
Simplified Computer Interaction Using

Mixed Reality

Jean-Paul Balabanian

December 22, 2004

Master Degree Thesis
University of Bergen,

Department of Informatics

Abstract

This thesis describes a system for mixing reality, as captured by a camera, with
a virtual 3-dimensional world. A system to recognize and track a square pattern
of markers is created in order to obtain the extrinsic parameters of the camera.
The parameters are used for rotating and translating the virtual world to align
it with the pattern of markers in the image. The result is a system where a
user can interact with a virtual world. A camera can be move freely around the
pattern or the user can manipulate the marker square while the virtual world
is blended with the real world and viewed on a screen or with a HMD (Head
Mounted Display).

2

Contents

1 Introduction 9
1.1 Mixed Reality, a Definition . 9
1.2 Motivation . 10
1.3 Objectives . 10
1.4 Previous and Current Work . 10
1.5 Proposed Architecture . 11
1.6 Chapter Overview . 13
1.7 Hardware and Software Development Tools Decisions 13
1.8 Notation and Definitions . 14

1.8.1 Notation . 14
1.8.2 General Math . 15
1.8.3 Image Format and Pixels 16
1.8.4 The RGB Color Space. 16
1.8.5 Intersecting Lines in a Plane 17

2 Marker Acquisition 19
2.1 The Physical Setup . 19
2.2 Camera Capture . 20

2.2.1 Image Quality and USB Speed 21
2.2.2 Lighting and Capture Quality 22
2.2.3 Camera Quality Difference 23

2.3 Thresholding Captured Images 24
2.3.1 Color Calibrating the Camera 25

2.4 Connected Components . 26
2.4.1 Connected Components Definition 26
2.4.2 Neighborhood of a Pixel 26
2.4.3 Finding Connected Components Using a Breadth First

Search . 27
2.4.4 Finding Connected Components Using Disjoint Sets . . . 29
2.4.5 Component Size . 30

2.5 The Algorithms . 31
2.6 Markers and Components . 31

2.6.1 Separating the Components 32
2.6.2 Identifying the Markers 32
2.6.3 Sorting the Markers . 34
2.6.4 Center of a Marker . 35

3

3 Camera Calibration Theory 39
3.1 Perspective Projection . 39

3.1.1 Projection of Parallel Lines 39
3.2 Lens Distortion . 40
3.3 Changing Coordinate System . 42
3.4 Minimizing the Distance Between Lines 44

4 Camera Calibration 47
4.1 Camera Calibration Overview . 47
4.2 Camera Calibration Intrinsics and Extrinsics 48

4.2.1 Focal Length . 48
4.3 Finding the Rotation Matrix . 48

4.3.1 Vanishing Points . 48
4.3.2 Camera Coordinates . 50
4.3.3 The Rotation Matrix . 50
4.3.4 The Cross-Product �w′ . 52

4.4 The Translation Vector and its Length 55

5 Visualization 57
5.1 OpenGL . 57
5.2 Vertices, Triangles, and Quadrilaterals 57
5.3 Translations, Rotations, and Scaling 57
5.4 Shading . 60
5.5 Texture Mapping . 61
5.6 Stereoscopic Viewing . 62

6 Results 65
6.1 Example Setups . 65
6.2 Handheld Markers . 66
6.3 Examples . 67
6.4 Illusion Breakers . 70

6.4.1 Hardware and Software Development Tools Implications . 70
6.4.2 Loosing Track . 70
6.4.3 Unstable Translation Calculations 71
6.4.4 In Front or Behind? . 72
6.4.5 Matching Virtual and Real Light Sources 72

7 Conclusion and Future Work 75
7.1 Conclusion . 75
7.2 Future Work . 75

Acknowledgments 77

A Algorithms 79

Bibliography 86

4

List of Figures

1.1 System setup and software flow. 12
1.2 The cameras. On the left: Logitech. On the right: ADSTech . . 14
1.3 HMD. 14
1.4 8-bit greyscale. 16
1.5 8-bit scales of red, green and blue. 16
1.6 RGB Color model. 17

2.1 The first markersquare pattern. 20
2.2 Styrofoam hemispheres and LEDs. 20
2.3 The final marker pattern and an image of the markers. 21
2.4 Different sensor patterns. 21
2.5 The image capture process. 22
2.6 Lighting conditions and results of thresholding. 23
2.7 The difference in quality of the two cameras used. 24
2.8 Calibration pattern. 26
2.9 The neighborhood of a pixel. 27
2.10 Connected Components with different neighborhoods. 27
2.11 BFS vs. Disjoint sets. 28
2.12 Algorithm 2’s neighborhood mask. 29
2.13 Deep recursion. 30
2.14 Overview of algorithms. 32
2.15 Red Component surrounding a white Component. 33
2.16 Failure during marker recognition. The upper left red marker is

falsely identified to be inside the yellow square. 34
2.17 Different Marker Configurations. 34
2.18 Marker shape change. 35
2.19 Marker intersection instability. 36

3.1 The xy-axis is the image plane. COP is the center of projection. 40
3.2 The Pinhole Camera Model. 41
3.3 Lens Distortion. 41

4.1 Alignment of focal length. 49
4.2 Example setup of markers. 50
4.3 Shows the projection of a set of points and the vanishing points

in the projection. 51
4.4 Camera Coordinates. C is the image center and COP is the

center of projection. 52

5

4.5 Shows the local coordinate system of the object and the estimated
coordinate system at COP . 53

4.6 Different directions for vanishing points. 54
4.7 Different orientations of �u′ and �v′ and the resulting cross product

�w′. 54
4.8 Translation. 55

5.1 Wireframe 3D models. 58
5.2 Transformations on a box. 59
5.3 Order of transformations. 60
5.4 Rough and smooth surfaces. 61
5.5 Results of using different shading models on a sphere. 61
5.6 A smooth shaded Buddha. 62
5.7 Texture mapping coordinates. 62
5.8 A smooth shaded Buddha with texture mapping. 63
5.9 Stereoscopic viewing. 63

6.1 A user wearing a HMD with the Logitech camera attached, is
exploring the application with the handheld markers. 65

6.2 Static positioned camera and the result on a LCD monitor. . . . 66
6.3 Using the handheld markers. 66
6.4 Using the handheld markers. 67
6.5 Playing with a Rubik’s cube. 67
6.6 Point of view. 68
6.7 Pretty Images. 68
6.8 The result of a moving camera. 69
6.9 Loosing track of the markers. 70
6.10 The marker square axes. 71
6.11 Unstable translation vector length. 71
6.12 Drawing order. 73
6.13 Matching and Mismatching lights. 74

6

List of Algorithms

1 Image Thresholding . 79
2 Finding Connected Components 80
3 Labeling of pixels . 81
4 Component Separation . 82
5 Identify Red and Blue Markers 83
6 Identify Markers Inside Yellow Components 84
7 Sorting Markers . 85

7

8

Chapter 1

Introduction

In this thesis we want to create an application that enables a user to interact
with a virtual world in a natural and intuitive way. By using a camera to
capture images of markers we want to project a virtual object into the image so
that it looks like the virtual object belongs in the scene. This field of Computer
Science is called Mixed Reality (MR).

1.1 Mixed Reality, a Definition

A definition of MR was found in [19]. That work starts by defining a Reality-
Virtuality Continuum, where one end is reality, where nothing is computer ge-
nerated, and the other end is virtuality, where everything is modelled. Moving
from reality towards virtuality we come into a field called augmented reality
(AR). AR is described as:

“any case in which an otherwise real environment is augmented by
means of virtual (computer graphic) objects”

Moving from virtuality towards reality, another field is reached called aug-
mented virtuality (AV). AV is the opposite of AR where a virtual world is
augmented with real objects.

The area on the continuum that starts with AR and ends with AV describes
a field called mixed reality. This means that all AR and AV applications are
MR applications.

The reason for not explicitly labeling this thesis as an AR work is that we
don’t feel that the scene is enhanced with the virtual addition. For example
an AR application could be x-ray or Magneto Resonance Imaging (MRI) data
superimposed on the body of a patient. Another example is an excavator ope-
rator being able to see where cables and pipes lie underground. These examples
illustrate an AR application giving the user useful information about the cur-
rent environment. In our case the virtual addition does not necessarily give the
user any useful information.

9

1.2 Motivation

The motivation to create a MR based application originates from the way
human-machine interaction is presently done. A human being that wants to
interact with a computer, must learn to use a keyboard, a mouse, and the intri-
cacies of the software. We want to create a complete system to view and interact
with 3D objects in a more natural way. By natural, we mean basic human ways
to interact with real-world objects, like hand gestures, speech, head movements,
and physically walking around an object. These interaction methods are more
intuitive than learning to use a keyboard, a mouse, and a graphical user interface
on a computer.

One of the benefits with the MR techniques is that a user is able to visually
see the 3D object in the same environment as the user occupies. It is also possible
to superimpose extra information on top of real objects so that multiple physical
information sources are unnecessary.

Another benefit is that collaboration is easier, because everyone can see the
same information in the same space, and all users are able to communicate
about the same information while seeing each other. This keeps the focus on
the information and the other people, and not on the equipment necessary to
create the information.

1.3 Objectives

The goal is to create an application that enables the user to view and interact
with a 3D model.

• The interaction should be accomplished by moving the head, the hands,
or to physically change position. The model should be integrated into the
scene, this means that size, position, and perspective of the virtual object
should correspond with the real world as seen from the user.

• The system should track the user by using the same device as for cap-
turing the real world. The reason for this is that we want to use low
cost equipment and avoid the need for additional tracking devices. The
tracking should work in real time.

• The software should be built with Java, because of cross platform inde-
pendence and easier porting to smaller devices like mobile phones with
camera.

• The system should support both a computer screen and a HMD for pre-
sentation of the results.

• Get an in-depth understanding of how to compose a complete MR system.

1.4 Previous and Current Work

Many mixed reality applications are available and currently developed. The
following are examples of this:

10

• One of the applications is a development library called ARToolKit [1].
This is a tool for creating AR applications. ARToolKit is primarily being
developed by Dr. Hirokazu Kato of Osaka University, Japan, and is being
supported by the Human Interface Technology Laboratory (HIT Lab.) at
the University of Washington, and the HIT Lab NZ at the University of
Canterbury, New Zealand. This tool uses something similar to what we
develop in this thesis. The ToolKit finds a simple black square and uses
this square to find position and pose. The square also contains a marker
that indicates to the software what virtual representation that marker
should have. The final result is similar to what we have developed but the
differences are in the implementation of marker recognition and camera
calibration, and in the marker design.

• Another project that is similar to the ARToolKit is [22]. This work uses
a cube with different colored sides to estimate pose and lighting.

• Other MR applications are real world scenes with rendered objects using
image based lighting. Captured footage of people is rendered in a virtual
world where shadows and reflections of the real people are created so that
it looks like the people are in the virtual world. An example of this type
of work can be found at [4].

• The Playstation 2 game console has an accessory called Eyetoy which is
a camera connected to the console. This camera records the user and the
images are used as a background images. The images are frame by frame
checked for movement that the user is providing. If the movement is in
the correct areas the user interacts with game, for example in a fighting
game you can punch the virtual enemy off the screen by slapping him with
your hand [25].

• Heads Up Displays (HUD) are available for pilots, motorcycle helmets, and
cars. This gives the user important information without having to look
down at the instrument panels of the vehicle. For instance motorcycle hel-
met can give the user information about speed and rounds per minute on
the view screen of the helmet. An important point is that the information
is focused at a distance so that the user can read the information with as
little effort as possible.

1.5 Proposed Architecture

By analyzing the objectives of the mixed reality application, we have found that
the system needs to be composed of four main parts. These parts are:

1. Capturing Acquiring images of the real world.

2. Recognizing markers Finding markers in the image.

3. Camera calibration Finding the relative position and orientation of the
camera based on the location of the markers and their relative positions.

4. Visualization Using conventional visualization techniques; pose the vir-
tual object and blend the computer generated object with the image of
the real world.

11

Display

Capture Thresholding
Separation of

Connected Components

Identification of
Markers

Camera Calibration

3D

Rotation and
Translation

2D

Projection

3D Model

Background image

Figure 1.1: System setup and software flow.

Investigating further, we find that each part is composed of smaller parts.
The following details are not implementation details, but a schematic overview
of the necessary steps for each part. Figure 1.1 is an illustration of all of the
necessary steps.

1. Capturing images of the real world will in this case be accomplished with
a camera and transferred to the software using a suitable library

2. Recognizing markers is a three step process that consists of:

(a) Thresholding Removing data from an image that does not have the
correct color while highlighting the data with the correct color.

(b) Separation of Connected Components Finding and grouping
together data, from the image, that belong together by proximity
and color.

(c) Identification of Markers Markers are identified by color and lo-
calization inside other markers.

3. Camera calibration takes the position of the markers and finds a ca-
mera’s relative position and orientation.

4. Visualization is done by blending a 3D model with the captured image.
Using the camera’s position and orientation a virtual object is posed and
positioned so that the object appears to be in the scene. The resulting
image is displayed on a computer screen or a HMD.

12

1.6 Chapter Overview

The following is an overview of the chapters in this thesis. This list describes
what each chapter entails, as well as references to the different processes depicted
in Figure 1.1.

Chapter 2 describes the process of capturing an image, thresholding the image,
finding connected components, identifying the components as different
markers, and sorting the markers. This is the Thresholding, Separation
of Connected Components, and Identification of Markers steps in Figure
1.1.

Chapter 3 walks through some of the background theory needed for the next
chapter.

Chapter 4 describes each step needed to find the rotation matrix and the
translation matrix necessary for setting up a correct camera position for
the visualization process. This is the Camera Calibration step in Figure
1.1.

Chapter 5 shows how OpenGL is used to merge the real world image and the
computer generated image. This is the part where a 3D model is rotated
and translated and merged with the background image through projection
in Figure 1.1.

Chapter 6 demonstrates the complete setup and shows some good results, but
also points out problems that occur.

1.7 Hardware and Software Development Tools

Decisions

The hardware was chosen based on availability and cost. The software libraries
were chosen based on performance and compatibility with Java. As we will see
later, these choices have limitations that impact the final developed system.

Hardware list

• AthlonXP3000+ 2.17GHz, 1 gigabyte RAM

• ADSTech USB Turbo 2.0 WebCam

• Logitech QuickCam Pro 4000

• i-visor HMD DH-4400VPD (Personal Display Systems, Inc.)

Software libraries

• Capture capability is achieved with Java Media Framework (JMF) [26].
This library provides real time access to a capturing device

• Graphics library. The industry standard OpenGL is provided through
Lightweight Java Gaming Library (LWJGL) [3].

13

Figure 1.2: The cameras. On the left: Logitech. On the right: ADSTech

Figure 1.3: HMD.

1.8 Notation and Definitions

This section contains notations, definitions, a mathematical proof for intersec-
ting lines is given, and general knowledge about pixels and color models.

The knowledge of how a pixel stores and represents color information will
later be useful for thresholding a color image. The intersection of lines will be
used for sorting markers and finding vanishing points.

1.8.1 Notation

The following notation is used in this thesis.

Points A point in 3D is written as:

P = {x, y, z}

A point in 2D is written as:

p = {x, y}

Vector A vector named u is written as �u.

14

Parallel Vectors A vector �u is parallel to a vector �v is written as �u ‖ �v.

Lines A line L can in 2D and 3D be described with a point P , a parameter t,
and a direction vector �d as:

L = P + t�d

A line can also be described with two points {p1, p2} and a parameter t
as:

L = p1(1 − t) + p2t

1.8.2 General Math

Vectors A vector �u in two dimensions is defined as:

�u = (ux, uy) = ux
�i + uy

�j

A vector �u in three dimensions is defined as:

�u = (ux, uy, uz) = ux
�i + uy

�j + uz
�k

A vector �u in n-dimensions is defined as:

�u = (u1, u2, . . . , un)

Dot Product The dot product of two vectors �u and �v in n-dimensions is defi-
ned as:

(�u · �v) = u1v1 + u2v2 + · · ·+ unvn

Also known as inner product or scalar product.

Cross Product The cross product of two vectors �u and �v in three dimensions
is defined as:

�w = (�u × �v) = (uyvz − vyuz)�i− (uxvz − vxuz)�j + (uxvy − vxuy)�k

The analogy in two dimensions is a scalar and is defined as:

w = (�u × �v) = (uxvy − vxuy)

The value of w can be used to find out what side �v is on �u:

If w < 0 �v is on the right side of �u
If w > 0 �v is on the left side of �u
If w = 0 �v is on �u

Orthogonal A vector �u is orthogonal to another vector �v if the dot product of
the two vectors equals 0.

(�u · �v) = 0

Orthonormal A set of vectors are orthonormal if they are orthogonal to each
other and are of unit length.

15

1.8.3 Image Format and Pixels

A digital image obtained from a camera is a 2-dimensional (2D) representation
of a 3D world from a certain point of view using discrete values. An image
is composed of small square components called pixels. A pixel is the smallest
fragment of an image. Each pixel represents a single color that can span the
entire visual range of the human eye. A pixel can also represent data from x-ray,
infrared, or other imaging techniques like MRI.

The amount of data contained in a pixel depends on the image type. A
greyscale image typically contains 8 bits of information resulting in 256 different
shades of gray from black to white, as seen in Figure 1.4.

Figure 1.4: 8-bit greyscale.

Figure 1.5: 8-bit scales of red, green and blue.

A color image is often divided into 3 different channels. Each channel repre-
sents the intensity of one primary color with 8 bits of information. The number
of color combinations is 256×256×256 = 16 777 216. Figure 1.5 illustrates the
different colors available for each channel.

1.8.4 The RGB Color Space.

A cathode ray tube (CRT) monitor uses three rays of colored light that are
blended to color each pixel on the monitor. The higher the intensity of a ray
the brighter the color, as shown in Figure 1.5. When all three rays are at full
intensity, the color is white.

There are different light models available in computer imaging for blending
colors. The one used in this thesis is called the RGB-model. The RGB model
is the one that most closely represents the way light operates. The model-name
reflects the primary colors used1.

Figure 1.6 illustrates the blending of light. The RGB color cube in Figure
1.6(a) demonstrates the different hues of color available when mixing colors
using the three axes; red, green and blue. When equal amounts of red, green,
and blue are blended together, the result is the greyscale, which is represented
as the diagonal in the color cube. Figure 1.6(b) and Figure 1.6(c) shows the
colors generated on the sides of the cube.

1RGB stands for Red, Green, and Blue

16

R

G

B

Blue (0, 0, 1)
Cyan

Green (0, 1, 0)

Yellow
Red (1, 0, 0)

Magenta

Black

White

Greyscale

(a) Model

(b) RGB 24-bit color cube (c) RGB 24-bit color cube backside

Figure 1.6: RGB Color model.

1.8.5 Intersecting Lines in a Plane

This section presents equations to find an intersection between two lines on
the same plane. Later, we will use these equations to find intersections inside
squares and to calculate the vanishing point for the perspective of an image.

Two lines that are not parallel will intersect at a point. The following equa-
tions locate an intersection if it exists. The line L1 is defined by the two points
{p1, p2} and the line L2 is defined by {p3, p4}. These two lines are described by
the following two equations where s and t are real-number parameters:

L1 = p1(1 − t) + p2t (1.1)

L2 = p3(1 − s) + p4s (1.2)

To find the intersection of these two lines we set L1 = L2 and get

17

p1(1− t) + p2t = p3(1 − s) + p4s

Then by splitting it into its separate components x and y, we get

x1(1− t) + x2t = x3(1− s) + x4s (1.3)

y1(1− t) + y2t = y3(1 − s) + y4s (1.4)

solving Equation 1.3 for t gives

t =
x3(1− s) + x4s− x1

(x2 − x1)
(1.5)

inserting t from Equation 1.5 into Equation 1.4 and solving gives

s =
(y3 − y1)(x2 − x1)− (x3 − x1)(y2 − y1)
(x4 − x3)(y2 − y1)− (y4 − y3)(x2 − x1)

(1.6)

inserting the value of s into Equation 1.2 returns the intersection coordinate
of the two lines. If the lines are parallel, Equation 1.6 will result in a division
by zero. This can be avoided by first checking the denominator of Equation 1.6
before dividing in the algorithm.

18

Chapter 2

Marker Acquisition

In this chapter, techniques for capturing and analyzing images are investigated.
The road from acquiring images with a camera, thresholding, finding connec-
ted components and then separating markers from non-markers is thoroughly
described. Some pitfalls and some cases where the algorithm fails are pointed
out.

2.1 The Physical Setup

In this section, the setup and appearance of the markers are described, and the
different sets of markers tested for this thesis are listed. The marker pattern is
required to have a set of important properties:

• all markers lie in the same plane.

• the markers are placed in a square, this results in two pairs of parallel
lines which are perpendicular to each other.

• one marker has a different color so that the orientation of the square can
be found.

• the size of the markers must be proportional with the intended operating
distance from the markers, so that each marker is captured by a reasonable
number of pixels.

The last property ensures that the pattern should be easy to recognize in the
captured image. Some of these properties are the requirements of the camera
calibration presented later. Based on these required properties, different types
of markers has been tested. Two criteria used for developing the markers are
visibility under different lighting conditions and the colors used must be easy to
identify.

A simple setup using a sheet of paper printed by a color printer was the first
trial, and it worked as long as any possible markers in the background were not
present to confuse the recognition. This setup is depicted in Figure 2.1.

Another trial was done using light emitting diodes (LED) inside styrofoam
hemispheres. The intention was to make the markers more visible but this
was unsuccessful due to the lights being too intense for the camera. The light-
intensity was so high that the sensors in the camera became oversaturated.

19

Figure 2.1: The first markersquare pattern.

This resulted in grey pixels. Figure 2.2(a) shows the styrofoam hemispheres
and Figure 2.2(b) shows the effects of the high intensity of the LEDs.

(a) Styrofoam hemispheres with
LEDs turned off.

(b) Styrofoam hemispheres with
LEDs turned on.

Figure 2.2: Styrofoam hemispheres and LEDs.

Finally, a setup was done using painted wood discs and a yellow border on
cloth. Another smaller setup was done using a board of tree-fiber painted with
acrylic paint to resemble the marker square pattern. The yellow border made it
easier to group and identify a set of potential markers. The pattern is illustrated
in Figure 2.3(a). The large pattern has a useable range of up to 2 meters while
the small works at approximately 70 centimeters.

2.2 Camera Capture

Capturing images from a camera is the first step in acquiring the location of the
markers. In this thesis, the Java package Java Media Framework has been used
to retrieve images from a webcamera [26]. The webcameras used are a Logitech
Quickcam 4000 PRO connected with USB 1.1 and a ADSTech USB Turbo 2.0
Webcam connected with USB 2.0. The resolution used during capturing is
640x480 and the frame rate is set to 15 frames per second. The image size of
640x480 is the maximum resolution of the cameras. The human eye is insensitive
to changes faster than about 24 frames per second, so the choice of a frame rate
of 15 is a good compromise between quality and computer resource usage.

The sensor array of the cameras chosen does not have three separate 640x480
red, green, and blue sensor chips. Neither is the array composed of 640x480 sen-

20

(a) The final marker pattern. (b) Image of two different sets of mar-
kers.

Figure 2.3: The final marker pattern and an image of the markers.

sors all capable of simultaneously sensing red, green, and blue light intensities.
Usually there is a single chip with a little more than 640x480 sensors in total.
For example, the ADSTech camera has an effective sensor array of 644x484.
Each sensor detects the intensity of one of the primary colors (red, green, and
blue), and the sensors are placed in a mosaic pattern. Examples of sensor confi-
gurations can be seen in Figure 2.4. The image is then reconstructed from the
mosaic pattern in the camera hardware. A discussion of the technique can be
found in [9]. The reconstruction phase explains some of the reduced quality of
images from webcamers. After reconstruction, the image is transferred to the
computer via the USB channel as a 640x480x3 bytes image.

(a) Diagonal pattern (b) Baye pattern

Figure 2.4: Different sensor patterns.

2.2.1 Image Quality and USB Speed

USB stands for Universal Serial Bus and is maintained by USB Implementers
Forum Inc. [16]. USB is a communication port used to transmit information
between computers and devices. Two different standards exist for this kind of
communication, namely USB 1.1 and USB 2.0. As mentioned in Section 2.2,
both cameras use USB, but different standards. Both specifications are briefly
explained here to show the difference.

The USB 1.1 bus is capable of transmitting a maximum of 12 megabits/second
which equals 1.5 megabytes/second. The camera generates 640x480x3x15 =

21

13 824 000 bytes/second. So, before the images are sent over the USB-bus,
each image must be compressed to reduce bandwidth usage and make it pos-
sible to send at least 15 images per second. The type of compression used is
JPEG. The compression reduces the image quality. Artifacts from high JPEG
compression can be read about in [14].

The USB 2.0 bus is capable of transmitting a maximum of 480 mega-
bits/second which equals 60 megabytes/second. The camera generates 13 824 000
bytes/second. Due to the high speed of the USB, there is no need to compress
the data before it is transferred to the computer. 1

Computer

ReconstructionCapture JPEG Compression

Camera

USB 2.0 USB 1.1

DecompressionSoftware

Figure 2.5: The image capture process.

Figure 2.5 illustrates where the compression and decompression of captured
data happens. Due to the high bandwidth of USB 2.0, the compression and
decompression step is unnecessary.

2.2.2 Lighting and Capture Quality

The cameras representation of color under different lighting conditions may also
have an impact on the image quality. It is important that the light-conditions
in the room is sufficiently bright so that colors are presented clearly. The best
results are achieved when the light-source is diffuse, as on overcast days.

When the lighting is insufficient, the colors gets too dark to be recognized.
This can be observed in Figure 2.6(a) where a calibration pattern, presented
later, is captured under poor light-conditions.

Too much light is also a problem: many colors turn too bright or too white
to be recognized as their real color, and instead they are recognized as white or
grey. This behaviour can be observed in Figure 2.6(e) and is called highlighting.
As we will see later, white areas are important to the recognition phase, so it is
important to avoid highlighting as much as possible.

Ideally the colors should look like in Figure 2.6(c) from any viewpoint that
the camera is exposed to. The lighting problem is solved for most light-conditions
by doing a manual color calibration of the camera before using the system.

1Because of poor implementation of camera drivers for the ADSTech camera the computer
is using up to 60% of its resources while capturing, this significantly decreases the performance
of the final application.

22

(a) Too dark (b) After Thresholding

(c) Optimal (d) After Thresholding

(e) Too bright (f) After Thresholding

Figure 2.6: Lighting conditions and results of thresholding.

2.2.3 Camera Quality Difference

The two cameras used has huge differences in image quality. Figure 2.7(a)
shows an image captured with the ADSTech camera. Figure 2.7(b) shows an
image captured with the Logitech camera from an almost identical position.
The images were capture using the same lighting conditions and with camera
properties settings set to values that enables the application to function properly.
The purple square indicates success in locating the markers.

23

(a) ADSTech

(b) Logitech

Figure 2.7: The difference in quality of the two cameras used.

2.3 Thresholding Captured Images

For this thesis it is necessary to acquire the location of markers in an image. In
order to achieve this a technique called thresholding is used. Thresholding splits
a wide range input signal into two or more distinct values. Thresholding of an

24

image results in highlighting of areas that have a particular color and removal
of uninteresting parts of an image. A more thorough explanation of the topic
can be found in [14]. The following function shows the general case where the
resulting data are binary values:

f(x) =
{

0 if x < threshold
1 otherwise

A color image contains three channels of data, one for each color component.
So to be able to threshold a color image, we have to separate the channels and
check for each channel if the value is above or below a predetermined value.

When thresholding an image, good threshold values are necessary. The va-
lues in this thesis have been found empirically. Values used in the functions 2.1,
2.2, 2.3 and 2.4 have been used to find white, red, blue and yellow components
in an image.

The empirically found values have been selected so that a range of hues
represent that color. To find a white pixel the values have been adjusted so that
the upper 37.5% of the greyscale represents white.

Due to quality differences between cameras these values are not static and
must in some cases be adjusted. The values presented here are adapted to the
Logitech camera. For example the ADSTech camera has better contrast and
more vivid colors so all the thresholds can be increased.

isWhite(r, g, b) =
{

true if r > 160 and g > 160 and b > 160
false otherwise

(2.1)

isRed(r, g, b) =
{

true if r > 127 and g < 127 and b < 127
false otherwise

(2.2)

isBlue(r, g, b) =
{

true if r < 127 and g < 127 and b > 127
false otherwise

(2.3)

isY ellow(r, g, b) =
{

true if r > 127 and g > 127 and b < 127
false otherwise

(2.4)

The colors that are not caught with these functions are set as black. To
threshold an entire image Algorithm 1, see Appendix A, separates a full color
image into five different values; white, red, blue, yellow, and black.

Figure 2.6(d) shows the result of thresholding Figure 2.6(c) using Algorithm
1.

2.3.1 Color Calibrating the Camera

To increase the quality of the thresholding, it is necessary to color calibrate the
camera. A color plate with the colors needed for thresholding is used for calibra-
ting, the design of the color plate used in this thesis can be viewed in Figure 2.8.
Special care with the lighting conditions during the calibration is necessary, and

25

should represent the lighting conditions when in use. Figures 2.6(b), 2.6(d) and
2.6(f) show the thresholding under different lighting conditions. Figure 2.6(d)
shows the result when the camera has been correctly calibrated. The calibra-
tion itself is done by manually adjusting camera properties such as brightness,
contrast, hue, gamma and exposure. The properties available differ between
cameras.

Figure 2.8: Calibration pattern.

2.4 Connected Components

After thresholding, each pixel is now marked as either red, white, blue, yellow
or black. We need to group together pixels of the same color that are neighbors.
These groups are called connected components. The connected components will
be used in order to find potential markers.

2.4.1 Connected Components Definition

A connected component is a group of pixels G such that for every pair of pixels
gi and gj in G there exists a chain of pixels {gi, . . . , gj} that are all of the same
color, and every 2 pixels adjacent in the sequence are neighbors. A connected
component is also maximal, meaning that there does not exist a chain of pixels
that includes pixels which are not in the group.

2.4.2 Neighborhood of a Pixel

The definition of the neighborhood of a pixel results in different connected com-
ponents. A pixel has eight possible neighbors. Four of the neighbors are placed
at the sides and the last four are placed diagonally at the corners. The neigh-
borhood of a pixel is a mask that describes what neighboring pixels are included
in the neighborhood. Two different neighborhoods are illustrated in Figure 2.9.
As can be seen in the illustration a 4-way neighborhood contains only the ad-
jacent pixels on the edges of a pixel, while an 8-way neighborhood also include
the diagonals. The neighborhood type used in this thesis to find connected

26

components is an 8-way neighborhood. Different neighborhood mask results in
different connected components.

(a) 4-way neighborhood (b) 8-way neighborhood

Figure 2.9: The neighborhood of a pixel.

The result of using different neighborhoods can be viewed in Figure 2.10.
In Figure 2.10(a) a 4-way neighborhood result in two different components be-
cause the neighborhood does not include diagonal neighbors. Using a 8-way
neighborhood results in a single component as shown in Figure 2.10(b).

(a) Using a 4-way neighborhood
results in 2 components.

(b) Using a 8-way neighborhood
results in a single component.

Figure 2.10: Connected Components with different neighborhoods.

2.4.3 Finding Connected Components Using a Breadth
First Search

The first algorithm used to find the connected components is based on a breadth-
first-search (BFS) algorithm. The algorithm goes sequentially through each
pixel of the image. When a pixel has a color different than black the BFS
algorithm maps out the complete area of pixels of the encountered color. This
means that for each pixel in a connected component, the algorithm has to visit
each of its neighbors to check if the neighbor has been visited, or should be
included in the search. After the component has been mapped out the algorithm
still needs to visit all the pixels of the component once more. As can be observed
in Figure 2.11(b), the maximum number of visits the algorithm needs to perform
is 10. If the area was larger, the number of pixels that would need 10 visits would

27

increase. This leads to a big constant in the algorithm, and runs too slow for a
realtime application, so an improved algorithm is needed.

(a) Area to search for Connected Components

2 31 1

5 63 3

3 32 2

3 1

7 3

4 2

6 63 4

3 41 2

5 62 3

9 4

4 2

7 3

1

7

4

8

3

5

2

8

5

10

4

7

(b) Number of visits performed by BFS

2 41 1

2 64 3

3 42 3

3 1

6 1

4 1

6 63 2

1 11 1

3 31 3

6 1

1 1

3 1

1

3

3

3

1

1

1

6

4

6

1

3

(c) Number of visits performed by the Disjoint
Sets method

Figure 2.11: BFS vs. Disjoint sets.

28

2.4.4 Finding Connected Components Using Disjoint Sets

An algorithm to label the pixels is presented in [24]. This algorithm describes
a mask, see Figure 2.12, and a 2-pass method to label a thresholded image.
The first pass labels all pixels and the second pass cleans up multiple labeled
components. The algorithm presented here uses only the first pass and instead
of a second pass, utilizes a data structure to keep track of components with
multiple labels.

The algorithm uses disjoint sets and the neighborhood mask illustrated in
Figure 2.12 This algorithm reduces the number of times a pixel is visited. An
example of the results of this algorithm can be observed in Figure 2.11(c).
The maximum number of visits has been reduced to 6, since this is a realtime
application the improvement is significant. A more thorough description of the
disjoint sets data structure can be found in [10].

Figure 2.12: Algorithm 2’s neighborhood mask.

The algorithms depends on a thresholded image, a label list of the same
dimension as the image, a class called Component and an array that tracks all
created Components. The Component class has a color field. This field is the
same as the pixel color the Component represents. The class also has an index
field which is the location in the Component array. There are also fields to track
the minimum and maximum values of x and y of pixels that are added to the
Component.

The Component class will be used to track the boundaries of a component
and its center. The boundaries are used for identifying whether a Component
is inside another Component, and the center of a marker will later be used for
tracking calculations. The class contains methods as well, these are:

getRepresentative() recursively checks to see if this Component is the top
level Component or if it is the child of another Component. If it is a child,
it will ask its parent who the representative is. While checking for the
representative a tree compression is performed so that subsequent calls
return faster.

setRepresentative(Component) assigns a new representative for a Com-
ponent.

addPixel(x, y) adds a pixel to a Component. For each call, a size variable
is increased. The method also tracks the minimum and maximum x and
y values for all calls. This results in a square that includes all pixels of
a Component. Also, all x values are added together and all y values are

29

added together so that the values can be averaged for making a rough
estimate of the center of the Component.

setColor(Color) sets the color of a Component. Neighboring pixels with the
same color are part of the same Component.

setIndex(Index) every Component has a unique number associated with it.
The number represents the index the Component has in the array of Com-
ponents but also the number the labeling algorithm has given a pixel.

calculateCenter() calculates the center of a pixel by averaging the accumula-
ted x and y values from addPixel(x,y). The computed center coordinate
is returned.

The Problem With the getRepresentative() Method

This method is the most time-consuming part of this algorithm. An example of
the problems that might occur can be observed in Figure 2.13. In the second
row, 5 Components are created. In the third row, Component 1 is united with
Component 2, and Component 1’s representative is set to Component 2. Then
Component 2 is united with Component 3, and Component 2’s representative
is set to Component 3. This continues throughout row three. On row 4, a
new component is created. At the next pixel, Component 6 is about to be
united with Component 1 when Component 1 checks its representative, which
is Component 2. However Component 2 must check its representative all the
way back to Component 5.

1 2 4

2 53 4

3 5

6

1

Figure 2.13: Deep recursion.

2.4.5 Component Size

Before a Component is added to the result-list, the size of the Component is
checked. The maximum size of a Component is found by moving the camera
as close as possible, while still being able to see all four markers and the yellow
border. The minimum size is found by moving the camera as far away as possible
and still be able to identify a group of pixels as a marker. This technique resulted
in that the largest component was about 15 % of the total number of the pixels
in an image. The minimum ended up as 1

1000 of the 15 %.

30

2.5 The Algorithms

Figure 2.14 illustrates the complete process from thresholding an acquired image
to returning a sorted set of markers. All of the algorithms are presented in
Appendix A with pseudocode.

Algorithm 1 thresholds an image into 5 different colors; red, blue, yellow,
white, and black.

Algorithm 2 takes a thresholded image as input and finds all connected com-
ponents. The labeling algorithm, Algorithm 3, is used as a part of this
step. The result of this algorithm is a set of Components of different co-
lors. Before returning the result, the size of the Components are checked;
the Components that are either too small or too big are removed.

Algorithm 3 checks if a pixel belongs to a neighboring Component or if the
pixel is the start of a new Component.

Algorithm 4 uses the colored Components returned from Algorithm 2, and
separates these into three groups: white, yellow, and a composite group
of red and blue.

Algorithm 5 takes the white Components and the red and blue Components
as input and checks all white Components if they are inside red or blue
Components. If a white Component is inside a red or blue one a mar-
ker is created that has the merged characteristics of the white and the
surrounding Component. The algorithm returns a list of markers.

Algorithm 6 compares the yellow Components from Algorithm 4 and the mar-
kers from Algorithm 5 to see if any of the markers are inside a yellow
component. If more than four markers are found, the markers are checked
for redundancy. Any redundant markers are removed. If three blue mar-
kers and one red marker are found inside a yellow Component, the four
markers are returned, otherwise null is returned.

Algorithm 7 The markers returned from Algorithm 6 are here sorted in a
counter-clockwise order, starting with the red marker.

2.6 Markers and Components

In this thesis, a marker is a white Component surrounded by a red or blue
Component. Because of all the background noise it is difficult to know whether
Components identified as a marker, truly is a marker, or just a random pair of
Components. We will however try to reduce the chance of erroneously identified
markers as much as possible.

With all the connected components identified and located, the process of
separating markers from background noise can be done. This process involves
separating the different colored Components from each other and then finding
markers. When a set of one red and three blue markers are found inside a yellow
frame, the marker square has been found. With all of the markers identified,
they need to be sorted and the center of each of them must be calculated.

31

Threshold

Finding
Connected
Components

Labeling

Identifying
Red and Blue Markers

Identifying
Markers inside

Yellow Components

WhiteRed Blue Yellow

Component Separation

Sorting
Markers

Image

1 3 2 4
1 1 2 2

5 2 6 7
2 8 9 7

1

2
3

4

5

6

7

Figure 2.14: Overview of algorithms. Numbers represent numbering of algo-
rithms in the appendix.

2.6.1 Separating the Components

After the connected components have been identified and localized, we want to
separate the components into the different colors; white, red, blue and yellow.
Algorithm 4 does this and returns three lists: w, rb and y. List w returns white
components, list rb returns red and blue components while y returns the yellow
components. The black components are of no interest so they are ignored.

2.6.2 Identifying the Markers

After separating the components, we must locate markers. Markers are created
by finding white Components surrounded by a red or blue Component. All
markers are then checked for localization inside a yellow border. If we end up

32

with three blue markers and one red, the marker plate has most likely been
identified.

When identifying markers, it is necessary to check if a Component is in-
side another Component. Equation 2.5 describes when a Component is inside
another.

inside(c1, c2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

true

if c1.minX ≥ c2.minX
& c1.maxX ≤ c2.maxX
& c1.minY ≥ c2.minY
& c1.maxY ≤ c2.maxY

false otherwise

(2.5)

Algorithm 5 identifies red and blue markers by checking that a white com-
ponent is surrounded by a red or blue component. This is illustrated in Figure
2.15(a). Due to the nature of Component boundaries, incorrect identification
as shown in Figure 2.15(b) is possible.

(a) Correctly identified marker. (b) Incorrectly identified marker.

Figure 2.15: Red Component surrounding a white Component.

Algorithm 6 checks which of the markers, identified in Algorithm 5, that are
inside a yellow component. There are potentially many yellow components, but
if the scene has few yellow areas and the removal of too small and too large
yellow components was successful, there should be only one area large enough
to incorporate the red and blue markers.

In the case when two or more large yellow components exists and partly
overlaps, one or more of the markers can be identified as being inside both of
the components. The result is that the algorithm creates a list of components
that has repeated members. With a total number of markers of more than four,
the algorithm fails. To fix this, a check for repeated members is implemented,
and all redundant markers are removed.

Due to the way a component’s boundary is calculated, a different type of
failure may arise. A Components boundary is the minimum and maximum
pixel in the x and y direction of the Component. This method of obtaining
the boundaries leaves gaps between the boundary and the actual pixels of the
Component. In Figure 2.16, the black square is the boundary of the yellow
Component, and the area inside the black square and outside of the yellow
Component is the gap. The problem is that markers can be identified in this
area, but these markers will be identified as being inside the yellow Component.

33

Figure 2.16: Failure during marker recognition. The upper left red marker is
falsely identified to be inside the yellow square.

This is the case in Figure 2.16, where the red marker is outside the yellow
Component.

2.6.3 Sorting the Markers

At this stage, all the markers have been identified and there are only three
blue markers and one red marker inside the yellow border. The sorting of the
markers is the next step. The sorting process results in the red marker being
first followed by the blue markers sorted in counter-clockwise order.

a d

b c

(a)

a d

c b

(b)

a c

b d

(c)

Figure 2.17: Different Marker Configurations.

The input data to this algorithm consists of four arbitrarily ordered markers;
labeled a, b, c, and d based on the input order. It is assumed that the markers
span a square. The sorting algorithm then tries to find which pair of markers
that creates an intersection inside the square. Figure 2.17 illustrates the three
possible marker configurations. For example, Figure 2.17(b) shows that marker
a must pair up with marker b to create an intersection with the two other
markers. For each of the three configurations there is an additional possibility,

34

for example in Figure 2.17(a), where the markers labeled b and d may swap
positions. This totals to six configurations. The algorithm finds which of the
six configurations the markers has by doing the following:

1. Finding the configuration that creates an intersection inside the spanned
square.

2. Checking if the configuration is the one illustrated or the one with the
swapped markers.

Algorithm 7 checks for all configurations and returns the sorted list. The
algorithm uses a method called isIntersetionInsideSquare(m1,m2,m3,m4),
where m1, m2, m3, and m4 are markers. The method checks the line created
by the marker pair m1 and m2 against the line created by m3 and m4 for
intersections. The test uses the intersection equations developed in Section
1.8.5, specifically Equation 1.5 and 1.6. The equations return two parameters:
s and t. If s ∈ [0, 1] and t ∈ [0, 1] then the intersection is inside the square
defined by the four markers.

Another method isOnRight(u,v,w) checks wether the marker w is on the
right or the left side of the line from u to v. It does this by using the 2D cross
product described in Chapter 1.8.2. This method is used to check if the markers
are swapped according to the previous example.

After sorting the markers, they must be shifted so that the red marker is
the first marker in the list. The result of sorting and rearranging is a square of
markers counter-clockwise order, which starts with a red marker and is followed
by the blue. The list is returned as four points:

pi = {xi, yi}, i = 1, 2, 3, 4

2.6.4 Center of a Marker

(a) Marker in frame 1 (b) Marker in frame 2

Figure 2.18: Marker shape change.

When a marker is created, all the pixels that belong to the marker are
counted and the coordinates are summed separately for x and y directions, and
the average is calculated. The problem with this is that the center of a marker

35

is unstable. In one frame the marker may look like Figure 2.18(a), but in the
next frame, like Figure 2.18(b), the marker has lost a pixel on the right side.
The marker center has in this example moved by 0.137 in the x direction. The
unpredictable nature of the marker center results in intersection calculations
being very unstable. This is illustrated in Figure 2.19(a), where the yellow circle
indicates the intersection of a line that uses the yellow pixel as its marker center
and the green circle indicates the new intersection when the marker center has
moved half a pixel towards the green pixel. The intersection-point has moved 4
pixels in x direction and 1 pixel in the y direction. This causes significant errors
in matrix calculations later on.

(a) Small scale illustration.

p1

p2 p3

p4

640

480

0

x

y

(b) Towards parallel lines.

Figure 2.19: Marker intersection instability.

The illustration in Figure 2.19(a) shows in a small scale, what happens when
one marker moves its center by half a pixel. In a real scale, the distance between
the markers can be in the hundreds of pixels range, and more than one marker
can move its center. This makes the calculations even more unstable. For
example consider the four points p1, p2, p3, and p4 shown in Figure 2.19(b)
with coordinates (70, 400), (50, 50), (450, 55), and (420, 390). Calculating the
intersection between the lines, we get something close to (8585, 156). If p4 moves
by 0.15 of a pixel in the y direction, the resulting intersection moves to about
(8675, 157), which is a difference of 90 pixels in the x direction. This fluctuation

36

increases when the intersecting lines moves towards being parallel.
To counteract this problem, the center of a marker is calculated by averaging

the position over many frames. However, this causes the tracking to be delayed.
It takes some frames for the tracked position of the marker to catch up with
the actual position. For example: a marker center is located at (x1, y1), the
camera is moved and in the next frame the center is located at (x2, y2). Due
to averaging the center will use a certain amount of time before it represents
the new location. This delay is experienced as a slow transition from position
(x1, y1) to (x2, y2) over several frames. This is not a desired behavior.

A good compromise between the two solutions has been developed. The new
method calculates the average marker position frame by frame and checks if the
current position of a marker is within a 3 pixel radius of the average. If the
current marker position is inside of the 3 pixel radius the averaged position is
used, otherwise the current position is used. This results in a tracking that does
not have slow transitions between marker positions, but is unstable for as long
as it takes to build up a new stable average point. This solution works well in
practice, especially when the framerate is reasonably high.

37

38

Chapter 3

Camera Calibration Theory

The theory presented in this chapter builds a foundation for the techniques pre-
sented in the next chapter. This chapter describes how a 3D point is projected
onto an image plane and how parallel lines in 3D space are projected as lines
converging to a vanishing point. Lens distortion is covered as a source of error.
Theory for changing coordinate system and finding the point where the distance
between two 3D lines is at a minimum is described.

3.1 Perspective Projection

A 3D point (x, y, z) is projected onto the image plane z′ as (x′, y′) by the
following equations:

x′ =
xf

z

y′ =
yf

z

z′ = f

where the focal length f is the distance from the center of projection (COP)
to the image plane. The COP is the point located distance f in front of the
image plane and perpendicular to the image plane center. A point is projected
to the image plane on a line that spans from the point itself to the COP. Figure
3.1 illustrates this with only the upper half of the image plane.

3.1.1 Projection of Parallel Lines

The projection of parallel lines onto the image plane, results in lines that
converge on a vanishing point [13]. This is true as long as the lines are not
parallel to the image plane. The following equations prove this claim:

A 3D line with t as a parameter can be written as:

L = P + t�d

In component form:

39

f

z

Z

XY

COP

(x, y, z)

(x’, y’, f)

Figure 3.1: The xy-axis is the image plane. COP is the center of projection.

Lx = Px + tdx

Ly = Py + tdy

Lz = Pz + tdz

The projection of this line is:

X ′(t) = f
Lx

Lz
= f

Px + tdx

Pz + tdz

Y ′(t) = f
Ly

Lz
= f

Py + tdy

Pz + tdz

What we want is to see what happens to the projected line as the line goes
towards infinity:

lim
t→∞X ′(t) = lim

t→∞ f
Px + tdx

Pz + tdz
= f

dx

dz

lim
t→∞Y ′(t) = lim

t→∞ f
Py + tdy

Pz + tdz
= f

dy

dz

This proves that the vanishing point of a line is independent of the localiza-
tion of that line and only dependent of the direction of the line.

The fact that parallel lines converge on a vanishing point will be utilized
with the markers identified previously, as the markers are a square with two
sets of parallel lines.

3.2 Lens Distortion

Perspective projection in computer graphics relies on the pinhole camera model.
The pinhole camera model, shown in Figure 3.2, describes the mapping between

40

f

z

Figure 3.2: The Pinhole Camera Model.

3D world coordinates and 2D image coordinates, where a 3D point is projected
onto the back wall of the pinhole camera.

When using real world camera systems, this camera model fails [21, 27, 28].
This is especially true with low-cost or wide-angle lens systems. When a lens is
included in the model, radial distortion applies to the projected image. There
are two different types of lens distortions: pincushion- and barrel distortion.
Lens distortion is also the reason for the true image center not being at width

2

and height
2 where width and height are the dimensions of the image.

(a) Pincushion distor-
tion. κ3 < 0

(b) Undistorted. (c) Barrel distortion.
κ3 > 0

Figure 3.3: Lens Distortion.

The inverse radial distortion functions can be written as:

xu = xd + xd

∞∑
i=0

κir
i−1
d

yu = yd + yd

∞∑
i=0

κir
i−1
d

where:

rd =
√

x2
d + y2

d

41

and xu and yu are the undistorted coordinates and xd and yd are the distorted
coordinates.

Practical test have shown that it is sufficient to take only the parameters κ3

and κ5 into account [27]. Using this we can simplify the equations:

xu = xd + xd(κ3r
2
d + κ5r

4
d)

yu = yd + yd(κ3r
2
d + κ5r

4
d)

If we know the lens properties κ3 and κ5, these equations tell us how we
can take a distorted point and find its undistorted position. When κ3 < 0
the type of distortion is pincushion, while κ3 > 0 gives barrel distortion. So
to invert the effects of radial lens distortion, the parameters κ3 and κ5 must
be found. Procedures for finding these parameters are described in [21, 27].
Both of these techniques take into account that straight lines should be straight
after projection. So by using the curvature of lines and their distance from the
center of the image plane the parameters can be estimated. Different ways of
calculating the distortion parameters using calibration patterns are described
in [18, 28, 30].

3.3 Changing Coordinate System

In the article [15] a method of obtaining the rotation transformation from three
vectors is described. The technique will be explained in the next chapter, but
some of the theory behind this technique is described here.

A rotation can be described as a change in coordinate system [6, 17], so by
finding the transformation needed to go from one coordinate system to another
we have found the rotation that describes this change. We assume that the
coordinate systems have the same scale and that the corresponding axes of the
coordinate systems have the same angles between the other axes in the same
system.

A coordinate system in R3 contains three basis vectors that are linearly
independent. For R3 the following set is called the standard basis [17] .

�i =

⎡
⎣ 1

0
0

⎤
⎦ ,�j =

⎡
⎣ 0

1
0

⎤
⎦ , �k =

⎡
⎣ 0

0
1

⎤
⎦ (3.1)

These vectors can also be set up in a matrix:

I =
[

�i �j �k
]

=

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

This set is orthonormal, which means that all the vectors are orthogonal to
each other and have unit length. When basis vectors are orthonormal, trans-
formations preserve distances and angles, thus a transformation with an ortho-
normal matrix will be a rotation [13]. Another important property of an ortho-
normal matrix is that the inverse is the transpose of the matrix M−1 = MT

[17].
Two points p and q in R3 can be written as:

42

p =
[

px py pz

]

q =
[

qx qy qz

]
Point p can, with respect to the standard basis, be written as:

P = p

⎡
⎣

�i
�j
�k

⎤
⎦ =

[
px py pz

]
⎡
⎣

�i
�j
�k

⎤
⎦ = px

�i + py
�j + pz

�k

Point q can be represented with an arbitrary basis vectors as:

Q = q

⎡
⎢⎣

�b1

�b2

�b3

⎤
⎥⎦ =

[
qx qy qz

]
⎡
⎢⎣

�b1

�b2

�b3

⎤
⎥⎦ = qx

�b1 + qy
�b2 + qz

�b3

We want to represent point q in the standard basis coordinate system. To
do this, we first need to find the transformation that transforms the standard
basis vectors into point Q’s basis vectors:

⎡
⎢⎣

�b1

�b2

�b3

⎤
⎥⎦ = M

⎡
⎣

�i
�j
�k

⎤
⎦ (3.2)

The matrix M equals:

M =

⎡
⎣ m11 m12 m13

m21 m22 m23

m31 m32 m33

⎤
⎦

Expanding Equation (3.2) gives:
⎡
⎢⎣

�b1

�b2

�b3

⎤
⎥⎦ =

⎡
⎢⎣

m11
�i + m12

�j + m13
�k

m21
�i + m22

�j + m23
�k

m31
�i + m32

�j + m33
�k

⎤
⎥⎦ (3.3)

Solving Equation (3.3) using (3.1) gives:

M =

⎡
⎢⎢⎣

�b1

T

�b2

T

�b3

T

⎤
⎥⎥⎦

We want to take an arbitrary point q from the coordinate system that Q is
defined in and find its representation with the standard basis coordinate system
as c:

qT

⎡
⎢⎣

�b1

�b2

�b3

⎤
⎥⎦ = cT

⎡
⎣

�i
�j
�k

⎤
⎦

43

and since: ⎡
⎢⎣

�b1

�b2

�b3

⎤
⎥⎦ = M

⎡
⎣

�i
�j
�k

⎤
⎦

we get:

qTM

⎡
⎣

�i
�j
�k

⎤
⎦ = cT

⎡
⎣

�i
�j
�k

⎤
⎦

The points are now using the same representation so we can write:

qTM = cT

finally:

c = MT q

So a point q from a coordinate system with arbitrary basis vectors can be
represented in the standard basis coordinate system by multiplying that points
coordinates with a matrix with the basis vectors from point Q’s coordinate
system as column vectors.

3.4 Minimizing the Distance Between Lines

One of the things that is necessary in the next chapter is to find an intersection
between two 3D lines. When calculating the intersection between two lines in
3D space, the number precision available does not guarantee an intersection
point. Instead we have to find the coordinates where the distance between the
two lines is minimized. The method described here minimizes a function by
squaring it and differentiating. The differentiated functions are then set equal
to zero and solved.

The lines are described by a point, a direction vector, and the parameters α
and β:

L1 = p1 + α�d1 (3.4)

L2 = p2 + β �d2 (3.5)

To find the intersection point we set L1 − L2 = 0

f(α, β) = α�d1 − β �d2 + (p1 − p2) = 0 (3.6)

To differentiate the function we need to square the function

min(f(α, β)) = min(f(α, β)2) = min((α�d1 − β �d2 + (p1 − p2))2)

f(α, β)2 = α2 �d1 · �d1 + β2 �d2 · �d2 − 2αβ �d1 · �d2

+ 2α�d1 · (p1 − p2)− 2β �d2 · (p1 − p2) + (p1 − p2)2

44

Partial differentiating and setting equal to zero gives us

∂f

∂α
= 2α�d1 · �d1 − 2β �d1 · �d2 + 2(p1 − p2) · �d1 = 0 (3.7)

∂f

∂β
= 2β �d2 · �d2 − 2α�d1 · �d2 − 2(p1 − p2) · �d2 = 0 (3.8)

exchanging

a = �d1 · �d1

b = �d1 · �d2

c = (p1 − p2) · �d1

d = �d2 · �d2

e = (p1 − p2) · �d2

the derivatives become

∂f

∂α
= 2αa− 2βb + 2c = 0 (3.9)

∂f

∂β
= 2βd− 2αb− 2e = 0 (3.10)

solving Equation 3.9 for α

α =
2βb− 2c

2a
=

βb− c

a
(3.11)

inserting Equation 3.11 into Equation 3.10 and solving for β

β =
ea− cb

ad− b2
(3.12)

inserting the value of β into Equation 3.11 and inserting the value of α into
Equation 3.4 and β into Equation 3.5, returns the intersection point or the point
that gives the minimum distance between the lines.

45

46

Chapter 4

Camera Calibration

In this chapter the process of taking a 2D image and finding the camera confi-
guration of that scene is explained. Some reasons for error and instability are
pinpointed.

When 3D data is projected onto a 2D plane, all depth information is lost. By
observing how the projection works, some insight can be obtained on how the
reconstruction back to 3D may be accomplished. The process of reconstructing
a scene from a 2D image is not a goal of this thesis. However, extrapolating the
camera configuration is an integral part of the reconstruction process which is
what this chapter will cover.

The techniques presented in this chapter use the marker positions acquired
earlier to obtain a rotation matrix and a translation matrix that will later be
used to position the camera in the final scene.

4.1 Camera Calibration Overview

A large number of methods to calibrate a camera exists. Many of these tech-
niques were evaluated before deciding on [15] as the calibration method for this
thesis. There are many different ways too calibrate a camera, for example:

[28, 30] both use complex calibration patterns that demand a much more com-
plex recognition algorithm. Even though both techniques deliver precise
data about the camera the resource usage is higher than the selected me-
thod.

[18] uses a circular calibration pattern with thin lines. This would be a problem
because the quality of the camera might make the lines indiscernible at a
distance.

[12] this technique uses a 3D structure to perform the calibration, but since we
want the projection area to be flat this method is not suitable.

[15] uses vanishing points to calibrate the camera. The vanishing points are
calculated based on the position of only four points. By only needing four
points the recognition algorithm does not need to be very complex. A
variant of this is method is we have selected.

47

4.2 Camera Calibration Intrinsics and Extrin-

sics

The process of finding the intrinsics and extrinsics of a physical camera based
on images taken by a camera is called camera calibration. Intrinsics are the
internal geometric and optical characteristics and extrinsics are the 3D position
and orientation relative to a world coordinate system.

The intrinsic parameters consist of focal length, lens distortion and image
center. The extrinsics consist of rotation and translation.

The only intrinsic parameter that will be used is the focal length. The lens
distortion will be ignored, while the center of the image plane will be assumed to
be width

2 and height
2 . Both rotation and translation from the extrinsic parameters

will be calculated.

4.2.1 Focal Length

To calculate the rotation and translation needed to emulate the location of a
camera, the focal length needs to be known. The focal length of a camera
changes when a camera zooms or the focus changes. Since the cameras used
in this thesis has a static focus setting and does not have a zoom option, the
focal length can be static. This is true as long as the focus setting remains
unchanged.

In this thesis the focal length has been found through a manual process. The
process consists of aligning a box to the marker square by manually increasing
or decreasing the focal length. Figure 4.1 illustrates this briefly.

4.3 Finding the Rotation Matrix

To calculate the rotation matrix the spatial location of the four markers in a
counter clockwise orientation must be known see Figure 4.2(a).

pi = {xi, yi}, i = 1, 2, 3, 4

It is assumed that all four markers lie in the same plane, as well as being
placed in a square pattern.

4.3.1 Vanishing Points

The calibration techniques presented in this chapter depend on vanishing points.
Using the results from Section 3.1.1 we want to find the vanishing point of two
lines that we know in the real world to be parallel, specifically the lines generated
by the square of markers.

First we need to consider the special cases when the projection of parallel
lines are parallel, these cases are:

• The image plane is parallel to one of the sets of lines generated by the
markers.

• The camera is placed directly above the set of lines looking towards the
center, in this case both lines in each set are parallel.

48

(a) Purple lines indicate marker square. (b) Perfectly aligned.

(c) Focal length too long. (d) Focal length too short.

Figure 4.1: Alignment of focal length.

In the cases when parallel lines arise, special considerations are necessary.
These considerations are simple:

• If only one set contains parallel lines rotate 90◦, 180◦, or 270◦ around the
z-axis. The rotation to use depends on the position of the red marker.

• If both sets contain parallel lines rotate 90◦ around the x-axis and the
rotation around the z-axis can be found by calculating the angle of the
red marker to the x and y axis of the image. Finally scale can be derived
by the size of the marker square.

Empirically the situation of parallel lines does not occur, probably due to
the low precision of the captured data.

A vanishing point is calculated along the lines consisting of the projected
points {p1, p2} and {p3, p4}, illustrated in Figure 4.3(b), which defines two lines
that are known to be parallel, as for the lines {P1, P2} and {P3, P4} in Figure
4.3(a). The equations for the lines and their intersection can be found in Section
1.8.5. These lines generate the first vanishing point. The second vanishing point
is calculated the same way but the points used for the line equations are {p1, p4}
and {p2, p3}.

49

1

23

4

Figure 4.2: Example setup of markers.

4.3.2 Camera Coordinates

In Figure 4.4 camera coordinates are illustrated. The ilustration shows how the
real world objects, {P1, P2, P3, P4}, are project onto the image plane, {p1, p2, p3, p4},
and where the vanishing points reside {Fu, Fv}. The vanishing points lie on the
image plane, and the distance from COP to the image plane is the focal length
as described in section 3.1. The point C is the image center and is the ortho-
gonal projection of COP onto the image plane. The basis vectors �i and �j show
what typically is defined as the x and y direction of the image plane, while the
vector �k shows the z direction.

4.3.3 The Rotation Matrix

The method explained in this section returns the rotation matrix needed for
correct camera placement. The method has been taken from [15].

Figure 4.5 shows the local coordinate system of the object placed at P1, and
at COP another coordinate system is defined based on the vanishing points.
The lines from COP to Fu and Fv define the vectors �u′ and �v′, and (�u′× �v′) =
�w′. Since the projections of these lines has the vanishing points Fu and Fv
respectively, then �u ‖ �u′ and �v ‖ �v′. Since the two different coordinate systems
are identical we can use �u′, �v′, and �w′ as basis vectors for changing coordinate
system from camera coordinates.

�u′ =
�COPFu

‖ �COPFu‖ =
1√

Fu2
i + Fu2

j + f2

⎡
⎣ Fui

Fuj

f

⎤
⎦

�v′ =
�COPFv

‖ �COPFv‖ =
1√

Fv2
i + Fv2

j + f2

⎡
⎣ Fvi

Fvj

f

⎤
⎦

50

COP

P1

P2

P3

P4

p1

p2p3

p4

Image plane

(a) Projection of markers and parallel lines. COP is the center of
projection.

Fv

Fu

p1

p2

p3

p4

Image plane

(b) Vanishing Points.

Figure 4.3: Shows the projection of a set of points and the vanishing points in
the projection.

�w′ = (�u′ × �v′)

The rotation matrix becomes:

51

P1

P2

P3

P4

COP

p1

p2p3

p4

Image plane

Fv

Fu

C

i

j

k

Figure 4.4: Camera Coordinates. C is the image center and COP is the center
of projection.

M =
[

�u′ �v′ �w′]
=

⎡
⎢⎢⎢⎢⎣

Fui√
Fu2

i
+Fu2

j
+f2

Fvi√
Fv2

i
+Fv2

j
+f2

w′
i

Fuj√
Fu2

i
+Fu2

j
+f2

Fvj√
Fv2

i
+Fv2

j
+f2

w′
j

f√
Fu2

i
+Fu2

j
+f2

f√
Fv2

i
+Fv2

j
+f2

w′
k

⎤
⎥⎥⎥⎥⎦

4.3.4 The Cross-Product �w′

When calculating the cross product (�u′ × �v′) for the rotation matrix the vector
�w′ can point in two different directions depending on which direction the vectors
point in relation to each other. The direction vector �u′ is always calculated based
on the lines {p1, p2} and {p3, p4} but in which direction �u′ will point relative to
the lines is unknown. This is illustrated in Figure 4.6.

We must find which side the point vp is located relative to the lines. To do
this, we can check that the point vp is on the left-hand or right-hand side of the
line {p1, p4}. To do this we first calculate the vectors:

�a = (p4 − p1)

52

P1

P2

P3

P4

COP

p1

p2p3

p4

Image plane

Fv

Fu

uw

v

u´w´

v´

Figure 4.5: Shows the local coordinate system of the object and the estimated
coordinate system at COP .

�b = (vp− p1)

then we take the 2D cross product:

c = (�a×�b)

The sign of the scalar value c will tell what side the point vp is on:

If c < 0 vp is on the right-hand side of {p1, p4}
If c > 0 vp is on the left-hand side of {p1, p4}

The case when c = 0 is not considered since a vanishing point on the line
{p1, p4} is not possible. The same calculations must be done for the line pair
{p1, p4} and {p2, p3}, but here the vanishing point is checked against the line
{p1, p2}.

The reason for these checks is that when the vector �w′ is calculated, we want
it to point in the right direction. Figure 4.7 illustrates this. Figure 4.7(a) shows
the initial case. If the vector �v′ changes direction, as in the change from Figure
4.7(a) to Figure 4.7(b), the calculated vector �w′ points down instead of up. The
same happens when �u′ changes direction, as in Figure 4.7(c).1 If both vectors

1In an application, this is observed as an object being turned upside down.

53

p1

p2
p3

p4

vp

(a)

p1

p2 p3

p4

vp

(b)

Figure 4.6: Different directions for vanishing points.

change direction, the vector �w′ remains unchanged, as in Figure 4.7(d). So
when a vector changes direction, we want the vector �w′ to point in the opposite
direction. This is done by negating the vector �w′ → − �w′.

u’
v’

w’

(a)

u’

v’

w’

(b)

u’

v’

w’

(c)

u’

w’

v’

w’

(d)

Figure 4.7: Different orientations of �u′ and �v′ and the resulting cross product
�w′.

54

4.4 The Translation Vector and its Length

The translation vector gives us the direction and distance to move a 3D object.
The method described here is based on the work done by [15].

Image plane

O

A’

A

B

B’

B”

Figure 4.8: Translation.

From Figure 4.8 we want to find the distance from O to A. The direction
vector is already known, and is written as:

�OA

‖ �OA‖ =
�OA′

‖ �OA′‖ =
1

‖ �OA′‖

⎡
⎣ A

′
x

A
′
y

f

⎤
⎦ =

1√
A′2

x + A′2
y + f2

⎡
⎣ A

′
x

A
′
y

f

⎤
⎦

The distance ‖ �AB‖ is set to 1, thus the distance calculated for ‖ �OA‖ will
only be useable as a scale factor. For our purposes, this is sufficient. In our
setup, the distance ‖ �AB‖ can easily be measured and used since it is a static
distance, but this will only add complications later in the visualization process.

In Figure 4.8 the point B
′′

is the intersection of the line through A
′

in the
same direction as �AB and the line OB.

The distance that we don’t know is ‖ �A′B′′‖. To find this distance the point
B

′′
has to be calculated first. This is done by using the minimization formula

stated in Section 3.4.
To find the distance ‖ �OA‖ we use Euclid on the triangles OAB and OA

′
B

′′

in Figure 4.8

‖ �A′B′′‖
‖ �AB‖ =

‖ �OA′‖
‖ �OA‖ (4.1)

55

which we solve and get

‖ �OA‖ =
‖ �AB‖‖ �OA′‖
‖ �A′B′′‖

(4.2)

This results finally in the vector

�OA = ‖ �OA‖
�OA′

‖ �OA′‖
(4.3)

which is the translation vector.

�T = �OA (4.4)

In the application the point P1 is used as A and point P2 or P4 is used as
B. This results in p1 being used as A

′
and p2 or p4, the projection of P2 or

P4, being used as B
′
. Finally the vectors �A′B′′ and �AB are equal to either the

vector Fu or Fv corresponding to the choice of P2 or P4.

56

Chapter 5

Visualization

The main goal of this thesis is to merge the real world with an artificial 3D
world. The final step to achieve this is the visualization. This chapter describes
the techniques necessary to use the captured image as a background and the
rotation matrix and translation vector to position the 3D model at the correct
location. The information provided in this chapter has been compiled from [6–
8, 13, 29]. This is only a brief introduction into the field of computer graphics,
and covers only the topics necessary to complete the visualization part of this
thesis.

5.1 OpenGL

The graphics library used in this thesis is OpenGL (GL stands for Graphics
Library) introduced by SGI in 1992. It has since become the industry’s most
widely used 3D graphics application programming interface. Implementations
of the library can be obtained for most platforms and programming languages.
OpenGL is also supported in hardware in most modern graphics cards. OpenGL
is now maintained by The OpenGL Architecture Review Board (ARB).

5.2 Vertices, Triangles, and Quadrilaterals

3D models are usually composed of triangles and quadrilaterals. Quadrilaterals
are four sided polygons. The polygons that a model is composed of are called
faces. Each corner of a polygon is called a vertex. Figure 5.1(a) illustrates how
a sphere can be created by quadrilaterals and triangles. The triangles are placed
at the poles of the sphere. The lines of the wireframe model intersect at the
vertices of the sphere. Figure 5.1(b) illustrates a 3D model of Buddha composed
exclusively of triangles. The Buddha model was obtained from [2].

5.3 Translations, Rotations, and Scaling

To move and size a 3D model, translation, rotation, and scaling operations are
necessary. In OpenGL these operations can be performed by using the following
library routines:

57

(a) A wireframe sphere composed of quadrilaterals
and triangles at the poles.

(b) A wireframe Buddha model
composed exclusively of triangles.

Figure 5.1: Wireframe 3D models.

glTranslatef(x, y, z) where x, y, and z are distances along the different axis.

glRotatef(a, x, y, z) where a is the angle and x, y, and z describe a vector
to rotate around.

glScalef(x, y, z) where x, y, and z describe the scaling factor along each axis.

Internally, OpenGL uses matrices to perform the transformations, and it is
possible to use a matrix directly to perform the same operations. The method
for this is glMultMatrix(m), where m is a 4× 4 matrix.

T (x, y, z), Rx(θ), Ry(θ), Rz(θ), and S(x, y, z) are the matrices that perform
transformations equivalent to the previously mentioned OpenGL methods.

T(x,y, z) is the translation matrix where x, y, and z are the translation dis-
tances.

T(x,y, z) =

⎡
⎢⎢⎣

1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1

⎤
⎥⎥⎦

Rx(θ), Ry(θ), and Rz(θ) are the rotations matrices for each axis and θ is the
rotation angle. The rotations only apply to Rx(θ) = glRotatef(θ, 1, 0, 0),
Ry(θ) = glRotatef(θ, 0, 1, 0), and Rz(θ) = glRotatef(θ, 0, 0, 1).

Rx(θ) =

⎡
⎢⎢⎣

1 0 0 0
0 cos(θ) − sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1

⎤
⎥⎥⎦

58

Ry(θ) =

⎡
⎢⎢⎣

cos(θ) 0 − sin(θ) 0
0 1 0 0

sin(θ) 0 cos(θ) 0
0 0 0 1

⎤
⎥⎥⎦

Rz(θ) =

⎡
⎢⎢⎣

cos(θ) − sin(θ) 0 0
sin(θ) cos(θ) 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

S(x,y, z) is the scaling matrix where x, y, and z are the scaling factor for each
axis.

S(x,y, z) =

⎡
⎢⎢⎣

x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 1

⎤
⎥⎥⎦

Figure 5.2 illustrates the result of using these operations on a box.

(a) A box at the origin. (b) Translating a box by 4 in the x-
direction.

(c) Rotating a box by 45◦ around the y-
axis.

(d) Scaling of a box.

Figure 5.2: Transformations on a box.

59

(a) Rotating a box by 45◦ and then trans-
lating by 4.

(b) Translating a box by 4 and then rota-
ting by 45◦.

Figure 5.3: Order of transformations.

Transformations can be multiplied together to create composite transforma-
tions. By multiplying rotation matrices together it is possible to create rotations
around arbitrary axes. The order of multiplying transformations is important.
This is illustrated in Figure 5.3(a) and Figure 5.3(b). As seen in the figures;
doing a rotation before translating is very different from doing the transforma-
tions in the opposite order. It is important to note that the center of rotation
is at the origin. The same care of transforming in the right order is necessary
with the other transformations. Transformation-operations of equal types can
be composed in any order.

5.4 Shading

Drawing a 3D model as a wireframe or filling every face with a color will create
a flat looking object. To create the illusion of 3D every face must be shaded.
The shading is dependent on light position, position of viewer, and the surface
of the model. All surfaces reflect light, and it is this fact that enables us to
see objects in the real world. There are three types of reflections available in
OpenGL: ambient, diffuse, and specular.

Ambient reflection is background light or diffusely reflected light from other
objects.

Diffuse reflection is the light that reflects off of surfaces that are rough. The
roughness scatters the light in all directions and this makes diffusely lit
surfaces appear the same from all directions; see Figure 5.4(a).

Specular reflection is the light that is reflected from smooth surfaces; see
Figure 5.4(b). This creates a highlight on the shaded model which is the
reflection of the lightsource. The smoother a surface is, the more the
surface resembles a mirror. Because it acts as a mirror the reflection is
dependent on the position of the viewer.

The final result is composed of the sum of all three reflection types for each
lightsource. OpenGL provides two methods of shading a model:

60

(a) Rough surface. (b) Smooth surface.

Figure 5.4: Rough and smooth surfaces.

Flat shading is the fastest and also the simplest method. Shading of this type
only checks the reflections for each face and colors the entire face with
that color.

Smooth shading is slower but renders a smooth surface more realistically.
Shading of this type, called Gouraud shading, sums up the reflections for
each vertex, and linearly interpolates the color over the face.

Figure 5.5 illustrates the two different types of shading on a sphere. In
addition, the spheres show the difference between purely diffuse surfaces, Figures
5.5(a) and 5.5(c), and surfaces that have a specular highlight, Figures 5.5(b) and
5.5(d). Finally Figure 5.6 illustrates the shading of a complex model.

(a) Flat diffuse shading. (b) Flat shading with spe-
cular highlighting.

(c) Smooth diffuse sha-
ding.

(d) Smooth shading with
specular highlighting.

Figure 5.5: Results of using different shading models on a sphere.

5.5 Texture Mapping

To improve the realism of a rendered model, texture is applied. A texture can
be a 2D image as shown in Figure 5.7(a). The s and t axes in the image refer to

61

Figure 5.6: A smooth shaded Buddha.

s

t

0

0

1

1
1,1

(a) Texture mapping coordinates and a
texture map.

0.5, 0.5

0.5, 0.75 0.75, 0.75

0.75, 0.5

(b) A Textured quadrila-
teral.

Figure 5.7: Texture mapping coordinates.

texture coordinates. Each vertex of a 3D model can have an associated texture
coordinate. The yellow square shows the area of the texture referenced from
the quadrilateral in Figure 5.7(b). The result of using the texture in Figure 5.7
on a model, can be seen in Figure 5.8.

In this thesis, texture mapping is used in two cases; the first is to apply
texture on the models used, and the second is to use the captured image as a
backdrop picture.

5.6 Stereoscopic Viewing

All the images created with OpenGL are projected into 2D. This makes the
images look flat. The human vision is capable of perceiving depth informa-

62

Figure 5.8: A smooth shaded Buddha with texture mapping.

tion because each eye sees an object from a slightly different position. This
is illustrated in Figure 5.9. This fact can be exploited by using a HMD with
two independent monitors to achieve the same effect. Each monitor displays an
image of the scene, but from slightly offset camera positions. The offset emu-
lates the distance between the eyes. The result is an effect that fools the brain
to believe that the generated image has depth.

Figure 5.9: Stereoscopic viewing.

63

64

Chapter 6

Results

In this chapter, the result of assembling all the pieces from the previous chapters
is presented. We provide a number of examples that demonstrates the capabi-
lities and flexibility of the developed system. This chapter also illustrates and
proposes solutions to some inadequacies that appeared during development and
usage of the system.

6.1 Example Setups

This thesis has in detail explored how to create a MR application. The illus-
trations provided here show the physical aspect of the application. Figure 6.1
shows a person using the HMD and camera with the handheld marker. Fi-
gure 6.2 illustrates how the application functions when the camera has a static
location. The image on the monitor is updated in real time.

The Logitech camera is used with the HMD, because this camera is very easy
to attach to the goggles without needing to modify the camera or the goggles.

Figure 6.1: A user wearing a HMD with the Logitech camera attached, is ex-
ploring the application with the handheld markers.

65

Figure 6.2: Static positioned camera and the result on a LCD monitor.

6.2 Handheld Markers

This section illustrates results gained when using the small handheld marker
pattern shown in Figure 6.3. The handheld markers lets the user, with some
limitations, rotate, scale, and translate a virtual object using his hands. Figure
6.4 shows a landscape and a game of chess projected onto the handheld marker
square. Figure 6.5 demonstrates a virtual Rubik’s cube. The Rubik’s cube is
animated and interactive; the light blue frame indicates which face is active.

This small marker pattern works very well because it is easy to keep the
markers inside the field of view of the camera and it allows the camera to get
very close to the markers.

Figure 6.3: Using the handheld markers.

66

(a) A handheld game of chess. (b) A handheld landscape.

Figure 6.4: Using the handheld markers.

(a) Rubik’s cube. (b) Rubik’s cube animated.

Figure 6.5: Playing with a Rubik’s cube.

6.3 Examples

The following shows examples of what the setup can be used for. Figure 6.6
illustrates the point of view used in Figure 6.7. Figure 6.7(a) is an animated
model of the solar system. Figure 6.7(b) shows a game of chess. Figure 6.7(c)
shows a landscape created from a heightmap. Real world data can be used for
simulation. For example, a construction company can use this to illustrate the
impact of building a bridge in a certain area. Finally, Figure 6.7(d) shows a 3D
model of a Buddha statue.

Figure 6.8 illustrates the result of a camera capturing at different locations
along a path.

67

Figure 6.6: Point of view.

(a) The local solar system. (b) A game of chess.

(c) Explore 3D landscape. (d) Decorate your office.

Figure 6.7: Pretty Images.

68

(a) Captured top view. (b) Mixed reality top view.

(c) Captured side view. (d) Mixed reality side view.

(e) Captured front view. (f) Mixed reality front view.

Figure 6.8: The result of a moving camera.

69

6.4 Illusion Breakers

Many problems occur that breaks the illusion of realism. This section describes
several of these problems with proposals on how to solve them.

6.4.1 Hardware and Software Development Tools Impli-
cations

The most important implication both hardware and software has on the appli-
cation is reduced frame rate. For example the driver-software of the ADSTech
camera used up to 60 % of the computer’s resources while capturing, leaving the
application with only 40 % of the resources. With too little computing power,
the number of frames processed per second is reduced which results in a lowe-
red frame rate. This could have been solved with a more powerful computer
with dual CPUs or a camera that did not use the same amount of resources.
Another software related impact on frame rate is Java. Java is an interpreted
language and does not directly utilize single instruction multiple data (SIMD)
instructions on the CPU. The use of these instructions could have improved the
speed of the thresholding algorithm.

The quality of the cameras used has an impact on the marker recognition.
Both cameras have a limited amount of interaction with the internal settings,
like brightness, gamma, exposure, and white balance. Some of these settings are
automatically applied or not available at all. For instance, the Logitech camera
is difficult to set up correctly, and even at the optimal settings produces images
with distorted colors which influences the recognition algorithms.

6.4.2 Loosing Track

For a number of previously mentioned reasons, the software may fail in recogni-
zing the markers. If the application is functioning and then looses the markers,
the image in Figure 6.9 illustrates what will most likely happen. By design, the
3D model stays at the last known marker position.

Figure 6.9: Loosing track of the markers.

70

6.4.3 Unstable Translation Calculations

A problem that occured early was that the 3D object seemed to be incorrectly
positioned inside the marker square. With a cube placed in the center, one of
the sides was longer or shorter than the other. An example of this can be seen in
6.11. The reason for this visual error is related to the length of the translation
vector. The length of the vector varies depending on which axis is selected (see
Figure 6.10). If the distance along the x-axis from the red marker to the blue
marker is chosen. the length has one value. Using the distance along the y-axis
from the red marker to the blue marker results in another value. Figure 6.11
illustrates what happens to the y-axis when the distance along the x-axis is
chosen.

X
Y

Figure 6.10: The marker square axes.

(a) Scale along y-axis is incorrect. (b) Error compensated for.

Figure 6.11: Unstable translation vector length.

To compensate for the erroneous scale, the following method has been deve-
loped. The results for both vectors are calculated, but only one is used. If the
x-axis is chosen, the ratio of the y component of both results are calculated, and
the 3D model is scaled in the y-axis with this ratio. This again results in a new
type of visual error: deformation of the 3D model. The deformation creates a
slightly too fat or too thin model. This problem, though, is less noticeable and

71

annoying than the incorrect positioning.
There are several reasons for the unstable vector calculations but the main

reasons are lens distortion and the assumption that the image center is at width
2

and height
2 .

6.4.4 In Front or Behind?

Figure 6.12 illustrates one of the most commonly occurring problems. Figure
6.12(a) shows a correctly rendered scene with the 3D model rendered in front of
the tape roll. Figure 6.12(b) shows what happens when the tape roll is moved
in front of the markers; the 3D model is still rendered on top of the tape roll,
which destroys the illusion of depth. The reason for the error is the fact that
the background image does not contain any depth information, and is always
rendered in the background.

A solution to this can be found by using two cameras. Setting up two
cameras with a horizontal offset that capture the same scene can be used to
acquire depth information from the scene. First, corresponding pixels between
the two images must be found, then the difference in position can be used to
calculate the depth of each pixel. The depth information can then be used to
selectively render pixels in front of or behind the 3D model. An example of this
technique can be found in [23].

6.4.5 Matching Virtual and Real Light Sources

To create the best illusion of a 3D model occupying the space of the markers,
the lighting of the virtual world should match the lighting of the captured world.
Figure 6.13 illustrates the effect of matching and mismatching a light source.
The positioning of the lights must be done manually.

There are methods to semi-automatically position a light source before using
the system. A simple method of calibrating the geometry of light sources can
be found in [20].

Another possibility would be to use image-based lighting using a light probe
image [11]. Image-based lighting is a way to simulate the lighting of a scene
using High Dynamic Range Images (HDRI). HDRI are images that record the
position of every light source in a scene as well as the intensity at different
exposures.

All positioning methods result in mismatching lights either if the markers are
moved a considerable distance from their initial position, a light source moves,
or the intensity of a light changes.

Figure 6.13 also illustrates another important lighting effect necessary to
achieve realism: shadows. Here, the camera casts a shadow, but the statue does
not. Implementing shadows would increase the level of realism considerably,
but the problem of mismatching lights would have a greater impact because the
flaw would be more noticeable. Applying shadows would also add a new range
of problems to overcome. For example, if a real world object is supposed to
receive a shadow, the shadow would be projected incorrectly, as the background
image is flat and does not contain any 3D information. This can be solved much
in the same way as the problem in Section 6.4.4

72

(a) Tape roll behind markers.

(b) Tape roll in front of markers.

Figure 6.12: Drawing order.

73

(a) Matching lights.

(b) Mismatching lights.

Figure 6.13: Matching and Mismatching lights.

74

Chapter 7

Conclusion and Future
Work

This chapter presents the conclusion of this thesis and thoughts on how the
system developed can be enhanced and extended in the future.

7.1 Conclusion

We have successfully created a complete system that enables a user to explore
virtual objects mixed with the real world. By moving the head or physically
move around a square of markers, the user can study the objects from any
position.

Using the handheld markers the user is able to rotate, translate, and look
closer at the projected objects with hand movements only.

An effective marker design was developed that enabled us to use a fast recog-
nition algorithm. A method of obtaining markers from an image was developed
by using conventional image analysis techniques and efficient data structures.
We selected and adapted a camera calibration technique that was integrated
into the system. Images from a capturing device was both used as a backdrop
image and as input for the recognition and calibration subsystem.

Finally, to prove the functionality and flexibility of our system, a number of
examples were created that illustrates possible application areas.

7.2 Future Work

The future brings faster computers, higher quality cameras, and HMDs with
better displays and lighter weight. All these advances will improve the result
of the developed software but there are also software issues that need to be
resolved.

Better cameras and higher resolution The quality of the cameras used in
this thesis has been low, and the level of manual customization of the
camera properties has also been inadequate. It would have been an ad-
vantage to have a camera with higher resolution than 640x480 and higher

75

quality without using too much of the computer’s resources while captu-
ring. An example of better equipment that could have been used is the
HMDs that the company Triviso [5] provide, with built in stereo cameras.
By using a higher resolution input image to find the markers increases the
precision of locating the center of markers, but by increasing the resolution
the need for more computing power also increases.

Enhancing the recognition of markers The thresholding algorithm is very
sensitive to the lighting conditions and is not completely robust. To im-
prove this part of the software, it is necessary to implement a more adap-
tive thresholding algorithm that will operate successfully even with a mo-
derate amount of highlighting in the scene.

Markers Creating markers that have an even more diffuse property than the
current markers is necessary to reduce the highlighting issues that we
experience. The current implementation of markers is not ideal. The
software is dependent on seeing all of the markers at the same time, so
it is not possible to only study a small part of a model. Maybe a grid of
different symbols would make it possible to calibrate and only show the
part of the model represented by that part of the grid.

Stereo capturing By using a stereo camera configuration, it would be possible
to resolve the ”in front or behind?” problem mentioned earlier, and to cast
shadows correctly in the scene. In addition, the illusion of 3D would be
enhanced since the background image would now be in stereo.

Shadows It would be nice to implement shadows. Shadows increase the illusion
of depth. The current problem with shadows, and the reason for not
implementing it in this iteration, is that the background image does not
contain any depth information. This causes shadows to be incorrectly cast
on objects. For example shadows will not wrap around round objects.
Depth information is possible to acquire with stereo capturing.

Multiple Markers It would be easy to extend the software with support for
multiple markers. By using either different colors or patterns inside the
marker squares to differentiate between the markers, it would be possible
to have more than one object to interact with. This would be useful for
trying out different configurations of house placements in a landscape with
one large marker and several small ones inside of the larger one.

Collaborative Multiple users using HMD and looking at the same markers,
one user should be able to show all the others what he or she is focusing
on. The users may see the model either from the point of view of the
directing user, or from their own point of view.

Interaction In addition to be able to move multiple markers around, it would
be nice to interact with the models without using a keyboard or a mouse.
For example to rotate the model in place or to change a model’s texture
and color by some kind of hand gesture or speech.

76

Acknowledgments

I would like to thank Tyge Løvset, Fredrik Manne, Kåre P. Villanger, Lars Helge
Stien, Inge Eliassen, Endre Lidal, Christian Michelsen Research, my parents,
and Katrine.

77

78

Appendix A

Algorithms

Algorithm 1 Image Thresholding
1: function threshold(image)
2: for all pixels ∈ image do
3: r← red-component of pixel
4: g ← green-component of pixel
5: b← blue-component of pixel
6: if isWhite(r, g, b) then
7: pixel←WHITE
8: else if isRed(r, g, b) then
9: pixel← RED

10: else if isBlue(r, g, b) then
11: pixel← BLUE
12: else if isY ellow(r, g, b) then
13: pixel← Y ELLOW
14: else
15: pixel← BLACK
16: end if
17: end for
18: end function

79

Algorithm 2 Finding Connected Components
1: function findConnectedComponents(image)
2: I ← Integer array with dimensions as image, all elements set to -1
3: C ← indexable list of Component objects.
4: currentindex← 0

5: for all pixels ∈ image do
6: x← x-coordinate of pixel
7: y ← y-coordinate of pixel
8: if pixel �= BLACK then
9: label(C, I, image, x, y, currentindex)

10: end if
11: if y > 0 and x > 0 then
12: if (I(x, y − 1) �= −1) and (I(x − 1, y) �= −1) then
13: if image(x, y − 1) = image(x− 1, y) then
14: c1← C[I(x, y − 1)].getRepresentative()
15: c2← C[I(x − 1, y)].getRepresentative()
16: if c1 �= c2 then
17: c← union(c1, c2)
18: C[I(x, y − 1)].setRepresentative(c)
19: C[I(x − 1, y)].setRepresentative(c)
20: end if
21: end if
22: end if
23: end if
24: end for
25: for all components ∈ C do
26: if component.getRepresentative() �= component then
27: Remove component from list.
28: else if size of component is too large or too small then
29: Remove component from list.
30: end if
31: end for
32: return C
33: end function

34: function union(c1, c2)
35: c1.minY ← min(c1.minY, c2.minY)
36: c1.maxY ← max(c1.maxY, c2.maxY)
37: c1.minX ← min(c1.minX, c2.minX)
38: c1.maxX ← max(c1.maxX, c2.maxX)
39: c1.x← c1.x + c2.x
40: c1.y ← c1.y + c2.y
41: c1.size← c1.size + c2.size
42: c2.setRepresentative(c1)
43: return c1
44: end function

80

Algorithm 3 Labeling of pixels

1: function label(C, I, image, x, y, currentindex)
2: pixel← image(x, y)
3: if pixel ∈ {WHITE, RED, BLUE, Y ELLOW} then

� The following if lines compares the color of two pixels within the
bounds of the image.

4: if x > 0 and pixel = image(x− 1, y) then
5: I(x, y)← I(x− 1, y)
6: C[I(x, y)].addP ixel(x, y)
7: else if x > 0 and y > 0 and pixel = image(x− 1, y − 1) then
8: I(x, y)← I(x− 1, y − 1)
9: C[I(x, y)].addP ixel(x, y)

10: else if y > 0 and pixel = I(x, y − 1) then
11: I(x, y)← I(x, y − 1)
12: C[I(x, y)].addP ixel(x, y)
13: else

� A new component has been found.
14: I(x, y)← currentindex
15: currentindex← currentindex + 1
16: C[I(x, y)] = new Component(x, y, image, labels)
17: end if
18: end if
19: end function

20: function addPixel(component, x, y)
21: component← component.getRepresentative()
22: component.addP ixel(x, y)
23: end function

24: function newComponent(image, I, x, y)
25: component = new Component(x, y)
26: component.setColor(image(x, y))
27: component.setIndex(I(x, y))
28: return component
29: end function

81

Algorithm 4 Component Separation

1: function separate(C)
2: w, r, b, y ← empty lists
3: for all components ∈ C do
4: if component.color = WHITE then
5: w.add(component)
6: else if component.color = RED then
7: rb.add(component)
8: else if component.color = BLUE then
9: rb.add(component)

10: else if component.color = Y ELLOW then
11: y.add(component)
12: end if
13: end for
14: return w, rb, y
15: end function

82

Algorithm 5 Identify Red and Blue Markers

1: function identifyRedAndBlueMarkers(w, rb)
2: markerlist← empty list of Markers
3: for all components ∈ w do
4: white← component from w
5: for all components ∈ rb do
6: redorblue← component from rb
7: if inside(white, redorblue) then
8: markers.add(merge(white, redorblue))
9: rb.remove(redorblue)

10: breakinnerforloop
11: end if
12: end for
13: end for
14: return markerlist
15: end function

16: function merge(c1, c2)
17: marker ← new Marker
18: marker.minY ← min(c1.minY, c2.minY)
19: marker.maxY ← max(c1.maxY, c2.maxY)
20: marker.minX ← min(c1.minX, c2.minX)
21: marker.maxX ← max(c1.maxX, c2.maxX)
22: marker.size← c1.size + c2.size
23: if c2 = RED then
24: marker.color = RED
25: else if c2 = BLUE then
26: marker.color = BLUE
27: end if
28: (x, y) = c1.calculateCenter()
29: marker.setCenter(x, y)
30: return marker
31: end function

83

Algorithm 6 Identify Markers Inside Yellow Components

1: function identifyMarkersInsideYellowCmpnts(markerlist, y)
2: markers← empty list of Markers
3: for all components ∈ y do
4: yellow← component from y
5: for all markers ∈ markerlist do
6: m← marker from markerlist
7: if inside(m, yellow then
8: markers.add(m)
9: end if

10: end for
11: end for

12: if markers.size > 4 then
13: if markers contain repeated members then
14: remove redundant members
15: end if
16: end if

17: if markers contain 1 red and 3 blue markers then
18: return markers
19: else
20: return null
21: end if
22: end function

84

Algorithm 7 Sorting Markers

1: function sort(markers)
2: a← markers[0]
3: b← markers[1]
4: c← markers[2]
5: d← markers[3]
6: if isIntersetionInsideSquare(a, b, c, d) then
7: if isOnRight(a, b, c) then
8: markers← {a, c, b, d}
9: else

10: markers← {a, d, b, c}
11: end if
12: else if isIntersetionInsideSquare(a, c, b, d) then
13: if isOnRight(a, c, b) then
14: markers← {a, b, c, d}
15: else
16: markers← {a, d, c, b}
17: end if
18: else if isIntersetionInsideSquare(a, d, b, c) then
19: if isOnRight(a, d, b) then
20: markers← {a, b, d, c}
21: else
22: markers← {a, c, d, b}
23: end if
24: else

� The markers do not create a square. These are probably not the
markers from the marker square.

25: end if
26: return markers
27: end function

85

86

Bibliography

[1] Artoolkit. http://www.hitl.washington.edu/artoolkit/.

[2] Buddha model from inspeck. http://www.inspeck.com.

[3] Lightweight java gaming library. http://www.lwjgl.org/.

[4] Mixed reality rendering with openrt. http://graphics.cs.uni-sb.de/MR/.

[5] Trivisio. http://www.trivisio.com/mixed-reality.html.

[6] Edward Angel. Interactive Computer Graphics, A top down approach using
OpenGL. Addison Wesley, third edition, 2003.

[7] OpenGL Architecture Review Board. OpenGL 1.4 Reference Manual. Ad-
dison Wesley Professional, fourth edition, 2004.

[8] OpenGL Architecture Review Board, Dave Shreiner, Mason Woo, Jackie
Neider, and Tom Davis. The OpenGL Programming Guide - The Redbook:
The Official Guide to Learning OpenGL, Version 1.4. Addison-Wesley,
fourth edition, 2003.

[9] David H. Brainard. Bayesian method for reconstructing color images from
trichromatic samples. IS&T’s 47th Annual Conference/ICPS, pages 375–
380, 1994.

[10] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to algorithms. The MIT Press, second edition, 2001.

[11] Paul Debevec. Rendering synthetic objects into real scenes: Bridging tradi-
tional and image-based graphics with global illumination and high dynamic
range photography. In Proceedings of SIGGRAPH 98, pages 189–198. SIG-
GRAPH, 1998.

[12] Jiann der lee. A fast geometrical approach to camera extrinsic parameters.
Computers Math. Applic., 32(12):93–100, 1996.

[13] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes.
Computer Graphics, Principles and Practice. Addison Wesley, second edi-
tion, 1997.

[14] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Pren-
tice Hall, second edition, 2002.

87

[15] E. Guillou, D. Meneveaux, E. Maisel, and K. Bouatouch. Using vanishing
points for camera calibration and coarse 3d reconstruction from a single
image. The Visual Computer, 16:396–410, 2000.

[16] USB Implementers Forum Inc. Universal serial bus. http://www.usb.org.

[17] David C. Lay. Linear Algebra and its Applications. Addison Wesley, second
edition, 1998.

[18] Xiaoqiao Meng and Zhanyi Hu. A new easy camera calibration technique
based on circular points. Pattern recognition, 36:1155–1164, 2003.

[19] Paul Milgram and Herman Colquhoun Jr. A Taxonomy of Real and Vir-
tual World Display Integration, chapter 1, pages 1–16. Ohmsha(Tokyo) &
Springer Verlag(Berlin), 1999.

[20] Mark W. Powell, Sudeep Sarkar, and Dmitry Goldgof. A simple strategy
for calibrating the geometry of light sources. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23(9):1022–1027, September 2001.

[21] B. Prescott and G. F. McLean. Line-based correction of radial lens distor-
tion. Graphical models and image processing, 59(1):39–47, January 1997.

[22] J. Schmidt, I. Scholz, and H. Niemann. Placing arbitrary objects in a real
scene using a color cube for pose estimation. In B. Radig and S. Florczyk,
editors, Pattern Recognition, 23rd DAGM Symposium, pages 421–428, Mu-
nich, Germany, September 12-14 2001. Springer-Verlag, Berlin, Heidelberg,
New York. ISBN 3-540-42596-9. Lecture Notes in Computer Science 2191.

[23] Jochen Schmidt, Heinrich Niemann, and Sebastian Vogt. Dense disparity
maps in real-time with an application to augmented reality. In Proceedings
Sixth IEEE Workshop on Applications of Computer Vision (WACV 2002),
pages 225–230, Orlando, FL USA, December 3-4 2002. IEEE Computer
Society. ISBN 0-7695-1858-3.

[24] Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image Processing Analysis
and Machine Vision. Thomson-Engineering, 2 edition edition, 1998.

[25] Sony. Eyetoy. http://www.eyetoy.com.

[26] Sun. Java media framework. http://java.sun.com/products/java-
media/jmf/index.jsp.

[27] Thorsten Thormählen, Hellward Broszio, and Ingolf Wassermann. Robust
line-based calibration of lens distortion from a single view. Proceedings of
Mirage 2003, pages 105–112, March 2003.

[28] Roger Y. Tsai. A versatile camera calibration technique for high-accuracy
3d machine vision metrology using off-the-shelf tv cameras and lenses. IEEE
Journal of Robotics and Automation, RA-3(4):323–344, 1987.

[29] Richard S. Wright and Michael Sweet. OpenGL Superbible. Waite Group
Press, second edition, 1999.

[30] Zhengyou Zhang. A flexible new technique for camera calibration.
Technical Report MSR-TR-98-71, Microsoft Research, 1998. URL
http://research.microsoft.com/~zhang.

88

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

