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ABSTRACT 
Harvest control rules (HCR) are sets of well-defined rules that can be used for determining annual 

fish catch quotas or effort. If a management policy can be expressed as a HCR, then the HCR pro-

vides means to determine the total allowable catch unambiguously. In order to improve certain as-

pects of the performance for these rules (higher yield, lower variability of yield, less risk of de-

creased population biomass), strategies of increasing complexity have been suggested for fish stocks 

both in Europe and in North America. But is this complexity necessarily better? Are simple strate-

gies outdated? “Traditional” harvesting strategies (i.e. constant harvest rate, fixed quota and constant 

escapement strategies) are simple HCRs with only one control parameter (i.e. target harvest rate, 

catch and escapement, respectively). “Complex” harvest control strategies are here defined as a 

multi-parameter HCR. In this study, three criteria (average catch and its coefficient of variability and 

risk of population abundance below a minimum acceptable level) are used to judge the performance 

of traditional and complex HCRs, utilizing a stochastic age-structured population model that mimics 

the dynamics of fish populations. Even though the three HCRs performed rather similarly in the dif-

ferent simulations, the simplest HCR achieved the best results overall. The HCRs are further evalu-

ated against each other, paying particular attention to the tradeoffs among the performance criteria 

and also relating them to bio- and socioeconomic issues. 

 

 

Keywords: harvest control rules, harvesting strategies, single-parameter rule, multi-parameter rule, 

stochastic population models, noise, age-structured models 
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1. INTRODUCTION 

Fair and clearly specified management policy is in the interest of all stakeholders of the 

world’s fish resources. Harvest control rules (HCRs) are sets of well-defined sets of laws that can be 

used for determining annual catch quotas (Cooke 1999, Restrepo and Powers 1999, Johnston et al. 

2000) and are an attempt to formulate management strategies that fulfill a clear objective, and can be 

tailored towards fairness. If a management policy can be expressed as a HCR, then the HCR pro-

vides means to determine the total allowable catch unambiguously as a function of stock size.  

In order to improve certain aspects of performance of HCRs (i.e., higher yield, lower vari-

ability of yield, less risk of severely decreased population biomass), rules of increasing complexity 

have been suggested for the fish stocks both in Europe (i.e., within the International Council for the 

Exploration of the Sea (ICES)) and in North America. But is this complexity necessarily better? Are 

simple strategies outdated? 

“Traditional” harvesting strategies, e.g., constant harvest rate, fixed quota and constant es-

capement strategies (Hilborn & Walters 1992), are simple HCRs with only one control parameter 

(for the above mentioned strategies, target harvest rate, target catch and target escapement, respec-

tively).  Constant harvest rate is a strategy with invariable fishing pressure. A fixed quota strategy 

entails harvesting a fixed yield. And a constant escapement strategy consists of fishing only after a 

certain biomass has been surpassed. 

An advantage of a simple HCR is that it is easy to describe but it is also inflexible (Thomp-

son 1999). “Complex” harvest control rules are defined here as rules with more than one control pa-

rameter. Though these strategies are flexible and can be tailored to optimality, they can also be inac-

cessible in regards to implementation (Thompson 1999). Although there is no upper limit for the 

number of control parameters, considering more than three parameters is probably seldom practical. 

Biological reference points, certain values related to a biological aspect of the fish stock (i.e. spawn-

ing stock biomass or number of recruits), are the key component to adding complexity in multi-

parameter HCRs. 

Today, for example, ICES implements a very simple HCR for North-East Arctic cod which 

entails adjusting a constant fishing level according to the spawning stock biomass (Skagen et al. 

2003). But, fisheries researchers at the Institute of Marine Research in Bergen (Norway) have noted 

in their recommendations to ICES that setting fishing levels on a year-to-year basis ‘seriously ham-

pers long-time planning within the fishing industry’ (Skagen et al. 2003).  
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The use of biological reference points (i.e. critical biomass, target biomass or buffer biomass) 

to help define a precautionary approach is now a common strategy amongst fisheries managers. The 

precautionary approach is a relatively new tactic adopted by many intergovernmental organizations, 

including the United Nations Food and Agricultural Organization (FAO), ICES, and the Northwest 

Atlantic Fisheries Organization (NAFO), as a response to the world’s overfishing problem. This ap-

proach is a proactive rather than reactive strategy that seeks to ensure the sustainability of fisheries 

resources through management practices (Mace 2001).  

For many fish stocks, the precautionary approach replaces the old-school single-species 

maximum sustainable yield (MSY) strategy, which proved to be a target that can be routinely ex-

ceeded, leading to collapse of the target stock due to overfishing (Mace 2001). Lande et al. (2003) 

note that a stock harvested with a strategy that deterministically produces the MSY can still collapse 

due to the fact that stochasticity can interact with the fishing to produce such a collapse or extinction. 

In order to develop the precautionary approach into feasible fisheries management, clear har-

vest regimes needed to be formulated. The birth of the modern harvest control rule came from the 

scientific working groups of ICES and NAFO, among others. These working groups recommended 

specific harvest control rules based on the status of the resource and implementing specific reference 

points based on fishing mortality and biomass (Mace 2001). 

Computer models are important and modern tools that can aid in long-term fisheries planning 

and managing. Skagen et al. (2003) suggest that before an HCR is agreed upon for a fish stock, its 

performance needs to be evaluated and tested through computer simulations. This is to guarantee, as 

much as possible, that all management objectives are met (Skagen et al. 2003). Computer models 

represent the framework for HCR creations and simulations are used as a vital tool for stock man-

agement predictions. “Anyone who knows us could not imagine us working without some computer 

programs. We believe that easy and frequent computation is essential for learning about fisheries 

stock assessment and management.” (Hilborn and Walters 1992, Preface p xi)  

The merits of using age-structured models include the ease they give to simulate a large vari-

ety of management measures (Mesnil 2003). This is especially true when data is stochastically simu-

lated and not based on actual age-length data taken over a long period, which can prove to be unreli-

able. Stochasticity in age-structured models can cause the extinction of a population that otherwise 

would indefinitely persist in a deterministic model (Lande et al. 2003).  

General management strategy evaluation along with risk assessment and harvest strategy 

evaluation is becoming more common among the world’s fisheries managers (Hilborn and Walters 

1992; Haddon 2001). It is believed that so-called Monte Carlo models (or stochastic dynamic pro-
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gramming), such as the one proposed and tested in this thesis, are the future tools for evaluating and 

implementing successful fisheries management (Hilborn and Walters 1992). I observed the impor-

tance of management simulations in fisheries at the latest ICES Annual Science Conference in Tal-

linn, Estonia. A whole theme session was given to the topic “Evaluation of Fisheries Management 

Scenarios and the Supporting Data through Simulation” which had 17 paper presentations from sev-

eral different countries. Indeed today many fisheries managers and scientists around the world use 

simulation models to help predict stock sizes and model various harvest control rules and recovery 

plans. 

The main objective of this thesis is to evaluate the benefits and disadvantages resulting from 

three different harvest control rules. The approach is to investigate the performance of harvest con-

trol rules using a simple, generic, population model that still captures the essence of fish population 

dynamics, as opposed to a more narrow focus on a specific case study. I hope that by creating a sim-

ple population model and adding new layers of complexity to the classic, well-studied harvest strate-

gies that have only one control parameter (Hilborn and Walters 1992, Restrepo and Powers 1999), 

this will lead into a better understanding of what can be gained or lost by the implementation of dif-

ferent HCRs. 

In this study, three criteria—average yield and its variability, and risk of population abun-

dance below minimum acceptable level—are used to judge the performance of traditional and com-

plex HCRs, utilizing a simple stochastic age-structured population model that mimics dynamics of 

fish populations. In Section 2, the components of the model and simulation procedures are presented 

as well as the HCRs tested by the model. These HCRs are then evaluated against each other with the 

results found in Section 3. Particular attention to the tradeoffs among the performance criteria are 

paid in Section 4 with a practical discussion including the bioeconomics and practicality of different 

harvest control rules.  
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2. MATERIALS & METHODS 

2.1 Population & Survival Equations 

The population equations describe the model of a theoretical fish stock made up of two age 

classes: 

 

)()()( 22110 yearNfyearNfyearN ++=  (1) 

)()1( 001 yearNsyearN =+    (2) 

)()()1( 22112 yearNsyearNsyearN ++ +=+   (3) 

 

here, fi is fecundity at age i and si is the probability of survival from age i to age i+1. Any fish older 

than two years continued to belong to the N2+ age class throughout its life span. 

The Beverton-Holt equation for density dependency (which can not produce chaos) is used 

for the survival of N0 (Equation 4). The biological assumption behind the Beverton-Holt stock-

recruitment curve is that juvenile competition results in a mortality rate that is linearly dependent 

upon the number of fish alive in the cohort at any time (Hilborn and Walters 1992). The Beverton-

Holt recruitment curve is graphed in Figure 1. Equations 4, 5 and 6 are the survival equations, with 

stochastic multipliers, used in the population model. 

 

0

0
0 1

)exp(
Nk

EM
s y

×+
×−

=    (4) 

))(exp( 11 yVFMs ×+−=   (5) 

))(exp( 22 yVFMs ×+−=   (6) 

 

where M0, M1 and M2 are instantaneous annual natural mortality rates at ages 0, 1 and 2, respec-

tively, and F is instantaneous fishing mortality rate, k is a parameter describing the strength of den-

sity dependence and Ey represents environmental variation in the form of a stochastic multiplier.  

The density dependent relationship of the spawning stock size [N1(t) and N2+(t)] to the subse-

quent number of recruits [N1(t+1)] is shown in Figure 1. Here, a classic Beverton-Holt density de-

pendency is assumed in the model’s relationship between the spawning stock size (N1 + N2+) and the 

corresponding new recruits [N1(t+1)], which includes the s0 equation where Beverton-Holt density 
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dependency is added (Equation 4). On the subject of stock and recruitment, Hilborn and Walters 

(1992) state that density independence is a simple and reasonable postulation, but that it has limits. 

In the natural world, density dependence is clearly observed due to the fact that habitat and food are 

not found indefinitely. 

One can see the changes in recruitment strength resulting from different k parameter values 

in Figure 1 where higher k values produce a stronger density dependency among the recruits. 
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Figure 1 The Beverton-Holt relationship in the deterministic model between the spawning stock size (number of indi-
viduals in N1and N2+), the resulting recruits with different levels of density dependence strength represented by the k pa-
rameter, where M0 =2.0.  Fecundity parameter values for N1 and N2+ are 10 and 30 respectively.  

 

The Ey value is graphed in Figure 2 and found from a determined probability, p, a symmetric 

probability for a transition from a “good year” to a “bad year” or vice versa. A “good year” signifies 

the environmental multiplier (Ey) to equal 0.5 and a “bad year” equals 1.5. No fishing mortality oc-

curs before the age of 1 year. In order to mimic imperfect control of fishing mortality, stochasticity 

was also added to F values in some simulations. In these cases, noise was added multiplicatively 

with a parameter, Vy, defined as LogNorm (1,σ2
F) which is a log-normal distributed non-negative 

random deviate with a mean of one and variance σ2
F. 
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Figure 3 assembles Equations 1-6 as well as the stochastic multipliers (Ey and Vy) in a graph. 

The parameters used for the model are shown in Table 1. 

Spawning Stock Size (N1 + N2+)

0.0 2.0e+4 4.0e+4 6.0e+4 8.0e+4 1.0e+5 1.2e+5 1.4e+5

R
ec

ru
itm

en
t (

N
0)

0

1000

2000

3000

4000

good year

bad year

 
Figure 2 Equation 4 in graph form showing the environmental multiplier (Ey) stochasticity and its effects on the recruit-
ment in the model. The “good year” represents a 0.5 multiplier to the M0 in Equation 4 and a 1.5 multiplier for a “bad 
year”. The dotted line is the recruitment curve without the environmental multiplier. The schematic drawing (inset) of 
the environmental stochasticity illustrates the probability of going from a “good year” to a “bad year” and vice versa. 
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Figure 3 Schematic drawing of the population model used in this study. N0, N1 and N2+ are the three age classes and s0, s1 
and s2 the corresponding survival probabilities. The parameter f is fecundity, M0, M1 and M2 are instantaneous natural 
mortality rates at ages 0, 1 and 2, respectively, and F is instantaneous fishing mortality rate applied according to the har-
vest control rule chosen. Ey represents environmental variation in the form of a stochastic multiplier and fishing noise 
was added multiplicatively with a parameter, Vy.  
 

       TABLE 1 The population model’s parameters and their values.  
Symbol Description    Value Unit 

w1 weight of age 1 fish 1 w 
w2 weight of age 2 fish 3 w 
M0 natural mortality for N0 2 t-1 
M1 natural mortality for N1 0.4 t-1 
M2 natural mortality for N2+ 0.2 t-1 
f1 fecundity at time 1 proportional to the weight of N1 10 ind. 
f2 fecundity at time 2 proportional to the weight of N2+ 30 ind. 
k k used in Beverton-Holt s0 0.0001 ind -1 
N0 N0 at year 0 0 ind. 
N1 N1 at year 0 1 ind. 
N2+ N2+ at year 0 1 ind. 
Ey Environmental stochastic multiplier   
p Environmental variability probability 0.1-1.0  

σ2

F Fishing variance 0.00-0.1 ind. 
R0 net reproductive rate 3.96 ind 
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N2+ 
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 R0 is known as the expected lifetime production of offspring (Stearns 1992). An R0 value was 

found to measure the maximum potential expected reproductive success of the modeled fish popula-

tion used in this study. Equation 7 shows the R0 for the model in the absence of fishing and environ-

mental stochasticity: 

 

))exp(1(
))exp(()exp(

2

2110
0 M

fMfM
R

−−
×−+×−

=   (7) 

 

Where s0, s1 and s2 are survival probabilities for N0, N1 and N2 and f1 and f2 are fecundity values for N1 

and N2. Generally, an R0 value of >1 describes a population which is growing and an R0 value of <1 

describes a population which declining and not viable. If each individual in the population produces 

one offspring, then the population is in a steady state and the R0=1 (Mylius and Diekmann 1995). 

The R0 value of the model used for the HCR simulations was 3.96, using the parameter values given 

in Table 1. 

2.2 Harvest Control Rules (HCRs) 

Three different types of harvest control rules were used in the model (Figure 4). Type 1 was a 

one-parameter and therefore the simplest HCR in which the fishing mortality (Fconst) is constant and 

thus represents a “traditional” harvest strategy. Type 2, had two control parameters: the threshold 

biomass parameter (B*) and the corresponding fishing parameter (Fmax). Type 2 represents the most 

“complex” of the evaluated HCRs due to the proportional fishing occurring before the threshold 

biomass (B*). An escapement strategy is modeled by Type 3 which has also two control parameters: 

Fmax and B*.  

 

 
Figure 4 The three harvest control rule types used in the simulations. 
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2.3 Simulation Procedures 

FORTRAN was the computer language chosen for implementing the model. The analytical 

solution for the population dynamical equilibrium was calculated using the computer program 

Mathematica and the deterministic model’s parameters were tested. Sensitivity analyses were run in 

the deterministic model for each of the parameters. These results were graphed and analyzed to test 

the model’s sensitivity to the given constant parameters. 

To evaluate the HCRs, two sets of simulations were run. For the first simulation, the model 

was run for a time cycle of 5,000 years. The first hundred years were used to allow the fish popula-

tion to reach a stochastic steady state. Years 100-5,000 were then used to analyze the long-term per-

formance of the three different harvest control rules implemented. Different combinations of envi-

ronmental and fishing stochasticity were used to further assess each HCR. 

The second simulation used fixed environmental and fishing stochasticity parameters and 

then evaluated each HCR for this specific condition. The values of the predetermined environmental 

and fishing stochasticity parameters were 0.25 and 0.025, respectively. The time cycle for this simu-

lation was 50,000 years for the purpose of smoothing out the data and dampening the stochasticity. 
The three criteria used to rate each harvest control rules’ performance were: average yield, 

coefficient of variation (CV) in yield (defined as the standard deviation/average yield * 100), and 

“risk”. Risk was defined as the probability of population biomass being below a minimum accept-

able level, here set to 10% of “virgin” biomass, i.e., average biomass in absence of fishing. Risk de-

scribed in this study can be related to the “precautionary approach” aspect of some international har-

vest control rules today.  

Using loops in the main code, a large combination of different fishing mortality (F) and 

threshold biomass levels (B*) was calculated by the FORTRAN program created. The average annual 

yield, CV and risk for each of these combinations were then evaluated to come up with an “optimal 

solution” for each HCR. The optimal solution is one where annual average yield is maximized and 

CV and risk minimized. 

Adjusting the p parameter levels, which controlled the good year/bad year probability of en-

vironmental variation, controlled the environmental stochasticity in the model. Changing the vari-

ance level, σ2
F, controlled the stochasticity applied to the fishing mortality levels.  
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3. RESULTS 

3.1 Examining the Model 

The model was first checked to correctly represent an age-structured, derministic fish popula-

tion. In Figure 5, the dotted line shows the dynamics of the theoretical fish population in the absence 

of fishing and survival and fishing stochastic variance. 

The addition of the stochastic noise to the survival of the N0 age group is also illustrated in 

Figure 4. The spawning stock size (N1 +N2+) fluctuates most with lower p values and is consequently 

most stable when p=0.9. 
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Figure 5 Different probability, p, values and their effect on the model’s spawning stock size. The p represents the prob-
ability of the environmental variable to go from a “good year” to a “bad year”. 
 

3.2 Sensitivity Analyses 

A series of sensitivity analyses were conducted in a time cycle of 1,000 years to test the 

model’s responses to different numerical values of the parameters used and to gain confidence in the 

model itself. Neither fishing mortality nor stochasticity is included in the sensitivity analyses. 

A range of values of M0 plotted in Figure 6 show the resulting equilibrium N1 and N2+ values. 

There is a negative relationship between the population abundance and increasing M0.  
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Figure 6 illustrates a negative relationship to an asymptotic line between the number of indi-

viduals in the N2+ population and M1. The numbers approach zero when M1 is 6. The same relation-

ship is seen in Figure 6 when the sensitivity of M2 is tested.  

The k parameter value, expressed in the survival equation for N0, defines the strength of den-

sity dependence within the resulting N1 cohort. The model shows a rapid decrease of the number of 

individuals in N1 when the k parameter value is increased (Figure 6).   
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Figure 6 Different values of M are plotted against the resulting N1 and N2+ to test the sensitivity of the M parameters. 
Accompanied is also an analysis of the sensitivity of the survival equation for N0 (expressed as number of individuals in 
N1) to increasing k parameter values.  The red dotted line represents the parameter values used in the model (Table 1). 
The N1 cohort reaches extinction (<1 individual) when the k parameter is at 0.136. A time cycle of 1,000 years was used 
for each of the graphs. 
 
 

Next, the average yield was found using the deterministic model for HCR Type 1 and a series 

of k parameter values. A clear peak shows the maximum average yield of 13060 units found at a 

fishing mortality of 0.5 with a corresponding k parameter value of 0.0001. Increases in the k parame-

ter value lead to a substantial decrease in average yield in HCR Type 1 (Figure 7) due to elevated 
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density dependency pressures among the recruits in the fish stock. A k parameter value of 0.0001 

was then used for further simulations (see Table 1). 
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Figure 7 HCR Type 1 and the resulting average annual yield for a time cycle of 1,000 years. HCR Type 1 was simulated 
with the deterministic population model with different levels of the k parameter and fishing mortality. 

 

 

3.3 Simulations of Harvest Control Rules 

Two sets of simulations were conducted to determine maximum average yield and the result-

ing CV and risk for each of the three HCR types. The first simulation had different combinations of 

environmental variability and fishing variances. The second simulation was situation specific, mean-

ing two set values of environmental variability and fishing variances were selected and the resulting 

performances of each HCR type were studied. In order to determine the “optimal solution” for each 

HCR, the highest average annual yield was first found with the corresponding CV and risk levels 

noted. Tradeoffs between high yield and corresponding CV and risk are probable and discussed. 

 

3.3.1 General Simulation 

In general, the three HCR types performed similarly in maximum yield (of the time cycle of 

5,000 years), and the resulting CV and risk, especially at high p values (0.4 and 0.5). Figure 8 dem-
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onstrates a clear tradeoff between CV/risk and high average yield. However, the results from the first 

simulation in Figure 8 suggest that Type 1, the traditional constant catch harvest rule, out-performed 

the more complex control rules in all three criteria for this simulation (see Table 2) giving the high-

est yield and lowest corresponding CV and risk.  

For the risk criterion, HCR Type 2 performed generally best, out-performing Type 1 and 3 at 

low levels of p and fishing variance. However, there is a noticeable spike at the highest fishing vari-

ance level (0.1) and a p value of 0.2. It is not known if this spike represents a robust feature of HCR 

Type 2, but is most likely an anomaly.  Each HCR performed very similarly in regards to CV values 

at all levels of stochasticity in Figure 8, which were in fact quite high levels with no situation lower 

than 50% variation in yield. Type 3 shows two peaks with the highest CV values (at 81 and 82.9). 
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Figure 8 Results (maximum average annual yield, CV and risk) from the computer model simulation of three different 
harvest control rules. The simulation was run for 5,000 years and the results were optimized to include the maximum 
average yield for the time cycle for different levels of p and fishing variance (σ2

F).  
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Table 2 A summary of the maximum values (average annual yield, CV and risk) from the computer model simulation 
presented in Figure 8 of three different harvest control types with corresponding p and fishing variance (σ2

F) levels in 
parentheses. 

Avg Yield CV RISK 
TYPE 1 2705 (0.1, 0.05) 79.5 (0.2, 0.1) 14 (0.1, 0.008)
TYPE 2 2584 (0.1, 0.03) 80 (0.1, 0.1) 37.5 (0.2, 0.1)
TYPE 3 2517 (0.1, 0.0) 82.9 (0.1, 0.1) 22 (0.1, 0.05)  

 

 

3.3.2 Specific Situation Simulation 

For the second simulation, each of the HCR types were simulated in a time cycle of 50,000 

years, in order to smooth out the stochastic data effects, using fixed p and fishing variance parame-

ters of 0.25 and 0.025, respectively. The results for all three of the HCRs show similar maximum 

average yield at the same fishing mortality level of 0.4. Figure 9 and Figure 10 each clearly show 

increasing CV and risk with increasing fishing mortality. A clear spike of the average yield in Figure 

9 shows the maximum average yield for HCR Type 1. Arrows point to the maximum average yield 

for HCR Types 2 and 3 in Figure 10. 
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Figure 9 A summary of results (fishing mortality, and the resulting average annual yield, CV and risk) from the situation 
specific computer model simulation of HCR Type 1. The simulation was run for a time cycle of 50,000 years with set p 
(environmental variation) and fishing variance (σ2

F) values of 0.25 and 0.025, respectively. 
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Figure 10 A summary of results (average annual yield, CV and risk) from the situation specific computer model simula-
tion of HCR Type 2 and 3. The simulation was run for a time cycle of 50,000 years with set p and fishing variance (σ2

F) 
values of 0.25 and 0.025, respectively. The arrows point to the maximum average yield. 
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Here, in this second situation specific simulation, there is no difference between the levels of 

fishing mortality at the maximum average yield for each HCR type. Type 1 has a maximum average 

yield (the maximum value of the average yield taken over 50,000 years) of 2348 units with a fishing 

mortality of 0.4 and CV and risk values of 59.3 and 0.01, respectively. For Type 2, the maximum 

average yield (2351 units) occurs at a fishing mortality of 0.4 and threshold biomass of 350 with cor-

responding CV=59.5 and risk=0. Type 3 gives the largest maximum average annual yield (2365 

units) at a fishing mortality of 0.4 and threshold biomass of 750 (corresponding CV=59.1 and 

risk=0).  

Figure 10 further suggests that for HCR Types 2 and 3, the average annual yield is very sen-

sitive to the F parameter, but not to the B parameter. Also, clear tradeoffs are observed between av-

erage annual yield and the resulting CV and risk levels. Higher threshold biomass produces lower 

CV and risk for Types 2 and 3. Risk levels are notably lower for HCR Type 3 for increasing thresh-

old biomass and fishing mortality values. 

The maximum average annual yield results taken from Figures 9 and 10 are presented in 

schematic drawing of the simulation in Figure 11. 

 

 

 

Figure 11 A diagram of the results of the simulation of 50,000 years with p (probability of a shift from an environmen-
tally “good year” to a “bad year”) and σ2

F (fishing variance) set at 0.25 and 0.025, respectively. The threshold biomass 
reference point and fishing mortality (F) levels correspond to those in the simulation that produced the maximum aver-
age annual yield. 
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4. DISCUSSION & CONCLUSIONS 

4.1 Discussion of Results 

Hilborn and Walters (1992) note that a harvest strategy is made up of economic, biological, 

social and political components. Each of these components takes into consideration the tradeoffs be-

tween average yield, year-to-year variability and the costs of such variability to the stakeholders. My 

study consists of modeling a theoretical fish stock and evaluating resulting biological and economic 

components (in the terms of biomass and yield) after the application of an HCR. The social and other 

economic aspects (such as loss of jobs in fisheries due to overfishing) are not specifically included in 

the model, but are discussed in Section 4.3. 

First, results of the sensitivity analysis calculated with the dynamical population equilibrium 

equation of the model’s parameters and the corresponding figures confirm that the numerical levels 

chosen for the various parameters represent a viable fish population (R0= 3.96).   

Results imply that harvest control rules can be similar in average yield, but very different in 

how these yields can be obtained due to the nature of the harvest regime. The simulations carried out 

during the span of the project and the simulation presented in this paper show that the best perform-

ing and most practical HCR is dependent on the levels of variance of the stochastic noise given to 

the model (results not shown).  

For example, Figure 11 shows that to obtain quite similar yields, the optimal HCR Type 1 

would allow the fishermen to fish at all levels of biomass at a fishing level of F=0.4. HCR Type 2 

would allow the fishermen to harvest an increasing proportion of the biomass up to a biomass level 

of 350 where they would continue at a constant fishing level of F=0.4. Finally, HCR Type 3 would 

allow a fishing pressure of F=0.4 but only after the biomass had reached a level of 750. These results 

are given for only the maximum average yield at one level of environmental and fishing variances 

and meant to illustrate an example of the practicalities of each HCR in a specific situation. A prudent 

fisheries manager would use such a simulation to evaluate a potential harvest strategy with given 

environmental and fishing variability before implementation. 

Overall, HCR Type 1 scores best in the simulations due to constant fishing which produced 

the highest average annual yield with lowest CV and risk values. Furthermore, in support of the suc-

cess of HCR Type 1, Walters and Parma (1996) conclude that a fixed exploitation rate strategy per-

forms quite robustly in the face of unpredictable environmental change. Hilborn and Walters (1992) 

also point out the benefits of a fixed harvest rate due to its strength when facing the dangers of over-
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fishing. These conclusions are backed up by this study’s results in which the fixed harvest rate HCR 

(Type 1) performed best. 

Consequently, fisheries managers, fishermen and other stakeholders probably would value 

the HCR performance criteria differently. A utilitarian fisheries manager would perhaps value high 

average yield most, whereas fishermen would set heavy weight also on variability of the annual 

catches (CV). A conservationist could be concerned, above all, on having as small risk of biomass 

being below a minimum acceptable level as possible. Thus, the eventual choice among the three 

strategies would critically depend on the weighting of the various performance criteria. In particular, 

whether better performance is gained with a “complex” or a “simple” harvest control rule depends 

on the relative importance set on average yield versus year-to-year stability in yield. Profit-sharing 

schemes, combining reserves with threshold harvesting, insurance and a reduction in the fishing fleet 

capacity (see Section 5.3) are some ways to alleviate high CV of yield or possible year(s) of no fish-

ing (Lande et al. 2003). 

For fishermen, HCR Type 3 is impractical and a waste of time. In fact, HCR Type 3 has vir-

tually no merits in comparison to the other two rules due to its very high escapement feature and 

subsequent low fishing pressure with little gain in yield and CV.  Also, it is necessary to call atten-

tion to the high coefficient of variation (CV) values found in Table 2. For the year the produced the 

highest average yield, each of the corresponding CV values were 79.5, 80 and 82.9 respectively for 

HCRs Type 1, 2 and 3. These extremely high CV values in annual yield are way beyond what is ac-

ceptable for fishermen. In fact, a value of over 30% would likely be considered deplorable in the 

fishing community. As Figure 8 suggests, CV (and risk) values vary according to environmental 

conditions and fishing variance in this model. Moreover, Figures 9 and 10 illustrate the rise in CV 

and risk values with increasing fishing mortality (F). These graphs symbolize the tradeoffs in fisher-

ies management between high yield and resulting high variation of yield and high risk of disturbing 

the population which could lead to commercial or biological extinction. One does notice, however, 

the sharp decrease in yield for each of the HCR types after a fishing mortality (F) value of approxi-

mately 1.0 (Figures 9 and 10). This suggests that higher fishing pressure only gives higher yield up 

to a point where fishing over this peak fishing pressure does not lead to more yield, only higher CV 

and risk.  

Katsukawa (2004) used numerical models to find the optimal fishing three-parameter control 

rule for three different fish stocks. Different stock size and environmental uncertainty values were 

used in the simulation with results suggesting that the type of life history (e.g. natural mortality 
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rates) and stock size assessment error (uncertainty of the stock) should determine whether a simple 

or complex HCR should be implemented (Katsukawa 2004).  

The life history of this study’s stock was quite a robust one. The stock was seemingly able to 

bounce back after a year of bad recruitment (Figure 4). This most likely contributed to the success of 

the fixed exploitation rate HCR when applied to this model stock. The way stochasticity is imple-

mented also increases the expected reproductive potential relative to the deterministic version (Fig-

ure 5). 

In their chapter summary on sustainable harvesting, Lande et al. (2003) state that the optimal 

HCR is immediate harvesting of the biomass above the carrying capacity with no harvest below that 

amount (Lande et al. 2003, p. 137). Such an HCR would relate to this paper’s HCR Type 3 but dif-

fers in the fact that Type 3 implies harvesting a fixed proportion above the threshold. In the event of 

uncertain population sizes, however, Lande et al. suggest a modified HCR Type 2 where only a pro-

portion of the population after a threshold is harvested with no harvest below the threshold. This 

statement is backed up by results presented in Figure 10 where Type 2 fairs well in CV and risk for 

different levels of stochasticity with some exceptions.  

Lande et al. (2003) further suggest that larger environmental stochasticity usually increases 

the optimal harvesting threshold for populations that persist for long time periods. Other simulations 

done with this model supported this statement. Environmental variation from a non-auto-correlated 

source (expressed as σ2
S) gave increasing average annual yield for increasing environmental varia-

tion in the model (Housholder, Heino, and Fiksen 2003). 

Also interesting is the way fishing can alter the behavior and evolution of fish species. For 

example, Heino (1998) found through age-structured models that selective harvesting of mature fish 

at the spawning grounds is able to cause evolutionary change. This change can increase sustainable 

yields whereas unselective harvesting at the feeding grounds can cause an unfavorable evolutionary 

change (i.e., earlier maturation) in the stock resulting in a reduction of sustainable yield. However, 

there are clear drawbacks to exclusive harvest at spawning grounds including limited fishing seasons 

and susceptibility to overexploitation (Heino 1998). 

 

4.2 Limitations of the Model 

Admittedly, the limitations of the population model used and presented in this thesis arise 

from its simplicity. This study assumes correct knowledge of the stock size and no measure of as-

sessment uncertainty, besides that of fishing variance (Fy) is included in the model. Other dynamic 
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model studies (e.g. Walters and Parma 1996; Katsukawa 2004) include uncertainty of the stock, 

which is a very important parameter in working HCR models.  

Again, this study focuses on a basic model and important factors absent in this study could be 

added in at a later time. Assumptions are made that the correct model parameters are known and the 

parameters are constant. To control the population as best possible, the fish stock modeled does not 

represent any “real” fish stock, nor is it modeled after any collected data. This was also done in order 

to focus the project on the performance of the HCRs and not on uncertainty of the population model.  

The model’s resilience to collapse (the fish population never collapsed in any of the study’s 

simulations) is probably due to the fact that the age one year fish can always reproduce before they 

are exposed to fishing. Having fishing pressure occur before spawning would create a less resilient 

population. In addition, this model only has two age classes. A more detailed and complicated, but 

more realistic, model with several age classes with a maximum age leading to subsequent death 

would most likely make the population less resilient to increased fishing pressure and different levels 

of stochasticity. Another look at Figure 2 and how the environmental stochasticity affects the model 

may also show why the population is so durable. In a “good year” there is over a tripling in recruit-

ment, while during a “bad year” recruitment is a little more than half of the original recruitment. The 

fact that recruitment is very good during a “good year” and not so bad during a “bad year” is due to 

the Ey levels that were probably too simply chosen (0.5 and 1.5) and because of the implementation 

of the Ey multiplier in the s0 equation (Equation 4) which transforms the mean to asymptotic instead 

of geometric. Given more time, I would choose some different Ey levels (and/or bring the Ey multi-

plier out of the exponential parentheses) which would fit better around the original recruitment curve 

in Figure 2 and cause the population to react more realistically when faced with a “bad year”.  

Various biological interactions such as predation, cannibalism, and interspecies competition 

are not purposely represented in the model, but are lumped together in the natural mortality parame-

ter, M. The density dependence on recruitment in the model qualifies as a biological interaction ac-

cording to Magnússon (1999), which implies some interaction between the resources or predators of 

the focal population. Evolution, for example, is not taken into consideration although the model was 

run for 50,000 years in the second simulation. 

There is no guarantee that the obtained results would hold in more complex models. How-

ever, a good model should have some structural stability, i.e., results are not essentially changed if 

model structure is slightly changed. So far there has been no indication that this would not hold for 

the model. Of course, theoretical models are based on parameter choice and “optimal strategies” will 

always shift (Mangel, Fiksen, Giske 2001).  Furthermore, a theoretical model is totally dependent 
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upon the parameters and their values chosen to describe the model. This is important to remember 

and is the main difference between empirical and theoretical models. 

 

4.3 Brief on Social, Cultural, Economic, and Biological components of Fishing 

Theoretical models have their place in fisheries biology, but one must remember that fisher-

ies biology and management is a branch of science that is very economically, and thus, politically 

motivated. Hence, awareness of real-life problems, such as harvest rule acceptance by fishermen and 

politicians and the implementation of fishing laws, is of utmost importance in order to make the 

transition from theory to reality. But also, a clear look at the reality of the state of fisheries today 

must be understood and accepted by all stakeholders and dealt with accordingly. 

In a letter to Nature, Myers and Worm (2003) write that 90% of the world’s large fish (i.e. 

Atlantic cod, tuna, swordfish marlin, halibut, shark and flounder) have succumbed to commercial 

fishing. According to the Wall Street Journal (November 9, 2003), overfishing affects approximately 

33% of assessed stocks in the United States.  Most recently, Baum and Myers (2004) report a 99% 

decline of the oceanic whitetip shark since the 1950s due to overfishing in the Gulf of Mexico. The 

fact that the absence of the whitetip shark, once one of the world’s most common sharks in the trop-

ics, in the Gulf of Mexico goes unnoticed today represents a clear example of shifting baselines 

(Baum and Myers 2004).  

But what are the consequences of overfishing? A good example is the short history of Atlan-

tic cod. 

The long cultural and economic importance of Atlantic cod (Gadus morhua), or codfish, be-

gan with the tenth century European Basques and continued through the centuries with almost all the 

countries that border the North Atlantic Ocean: Portugal, Spain, France, Britain, Norway, Iceland 

and the United States (Ellis 2003). Because the absolute abundance of cod and the positive religious 

connotations associated with cod consumption, the Puritans in the fifteenth and sixteenth century 

America included codfish on their dinner plates (Ellis 2003) as well as in the portraits and paintings 

of the city halls and churches. Some experts even agree that the Puritans came to America to fish cod 

as much as they came to flee religious intolerance. 

Four centuries later, due to overfishing, the tragic fate of one of the most prolific species in 

the Animal Kingdom becomes that of commercial extinction. The east coast of the United States and 

Canada, consequently, has been subject to a loss of thousands of fisheries jobs, not to mention loss 

of a cultural institution, due to the collapse of the cod stocks.  
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There are also substantial financial costs of inadequate fisheries management. A multi-

million dollar government buy-out is in store for many of the remaining fishermen in the troubled 

regions along the American west coast in order to control the fleet and sustain the overfished stocks. 

The idea of reducing fishing fleets in attempts to control fishing mortality is, in my opinion, a good 

one. Smaller fleets would be easier for fisheries scientists to observe and manage and improved tech-

nology (global positioning systems, water temperature readings and other satellite data) will add to 

the proficiency of fishermen to avoid bycatch. Government buy-outs on fishermen could be a costly 

answer, but an investment at the same time, needed to be made today in order to preserve and rebuild 

ailing stocks.  

 The economics of fishing is very important to understand when creating an appropriate HCR. 

Hartwick and Olewiler (1986) and Clark (1990) give good introductions to the economics of a fish-

ery and present economic strategies for such an open-access resource. They point out that a desired 

steady-state bio-economic equilibrium occurs when the rate of harvest is equal to the net growth rate 

of the fish stock. Hartwick and Olewiler (1986) also offer economic models of the fishery, with bio-

logical mechanics and environmental factors included. Admittedly, the more variables and parame-

ters added to a model, the more difficult the model becomes. Hilborn and Walters (1992) specifically 

warn against complexity in dynamic fisheries models. They note that that the system should be able 

to be described using one or two variables to determine an optimal harvest policy in regards to a sin-

gle criterion, such as biomass. Parameter complexity, however, is necessary to strive to describe a 

complex system such as a marine fishery and for determining and optimal feedback regime for the 

fishery (Hilborn and Walters 1992).  

 Hardin (1968) coined the term “tragedy of the commons” to describe the dilemma of popula-

tion growth, nuclear war and ecological concerns. Hardin argues “freedom is the recognition of ne-

cessity” to bring about awareness of the problems of sharing one world (or one resource). On the 

subject of nuclear war Hardin quotes J. B. Wiesner and H. F. York: “If the great powers continue to 

look for solutions in the area of science and technology only, the result will be to worsen the situa-

tion.” (Hardin 1968) The conclusion that there is no technical solution to such dilemmas is applica-

ble to fisheries management today.  

Economists can explain overfishing by this term “tragedy of the commons” which describes 

the fishing phenomenon of lack of ownership to the fish stocks causing no incentive to protect fish 

stocks for future generations (Wall Street Journal, November 9, 2003).   

But now, some economically-minded environmentalists have come up with a way that could 

save fisheries around the world by incorporating an important free-market strategy: ownership of the 
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fish in the form of an ‘individual fishing quota’ (IFQ). The total allowable catch (TAC) is found by 

fisheries managers for a fish stock, and then each fisherman receives his own fishing quota allocated 

from the TAC. The fishermen suddenly have their own quotas, which then become their ‘property 

right’ to the fish stock. IFQs can also be bought and sold between fishermen. “And because fisher-

men have access to the guaranteed share of the catch, they don’t race to compete, fishing seasons 

lengthen, prices rise and fish stocks grow.” (Wall Street Journal, November 9, 2003 “A Fish Story” 

p. A10)  

Hilborn and Walters (1992) discuss individual transferable quotas (ITQ) and express con-

cerns arising from falling prices or allowable catches which in turn could drive investors bankrupt. 

Also, they note the increase incentive of selling fish illegally in an ITQ system along with the incen-

tive of discarding low-grade fish. 

New Zealand began first with IFQs in 1986 and has seen success in a reduction of the fishing 

fleet, recovery and growth in fish stocks and a doubling of the market value of IFQ fisheries from 

1990-2000. Similar successes have been experienced by Iceland, Greenland, the Netherlands and 

Australia. IFQs represent a successful transition from over-investment in equipment to investing in 

transferable quotas (Hilborn and Walters 1992). The United States is looking to implement IFQ pro-

grams now in efforts to save the remaining fisheries and to try to bolster the economy in an envi-

ronmentally friendly way. Indeed, ownership is a key policy in successful economics and should be 

incorporated in bioeconomics as well.   

 

4.4 Conclusions 

In short, this study’s simulation results show that the simplest HCR tested was better than the 

more complex HCRs. The constant fishing mortality regime, HCR Type 1, performed best regarding 

CV and risk in most levels of fishing variance and environmental variability tested. The winning 

quality of Type 1 is that the fisherman is able to consistently exploit the resource at all levels of 

biomass without risking significant loss of yield or jeopardizing the fish population. There is a re-

markable observed resilience in the artificial population used for HCR simulation which most likely 

helped Type 1 perform better than expected in the risk criterion. This resistance may not persist in 

more realistic population models. 

Type 2 is a good compromise between utilitarian and conservationist managers because both 

exploitation and zero risk of the biomass dropping to -10% of the virgin biomass are happening si-

multaneously. It could, however, become unprofitable for fishermen to fish at low stock sizes.  
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Finally, Type 3 has the merit of low risk values for increasing threshold biomass and fishing 

mortality (Figure 10), but it’s high escapement feature and high CV levels offer little to fishermen. 

Since each HCR gives different ‘optimal’ results according to the specific stochastic levels of 

survival and fishing suggests that environmental and/or biological variation of an ecosystem or fish 

population needs to be studied before the appropriate application of a one- or multi-parameter har-

vest control rule (Hartwick and Olewiler 1986; Katsukawa 2004). Moreover, data from the fishing 

fleet is important to determine bycatch and fishing variance to include in the criteria to construct an 

optimal HCR. If these factors are unknown or hard to predict for a certain fish stock, the Type 2 

strategy would be recommended by the results of this study since CV and risk are lowest at most 

levels of variance tested. 

Not to be ignored, the biology (i.e., life history, place in ecosystem) and ecology of the ex-

ploited population must be known and well-studied in order to carry out a successful management 

program (Pitcher and Hart 1982; Heino 1998). Habitat, migration, as well as spawning and feeding 

grounds are all important aspects of the life history of fish in an exploited population.  

Once a proper HCR has been proposed and evaluated, the next step in proper implementation 

of the management strategy. Walters and Parma (1996) implied that more research into effective 

regulation of fishing is needed at the expense of trying to explain and predict climatic effects. Truly, 

what good is an HCR if it is not implemented properly? The practicalities of realizing an HCR in the 

real world should be an important part of choosing an appropriate management strategy.  

Now is the time for well-run fisheries management. “If we could step back in with strong 

management decisions we could restore the ecosystem (including populations of large fish species), 

but that’s a matter of political will and funding and a lot of other influences that are difficult to pre-

dict,” says Karen Bjorndal, zoology professor at the University of Florida. Bjorndal was one of the 

authors of a paper that argued that overfishing disturbs the ecological balance of the marine ecosys-

tem (Pandolfi et al. 2003).  

To sum up, fisheries management is a complex field that includes not only biology and eco-

nomics, but social and political elements as well as stocks are analyzed and laws are passed. Ad-

vanced tools for fisheries managers exist in the form of computer modeling to describe and predict 

different management scenarios. Obviously, the issue of increasing complexity in fisheries models is 

of concern and the transition from theory to realization in fisheries management is easier said than 

done (Thompson 1999). Through the understanding of basic models, however, complexity can be 

built up to create a model, which is then able to describe the subject in sight. If problems in the 
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model due to complexity occur, the modeler can then work backwards to remove layers of complex-

ity in order to find the problem and correct the mistake. 

On the other hand, fisheries managers must remember that no mathematical model is able to 

precisely describe a biological process and thus should incorporate robust harvest regimes to take 

various uncertainties into account (Hilborn and Walters 1992; Mangel, Fiksen, Giske 2001; Schnute 

and Richards 2001). Finally, care should also be taken when trying to describe an “optimal” HCR, as 

optimality tends to shift according to different levels of stochastic variance as well as the life history 

of the fish stock at hand (Hartwick and Olewiler 1986; Housholder, Heino, Fiksen 2003; Katsukawa 

2004). 

Management policies in the form of HCRs can be described and predicted explicitly and 

fairly. The effects of HCRs should be modeled before implemented to help evaluate aspects of a 

proposed management policy. This is in the interest of all stakeholders of the world’s fish resources.  
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7. APPENDICES 
7.1 Fortran model code 

program simulation 
implicit none 
integer, parameter ::nyears = 5000, st_year = 100       !number of years to simulate program 
integer age, year, FM, FM1, FM2 
integer(4) iseed 
integer ihr, imin, isec, i100th 
integer hcr_type 
real k1(0:nyears), survival0, prob 
real N0(0:nyears), N1(0:nyears), N2(0:nyears), R0, criticalR0 
real yield(0:nyears), catch(0:nyears),stock_biom(0:nyears) 
real B1, B2, B12, s0, s1, s2, fec1, M0, M1, M2, fecundity1, fecundity2, fec2, SLOPE 
real w1,w2,f0,f1,f2, k, alfa, Z, risk, CV, V, sd, k_param 
real MPS0, MPS1, MPS2, MPS12,avg_yield,avg_stock_biom, Sb, Sg, p, R 
real N_dev, U1, U2, rnd, ave, var, F_var, Mort0(0:nyears), Mort1(0:nyears), Mort2(0:nyears) 
real variance, F_variance, F_vari 
real B,F_parm1, F_parm2, B_parm, F, below_biom_percent 
real critical(0:nyears), criticallevel, relativelevel, below_biom(0:nyears), virgin_biom  
real, parameter ::pi = 3.141592 
real maxrisk,maxCV,max_risk,max_CV,maxyield,max_F_parm1,max_F_parm2,max_B_parm,max_biom 
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real max_risk_unconstr,max_CV_unconstr,maxyield_unconstr,max_F_parm1_unconstr,max_F_parm2_unconstr 
real max_B_parm_unconstr,max_biom_unconstr 
real mu, sigma, lognormal, F_multiplier, s0_multiplier 
integer n 
include 'simulationparam.txt' 
CALL GETTIM (ihr, imin, isec, i100th) 
 
open(42, file = 'hcr3_3D_p&f.txt') 
open(43, file = 'hcr2_3D_p&f.txt') 
open(44, file = 'hcr1_3D_p&f.txt') 
 
open(45, file = 'hcr1_3D_single.txt') 
open(46, file = 'hcr2_3D_single.txt') 
open(47, file = 'hcr3_3D_single.txt') 
 
do hcr_type= 1,3 
 
  do F_variance = 0, 100 , 25 
 F_vari= F_variance*0.001 
       
  do prob= 10, 50, 10 
  p= prob*0.01 
  
  !initialize the search routine 
  maxyield=0 
  maxyield_unconstr=0 
  max_F_parm1=-1 
  max_F_parm2=-1 
  max_B_parm=-1 
  CALL GETTIM (ihr, imin, isec, i100th) 
!********************************************************************************************* 
 
 do FM =  0, 800, 50 !This is the loop for F1 parameter values  
 F_parm1=FM*0.01 
   do FM1 = 0, 800, 50  !This is the loop for F2 parameter values 
   F_parm2=FM1*0.01 
    do FM2 = 0, 18000, 50   !Loop for B parameter values  
    B_parm=FM2*1. 
!********************************************************************************************* 
 
      do year = 0, nyears-1  
 !------------------------------------------------------------------------------ 
     
     rnd = ran(iseed) 
      
     !implementing good year/bad year stochasticity 
   
     if (rnd<p) then 
      if (s0_multiplier==Sg) then  
       s0_multiplier=Sb 
      else 
       s0_multiplier=Sg 
      endif 
     endif 
     
 !------------------------------------------------------------------------------ 
     R0= exp(-M0) * (fec1 + (exp(-M1)*fec2)/1-exp(-M2))  
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 call HCR(hcr_type,B1+B2,F_parm1,F_parm2,B_parm,F1) 
 
  F_multiplier = max(0.,1+N_dev(iseed)*sqrt(F_vari)) !random variable with mean 1 multiplied by SD 
  F1=F1*F_multiplier 
 
! FIRST, the fish spawn and the eggs survive to to become the new recruits 
  N0(year) = fec1*N1(year) + fec2* N2(year) 
 
! SECOND, the fish survive   
  s0 = exp(-M0* s0_multiplier)/(1+k*N0(year)) 
  !Beverton & Holt density dependency which never produces chaos WITH  
       

s1 = exp(-(M1 + F1)) 
  s2 = exp(-(M2 + F1)) 
 
       
  N0(year+1) = (fec1 * s1* N1(year)) + (fec2 * s2 * N2(year)) !New recruits 
  N1(year+1) = s0 * N0(year)    !Survival of 0-group = numbers in age 1 
  N2(year+1) = s1 * N1(year) + s2 * N2(year)   !Numbers in age 2+ 
 
   
  B1 = w1 * N1(year)    
  B2 = w2 * N2(year)     !Biomass equations 
  stock_biom(year) = B1+B2 
  yield(year) = (1-exp(-F1))*(N1(year)*w1) + (1-exp(-F1))*(N2(year)*w2) 
 !__________________________________________________________    
  if (stock_biom(year)<B_parm) then 
  below_biom(year) = 1 
   
  else 
  below_biom(year) = 0 
  endif 
 
  criticallevel=relativelevel*avg_stock_biom 
  virgin_biom = criticallevel/relativelevel 
 
  if(B1+B2<criticallevel) then !Defining the 'flags' for critical years when biomass is less than 
critical level 
  critical(year) = 1 
  else  
  critical(year) = 0 
  endif 
     
      
      end do  !end time cycle 
 
!************************************************************************************************ 
N0(nyears) = (fec1 * N1(nyears)) + (fec2 * N2(nyears)) !New recruits 
 
MPS1 = sum(N1(st_year:nyears))/(nyears-st_year+1) !These are the mean pop. sizes for the time cycle for each cohort 
MPS2 = sum(N2(st_year:nyears))/(nyears-st_year+1) !These are the mean pop. sizes for the time cycle for each cohort 
MPS12 = MPS1 + MPS2    !Total exploitable (N1&N2) mean pop. sizes for the time cycle 
B12 = MPS1*w1 + MPS2*w2 
risk = sum(critical(st_year:nyears))/(nyears-st_year+1)*100 
below_biom_percent = sum(below_biom(st_year:nyears))/(nyears-st_year+1)*100 
!******************************************************************************************** 
 avg_yield = sum(yield(st_year:nyears))/(nyears-st_year+1) 
 avg_stock_biom = sum(stock_biom(st_year:nyears))/(nyears-st_year+1) 
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sd = sum((yield(st_year:nyears)- avg_yield)**2.) !This is the stand. dev. for the mean pop. size of N1 in the 
time cycle 
 sd = sd/(nyears-st_year) 
 sd = sqrt(sd) 
 V= sd**2 
 CV = (sd/(avg_yield+1E-10)) * 100  !coefficient of variation of mean yield as a percent 
  
!******************************************************************************************** 
  if(avg_yield>=maxyield.and.CV<=maxCV.and.risk<=maxrisk) then 
  maxyield=avg_yield 
  max_F_parm1=F_parm1 !Defining a HCR that has acceptable yield and levels of CV and risk 
  max_F_parm2=F_parm2 
  max_B_parm=B_parm 
  max_biom=avg_stock_biom 
  max_CV=CV 
  max_risk=risk 
  endif 
 
  if(avg_yield>=maxyield_unconstr) then 
  maxyield_unconstr=avg_yield 
  max_F_parm1_unconstr=F_parm1 !Defining levels of CV and risk for an HCR(unconstrained)  
  max_F_parm2_unconstr=F_parm2 
  max_B_parm_unconstr=B_parm 
  max_biom_unconstr=avg_stock_biom 
  max_CV_unconstr=CV 
  max_risk_unconstr=risk 
  endif  
     
 if(hcr_type==1)then 
write(48,'(I3, 2000F100.6)'), hcr_type, k, avg_yield,F_parm1, CV, risk  
 endif 
   
 if(hcr_type==2)then  
write(49,'(I3, 2000F100.6)'), hcr_type, avg_yield,F_parm1, B_parm, CV, risk 
 endif  
 
 if(hcr_type==3)then    
write(50,'(I3, 2000F100.6)'), hcr_type, avg_yield,F_parm2, B_parm, CV, risk 
 endif 
 
 if(hcr_type==1)then 
write(44,'(I3, 2000F100.2)'), hcr_type, p, F_vari, maxyield,  CV, risk, maxyield_unconstr, max_CV_unconstr, 
max_risk_unconstr 
 elseif(hcr_type==2)then  
write(43,'(I3, 2000F100.2)'), hcr_type, p, F_vari, maxyield,  CV, risk, maxyield_unconstr, max_CV_unconstr, 
max_risk_unconstr   
 elseif(hcr_type==3)then    
write(42,'(I3, 2000F100.2)'), hcr_type, p, F_vari, maxyield, CV, risk, maxyield_unconstr, max_CV_unconstr, 
max_risk_unconstr   
 endif  
 
 
print*, '(I3,2000F10.4)', hcr_type, avg_yield, F_parm2, B_parm, CV, risk  
 
     
     end do  !end of FM2 B_parm 
    end do   !end of FM1 F_parm2 
   end do    !end of FM F_parm1 
  end do     !end of p loop 
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 end do      !end of F_vari loop 
end do       !end of hcr_type loop 
!________________________________________________________________________________________________ 
print*, 'HCR Type:', hcr_type 
print*, 'Fishing variance level:', F_vari 
print*, 'Virgin biomass:', virgin_biom 
print*, 'max_F_parm2:', max_F_parm2 
print*, 'Unconstrained max_F_parm2:', max_F_parm2_unconstr 
print*, 'max_B_parm:', max_B_parm 
print*, 'Unconstrained max_B_parm:', max_B_parm_unconstr 
print*, 'max_F_parm1:', max_F_parm1 
print*, 'Unconstrained max_F_parm1:', max_F_parm1_unconstr 
print*, 'Maximum average yield:', maxyield 
print*, 'Unconstrained Maximum average yield:', maxyield_unconstr 
print*, 'CV:', max_CV 
print*, 'Unconstrained CV:', max_CV_unconstr 
print*, 'RISK:', max_risk 
print*, 'Unconstrained RISK:', max_risk_unconstr 
print*, 'Percent of years of stock biomass below B_parm:', below_biom_percent 
!********************************************************************************************** 

end program simulation 
 
function N_dev(iseed) 
implicit none 
integer(4) iseed 
real, parameter ::pi = 3.141592 
real N_dev, U1, U2 
U1 = max(0.00001,ran(iseed)) 
U2 = ran(iseed) 
N_dev = sqrt(-2.*alog(U1))*cos(2*pi*U2) 
end function N_dev 
 
SUBROUTINE HCR(hcr_type,B,F_parm1,F_parm2,B_parm,F1) 
implicit none 
!Calculates the harvest control rule 
integer hcr_type 
real B,F_parm1,F_parm2,B_parm,F1 
 
if (hcr_type==0) then   !No F 
 F1=0. 
 
elseif (hcr_type==1)then   !constant F (1 parameter HCR) 
 F1=F_parm1 
 
 
elseif (hcr_type==2) then   !Slope F to a limit B_parm (2 parameter HCR)  
 if(B<B_parm)then 
 F1 = F_parm1*B/B_parm 
 else 
  F1 = F_parm1 
endif 
 
elseif (hcr_type==3) then   !Step F at B_parm (2 parameter escapement HCR) 
 if(B<B_parm)then 
  F1=0 
 else 
  F1=F_parm2 
endif 
endif 
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end subroutine hcr 
 
SUBROUTINE avevar(k,n,ave,var) 
IMPLICIT NONE 
REAL , INTENT(OUT) :: ave,var 
INTEGER , INTENT(IN) :: n 
REAL , INTENT(IN) :: k(0:n) 
REAL , DIMENSION(size(k)) :: s 
ave=sum(k(:))/n 
s(:)=k(:)-ave 
var=dot_product(s,s) 
var=(var-sum(s)**2/n)/(n-1) 
END SUBROUTINE avevar 
 
 
7.2 Dynamical Population Equilibrium Equation (in FORTRAN code) 
 program population_equil 
implicit none 
integer(4) iseed 
integer ihr, imin, isec, i100th 
real N0, N1, N2 
real B1, B2, B12, s0, s1, s2, fec1, M0, M1, M2, fecundity1, fecundity2, fec2 
real f0,f1,f2, k 
real Mort0, MortF1, MortF2 
real MF1, MF2 
 
real, parameter ::pi = 3.141592 
 
open(20, file = 'pop_equil_N0.txt') 
open(21, file = 'pop_equil_N1.txt') 
open(22, file = 'pop_equil_N2.txt') 
 
open(23, file = 'pop_equil_fec1.txt') 
open(24, file = 'pop_equil_fec2.txt') 
!------------------------------------------------------------------------------ 
 
! Parameters 
 
do Mort0 = 0, 50, 1 
M0= Mort0*0.1           !natural mortality at time 0 
 
 
 do MortF1 = 0, 50, 1 
 MF1= MortF1*0.1            !natural mortality at time 1 
 
  do MortF2 = 0, 50, 1 
  MF2 = MortF2*0.1         !natural mortality at time 2 
 
 
   do fecundity1=   0, 2000,     50 
   fec1=fecundity1      !fecundity at time 1 proportional to the weight of N1 
 
    do fecundity2=   0, 5000,     50 
    fec2=fecundity2 
 
k= 0.0001           !constant in BH 
!------------------------------------------------------------------------------ 
N0= (1-exp(MF2) + (exp(-M0) *(-1+exp(MF2))* fec1) + (exp(-M0-MF1+MF2)*fec2))  
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N0 = N0/((-1+exp(MF2))*k) 
!------------------------------------------------------------------------------ 
N1= (exp(-M0) * (exp(M0+MF1) * (-1+exp(MF2))) - (exp(MF1) * (-1+exp(MF2) *fec1) - (exp(MF2) *fec2))) 
 
N1= N1/(((exp(MF1) * (-1+exp(MF2)) *fec1) + (exp(MF2) * fec2)) *k) 
 
!------------------------------------------------------------------------------ 
N2= -(exp(-M0-MF1+MF2) * (exp(M0+MF1) *(-1+ exp(MF2)) - (exp(MF1) * (-1 + exp(MF2)) *fec1) - (exp(MF2) * 
fec2))) 
 
N2= N2 /  (((exp(MF1) * (-1+exp(MF2) *fec1) + exp(MF2) * fec2)) * k) 
 
!------------------------------------------------------------------------------- 
print *,  'N0', N0,  'N1', N1, 'N2', N2 
 
write(20,'(2000F100.2)'), M0, N0, N1, N2 
write(21,'(2000F100.2)'), MF1, N0, N1, N2 
write(22,'(2000F100.2)'), MF2, N0, N1, N2 
 
write(23,'(2000F100.2)'), fec1, N0, N1, N2 
write(24,'(2000F100.2)'), fec2, N0, N1, N2 
 
    end do !fec2 
   end do !fec1 
  end do !MF2 
 end do !MF1 
end do ! M0 
 
 end program population_equil 
 


