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Abstract

We investigated the stable boundary layer in Adventdalen by measuring meteorologi-

cal parameters with Sonic anemometers at two heights, as well as slow response mea-

surements, during a 7 week measurement campaign from February to April 2014. The

main drivers of the stability in Adventdalen was found to be the wind speed, the wind

direction and the net radiation. Calm conditions with weak SE wind and strong nega-

tive net radiations were favorable to get very stable conditions. Such very stable con-

ditions, however, very rarely occurred as the measurement period was characterized

by exceptionally mild conditions.

Classic MOST represented the fluxes better than MOST using local scales, at least

up to ζ ≈ 0.3. The downward heat flux maxima is found at ζ ≈ 0.01, but it is not found

to be a good threshold for the transition regime. This could be caused by the lack of

observations at higher levels. We found that the Coriolis force had an insignificant

influence to the turbulence.

The non-dimensional profiles were highly influenced by the choice of vertical gra-

dients, but we found the wind profile to be estimated best using a logarithmic fit to

the data. The universal function φG07
h represented the calculated non-dimensional

temperature profile well, at all stabilities, while φG07
m only represented our calculated

non-dimensional momentum profile adequately up to ζ ≈ 0.2.
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1 Introduction

Stable boundary layer (SBL) turbulence processes are still not well known, particularly

under very stable conditions, resulting in e.g. inappropriately poor parameterizations

in numerical weather prediction (NWP) and climate models. (e.g. Walesby and Beare,

2016; Atlaskin and Vihma, 2012; Vihma et al., 2014; Svensson and Rutgersson, 2016).

As the Arctic atmospheric boundary layer (ABL) typically has a stable stratification

for the whole winter, and parts of the autumn and spring season (Persson, 2002), SBL

research is of huge importance for the improvement with respect to the corresponding

modeling capabilities.

Because of the importance of the smaller scales of turbulence, in particular for

stable conditions, turbulence is not satisfactory resolved in the models, and needs to

be parameterized. This causes climate and NWP models to have considerable uncer-

tainties in the description of turbulent exchange (e.g. Vihma et al., 2014). Tjernström
et al. (2005) found heat fluxes from climate models to be unreliable with insignificant

correlations to the measurements from the SHEBA campaign, and Esau and Zilitinke-
vich (2010) found that climate models overestimate the height of the Arctic ABL, and

therefore also the turbulent mixing. The poor representation of turbulence in the ABL

causes a warm temperature bias in models (Holtslag et al., 2013), which can have a huge

impact on the prediction of future climate scenarios. Little is know about the quality

of operational weather forecast in the central Arctic (Vihma et al., 2014), but Mayer
et al. (2012) also found a temperature bias at times exceeding 10◦C for Adventdalen

using the the Weather Reasearch and Forecast model (WRF). The parameterizations

typically used in the models are often based on observations from low- and mid lat-

itude (Vihma et al., 2014). Arctic observations and analysis of available data sets is

therefore essential in order to improve prediction skills in Arctic regions (e.g. Tastula
et al., 2015; Vihma et al., 2014).

Monin Obukhov similarity theory (MOST) is still the most commonly used theo-

retical framework for the description of turbulent exchange close to the ground, de-

veloped by Monin and Obukhov (1954). It relates the different turbulent fluxes to their

respective vertical non-dimensional profiles. Its applicability is limited to the surface

layer (lowest 10% of the ABL), as it assumes constant fluxes with height. MOST works

good for a wide range of stabilities, but fails for very stable conditions. Nieuwstadt
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Chapter 1: Introduction

(1984) extended MOST for more stable conditions by the use of local scales. For very

stable conditions it will still fail, as e.g. the Coriolis force becomes significant, creating

flow patterns resembling an Ekman spiral. Sporadic and intermittent turbulence can

still exist even for extremely stable conditions, and the layer will not be laminar on the

average (Grachev et al., 2005). Mahrt et al. (1998) and Grachev et al. (2005) have divided

into different stability regimes, with defined limits of the applicability of MOST, both

in the classical sense and for local scales, based on observations from the SHEBA cam-

paign. Empirical predictions of the non-dimensional profiles have been developed, but

previous versions were not based on Arctic observations (e.g. Högström, 1988, 1996).

Grachev et al. (2007) derived new empirical non-dimensional profiles based on the

SHEBA data, better suited for stable conditions.

Zilitinkevich and Calanca (2000) proposed an advanced non-local stability theory

for the surface layer, taking into account the effect of the static stability in the SBL. It

was extended by classifying for different wind and temperature gradients by Sodemann
and Foken (2004), but they found that different weather conditions significantly altered

the gradients, and that this later needed to be taken into account. Zilitinkevich and
Esau (2007) developed it further by taking into account non-local effects, and effects

of Coriolis.

Sorbjan and Grachev (2010) have also proposed an alternative similarity approach,

which is equivalent to MOST, but using gradients as the basis for the scaling parame-

ters instead of the fluxes. These similarity functions are unaffected by self-correlation,

which is the case for MOST. Common for both is that the similarities are based on ideal-

ized and homogeneous surfaces (sea-ice, etc), and orographic effects in inhomogeneous

terrain may limit the applicability of similarity theories (Mäkiranta et al., 2011).

In this thesis we will try to find the main drivers of the stability in Adventdalen,

and find which conditions are causing the most stable and unstable stratification. As

SHEBA is one of the biggest and most comprehensive campaigns on stable boundary

layers, we will compare our results with some of their findings. We will check the

validity of classic MOST, and the extension of the local stability parameter z Λ−1, and

compare with articles based on the SHEBA data (e.g Grachev et al., 2005, 2013), and

other SBL research.

In Chapter 2 we take a look at the background, Chapter 3 describes the study site,

the data collected and the instruments used. Chapter 4 describes the methods applied.

The results and discussion are then presented in the following chapters: Chapter 5

introduces the stability distribution during the campaign, and the main mechanisms

influencing the stability. Chapter 6 presents the impact of scaling in MOST on the heat

and momentum flux, and Chapter 7 does the same for the non-dimensional gradients.

A summary and outlook is given in Chapter 8.
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2 Background

In this chapter we will briefly go trough the basics of turbulence (Section 2.1), the

atmospheric boundary layer (Section 2.2) including the stably stratified ABL, and the

SHEBA-campaign is presented (Section 2.4).

2.1 Atmospheric turbulence

Turbulence consists of irregular swirls of motion, called eddies. They are generated by

heating, and the following rising air (thermals), and by wind shear. In the atmospheric

boundary layer, this wind shear is mainly caused by friction at the surface, but other

processes creating differences in wind with height will also generate wind shear.

We can describe the turbulence as motion around a mean state, that is both irregu-

lar and stochastic (e.g. Foken, 2008). These eddies cover a wide range of temporal and

spatial scales; from seconds to days, and from centimeters to thousands of kilometers,

respectively (e.g. Foken, 2008). The energy is transported in a cascade from the energy

containing larger eddies to smaller eddies, until the energy is dissipated by molecular

diffusion. This is a process that can be described as highly chaotic. The largest eddies

have the size of the atmospheric boundary layer in case of buoyancy driven turbulence,

and have a size corresponding to the depth of the shear layer for mechanically driven

turbulence.

Because these eddies can occur on very small scales, it is virtually impossible to de-

terministically describe and forecast a single eddy (Stull, 1988). To deal with this, we

can introduce stochastic methods, that are based on the average statistical behavior of

the eddies. This method uses covariances to explain the relationship between different

variables, in the form ofw′T ′, w′q′ or u′w′, for temperature, humidity and momentum,

respectively, where the bar denotes a time average and the prime the turbulent devia-

tion from its average. These covariances are representing the kinematic fluxes of heat

(sensible heat), moisture (latent heat) and momentum. During summer, the surface

will be warmed by radiative heating from the sun, which again warms air close to the

surface. Warm air rises, and will bring relatively warm air up, meaning that w’ and T’

are positive. At the same time as relatively cold air sinks, meaning w’ and T’ are neg-

ative. When averaged, the covariance will always be positive, which means that heat
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Chapter 2: Background

is transported upwards, and there is a positive kinematic heat flux. These properties

are used when defining the governing equations for the sensible heat flux (Hs) and the

latent heat flux (HL) are (e.g. Foken, 2008):

Hs = ρcpw′T ′ (2.1)

HL = ρλw′q′ (2.2)

where ρ is the density of air, cp is the specific heat of air at constant pressure, λ is the

evaporation heat of water, and w′T ′ and w′q′ the kinematic flux for heat and moisture,

respectively (e.g. Foken, 2008). The momentum flux, which is called the Reynolds

stress is (e.g Stull, 1988):

τReynolds, xz = −ρu′w′s (2.3)

τReynolds, yz = −ρv′w′s (2.4)

where u′w′s and v′w′s are the covariances of the horizontal and vertical wind where the

subscript s denotes surface values. This gives the total Reynolds stress as:∣∣∣τReynolds

∣∣∣ =
[
τ2

Reynolds, xz + τ2
Reynolds, yz

]1/2
(2.5)

The friction velocity, which is the common scaling parameter for turbulence generated

by wind shear near the ground (e.g. Stull, 1988) is defined as:

u2
∗ =

[
u′w′s

2
+ v′w′s

2
]1/2

(2.6)

giving the relationship

|τReynolds| = ρu2
∗ (2.7)

where ρ denotes the mean density of the surrounding air. These different kinematic

fluxes can be measured directly with a sonic anemometer, as long as the averaging

intervals are long enough. This measurement principle is called the eddy-covariance

method. For sensors mounted at 2-5 meters, which is our case, an averaging interval

of 30-minutes is often sufficient (e.g. Foken, 2008).

An other approach is to use different similarity theories, that takes advantage of the

common behavior of empirically observed phenomena (e.g. Stull, 1988), e.g. Monin-

Obukhov similarity theory which will be described in section 2.3. The use of numerical

solutions to the equation of motion could be an approach to determine and forecast

the turbulence in the atmosphere, like we do on larger scales. Unfortunately, when

dealing with the turbulent parameters, it is not a closed system, meaning we have
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2.2: The atmospheric boundary layer

more unknowns than equations (e.g Stull, 1988). Turbulence closure is applied in order

to close the system, and be able to approximate the turbulence. One of the simplest

methods, which is a first order closure technique, is K-theory. Here the kinematic

fluxes (w′T ′, w′q′ and w′v′) are described by the gradient at one point, and an eddy

diffusivity parameter:

w′T ′ = −KH
∂T

∂z
(2.8)

w′q′ = −KE
∂q

∂z
(2.9)

w′v′ = Km
∂v

∂z
(2.10)

where KH and KE are eddy diffusivity parameters for heat and moisture and Km the

one for moisture, often called eddy viscosity. These coefficients depend on wind speed,

stratification and surface properties (e.g. Foken, 2008). Equation 2.8-2.10 can approxi-

mate the heat, moisture and momentum fluxes in Equation 2.1-2.6.

The reason why turbulence is important is because it transports heat, momentum,

moisture, and other quantities, through turbulent mixing. It is a magnitude of 105

more effective in the transport of different quantities like heat and momentum com-

pared to molecular diffusion, meaning turbulence is an important transport (mixing)

process, particularly in the atmospheric boundary layer (e.g. Foken, 2008), which will

be described in the following section.

2.2 The atmospheric boundary layer

The atmospheric boundary layer (ABL), or the planetary boundary layer which it is

sometimes referred to, is the lowest part of the troposphere. In this region the wind

speed is typically significantly lower than its correspondent geostrophic value, includ-

ing a counter-clockwise directional change of up to 30-40◦ (e.g. Stull, 1988). This hap-

pens because the ABL is directly influenced by surface forcing, on a timescale of one

hour (e.g. Stull, 1988). Surface forcing includes frictional drag, transport of heat and

moisture, and changes on the wind flow due to the terrain. The surface drag reduces

the wind towards the surface, until the roughness length z0 where there is no longer

any wind, causing a near-logarithmic wind profile in the surface layer (e.g. Stull, 1988).

Over the ABL there is a layer of strong statical stability. Figure 2.1 illustrate the pro-

cesses influencing the Arctic ABL, which is our focus in this thesis.

5



Chapter 2: Background

Figure 2.1: Illustration of the processes influencing the arctic atmospheric boundary layer: (1) Stable
boundary layer turbulence in a cloud free environment; (2) Absorbed and emitted longwave radiation in
a cloud free environment; (3) Vertical structure of potential temperature under cloud-free and statically
stable conditions. (The shape of the profile resembles measurements from Adventdalen made in 2009 by
Mayer et al., 2012); (4) Absorbed and emitted longwave radiation in the presence of cloud; (5) Convection
of heat and moisture over open water; (6) Advection of heat and moisture from lower latitudes; (7)
Absorbed and reflected solar radiation, dependent on the surface albedo and terrain heteorogeneieties;
(8) Reflection of solar radiation and emission of longwave radiation caused by clouds.

Stable boundary layer

A distinct feature of the Arctic ABL is that for most of the winter and spring it is stably

stratified, hereby called a stable boundary layer (SBL). In lower latitudes the SBL is

mostly connected to diurnal variations in the net radiation budget. A positive radia-

tion balance leads to an unstable atmosphere during the day, while at night a negative

radiation balance causes a SBL to develop (Foken, 2008). This negative radiation bal-

ance most often happen at a near-cloudless night, since there is no clouds to absorb

and emit the outgoing longwave radiation (Figure 2.1 [2]), causing temperature inver-

sions (Figure 2.1 [3]). In Arctic regions, this negative radiation balance can persist for

longer periods of time, especially during winter and spring. This leads the Arctic SBL

to last for a long time period, and not only during night as in lower latitudes. Clouds

are particularly important, since during the presence of clouds longwave radiation

is absorbed by the cloud and then emitted from the cloud base towards the surface,

6



2.3: Monin-Obukhov similarity theory

which counteracts the negative radiation balance (Figure 2.1[4]).

A SBL will strongly dampen turbulence (e.g. Foken, 2008), since vertical motion is

suppressed by the stability (Figure 2.1 [1]). This leaves mechanically induced shear

to be the main source of mixing during stable conditions. On top of stable boundary

layers a low level jet frequently occurs. Depending on the vertical extension of the

SBL, the corresponding wind maximum is, for the Arctic, typically located at heights

between 10 and 300 meters above ground (e.g. Foken, 2008). The vertical wind shear

induced by the low level jet generates turbulence which leads to vertical mixing from

the low level jet and down to the SBL underneath (Jakobson et al., 2013), which period-

ically can mix the whole SBL, and therefore lead to a neutrally stratified ABL.

Constant-flux layer

The Prandtl layer, or the constant-flux layer, is assumed to cover approximately the

lowest 10% of the ABL. This is a layer where the fluxes are assumed to be constant

with height. It is typically several of tens to a few hundred meters deep under unstable

conditions, while under stable conditions it could be as shallow as a couple of meters

(e.g. Foken, 2008).

2.3 Monin-Obukhov similarity theory

Monin-Obukhov similarity theory (MOST), or surface based similarity assumes that

the fluxes vary with less than 10% of their magnitude with height (e.g. Stull, 1988),

which means we have a constant-flux layer (Section 2.2). This means that we can use

the quantities at one height to describe the surface layer. It is based on the assumption

that the boundary layer has a logarithmic wind profile. Before Monin and Obukhov
(1954) defined MOST you only had similarity theories for neutral conditions. MOST

was created to be used for non-neutral conditions as well.

The non-dimensional stability parameter ζ is defined as:

ζ ≡ z
L

(2.11)

where z is the height and

L = − u3
∗ T0

κgw′T ′v
(2.12)

is as the Obukhov length introduced by Monin and Obukhov (1954), u∗ is the friction

velocity (Equation 2.6), T0 is the mean temperature, κ ≈ 0.4 is the von-Karman con-

stant, g ≈ 9.81 m s−2 is the gravitational acceleration and w′T ′v is the kinematic heat

flux (from Equation 2.1). For stable stratification ζ is positive, and the heat flux has a
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Chapter 2: Background

downward direction (Hs < 0) and L > 0. It is the opposite for unstable stratification,

and it should go towards zero for neutral stratification (Hs ≈ ζ ≈ 0).

The non-dimensional gradients for momentum and heat are defined by Monin and
Obukhov (1954) as:

φm(ζ) =
κ · z
u∗

dU

dz
(2.13)

φh(ζ) =
κ · z
T∗

dΘ

dz
(2.14)

where dU/dz is the wind gradient (Equation 4.17) and T∗ is the temperature scale:

T∗ = −w
′T ′

κu∗
(2.15)

T∗ > 0 for stable stratification, T∗ < 0 for unstable stratification and T∗ ≈ 0 for neutral

stratification. If we integrate Equation 2.13 we get the wind speed as a function of

height (Monin and Obukhov, 1954)

u(z) =
u∗
κ

[
ln
z

z0
−ψm

( z
L

)]
(2.16)

where ψm is the integral of the universal function φm, giving the derivative:

du

dz
=
u∗
κ

[1
z

+φm(ζ)
]

(2.17)

which is the gradient of the wind. The Flux Richardson number, which is another

stability parameter, is defined as(e.g. Foken, 2008; Grachev et al., 2005):

Rf =
g

T

w′T ′

w′u′
(
du
dz

) ≡ z/L
φm

(2.18)

The critical Flux Richardson number is Rfc = 1.0, where the flow changes to a quasi-

laminar flow (e.g Foken, 2008).

Local scaling

The validity of classic MOST is found to be good for weakly stable conditions (Grachev
et al., 2005). For the very stable cases, however, classical MOST breaks down. The

surface layer can no longer be described by only the surface values. This is because the

scales are assumed to be independent of the height, and local scaling therefore often

goes by the name z-less scaling. In order for z L−1 to not vary with height, L can no

longer be the same for different heights. We account for this by replacing the Obukhov

length, L, with the local Obukhov length, Λ, (e.g. Nieuwstadt, 1984) which uses local
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2.3: Monin-Obukhov similarity theory

values for the different heights instead of the surface values.

Λ = − τ
3/2T0

κgw′T ′v
(2.19)

where τ = [(u′w′)2 + (v′w′)2]1/2 which is the same as u2
∗ but for the measurement

height z as opposed to the surface.

The stability parameter now becomes:

ζ ≡ z

Λ
(2.20)

From the analysis of data from the SHEBA campaign (section 2.4) Grachev et al.
(2005) found that classic MOST is valid for ζ ≤ 0.1, and local scaling will take over for

ζ > 0.1 as long as the Ekman number Ek ≥ Ekc ≈ 1, which is defined as (e.g. Grachev
et al., 2005):

Ek = − u′w′

2Ωsin(ϕ)zU
=

u2
∗

2Ωsin(ϕ)zU
(2.21)

where u′w′ is the covariance of vertical and horizontal wind, Ω is the angular velocity

of the earth, ϕ is the latitude, and z is the measurement height. The Ekman number

defines the ratio of the frictional force and the Coriolis force (e.g. Grachev et al., 2005).

Based on these findings Grachev et al. (2005) divides different scaling regimes:

1. Surface layer scaling regime:

This is a scaling regime for weakly stable conditions (0 < ζ ≤ 0.1), where the

fluxes are approximately constant with height, and therefore classic MOST are

applicable, as long as Ek >> 1 and RiB << RiB, cr.

2. Transition regime:

This is the scaling regime for fairly stable conditions (ζ > 0.1) where MOST is

adequate as long as local scaling is applied, given that Ek ≥ Ekcr ≈ 1, which

approximately corresponds to 0.1 < ζ < O(1). The flow is not effected by the

Coriolis force.

3. Turbulent Ekman layer:

The scaling regime for very stable conditions when Ek ≤ Ekcr ≈ 1 (typically

O(1) < ζ < O(10)) is represented by small fluxes, and with wind influenced by

the Coriolis force. The surface layer is very shallow.

4. Intermittently turbulent Ekman layer:

Here the turbulence has collapsed, and the effect by Coriolis is significant. Fea-

tures from an Ekman spiral can be seen even near the surface. Surface stress is

no longer important, and u∗ is no longer a valid scaling parameter. It is typically

in the order ζ > O(10).
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Chapter 2: Background

2.4 The SHEBA campaign

The Surface Heat Budget of the Arctic Ocean (SHEBA) campaign was conducted on the

sea ice north of Alaska from October 1997 to October 1998 (Uttal et al., 2002). They

froze in with the ship Des Groseilliers from the Canadian Coast Guard, and drifted

with the sea ice for more than 2800 km (e.g. Grachev et al., 2005), which can be seen in

Figure 2.2a. A 20 meter high meteorological tower was deployed, measuring turbulent

and mean meteorological parameters at 5 different levels (2.2, 3.2, 5.1, 8.9 and 18.2

m). A photo of the SHEBA camp is seen in Figure 2.2b. Among others, Grachev et al.
(2005) and Grachev et al. (2013) have analyzed the SHEBA data, and in particular the

applicability of classical MOST and MOST using local scales (section 2.3), and some of

their results will be compared with the results from our dataset.

||266 FEBRUARY 2002|

sured by rawinsonde, in the atmospheric boundary
layer (Fig. 5b) by thermometers on the 20-m meteo-
rological tower, in the ice (Fig. 5c) with ice ther-
mistors, and through the upper ocean (Fig. 5d) with
temperatures measurements made by a winched con-
ductivity–temperature–diffusivity (CTD) system. An
important purpose of this figure is to demonstrate the
range of scales that must be integrated in the analysis
of ocean–ice–atmosphere column both in tempera-
ture range and vertical scales. The temperature scales
(on the lower axis of each panel) range from tenths
of a degree in the atmospheric boundary layer, to 1–
2 degrees in the ocean mixed layer, to tens of degrees
in the ice and the troposphere, with a total tempera-
ture range throughout the column of +0.5°C at 550
m below the ocean surface to –57°C at about 13 km
AGL. The vertical scales are equally variable; 300 cm
in the ice panel, 20 m in the atmospheric boundary
layer, 600 m in the ocean, and finally, 20 km for the
troposphere/lower stratosphere panel.

Within the sea ice, there were significant variations
in the temperature profiles (Fig. 5c) as a function of
ice type; the different profiles are shown for five sites:
young ice, ponded ice, undeformed multiyear ice, a
new ridge, and an old consolidated ridge. The “cold
front” had already reached the bottom of all of the
sites except for the 6–8-m-thick new ridge, with tem-

perature profiles ranging from about –30°C at the sur-
face to –2°C at the bottom of the ice. The winter
growth season was well under way with ice growth
rates from 0.5 to 1.0 cm day−1, with the exception of
the underside of the thick ridge that was ablating
rather than growing. Interestingly, the rate of growth
of the young ice was so great that its thickness was
equal to that of the ponded ice by 7 December.

Figure 5 also shows profiles of wind speeds
(panels a and b) and relative ocean currents (panel d),
which are plotted in blue with scales at the top of each
panel. Wind speeds in the troposphere (from rawin-
sonde) indicated a low-level jet of 20 m s−1 at 1 km
AGL; high near-surface winds were also detected by
anemometers on the meteorological tower, showing
winds of 13 m s−1 just 3 m above the surface, result-
ing in a well-mixed surface layer with a log-z wind
speed profile. The Doppler sonar showed a turbulent
ocean with strongly sheared velocities ranging from
–15 to –22 cm s−1. Next to the ice panel (Fig. 5c), the
relative velocity vectors between the surface winds, the
ice speed, and the ocean currents are shown; note that
the atmospheric wind vector is scaled by a factor of
50 to fit on the same diagram as the ice and ocean
velocity vectors. During the 3-day period between 6
and 9 December, the ice station moved about 60 km
in a generally westward direction.

Measurements of annual cycles. During the course of
the SHEBA experiment, the ice camp drifted from an
original location north and east of Prudhoe Bay,
Alaska, on October 1997 in a mostly westerly direc-
tion from October to May, at which time it began
moving mostly north until the end of the project in
October 1998 (Fig. 6). This drift pattern was not com-
pletely unexpected based on the location of the camp
within the Beaufort Gyre, although the camp ended
in a location farther north and east than had been pre-
dicted based on historical buoy data.

Figure 7 shows examples of some of the time series
measurements that were made for the entire annual
cycle, again arranged approximately from the top of
the atmosphere down to the ocean. Beginning at the
top, Fig. 7a shows examples of satellite-derived cloud-
top temperatures and layer-average cloud particle ef-
fective radii that were generated by applying the
Cloud and Surface Parameter Retrieval system to Ad-
vanced Very High Resolution Radiometer (AVHRR)
Polar Pathfinder gridded and calibrated radiances
(Han et al. 1999; Maslanik et al. 2001). The individual
5-km values are averaged over a 50 km × 50 km re-
gion centered on the SHEBA field site. This and the
SAR data shown in Fig. 4 are an extremely small

FIG. 6. The yearlong SHEBA drift. Blue zigzag line ex-
tending from Oct 1997 to Oct 1998.

(a)
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tury, Roald Amundsen’s drift in the Maud along the
east Siberian Sea was a successful scientific endeavor
as well, although disappointing to him, as his goal had
been to drift to the North Pole and beyond. In 1937
the Russian supply ship, the Sedov, was inadvertently

trapped in the ice and started to drift north. A deci-
sion was made to convert her into a drifting research
site platform, which drifted free two years later in the
Fram Strait.

During SHEBA, the Canadian Coast Guard Ship
Des Groseilliers was frozen into the ice at 75°N, 142°W
about 570 km north and east of Prudhoe Bay, Alaska.
The choice of a ship-based experiment was mandated
not only by the number of people and experiments
that were projected for SHEBA but the power require-
ments that otherwise would have had to be provided
by diesel generators on the ice. The ship served as
command center, power station, hotel, laboratory,
staging area, and machine shop for the various
SHEBA projects both on the ship’s decks and on the
ice surrounding the ship. The ship option was also
determined to be the safest considering the number
of personnel that would be rotating in and out of the
ice camp. The camp was installed in the fall of 1997
with the aid of a second Canadian icebreaker, the
Louis St. Laurent, as the amount of equipment, sup-
plies, and fuel greatly exceeded the cargo capacity of
the Des Grosseilliers alone.

Since ships are not routinely frozen into the arctic
ice pack, there were many logistical issues surround-

ing unforeseen conditions that might occur during the
intense cold of a prolonged arctic night. As a precau-
tion, oil-fired space heaters were carried to supple-
ment the hot water and electric heating, portable
pumps were carried to allow the crew to draw seawa-

ter from holes drilled into
the ice in the event that in-
takes were blocked by accu-
mulated ice, and a survival
container was carried with
sufficient resources to pro-
vide shelter against the ele-
ments for up to 100 persons
living on the ice. The Des
Groseilliers was packed with
enough dry and frozen food
to survive 16 months with-
out need for resupply and
from the time it left its home
port of Québec City in July
1997 until it returned there
in November 1998, the only
provisions to be airlifted to
the ship were fresh fruit and
vegetables and other nones-
sential perishables.

Transportation to and
from the ship was accom-

plished through the use of Twin Otter aircraft that
have the ability to take off and land on wheels, skids,
or floats with extremely short runways. During the
first 9 months of the drift, when aircraft support was
used, seven runways of about 1000 ft × 60 ft were built
or rebuilt supporting 57 landings and takeoffs. Most
crew changes occurred after 6 weeks, with occasional
3-week rotations during special periods of setup and
intensive observations. After the ice station drifted too
far north, and the ice conditions became too treach-
erous for aircraft landings, the United States Coast
Guard sister ships Polar Star and Polar Sea were uti-
lized to complete personnel transfers. Radio commu-
nications with the land became unreliable as the ship
drifted far to the west and north, but communications
were maintained throughout the project utilizing
INMARSAT-B satellite links.

The ice camp (Fig. 1) around the ship was comprised
of numerous tents, seatainers, plywood structures, and
towers that housed the bulk of the oceanographic, me-
teorological, and logistics operations. In addition, there
were 960 50-gallon drums of various fuels for the ship,
helicopters, and snow machines. This situation was of
course vulnerable to lead activity and the unpredictable
pattern of summertime melting. Significant resources

FIG. 1. The SHEBA ice camp in Oct 1997 immediately after setup. (Photo credit:
Don Perovich.)

(b)

Figure 2.2: Map of the ice drift of the SHEBA campaign (a) and a photo of the camp from October 1997
(b). (a) and (b) are reprinted from Uttal et al. (2002).
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3 Measurement campaign

In the following chapter we will describe the study site (Section 3.1), the different

instruments used in the campaign (Section 3.3) and present the data collected (Sec-

tion 3.2).

3.1 Study site

Students participating in the AGF-350/850 course at the University Centre in Svalbard

carried out measurements in Adventdalen between the 14th of February 2014 and the

5th of March 2014. Some of the deployed stations were kept running for another

month, until the 4th of April 2014.

Figure 3.1: Map of Svalbard (left), and Adventdalen with the surrounding mountains (right). The red
circle marks the location of the study site. Maps are from the Norwegian Polar Institue1.

The Adventdalen valley is a NW-SE2 oriented valley on Svalbard. The valley is an

extension of Adventfjorden, a side fjord of the SW-NE3 oriented Isfjorden, which can

1toposvalbard.npolar.no Accessed June 21, 2016.
2NW - North west; SE - South east
3SW - South west; NE - North east

11
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Chapter 3: Measurement campaign

be seen in Figure 3.1. It is approximately 20 km long and 4 km wide, with mountains

on the sides in the range of around 1000 meter height. The terrain in the bottom of

the valley is relatively flat and homogeneous, while the surrounding terrain is highly

heterogenous.

Since Adventdalen ends up in Adventfjorden the sea-ice conditions play an impor-

tant role (Mayer et al., 2012). Isfjorden, and Adventfjorden, were ice-free for the whole

winter in 2014. This means that Adventdalen could be influenced by advection from

the relatively warm water, in the ice-free fjord.

The position of our measurement site is shown with the marker in Figure 3.1. It is

located on the south side of the valley, close to the road. We would expect the wind to

be orographically forced along the main valley axis, but the Endalen valley to the SW

of the station could also lead to an orographically induced flow from that direction.

3.2 Measurements

The dataset collected during the campaign is the following:

• 3D wind vector and sonic temperature from Sonic anemometers at 2 levels (1.97 m

and 4.06 m) at a 20 Hz resolution.

• Wind, temperature and humidity at a 1 Hz resolution at 2 levels (2 m and 10 m).

• 4 component radiation balance at 1.5 m with 5 minute resolution.

• 25 tethered balloon soundings measuring temperature, humidity and wind dur-

ing 7 days.

• 24 SUMO flight measurements during 8 days.

An example of the basic data set is shown as time series for one week in Fig-

ure 3.2 and 3.3. The corresponding plots of all seven campaign weeks can be found in

Appendix A.1. The instruments used in the campaign and of importance to this thesis,

are described in the following section.

12
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3.3: Instrumentation

3.3 Instrumentation

For the high frequency measurements we used a set up with two CSAT3 Sonic anemome-

ters at two levels (Section 3.3.1) of around 2 and 4 meter height. For the slow re-

sponse measurements we mounted a 10-meter mast featuring temperature, humidity,

wind speed and wind direction at 2 levels (Section 3.3.2) of around 2 and 10 me-

ter height. We also had one radiometer to measure shortwave and longwave radia-

tion(Section 3.3.3). Measurements with tethersondes and the SUMO airplane were

also conducted. More detailed descriptions of the different set ups will be given in the

following sections.

3.3.1 Fast response sensors

For the high frequency measurements we mounted two Sonic anemometers at two

different heights, 1.97 and 4.06 meters. They measured the wind speed, wind direction

and sonic temperature at both levels. The Sonic anemometers used in the setup where

two CSAT3 from Campbell Scientific, which will be described next.

CSAT3

CSAT3 Three Dimensional Sonic Anemometer 

 

FIGURE 4-2.  CSAT3 coordinate system and captive mounting 
hardware (s/n 0631 to current) 

 

FIGURE 4-3.  CSAT3 coordinate system, captive mounting hardware, 
and cup washer (s/n 0107 to 0630) 

8915 CSAT3 Boom 

7 

Figure 3.4: Illustration of the CSAT3 Sonic Anemometer. Reprinted from Campbell Scientific (2015).

CSAT3 is an ultrasonic anemometer used to measure the wind speed in three di-

mensions. The wind is measured by using three pairs of non-orthogonally oriented

transducers, sensing the horizontal and vertical wind. The wind speed is directly re-

lated to the time of flight for each signal, between the different pairs of transducers,

15



Chapter 3: Measurement campaign

while the temperature is related to the speed of sound, which depends on the air den-

sity, directly related to temperature and humidity.

The CSAT3 Sonic anemometer gives the wind component in 3 directions, and and

the sonic temperature Ts, which is almost identical to the vertical temperature Tv (e.g.

Foken, 2008):

Tv = T (1 + 0.38
e

p
) (3.1)

Ts = T (1 + 0.32(
e

p
) (3.2)

where T is the temperature, p is the pressure and e is the water vapor pressure. The

sonic temperature can easily be used to calculate the buoyancy flux. Liu et al. (2001)

found the buoyancy flux to be around 10% and 30% larger than the sensible heat

flux for stable and unstable conditions, respectively, when using the CSAT3 Sonic

anemometer.

Figure 3.4 (Campbell Scientific, 2015) shows the CSAT3, and the specifications for

the instrument are shown in Table 3.1 and the errors are shown in Table 3.2.

Table 3.1: Specifications for the CSAT3 Sonic anemometer (Campbell Scientific, 2015).

Range LSB

Operating temperature: -30◦ to 50◦C (cold shifted: -40◦ to 40◦C)

ux ±30 m s−1, ±60 m s−1 15 mm s−1, 30 mm s−1

uy ±30 m s−1, ±60 m s−1 15 mm s−1, 30 mm s−1

uz ±8 m s−1 4 mm s−1

c ±300 to 366 m s−1 (-50◦ to 60◦C) 16 mm s−1 (0.026◦C)

Table 3.2: Error estimates for the CSAT3 Sonic anemometer (Campbell Scientific, 2015). All error esti-
mates are calculated for the range of -30 to 50◦C, wind speeds < 30 m s−1 and wind direction ±170◦.

Wind error

Gain error
< ±2% of reading Wind vector ±5◦ of horizontal

< ±3% of reading Wind vector ±10◦ of horizontal

< ±6% of reading Wind vector ±20◦ of horizontal

Offset error
< ±8 cm s−1 for ux and uy
< ±4 cm s−1 for uz

16



3.3: Instrumentation

3.3.2 Slow response sensors

To measure slow meteorological parameters we mounted a 10-meter mast, with mea-

surements of wind speed, wind direction, temperature and humidity at two heights

of 2 and 10 meters. The relative humidity sensor at 2 meters did not work during the

whole campaign. The rest of the sensors were operational during the whole campaign.

They are listed in Table 3.3, and further described below.

Table 3.3: Sensors mounted on the 10-m mast and their respective heights and parameters is shown.
The parameters measured are temperature (T), relative humidity (RH), wind speed (WS), wind direction
(WD), and atmospheric pressure (P).

Sensor: 2 m 10 m T RH WS WD P Remarks

Young 41342 X X X - - - -

HygroClip (X) X X X - - - RH not working at 2 m

R.M. Young’s 05103 X X - - X X -

CS100 X - - - - - X

Young model 41342 Temperature Probe

To measure the temperature on the 10-meter mast, a Young model 41342 Temperature

Probe is used (Young, 2004). The measurement is based on the resistance dependency

of a platinum based sensing element. The specifications are shown in Table 3.4.

Table 3.4: Young model 41342 Temperature Probe specifications (Young, 2004).

Temperature

Measurement range: -50◦ to 50◦C

Accuracy at 0◦C: ±0.3◦C

Response time: 10 s

Sensor type: Platinum RTD

HygroClip

We used the HygroClip sensor, which is a high accuracy probe (Rotronic, 2002), to

measure relative humidity and temperature. We only use the humidity measurement

in our data analysis, since the temperature sensor on the Young Temperature Probe

(Section 3.3.2) is assumed to be faster and more reliable. Unfortunately, the humidity

sensor at 2 meters did not work for the whole campaign. The specifications for the

HygroClip are shown i Table 3.5.
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Table 3.5: HygroClip sensor specifications (Rotronic, 2002).

Humidity: Temperature:

Measurement range: 0 - 100% RH -20◦ to 85◦C

Accuracy at 23◦C: ±0.2% RH ±0.2◦C

Sensor type: HYGROMER®-C94 PT100 1/3 DIN

Sampling time: < 0.7 s (min excitation time 3 s)

R.M. Young’s 05103

We measured the wind using the R.M Young’s 05103 Wind Monitor, cabled by Camp-

bell Scientific. It uses a four bladed, helicoid-shaped, propeller to measure the wind

speed, while a potentiometer measures the wind direction (Campbell Scientific, 2010b).

The specifications for the R.M Young wind monitor are shown in Table 3.6.

Table 3.6: Specifications for the R.M. Young’s 05103 Wind Monitor (Campbell Scientific, 2010b).

Wind Speed: Wind direction:

Range: 0 - 100 m s−1 0◦ - 360◦ mechanical

Starting treshold: 1 m s−1 1.1 m s−1 (@ 10◦ displacement)

Accuracy: ± 0.3 m s−1 or 1% of reading ± 3◦

Operating temperature: -50◦ to 50◦C (non-riming conditions)

CS100 barometric sensor

The CS100 Barometric pressure sensor (Campbell Scientific, 2010a) is used to measure

the atmospheric pressure. The sensor specifications are shown in Table 3.7.

Table 3.7: Specifications for the CS100 Barometric Pressure sensor (Campbell Scientific, 2010a).

Pressure:

Measurement range: 600mb to 1100 mb (hPa)

Operating temperature: -40◦C to 69◦C

Humidity range: non-condensing up to 95% RH

Resolution: 0.01 mb

Accuracy: ±1.5 mb at -20◦C to 50◦C
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3.3.3 Radiation sensors

The Kipp & Zonen CNR-1 net radiometer measured both longwave and shortwave ra-

diation, both incoming and outgoing in 4 separate channels. It consists of two CM3

pyranometers and two CG1 pyrgeometers, measuring shortwave and far infrared radi-

ation, respectively. A PT-100 platinum element is used to measure the instrument tem-

perature. The instrument is heated to avoid dew and frost from covering the sensors.

An illustration of the Kipp & Zonen setup is shown in Figure 3.5, and the specifications

of the instrument are shown in Table 3.8.

  Radiation measurement system 2

 
 

 
 
Figure 1.  Radiation measurement system principal diagram. 
 
 
The  radiation measurement system is designed for net radiation measurements at the earth’ surface. The setup 
comprise the following units; CNR-1 net radiometer, datalogger CR1000 including CFM100 compact flash 
memory module, rechargeable lead acid battery, back-up battery, laptop PC, and a tripod or structure to support 
the radiometer.  
The net radiometer can measure each of the four radiation components separately. These parameters can be used 
to calculate net radiation, albedo, and surface temperature can also be estimated. 
Each input signal is measured every 5 seconds, necessary computations are performed at the same interval. 
Every 5 minutes average values are computed and stored. 
 
 
 
Description of the CNR-1 Net radiometer 
 
The Kipp & Zonen CNR-1 Net radiometer can measure the four radiation components separately or it can be 
configured to output just the net radiation. In the set up described here the four separate components are 
measured. Based on these measurements the net radiation can be calculated. 
The radiometer consists of two CM3 pyranometers (one facing up, one facing down) two CG1 pyrgeometers 
(one facing up, one facing down), one PT-100 platinum element to measure the instrument temperature, and a 
heating element to prevent dew and frost to cover the radiation sensors. Due to the high power consumption of 
the heating element this option is not used for battery operation. 
The CM3 pyranometer consists of a thermopile sensor, a housing, and a glass dome. The field of view of the 
black coated sensor is 180 degrees. Its sensitivity to radiation is in the spectral range of 300nm to 3 µm, mainly 
determined by the properties of the glass dome and the absorber paint. 
The CG1 pyrgeometer consists of a thermopile sensor, a housing, and a silicon window. The spectral 
specifications, determined by the absorber paint of the detector and the window, is approx. 5 to 42 µm. Due to 
the use of a flat window, the field of view of CG1 is only 150 degrees, not 180 degrees as it ideally should be. 
The missing part does not produce a large error and is compensated for during calibration. 
The output of the pyrgeometer is a small voltage that is proportional to the temperature difference between the 
CG3 and the object that it faces. For calculation of the absolute quantity of far infrared radiation that is emitted 
by the object that the CG1 is facing (normally ground or sky) one also needs to take the sensor temperature into 
account. This is why the PT-100 element is included. The calculation of received longwave radiation from the 
ground (terrestric) and the sky (atmospheric) is done by the application program in the datalogger. 
 
Parameter Range Spectral range Accuracy 
Global (solar) radiation 0 to ~ 1500 Wm-2 0.3 to 3 µm ± 10 % for daily sum 
Reflected solar radiation 0 to ~ 1500 Wm-2 0.3 to 3 µm ± 10 % for daily sum 
Atmospheric (longwave) radiation -250 to 250 Wm-2 5 to 42 µm ± 10 % for daily sum 
Terrestric (longwave) radiation -250 to 250 Wm-2 5 to 42 µm ± 10 % for daily sum 
Instrument temperature -40 to 80 ºC  ± 2 ºC 
 
Table 1.  Specifications for the CNR-1 net radiometer 
 
 

Figure 3.5: Illustration of the CNR-1 net radiometer made by Lange (2011).

Table 3.8: CNR-1 net radiometer range and accuracy (Campbell Scientific, 2011).

Range: Spectral range: Accuracy:

CM3: 0 - ∼1500 W m−2 305-2800 nm ±10 % for daily totals

CG3: -250 - 250 W m−2 5 - 50 µm ±10 % for daily totals

Instrument temperature: -40◦ to 80◦C ±2◦C

Operating temperature: -40◦ to 70◦C
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Chapter 3: Measurement campaign

3.4 Synoptic conditions

We will now go trough the meteorological conditions during the period of our mea-

surement campaign. Figure 3.6 shows the main meteorological parameters for the

whole campaign. A more detailed weekly overview of all meteorological parameters

are shown in Appendix A.1. In the following sections we will present and discuss the

different parameters, starting with temperature.
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Figure 3.6: Overview of different meteorological parameters during the campaign. The parameters
shown are temperature (T), pressure (P), relative humidity (RH), net radiation (NR), wind direction
(Dir) and wind speed (U). All values are 3 hour means taken from sensors mounted on the 10-meter
mast, except for the net radiation which is at a radiometer next to the 10-m mast.

Temperature

The temperature starts relatively mild in February before dropping towards the end

of the month. During first week of March is then relatively mild again, reaching even

positive temperatures during March 6-8. The following week the temperatures are

continually dropping, and reaching the campaign minimum of -22◦C on March 16.

From the middle of March it alternates between cold and medium cold conditions

20



3.4: Synoptic conditions

due to the changing synoptic forcing, as the wind is coming from the NW during the

most of the periods with medium cold conditions. NW wind corresponds to air masses

coming from Adventfjorden, which could be the source for the higher temperatures.

Towards the end of the campaign the temperature starts also to show an annual varia-

tion.

Table 3.9 is an overview of the monthly normal temperature, the monthly mean

temperature, and the deviation from the normal, using data from the Norwegian Me-

teorological Institute4. For February, March and April we see that the mean temper-

atures are 14.5◦C, 7.1◦C and 2.5◦C warmer than the normal values, respectively. The

deviations for February and March can be described as dramatic. It is far more mild

than the climatology, meaning we would expect the stratification to be less stable than

normal. The period before the middle of March seems to be the main source for the

positive temperature anomaly, while the period after seems to be more in touch with

the climatology.

Table 3.9: The monthly mean temperature (T), the normal temperature (Tnormal) and the temperature
deviation from the normal (Tdeviation) for the measuring station at Svalbard Airport. The normal is
the average for the period 1961 to 1990 for each month. Data is from the Norwegian Meteorological
Institute.

Month: T: Tnormal: Tdeviation:

February -1.7◦C -16.2◦C 14.5◦C

March -8.6◦C -15.7◦C 7.1◦C

April -9.7◦C -12.2◦C 2.5◦C

Wind

The wind direction is generally from the SE, which means the wind comes from within

the Adventdalen valley. Periods with NW wind, from Adventfjorden, also occurs at

some occasions. The NW wind lasts at no occasion longer than 2 days, while the SE

wind can be consistent for periods up to a week (see Appendix A.1 for detailed time

series). For most of the campaign the wind speeds were low, in the range lower than

6 m s−1. Occasionally we got wind speeds up to 11 m s−1, which is still relatively low

compared to what is possible on Svalbard.

The corresponding wind roses for the 2 meter and 4 meter fast response data sets

are shown in Figure 3.7. Here we can clearly see the two main wind directions, which

correspond to wind from within the valley (SE) and from Adventfjorden (NW). We

also, at times, have short episodes of wind from the SW, which would correspond to

wind coming from the Endalen valley (see Figure 3.1).

4https://www.yr.no/sted/Norge/Svalbard/Svalbard_lufthavn_målestasjon/klima.html
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Chapter 3: Measurement campaign

(a) 2 m height (b) 4 m height

Figure 3.7: Wind rose for Adventdalen at 2 m (a) and 4 m (b) height. This shows histograms of the wind
speed, with respect to wind direction and percentage of occurrences. The data are 30 minute averages
of the high frequency data from the Sonic anemometers.

Radiation

The net radiation in Figure 3.6 is mostly negative, which we would expect in the Arctic

winter, with some smaller periods with positive net radiation. It is generally fluctuat-

ing from 2 to -60 W m−2. One exception is a period from around the 13th to the 18th

of March, where we have a long lasting negative net radiation in the range of -50 to

-80 W m−2, opposed to the more normal fluctuations in the 2 to -60 W m2 range. This

could potentially lead to very stable conditions, if the wind is relatively calm, and the

rest of the conditions favor a stable boundary layer. But since the stability depends on

a lot of different parameters, the only conclusion we can say is that the net radiation

favors stable conditions during this period. Turbulent mixing induced by wind shear

could possibly oppose this.
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4 Methodology

In section 4.1 we present the software used in the analysis of the high-frequency data.

Then we explain the calculation of the wind and temperature gradients during the

campaign in section 4.2.

4.1 Data processing

We used the software Turbulence Knight 3.11, in detail described by Mauder and Foken
(2015), for the statistical analysis of the Sonic anemometer data and the calculation

of the different turbulence parameters. It is an open source software package that is

widely used for turbulence data analysis (e.g Göckede et al., 2008; Mauder et al., 2008;

Song et al., 2013; Eigenmann et al., 2011) and is the standard software used in the Car-

boEurope network (Mauder and Foken, 2015). One of its strength is a comprehensive

system of quality control and flagging with the possibility to choose from different

flagging systems (e.g. Foken, 2008; Mauder et al., 2013; Mauder and Foken, 2015). It al-

lows the user to select appropriate subsets of the overall data basis used in this thesis,

depending on the turbulent parameter of interest.

The main settings used in Turbulence Knight are shown in Table 4.1, while the

full parameter files for the two different heights used in this thesis are shown in Ap-

pendix A.2. The important settings will be explained in more detail in the following

section.

4.1.1 Planar fit method

When doing measurements with a sonic anemometer we want the vertical velocity to

be perpendicular to the mean streamline direction, and the two horizontal components

to be parallel to the streamline direction. In reality the anemometer will be tilted com-

pared to the streamline direction. To correct for this tilt we make use of the planar fit

method proposed by Wilczak et al. (2001). The wind in the mean streamline direction

is:

~up = P(~um −~c) (4.1)
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Table 4.1: Settings used in TK3.11. True indicates that the setting is turned on, while false indicates it
is turned off.

Setting 2-m Sonic 4-m Sonic

Sonic type CSAT3

Measuring height 1.97 m 4.06 m

Canopy height 0.0 m 0.0 m

Orientation 236◦ 230◦

Height a.s.l. 8 m 12.06 m

Averaging interval 30 min

Missing values Take last value

MAD spike test True (following Mauder et al., 2013)

Std for spikes 3.5

Reference measurements False

Max number of missing values in averaging in-
terval

1%

Calculate random error and instrument noise True (following Mauder et al., 2013)

Planar fit True (following Wilczak et al., 2001)

Rotation to mean wind direction True

Scalar fluxes True

Double rotation False

Stationary test True (following Foken et al., 2012)

Test on developed turbulent conditions with in-
tegral turbulence characteristics

True (following Foken and Wichura, 1996)

Check for independence of quality flags due to
corrections

True (following Mauder et al., 2013)

Check for w-offset True (following Mauder et al., 2013)

Quality flags True (following Mauder et al., 2013)

Footprint analysis False

Ogive False

Spectral analysis False

where ~up is the wind vector in the mean streamline direction, ~um is the measured

wind vector, ~c is the mean offset error of the instrument, and P is a rotational matrix

transforming the wind vector to the mean streamline direction.

4.1.2 Stationarity test

The eddy covariance method is based on an assumption of stationary conditions. To

check for stationarity, we perform a stationarity test (or a steady state test) following

Foken et al. (2012) and Foken and Wichura (1996). The concept is used to identify non-

stationarity which can be caused by changing weather patterns, gravity waves and

mesoscale variability (Foken et al., 2012).
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4.1: Data processing

The covariance of vertical windw andXs, which could be the horizontal wind speed

or the Sonic temperature, is calculated for M = 6 intervals of 5 minutes. N is denoting

the number of measuring points inside a 5-minute interval (Foken et al., 2012).

(w′X ′s)i =
1

N − 1

∑
j

wj ·Xsj −
1
N

∑
j

wj ·
∑
j

Xsj

 (4.2)

Then we calculate the covariance for the 30-minute interval, taking the mean of the

6 5-minute intervals (Foken et al., 2012):

w′X ′s|SI =
1
M

∑
i

(w′X ′s)i (4.3)

which will be compared with the covariance calculated for the whole 30-minute

interval (Foken et al., 2012):

|w′X ′s|WI =
1

M ·N − 1

∑
i

∑
j

wj ·Xsj


i

− 1
M ·N

∑
i

∑
j

wj ·
∑
j

Xsj


i

 (4.4)

The difference between the covariances is then calculated (Foken et al., 2012):

RatioCov =

∣∣∣∣∣∣(w′X ′s)SI − (w′X ′s)WI

(w′X ′s)WI

∣∣∣∣∣∣ (4.5)

If the difference between the covariances, RatioCov , is less than 30%, the time series is

defined as stationary (Foken et al., 2012).

4.1.3 Test on developed turbulent conditions with integral turbu-

lence characteristics

The flux-variance similarity is a good way to measure the development of the turbulent

conditions (Mauder and Foken, 2015). The concept is that the ratio of the standard de-

viation of turbulent parameters and its flux is approximately a constant, or a function

of stability (Mauder and Foken, 2015). These ratios are called integral turbulence char-

acteristics and the one used here are based on Foken and Wichura (1996) with functions

from Foken et al. (1991), where the ratio is a function of stability:

σu,v,w
u∗

= c1 · [φm
z

L
]c2 (4.6)

where u,v and w are the the horizontal and vertical wind in three directions, u∗ is the

friction velocity and L is the Obukhov length. For scalar fluxes X∗ the ratio is defined

25



Chapter 4: Methodology

as:

σX
X∗

= c1 · [
z

L
·φh

z

L
]c2 (4.7)

The constants used in Equation 4.6 and Equation 4.7 are shown in Table 4.2.

Table 4.2: Constants for the similarity functions given in Equation 4.6 and Equation 4.7 as presented
by Foken et al. (1991) and Mauder and Foken (2015).

Parameter z L−1 c1 c2

σu/u∗
0 > z L−1 > −0.032 2.7 0
−0.032 > z L−1 4.15 1/8

σw/u∗
0 > z L−1 > −0.032 1.3 0
−0.032 > z L−1 2.0 1/8

σT /T∗

0.02 < z L−1 < 1 1.4 −1/4
0.02 > z L−1 > −0.062 0.5 −1/2
−0.062 > z L−1 > −1 1.0 −1/4

−1 > z L−1 1.0 −1/3

For near-neutral conditions (−0.2 < z L−1 < 0.4) Thomas and Foken (2002) has de-

fined the following ratios:

σu
u∗

= 0.44ln

z+ · f
u∗

+ 6.3 (4.8)

σw
u∗

= 0.21ln

z+ · f
u∗

+ 3.1 (4.9)

where z+ = 1 m.

There are no functions for stable conditions, but TK3.11 uses the same parameter-

izations for stable conditions as for unstable (Mauder and Foken, 2015).

IT Cσ =

∣∣∣∣∣∣
σX
X∗ model

− σXX∗ measurement
σX
X∗ model

∣∣∣∣∣∣ (4.10)

If the ratio IT Cσ < 30% we assume well developed turbulent conditions. This test

will not be performed for the sensible heat, when the flux is smaller than 10 Wm−2,

because the ratio is not well defined in this case (Mauder and Foken, 2015).
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4.1: Data processing

4.1.4 Spike detection

To detect the spikes, a relation to the Median Absolute Deviation (MAD) is used. The

data point xi is defined as a spike if is outside the threshold (Mauder et al., 2013):

〈x〉 −
q ·MAD
0.6745

≤ xi ≤ 〈x〉+
q ·MAD
0.6745

(4.11)

where 〈x〉 is the median of x, q is a threshold value set to 3.5 in our analysis, and

MAD = 〈|xi − 〈x〉|〉 (4.12)

where 〈〉 denotes the median value. The value 0.6745 relates the MAD value to one

standard deviation, assuming a Gaussian distribution, which is, however, not always

the case for turbulent flows (Mauder et al., 2013).

4.1.5 Quality flags

For the determination of data quality, we follow the method proposed by Mauder et al.
(2013). The flags are based on a series of tests on the 30 minute statistics, and result in

a flag for the different fluxes. Figure 4.1 illustrates the process of the quality analysis.

The different quality flags and suggestions for the use of correspondingly flagged data

points are shown in Table 4.3.

Table 4.3: Quality flags for our dataset based on the method from Mauder et al. (2013).

Flag Quality Use

Flag 0 Good quality data Fundamental research

Flag 1 Medium quality data Long-term observation programs

Flag 2 Low quality data Should be discarded

Table 4.4: Consistency limits set for our data. Values outside the consistency limits will be filtered out.
u,v and w are the wind speeds in the horizontal and vertical direction, respectively. Ts is the Sonic
temperature, and the diag_CSAT3 is a diagnostic flag produced by the Sonic anemometer.

Quantity Lower limit Upper limit Units

u, v -50 50 m s−1

w -10 10 m s−1

Ts -50 30 ◦C

diag_CSAT3 0 63

The different steps of the quality analysis in Figure 4.1 will be explained in the

following sections. The process is following Mauder et al. (2013). All flags given are
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124 M. Mauder et al. / Agricultural and Forest Meteorology 169 (2013) 122– 135

high frequency data (sec. 3.1)
- diagnostic flags provided by instruments
eg. CSAT3, LI7200, LI7500
- plausibility limits (instrumental, site-specific)
- statistical spike detection (MAD test, q=7 )

flagging of fluxes after high-frequency treatment:
- number of missing values

10%: , >10%flag = 0 : flag = 2

flagging of half hourly fluxes (sec. 3.2)
- calculate averages, variances and covariances on 30min and 5min basis
with lag correction
- stationarity tests on covariances (sec. 3.2, FW96)

<30%: ,cov30min-5min flag = 0 cov <100% : ,30min-5min flag = 1 co v 100%:30min-5min flag = 2
- flux calculations with conversions and corrections
(Planar Fit, SND, spectral losses, WPL, iterations)
- ITC-test (FW96, MF04):
mod-meas<30%: ,flag = 0 mod-meas<100%: ,flag = 1 mod-meas 100%: flag = 2

- combination of flags according to MF04
- residual w after planar fit: w > 0.10ms : incresead by-1 flag +1, w > 0.15ms :-1 flag = 2
- interdependency of flags due to corrections/conversions:
if flag E = 2 then increased byflag H +1
if flag H = 2 then increased byflag +1E
if flag H = 2 then increased byE = 2 or flag flag E + 1NE

error quantification and uncertainty estimates (sec. 3.3)
- stochastic error according to FS01
but application on high-pass filtered (detrended) time serie s and full avering perio d
Gaussian error propagation to be considered for
relative error of covariances to be multiplied with corrected fluxes
- noise error after Lenschow et al. (2000 )
- systematic error: only applicable durin g daytime

=F(1/EBR-1)F
- footprint: usage of threshold percentage of flux contribution

Fig. 1. Flow diagram of the quality assessment procedures applied in the TERENO
flux network. Flux calculation procedures are merely described here as these are
not  part of the newly developed procedures. Flagging schemes and uncertainty
determination as well as abbreviations and symbols are described in the text.

eddy-covariance tower measurements, and which manifests itself
locally as advection, see Section 3.3.3.

3. The quality assessment strategy

Various quality assessment and quality control procedures were
combined to one comprehensive post-processing strategy (Fig. 1).
The data evaluation workflow may  be subdivided into three blocks.
Each of them generates a set of quality parameters, such as flags or
error estimates, based on specific routines:

• Tests on high-frequency data
• Tests on statistics, fluxes and corrections
• Quantification of error/uncertainty estimates.

These algorithms have been implemented as optional fea-
tures in the free EC-data evaluation software package TK3.1, an
update of TK3 (Mauder and Foken, 2011, http://www.bayceer.
uni-bayreuth.de/mm/en/software/software/software dl.php), as
well as in the software package EddySoft (Kolle and Rebmann,
2007) and as extension to ECPack (van Dijk et al., 2004). The system-
atic error estimation is not included in the automatic processing
routines, e.g. of TK3.1, since this requires the additional input of
net radiation, ground heat flux at the surface and potential storage
terms.

To achieve best measurement comparability within a network, it
is essential to equip sites with identical instrumentation. In TERENO
Campbell CSAT3 sonic anemometers, Licor LI-7500 open-path gas
analysers and LI-7000 closed-path gas analysers are deployed.
Therefore, the presented routines are valid in a strict sense only

Table 1
Limits for instrumental plausibility screening of the high-frequency data for TERENO
sites. The thresholds have to be adapted to site conditions with respect to instru-
mental limits, measurement height, expected temperatures and mixing ratios.a

Quantitya Lower limit Upper limit Units

u, v −50.00 50.00 m s−1

w −10.00 10.00 m s−1

Ts −20.00 50.00 ◦C
diag CSAT3 0 63 –
[CO2] (open path) 10 45 mmol m−3

[CO2] (closed path) 300 1000 !mol  mol−1

[H2O] (open path) 0 2000 mmol m−3

[H2O] (closed path) 0 45 mmol mol−1

diag LI 240 251 –

a u, v, w: vectorial wind components, Ts: sonic temperature, diag CSAT3: diag-
nostic flag of CSAT3, [CO2], carbon dioxide concentration, [H2O]: water vapour
concentration, diag LI: diagnostic flag of LI-7500.

for this instrumental set-up. Hence, the focus of this paper is on
assessing the quality of fluxes of sensible heat H,  latent heat !E and
carbon dioxide Fc including error estimates. However, the proposed
procedures are also transferable to other instrumentation and EC
measurements of other trace gas species.

3.1. Tests on high-frequency data

The first set of tests is applied on the high-frequency data. Mod-
ern micrometeorological sensors have internal quality tests for
signal integrity and provide a diagnostic flag, e.g. Campbell CSAT3
or Licor LI-7500/LI-7200. Information that is not accessible to the
experimentalist is evaluated internally and output in form of a diag-
nostic flag. Thus, it is highly advisable to record these flags together
with the high-frequency data and use them as first data filter. Then,
unreliable measurements due to instrumental malfunction, power
peaks, animal disturbance, or similar should not be an issue any
further. However, such diagnostic flags are sometimes too coarsely
resolved (Serrano-Ortiz et al., 2008) or simply not available for a
given instrument set-up. Therefore, a check of instrumental plau-
sibility limits (Table 1) and a statistically based spike-detection
routine are applied.

A common method for spike detection calculates the average
and standard deviation of a time series (Højstrup, 1993; VM97;
Schmid et al., 2000). In a first loop, those data are labelled as spikes
which deviate more than the standard deviation times an empirical
multiplication factor of 3.5–5.5 from the average, depending on the
site-specific set-up. This procedure is repeated with an increased
multiplication factor until no more spikes are found. An iteration is
necessary since outliers or spikes generally affect Gaussian metrics.
In contrast, we apply a spike test that relies on more robust statis-
tics, specifically on the Median Absolute Deviation (MAD), which
also avoids the high computational cost of the iteration. Accord-
ingly, a data point xi is flagged as a spike if it is not in the range:

⟨x⟩ − q · MAD
0.6745

≤ xi ≤ ⟨x⟩ + q · MAD
0.6745

, (1)

where ⟨x⟩ denotes the median of x, MAD is

MAD = ⟨|xi − ⟨x⟩|⟩, (2)

and q is a threshold value which is set to 7. For smaller q values sev-
eral measurements were discarded in our data sets which obviously
were no outliers and which passed the internal quality controls of
CSAT3 and LI-7500 chosen as reference. The factor of 0.6745 relates
an MAD of unity to one arithmetic standard deviation if the fre-
quency distribution is Gaussian, which in reality is not always the
case. A critical component of the spike test of VM97 is the win-
dow size used to compute mean and standard deviation. Since the
MAD is a more robust statistical metric the selection of the window

Figure 4.1: Process of the quality analysis. Reprinted from Mauder et al. (2013) with permission from
Elsevier.

additive, meaning that if a flux is given two or more Flag 1 by different quality analy-

ses, the resulting flag is Flag 2.

Flagging of high frequency data

The first set of quality tests is done on the high frequency data. The Sonic anemometer

CSAT3, which we have used in the campaign, produces a diagnostic flag. Analyzing

these flags will identify instrumental malfunctions, disturbances by animals or precip-

itation and power peaks. In the first step, all data outside the physically meaningful

consistency limits (Table 4.4) will be filtered out. Then a MAD spike test (Section 4.1.4)

is used to remove remaining outliers.

If more than 10% of the data points inside the window, which in our case is a

30-minute interval, are filtered out, the 30-minute block of data is discarded as bad
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data (Flag 2). If not, it is defined as good data (Flag 0), and for all the data-points

missing, we assign the value to be the last value.

Flagging of half hourly fluxes

After this both, 5-minute and 30-minute averages of variances and covariances are

calculated. A stationarity test is performed (Section 4.1.2), where a difference in the 5-

minute averages and the 30-minute averages of RatioCov > 30% results in Flag 1, while

RatioCov > 100% results in Flag 2. A test on developed turbulent conditions with

integral turbulence characteristics (Section 4.1.3) is also performed. Here IT Cσ < 30%

results in Flag 0, 30% < ITCσ < 100% results in Flag 1, and IT Cσ > 100% results in

Flag 2.

For a meaningful application of the eddy covariance method, the mean vertical

velocity needs to be approximately zero (w ≈ 0). If this is not the case, even after

applying the planar fit coordinate transformation (Section 4.1.1), then this is a sign

of strong vertical advection, which should result in flagging. Mauder et al. (2013) has

defined the threshold based on Foken and Wichura (1996) that for w > 0.10 m s−1 all

flux flags are increased by 1, and under situations when w > 0.15 ms−1 all fluxes get a

Flag 2.

Then we check the interdependency of the data quality between the different fluxes,

but because we neither have latent heat and CO2 fluxes, this test does not change the

flags for the heat and momentum flux.

Error quantification and uncertainty estimates

In the end the method calculates the different errors in the dataset. The instrumental

noise is calculated following Mauder et al. (2013). An estimate of the stochastic error

is calculated, and the systematic error due to insufficient sampling of large scale at-

mospheric motion as well. The systematic error is only applicable when you have a

convective boundary layer. Mauder et al. (2013) describes in detail the calculation of

the instrument noise and different errors. In the end TK3 gives an output for the error

and the noise for the different fluxes. They do not effect the quality flags.
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Flags in the Sonic dataset

The distribution of the quality flags in our dataset after the analysis are shown in

Table 4.5.

Table 4.5: Quality distribution in the dataset from the two CSAT3 Sonic anemometers used in our
campaign.

Parameter Height Flag 0 Flag 1 Flag 2

u∗
2m 54.0% 26.5% 17.5%

4m 56.1% 39.9% 4.0%

HTs
2 m 49.5% 24.1% 26.4%

4m 47.5% 35.7% 16.8%

4.2 Calculation of gradients

In order to calculate the non-dimensional gradients in MOST (Section 2.3) we need to

determine the wind and temperature gradients.

4.2.1 Wind gradient

In order to find the gradients for the wind, we need to assume a basic functional shape

for the wind profile. The most straight forward method would be to find a linear fit to

the data. A more realistic approach is to assume a logarithmic wind profile, and find a

logarithmic fit.

Linear fit

A gradient approximated from a linear fit is shown in Equation (4.13):

du

dz
=
uz2
−uz1

z2 − z1
= A (4.13)

where u is the absolute horizontal wind speed at the different levels, and A is the

gradient.

Logarithmic fit

If we assume that the wind profile is logarithmic, the gradient should be linear in log-

z-space. The wind speed is defined as a function height in Equation 2.16, with the

gradient given in Equation 2.17. For neutral conditions the gradient in Equation 2.17

becomes:
du

dz
=
u∗
κz

(4.14)
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since ζ ≈ 0. For non-neutral conditions ψm(ζ) in Equation 2.16 will give the wind pro-

file a systematic deviation from the logarithmic profile for stable and unstable stratifi-

cation (Monin and Obukhov, 1954). It should be steeper for stable conditions, and less

steep for unstable conditions. To fit our data to a wind profile we use a method using

three data points, instead of just the two measured wind speeds. Since the wind speed

is zero at the z0, we can use this in a fit. We try to find the best fit to our data using a

first degree polynom with a logarithmic height variable:

u(z) = A lnz+B (4.15)

We use the matlab function polyfit to find the coefficients A and B by using the wind

measurements from the sonic anemometer at 2 and 4 meters, and setting the wind at

the surface to zero (uz=0 = 0), which gives us three points to make a fit from. This

gives a separate value to A and B for each time step. Equation 4.15 is equivalent to the

wind profile equation (Equation 2.16). To get the gradient we take the derivative of

Equation 4.15. This gives
du

d lnz
= A (4.16)

which is equivalent to
du

dz
=
A

z
(4.17)

where A is the coefficient calculated when fitting Equation 4.15.

4.2.2 Temperature gradient

In order to calculate the non-dimensional temperature profile (Equation 2.14) we need

to know the potential temperature gradient. The first thing to do is to convert the sonic

temperature, Ts, at the two levels into potential temperature. We assume that the sonic

temperature is approximately equal to the virtual temperature (Ts ≈ Tv) (e.g. Foken,

2008). Then we calculate the virtual potential temperature by (e.g. Stull, 1988):

Θv = Tv
(p0

p

)RL
cp ≈ Ts

(p0

p

)RL
cp

(4.18)

where p is the measured pressure, p0 = 1000 hPa is the reference pressure, cp = 1004.67 J kg−1K−1

is the specific heat of dry air at constant pressure and RL = 287.058 J kg−1K−1 is the gas

constant of dry air. Then we calculate the gradient linearly from the two data-points:

dΘv

dz
=
Θv,4m −Θv,2m

z4m − z2m
(4.19)
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4.2.3 Temperature bias correction

After calculating the gradients we saw that they were never negative, and that the

difference in temperature between 4 m and 2 m never were around zero, which we

would expect during neutral conditions.
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Figure 4.2: (a) show a time series of the temperature difference between Ts at 2 and 4 meters (a). The
red dots shows the difference when the wind speed U ≥ 8 m s−1. The corresponding red dots are plotted
against the net radiation in (b).

Figure 4.2a shows the difference in sonic temperature for 2 and 4 meters. The

red markers indicate situations where the wind speed is greater than 8 m s−1. These

are situations where we expect the difference in temperature to be approximately zero,

while our measurements show it lies around 0.4◦C. This indicates that the temperature

sensors might not be correctly calibrated. To confirm that the difference in fact should

be zero, we take a look at the radiation balance at the times where the wind is greater

than 8 m s−1 (Figure 4.2b), which corresponds to the red dots in Figure 4.2a. Here

we see that for times when the net radiation is around zero, where we would expect

the temperature difference to be around zero, since the winds are relatively high, the

difference in temperature is still around 0.3-04 ◦C. This is therefore a strong indication

that the values of Ts for one or both sonic anemometers are erroneous.
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4.2: Calculation of gradients
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Figure 4.3: Sonic temperature plotted against the virtual temperature from the slow meteorological
sensor at 2 (a) and 4 (b) meter height.

To account for this we will perform a comparison between the sonic temperatures to

the slow response temperature measurements from the 10-meter-mast (Section 3.3.2).

To be able to correct we assume that the temperature measurements from the slow

response sensors are correct. We converted the slow response temperature measure-

ments to virtual temperature (Equation 3.1), and compared them to the sonic tem-

peratures, since sonic and virtual temperature is approximately the same (e.g. Foken,

2008). Figure 4.3a shows Ts,2m plotted against Tv,2m. If they were equal (Ts = Tv) the

measurements would follow the 1-1 line. We see a slight deviation towards colder val-

ues of Ts compared to Tv , for temperatures above −10◦C. For even colder temperatures

(T< −10◦C), the scatter of the data increases. In total the 2 meter Ts seem to be sys-

tematically shifted towards colder temperatures. At 4 meter height (Figure 4.3b) the

scatter is, in contrast to 2 meter, towards both colder and warmer temperatures for

T< −10◦C. For temperatures above -10◦C there seems to be a small deviation towards

warmer temperatures of Ts compared to Tv . We would therefore expect a positive

correction of Ts, 2m and a negative correction for Ts, 4m.

Caveats

It is of importance to mention that the slow response temperature at 4 meter is ap-

proximated. We did a linear interpolation between 2 and 10 meter height, as we did

not have any measurements at the 4 meter level. This means that we have already as-

sumed to have a linear temperature profile, which might not be the case. An other big

caveat is that when the inversion layer is very shallow (lower than 10 meter) the inter-

polation will not be valid at all, due to a non-linear temperature profile. We are also

assuming that the temperatures measured by the 10-meter mast represents the tem-
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Chapter 4: Methodology

peratures at the location of the sonic anemometer. During relatively stable conditions

horizontal inhomogeneity can become important, and the temperature we assume is

correct might not be representative at all. It is, however, the best we can do as the raw

sonic temperatures, in their current state, are unusable in calculating the correct tem-

perature gradient. We will therefore try to find an offset value for the two temperature

sensors.

Median of the offset

We will find the offset value by taking the median of the difference in the virtual tem-

perature at 2 and 4 meters and the sonic temperature at 2 and 4 meters.

Tcorr, z = Tv, z − Ts, z (4.20)

where the bar denotes the median, and subscript z denotes the height. This gives the

corrected sonic temperature:

Ts, corrected = Ts, z + Tcorr, z (4.21)

The calculated offset values, for different calculation thresholds, are given in Table 4.6.

Here we are using a temperature threshold, and different stability thresholds.

Table 4.6: Correction coefficients for The sonic temperature in the form of the median of the difference
Tcorr, 2m = Tv, 2m − Ts, 2m and Tcorr, 4m = Tv, 4m − Ts, 4m

Height Tcorr Calculation threshold:

2 m

0.19 Ts ≥ −10◦C

0.25 Only using finite values

0.24 0 < ζ < 0.1

0.25 0 < ζ < 1

0.26 0.1 < ζ < 1

0.24 −0.1 < ζ < 0.1

4 m

-0.10 Ts ≥ −10◦C

-0.09 Only using finite values

-0.05 0 < ζ < 0.1

-0.08 0 < ζ < 1

-0.11 0.1 < ζ < 1

-0.05 −0.1 < ζ < 0.1

In this thesis, we are focusing mainly on the stable stratification. To keep the cor-

rection simple, we want to only use one offset value, and then limit the applicability

of the data calculated. If we apply a Tcorr, 2m = 0.25 and Tcorr, 4m = −0.08 it should be a
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4.2: Calculation of gradients

good fit for the values in the range 0 < ζ < 1. These values are not too far away from the

offset values calculated using other thresholds. The applicability outside this ζ range

might be somewhat limited.

Implications of the temperature correction

The temperature correction will not have any effect on the calculation of fluxes. This

is because fluxes are calculated using perturbations around the mean, and shifting the

mean will not effect the perturbations. When dealing with the absolute temperature,

for example in the Obukhov length (Equation 2.12 and Equation 2.19) the effect is only

going to be in the order of 0.1%, since the temperatures are in Kelvin. This means that

the only place where it is needed to correct for the temperature offset is for the calcula-

tion of the temperature gradients. Consequently the temperature correction has only

been applied on the temperature gradients (Equation 4.19) and the non-dimensional

gradient for heat (Equation 2.14).
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5 Dynamic stability

In this chapter we will take a look at the stability during the measurement period.

It should be noted that when talking about stability in this thesis, we are referring

to dynamic stability, opposed to static stability. We will discuss the different factors

increasing or decreasing the stability, and find the conditions favoring a stable strati-

fication.

5.1 Stability distribution

First we look at the stability distribution during the whole period. Table 5.1 show

the stability distribution for different stability ranges. The stratification is at most

times stable, with some unstable cases. The stable cases are mostly within the weakly

stable/near-neutral to fairly stable range. We observe that the stability is undefined

16.7% of the time at 2 meter height, which is not ideal as this is the stability parameter

used for both heights in classic MOST (Section 2.3). At 4 meter height it is only unde-

fined 3.5% of the time. This difference is caused by a reduced availability of reliable

data sets from the 2 meter sensor.

Table 5.1: The distribution of the different stability regimes, for 2 and 4 meters.

ζ range 2 m 4 m Range:

ζ > 0 77.6% 86.6% All stable ranges

−0.1 < ζ < 0.1 39.2% 30.0% Near-neutral

0 < ζ < 0.1 36.8% 28.1% Weakly stable/near-neutral

ζ > 0.1 41.0% 58.5% Fairly stable

ζ > 1 4.5% 9.1% Very stable

ζ < 0 5.6% 10.0% All unstable ranges

ζ < −0.1 2.6% 8.0% Fairly unstable

ζ = NaN 16.7% 3.5% Undefined

Figure 5.1a and 5.1b shows histograms of the stability distribution for the whole

campaign. As seen in Table 5.1 most of the measurements are within the weakly

stable/near-neutral to the fairly stable range, with some very stable measurements.
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Chapter 5: Dynamic stability

(a) 2 m height (b) 4 m height

(c) 2 m height (d) 4 m height

(e) 2 m height (f) 4 m height

Figure 5.1: Histogram of the stability parameter z Λ−1 (at 2 m height z Λ−1 = z L−1) during the campaign
for the Sonic anemometer for all wind speeds at (a) 2 and (b) 4 meter height, for (c) U2 m < 7 m s−1 for
2 meter height and (d) U4 m < 10 m s−1 for 4 meter height, and for (e) U2 m > 7 m s−1 for 2 meter height
and for (f) U4 m > 10 m s−1 for 4 meter height. The threshold is chosen for the wind speed when all
stability measurements are within the near-neutral range.
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5.2: Influence of wind speed and direction

There is a wider spread in the stability measurements at 4 meter compared to 2 meter,

meaning that we have more observations in the range |ζ| > 1 at 4 meter compared to 2

meter.

5.2 Influence of wind speed and direction

We expect the wind to influence the stability to a large degree. Higher wind speeds

should induce mechanical mixing, which leads to neutral or near-neutral conditions.

Figure 5.1c-5.1f shows histograms of the stability separated for wind speed. For pe-

riods with relatively high wind speeds, the wind shear generated turbulence mix the

layer and develops a near-neutral stratification (|ζ| < 0.1). The empirically determined

wind speed thresholds for near-neutral conditions are U2 m < 7 m s−1 and U4 m < 10 m s−1

for 2 and 4 meter height, respectively. This means that when the wind speed for the two

different heights exceeded these thresholds, the stabilities were, at all times, within the

near-neutral range (Figure 5.1e and 5.1f).

(a) 2 m height (b) 4 m height

Figure 5.2: Stability rose for Adventdalen at (a) 2 m and (b) 4 m height, where histograms of the
stability parameter z L−1 and the local stability parameter z Λ−1 are plotted against wind direction.

Wind direction could also play a large role, due to advection effects. Since we are

in a valley, relatively close to the entrance, we have two main wind directions, wind

from within the valley, and wind entering the valley. Measurements do not represent

the properties at the location of the instrument, but rather a certain distance upwind

of the instrument; the so called footprint area (e.g Foken, 2008). The effect is that for a

change in wind direction, the measured properties could change significantly because

the air measured still has properties from a different type of surface (rougher surface,

open water, etc.). The surface heterogeneities can be described as non-ideal conditions,

compared to ideal conditions on a homogeneous surface (e.g. sea ice with no nearby
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Chapter 5: Dynamic stability

terrain). The fetch is the upwind distance from the surface change. Measurements

needs to be taken at a distance far enough from the surface change in order to know

that you are actually measuring the local field (e.g Stull, 1988).

If the two main wind directions we see represent air masses we expect this to poten-

tially have an effect on the stability. Figure 5.2 is like a wind rose, but for the stability

parameter derived from MOST instead of the wind speed. We see that for the most sta-

ble conditions measured (z L−1and z Λ−1 > 0.5) we have SE wind, which is from within

the valley. The unstable stratification happens also mostly with SE wind. There is an

unstable stratification only 1-3% of the time with NW wind, while it happens between

9-13% of the time with SE wind. This is the same direction as were the most stable

stratifications occur. For NW wind the wind is fairly stable (ζ > 0.1) 25-39% of the

time, and 55-68% of the time for SE wind. This leads us to the conclusion that the

stability is affected differently by the different air masses from within the valley, and

the one coming from Adventfjorden.
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Figure 5.3: The wind speed U plotted against the stability parameter ζ = z L−1 = z Λ−1 at 2 meter
height. The colors on the markers indicates the wind direction. The red line indicates the median for
values with SE wind binned for different stabilities, also showing the standard deviation. The purple
line shows the same for NW wind.

To investigate this further we take a look at the stability distribution for different

wind speeds and directions. Figure 5.3 shows a scatter plot between the wind speed
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5.3: Influence of radiation

and the stability parameter ζ, with wind direction presented as color coding. It also

shows the binned median of the relationship using different wind direction thresh-

olds. The red line represents wind from within the valley (SE) and the purple line

represents wind from Adventfjorden (NW). We see that for higher wind speeds we get

lower stabilities, and for lower wind speeds we have a potential for higher stabilities,

just like we saw in Figure 5.1. A distinct directional dependency for the stability is also

seen, for the same wind speeds. The binned medians for NW and SE wind show that

for the same wind speed, the ABL is less stable for wind coming from Adventfjorden

(NW) compared to the opposite direction. This indicates that we have two different

types of air masses from the two different directions, and this might be because NW

wind comes from an open fjord. When we reach the very stable range (z L−1 > 1) the

dependence of wind speed and direction seems to weaken (for U < 2 m s−1), but there

are too few observations in this range to make any conclusions.

5.3 Influence of radiation

As mentioned before the main mechanism for the creation and maintenance of a SBL

is a negative net radiation balance. We will therefore try to a connection between the

radiation measurements and the stability.

Figure 5.4 shows the stability dependence on the net radiation, with wind speed as

color coding. When looking only at the blue line, which indicates relatively high wind

speeds (U > 7 m s−1), there are low values of stability, as shown in Section 5.2. We

also see a tilt in the blue line, meaning that the more negative net radiation the more

stable the the air is. There seems to be a stability maximum for this wind speed range

at z L−1 ≈ 0.06, when looking at the binned medians.

For wind speeds in the middle range (4 m s−1 < U < 7 m s−1) seen in the purple line,

the same tendency is seen. The more negative net radiation, the higher stabilities we

get. After z L−1 > 0.15 the tendency flattens out. The red line is the median for calm

conditions (U < 3 m s−1), which has the same tendency as the previous wind speed

ranges. Yet again the median flattens out, this time at about z L−1 > 0.25. The reason

for this flattening is hard to determine. It could be that the effect of net radiation is

limited, for the different wind speed ranges, at a certain stability threshold, or it is just

too few observations in this stability range. The standard deviations are also quite big

at this point, making it hard to say something with confidence.

The biggest difference between the different wind ranges is that the net radiation

needed in order to get the same stabilities are larger for higher winds. In order to

achieve a stability of z L−1 ≈ 0.06 a net radiation of -70 W m−2, -35 W m−2 and -

10 W m−2 for high winds (U > 17 m s−1), middle range winds (4 m s−1 < U < 7 m s−1)

and calm conditions (U < 4 m s−1), respectively. It is also seen that the stability in-
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Figure 5.4: Scatter of the stability parameter ζ = z L−1 = z Λ−1 against the net radiation at 2 meter
height. The color on the markers indicate the wind speed. The binned medians for different ranges in
wind speed are also shown; the red are for U < 4 m s−1, purple line for 4 m s−1 < U < 7 m s−1 and the
blue line is for U > 7 m s−1.

creases at a higher rate for increasing net radiation when there is calm and medium

range wind conditions, compared to relatively high wind speeds.

5.4 Discussion

The stabilities seems to have a tendency to be distinctly stronger, both on the stable

and unstable side, at 4 meter height, compared to 2 meter height. The same tendency

is seen when looking at the full time series in Appendix A.1. As most of our measure-

ments are in stable range (z L−1 > 0), we do not discuss any further than this on the

unstable conditions.

We see also that we have a clear trend for the stability with wind speed. Higher

wind speeds cause turbulent mixing, which leads to a shift towards neutral conditions.

This is what we would expect. We found the wind-speed threshold for near-neutral

conditions at U2 m ≈ 7 m s−1 and U4 m ≈ 10 m s−1. There is also a clear dependency

of the wind direction. When looking at data from the 2 meter sonic anemometer (Fig-

ure 5.3), we see that higher wind speeds lead to less stable conditions, but the stabilities
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5.4: Discussion

are generally higher for SE wind compared to NW wind, for the same wind speed. It

leads to the conclusion that the two main wind directions advect different air masses,

and that SE favors relatively higher stabilities compared to NW wind. This is not un-

expected as NW wind has its source in Adventfjorden, where the air mass is exposed

to advection from the relatively warm water.

The net radiation was also found to be important. Figure 5.4 shows a trend for

higher stabilities during strong negative net radiation. This is in accordance with the

assumption that one of the main drivers of the SBL is a negative radiation balance at

the surface. It is also seen that net radiation alone does not cause very stable condi-

tions, and that calm conditions are another requirement to get high stabilities.

It is concluded that the main drivers for the stability in Adventdalen are the wind

speed, the wind direction and the surface radiation balance. Calm conditions with

weak SE wind and strong negative net radiation are favorable for very stable condi-

tions.
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6 Scaling

6.1 Heat flux

It has been shown that the downward heat flux in the stable boundary layer increases

with higher stability, until it reaches a point where it starts to decrease (Derbyshire,

1990, e.g.). Different values for the maximum of the downward heat flux have been

found. Malhi (1995) found it at ζ = 0.2, Mahrt et al. (1998) found it at ζ ≈ 0.06 for

measurements at 10 meter height, and at ζ ≈ 0.02 at 3 meter height. Grachev et al.
(2005) found it at ζ ≈ 0.025 using classic MOST (Section 2.3), and at z Λ−1 ≈ 0.02 for

2.2 meters and at z Λ−1 ≈ 0.1 for their highest level (≈18.4 or 14 m) using local scaling

(Section 2.3). This heat flux maxima is found to be the separation between the weakly

stable (surface based scaling regime) and the transition regime (Mahrt et al., 1998),

mentioned in Section 2.3.

Figure 6.1 shows the buoyancy flux plotted against different stability parameters,

the flux Richardson number (Rf), and the surface based (z L−1) and local scaling pa-

rameter (z Λ−1). We see that the maximum negative heat flux for the binned medi-

ans occur at z L−1 ≈ z Λ−1
2 m ≈ Rf2m ≈ 0.007, except for the flux Richardson number

and the local stability parameter at 4 meter height, where this minimum is located at

Rf4m ≈ z Λ−1
4 m ≈ 0.015. This is almost of the same magnitude as the values found by

Mahrt et al. (1998) and Grachev et al. (2005), but one order of magnitude lower than

the value reported by Malhi (1995). Mahrt et al. (1998) found that the downward heat

flux maxima defined the separation from the surface layer scaling regime to the transi-

tion regime. This indicates that the transition regime starts at ζ ≈ 0.01 in our dataset,

as this is the location of the downward heat flux maxima, and MOST using the local

stability parameter z Λ−1 should give better results for more stable conditions.

Figure 6.1 does not show this behavior. In classical MOST the fluxes should be in-

dependent of height, for the same stabilities. The median of the buoyancy flux is closer

together when plotted against the surface based stability parameter, z L−1 compared

to the local stability parameter z Λ−1. This is the case until around z L−1 ≈ 0.3. From

there local scaling works better, but for very stable cases (z Λ−1 > 1) it separates again,

but this might be because we have too few observations in this range, or that other
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Figure 6.1: The buoyancy flux (Hs) plotted against the Flux Richardson number (Rf), the surface based
stability parameter z L−1, and the local stability parameter z Λ−1.

effects become important.

Classic MOST seems to be a better fit than MOST based on local scales until z Λ−1 ≈
0.3, which is not what we would expect if the limit of the transition regime is defined

by the maximum downward heat flux. The limits for the transition regime found by

Grachev et al. (2005), where ζ > 0.1, seems to be more in accordance with our results,

but they found the maximum downward heat flux at this point as well, as opposed to

our maximum one order of magnitude lower. This could be because we do not have

any measurements higher up, as the downward heat flux maxima is shifted to the right

for the second lowest measurement (∼ 3.2 meters) in Grachev et al. (2005), but their 5.1

meter measurement has the maxima on the same location as the rest of the heights, at

ζ ≈ 0.1.

For the most part, our results are in agreement with Grachev et al. (2005). The

downward heat flux maxima is located at lower stabilities, but as mentioned before,

this could possibly be because we do not have any measurements at larger heights.

When using local scales, the heat flux maxima is shifted to the right for the 4 meter

data (2 meter heat flux is unaffected by definition). Both Mahrt et al. (1998) and Grachev
et al. (2005) found the downward heat flux maxima at lower stabilities for the lower

heights, compared to the measurements higher up. The direction of the shift of the

46



6.2: Momentum flux

maxima is in the same direction as in Grachev et al. (2005), meaning that if we would

have measurements higher up, we might have had a downward heat flux maxima at

higher stabilities at these heights. Since local scales do not work significantly better

until ζ ≈ 0.3, we would expect the transition regime to start around here, based on

Figure 6.1. A regime boundary at ζ ≈ 0.3 is not far from the results from Grachev et al.
(2005), where they found the transition regime to start at ζ ≈ 0.1.

6.2 Momentum flux

Figure 6.2 shows the momentum flux in the form of the frictional velocity, u∗, plot-

ted against different stability parameters. Like for the buoyancy flux, the momentum

fluxes are the same for the two heights using classic MOST. The binned median of

u∗, with respect to stability, has a clear deviation between u∗ at the two heights, when

using the local scaling parameter z Λ−1 compared to the surface based stability param-

eter z L−1. This is a indication that classic MOST represent the momentum flux better

than MOST with local scaling, at least up to around ζ ≈ 1.
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Figure 6.2: The friction velocity (u∗) plotted against the Flux Richardson number (Rf), the surface based
stability parameter z L−1, and the local stability parameter z Λ−1.
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6.3 The flux Richardson number

A "critical" flux Richardson number, where turbulence growth is suppressed, is found

as Rfcr ≈ 0.2 − 0.25 (e.g Zilitinkevich et al., 2010), which should not not be confused

with the classical critical Richardson number (Rfc = 1), which tells where turbulence

changes to a quasi-laminar and non-turbulent state (e.g. Foken, 2008). Galperin et al.
(2007) and Grachev et al. (2013) found the Richardson number to be an inappropriate

threshold for when turbulence is suppressed.
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Figure 6.3: The friction velocity (u∗) plotted against the Flux Richardson number (Rf), the surface based
stability parameter z L−1, and the local stability parameter z Λ−1.

Figure 6.3 is the same as Figure 6.2 but using τ as the momentum flux, and looking

only at the momentum fluxes in the smaller range. The use of τ is chosen by compara-

bility reasons with Figure 5 in Grachev et al. (2013). When looking at the flux Richard-

son number, we do not see a clear point where the momentum flux is suppressed. Our

fluxes are in the same range as Grachev et al. (2013), but they do not die out as quickly

for Rf > Rfcr ≈ 0.2. The fluxes are persisting for Rf ≤ O(1), where they cease to exist,

but as the number of measurements is low, it is hard to say something exact. It should

be mentioned that we have not, in contrast to Grachev et al. (2013), filtered out large-

scale features in our measurements, meaning that some of the momentum fluxes can

contain contributions from larger scales.
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6.4: Influence of Coriolis

We also do not see any flux Richardson number threshold for suppressed turbu-

lence, which is in agreement with Galperin et al. (2007) and Grachev et al. (2013). We

see the same behavior for the buoyancy flux (Figure 6.1), where we have small down-

ward heat fluxes up to Rf > 2.3, where we no longer have any observations.

Grachev et al. (2013) did find the critical flux Richardson number to be an upper

threshold for the applicability of local scaling. Rf > Rfcr at 12% and 19% at the time,

at 2 and 4 meter height, respectively. We do not see any clear upper boundary for

the applicability of local scaling, in our data, for reasons that will be discussed in the

next section. A inferior boundary is not seen as well, as surface based scaling performs

better than local based scaling for the momentum flux (Figure 6.2-6.3), and the same

is true for the buoyancy flux up to z L−1 ≈ 0.3. Surface based scaling seems therefore

to generally perform better when looking at both fluxes. The upper boundary of the

transition regime, where local scaling should perform better, will be discussed next.

6.4 Influence of Coriolis

When the Coriolis force is a significant driver of the wind, features related to an Ekman

spiral have been found by e.g. Grachev et al. (2005). This is related to the turbulent

Ekman layer mentioned in Section 2.3, where the fluxes are small and the vertical

structure of the wind is highly influenced by the Coriolis force (Grachev et al., 2005).

Neither surface based or local based MOST are able to adequately describe the turbu-

lence in this regime, and it is therefore important to identify if we have any periods

under this regime in our observations.

In Figure 6.4 we see the difference in wind direction at 4 and 2 meter height. After

calculating the mean there was a 3.4◦ deviation from 0 for all stabilities. This is not

physical, as we do not expect the net effect from Coriolis to be the same for all stabili-

ties, and we attribute this difference to the accuracy of the orientation of two the sonic

anemometers. The mean of the deviation was therefore subtracted, before plotting

the angle deviation in Figure 6.4. The difference is then around zero at stabilities up

to ζ = z L−1 ≈ 1 This indicates that the effect from the earths rotation is negligible ap-

proximately up to this point. To confirm this, we plotted the Ekman number at 4 meter

height against the stability parameter z Λ−1, seen in Figure 6.5. The Ekman number

is a non-dimensional ratio comparing the frictional force and the Coriolis force. This

means that the Coriolis force has the most important significance when Ek > Ekcr ≈ 1.

The median of the Ekman number is above 1 at all times, with a few Ek outliers below

1. At z Λ−1 ≈ 3 the surface forcing is twice as important as the Coriolis, for the median.

Some outliers are seen, but when comparing Figure 6.4 and Figure 6.5 we can say that

Coriolis is negligible for ζ < O(1) which is in agreement with Grachev et al. (2005),

and that the Turbulent Ekman layer (Section 2.3) is nearly not present in our dataset.
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Figure 6.4: The difference in wind direction at 4 meter vs 2 meter height. We have subtracted the mean
of the difference (3.4◦) because of errors in the orientation of the sonic. The red line indicates the binned
median with respect to stability.

This means that our data are dominated by the Surface layer scaling regime and the

Transition regime, with nearly no occasions where higher stability scaling regimes are

applicable.

This indicates that there is probably no upper boundary for the applicability of

local scaling, or the transition regime, in our data. The surface layer scaling regime

seems to be the important boundary, in order to look for the applicability of local

scaling in our data set. As discussed in the previous section, surface based scaling

seems to perform better in general when looking at the fluxes in our data.
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Figure 6.5: The Ekman number at 4 meter height plotted against the local stability parameter z Λ−1.
The red line shows the binned median of Ek with respect to stability.
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7 Gradients

When calculating the non-dimensional profiles in MOST (Equation 2.13-2.14), they

will be sensitive to errors in the estimate of the vertical wind and temperature gradi-

ents. An overestimated gradient will lead to a too large non-dimensional gradient (φ),

and vice versa for an underestimation. The inaccurate estimation of the gradient might

be different for different stabilities, as the gradient is dependent on the stability (Equa-

tion 2.17). In the following sections we will present the calculated non-dimensional

profiles, and discuss the implications of a flawed representation of the vertical wind

and temperature gradient, before comparing our results with empirically found pa-

rameterizations of the non-dimensional gradients.

7.1 The non-dimensional momentum profile

As just stated, an inaccurate representation of the vertical wind gradient, will have an

implication on the accuracy of the non-dimensional gradient. We will for this reason

investigate the sensitivity of the choice of the vertical wind gradient, to the calcula-

tion of the non-dimensional profile of momentum (or the non-dimensional gradient of

momentum). A logarithmic wind profile will be investigated first, before examining a

second order logarithmic profile, and several linear profiles.

Figure 7.1 shows the non-dimensional gradient of momentum (φm) plotted with

respect to the surface based stability parameter (ζ = z L−1) and the local based stabil-

ity parameter (ζ = z Λ−1). It shows each 30 minute average as yellow and green dots

for 2 and 4 meter height, respectively, and the binned median of φm with respect to

the stability parameter, ζ, for 2 meter (blue line) and 4 meter height (red line). Surface

based scaling in MOST (Section 2.3) is applied for the top plot, while local based scal-

ing in MOST is used for the bottom plot. The black line shows the universal function

by Högström (1996) where

φH96
m = 1 + 5.3ζ (7.1)

and the dashed line shows the universal function developed by Grachev et al. (2007)
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Figure 7.1: The non-dimensional gradient of momentum φm, using a first order logarithmic fit to cal-
culate the wind gradient, plotted against the surface based stability parameter ζ = z L−1, and the local
stability parameter ζ = z Λ−1. The red and blue line shows binned medians with standard deviation at
2 and 4 meter height, and the yellow and green markers shows all 30-minute averaged measurements.
The black line represents universal function from Högström (1996) (Equation 7.1), and the dashed line
are the universal function developed by Grachev et al. (2007) using the SHEBA data (Equation 7.2) . The
bins are logarithmically distributed in respect to z Λ−1.

using the SHEBA data where:

φG07
m = 1 +

6.5ζ(1 + ζ)1/3

1.3 + ζ
(7.2)

The wind gradient is calculated according to Section 4.2.1, fitting the wind profile

logarithmically (Equation 4.15).

The calculated non-dimensional gradients overestimate, compared to the universal

function, by around 1 for ζ < 0.2 at both heights when using the surface based stability

parameter ζ = z L−1. This overestimation is slightly lower for the 4 meter height when

using the local stability parameter ζ = z Λ−1. For ζ > 0.2 there is an underestimation,

which is quite far from both the universal functions. The medians of φm are very close

together for the two heights when using the surface based stability parameter ζ = z L−1

until ζ ≈ 0.2 where they separate. For ζ > 0.2, φm, for the two heights, are much closer

54



7.1: The non-dimensional momentum profile

together when using the local stability parameter ζ = z Λ−1. If the non-dimensional

gradients should be constant with height at a given stability, the use of surface based

scaling in MOST (Section 2.3) works good up until ζ ≈ 0.2 where local scaling gives a

better height-independent relationship.
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Figure 7.2: The non-dimensional gradient of momentum φm, using a second order logarithmic fit to
calculate the wind gradient, plotted against the surface based stability parameter ζ = z L−1, and the local
stability parameter ζ = z Λ−1. The red and blue line shows binned medians with standard deviation at
2 and 4 meter height, and the yellow and green markers shows all 30-minute averaged measurements.
The black line represents universal function from Högström (1996) (Equation 7.1), and the dashed line
are the universal function developed by Grachev et al. (2007) using the SHEBA data (Equation 7.2) . The
bins are logarithmically distributed in respect to z Λ−1.

Grachev et al. (2005) found quite a good relationship between the empirical and

calculated non-dimensional profiles. They used a second order logarithmic fit to the

wind profile, while we, in Figure 7.1, used a first order logarithmic fit. We have there-

fore plotted for a second order logarithmic fit to the wind gradient using the matlab

function polyfit to find the gradient in the form of:

u(z) = A lnz2 +B lnz+C (7.3)
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where we get coefficients for A, B and C for each time step, which gives the gradient

du

dz
=

2A lnz
z

+
B

z
(7.4)

Figure 7.2 is the same as Figure 7.1 but using a second order logarithmic gradient (Equa-

tion 7.4). This gradient performs well on the 2 meter data, where it is in line with the

empirical universal functions, while it underestimates at 4 meter height. It has more

of a spread between the two heights, compared to when we are using a first order loga-

rithmic gradient (Figure 7.1). The performance is equally good using a first and second

order logarithmic gradient in calculating φm for higher stabilities (z L−1 > 0.5).
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Figure 7.3: The non-dimensional gradient of momentum φm plotted against the surface based stability
parameter ζ = z L−1, and the local stability parameter ζ = z Λ−1. The red and blue line shows binned
medians at 2 and 4 meter height, respectively. The dashed lines are using a linear gradient calculated
between 4 and 0 meter height, the dotted lines are using a linear gradient between 2 and 0 meter height,
and the normal lines is the gradient between 4 and 2 meter height, using Equation 4.13. The black line
represents the universal function from Högström (1996) (Equation 7.1), and the dashed black line are
the universal function developed by Grachev et al. (2007) using the SHEBA data (Equation 7.2) . The
bins are logarithmically distributed in respect to z Λ−1.

It is obvious that the choice of the gradient impacts the non-dimensional profiles

to a large degree. The choice is, however, not straight forward. We will now take a

look at the sensitivity of choosing a linear gradient, using different calculating ranges.
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7.1: The non-dimensional momentum profile

Figure 7.3 is the same as Figure 7.1 and Figure 7.2, but for different linear approxima-

tions of the gradient. The dashed line is calculated from a linear gradient between 4

and 0 meter height, the dotted line is calculated between 2 and 0 meter height, while

the full line is calculated between 4 and 2 meter height, using Equation 4.13. The blue

lines are for 2 meter height, and the red lines for 4 meter height. The non-dimensional

profiles, estimated using the vertical wind gradients based on one of the two sonics

and the surface (where the wind speed is zero), overestimates by around one order of

magnitude. Using a gradient based only on the two direct measurements gives a non-

dimensional gradient more in agreement with the universal functions. We see that the

relationship between φm and z L−1 and z Λ−1 is in general twice as large for the 4 me-

ter height. The source for this is the increase of z in Equation 2.13, and when using

a linear gradient, u∗ is the only component that can compensate for the increased z,

as the gradient is constant with height when using a linear approximation. Looking

at the time series for the whole campaign (Section A.1), we see that u∗ is generally the

same at both heights, with some variations. The only thing left to compensate for this

is increase is the stability parameter, but as seen in Figure 7.3, the relationship using

local scaling does not look significantly better.

Figure 7.3 shows that the non-dimensional profile is highly sensitive to the esti-

mation of the vertical gradient. When using a linear gradient estimated between the

ground and one of the two Sonic anemometers, it does not represent the expected non-

dimensional profile, while using a linear gradient between the two Sonic anemometers

performs better. This value seems to be more close to the local gradient, while it still

does not look as good as the non-dimensional profiles using different orders of a loga-

rithmic gradient.

In Figure 7.1-7.3 we have shown a high sensitivity for the non-dimensional momen-

tum profile, to the choice of vertical wind gradient. As MOST assumes a logarithmic

boundary layer, a linear gradient will not be valid for the whole surface layer. It is

possible that the linear gradient calculated represents the present gradient at a given

height. A linear gradient will therefore, by definition, not be suitable for MOST, but

the calculated gradient might adequately represent, at times, the actual gradient. We

have seen that a linear gradients calculated between both the surface and 2 meter and

the surface and 4 meter height, overestimates by the order of one magnitude, while

a gradient calculated between 2 and 4 meter, represents the non-dimensional profile

better. The medians of φm comes closer to the universal functions φH96
m and φG07

m when

using a logarithmic and second order logarithmic wind gradient.

If we assume the two different logarithmic wind profiles to be the best fit to our

data, we can draw some conclusions from Figure 7.1 and Figure 7.2. When using a

first order logarithmic gradient, the universal functions underestimate compared to

our data for ζ < 0.2, and overestimate for ζ > 0.2. This will cause an overestimation of
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Chapter 7: Gradients

the momentum fluxes for ζ < 0.2 and an underestimation for ζ > 0.2, when modeling

using the parameterized non-dimensional profiles, as the fluxes are directly dependent

on the gradient, which are dependent on the parameterization of the non-dimensional

gradient.

The second order logarithmic fit manages to represent the universal functions for

ζ < 0.2 at 2 meter height, while it underestimates at 4 meter height. In total we find

our data to be adequately represented by the empirical non-dimensional profiles un-

til ζ > 0.2 where the universal functions overestimates φm. The reason for this could

be that we have too few observations in the higher stability range, or that the chosen

gradient is underestimated for high stabilities. 2014 was a very mild winter on Sval-

bard (Section 3.4), which in general is expected to decrease the stability, compared

to normal conditions, during the whole winter. This could be the reason for the few

very stable measurements, and it can be one of the reasons why the non-dimensional

gradient of momentum is poorly represented under very stable conditions. It is also

possible that the universal function does not represent the stable conditions in Ad-

ventdalen, but it is hard to say something confidently, as the sensitivity to the chosen

gradient is quite big, and the number of measurements are few.

7.2 The non-dimensional temperature profile

The non-dimensional temperature profile (or the non-dimensional gradient of heat),

φh, is shown in Figure 7.4 with respect to the surface based (top) and local stability

parameter (bottom). The universal function by Högström (1996) for heat (black line)

is defined as:

φH96
h = 1 + 8ζ (7.5)

and the universal function for heat (dashed line) developed by Grachev et al. (2007) is:

φG07
h = 1 +

5ζ + 5ζ2

1 + 3ζ + ζ2 (7.6)

The figure is the same as Figure 7.4 but for the non-dimensional temperature profile,

φh, instead of the non-dimensional momentum profile, φm. It is important to note that

we found the temperature measurements to not have been correctly calibrated, which

have impacted the temperature gradient. We have tried to correct for this, under the

assumption that the temperature profile is linear (Section 4.2.3), and if this is not the

case, both the temperature difference and the temperature gradient will be erroneous.

As we have already assumed the shape of temperature profile we can no longer test

with different approximations of the shape of the wind profile. We have to assume

that a linear fit works adequately. As shown in the previous section, the choice of

gradient can have large implications for the accuracy of the non-dimensional profile.
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Figure 7.4: The non-dimensional temperature profile, φh, plotted against the surface based stability
parameter z L−1, and the local stability parameter z Λ−1. The red and blue line shows binned medians
with standard deviation at 2 and 4 meter height, and the yellow and green markers shows all 30-minute
averaged measurements. The black line represents the universal function from Högström (1996) (Equa-
tion 7.5), and the dashed line represents the universal function developed by Grachev et al. (2007) based
on the SHEBA data (Equation 7.6) . The bins are logarithmically distributed in respect to z Λ−1.

From Equation 2.14 we see that an overestimated temperature gradient will lead to a

overestimated non-dimensional profile, and vice versa for an underestimated gradient.

Ideally we would like to test for different gradients, but as our sensors are not correctly

calibrated, and we only have measurements at two heights, a reliable examination of

different temperature gradients is not possible.

The shape of the medians in Figure 7.4 is quite close to the two empirically found

universal functions, but it resembles φG07
h better for z L−1 > 0.2 and z Λ−1 > 0.2. When

using the surface based stability parameter z L−1 there is a clear separation between

φm at the two different levels. Using the local stability parameter z Λ−1 decreases this

separation, in particular in the range 0.05 < z Λ−1 < 0.5.

As long as our non-dimensional profiles are trustworthy, the universal function

by Grachev et al. (2007) in Equation 7.6 seems to be a relatively good fit to our data

set, even tough there is a clear underestimation at 2 meter height for stabilities above

z L−2 > 0.5 and z Λ−1 > 0.5. For stabilities lower than z L−1 < 0.01 the non-dimensional
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gradients are highly overestimated, implying that the temperature gradient is erro-

neous, because the shape of the temperature profile wrong, or that we have performed

an erroneous calibration of the temperature sensors (Section 4.2.3).

We found a high sensitivity for the non-dimensional momentum profile to the cho-

sen wind gradient (Section 7.1). This should imply that the non-dimensional temper-

ature profile is, as well, very sensitive to the chosen temperature gradient. The relia-

bility of our data is consequently reduced, as we have made a lot of assumptions in the

process of calculating the temperature gradient. Despite of this uncertainty we found

the median of φh to be quite well represented by the universal function developed by

Grachev et al. (2007), φG07
h , for stabilities higher than ζ > 0.01.
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8 Summary and outlook

8.1 Summary

We did fast response measurements in Adventdalen, Svalbard, using Sonic anemome-

ters at two heights, and slow response measurements on a 10-meter mast at two heights.

The objective of this thesis is to analyze the data set, with respect to the driving forces

for stability. We also wanted to check, for Adventdalen, the validity of MOST under

stable conditions, and compare with MOST extended for stable conditions using lo-

cal scales. An examination of the non-dimensional profiles, and the sensitivity to the

calculation of the vertical wind gradient, were also performed.

We found a wider spread in the stabilities at 4 meter compared to 2 meter height (Fig-

ure 5.1-5.2), meaning that we had a tendency to get more stable, or unstable, condi-

tions from the 4 meter measurements. Because of too few measurements in the un-

stable range, we decided to focus only on the stable conditions, from there on. We,

expectedly, found that the stability was highly influenced by the wind speed, the wind

direction and the net radiation. Higher wind speeds caused turbulent mixing, which

shifted the stratification towards the neutral range. During calm conditions the po-

tential for very stable conditions were present. We found that the stratification had a

tendency to be more stable for SE wind (Figure 5.3), coming from within the valley.

For NW wind, coming from the ice-free Adventfjorden, the air had a tendency to be

less stable for the same wind speeds, compared to SE wind. The net radiation balance

was also important (Figure 5.4), where large negative net radiations caused a more

stable atmosphere, but with a clear dependence on the wind speed. The conclusion is

that the main drivers of the stability in Adventdalen are the wind speed, the wind di-

rection and the net radiation balance. Calm conditions with weak SE wind and strong

negative net radiations were favorable to get very stable conditions.

We found the downward heat flux maxima at ζ ≈ 0.01 (Figure 6.1). Mahrt et al.
(1998) found the transition regime to start at the location of the downward heat flux

maxima. Local scaling should perform better in the transition regime, but we did not

find that local scaling worked best for ζ > 0.01. As MOST assumes the fluxes to be

constant with height, we want to find a relationship between the flux and the stability
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parameter, that is the same for the two heights. We found that the surface based scaling

represented this behavior best, until ζ ≈ 0.3. For ζ > 0.3 local based scaling performed

better until ζ ≈ 0.5, where the number of observations gets too low to say anything

with confidence. One reason why we did not see the downward heat flux maxima

at higher stabilities could be because we do not have observations at higher levels.

Grachev et al. (2005) found the heat flux maxima to shift to higher stabilities for the

higher levels, when using local scaling, until reaching a constant value of ζ ≈ 0.1.

This shift is not seen in our data set. Surface based MOST predicted the relationship

between the momentum flux and the stability best, for all stability ranges (Figure 6.2).

Applying local scales to the stability parameters separated the relationship for the two

heights, and thus had a worse performance than the surface based scales.

The turbulent Ekman layer is the stability regime where the the influence of the

earth’s rotation becomes important, and where MOST fails to predict the turbulence.

We found by investigating the Ekman number (Figure 6.5) that our observations are,

for stabilities below ζ ≈ 3, twice as much influenced by surface forcing compared to the

Coriolis force. This leads us to conclude that for most of the time, we are either within

the surface layer scaling regime, or the transition regime, with no significant amount of

measurements within the turbulent Ekman layer. As surface based scaling performed

better up to ζ ≈ 0.3 for the buoyancy flux, and at all times for the momentum flux, it

leads to the conclusion that our data lies mostly in the surface based scaling regime,

and classic MOST represents the turbulence best. This is in contrast with Grachev et al.
(2005) who found local based scaling, or the transition regime, to represent the fluxes

better for ζ > 0.1.

The flux Richardson number was found to be a poor threshold for suppressed tur-

bulence, as we saw small fluxes for the critical flux Richardson number, Rfcr > 0.2,

which is agreement with the results found by Grachev et al. (2013). They did find

Rfcr > 0.2 as a good threshold for the boundary between the transition regime and the

turbulent Ekman layer. In our data Rf > Rfcr occurs at 12% and 19% of the time at 2

and 4 meter height, respectively. As we previously found that we did not have any sig-

nificant number of measurements which were significantly influenced by the rotation

of the earth (Figure 6.5), the critical flux Richardson number does not seem to be an

appropriate upper boundary for the applicability of local scaling.

By investigating the non-dimensional profiles of temperature and momentum, we

found a high sensitivity to the choice of the vertical wind gradient. An inaccurate wind

gradient overestimated φm by up to one order of magnitude. A first order and second

order logarithmic fit to the wind profile gave the best results. The universal functions

by Högström (1996) and Grachev et al. (2007) adequately represented φm for stabilities

in the range ζ < 0.2. The universal functions overestimated φm for higher stabilities.

This could be caused by too few observations in this stability range, or that the uni-
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versal functions simply do not represent Adventdalen adequately for relatively stable

conditions, but too firm conclusions are unreasonable because of the low number of

observations in this range.

The non-dimensional temperature gradient, φh, was quite well represented for sta-

bilities higher than ζ > 0.01, by the universal function empirically found by Grachev
et al. (2007). As we had to perform a temperature correction, due to wrongly calibrated

temperature sensors, the temperature gradients are not as reliable as they could have

been. The temperature profile is assumed to be linear in the correction process, and

the investigation of different gradients were thus unreasonable. As we have already

seen the sensitivity for the calculated non-dimensional gradient to the choice of ver-

tical gradient, our calculated φh might therefore be, somewhat, inaccurate. Our non-

dimensional temperature profile, φh, is, however, well-represented by the universal

function found by Grachev et al. (2007).

The differences compared to the results from SHEBA (e.g Grachev et al., 2005, 2013)

can possibly be explained by the exceptionally mild conditions during our campaign

on Svalbard. Consequently, very stable conditions are absent, or at least heavily un-

derrepresented. In contrast to the SHEBA environment, we are also in a heterogenous

and non-idealized area, such that orographic effects and local advection may limit the

similarity theory, as found by Mäkiranta et al. (2011).

8.2 Further work

A better temperature correction algorithm can be created, in order to get more reli-

able temperature measurements. The contribution from large-scale motion could be

filtered out from the fluxes, in order to investigate the behavior of the fluxes at high

flux Richardson numbers, with more confidence. A new measurement campaign, with

correctly calibrated temperature sensors and measurements at more and higher levels,

could be taken in order to continue to evaluate the results from the SHEBA campaign,

in a non-idealized environment.
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A Appendix

A.1 Data

Weekly plots of the complete dataset are shown in Figure A.1 to A.14.
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A.2 TK3.11

The following is the code for the Turbulence Knight 3.11 parameter file, used to an-

alyze the data from the two Sonic anemometers. The parameter file for the Sonic

anemometer at 2 and 4 meter height is shown in Listing A.1 and Listing A.2, respec-

tively.
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Listing A.1: Parameter file for the Sonic anemometer at 2 meters

# parameter.vbp

#

# The new Turbulence Knight (TK3) reads all input parameters from this file

.

# TK3 may also be controlled by editing this file.

#

# Lines beginning with ’!’ serve as label for parameters to be read in the

next line

# Lines beginning with ’#’ serve as comments and will be ignored

# Blank lines will be ignored as well

# Parameters shall be given with an explanation in the line above for

better reading of this Input-File

#

#--------------------------------------------

# Path of input data

!path_in

’C:\TK3_11\Sonic2\in\’

#�Path�of�working�directory
!path_work

’C:\TK3_11\Sonic2\work\’

#�Path�of�output�data
!path_out

’C:\TK3_11\Sonic2\out\’

#�who�did�calculations
!author

’Andreas Froyland’

#�Project�Name
!project

Adventdalen2m

!header_info

F

####################�site�and�device�data�####################
#�sonic�type�(CSAT3,USA-1,Solent-HS,Solent-R3,Solent-R2,ATI-K,NUW,YOUNG)
!sonic_type

’CSAT3’

#�H20/CO2�instrument�type�(LI-7500,KH20,LI-6262,LI-7000,LI-7200,EC150,EC155
,LGR,NONE)

!h2o_type

’NONE’

#�CH4�instrument�type�(LI-7700,LGR,Aerodyne,NONE)
!ch4_type

’NONE’
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#�hd:�measuring�height�of�the�device�in�m�(for�each�measuring�complex),�(
REAL)

#�hc:�canopy�height�below�the�device�in�m�(for�each�measuring�complex),�(
REAL)

#�wd:�wind�direction�or�orientation�of�u-component�of�the�device�in�deg.�(
REAL)

#�height�above�sea�level�(REAL)
!dev_data

1.97,�0,�236,�8

#�latitude(REAL,INTEGER,INTEGER)
!latitude

78,�12,�06

#�Start�of�processing�period�(day�of�year,�hour,�second)�and�end-time�(
integer,integer,real)

!start

50,1100,0.00

###45,1400,�0.00

#�End�of�processing�period�(day�of�year,�hour,�second)�and�end-time�(
integer,integer,real)

!end

94,0830,0.00

###�94,0834,20.95
###�71�is�the�missing�day

#�Year�of�measurements�(calculations�are�only�possible�within�one�calender�
year)

!year

2014

#�minutes�in�binary�files�(REAL)
!t_interval

30

#�if�binary�files�exist,�type�T�(LOGICAL)
!load_binary

F

########################�INPUT�DATA�FILE�
###################################

#Set�true�T�if�the�original�Campbell�logger�files�are�split�into�hourly�
portions�using�the�program�HourlySplitData;

#the�input�file�name�will�then�automatically�be�generated�starting�with�the
�letter�"B"
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!HourlySplitData

F

#name�of�first�data�file�(all�other�files�will�be�found�by�nTK2�according�
to�the�given�time�window)

!data%file_name

’TOA5_2246_Flux_20140219.dat’

#Input�file�format�(’ASCIIcsv’,’SLT’)
!input_file_format

’ASCIIcsv’

#number�of�records,�total�number�of�columns�in�input�file,�including�time�
stamps�(INTEGER)

!number_of_records

8

#Format�of�time�stamp
#1�=�CR23x,�e.g.�254,1030,30.44
#2�=�TOA5,�e.g.�"2005-09-11�10:30:30.44"
#3�=�LabView,�e.g.�254,10:30:30.44
!time_format

2

#Start�column�of�each�channels�in�input�files,�if�not�associated�enter�’0’
!column

�������0,����������1,�3,�4,�5,��6,����7�,��0�,��0�,��0��,�0�,��0,������0,��
���0,����0�,����0,���0,��0�,����0,�0

#log_num,�time_stamp,�u,�v,�w,�Ts,diagCS,�co2,�h2o,diagLI,�Tp,�o3,�incl_x,�
incl_y,�LI_p,�LI_T,�CH4,�N2O,�HMP_T,HMP_RH

!Aerodyne_file

F

!data_Aero%file_name

’140821_000000.str’

#Units�of�channels�in�input�data�file,�if�not�associated�enter�’0’
!unit_wind�(’m s-1’,’cm s-1’)

’m s-1’

!unit_Ts�(’degC’,’K’)
’degC’

!unit_co2�(’mV’,’mmol m-3’,’umol mol-1’,’mg m-3’)

’mg m-3’

!unit_h2o�(’mV’,’g m-3’,’mmol mol-1’,’mmol m-3’)

’g m-3’

!unit_Tp�(’R R0-1’,’degC’,’K’)
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0

!unit_o3�(’µg m-3’,’ppb’)

0

!unit_LI_p�(’kPa’,’hPa’)
’kPa’

!unit_LI_T�(’degC’)
0

!unit_CH4�(’umol mol-1’,’nmol mol-1’,’umol m-3’)

0

!unit_N2O�(’nmol mol-1’)

0

!unit_HMP_T�(’degC’)
degC

!unit_HMP_RH�(’%’,’kPa’)
%

#consistency�limits,�in�same�units�as�in�input�file
!input%log_num�#Logger�program�ID�number,�e.g.�for�CR23X
0,0

!input%day�#Day�of�year
1,366

!input%hour�#Daily�time
0,2400

!input%second�#Seconds
0.0,60.0

!input%u�#Wind�u
-50.0,50.0

!input%v�#Wind�v
-50.0,50.0

!input%w�#Wind�w
-10.0,10.0

!input%Ts�#Sonic�temperature
-50.0,30.0

!input%diagCS�#CSAT�error�code,�usually�counts�up�from�0�to�63;�set�0,0�if�
not�associated,�IMPORTANT!

0,63

!input%co2�#CO2
0,2000

!input%h2o�#H2O
0,35

!input%Tp�#Platinum�temperature
0.,0.

!input%o3�#Ozone
0,0

!input%diagLI�#diagnostic�Licor
240,251

!input%incl_x�#Inclinometer�x-axis
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0,0

!input%incl_y�#Inclinometer�y-axis
0,0

!input%LI_p���#pressure�Licor
80,110

!input%LI_T��#temperature�Licor
0,0

!input%CH4���#methane
0,0

!input%N2O���#nitrous�oxide
0,0.

!input%HMP_T��#reference�temperature
-20,50

!input%HMP_RH��#reference�humidity
0,100

#Fixed�time�delays�of�channels�in�input�data�file�[seconds]
!lag

0.0,0.0,0.0,0.0,0.2,0.2,0.0,0.0,���0.2,���0.0,���0.0,0.2�,0.0�,0.0,0.0,�0.0
�,�0.0

#u�,�v�,�w�,�Ts,co2,h2o,�Tp,�o3,diagLI,incl_x,incl_y,LI_p,LI_T,CH4,N2O,
HMP_T,HMP_RH

!lag_Aerodyne

4.,4.

#CH4,N2O

#Parameters�are�required�to�create�an�equidistant�time�scale
#TK2�will�search�for�the�data�line�in�input�file�that�matches�the�given�

time�stamp�best
#desired�time�interval�or�measure�interval�in�sec�(REAL)
#minimal�time�interval�in�sonic�data�file:�very�important�(REAL
!calc_data

0.051,0.049

#What�is�missing�value,�what�is�the�code�for�missing�values�in�input�file
!NaN

-9999

#What�to�do�with�missing�values
#0�=�insert�NaN��(recommended�for�flux�calculations)
#1�=�take�last�value��(recommended�for�spectral�calculations,�including�

errors)

#2�=�linear�interpolation
!mv_option
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1

#Missing�values�at�the�beginning�of�blocks�will�be�ignored(F)�or�replaced(T
)

!fill_up_missing_values_at_begin

T

##�Calibration�data�#################
#left�hand�coordinate�system�(e.g.�USA-1,Solent-R2):
!lefthand

F

#Head�Correction�for�METEK�USA-1:�(0,1,3)
!HC

0

#Licor�CO2:�0V�and�5V�equal�[mmol/m?]�if�LI-7500�in�mV,�or�[ummol�mol-1]�if
�LI-7000/LI-6262�in�mV

!calib_data%co2

0,�1.

#Licor�H2O:�0V�and�5V�equal�[mmol/m?]�if�LI-7500�in�mV,�or�[mmmol�mol-1]�if
�LI-7000/LI-6262�in�mV

!calib_data%h2o

0.,1.

!calib_data%pt150

17.5,100.,146.84,0.00366

!calib_data%kh20

0.00,�0.0000,��0.0000,�-0.0450

!apply_spike_test�#Apply�MAD�spike�test�(Mauder�et�al.,�2013)
T

#values�exceeding�median+-’7’*std�equivalent�are�spikes
3.5

####################�REFERENCE�FILE�################################
#Reference�option?
#0�=�no�reference�measurements�for�pressure,�temperature�and�humidity
#1�=�reference�measurements�in�same�data�file�as�turbulent�data�(e.g.�from�

HMP45)

#2�=�reference�measurements�in�second�data�file�(e.g.�A6__M001.csv)
!ref_option

0

#consistency�limits
#Temperatur�reference�(degC)
!input%temp

0.,50.

#Humidity�reference�(g/m3)

86



A.2: TK3.11

!input%hum

0.,50.

#Pressure�reference�(hPa)
!input%pressure

800.,1100.

#-----------------------------------------------------------------

############################�Trouble�Shooting�
################################

!ascii�#ASCII�Output�of�raw�data(T/F),with�flags�(T)�or�without�(F)
F,F

!invalid_data

T

##################�Calculation�parameters�##########################
!load_statistics�#files�with�Covariances�already�exist?
F

!calc_data%t_interval1�#�Calculation�time�intervals�in�minutes
30

!calc_data%bad_max�#�maximum�allowed�number�of�missing/bad�values�in�
averaging�interval�in�%�(REAL)

1

#format�of�the�covariance�output�file
#0�=�LITFASS -2003�standard�exchange�format
#1�=�Mikrometeo�with�Sonic�Nvalue�(incl.�wind�direction,�<w’e’>)
#2�=�Mikrometeo�and�detailed�Nmiss
#5�=�Mikrometeo�with�Sonic�Nvalue�plus�MBR�psychrometers
#6�=�Mikrometeo�and�detailed�Nmiss,�incl.�N2O
#7�=�like�2�plus�random�errors��(allows�for�error�calculation)
#8�=�like�7,�plus�CH4,�and�N2O���(allows�for�processing�CH4�and�N2O�data)
!format_cov

0

!errors�#calculate�random�errors�and�instrumental�noise�(Mauder�et�al.,�
2013)

T

!x_max�#perform�cross�correlation�to�maximise�covariances�of�additional�
sensors�with�w

F

!combine�#combine�short-term�moments�for�longer�time�periods(T/F),�only�
useful�if�no�high-frequency�data�are�available

F

!calc_data%t_interval2�#short-term�averaging�interval�[min]
5
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!calc_data%t_interval3�#Interval�between�two�subsequent�averaging�intervals
,�only�applies�if�combine�=�T,�else�enter�’0’

0

#-----------------------------------------------------------------

####################�Correction�of�Fluxes�################################
!planar_correct�#Planar�fit�method�(Wilczak�et�al.,2001)
T

!read_pf�#read(T)�or�calculate(F)�coefficients�of�multiple�regression
F

!bk�#b-coefficients,�default�0.,0.,0.�means�no�tilt�correction,�only�
rotation�into�mean�wind

0.,0.,0.

!mean_wind�#perform�rotation�into�mean�wind�direction
T

!scalar_fluxes�#transformation�of�scalar�fluxes
T

!double_rotation�#apply�the�double�rotation�method�(T/F),�should�only�be�
applied�if�!planar_correct�=�F

F

!tanner_correct�#Tanner�oxygen�Correction
F

!moore_correct�#Moore�correction
F

!sa�#sensor�separation�w�-�a�[m]
0.30

!sc�#sensor�separation�w�-�CO2�[m]
0.30

!n0�#cut-off�frequency�for�CO2,�H2O,�CH4,�N2O�[Hz]
20,20,20,20

!sTp�#sensor�separation�w�-�Tp�[m]
0.01

!sn2o��#sensor�separation�w�-�N2O�[m]
0.01

!sch4��#sensor�separation�w�-�CH4�[m]
0.01

!Tptau�#time�constant�of�add.�fast�temperatur�sensor�[s]
0.01

!lateral�#spatial�separation�only�for�lateral�wind�component(T)�only�or�
total�(F)

T

!drctn�#direction�of�H2O/CO2�measurement�[degree]�against�N
348.

!drctn_CH4��#direction�of�CH4�measurement�[degree]�against�N
0
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!liu_correct�#Schotanus/Liu�correction
F

!wpl_correct�#WPL�correction
F

#------------------------------------------------------------------

############################�QA/QC�#################################
!stat�#Perform�stationarity�test��(Foken�et�al.,�2012)
T

!itc�#Test�on�developed�turbulent�conditions�with�integral�turbulence�
characteristics

T

#�coefficients�for�sigma_u/u*�parameterizations�according�to�Rannik�et�al.�
(2003)�or�Biermann�(2008)

!within_canopy_u�#�a_i,�alpha_i,�beta_i,�gamma_i
2.01,8.97,1.37,0.29

#�coefficients�for�sigma_w/u*�parameterizations�according�to�Rannik�et�al.�
(2003)�or�Biermann�(2008)

!within_canopy_w�#�a_i,�alpha_i,�beta_i,�gamma_i
1.13,0.9,1.2,-0.63

#Check�for�interdependence�of�quality�flags�due�to�corrections:�ustar�>�LvE
�and�HTs/HTp�>�NEE�(Mauder�et�al.,�2013)

!chk_interdependence

T

#Check�for�w-offset�(Mauder�et�al.,�2013)
!chk_wind

T

#Quality�Flags
#(1)after�Foken�et�al.�2004�(1-9)�or
#(2)after�Rebmann�et�al.�2004�(2)�for�CARBOEUROPE�(1-5)�or
#(3)according�the�scheme�found�on�the�1st�CARBOEUROPE�IP�Meeting�in�Spoleto

�(Mauder�et�al.,�2013)�(0-2)
!howto_combine

3

#Use�ITC�of�temperature�for�the�sensible�heat�flux�flag,�only�applies�for�!
howto_combine�=�1�or�2

#if�!howto_combine�=�3,�the�ITC�of�temperature�is�not�used�anyways
!use_itc_T

F
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#------------------------------------------------------------------

############################�Footprint�#############################
#Perform�footprint�analysis�according�to�Kormann�and�Meixner�(2001)
!footprint

F

#File�name�of�input�file�with�landuse�information,�required�for�footprint�
analysis,�in�ESRI�compatible�ASCII�grid�(*.asc)

#The�target�landuse�has�to�be�labelled�as�’1’;�a�second�target�landuse�can�
be�labelled�as�’2’

!map_name

’fendt_extended.asc’

#Sensor�location�in�UTM�coordinate�system�[REAL]
!m_easting

654210.060

!m_northing

5299781.402

!footprint_out�#output�of�footprint�distribution�as�ESRI�compatible�ASCII�
grid�(*.asc)

F

#------------------------------------------------------------------

############################�output�#################################
#time�information�in�filename
!timeinfo

T

#append�result�to�existing�file
!append

F

!ogive_on

F

!spectra_on

F

!stor_flux

F

!3rd_moments

F
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Listing A.2: Parameter file for the Sonic anemometer at 4 meters

# parameter.vbp

#

# The new Turbulence Knight (TK3) reads all input parameters from this file

.

# TK3 may also be controlled by editing this file.

#

# Lines beginning with ’!’ serve as label for parameters to be read in the

next line

# Lines beginning with ’#’ serve as comments and will be ignored

# Blank lines will be ignored as well

# Parameters shall be given with an explanation in the line above for

better reading of this Input-File

#

#--------------------------------------------

# Path of input data

!path_in

’C:\TK3_11\Sonic3\in\’

#�Path�of�working�directory
!path_work

’C:\TK3_11\Sonic3\work\’

#�Path�of�output�data
!path_out

’C:\TK3_11\Sonic3\out\’

#�who�did�calculations
!author

’Andreas Froyland’

#�Project�Name
!project

Adventdalen4m

!header_info

F

####################�site�and�device�data�####################
#�sonic�type�(CSAT3,USA-1,Solent-HS,Solent-R3,Solent-R2,ATI-K,NUW,YOUNG)
!sonic_type

’CSAT3’

#�H20/CO2�instrument�type�(LI-7500,KH20,LI-6262,LI-7000,LI-7200,EC150,EC155
,LGR,NONE)

!h2o_type

’NONE’

#�CH4�instrument�type�(LI-7700,LGR,Aerodyne,NONE)
!ch4_type

’NONE’
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#�hd:�measuring�height�of�the�device�in�m�(for�each�measuring�complex),�(
REAL)

#�hc:�canopy�height�below�the�device�in�m�(for�each�measuring�complex),�(
REAL)

#�wd:�wind�direction�or�orientation�of�u-component�of�the�device�in�deg.�(
REAL)

#�height�above�sea�level�(REAL)
!dev_data

4.06,�0,�230,�12.06

#�latitude(REAL,INTEGER,INTEGER)
!latitude

78,�12,�08

#�Start�of�processing�period�(day�of�year,�hour,�second)�and�end-time�(
integer,integer,real)

!start

45,1400,0.00

###45,1400,�0.00

#�End�of�processing�period�(day�of�year,�hour,�second)�and�end-time�(
integer,integer,real)

!end

94,0834,20.95

###�94,0834,20.95
###�71�is�the�missing�day

#�Year�of�measurements�(calculations�are�only�possible�within�one�calender�
year)

!year

2014

#�minutes�in�binary�files�(REAL)
!t_interval

30

#�if�binary�files�exist,�type�T�(LOGICAL)
!load_binary

F

########################�INPUT�DATA�FILE�
###################################

#Set�true�T�if�the�original�Campbell�logger�files�are�split�into�hourly�
portions�using�the�program�HourlySplitData;

#the�input�file�name�will�then�automatically�be�generated�starting�with�the
�letter�"B"
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!HourlySplitData

F

#name�of�first�data�file�(all�other�files�will�be�found�by�nTK2�according�
to�the�given�time�window)

!data%file_name

’TOA5_7687_Flux_20140214.dat’

#Input�file�format�(’ASCIIcsv’,’SLT’)
!input_file_format

’ASCIIcsv’

#number�of�records,�total�number�of�columns�in�input�file,�including�time�
stamps�(INTEGER)

!number_of_records

7

#Format�of�time�stamp
#1�=�CR23x,�e.g.�254,1030,30.44
#2�=�TOA5,�e.g.�"2005-09-11�10:30:30.44"
#3�=�LabView,�e.g.�254,10:30:30.44
!time_format

2

#Start�column�of�each�channels�in�input�files,�if�not�associated�enter�’0’
!column

�������0,����������1,�3,�4,�5,��6,����7�,��0�,��0�,��0��,�0�,��0,������0,��
���0,����0�,����0,���0,��0�,����0,�0

#log_num,�time_stamp,�u,�v,�w,�Ts,diagCS,�co2,�h2o,diagLI,�Tp,�o3,�incl_x,�
incl_y,�LI_p,�LI_T,�CH4,�N2O,�HMP_T,HMP_RH

!Aerodyne_file

F

!data_Aero%file_name

’140821_000000.str’

#Units�of�channels�in�input�data�file,�if�not�associated�enter�’0’
!unit_wind�(’m s-1’,’cm s-1’)

’m s-1’

!unit_Ts�(’degC’,’K’)
’degC’

!unit_co2�(’mV’,’mmol m-3’,’umol mol-1’,’mg m-3’)

’mg m-3’

!unit_h2o�(’mV’,’g m-3’,’mmol mol-1’,’mmol m-3’)

’g m-3’

!unit_Tp�(’R R0-1’,’degC’,’K’)
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0

!unit_o3�(’µg m-3’,’ppb’)

0

!unit_LI_p�(’kPa’,’hPa’)
’kPa’

!unit_LI_T�(’degC’)
0

!unit_CH4�(’umol mol-1’,’nmol mol-1’,’umol m-3’)

0

!unit_N2O�(’nmol mol-1’)

0

!unit_HMP_T�(’degC’)
degC

!unit_HMP_RH�(’%’,’kPa’)
%

#consistency�limits,�in�same�units�as�in�input�file
!input%log_num�#Logger�program�ID�number,�e.g.�for�CR23X
0,0

!input%day�#Day�of�year
1,366

!input%hour�#Daily�time
0,2400

!input%second�#Seconds
0.0,60.0

!input%u�#Wind�u
-50.0,50.0

!input%v�#Wind�v
-50.0,50.0

!input%w�#Wind�w
-10.0,10.0

!input%Ts�#Sonic�temperature
-50.0,30.0

!input%diagCS�#CSAT�error�code,�usually�counts�up�from�0�to�63;�set�0,0�if�
not�associated,�IMPORTANT!

0,63

!input%co2�#CO2
0,2000

!input%h2o�#H2O
0,35

!input%Tp�#Platinum�temperature
0.,0.

!input%o3�#Ozone
0,0

!input%diagLI�#diagnostic�Licor
240,251

!input%incl_x�#Inclinometer�x-axis
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0,0

!input%incl_y�#Inclinometer�y-axis
0,0

!input%LI_p���#pressure�Licor
80,110

!input%LI_T��#temperature�Licor
0,0

!input%CH4���#methane
0,0

!input%N2O���#nitrous�oxide
0,0.

!input%HMP_T��#reference�temperature
-20,50

!input%HMP_RH��#reference�humidity
0,100

#Fixed�time�delays�of�channels�in�input�data�file�[seconds]
!lag

0.0,0.0,0.0,0.0,0.2,0.2,0.0,0.0,���0.2,���0.0,���0.0,0.2�,0.0�,0.0,0.0,�0.0
�,�0.0

#u�,�v�,�w�,�Ts,co2,h2o,�Tp,�o3,diagLI,incl_x,incl_y,LI_p,LI_T,CH4,N2O,
HMP_T,HMP_RH

!lag_Aerodyne

4.,4.

#CH4,N2O

#Parameters�are�required�to�create�an�equidistant�time�scale
#TK2�will�search�for�the�data�line�in�input�file�that�matches�the�given�

time�stamp�best
#desired�time�interval�or�measure�interval�in�sec�(REAL)
#minimal�time�interval�in�sonic�data�file:�very�important�(REAL
!calc_data

0.051,0.049

#What�is�missing�value,�what�is�the�code�for�missing�values�in�input�file
!NaN

-9999

#What�to�do�with�missing�values
#0�=�insert�NaN��(recommended�for�flux�calculations)
#1�=�take�last�value��(recommended�for�spectral�calculations,�including�

errors)

#2�=�linear�interpolation
!mv_option
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1

#Missing�values�at�the�beginning�of�blocks�will�be�ignored(F)�or�replaced(T
)

!fill_up_missing_values_at_begin

T

##�Calibration�data�#################
#left�hand�coordinate�system�(e.g.�USA-1,Solent-R2):
!lefthand

F

#Head�Correction�for�METEK�USA-1:�(0,1,3)
!HC

0

#Licor�CO2:�0V�and�5V�equal�[mmol/m?]�if�LI-7500�in�mV,�or�[ummol�mol-1]�if
�LI-7000/LI-6262�in�mV

!calib_data%co2

0,�1.

#Licor�H2O:�0V�and�5V�equal�[mmol/m?]�if�LI-7500�in�mV,�or�[mmmol�mol-1]�if
�LI-7000/LI-6262�in�mV

!calib_data%h2o

0.,1.

!calib_data%pt150

17.5,100.,146.84,0.00366

!calib_data%kh20

0.00,�0.0000,��0.0000,�-0.0450

!apply_spike_test�#Apply�MAD�spike�test�(Mauder�et�al.,�2013)
T

#values�exceeding�median+-’7’*std�equivalent�are�spikes
3.5

####################�REFERENCE�FILE�################################
#Reference�option?
#0�=�no�reference�measurements�for�pressure,�temperature�and�humidity
#1�=�reference�measurements�in�same�data�file�as�turbulent�data�(e.g.�from�

HMP45)

#2�=�reference�measurements�in�second�data�file�(e.g.�A6__M001.csv)
!ref_option

0

#consistency�limits
#Temperatur�reference�(degC)
!input%temp

0.,50.

#Humidity�reference�(g/m3)
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!input%hum

0.,50.

#Pressure�reference�(hPa)
!input%pressure

800.,1100.

#-----------------------------------------------------------------

############################�Trouble�Shooting�
################################

!ascii�#ASCII�Output�of�raw�data(T/F),with�flags�(T)�or�without�(F)
F,F

!invalid_data

T

##################�Calculation�parameters�##########################
!load_statistics�#files�with�Covariances�already�exist?
F

!calc_data%t_interval1�#�Calculation�time�intervals�in�minutes
30

!calc_data%bad_max�#�maximum�allowed�number�of�missing/bad�values�in�
averaging�interval�in�%�(REAL)

1

#format�of�the�covariance�output�file
#0�=�LITFASS -2003�standard�exchange�format
#1�=�Mikrometeo�with�Sonic�Nvalue�(incl.�wind�direction,�<w’e’>)
#2�=�Mikrometeo�and�detailed�Nmiss
#5�=�Mikrometeo�with�Sonic�Nvalue�plus�MBR�psychrometers
#6�=�Mikrometeo�and�detailed�Nmiss,�incl.�N2O
#7�=�like�2�plus�random�errors��(allows�for�error�calculation)
#8�=�like�7,�plus�CH4,�and�N2O���(allows�for�processing�CH4�and�N2O�data)
!format_cov

0

!errors�#calculate�random�errors�and�instrumental�noise�(Mauder�et�al.,�
2013)

T

!x_max�#perform�cross�correlation�to�maximise�covariances�of�additional�
sensors�with�w

F

!combine�#combine�short-term�moments�for�longer�time�periods(T/F),�only�
useful�if�no�high-frequency�data�are�available

F

!calc_data%t_interval2�#short-term�averaging�interval�[min]
5

!calc_data%t_interval3�#Interval�between�two�subsequent�averaging�intervals
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,�only�applies�if�combine�=�T,�else�enter�’0’
0

#-----------------------------------------------------------------

####################�Correction�of�Fluxes�################################
!planar_correct�#Planar�fit�method�(Wilczak�et�al.,2001)
T

!read_pf�#read(T)�or�calculate(F)�coefficients�of�multiple�regression
F

!bk�#b-coefficients,�default�0.,0.,0.�means�no�tilt�correction,�only�
rotation�into�mean�wind

0.,0.,0.

!mean_wind�#perform�rotation�into�mean�wind�direction
T

!scalar_fluxes�#transformation�of�scalar�fluxes
T

!double_rotation�#apply�the�double�rotation�method�(T/F),�should�only�be�
applied�if�!planar_correct�=�F

F

!tanner_correct�#Tanner�oxygen�Correction
F

!moore_correct�#Moore�correction
F

!sa�#sensor�separation�w�-�a�[m]
0.30

!sc�#sensor�separation�w�-�CO2�[m]
0.30

!n0�#cut-off�frequency�for�CO2,�H2O,�CH4,�N2O�[Hz]
20,20,20,20

!sTp�#sensor�separation�w�-�Tp�[m]
0.01

!sn2o��#sensor�separation�w�-�N2O�[m]
0.01

!sch4��#sensor�separation�w�-�CH4�[m]
0.01

!Tptau�#time�constant�of�add.�fast�temperatur�sensor�[s]
0.01

!lateral�#spatial�separation�only�for�lateral�wind�component(T)�only�or�
total�(F)

T

!drctn�#direction�of�H2O/CO2�measurement�[degree]�against�N
348.

!drctn_CH4��#direction�of�CH4�measurement�[degree]�against�N
0
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!liu_correct�#Schotanus/Liu�correction
F

!wpl_correct�#WPL�correction
F

#------------------------------------------------------------------

############################�QA/QC�#################################
!stat�#Perform�stationarity�test��(Foken�et�al.,�2012)
T

!itc�#Test�on�developed�turbulent�conditions�with�integral�turbulence�
characteristics

T

#�coefficients�for�sigma_u/u*�parameterizations�according�to�Rannik�et�al.�
(2003)�or�Biermann�(2008)

!within_canopy_u�#�a_i,�alpha_i,�beta_i,�gamma_i
2.01,8.97,1.37,0.29

#�coefficients�for�sigma_w/u*�parameterizations�according�to�Rannik�et�al.�
(2003)�or�Biermann�(2008)

!within_canopy_w�#�a_i,�alpha_i,�beta_i,�gamma_i
1.13,0.9,1.2,-0.63

#Check�for�interdependence�of�quality�flags�due�to�corrections:�ustar�>�LvE
�and�HTs/HTp�>�NEE�(Mauder�et�al.,�2013)

!chk_interdependence

T

#Check�for�w-offset�(Mauder�et�al.,�2013)
!chk_wind

T

#Quality�Flags
#(1)after�Foken�et�al.�2004�(1-9)�or
#(2)after�Rebmann�et�al.�2004�(2)�for�CARBOEUROPE�(1-5)�or
#(3)according�the�scheme�found�on�the�1st�CARBOEUROPE�IP�Meeting�in�Spoleto

�(Mauder�et�al.,�2013)�(0-2)
!howto_combine

3

#Use�ITC�of�temperature�for�the�sensible�heat�flux�flag,�only�applies�for�!
howto_combine�=�1�or�2

#if�!howto_combine�=�3,�the�ITC�of�temperature�is�not�used�anyways
!use_itc_T

F

#------------------------------------------------------------------
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############################�Footprint�#############################
#Perform�footprint�analysis�according�to�Kormann�and�Meixner�(2001)
!footprint

F

#File�name�of�input�file�with�landuse�information,�required�for�footprint�
analysis,�in�ESRI�compatible�ASCII�grid�(*.asc)

#The�target�landuse�has�to�be�labelled�as�’1’;�a�second�target�landuse�can�
be�labelled�as�’2’

!map_name

’fendt_extended.asc’

#Sensor�location�in�UTM�coordinate�system�[REAL]
!m_easting

654210.060

!m_northing

5299781.402

!footprint_out�#output�of�footprint�distribution�as�ESRI�compatible�ASCII�
grid�(*.asc)

F

#------------------------------------------------------------------

############################�output�#################################
#time�information�in�filename
!timeinfo

T

#append�result�to�existing�file
!append

F

!ogive_on

F

!spectra_on

F

!stor_flux

F

!3rd_moments

F
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