indicates that the nervous system

of hatching larvae consists of a dense circumoral brain and

a thin main longitudinal ventral nerve, as well as several

less conspicuous nerve fibres (figure 1a,b). Among these

less evident neurite bundles, there are circular nerve fibres

in the neck region and longitudinal neurite bundles that

seem to connect the posterior sensory tubuli of the trunk

with the introvert neural structures (figure 1a,b). The hatching

larva of P. caudatus is non-feeding and moults into the first

lorica larva after approximately two weeks. As the name indi-

cates, this is the first larval stage with a true lorica protecting
the trunk. In the first lorica larva, the number of scalids

increases, the neck tubuli disappear, and four lorica tubuli

are visible in the ventro- and dorso-lateral lorica plates [28].

At this larval stage, the brain and ventral nerve appear

more developed and seem to include a greater number of

nerve fibres (figure 1c,d). The neck commissures are now

packed into a well-formed ganglion, and many secondary

nerve fibres connect this structure with the circumoral brain

(figure 1c,d), defining the introvert nerve plexus. The lorica

tubuli project longitudinal nerve fibres that connect poster-

iorly in the anal region and run anteriorly towards the

main introvert neural structures (figure 1e). Additionally,

transverse commissures appear to connect these secondary

neurite bundles between them and with the main ventral

nerve (figure 1e).

pCaMKII immunoreactivity is restricted to the brain and

the main ventral nerve of both the hatching larva and the

first lorica larva (figure 2a–d). While pCaMKII labelling is

not observed in the neck region in the hatching larva of

P. caudatus (figure 2b), immunoreactivity in the neck ganglion

is evident with the first moult (figure 2d ), together with the

labelling of fine nerve fibres projecting from the anterior

region of the neuropil towards the buccal scalids (figure 2d ).

http://rstb.royalsocietypublishing.org/
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Figure 2. Localization of pCaMKII and tyrosinated tubulin in P. caudatus larvae. (a – f ) Maximal z-projections of confocal stacks of whole mount larvae stained
against pCaMKII (in grey) or tyrosinated tubulin (TyrTub, in grey) and counterstained with the nuclear marker Sytox Green (red, in a, c and e). (a) In the hatching
larva of P. caudatus, antisera against phosphorylated CaMKII localize in the circumoral brain nerves (yellow arrows) and ventral nerve (green arrowheads). (b) The
ventral nerve (green arrowheads) connects to the brain (yellow arrow) anteriorly, folding inside the body as the introvert retracts. (c,d) In the first lorica larva,
immunoreactivity to pCaMKII is stronger in the brain (yellow arrows), the neck ganglion (blue arrowheads), ventral nerve (green arrowheads), and nerve projections
towards the buccal scalids (white arrowheads in d ). (e,f ) Immunoreactivity against TyrTub appears in the first lorica larva, greatly concentrated in the circumoral
brain (yellow arrows), neck ganglion (blue arrowheads), main ventral nerve (green arrowheads) and the innervation of the scalids (white arrowheads in f ). In all
cases, the asterisk indicates the position of the mouth. The staining in the eggshell and the lorica in (a) and (c) is background. All panels are ventral – lateral views.
eg, eggshell; lc, lorica; sc, scalids. Scale bars, 25 mm in all panels.
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Finally, tyrosinated tubulin immunoreactivity was not consist-

ently observed in hatching larvae, and only reliably detected in

the first lorica larvae. At this stage, tyrosinated tubulin anti-

body labelled the brain, neck ganglion and ventral nerve

(figure 2e,f). Altogether, the immunolabelling of acetylated

and tyrosinated tubulin and pCaMKII show that the CNS of

priapulid embryos at hatching is already composed of a circu-

moral brain and a main ventral nerve ending in a caudal

ganglion. Additionally, neurite bundles associated with the

sensory trunk tubuli and scalids make up the peripheral

nervous system (PNS). With the first moulting event, the ner-

vous system experiences a significant increase in complexity,

with a general rise in the number of neurite fibres in both the

CNS and the PNS.
(b) The serotonergic nervous system
Serotonin-positive cells localize to the circumoral brain

and caudal ganglion of the hatching larva of P. caudatus
(figure 3a,b). In the brain, serotonin-positive cells are bipolar,

projecting one axon towards the anterior end of the introvert,

where the scalids are located, and the other axon towards the

neuropil (figure 3b). One single bipolar serotonin-positive cell

is observed in the caudal ganglion, which projects one axon

posteriorly towards the anus and another one anteriorly
towards the brain through the main ventral nerve (figure 3a).

With our data, we cannot discriminate whether the seroto-

nin-positive axon of the ventral neurites extends from the

circumoral brain or from the caudal ganglion. After the first

moult, the number of serotonin-positive cells increases,

although the overall distribution remains (figure 3c). In the

brain region, serotonergic cells innervate the scalids and distri-

bute anteriorly of the neuropil (figure 3d). In the posterior

trunk, the caudal ganglion contains one bipolar serotonin-

positive cell, which projects the posterior axon outside the

main ventral nerve (figure 3e). The serotonergic nervous

system of the first larval stages of P. caudatus is thus restricted

to the main elements of the CNS, in contrast with the situation

observed in adult priapulids, where serotonin-positive cells are

widespread also in the PNS [38].

(c) FMRFamide-like peptides in Priapulus caudatus early
larval stages

The hatching larva of P. caudatus exhibits immunoreactivity to

FLPs in one cell at the posterior region of the trunk (figure 4a),

presumably in one bipolar cell of the caudal ganglion

(figure 4b). Immunoreactivity at the buccal opening is consist-

ent among hatching larvae (figure 4a), but does not seem to be

associated with any particular cells, and thus it might be

http://rstb.royalsocietypublishing.org/
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Figure 3. The larval serotonergic nervous system of P. caudatus. (a – e) Maximal z-projections of confocal stacks of whole mount larvae stained with antisera against
serotonin (a – c, in grey; d and e, in red) or tyrosinated tubulin (TyrTub; d and e, in grey) and counterstained with the nuclear marker Sytox Green (red, in a,c).
(a) The serotonergic nervous system of the hatching larva comprises perikarya around the circumoral brain (yellow arrows), an axonal tract in the ventral nerve
(green arrowheads) and one cell at the caudal ganglion (brown arrowhead). (b) Magnification of the squared region in (a). Serotonergic cells in the brain are bipolar,
with one axon projecting towards the anterior end (white arrowheads) and the other one projecting towards the neuropil (yellow arrows; ventral nerve indicated by
green arrowheads). (c) In the first lorica larva, the number of serotonin-positive cells in the brain increases (yellow arrows), the ventral nerve (green arrowheads) is
more conspicuous and one serotonin-positive cell is still observed in the caudal ganglion (brown arrowhead). (d ) The serotonin-positive cells are located anterior to
the neuropil (yellow arrows, as observed with TyrTub; the blue arrowheads indicate the neck ganglion, and the green arrowheads the ventral nerve), with the
anterior cells projecting one axon towards the scalids (white arrowhead). (e) In the posterior region, the serotonergic cell of the caudal ganglion (brown arrowhead)
projects its posterior axon (white arrowhead) outside the ventral nerve (green arrowheads). In all cases, the asterisk indicates the position of the mouth. All panels
are ventral – lateral views. an, anus; sc, scalids. Scale bars, 25 mm in all panels.
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Figure 4. Localization of FLPs in P. caudatus larvae. (a – f ) Maximal z-projections of confocal stacks of whole mount larvae stained with an anti-FMRFamide
antibody (a – d, in grey; d and e, in red) or against tyrosinated tubulin (TyrTub; e and f, in grey) and counterstained with the nuclear marker Sytox Green
(red, in a, c and d ). (a) In the hatching larva, FLPs are detected in a bipolar cell (white arrowheads in magnification in (b) at the caudal ganglion (brown arrow-
head). (c) After the first moult, FLP immunoreactivity is observed in the neuropil (yellow arrows), caudal ganglion (brown arrowhead) and several cells of the trunk
(white arrowheads). (d ) The epithelial cells lining the lumen of the buccal cavity exhibit immunoreactivity for FLPs (white arrowhead). (e) Magnification of the
squared region in (c). FLP immunoreactivity in the introvert is observed in the brain neuropil (yellow arrows; neck ganglion indicated by blue arrowheads). ( f ) In the
posterior region, FLPs are observed in two cells of the caudal ganglion (brown arroheads) at the end of the main ventral nerve (green arrowheads) and in cells
of the thin neurite bundles departing from the trunk tubuli (white arrowheads). In all cases, the asterisk indicates the position of the mouth. All panels are
ventral – lateral views. lc, lorica; lt, lorica tubulus; sc, scalids. Scale bars, 25 mm in (a,c,e,f ); 10 mm in (b,d).
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Figure 5. The early larval nervous system of P. caudatus. (a,b) Schematic of the nervous system of the hatching larva and first lorica larva of P. caudatus. (a) In the
hatching larva, the CNS (in orange) consists of a circumoral brain, an unpaired ventral nerve and a caudal ganglion (serotonin- and FLP-positive). In the brain, all
serotonin cell bodies localize anterior to the neuropil. From the brain, neurite bundles innervate the scalids. The PNS (in blue) includes neck commissures and nerves
connecting the trunk tubuli with the brain. (b) In the first lorica larva, the nervous system is more mature. The CNS consists of the circumoral brain, the ventral
nerve, and a neck and a caudal ganglion. The brain neuropil is also FLP-positive. The PNS includes secondary nerves innervating the scalids, connecting the brain and
the neck ganglion, and innervating the lorica tubuli (also FLP-positive). The epithelium of the buccal cavity is immunoreactive to FLPs. Drawings are not to scale and
are lateral views, with the anterior to the top and ventral to the left. an, anus; cb, circumoral brain; cg, caudal ganglion; dg, digestive tract; lt, lorica tubule; mo,
mouth; ng, neck ganglion; sc, scalid; tt, trunk tubule; vnc, ventral nerve cord.
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unspecific binding of the antibody. The moulting of the hatch-

ing larva into the first lorica larva significantly affects the

distribution of FLPs in the nervous system. The circumoral

brain of the first lorica larva appears immunoreactive for

FLPs, as well as the caudal ganglion and several isolated cells

along the trunk (figure 4c). In the introvert, the FLP-positive

region localizes to the neuropil, as well as in cells of the inner

epithelium of the buccal cavity (figure 4e). This staining was

present in all analysed larvae, and it seems to affect the luminal

cells (figure 4d). Posteriorly, FLP-positive cells of the trunk

appear associated with the lorica tubuli and the neurite

bundles that depart from them towards the anterior CNS

(figure 4f). Therefore, FLPs appear to localize in both the

CNS and the PNS of the first lorica larvae of P. caudatus.
4. Discussion
(a) The early larval nervous system of Priapulus

caudatus
Studies on the nervous system of priapulid worms are scarce,

and so far exclusively focused on adult stages and larval

forms obtained from direct field sampling which already

have a lorica, and thus correspond to late larval stages [23,30,

33–38,41]. In our study, we analysed the immunoreactivity pat-

terns of five antibodies routinely used in immunohistochemical

neuroanatomy (figures 1–4) to characterize the earliest post-

embryonic stages of nervous system formation in larval forms

obtained by in vitro fertilization. Our results show that the

CNS of the hatching larva consists of a circumoral brain, an
apparently unpaired longitudinal ventral nerve, and a caudal

ganglion (figure 5a). The circumoral brain has a bipartite organ-

ization, with the somata (at least the serotonin-positive cells)

located anteriorly to the neuropil (figure 3b) [52]. This type of

organization seems to be common also in the Eupriapulida

[33,41], but differs from the situation observed in the Tubiluchi-

dae, where the brain includes serotonergic somata located both

anteriorly and posteriorly to the central neuropil [34,35,38]. The

ventral longitudinal nerve is unpaired and leaves the circumoral

brain anteriorly, turning backwards towards the posterior anus

at the anterior most region of the introvert. In the hatching larva,

the main ventral neurite bundle is thin, probably formed by a

very limited number of axonal tracts, and serotonin-positive

(figures 1–3). We did not observe any nuclei associated with

the main ventral longitudinal nerve. At its posterior end, there

is a serotonin- and FLP-positive caudal ganglion. Additionally,

the hatching larva presents thin neck commissures, and periph-

eral innervation of the buccal scalids and of the trunk tubuli

(figures 1, 3 and 5a). The presence of axonal tracts leaving the

trunk tubuli suggests that these structures are sensory organs

of the larva [38], although alternative and/or complementary

roles (e.g. adhesion) have been proposed [53]. Altogether, the

nervous system found in hatching larvae indicates that the

embryos of P. caudatus leave the eggshell with a basic layout

of the adult priapulid nervous system. To date, the only neural

gene expression reported in priapulid embryos is that of ortho-
denticle (otx) [24]. otx is expressed in the ventral ectoderm of

the introvert and in a ring around the introvert–trunk boundary

at the introvertula stage. According to the results shown in this

study, this expression would correspond to the circumoral brain

of the hatching larva, once the introvert has retracted inside the
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trunk during late embryogenesis [26]. Our study thus offers the

neuroanatomical framework for future embryological studies

on the development of the nervous system of P. caudatus.
The first moulting event leads to a significant change in the

complexity of the nervous system of P. caudatus (figure 5b), as

has been also described for other organ systems such as the

digestive tract, the musculature and the external morphology

of the cuticle [26,28]. The CNS, as revealed by the immunoreac-

tivity pattern for pCaMKII and tyrosinated tubulin (figure 2),

includes a well-developed neck ganglion, and thus appears

similar to the organization observed in adult priapulids

[19,33,38,39]. The other components, namely the circumoral

brain, the main ventral nerve and the caudal ganglion, contain

more somata and nerve fibres. Important changes are observed

in the PNS, where many neurite bundles connecting the brain

with the neck ganglion are observed. In addition, the connec-

tion between the lorica tubuli and the CNS increases in

complexity, by including FLP-positive cells along the neural

tracts. Despite this significant change in the organization of

the nervous system of the first lorica larva of P. caudatus, impor-

tant features observed in the nervous system of adult

priapulids are still missing. We did not find any evidence of

serotonin signal around the gut or in the body wall nerve

plexus, as observed for instance in T. troglodytes [38], and the

pharyngeal/introvert plexus is also significantly more simple

than that observed in adult stages [38,54]. The distribution of

the FLPs is also more localized than in adult priapulids [38].

In addition, the adult T. troglodytes has an orthogonal pattern

of neurites [38], which seems to be absent in at least these

early larval stages of P. caudatus. Therefore, the basic anatom-

ical organization of the priapulid nervous system is attained

at the first lorica larva stage, although subsequent rounds of

moulting must relate to the appearance of the mature features

of the nervous system of adult stages, probably associated with

the onset of predatory behaviours.

(b) Implications for the evolution of the nervous system
in the Ecdysozoa

Evolutionary discussions on the diversification of the nervous

system within the Ecdysozoa are hampered by the limited

availability of neuroanatomical data regarding the Priapulida,

and Scalidophora generally. Moreover, the scarce studies on

priapulid worms are entirely restricted to adult stages and

late larval forms, with almost nothing known regarding the

embryonic formation of the nervous system. The situation is

even more severe for the other two scalidophoran lineages,

namely the Kinorhyncha and the Loricifera, for which general

data on their embryogenesis are absent or extremely limited

[55,56]. Therefore, our characterization of the nervous system

of the hatching larva and first lorica larva of P. caudatus is an

important first step towards closing this gap of knowledge.

Inferring the ancestral form of the scalidophoran, and

ecdysozoan, nervous system is thus a hard task, as it becomes

obstructed by the problematic logistics of comparing late

embryonic/early larval data (this study and taxa from the Nema-

toida and Panarthropoda) with the anatomy of more mature

stages (other members of the Priapulida, the Kinorhyncha and

the Loricifera). Nevertheless, general evolutionary hypotheses

can be formulated, which can ultimately serve as matters for

further study. If, for the sake of simplicity, we focus on the

CNS, the earliest and simplest anatomical form comprises a cir-

cumoral brain and an unpaired ventral nerve in P. caudatus at
least in the larva. However, palaeontological evidence suggests

that the adult forms of the Mid-Cambrian priapulid O. prolifica
[22] possessed a paired ventral cord [39]. The basic organization

found in priapulid larvae is also observed in kinorhynchs and

loriciferans (figure 6), although the ventral nerve cord bifurcates

anteriorly to connect with the brain and also posteriorly after the

caudal ganglion in the Kinoryncha [57,58], and is paired in the

Loricifera [59]. In nematodes and nematomorphs there is a

main unpaired ventral nerve cord [60,61], whereas in panarthro-

pods the ventral nerve cord is paired (in the Tardigrada the

nerve cord ganglia are unpaired) [62,63] (figure 6). In the Spiralia

(e.g. Gnathifera, Trochozoa) the main neural tracts found in the

ventro-lateral body region are paired, although in several anne-

lids a median nerve is also present [64–68] (see also Hejnol

and Lowe [69]) and renders the reconstruction of a paired

versus unpaired nerve cord ambiguous. Principally, the distri-

bution of an unpaired ventral nerve cord within Scalidophora

and Nematoida favours a reduction event at the base of the Ecdy-

sozoa and thus the secondary separation of the major ventral

nerve into two main ventral tracts in loriciferans and panarthro-

pods (figure 6). However, in the nematode Pontonema vulgare [61]

less prominent, paired, ventro-lateral nerves are present in

addition to the ventral nerve cord and could hint to the presence

of a median and two lateral cords as the ancestral condition

which in the course of evolution got elaborated and/or reduced

in the different lineages. In this regard, the comparative study of

the mediolateral patterning system [7,70] between those lineages

with unpaired ventral nerve cords and those with paired ventral

nerve cords might shed light into the homology of the nerve

tracts and help to reconstruct possible developmental events

responsible for the evolution of this trait.

An important and highly debated issue is the nature

of the brain in the last common ancestor of the Ecdysozoa

[3–7,10,11]. Priapulids, kinorhynchs, loriciferans, nemato-

morphs and nematodes have a circumoral brain composed

of a ring neuropil with anterior and posterior somata, which

contrasts with the circumoral commissures found in other

ecdysozoans [52] (figure 6). This trait was used to unite all

these lineages into the Cycloneuralia [14,71], although most

recent molecular phylogenies recover this grouping as para-

phyletic [15–17]. On the other hand, the Panarthropoda

shows more or less developed anterior neural concentrations

[43,44,50,63,72–74] (figure 6), but the homology of these

structures between tardigrades, onychophorans and arthro-

pods is still debated [43,44,50,72]. Within Ecdysozoa, it is in

arthropods that the brain attains the highest level of sophisti-

cation [63,75], probably related to the increase in the number

of cephalic segments and the development of more special-

ized head structures. In this lineage, the brain is considered

to be composed of three main neuromeres (protocerebrum,

deuterocerebrum and tritocerebrum), and thus has been

referred to as a tripartite brain [76,77]. Frustratingly, similar

terminology has been used to describe the circumoral brain

of some priapulids [38], based on the presence of three histo-

logical layers (anterior somata, central neuropil, posterior

somata). This situation is not observed in the larva and

adult of P. caudatus (figure 3), where histological methods

only reveal the anterior somata and the neuropil, and thus a

bipartite brain (see also discussion above). However, the use

of these terms to describe the priapulid brain can be mislead-

ing, as the ‘tripartite’ anatomical organization should refer to

the segmental nature of the brain and should include the lin-

earity of ‘segmentation’ genes that are required for such

http://rstb.royalsocietypublishing.org/
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segments to develop. Only if orthologous genes were to be

expressed in relation to each of the histological layers of the

priapulid brain would there be grounds for applying the

same terminology to priapulids. Regardless of the terminol-

ogy used, the distribution of brain architectures in the

different lineages of the Ecdysozoa and outgroup taxa

suggests two alternative scenarios for the evolution of this

neuroanatomical component (figure 6). On the one hand,

the distribution of a circumoral brain among the Ecdysozoa

might indicate that this was the most probable brain architec-

ture in the last common ecdysozoan ancestor. On the other

hand, the presence of brain ganglia in the Panarthropoda

and in taxa outside the Ecdysozoa might indicate that the

circumoral brain evolved secondarily and independently in

members of the Scalidophora and Nematoida. Further embry-

ological, molecular and physiological data are thus required to

fully understand the neuroanatomy of the brain of priapulids,

kinorhynchs, loriciferans, nematodes and nematomorphs, and

ultimately attain a more accurate picture of the course of

nervous system evolution in the Ecdysozoa.

5. Conclusion
In this study, we characterize the earliest post-embryonic

stages of nervous system development in the priapulid worm
P. caudatus. The immunoreactivity patterns of five different

antibodies commonly used in neuroanatomical analyses

demonstrate that priapulid embryos hatch with a nervous

system composed of a circumoral brain and an apparently

unpaired ventral nerve ending in a caudal ganglion. Addition-

ally, thin neurite bundles innervate the sensory organs of the

larva, namely the buccal scalids and the trunk tubuli. The

first moulting event in the life cycle of P. caudatus implies a

significant maturation of the nervous system, which acquires

features already seen in adult priapulids, namely the presence

of a neck ganglion, a well-developed introvert plexus, and

more conspicuous secondary longitudinal nerve tracts. Our

results are in agreement with previous morphological obser-

vations in adult stages of P. caudatus and other priapulid

worms [33,38], and deliver the adequate neuroanatomical fra-

mework for future embryological studies on P. caudatus. In the

light of our current knowledge of the ecdysozoan phylogenetic

relationships, our results support considering that the ancestral

nervous system of the Ecdysozoa might have comprised an

unpaired ventral nerve cord, but the architecture of the brain

is still unclear. Therefore, further work will be necessary to

better understand the exact evolutionary and anatomical

relationships between a priori simpler brains, such as those

found in priapulid worms, and those more elaborated central

nervous systems observed in arthropods.
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