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and currently encompasses 30 members including senior researchers, postdoctoral 

fellows, PhD candidates and technicians. Projects are focused on characterization of 

the tumor microenvironment, tumor cell proliferation, markers of angiogenesis, and 

tumor-vascular interactions. Various cancers are being studied, including breast, 

prostate, endometrial, renal, lung cancer, and melanomas. Patient series with 

complete and long term follow-up are established. Methods involve the use of both 

fresh and formalin-fixed tumor samples. Also, animal models and cell lines are 

applied for translational purposes.  

This group represents an integral part of the Centre for Cancer Biomarkers (CCBIO), 

a Norwegian Centre of Excellence established in 2013 and directed by Professor Lars 

A. Akslen. CCBIO includes nine research groups devoted to research on novel cancer 
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microenvironment, matrix biology, angiogenesis, epithelial-mesenchymal transition 

and tumor cell plasticity in relation to metastatic spread. CCBIO has an extensive 

collaboration both at the national and international level. 
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Abstract 

Background: Breast cancer is a heterogeneous disease encompassing distinct 

subtypes that differ in incidence and prognosis. Better characterization of established 

biomarkers and exploration of novel biomarkers and possible treatment targets are 

important to improve prognostication and tailored therapy. A major challenge has 

been to predict which patients who are likely to suffer from recurrence and thus may 

benefit from adjuvant chemotherapy. 

Objective: This study aimed to compare three proliferation markers across distinct 

tissue categories, with association patterns and survival as end-points. Also, we aimed 

to explore the protein expression and potential prognostic impact of the novel 

proliferation-related biomarker QSOX1. 

Materials and methods: The thesis is based on three papers where a prospective, 

population-based series of breast cancer (n=534) was examined. In Paper I, the 

proliferation marker Ki67 was assessed by immunohistochemistry across matched 

samples of whole sections, WS (n=534), core needle biopsies, CNB (n=154) and 

tissue microarrays, TMA (n=459). In Paper II, mitotic count (mitoses per mm2) was 

assessed on H&E sections and PHH3 was examined by immunohistochemistry across 

matched samples (WS, CNB, TMA), and compared with the Ki67 values. In Paper 

III, QSOX1 expression was assessed by immunohistochemistry on TMA sections 

(n=458). 

Results: The proliferation markers (MC, Ki67, PHH3) showed significantly higher 

counts when assessed on WS as compared to CNB and TMA (Paper I-II). Tumor 

cell proliferation (MC, Ki67, PHH3) varied according to molecular subgroup with 

highest proliferation in the triple negative subgroup and lowest proliferation in the 

luminal category. In the luminal/HER2 negative subgroup, there were many 

discordant cases and only fair agreement when assessing luminal A and B on WS as 

compared to CNB and TMA (Paper I-II). Increased proliferation assessed by MC, 

Ki67 and PHH3 across all three sample categories showed significant associations 
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with high histologic grade and hormone receptor negativity (Paper I-II). In 

univariate survival analysis, the prognostic impact of MC, Ki67 and PHH3 were 

mostly retained across specimen categories. In multivariate Cox analysis, adjusting 

for age, tumor size, histologic grade and nodal status, mitotic count and Ki67 

maintained their independent associations with prognosis, whereas PHH3 did not 

(Paper II). High expression of QSOX1 was associated with high histologic grade, 

hormone receptor negativity, increased proliferation (MC, Ki67), and HER2 

positivity (Paper III). High QSOX1 expression was more common among HER2+ 

and triple negative subgroups. In univariate survival analysis, cases with high 

QSOX1 expression (SI=9) showed a 10 year survival probability of 67% compared to 

89% for carcinomas with low QSOX1 levels (SI=0-6).  QSOX1 expression showed 

independent prognostic impact in multivariate Cox models adjusting for age, 

histologic grade, tumor size and nodal status.  

Conclusions: Assessment of proliferation markers on full sections, when available, 

should be regarded as current best practice (Paper I-II). For assessment on core 

needle biopsies, specimen specific thresholds should be considered. TMA is less 

suited for assessment of proliferation in studies with potential clinical impact (Paper 

I-II). Mitotic count might be used for sub-classification of the luminal group of breast 

cancers (Paper II). High QSOX1 expression in tumor cells is a marker of more 

aggressive breast cancer (Paper III). 
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1. INTRODUCTION 

1.1 Epidemiology 

Breast cancer is the most common cancer type in women, accounting for 22% of all 

cancers, and with an estimated 1.7 million new cases worldwide in 2012.1 In Norway, 

3224 women were diagnosed with breast cancer in 2014.2 Currently, the cumulative 

risk of developing breast cancer before the age of 75 is about 1 in 12.2 Male breast 

cancer is rare with 24 new cases diagnosed in Norway in 2014, and will not be further 

considered in this thesis. 

Breast cancer incidence rates have been increasing over decades, being highest in 

Western Europe and lowest in Eastern and Middle Africa (Figure 1).  

 

Figure 1. Estimated age-standardized incidence rate of breast cancer per 100 000 

person-years, adapted from the Globocan report 2012.3 

 

In Norway, the incidence rates have stabilized during the last 10 years, although with 

some fluctuations (Figure 2).2 
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Figure 2. Trends in incidence, mortality and five-year relative survival rates in 

Norway (1965-2014), adapted from Cancer in Norway 2014.2 

 

The incidence increases with age, reaching a peak at 65-69 years.4 Over 50% of 

breast cancer occur in the age group 50-69 years,5 and breast cancer under the age of 

25 is uncommon. 

In 2014, 663 women died of breast cancer in Norway.2 The mortality rates were 

stable until late 1990s (Figure 2), after which there has been a decline reflecting 

earlier diagnosis and improved therapy.6 Although the mortality rates have decreased, 

it is the second leading cause of cancer death among women in Norway, only 

surpassed by lung cancer.2 

1.2 Etiology and risk factors 

Cancer is considered a genetic disorder, meaning that mutations, both germline and 

somatic, are crucial etiological factors.7 There are many factors that may contribute to 

the development of breast cancer, encompassing both reproductive and life-style 

related factors. The germline mutations reflect the hereditary predisposition to breast 
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cancer, and they will be considered in this section. The somatic mutations affecting 

the tumor cell genome will be referred to in chapter 1.4.1. 

1.2.1 External, environmental factors and lifestyle exposures 

Gender and age are the main risk factors for developing breast cancer.8,9 Early 

menarche, late menopause,8  nulliparity and late age at first childbirth are associated 

with increased breast cancer risk,10 whereas early childbirth11 and lactation may 

reduce the risk.12 Also, the use of oral contraceptives and hormone replacement 

therapy exert an increased risk.13-16  

 

Several life style factors have been associated with the development of breast cancer, 

including obesity,17,18 lack of exercise,19 excessive alcohol consumption,20,21 tobacco 

smoking,22-25 and a high dietary fat intake.26 

 

Also, some benign breast diseases (usual ductal hyperplasia, sclerosing adenosis) are 

associated with a slight increase in breast cancer risk, whereas in lesions with atypia 

(atypical hyperplasia, DCIS, LCIS) the risk is more pronounced.27-31 

1.2.2 Hereditary genetic factors  

Although the majority of breast cancer cases are considered sporadic, about 10% may 

harbor predisposing germline mutations.32 These mutations differ in their penetrance 

and associated breast cancer risk.33  

 

About 25% of hereditary breast cancer is associated with mutations in highly 

penetrant genes including BRCA1, BRCA2, TP53, PTEN, STK11 and CDK1.34 These 

mutations are associated with a lifetime risk of developing breast cancer that exceeds 

50%.33 BRCA1 and BRCA2 are tumor suppressors involved in the DNA repair 

machinery where they restore double stranded DNA breaks.35 Mutations in BRCA1 

and BRCA2 are inherited in a dominant pattern and affect between 1 in 400 and 1 in 

40 women, respectively.36 Also, inherited cancer syndromes are associated with high 
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penetrance alleles. These include the Li-Fraumeni and Peutz-Jeghers syndromes 

caused by mutations in the tumor suppressors TP5337 and STK11,38 respectively. 

 

Mutations in moderate-penetrance genes correspond to a  20% lifetime risk of 

developing breast cancer, and include mutations in CHEK2, BRIP1, and PALB2. 

These mutations are rare and may affect 1- 5% of breast cancer patients.34,39,40 The 

Cowden syndrome involves germline mutations in the PTEN tumor suppressor 

gene.41 Germline mutations of CDH1, the E-cadherin gene, convey an elevated risk of 

developing lobular breast carcinomas.42 Also, hereditary ataxia-telangiectasia caused 

by mutations in ATM, is associated with an increased breast cancer risk.34  

 

Mutations in low-penetrance genes are common and are associated with a 10-20% 

increase of lifetime risk.33 Currently, little is known about the function of these genes, 

but they are proposed to affect DNA repair pathways, cell cycle regulation and 

apoptosis. 

1.3 Classification of breast cancer 

1.3.1 Morphological classification 

The WHO classification of tumors of the breast was revised in 2012.43 The 

terminology of infiltrating ductal carcinoma was changed to invasive breast 

carcinoma of no special type. This group comprises 40-80% of cases in population-

based series.43,44 A non-specialized pattern must affect over 50% of the tumor area. 

This subtype shows heterogeneity in terms of architecture, grade of glandular 

differentiation, and the appearance of individual carcinoma cells.  

Invasive lobular carcinoma is composed of tumor cells individually distributed or 

arranged in single files surrounded by a fibrous stroma. This type accounts for 5-15% 

of breast carcinomas.43 E-cadherin negativity, corresponding to the non-cohesive 

morphology, often helps to discriminate between lobular and ductal carcinomas, 

although 15% of otherwise typical lobular carcinomas are E-cadherin positive.45 
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Tubular, mucinous, and cribriform carcinomas are special subtypes associated with a 

better outcome compared to infiltrating ductal carcinomas.46 

The WHO classification also includes several rare tumor types such as metaplastic, 

adenoid cystic, and papillary carcinomas, and carcinomas with medullary or 

neuroendocrine features. These will not be further considered. 

1.3.2 Molecular classification  

Although the current WHO classification of breast cancer relies on tumor 

morphology, molecular analyses of tumors have caused a paradigm shift. During the 

last decade, seminal microarray-based gene expression profiling studies by the 

Stanford group demonstrated the existence of distinct molecular subtypes. Originally, 

four subtypes were quoted; the luminal, HER2 enriched, basal-like, and normal 

breast-like.47,48 Subsequently, the luminal group was subdivided into luminal A, B 

and C, although the existence of the luminal C subgroup has been questioned.49 

Further, it has been proposed that the normal-like subgroup mainly represents 

contamination of normal breast tissue in the original studies.50  

These intrinsic subtypes have been reproduced across independent gene expression 

data sets,51-53 and they have demonstrated differences in behavior and 

prognosis.48,50,52 The luminal subclass is characterized by expression of ER, genes 

related to the ER pathway, and high expression of luminal cytokeratins (CK7, CK8, 

CK18, and CK19). The luminal A subgroup expresses higher levels of ER related 

genes and lower levels of proliferation related genes than luminal B tumors.48 The 

HER2 subclass is associated with amplification of the HER2 gene. The basal-like 

subgroup lacks expression of ER and HER2 related genes. These tumors express 

basal cytokeratins (CK 5, 6, 14, 15 and 17), and demonstrate high proliferative 

activity.54  

The luminal A and B, HER2 enriched and basal-like subtypes were also confirmed by 

the Cancer Genome Atlas (TCGA) research network, although significant 

heterogeneity within these subclasses was underscored.32 
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In addition, three mainly ER-negative subtypes have been proposed, comprising the 

interferon-rich,53 molecular apocrine,55-57 and claudin-low subtype.58,59 Further 

refinement of the triple negative subclass60,61 and the HER2-enriched breast cancers 

have also been suggested.32,62,63 

In 2012, a large global gene study (METABRIC) identified 10 distinct disease 

subgroups which further sub-classify both ER positive and ER negative tumors.64   

Interestingly, unique genomic portraits of the morphologically defined lobular 

carcinomas have recently been demonstrated.65-67 

Still, this is only the beginning of cancer genomics, and the definitive molecular 

classification of breast carcinomas is yet to be established.  

1.4 Tumor biology 

1.4.1 The development of cancer 

During carcinogenesis, normal cells obtain a neoplastic phenotype through genetic 

alterations and epigenetic modifications, with contributions from the 

microenvironment and, in some instances, germline mutations.  

 

In 2000, a seminal paper proposed six key features essential for progression from 

healthy cells to malignancy (Figure 3).68,69 This transformation is driven by 

upregulation of oncogenes and inactivation of tumor suppressor genes causing a wide 

range of deregulated signaling pathways.70 The core of these hallmarks is to trespass 

barriers against chronic cell proliferation. 
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Figure 3. The hallmarks of cancer. Reprinted from Hanahan D, Weinberg RA. 

Hallmarks of cancer: the next generation. Cell 2011; 144: 646-674. Copyright (2011), 

with permission from Elsevier.69 

 

Tumor cells may acquire these hallmark capabilities through genome instability and 

mutations.69 Further, epigenetic changes that modify gene expression without 

changing the DNA sequence, add to the heterogeneity and complexity of the disease 

process.  

In 2011, two emerging hallmarks were proposed. One involves deregulating cellular 

energetics and the other escaping immune destruction.69 

Somatic mutations arise in the genomes of normal cells as they pass through cell 

divisions as part of physiological maintenance of tissues. Cancer may develop if 

genome surveillance and DNA repair mechanisms fail.39 The genomic instability of 

cancer cells causes a wide range of alterations including point mutations, insertions, 

deletions and chromosomal changes (translocations, loss and gain).71 In breast cancer, 

mutations of PIK3CA, TP53 and GATA3 show an incidence of over 10%.32 
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1.4.2 Cell cycle regulation 

In healthy tissue, the proliferative activity of cells is closely regulated to maintain 

tissue homeostasis and avoid neoplastic growth.72 The four phases of the cell cycle 

are monitored by checkpoint controls and regulated by the cyclin proteins and the 

associated cyclin-dependent kinases.39 (Figure 4)  

 

 

Figure 4. Pairing of cyclins with cyclin-dependent kinases, ©2014 from The Biology 

of Cancer by Weinberg.39 Reproduced by permission of Garland Science/Taylor & 

Francis Group LLC. 
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Cells rely on external growth factors to exit the resting phase (G0) and enter the cell 

cycle. Towards the end of the first gap (G1) phase, a restriction point (R-point) 

occurs. At this time point, a cell has to decide whether to remain in G1 phase, 

withdraw into G0, or proceed into late G1-phase, and thus complete the entire cycle. 

This passage is governed by the retinoblastoma (RB) protein. Prior to the R-point, the 

cell responds to external stimuli, whereas the remaining phases are “pre-

programmed”. DNA replication occurs during the S (synthesis) phase, and during the 

second gap phase (G2), cells prepare for the mitotic phase. Irreparable DNA damage 

may arrest cells at the G2/M transition.  

The M-phase is divided into the prophase, metaphase, anaphase and telophase 

(Figure 5).  

 

Figure 5. The four phases of mitosis, adapted from Gray’s anatomy of the human 

body, 1918. 

The mitotic phase: 

I-III, prophase  

IV, metaphase 

V-VI, anaphase 

VII-VIII, telophase 
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Cancer cells need to overcome anti-proliferative signaling in order to prosper. The 

majority of these signals are funneled through the retinoblastoma (RB) pathway. The 

Cyclin Ds and their partners CDK4/6 complexes may inactivate the RB protein 

through hyper-phosphorylation, permitting passage of the R-point and progress 

through the cell cycle. In breast cancer, RB inactivation is associated with the luminal 

B and triple negative phenotype.73 Perturbation of the RB pathway may be achieved 

through amplification of cyclin D1 (CCND1), CDK4 and CDK6, loss of p16 

(CDKN2A), and direct loss of RB.74,75 

1.4.3 Apoptosis 

The balance between cell proliferation and cell death is a barrier against cancer 

development.69 Apoptosis is initiated in response to various stimuli such as DNA 

damage, hypoxia and deregulated growth signals. The apoptotic program is regulated 

through two pathways. The extrinsic pathway is initiated when external cellular 

stressors (tumor necrosis factor family) activate transmembrane death receptors at the 

cell surface. The intrinsic pathway is mediated through the tumor suppressor TP53 

which induces expression of pro-apoptotic target genes such as BAX and BAD.76 

Histologically, apoptosis is characterized by cell shrinkage, eosinophilic cytoplasm, 

chromatin condensation, collapse of the nucleus (pyknosis), nuclear fragmentation 

and finally, cell disintegration. The latter produces cellular fragments often called 

apoptotic bodies.77 Apoptotic cells are sometimes confused with mitoses 

morphologically.   

Cancer cells may escape apoptosis through loss of TP53 function, and increased 

expression of anti-apoptotic factors such as Bcl-2. Loss of p53 is acquired through 

mutations, epigenetic silencing, or deregulations of pathways that affect p53. This 

loss inhibits checkpoint control of the cell cycle, permitting tumor cells to proliferate 

despite potential genomic aberrations, and also provides a fertile soil for acquisition 

of novel mutations.78  
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In breast cancer, about 30% of cases show somatic TP53 mutations. The highest 

mutation frequency is found in basal-like and HER2+ tumors and the lowest 

frequency in luminal tumors.32,79 

1.4.4 Angiogenesis 

Tumors behave much in the same ways as normal tissues; they need nutrients and 

oxygen to survive, and also to get rid of metabolic wastes and carbon dioxide. In 

1971, Judah Folkman suggested that tumors are dependent upon angiogenesis to 

survive and grow larger than 1-2 mm.80 To fulfil these needs, tumors reactivate 

angiogenesis through an “angiogenic switch.”81 Several angiogenic regulators have 

been described, some of them with stimulatory (e.g. VEGF-A) and others with 

inhibitory effect (e.g. TSP-1). Hypoxia and oncogenic signaling are able of 

upregulating VEGF gene expression.39,82 The vessels produced in tumors are 

abnormal, and anti-VEGF therapy (bevacizumab) may normalize the tumor 

vasculature facilitating delivery of other therapeutic agents (chemotherapy, 

immunotherapy).83 Bevacizumab was initially FDA approved for treatment of 

metastatic breast cancer in 2008, but failed to demonstrate any increase in overall 

survival, and the approval was withdrawn in 2010.84 Recent trials with other anti-

VEGF agents have also been disappointing,85 Clinical trials now assess combinations 

of anti-angiogenesis therapy and immunotherapy.85 

1.4.5 Invasion and metastasis 

Breast carcinomas do not usually affect survival prior to metastatic dissemination. 

However, metastases to brain, lungs or liver may rapidly disrupt vital functions and 

become threatening to life. Metastasis is a sign of inevitable progression of the 

disease, with currently only palliative therapy available. 
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Figure 6. From Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. 

Science 2011; 331: 1559-1564.86 Reprinted with permission from AAAS. 

 

During the first step of the metastatic cascade, carcinoma cells have to breach the 

basement membrane to invade into the neighboring stroma.87 To achieve this, cancer 

cells may exploit an embryological program used during organ morphogenesis, the 

epithelial-mesenchymal transition (EMT).88,89 During this process the epithelial 

features of cells are replaced by mesenchymal properties characterized by loss of 

polarity and cell adhesion, and increased motility.69,90 Through this dedifferentiation, 

cancer cells lose E-cadherin and upregulate N-cadherin.91,92 The EMT passage is also 

suggested to provide carcinoma cells with stem-cell like features.86 Epithelial cells 

harbor a remarkable plasticity with shifts between epithelial and mesenchymal states, 

also with partial EMT phenotypes.93 

 

Of note, other modes of invasion exist, including collective infiltration and invasion 

as single cells. Currently, it is not clear whether these forms of invasion are 

associated with the EMT program.69 

 

Second, tumor cells may enter the circulatory system (Figure 6), and some of these 

are able to colonize distant sites. Cancer cells that have completed their metastatic 
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escape may go through a reversed form of EMT termed mesenchymal-epithelial 

transition (MET).94,95 

 

Stephen Paget was the first to notice that metastasis is not a random process, as 

proposed in his seed and soil hypothesis from 1889.96 Thus, although cancer cells 

might be widely dispersed, they will only grow in certain microenvironments. In 

breast cancer, the molecular subtypes show different preferences of metastatic spread. 

Luminal tumors predominantly metastasize to bone with the highest risk shown for 

the luminal B subtype.97 HER2 enriched cancers primarily metastasize to liver, lung 

and brain. Basal-like cancers metastasize to brain and lung, and show a lower rate of 

liver and bone metastases.98  

1.4.6 Tumor microenvironment  

The contributions of the tumor microenvironment in cancer progression have been 

increasingly appreciated.68,99 Cancer cells exploit their neighborhood to facilitate 

local invasion, epithelial-mesenchymal transition and metastatic spread.100 This 

microenvironment includes fibroblasts, immune cells and endothelial cells all 

embedded in the extracellular matrix. It functions as a supporting framework for the 

growing tumor providing growth factors and cytokines through reciprocal 

communication.  

 

The extracellular matrix (ECM) is composed of different proteins including laminins, 

collagen, fibronectin and proteoglycans that are important for cell attachment.101 

Fibroblasts are involved in maintenance of the ECM, and are able to synthesize both 

components of the ECM and matrix-degrading enzymes (metalloproteases). Cancer-

associated fibroblasts (CAF) take active part in remodeling of the ECM essential for 

tumor growth and invasion, and they promote angiogenesis and treatment 

resistance.101-103 An increased number of peritumoral lymphocytes is associated with 

improved disease outcome, especially in the HER2 positive and triple negative 

subgroup.104-106 
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Also, the physical properties of the environment such as ECM stiffness and oxygen 

levels are of importance. Increased ECM stiffness may promote tumor cell 

proliferation and invasion.107,108 Hypoxia leads to up-regulation of hypoxia inducible 

factors (HIF) that stimulate angiogenesis, provide a metabolic shift towards 

glycolysis, and promote invasion and metastasis through translation of HIF target 

genes.109,110 

Microenvironmental-based therapy  
The important role played by the tumor microenvironment in cancer progression 

makes it a promising treatment target.111 Potential targets include immunoregulation, 

stromal cells, inflammation, angiogenesis, and the communication between tumor 

cells and the ECM.112,113 Immune checkpoint blockade targets immunoregulation and 

includes PD-1, PD-L1 and CTLA-4 checkpoint inhibitors.114 Advances have been 

made especially in treatment of melanoma, lung carcinoma and acute lymphocytic 

leukemia. In breast cancer, immunotherapy may be a promising target especially for 

subgroups enriched in mutations and genetic instability, such as triple negative and 

HER2+ cancer. Currently, around 50 clinical trials (phase I-III) are ongoing.115 

1.4.7 QSOX1 and the secretory pathway in cancer 

The secretory pathway is a complex network encompassing cell organelles that are 

responsible for maturation, folding and trafficking of both transmembrane and 

secreted proteins. The endoplasmic reticulum is the first component of the secretory 

pathway, and here proteins succumb to maturation steps such as folding, disulphide 

bond formation and glycosylation. The next compartment is the Golgi apparatus 

where proteins are packaged into vesicles destined for secretion. 

 

The secretory pathway is important for interactions between tumors and their 

microenvironment. MMPs, extracellular matrix proteins and cytokines destined for 

the extracellular space are all transferred through this pathway.116  
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Quiescin sulfhydryl oxidase 1 (QSOX1/Quiescin Q6) is an enzyme that catalyzes 

disulphide bond formation in proteins with concurrent reduction of oxygen to 

hydrogen peroxide.117 Although QSOX1 has been associated with the endoplasmic 

reticulum,117 others report that human QSOX1 is mainly localized to Golgi 

structures.118,119 

 

The human QSOX1 was initially assessed in an embryonal fibroblast cell line, where 

high QSOX1 gene expression was associated with exit of the cell cycle into G0 

phase.120 In 1999, the Thorpe and Coppock laboratories demonstrated that this protein 

was a member of a novel class of sulfhydryl oxidases, the quiescin sulfhydryl 

oxidases.121 The QSOX1 gene is located on chromosome 1q24, and encodes two 

isoforms, QSOX1S (QSOX1B, short) and QSOX1L (QSOX1A, long), dependent on 

alternate RNA splicing.122 The long isoform contains a transmembrane element. The 

short isoform is secreted into the extracellular space, and the long isoform may also 

be secreted after cleavage.123 The highest expression of QSOX1 has been found in 

cells with a heavy secretory load.124 The substrates of QSOX1 are currently unknown, 

but increased levels of QSOX1 mRNA and protein in tumor cells have been related to 

malignancy. Also, extracellular QSOX1 is necessary for proper laminin incorporation 

into the ECM, thus creating a pro-invasive environment.119  

1.5 Prognostic factors 

A prognostic factor may be defined as an assessable factor that can predict the 

outcome for patients, while a predictive factor reflects the possibility of a treatment 

effect.125 

1.5.1 Prognostic patient characteristics 

Breast cancer at young age is associated with worse prognosis and aggressive tumor 

features such as lack of hormone receptors and HER2 positivity.126 This may reflect 

differences in subtype distribution; young age at diagnosis is associated with basal-

like carcinomas,127,128 whereas older patients more often develop luminal cancers.129  
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1.5.2 Prognostic tumor characteristics 

Breast cancer stage 
Tumor size, lymph node status and the presence of distant metastasis are important 

prognostic factors. The TNM (tumor size-nodes-metastasis) system arranges these 

factors into five tumor stages with significant differences in survival. Currently, five-

year relative survival for stage I cancer is 99%, as opposed to 24% for stage IV.2 

The main features of the current staging criteria (TNM staging manual version 7, 

2010) are described in Table 1. pTNM classification is based upon histopathological 

evaluation.130  

 

Table 1. pTNM grading of breast carcinoma, simplified version. 

pT (Tumor)  
pTis Carcinoma in situ (DCIS, LCIS, Pagets disease of the nipple) 
pT1  2.0 cm. 
pT2 > 2.0,   5.0 cm 
pT3 > 5.0 cm 
pT4 Involvement of skin, chest wall or inflammatory carcinoma 
 

pN (Regional lymph nodes) 
pN0 No regional lymph node metastasis (> 0.2 mm) identified. 
pN1 mi Micrometastases (>0.2 mm and/ or more than 200 cells, 2.0 mm). 
pN1 Metastases in 1-3 axillary lymph nodes, and/or metastases in internal 

mammary nodes detected by sentinel lymph nodes but not clinically 
detected. 

pN2 Metastases in 4-9 axillary lymph nodes, or metastasis in ipsilateral 
internal mammary lymph nodes clinically/radiographic detected. 

pN3 Metastases in 10 axillary lymph nodes, and/or metastases to 
ipsilateral infraclavicular/supraclavicular/internal mammary nodes. 

 

M Distant metastasis 
M0 No clinical or radiographic evidence of distant metastases 
M1 Distant detectable metastases 
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Table 2. Breast cancer stage grouping 

Stage IA T1 N0 M0 
Stage IB T0, T1 N1mi M0 
Stage IIA T0, T1 N1 M0 
 T2 N0 M0 
Stage IIB T2 N1 M0 
 T3 N0 M0 
Stage IIIA T0, T1, T2 N2 M0 
 T3 N1, N2 M0 
Stage IIIB T4 N0, N1, N2 M0 
Stage IIIC Any T N3 M0 
Stage IV Any T Any N M1 
 

 

Histologic grade  
The most widely used grading system is the Nottingham modification131 of the 

Bloom-Richardson system.132 Histologic grade reflects a combined score assessing 

gland formation, nuclear pleomorphism and mitosis counts. Each category provides a 

score of 1 to 3, resulting in a combined score of 3-9 categorized into 3 grades. 

Histologic grade is an important prognostic factor133,134 guiding therapy in early 

breast cancer.135,136 It is included in treatment algorithms such as the Nottingham 

Prognostic Index (NPI)137,138 and Adjuvant Online.139  

Mitotic count  
The prognostic impact of mitotic count in breast cancer was first reported in 1925,140 

and it has been well documented.141,142  

Mitotic count in H&E stained sections is the most simple and inexpensive method to 

evaluate proliferation. It is reproducible,143 although strict standardization with 

adequate tissue fixation, section thickness, and quality of staining is necessary. Also, 

criteria for assessment of mitotic figures must be applied to avoid confusion with 

apoptotic cells.144 Mitotic count is preferentially assessed on full sections by 

appreciating the highest proliferative area at the tumor periphery. In such hot-spots, 

mitoses are counted in 10 sequential HPFs (Figure 7A). 
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The predictive power of mitotic count has been assessed both in the adjuvant and 

neoadjuvant setting.145-150  

Hormone receptors 
ER and PR are nuclear receptors that function as transcription factors.151,152 ER is an 

established biomarker in breast cancer; it provides prognostic information and 

predicts the sensitivity to endocrine treatment.6,153 The PR gene is regulated by 

estrogen, thus PR positivity in the absence of ER is rare, although a recent study 

supports the existence of an ER negative/PR positive phenotype.154 

 

ER and PR are routinely assessed by immunohistochemistry on all breast cancer 

cases. The St Gallen consensus 2009 proposed a 1% cut-off for defining ER 

positivity.155 This threshold is currently recommended for clinical decision making by 

the ASCO/CAP guidelines, and by the Norwegian guidelines.136,156 Further, cut-offs 

of 10% and 50% are used in treatment algorithms, based upon reports showing higher 

endocrine responsiveness with increasing hormone receptor values.136,155 PR 

positivity is defined by a threshold of 10% positive cells.136 In Norway, 

approximately 85% of breast carcinomas show ER-positivity by 

immunohistochemistry, and about 65% are PR positive.157 PR negative breast tumors 

have been associated with poorer disease outcome,158-160 although a large meta-

analysis failed to demonstrate an independent role of PR in multivariate survival 

analysis.161  

HER2 
HER2 is one of four members of the human epidermal growth factor receptor 

family.162 These are transmembrane receptor tyrosine kinases that receive 

extracellular signals and convert them to intracellular signaling. 

 

HER2 is unable to bind ligands directly and is dependent on cooperation with the 

other HER family members.163 Normal cells contain one copy of the HER2 gene on 

each chromosome, whereas breast cancer cells may have 25-50 copies.164 This leads 
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to increased HER2 protein expression and increased number of HER2 receptors at the 

surface of tumor cells. HER2 gene amplification was first described in 1985.165 It 

affects 15-20% of breast carcinomas,166,167 and defines a distinct breast cancer 

subtype.47 HER2 positivity is an adverse prognostic factor.168,169 However, it also 

predicts response to trastuzumab (Herceptin®),170 a monoclonal antibody introduced 

in 1998.171 HER2 protein overexpression is associated with increased tumor cell 

proliferation, protection against apoptosis, and invasion.164  

 

HER2 protein overexpression is routinely assessed in breast cancer. The equivocal 2+ 

cases by IHC are further analyzed for HER2 gene amplification using in situ 

hybridization. ISH assesses the number of HER2 copies in each nucleus using a DNA 

probe attached to either a chromogenic, fluorescent or silver (CISH, FISH, SISH) 

detection system.172 

Ki67 
Ki67 is a large, nuclear protein which is important for mitosis, but its function is 

almost unknown.173,174 The Ki67 protein is encoded by the MKI67 gene on 

chromosome 10q26, and was first described in 1983.175 It acts in all phases of the cell 

cycle except in G0, and can be detected by immunohistochemistry (Figure 7C).176 

During mitosis, it is phosphorylated and dephosphorylated.177 Ki67 expression varies 

during the cell cycle, with lowest expression in the G1 and S-phase followed by a 

gradual increase until maximum is reached in the M-phase.173 Although primarily 

regarded as a proliferation marker, Ki67 is also expressed in quiescent cells where it 

is associated with ribosomal RNA synthesis.178,179 Several antibodies against the Ki67 

antigen have been developed, of which Molecular Immunology Borstel 1 (MIB-1) is 

currently recommended for assessment of proliferation in breast cancer.180  

 

Ki67 has been investigated both in the adjuvant and neo-adjuvant setting, and the 

prognostic impact is well-known.142,173,181-183  

 

In contrast, Ki67 as a predictive biomarker in the adjuvant setting is controversial, 

and there are currently no prospective trials addressing chemotherapy benefit 
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according to the intrinsic subtypes.184 Some retrospective studies have suggested 

treatment effect of adding taxanes to highly proliferative, luminal tumors,185-

189although this was not confirmed by others.190 Of note, the Oxford meta-analysis 

failed to find any factors (e.g. age, nodal status, tumor diameter, tumor differentiation 

or ER status), that predicted chemosensitivity.191 Also, the use of Ki67 to withhold 

chemotherapy among node-positive patients is controversial.192 

PHH3 
Alternative mitotic markers have been explored, including phosphohistone H3 

(PHH3). Chromatin is composed of a basic subunit called the nucleosome which 

consists of DNA wrapped around a core formed by histones.193  Each histone protein 

has a tail which is subject to epigenetic, posttranslational modifications, including 

phosphorylation, methylation and acetylation.194 Histone H3 is phosphorylated on 

Serine 10 and 28 in late G2 and M-phase of the cell cycle.195 This phosphorylation is 

essential for appropriate chromosome condensation.196 Dephosphorylation of PHH3 

is initiated at late anaphase and is finalized by early telophase, preceding 

chromosome decondensation.197,198 

 

A PHH3 (Ser10) antibody was introduced in 1997.197 PHH3 expression (Figure 7B) 

has since been evaluated in a range of human cancers, including breast cancer.199-202  

 

 

Figure 7. MC (A), PHH3 (B), and Ki67 (C) staining in breast cancer. 
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Additional proliferation markers 
A wide range of prognostic biomarkers related to the cell cycle progress have been 

studied, some of these are assessed by immunohistochemistry, including Cyclin D1, 

Cyclin E, aurora kinases, mitosin, polo-like kinase 1, MCMs, geminin, and PCNA. 

Further, it is possible to assess the fraction of cycling cells that is in S-phase by flow 

cytometry.203 Thymidine and Bromodeoxyuridine labeling index are methods that 

assess DNA synthesis (S-phase fraction) in tumor cells by evaluating thymidine 

uptake.204 

Prognostic signatures 
In parallel with the studies on molecular sub-classification of breast cancer, several 

microarray-based multigene prognostic classifiers have been established. Among 

these, the recent St Gallen and ASCO guidelines consider Oncotype DX®,205-208 

Endopredict®,209,210 PAM-50 ROR® score,47,211,212 Mammaprint®,51,213-216 and Breast 

cancer index®217 as useful prognostic indicators.135,218  

 

These prognostic signatures stratify mainly ER-positive patients. They predict 

outcome and define high risk groups for which chemotherapy are recommended and 

low risk groups where chemotherapy may be withheld. However, the intermediate 

risk groups are still a challenge. Also, the high costs of these signatures are a 

limitation. Further, it has been shown that the prognostic signatures are mainly driven 

by proliferation genes.219  

Immunohistochemical surrogate markers for molecular subtypes 
An alternate approach to the gene expression analyses is to focus on well-

characterized proteins that can be detected by antibodies applied on formalin-fixed, 

paraffin-embedded (FFPE) clinical samples. Immunohistochemical assessment of 

ER, PR, HER2, and Ki67 are currently used to guide treatment decisions. These four 

biomarkers constitute immunohistochemistry 4 (IHC4), a combined biomarker assay. 

They carry significant prognostic information on their own, and their combination has 

been shown to provide prognostic information comparable to Oncotype DX and 

PAM50.220,221 
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In the St. Gallen guidelines from 2009, two Ki67 thresholds were proposed for sub-

classification of patients with ER+/HER2- disease (Table 3).155 

 

Table 3. Chemoendocrine therapy in patients with ER positive, HER2 
negative disease, adapted from St Gallen guidelines 2009.155 

Clinicopathological 
features 

Relative indications 
for chemoendocrine 
therapy 

Factors not useful 
for decision 

Relative indications 
for endocrine 
therapy alone 

ER and PR Lower ER and PR 
level 

 Higher ER and PR 
level 

Histologic grade Grade 3 Grade 2 Grade 1 
Proliferation* Ki67 >30% Ki67 16-30% Ki67 15% 
Nodes  4 positive nodes 1-3 positive nodes Node negative 
Vascular invasion  Extensive invasion  Absence of extensive 

invasion 
Tumor size > 5 cm 2.1-5 cm  2 cm 
Gene signature High score Intermediate score Low score 
*Conventional measures of proliferation include assessment of Ki67-labelling index and 
pathological description of the frequency of mitoses 
 

Of note, these Ki67 thresholds were based upon a single, small study of 265 breast 

cancer cases.222 In that study, only mitotic count was an independent prognosticator 

in multivariate survival analysis. 

In February 2010, a 15% Ki67 threshold was implemented by the Norwegian Breast 

Cancer Group (NBCG) in the treatment guidelines as a chemotherapy indication for 

luminal/HER2 negative tumors. This cut-off point was based upon a single institution 

study on TMA-samples.223  

In 2011, the St. Gallen guidelines endorsed the immunohistochemical surrogates for 

intrinsic subtypes, with a 14% Ki67 threshold for sub-classification of the luminal 

subgroup (Table 4).223,224  
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Table 4. Immunohistochemical surrogates of intrinsic subtypes, adapted from St 

Gallen guidelines 2011.224 

Intrinsic subtype Immunohistochemical 
definition 

Clinical management 

Luminal A ER+ and/or PR+ 
HER2- 
Ki67 low (<14%) 

Endocrine therapy 

Luminal B-HER2- ER+ and/or PR+ 
HER2- 
Ki67 high ( 14%) 

Endocrine Therapy 
Chemotherapy 

Luminal B-HER2+ ER+ and/or PR+ 
HER2+ 
Any Ki67 

Endocrine Therapy 
Chemotherapy 
Anti-HER2 therapy 

HER2+ ER- and PR- 
HER2+ 

Chemotherapy 
Anti-HER2 therapy 

Basal-like ER- and PR- 
HER2- 

Chemotherapy 

 

However, guidelines for assessment of Ki67 in breast cancer were published in 

November 2011.180 Here, the lack of reports on the correlation between Ki67 assessed 

on full sections and TMA sections was underscored. Although TMA is an important 

research tool, it should not be used for establishing Ki67 thresholds for clinical 

samples until studies comparing proliferation values on TMA and WS have been 

published.180 

 

In Norway, the Ki67 threshold was adjusted to 30% in June 2013. This cut-off is 

based on “hot-spot” readings on full sections. Also, the St Gallen guidelines from 

2013 suggested a Ki67 threshold of “at least” 20%, and added a PR-restriction to the 

definition of the luminal subgroup.160,225 Further, due to discussions on the low 

validity of Ki67, a note was made on the use of local, laboratory specific cut-offs. 

Histologic grade 3 was still a relative indication for chemotherapy.  

In the St Gallen 2015 guidelines, a Ki67 threshold of 20-29% was suggested to define 

luminal B disease.135 
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In the current ASCO guidelines,218 Ki67 is not recommended for guidance on 

adjuvant therapy due to limited interlaboratory agreement. In contrast, the European 

Society for Medical Oncology (ESMO) recommends immunohistochemical 

subtyping of breast cancer based on the St Gallen guidelines.135,226  

The triple negative phenotype, defined by ER-, PR-, and HER2 negativity by 

immunohistochemistry, is an approximation of the basal-like subgroup.  

Several immunohistochemical biomarkers have been associated with the basal-like 

subtype of breast carcinoma. Among these, CK5/6 and P-cadherin have been used in 

this study.52,227-230 

1.6 Diagnosis and treatment 

1.6.1 Detection 

Early breast cancer is often asymptomatic. Clinical signs of breast cancer include 

breast lumps, changes in breast shape or size, skin changes (edema, erythema or peau 

d’orange), Paget’s disease, ulceration, nipple inversion, nipple discharge and 

presence of enlarged axillary lymph nodes.  

 

Triple assessment based upon clinical breast examination, imaging (mammography 

and/or ultrasonography) combined with core needle biopsy (CNB) or fine needle 

aspiration cytology (FNAC) is currently the recommended diagnostic approach. With 

the invention of mammographic screening, breast cancer is often detected prior to 

development of symptoms. 

 

In 1996, the Norwegian Breast Cancer Screening Program initiated screening as a 

four-year pilot project involving 4 out of 19 Norwegian counties. The screening 

became nationwide by 2005 and is administered by the Cancer Registry of Norway.5  

This program invites all women between 50 and 69 years of age to biannual 

mammography. The incidence of breast cancer has increased after the introduction of 
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screening (but later tapered off), mainly due to small tumors being diagnosed early. 

Mammographic screening programs have led to an increased detection of early-stage, 

node-negative breast cancer. Whether mammographic screening leads to better 

survival has been heavily discussed in recent years. Based on four studies, the 

program has recently been assessed by The Research Council of Norway which 

estimated a mortality reduction in the range of 7-30%.231  

1.6.2 Therapy 

Treatment of breast cancer may include surgery, radiotherapy and systemic therapy. 

In Norway, clinicians depend upon the national guidelines published by the 

Norwegian Directorate of Health.136 The treatment algorithms are complex and the 

following is a simplified version of the current guidelines (accessed April 2016) 

leaving out details and exceptions to the rules. Patients with locally advanced and 

metastatic disease receive individualized therapy; this will not be further considered 

here. 

Surgical management 
During the last three decades, a major shift has occurred from radical mastectomy to 

breast-conserving therapy (BCT), based upon results demonstrating comparable 

outcome.232 Currently, 55% of breast cancer patients in Norway receive BCT.157 

Surgery is recommended for stage I-II tumors. Patients with T3 and T4 tumors 

receive neo-adjuvant therapy to down-stage the disease prior to surgery.  

 

Sentinel node biopsy (SN) is indicated for T1 and T2 disease. Subsequent axillary 

dissection is not indicated for patients with negative SN or SN with small metastases 

(< 2 mm). Also, some patients with metastases > 2mm may avoid axillary dissection, 

as detailed in the guidelines. 

Adjuvant radiotherapy 
Radiotherapy reduces the risk of loco-regional relapse and improves survival.233,234 

With localized disease, postoperative radiotherapy is recommended to patients 
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receiving breast conserving therapy, large tumor size (> 5 cm), non-radical surgery 

and to patients with  axillary lymph node metastasis.136  

Adjuvant systemic therapy 
Metastatic dissemination of cancer cells is often an early event,235 and despite 

surgical removal of the primary tumor, some patients experience relapse. Adjuvant 

systemic therapy is directed towards eradicating these micrometastases to improve 

prognosis. Thus, patients at increased risk of developing metastasis may be offered 

chemotherapy, endocrine therapy and targeted therapy against HER2. Currently, 

adjuvant systemic therapy is decided according to age, nodal status, tumor size, 

histologic grade, hormone receptor status, HER2 and Ki67. 

Chemotherapy 
Adjuvant chemotherapy may reduce 10-year overall mortality by one-third.191 

Combination of agents has proven more effective than single agent therapy. 

Anthracycline-based regimens form the basis of adjuvant chemotherapy. Ki67 is used 

for decisions on adjuvant chemotherapy for HER2 negative disease, with currently 

two thresholds applied. High Ki67 (  30%) is an indication for addition of taxanes for 

both luminal/HER2 negative cancer and for the triple negative subgroup. 

Luminal/HER2-cases with low Ki67 (< 15%) combined with high expression of 

hormone receptors (HR  50%), low histologic grade (1-2) and pN0-1 defines a 

group that usually can be spared chemotherapy. Taxanes might also be indicated for 

luminal/HER2 negative disease with Ki67 < 30% combined with histologic grade 3 

and axillary metastasis (pN2-3). Patients with HER2 positive breast cancer receive 

chemotherapy independent of Ki67 status.  

Endocrine therapy  
Endocrine therapy is indicated for patients with ER-positive breast cancer (ER > 1%). 

Tamoxifen binds to the estrogen receptor, thus blocking transcription of ER 

responsive genes. Five years of tamoxifen treatment is currently recommended and 

has been shown to reduce mortality by one-third.236 Moreover, a recent report 

suggested a benefit for prolonging tamoxifen treatment to 10 years.237  
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In post-menopausal women, the use of aromatase inhibitors is also considered. 

Aromatase inhibitors prevent the synthesis of estrogen in fat, and blocks aromatase 

activity in tumor tissue.238,239  

Anti-HER2 therapy 
Trastuzumab (Herceptin®) is a monoclonal antibody targeting the Her2/neu receptor. 

Patients with HER2 positive disease benefit from 1 year of trastuzumab.170,240-242  

Novel targeted therapies 
In breast cancer, over 6000 clinical trials are currently ongoing, several on targeted 

therapy, and a few examples will be provided here (accessed April 2016).  

Luminal breast cancer is associated with increased activity of CDK4/6-cyclin D1.243 

In 2015, FDA approved the use of a CDK4/6 inhibitor (palbociclib) for treatment of 

metastatic luminal tumors,239 and phase III studies are ongoing.244 PI3CA is often 

mutated in ER positive breast cancer, and several PI3K inhibitors are in clinical trials 

(phase I-III).245,246 

For HER2+ disease, simultaneous targeting of several HER receptors is a promising 

approach and might conquer development of resistance.247,248 As an example, the dual 

kinase inhibitor lapatinib targeted against both EGFR and HER2, received FDA 

approval in 2010 for treatment of HR+/HER2+ metastatic breast cancer.  

 

PARP inhibitors are novel targeted agents for breast cancer patients with triple 

negative disease and/or BRCA mutations. In 2014, olaparib received FDA approval 

for treatment of ovarian cancer with BRCA mutations (www.fda.gov). In breast 

cancer, clinical trials (phase I-III) are ongoing.244,249 
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2. BACKGROUND AND AIMS OF THE STUDY 

2.1 Background 

Breast cancer is a heterogeneous disease encompassing various subtypes showing 

differences in incidence, therapy response and prognosis. Precision oncology is 

dependent on characterization of prognostic subgroups. Thus, exploration of novel 

biomarkers and improved characterization of established factors are important to 

tailor therapy.  

 

In breast cancer, traditional histopathological variables such as tumor size, histologic 

grade and nodal status are combined with ER, PR and HER2 to guide clinical 

management. Gene expression studies of breast cancer have led to a renewed focus 

on tumor cell proliferation. The high costs associated with gene signatures have 

enabled the use of surrogate immunohistochemical markers for molecular sub-

classification. Thus, Ki67 was suggested as a marker to sub-classify luminal tumors 

and guide chemotherapy decisions. However, the use of this marker is heavily 

discussed, in terms of thresholds for patient stratification, interobserver variability in 

assessment, and the impact of intratumor heterogeneity on results.  

 

Currently, there is no international consensus on the use of proliferation markers for 

therapy guidance, and the lack of comprehensive reports on the variation of 

proliferative markers across different specimens has been underscored.180 Although 

mitotic count on HE-sections is routine procedure for assessment of histologic grade, 

the use of mitotic count for sub-classification of luminal tumors has not been focused. 

2.2 General aim 

The main purpose of the study was to examine and compare different proliferation 

markers in relation to specimen type, basic characteristics, molecular subtype and 
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prognosis. Also, we wanted to assess a novel, proliferation related biomarker 

addressing whether it could assist in disease subtyping and risk stratification. 

2.3 Specific aims 

1. To study the matched levels of proliferation by Ki67 in breast carcinomas using 

different tissue categories (whole sections, WS; core needle biopsies, CNB; tissue 

microarrays, TMA), and the associated prognostic value of these (Paper I). 

 

2. To examine the level of tumor cell proliferation by mitotic count, Ki67 and PHH3 

across matched samples of three distinct tissue categories (WS, CNB, TMA) from 

breast carcinomas, and the concurrent prognostic impact of these markers (Paper II). 

 

3.  To explore the protein expression, association patterns and potential prognostic 

impact of the novel biomarker QSOX1, also in relation to tumor cell proliferation and 

molecular breast cancer subtypes (Paper III). 
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3. MATERIALS AND METHODS 

3.1 Patient series 

The patient series is described in Paper I. Shortly, we expanded a retrospective case-

control series of 190 cases previously established by Dr. Karin Collett.  We included 

all women between 50 and 69 years who had been diagnosed with primary breast 

cancer as part of the prospective, population-based Norwegian Breast Cancer 

Screening Program in Hordaland County during 1996-2003. The patient cohort is 

based upon records from the Cancer Registry of Norway.  

In this thesis, we have used the TNM staging manual version 6 2002 edition.250 TNM 

staging criteria were slightly modified in 2002; some nodal categories that previously 

were considered M1 (stage IV) were reclassified as N3 (stage III). 

 

Patients with distant metastatic disease at time of diagnosis (stage IV) were not 

included.  Nine patients were excluded due to lack of informed consent, 12 cases had 

technical inadequate material for proliferation assessment (Ki67, PHH3) and were 

later excluded, leaving 534 cases for further studies. 

The patients received treatment according to standard protocols at that time in a 

single institution. In Norway, trastuzumab (Herceptin®) was introduced for treatment 

of metastatic disease in 2000, and as adjuvant treatment for early disease in 2005. 

 

This study was approved by the Western Regional Committee for Medical and Health 

Research Ethics, REC West (REK 2012/1704).  

3.2 Clinico-pathologic variables 

Age at diagnosis, date of diagnosis, tumor diameter, histologic type, histologic grade, 

lymph node status, and hormonal receptor status were retrieved from the routine 
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histopathology reports, as detailed in Paper I. During this period, these specimens 

were reported by five experienced breast pathologists. 

 

The assessment of mitotic count is described in Paper II. Briefly, mitoses were 

counted on H&E sections. At low power magnification (x100), the area with the 

highest mitotic activity (hot-spot, by subjective assessment), at the peripheral and 

most cellular part of the invasive tumor, was selected, corresponding to the approach 

used for histologic grading.131 Care was taken to avoid areas of intense inflammation, 

necrosis, fibrosis and low cellularity.144 Mitoses were counted in 10 consecutive 

HPFs at x400 magnification (Leica DMLB, field diameter 0.55 mm), and the number 

of mitoses per mm2 was calculated. 

3.3 Follow-up data 

Follow-up information was provided by the Norwegian Cause of Death Registry. Last 

date of follow-up was December 31, 2011. Outcome data include survival status, 

survival time and cause of death. During the follow-up period, 79 patients (15%) died 

from breast carcinoma, and 62 (12%) died from other causes. No patients were lost to 

follow-up. Median follow-up time for survivors was 13 years (range 8-16 years), and 

a similar result was obtained through estimation of follow-up by the reverse Kaplan-

Meier method.  

3.4 Specimen characteristics 

Paraffin-embedded breast cancer tissue samples were retrieved from the archives at 

the Department of Pathology, Haukeland University Hospital. Storage time of the 

archival formalin-fixed, paraffin-embedded tissue samples was up to 17 years. 

3.4.1 Tissue microarray (TMA) 

The TMA procedure is described in Paper I. Briefly, H&E stained slides were used 

for tumor verification. Triplicate cores (0.6 mm) were punched from the first 190 
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patients,228,251 and 1.0 mm cores were used in the extended series. The cores were 

mounted into a recipient paraffin block using a semi-automated precision instrument 

(Minicore 3, Tissue Arrayer, Alphelys, France). Areas of high tumor purity, the 

tumor periphery and the highest histologic grade were included. Among the 534 cases 

with TMA available, 22 cases (4.1%) had tissue cores devoid of invasive tumor, 21 

cases (3.9%) showed complete core loss and 32 cases (6.0%) showed fewer than 100 

tumor cells on arrayed spots, leaving 459 cases (86%) available for assessment. TMA 

sections were used for mitotic count (Paper II), Ki67 (Paper I-II), PHH3 (Paper II), 

HER2, CK5/6, P-cadherin, and QSOX1 assessment (Paper III). For proliferation 

markers, TMA sections were used for comparative analyses with WS and CNB. 

3.4.2 Core needle biopsies (CNB) 

182 patients had undergone both preoperative core needle biopsy and subsequent 

surgical excision. Among these, 154 were eligible for analyses, as described in Paper 

I. 25 cases were excluded due to non-representative or inadequate material remaining 

for biomarker assessment. Three cases were excluded due to lack of informed 

consent. 310 cases were diagnosed by preoperative fine needle aspiration cytology 

(FNAC), this practice was according to national guidelines at the time. The remaining 

cases had either frozen sections, incisional or excisional biopsies performed. Sections 

from CNB were used for comparative analyses of mitotic count, Ki67 and PHH3 

across tissue categories (Paper I-II). 

3.5 Immunohistochemical methods 

The tumor samples (WS, CNB, TMA) were cut into five μm sections by one highly 

trained person using one microtome and mounted onto Poly-lysine coated glass 

slides.  

 

The sections were dewaxed with freshly prepared xylene/ethanol before proper target 

retrieval. Endogenous peroxidase activity was blocked in order to reduce background 

staining. Staining procedures were performed on a DAKO Autostainer® using the 
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commercial DAKO Envision detection systems. The EnVisionTM is a two-step 

visualization system based on an HRP labelled polymer containing multiple 

secondary antibodies. Finally, DAB was used as chromogen for 10 minutes followed 

by brief counterstaining with hematoxylin.  

 

For Ki67 and PHH3, sections from tonsils were used as positive controls as 

previously recommended.252 For QSOX1, a breast carcinoma with known strong 

positivity was used as positive control. Negative controls were obtained by replacing 

the primary antibody with Tris-buffered saline. Controls were included in each 

staining run. 

 

Table 5. Summary of immunohistochemical protocols used in the present studies. 

Antibody Company Epitope retrieval Dilution Incubation 
Ki67 MIB-1 (M7240) DAKO PC 10 min EDTA 

buffer (pH 9) 
1:100 30 min 

PHH3 (06-570) Millipore PC 10 min EDTA 
buffer (pH 9) 

1:1500 60 min 

CK5/6 (M7237) DAKO PC 10 min in TRS 
(pH 9) 

1:200 30 min 

P-cadherin (Clone 56) BD 
transduction 

PC 10 min EDTA 
buffer (pH 9) 

1:400 60 min 

QSOX1 Proteintech MW 20 min TRS  
(pH 6) 

1:100 60 min 

PC: pressure cooker; MW: microwave oven; TRS: target retrieval solution 
 

Evaluation of staining 
The assessment of staining and scoring of proliferation markers is described in detail 

in Paper I-II. Briefly, for Ki67, the staining was recorded as percentage of tumor 

cells stained. For PHH3, mitotic figures were counted in 10 HPF, equivalent to the 

approach used for mitotic count. 

 

For HER2, the established scoring system for DAKO Herceptest was used. HER2 

SISH was performed in IHC 2+ cases (Ventana INFORM HER2 DNA probe 
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staining). The 2+ cases were considered HER2 positive if the HER2/Chr17 ratio by 

SISH was equal to or greater than 2.0. 

 

For assessment of CK5/6, P-cadherin and QSOX1 (Paper III), we used a staining 

index (SI), a semi-quantitative and subjective scoring system which is well-

established in our research group.54,253,254 Shortly, the staining index (values, 0-9) is a 

product of staining intensity (0-3) and proportion of tumor cells showing a positive 

reaction (0= no staining, 1: <10%, 2: 10-50%, and 3: >50% of tumor cells). Staining 

of nucleus, cytoplasm and cell membrane were recorded as separate variables. 

3.6 Statistical methods 

Analyses were performed using the SPSS statistical package, version 18.0 (SPSS 

Inc., Chicago, IL) in Paper I and IBM SPSS Statistics version 21.0 (Armonk, NY: 

IBM Corp) in Paper II-III. Associations between categorical variables were 

evaluated by the Pearson’s chi-square test. The Spearman’s rank correlation test was 

used for correlation analyses between continuous variables. Ordinal and continuous 

variables not following the normal distribution were compared between two or more 

groups using Mann-Whitney U or Kruskal-Wallis H tests. Wilcoxon signed rank test 

and Bland and Altman analysis were used to compare related samples. Kappa 

statistics were used in analyses of intra- and interobserver agreement of categorical 

data. Receiver operated characteristic (ROC) analyses were also performed.  

 

Univariate analyses of time to death due to breast carcinoma were performed using 

the product-limit procedure (Kaplan-Meier method), and differences between 

categories were estimated by the log-rank test, with date of diagnosis as the starting 

point. The breast cancer specific survival was defined as the time in months from the 

date of diagnosis to the date of death from breast cancer. Patients who died from 

causes other than breast carcinoma were censored. Median follow-up time was 

estimated by the reverse Kaplan-Meier method. The influence of covariates on patient 

survival was analyzed by the Cox’ proportional hazards method, and tested by the 
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likelihood ratio. Covariates were examined by log-log plot to determine their ability 

to be incorporated in multivariate models. The proportional hazard assumptions were 

also assessed by studying the graphs of the Schoenfelds residuals. Interactions 

between the variables were tested by adding interaction terms if considered pertinent. 

A two-tailed p-value < 0.05 was considered significant.    
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4. MAIN RESULTS 

Paper I 
 

In this study, we assessed the concordance of Ki67 evaluated on full sections from 

surgical specimens (WS) as compared with preoperative core needle biopsies (CNB) 

and tissue microarrays (TMA). The Ki67 counts were significantly higher in WS as 

compared to CNB and TMA (median values 17% vs 13% vs 6%, paired cases, 

P<0.001 for each analysis). The Ki67 counts on WS were significantly correlated 

with the CNB and TMA counts. Elevated Ki67 values assessed on WS, CNB and 

TMA were all significantly associated with high histologic grade and hormone 

receptor negativity. We applied surrogate immunohistochemical markers for 

molecular subclassification based on the St Gallen 2011 guidelines. Ki67 counts 

varied according to molecular subgroup with highest proliferation in the HER2+ and 

triple negative subgroups. In the luminal/HER2 negative subgroup, there were many 

discordant cases and fair agreement only when assessing luminal A and B on WS as 

compared to CNB and TMA. Of note, in the luminal/HER2- subgroup, 21% of cases 

were upgraded from luminal A on CNB to luminal B on WS.  

 

Univariate survival analysis showed that high Ki67 assessed on WS, CNB and TMA 

was associated with adverse outcome. We performed multivariate Cox analyses 

adjusting for basic prognostic factors age, tumor size, histologic grade and lymph 

node status, with separate models for WS, CNB and TMA. These models all showed 

independent prognostic impact of Ki67. In a separate model, Ki67 values from WS, 

CNB and TMA were included. Here, only Ki67 WS retained independent prognostic 

significance. Further, we assessed the prognostic significance of Ki67 in molecular 

subgroups, and found that Ki67 expression remained significant in the luminal 

subgroup only. 
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Paper II 
 

Here, we compared mitotic count, PHH3, and Ki67 values across different types of 

specimens (WS, CNB, TMA) in terms of association patterns and prognosis. 

Proliferation assessed on CNB and TMA was significantly underestimated as 

compared with WS. We applied surrogate immunohistochemical markers for 

molecular subclassification based on the St Gallen 2013 guidelines. In the 

luminal/HER2 negative subgroup, there were many discordant cases when applying 

proliferation markers to WS, CNB and TMA for luminal sub-classification.  

 

Tumor cell proliferation varied according to molecular subgroup with highest 

proliferation in the triple negative subgroup and lowest proliferation in the luminal 

subgroup. Increased proliferation assessed by MC, Ki67 and PHH3 across all three 

sample categories showed significant associations with high histologic grade and 

hormone receptor negativity. Based on receiver operating (ROC) curves, we proposed 

thresholds for mitotic count and PHH3 expression to separate luminal B from luminal 

A tumors. These cut-off points corresponded to a 20% Ki67 cut-off value.  

 

In the complete cohort, univariate survival analysis showed that the prognostic impact 

of MC, Ki67 and PHH3 were mostly retained across specimen categories. In 

multivariate Cox analysis, adjusting for age, tumor size, histologic grade and nodal 

status, mitotic count and Ki67 maintained their independent associations with 

prognosis, whereas PHH3 did not. In the luminal subgroup, adjusting for standard 

prognostic parameters as above, only mitotic count retained independent prognostic 

impact in multivariate analysis. 

 

Paper III 
 

We assessed QSOX1 protein expression on tissue microarrays (n=458) with clinico-

pathological association patterns and prognostic impact as end-points. We also 

assessed QSOX1 expression in relation to molecular subgroups and tumor cell 
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proliferation. The QSOX1 staining was cytoplasmic. Elevated QSOX1 expression 

was associated with high histologic grade, hormone receptor negativity, high 

proliferation, HER2 positivity and P-cadherin positivity. There was no significant 

association between QSOX1 and axillary nodal status. Increased QSOX1 expression 

was more common among HER2+ and triple negative subgroups. In univariate 

survival analysis, cases with high QSOX1 expression (SI=9) showed a 10 year 

survival probability of 67% compared to 89% for carcinomas with low QSOX1 

expression (SI 0-6). Moreover, QSOX1 expression showed independent prognostic 

impact in multivariate Cox models adjusting for standard prognostic variables 

(HR=2.7, P=0.001). In an extended Cox model, also adjusting for luminal status, both 

QSOX1 and luminal status were independent prognostic indicators. There was no 

significant interaction between QSOX1 and luminal status. 
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5. DISCUSSION 

5.1 Discussion of materials and methods 

5.1.1 Patient series 

We have used a population-based series in Paper I-III, consisting of all women in 

Hordaland County, Norway, diagnosed with primary breast carcinomas during 1996-

2003. These patients were enrolled in the prospective, population-based 

mammographic screening program initiated in Hordaland County in 1996. This 

County represents about 10% of the total population of Norway and has a similar age-

adjusted incidence rate of breast cancer as the whole Norwegian population.4 

Data were retrieved from the Cancer Registry of Norway, a national registry 

established in 1951.  In combination with the unique personal identification numbers 

used in Norway, this registry ensures accurate and complete information on all 

cancers.  

This series is well characterized and with long term follow-up based on data from the 

Death Registry of Norway. Accurate and complete information from the Cancer 

Registry and the Death Registry of Norway is a strength of this study.  

Population-based studies of cancer offer advantages in terms of complete data on 

incidence and outcome in a given cohort, and avoidance of sampling bias. Thus, 

conclusions drawn from such studies might be applicable to the general population of 

cancer patients. 

Therapy decisions in this series were based upon traditional prognostic variables such 

as tumor diameter, histologic grade, lymph nodes and HR status, and the treatment 

protocols showed slight modifications during this period, as detailed in Paper I. We 

included 33 patients (6%) with locally advanced disease which were treated with neo-

adjuvant chemotherapy. To reduce the impact of therapy on proliferation marker 

results, we assessed pre-therapy excisional biopsies. In addition, we performed 



 54

survival analyses after exclusion of these patients, with similar results. There were no 

changes of median proliferation values when excluding these cases. 

We did not have information on the individual adjuvant treatment received, breast 

cancer recurrence or metastasis. However, this information is currently collected for 

future studies.  

 

The current age group (50-69) which is the target group for mammographic screening 

might not be completely representative. Tumors from premenopausal patients show 

higher Ki67 values255 as well as more frequent absence of hormone receptors.256 Also, 

the incidence of luminal tumors increases with age, whereas the incidence of basal-

like tumors decreases.129,257 

Thus, an expansion of our patient series to include younger women (<50 years) is 

currently ongoing. Exclusion of patients aged over 70 years is often recommended in 

prognostic studies, due to differences in treatment protocols and comorbidity that 

may bias survival analysis.258  

5.1.2 Use of archival tumor material 

Formalin-fixed, paraffin-embedded (FFPE) tissue blocks were retrieved from the 

archives at the Department of Pathology, Haukeland University Hospital, Bergen, 

Norway. This archive represents a valuable resource of tissue material, and provides a 

substantial advantage in terms of simple, inexpensive construction of large, 

population-based patient series with long term follow-up. 

Of 546 eligible cases, 12 cases (2.2%) were excluded due to missing tissue blocks or 

technical inadequate material for immunohistochemistry.  

The use of archival material has some potential downsides. In retrospective studies, 

several pre-analytical factors may interfere with immunohistochemical results, 

including variation in tissue ischemia time, fixation time, type of fixative, 

temperature of the paraffin, processing, FFPE storage time and storage conditions. A 

previous study showed that prolonged storage of FFPE blocks may reduce biomarker 
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expression, also affecting Ki67 results.259 In contrast, we found no effect of storage 

time on Ki67 expression despite storage for up to 17 years (Paper I). 

 

It has been suggested that too short fixation or prolonged fixation may both lead to 

reduced Ki67 counts.260 On the contrary, brief fixation did not affect the Ki67 results 

in another study.261 Longer fixation time may lead to more extensive masking of 

antigens, although this might be compensated by thorough adjustment of the staining 

protocols. A previous report suggested severe loss of antigenicity for PHH3 (Serine 

28) with improper or prolonged formalin fixation,262 although it is not known whether 

this applies to PHH3 (Serine 10) used in our study. Also, loss of PHH3 (Ser10) 

antigenicity in older (>3-5 years) paraffin blocks has been reported, but proper 

staining of mitoses could be achieved through increased antibody concentration.263  

 

In this study, slides were stored at 4ºC until further analyses. For proliferation 

markers, freshly cut sections (< 2 weeks) were used, as recommended.180 For CK5/6, 

P-cadherin and QSOX1, slides had been stored for no longer than 2 months at 4ºC 

prior to staining. 

 

It is controversial whether fixation delay influences mitotic count on H&E sections, 

but poor fixation might alter the morphologic appearance of mitotic figures, making 

assessment more difficult.264-267  

5.1.3 Tissue microarrays (TMA) 

The TMA technique was introduced in 1998268 and has been validated for breast 

cancer studies.269-271 The procedure is well established representing a cost-effective 

research method extensively used in our research group since 2000. Although the 

initial construction of TMA is labor intensive, this technique offers advantages in 

terms of saving tissue, laboratory reagents including antibodies, and time. Also, 

staining of all cases during one run reduces technical variation securing that every 

slide is treated the same way. Further, scoring of cases is easier and less time-

consuming on TMA slides compared to WS. 



 56

 

Triplet cores are recommended to counteract possible bias introduced by tumor 

heterogeneity, and loss of cores during sectioning and antigen retrieval.270,272 Of note, 

special subtypes like lobular carcinomas might require more extensive sampling.272 In 

such cases we included up to six cores. Care was taken to sample different tumor 

components, including areas of highest histologic grade. 

 

Random loss of cores during sectioning and antigen retrieval is of concern. To 

address this, we assessed different glass slides (Poly-lysine, Superfrost and Gold) and 

chose Poly-lysine, the one that resulted in least tissue detachment during processing. 

 

Cases without TMA available for proliferation assessment (n=75) and the complete 

cohort (n=534), showed a comparable distribution with regards to age, tumor size, 

histologic grade and nodal status.  

 

The size of the tissue cylinders in the 190 cases previously processed is smaller (0.6 

mm) compared to the extended series (1.0 mm). Although the concordance rate 

between WS and TMA is acceptable by use of 0.6 mm triplicates,270 the small area 

was a limitation in analyses of  MC and PHH3 expression. In Paper II, we therefore 

restricted our analyses to cases with both CNB available and TMA with 1.0 mm 

cores. Thus, comparable areas (2.4 mm2) could be assessed.  

 

Herceptest and CISH were analyzed on TMA. Although good concordance has been 

shown for HER2 assessed on CNB and WS,273 intratumoral heterogeneity for HER2 

amplification has been reported.274,275 

 

The impact of tumor heterogeneity on TMA results is further discussed in section 

5.2.1. 
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5.1.4 Core needle biopsies (CNB) 

Sections from core needle biopsies were included for comparative analyses of 

proliferation markers. 154 patients (29%) had CNB available. There were no 

differences in age, tumor size, nodal status, or HER2 status between patients 

diagnosed by FNAC and CNB. Patients diagnosed by FNAC showed a slightly higher 

frequency of ER negativity compared to CNB (17% versus 13%). Also, the CNB 

procedure was more frequent than FNAC between the years 2000-2003 compared to 

1996-1999. 

5.1.5 Immunohistochemical methods 

Although molecular profiling has revolutionized cancer research, 

immunohistochemistry is still a valuable research tool. It is inexpensive, simple and 

makes it possible to assess the precise cell type and staining compartment of a 

specific protein. 

 

For Ki67, we chose the monoclonal MIB-1 antibody which is currently recommended 

for assessment of proliferation in breast cancer.180 For PHH3, we selected a 

polyclonal antibody (Millipore) previously studied in our research group,276,277 and in 

several breast cancer cohorts.200,278,279  

 

The polyclonal QSOX1 antibody (Proteintech) was chosen based on previous studies 

in breast cancer.280,281 The immunohistochemical protocol chosen corresponded to a 

previous published protocol, aside from a small adjustment of antibody dilution.280-283 

For the remaining antibodies (CK5/6, P-cadherin), we used staining protocols as 

previously published.228,284,285 

 

The staining protocols were optimized for each antibody by use of different heat 

induced retrieval systems, such as pressure cooker versus microwave oven, and 

retrieval buffers with different pH. Optimal titration of the antibodies was obtained 

through proper testing of dilutions. To optimize staining results, freshly prepared 
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xylene and alcohol were used for de-waxing. Although the use of microwave oven is 

recommended for epitope retrieval for Ki67,180 a pressure cooker was preferred due to 

less tissue detachment. 

 

All samples were scored blinded to patient characteristics and outcome as 

recommended.286 

 

To ease the comparison of results between studies, guidelines for reporting of 

biomarker studies (REMARK) and checklists for retrospective histopathology studies 

have been published.286-288  

 

For Ki67, there is currently no consensus on scoring method. For assessment of Ki67, 

published guidelines were roughly followed.180 These guidelines recommend scoring 

of at least 500 tumor cells. With homogenous proliferation, three randomly selected 

HPFs should be scored. In case of proliferative heterogeneity with an increasing 

gradient towards the tumor periphery, three HPFs at the periphery should be scored. 

There is no consensus on the assessment of hot-spots.180 Currently, assessment of the 

whole section with an overall Ki67 score is recommended. However, we decided to 

focus on hot-spot counting, in line with the approach used for mitotic count in 

histologic grading. This approach is also supported by studies showing highest 

prognostic impact of Ki67 when counted in hot-spot areas.289,290  

 

Assessment of mitotic count is fairly well standardized, based upon guidelines for 

histologic grading, and a similar approach was used for PHH3. We did not apply any 

correction for tumor volume.291 Tumors showing extensive fibrosis or larger cell size 

have less tumor cells per unit area. A previous study addressed this by comparing 

four different methods of mitotic assessment.291 Mitotic activity was evaluated in hot-

spots, in random HPFs with sampling across the whole tumor, and with two different 

modes of volume correction. Although all four methods provided prognostic 

information, the hot-spot approach was easier and less time-consuming, and there 

was no improvement of prognostic prediction by correction for tumor volume. 
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For QSOX1, P-cadherin and CK5/6, the scoring system used (SI) is well-established 

in our research group and has shown good interobserver agreement.228,251,292 Although 

it is a subjective scoring system, it should be noted that alternative ways of scoring 

such as the modified Histochemical score (H-score) and the Allred score are equally 

subjective. Also, assessment of variables in clinical use (ER, PR and HER2) is 

subjective, but accepted by the clinical community. 

5.1.6 Observer agreement 

Intraobserver variability using Spearman’s correlation and kappa statistics was 

assessed for all markers, with good agreement. Further, interobserver variability was 

evaluated for MC, Ki67, and QSOX1, also with good agreement (kappa-values 0.84, 

0.77, 0.83). For PHH3, the agreement was moderate (kappa-value 0.52). 

Interobserver agreement for CK5/6 and P-cadherin has previously been assessed.228 

 

In 2011, the International Ki67 in Breast Cancer Working Group published guidelines 

for Ki67 assessment.180 On behalf of this group, international Ki67 reproducibility 

studies are currently ongoing. Interlaboratory reproducibility of Ki67 was initially 

questioned,293 although a recent study showed that a high level of interlaboratory 

reproducibility for Ki67 scoring of TMA can be achieved with a common scoring 

method.294 Results based on core needle biopsies and full sections are expected. 

 

A previous study showed that Ki67 assessment of histologic grade 2 carcinomas is 

particularly affected by intra- and interobserver variation.295 A recent study with Ki67 

assessed on full sections, showed good intra- and interobserver agreement.296 Also, a 

Swedish survey reported good interlaboratory agreement for Ki67 when using a 

standardized approach.297 

  

We used manual Ki67 counting as compared to visual estimation. This has previously 

been shown to give the most consistent results,293,298,299 and is the recommended 

approach.180 
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It has been suggested that the use of digital image analysis (DIA) may improve Ki67 

reproducibility,300 and mitoses counting via image analysis have also been 

proposed.301 Studies comparing manual counting of Ki67 with DIA have shown good 

correlation between methods, but contradictory results in terms of prognostic 

superiority.289,302-304 Thus, validation studies of image analysis are needed. Currently, 

image analysis is not recommended for proliferation assessment in breast cancer.180  

Interobserver variability of mitotic count in breast cancer has previously been 

addressed,131,143 and moderate to substantial agreement (kappa-values 0.45-0.82) have 

been reported.305-312 This interobserver variation is accepted by the clinical 

community. 

5.1.7 Cut-off point determination 

Prior to the statistical analyses, biomarker frequency and distribution curves were 

explored. Proliferation markers were kept as continuous variables for selected 

analyses, but they were also dichotomized. Standardized or published thresholds were 

applied when available. Cut-off points were determined based on median and 

quartiles also taking into account the frequency distribution curves and the size of 

subgroups. Categorization by quartiles is recommended to avoid selection bias by 

multiple testing.313 For survival analyses, the number of events in each subgroup was 

assessed prior to analysis. Subgroups with comparable outcome were merged.  

 

For tumor diameter, a 20 mm cut-off was applied, corresponding to the segregation 

between stage T1 and T2, and representing the upper quartile in this series. For nodal 

status, we used presence or absence of metastasis.  

 

In Paper I, we used a Ki67 cut-off point at the median value, specific for each 

specimen type. For luminal sub-classification, a 14% Ki67 threshold was 

applied.223,224 In Paper II, we used a 20% Ki67 cut-off as suggested by the St Gallen 

2013.225 In Paper III, QSOX1 expression (SI) was kept as an ordinal variable for 

selected analyses. For association analyses, QSOX1 was categorized. For P-cadherin 
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and CK5/6, we applied cut-off points previously used and validated by our research 

group.54,228 

5.1.8 Surrogate definitions of molecular subclasses of breast 
cancer 

The molecular sub-classification of patients was based on the immunohistochemical 

surrogates endorsed by the St Gallen guidelines. The diagnostic shift from St Gallen 

2011 to 2013 made it impossible to subclassify 11 carcinomas (2%) defined by ER 

negativity, PR positivity, and HER2 negativity. This subtype is uncommon, and it is 

currently not known whether it represents a mere technical artefact, or a clinically 

meaningful subgroup.154,161,314 

ER and PR were considered positive if  10% of tumor cells stained positive, 

according to national guidelines at the time and consistent throughout the period. This 

may be regarded as a limitation given the currently widespread use of lower ER 

thresholds (1%). However, the low ER (1-9%) breast cancer is a small subgroup. In a 

cohort of 9639 patients, only 2.6% showed 1-9% ER positivity.315 Also, low ER 

breast cancers (1-9%) may have more in common with ER-negative tumors (<1%) in 

terms of prognosis, endocrine resistance and chemotherapy response.315,316 

 

It should be noted that the overlap between breast cancer subtypes defined by 

immunohistochemistry and gene expression is considerable, but not absolute.317 

Luminal B disease by PAM50 may show ER negativity by immunohistochemistry. 

Moreover, the triple negative phenotype, defined by ER-, PR-, and HER2 negativity 

by immunohistochemistry, is an approximation of the basal-like subgroup. There is 

around 70-90% overlap between the basal-like subgroup and the triple-negative 

category.230  
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5.2 Discussion of main findings 

5.2.1 Proliferation markers across distinct specimen categories 

In Paper I and II, our goal was to investigate the matched level of tumor cell 

proliferation by mitotic count, Ki67 and PHH3 across three distinct tissue categories 

(WS, CNB, TMA), and to compare the association patterns and prognostic impact of 

these markers.  

In Paper I, the analyses were restricted to Ki67. Here, our results indicate that the 

proliferative activity is significantly underestimated on CNB and especially TMA 

compared to WS. In Paper II, we included mitotic count and PHH3. In line with the 

Ki67 results, underestimation of mitotic count and PHH3 was demonstrated on CNB 

and TMA specimens.  

These are the first two studies, to our knowledge, to examine the matched level of 

Ki67, mitotic count and PHH3 across three distinct specimen categories. Our results 

support recent studies showing underestimation of Ki67 on CNB compared to WS.318-

321  

In contrast, there are reports indicating good agreement between Ki67 assessment on 

WS and CNB.200,322-324 Two studies have shown higher Ki67 counts on CNB,325,326 

but Greer et al. compared Ki67 assessed in different laboratories with variation in 

antibody dilution, scoring method, and Ki67 thresholds.325 Romero et al. assessed a 

limited number of cases. 

Three small studies (20-86 cases) have shown good agreement between Ki67 in WS 

and TMA.327-329  

For mitotic count, previous publications are broadly consistent, and our results are in 

line with these, showing underestimation of mitotic count on CNB.200,330-332 

Moreover, our findings are supported by reports demonstrating discrepant histologic 

grading mainly caused by an underestimation of mitotic count on CNB.330,331,333-339 
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A comparison between mitotic count and PHH3 on WS and TMA has previously not 

been published. Although we show significant underestimation on TMA, this study 

has limitations, as few TMA samples (n=101) were considered adequate for 

comparative analyses (see section 5.1.3). 

Methodological aspects may, in part, explain the discrepant Ki67 and PHH3 values 

when comparing CNB and WS, and pre-analytical factors that may interfere with the 

results are discussed in section 5.1.2. Of note, the discrepancy between TMA and WS 

was more pronounced. Intratumor heterogeneity has to be considered, and is likely to 

affect the results of all proliferation marker studies. Small tumor samples, such as 

CNB and TMA may not reflect the entire tumor. Of note, heterogeneity may also 

affect histologic grading, and under-grading in CNB has been shown in 16-25% of 

cases.334 For ER and HER2, concordance rates from 62-99% have been reported.340 

Several risk factors have been associated with discrepant Ki67 levels between CNB 

and WS, including younger age, large tumor diameter, high histologic grade, and 

hormone receptor negativity.321 The Ki67 increase from biopsy to surgical specimen 

has been associated with the HER2 positive subgroup,319,341 triple negative tumors,319 

and ER-positive breast cancer as well.342 

In WS, we found heterogeneous distribution of Ki67 in 23% of the cases by visual 

impression. Previous studies have reported Ki67 heterogeneity in 18-63% of the 

cases, although with varied definitions of heterogeneity.343-345 Most studies have 

reported higher Ki67 counts at the periphery than in the central area. Higher counts at 

the tumor periphery have also been shown for mitotic count.346 

For Ki67 scoring, we used a hot-spot approach. This method has previously been 

shown to provide higher prognostic impact,289,290 and it is consistent with the 

approach used for mitotic count in histologic grading. Counting Ki67 average might 

reduce the impact of heterogeneity, and better concordance with overall mean 

counting than hot-spot counting has been shown.320  
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Our data support that assessment of proliferation markers on whole sections, when 

available, should be regarded current best practice. The results are of direct practical 

relevance showing that treatment decisions based on Ki67 thresholds from TMA may 

lead to overtreatment of some patients. 

All three proliferation markers were significantly underestimated on CNB and 

especially TMA compared to WS. For assessment of proliferation markers on CNB, 

specimen specific proliferation thresholds should be considered. Although TMA is an 

invaluable research tool, tumor heterogeneity is a limiting factor. Thus, TMA is less 

suited for assessment of proliferation in studies with potential clinical impact.  

5.2.2 Proliferation markers and  association with clinico-
pathological variables 

Mitotic count, Ki67 and PHH3 assessed on WS were all associated with aggressive 

tumor features such as large tumor diameter, high histologic grade, nodal metastases, 

HR negativity and HER2 positivity (Paper I-II). Association patterns were mostly 

retained on CNB and TMA despite the significant variation in proliferation level 

across specimens. 

5.2.3 Proliferation markers and association with prognosis 

In Paper I, our results show that Ki67 is prognostic over a wide range of cut-off 

points.  

In paired cases (WS, CNB and TMA), only Ki67 assessed on WS showed 

independent prognostic impact, in agreement with a previous report comparing Ki67 

assessed on full sections with TMA.347 

In Paper I, we found no association between Ki67 count and outcome in the non-

luminal/HER2+ or triple negative subgroups, in line with a previous report.348 

However, this might have been caused by limited patient numbers in subgroups. 

Thus, prognostic impact of Ki67 in the triple negative subgroup has been reported.349-

352  
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In Paper II, all three proliferation markers showed prognostic impact in univariate 

survival analyses across specimen categories, with the exception of PHH3 on TMA. 

In multivariate survival analysis on WS, mitotic count and Ki67 retained independent 

prognostic impact, whereas PHH3 did not.  

 

In breast carcinomas, PHH3 has previously outperformed both mitotic count278,353,354 

and Ki67 expression355 in survival analyses. Of note, these studies included a limited 

number of cases with few events. Our results indicate that PHH3 might not substitute 

MC as a mitotic marker. Indeed, for PHH3, several factors must be addressed. PHH3 

counts were three times higher than mitotic count, in line with previous 

findings.200,277,356,357 This discrepancy might have several explanations. One may 

speculate that hot-spots are easier to identify in PHH3 stained sections. PHH3 stains 

cells in late G2 and early prophase; whereas mitoses on H&E sections are not 

detectable prior to nuclear disintegration. Also, PHH3 might not be completely 

mitosis specific. We experienced weak to moderate granular staining of interphase 

nuclei, in line with previous reports.197,199,276,277,358 

 

In addition, PHH3 might be related to apoptosis. Phosphorylation of histone H3 on 

serine 10 during apoptosis was reported in a cell line study, possibly related to 

chromatin condensation during apoptosis.359 Whether this is applicable to 

immunohistochemical assessment of PHH3 is not known. Although PHH3 positive, 

non-mitotic nuclei have been described,360,361 PHH3 positivity in apoptotic cells has 

previously not been reported.199,278,362 Finally, we experienced PHH3 negative 

mitoses in 11% of the cases, despite thorough adjustment of antigen retrieval 

protocols and repeated staining. These results are in line with previous reports on 

melanomas.277,363 

 

Thus, the specificity of PHH3 as a mitotic marker should be addressed in future 

studies prior to potential clinical implementation of this marker.  
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5.2.4 Cut-off points for proliferation markers 

Ki67 thresholds 
In Paper I, we showed that the 14% Ki67 threshold endorsed by the St. Gallen 

guidelines in 2011 for sub-classification of the luminal group, led to several 

discrepant cases when comparing WS with CNB and TMA. This supports the use of 

whole sections, when available.  

 

In Paper I, we suggested a Ki67 cut-off point of 20% to separate luminal B from 

luminal A tumors. This threshold is in agreement both with the St Gallen 2013 and 

2015 statements.135,225 Also, a novel, large meta-analysis on the prognostic effect of 

Ki67, suggested a Ki67 threshold of at least 25%.364  

 

Although direct comparison of studies is difficult due to variation in study 

population, analytical factors, scoring methods and Ki67 thresholds, the distribution 

of Ki67 counts in our series is in line with previous reports. We found a Ki67 median 

of 18% (WS) in the complete cohort (Paper I). This is consistent with reports 

showing a Ki67 median of 17-19%.222,348,365-367 In contrast, lower median Ki67 counts 

(11% and 15%) have been reported.255,368 

 

In the luminal/HER2- subgroup we found a Ki67 median of 15%. Previous studies 

have reported a Ki67 median of 11-18%.348,367,369 

A limitation of our study is that the size of the luminal B subgroup (36%) was 

estimated based on immunohistochemical surrogates and subgroup sizes drawn from 

another study.223 However, there are reports showing a comparable size of the 

luminal B subgroup (29-38%) by PAM50.50,212,370 

Mitotic count 
The use of mitotic count to segregate the luminal group has previously not been 

focused. In Paper II, we showed that mitotic count is not inferior to Ki67 in terms of 

prognostic impact. We indicate a MC threshold of 2.5 mm2 for luminal sub-
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classification. This is in line with a recent study suggesting that mitotic score may 

guide decisions on chemotherapy for the luminal subgroup.309 

 

Comparison between studies is difficult due to differences in the reporting of mitotic 

counts. MC is usually reported per 10 HPF, equivalent to the approach used for 

histologic grading. However, the field diameter differs between microscopes and area 

adjustment should be applied, preferably with reporting of MC per mm2.371 

Previously, the use of mitotic activity index (MAI) has been suggested.143,144,372 MAI 

is the number of mitoses assessed in 10 HPF with a field diameter of 0.45 mm, and 

the total area assessed is 1.59 mm2. 

 

In our series, mitotic count (WS) showed a median of 2.1 mitoses per mm2 (MAI 

3.3), and the upper quartile was 5.5 mitoses per mm2 (MAI 8.7). Previously published 

thresholds include MAI 3 (1.9 mitoses per mm2) and MAI 9/10 (5.7-6.3 mitoses per 

mm2). The distribution of MC in our series is fairly consistent with previous 

reports.373-378 

 

In node-negative cancer, lower MC has been reported,379 and higher MC has been 

shown in tumors from pre-menopausal,380,381 node-positive370 and locally advanced 

disease.382 Also, there are breast cancer cohorts were higher median MC has been 

shown.291,383,384 

 

To the best of our knowledge, this is the first study where the exact mitotic count has 

been used to segregate the luminal subgroup for prognostic purposes. Our results 

indicate that mitotic count might replace or support Ki67 as a marker for sub-

classification of luminal breast cancer. Mitotic count is well established, and the 

interobserver variation is accepted by the clinical community. It is a simple, 

inexpensive method already being performed on all breast cancer cases. All the pre-

analytical, analytical and scoring related downsides that may affect the Ki67 results 

are avoided. The only addition needed is to report the exact number of mitoses 

instead of the mitotic score used for histologic grading. 
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We suggest a cut-off point of at least 2.5 mm2 to separate luminal A from luminal B 

tumors, but this threshold needs validation in separate breast cancer series from 

different institutions.   

PHH3 
For PHH3, comparisons between studies are challenging given the lack of consensus 

on immunohistochemistry and scoring methods. Different antibodies have been 

applied, and PHH3 has been assessed on TMA,353,357,378 CNB,200 and full sections.278 

PHH3 has been scored using staining indices (Allred)385, and approaches 

corresponding to mitotic count in histologic grading.278,354,378 Also, the number of 

PHH3 positive tumor cells has been reported as a percentage, in line with Ki67 

reporting,201,386 and digital image analysis has been applied.355 

 

We assessed PHH3 with a similar approach as for MC, in line with other 

studies.278,354,378 In Paper II, the frequency distribution of PHH3 with a median of 6.3 

mitoses per mm2 (15 mitoses per 10 HPF) corresponds to PHH3-MAI 10. This is 

comparable to a series of node-negative breast cancer (<71 years) where 65% of 

cases showed PHH3-MAI < 13.354 In younger (<55 years) node-negative patients, a 

higher proliferation was shown, and 55% of patients had PHH3-MAI > 13.278  

5.2.5 QSOX1 expression 

In Paper III, we explored the prevalence, association pattern and potential prognostic 

impact of the novel biomarker QSOX1. Previously, QSOX1 was suggested as a 

luminal B specific marker,280 thus, we also wanted to assess QSOX1 in relation to 

tumor cell proliferation and molecular breast cancer subtypes. We found that high 

QSOX1 expression is associated with increased Ki67 and MC, high histologic grade, 

hormone receptor negativity, and HER2 positivity. These findings concur with other 

reports that show associations between high QSOX1, increased Ki67 values and high 

histologic grade.280,387 
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Previous cell line studies have associated high QSOX1 expression with increased 

invasiveness in breast, pancreatic and prostate cancer.280,283,388 QSOX1 has also been 

suggested as a target for HIF-1.389 

 

Although QSOX1 has been associated with adverse tumor features in several reports, 

the prognostic impact of QSOX1 in breast cancer has been controversial.280,281 To our 

knowledge, this is the first report addressing the prognostic impact of QSOX1 protein 

expression in breast cancer. We show that QSOX1 expression is an independent 

factor of poor prognosis in multivariate survival analysis. Consistent with this, high 

QSOX1 gene expression has been associated with poor prognosis.280 

High QSOX1 expression was associated with increased tumor cell proliferation, but 

our findings did not support a study indicating QSOX1 as a luminal B specific 

marker.280 Increased QSOX1 expression was more common among HER2+ and triple 

negative breast cancers, and we found no interaction between QSOX1 and luminal 

status. 

We have assessed the intracellular compartment of QSOX1. It is currently unknown 

why subgroups of cancers overexpress QSOX1, and the role of this enzyme in the 

secretory pathway needs to be clarified. In the extracellular space, QSOX1 may play 

an important role providing proper incorporation of laminin into the ECM. This is a 

prerequisite for tumor cell invasion.119  

This is a single cohort, exploratory study, and our results need validation in separate 

patient cohorts. Further studies on the role of QSOX1 in cancer progression are 

warranted. 
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6. CONCLUSIONS 

1. The proliferative activity (mitotic count, Ki67, PHH3) was significantly 

underestimated on core needle biopsies (CNB) and especially tissue 

microarrays (TMA) compared to whole sections (WS). TMA is less suited for 

assessment of proliferation in studies with potential clinical impact (Paper I-

II).  

2. Assessment of proliferation markers on whole sections should be regarded 

current best practice (Paper II). 

3. A Ki67 threshold of 20% seems appropriate to segregate the luminal subgroup 

based on WS specimens (Paper I). 

4. Mitotic count and Ki67 provided independent prognostic information, and 

were superior to PHH3 as prognostic factors in breast cancer (Paper II).  

5. Mitotic count using a threshold of 2.5 mitoses/mm2 might potentially replace 

Ki67 in sub-classification of the luminal group (Paper II).  

6. High QSOX1 expression by immunohistochemistry was associated with 

features of aggressive breast cancer and reduced survival by multivariate 

analysis (Paper III). 

7. High QSOX1 expression was more common among HER2 positive and triple 

negative tumors. Our findings do not support QSOX1 as a luminal B specific 

marker (Paper III). 
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7. FUTURE PERSPECTIVES 

The breast cancer series used in this thesis is currently under expansion to include 

women below 50 years of age. Novel survival data from the Norwegian Cause of 

Death Registry has been requested, and data on metastasis are collected. The 

subgroup of node-positive patients is being further characterized in a separate PhD 

project in which the proliferative rate (mitotic count, Ki67) is assessed in lymph 

nodes and compared with the primary tumor.390 In another PhD project, assessment of 

proliferation markers (MC, Ki67) is planned in the subgroup of young patients (<50 

years), and the results will be compared with the current series (50-69 years).  

 

The main goal of the expanded project is an improved characterization of biological 

and clinico-pathological biomarkers in breast cancer subgroups to refine diagnostics 

and define potential treatment targets. The biomarkers will further be characterized 

according to molecular categories. A special attention will be drawn to the tumor 

microenvironment, angiogenesis and vascular invasion.  
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Abstract

Introduction: Tumor cell proliferation in breast cancer is strongly prognostic and may also predict response to
chemotherapy. However, there is no consensus on counting areas or cut-off values for patient stratification. Our aim was to
assess the matched level of proliferation by Ki67 when using different tissue categories (whole sections, WS; core needle
biopsies, CNB; tissue microarrays, TMA), and the corresponding prognostic value.

Methods: We examined a retrospective, population-based series of breast cancer (n= 534) from the Norwegian Breast
Cancer Screening Program. The percentage of Ki67 positive nuclei was evaluated by visual counting on WS (n= 534), CNB
(n= 154) and TMA (n= 459).

Results: The median percentage of Ki67 expression was 18% on WS (hot-spot areas), 13% on CNB, and 7% on TMA, and this
difference was statistically significant in paired cases. Increased Ki67 expression by all evaluation methods was associated
with aggressive tumor features (large tumor diameter, high histologic grade, ER negativity) and reduced patient survival.

Conclusion: There is a significant difference in tumor cell proliferation by Ki67 across different sample categories. Ki67 is
prognostic over a wide range of cut-off points and for different sample types, although Ki67 results derived from TMA
sections are lower compared with those obtained using specimens from a clinical setting. Our findings indicate that
specimen specific cut-off values should be applied for practical use.
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Introduction

Breast cancer is a heterogeneous disease. During the last

decade, gene expression studies have identified distinct molecular

subtypes, such as Luminal A, Luminal B, HER2-enriched, basal-

like and normal breast-like, and these have markedly different

behavior and prognosis [1,2]. Subsequent studies have introduced

immunohistochemical surrogate markers for molecular classifica-

tion, with a proposed Ki67 cut-point of 14% to separate Luminal

A from Luminal B tumors [3,4]. Furthermore, the treatment effect

of adding docetaxel to highly proliferative, luminal tumors has

been demonstrated [5,6].

In 2011, the St Gallen International Expert Consensus included

a Ki67 cut-off point of 14% in their recommendations for adjuvant

therapy [7]. However, there is currently no agreement on

specimen selection, technical protocols, evaluation methods or

cut-off values [8,9], and the criteria for sub-classification of breast

carcinomas by Ki67 has yet to be established. This area is

controversial, and in the report from St Gallen 2013 recently

published, the cut-off value has been changed [10].

On this background, we aimed to study the levels of tumor cell

proliferation based on Ki67 expression according to specimen type

such as whole sections (WS), core needle biopsies (CNB) and tissue

microarrays (TMA) from a population-based series of breast

cancers, and to study and compare the prognostic value of Ki67 in

relation both to specimen type and molecular subgroups of breast

cancer.
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Materials and Methods

Patient series
This study was approved by the Western Regional Committee

for Medical and Health Research Ethics, REC West (REK 2012/

1704). We identified all women (50–69 years) who resided in

Hordaland County, Norway, when diagnosed with primary

invasive breast cancer as part of the population-based Norwegian

Breast Cancer Screening Program during 1996-2003. Hordaland

County has approximately 500,000 inhabitants, this represents

about 10% of the total population of Norway.

Patients with distant metastatic disease at time of diagnosis

(stage IV) were not included, leaving 555 potential cases. Written

informed consent was not obtained from the patients, but in

accordance with national ethics guidelines and procedures for such

retrospective studies, all participants were contacted with written

information on the study and asked to respond if they objected. In

total, 9 patients (1.6%) did not approve participation. 12 cases had

technical inadequate material for proliferation assessment (Ki67),

leaving 534 cases for further studies. Patient records and

information were anonymized and de-identified prior to analysis.

The patients included had a median age of 60 years at diagnosis

(factual range 49–72 years).

The patients received treatment according to standard national

protocols in a single institution. Follow-up information was given

by the Norwegian Cause of Death Registry, and can be considered

accurate and complete. Last date of follow-up was December 31,

2011. Outcome data include survival status, survival time and

cause of death. During the follow-up period, 79 patients (15%)

died from breast carcinoma, and 62 (12%) died from other causes.

The median survival of the censored patients was 12 years, and the

median follow-up was 13 years calculated by the reverse Kaplan-

Meier method. The 5-year breast cancer specific mortality was 9%

(49/534).

Clinico-pathological variables
Patient’s clinical history and tumor characteristics including age

at diagnosis, largest tumor diameter, histologic type, histologic

grade, lymph node status and hormonal receptor status were

obtained from the clinical records and routine histopathology

reports. Histologic type was assessed according to WHO criteria,

whereas histologic grade was evaluated using the Nottingham

modification [11] by five experienced breast pathologists (JE, JA,

IMS, KC, LAA). Tumor size was assessed histologically (61%) and

by macroscopic examination (29%). However, if pathologic tumor

size was not available (as in patients with locally advanced or

multifocal disease), the radiologic size estimate was included

(10%). For immunohistochemical studies on whole sections, HE

slides were re-examined, and representative slides (1–2 blocks)

displaying both the peripheral and central parts of the tumor, as

well as the most cellular and high-grade areas, were selected for

further analyses. The corresponding FFPE block was also used for

TMA construction.

Patient characteristics
Radical mastectomy was performed in 285 cases (53%), and

breast conserving surgery in 245 cases (46%); four patients were

represented with core needle biopsy only (three cases of locally

advanced disease and one patient with surgery abroad). Adjuvant

therapy was decided according to tumor size, histologic grade,

hormone receptor status and nodal status. Treatment protocols

showed slight modifications during the period. Chemotherapy was

offered to patients below 55 years with stage I disease who had

histologic grade 2 and 3 tumors, and to patients under 55 years

with stage II disease. From 1998, chemotherapy was also

recommended for patients between 55–65 years with stage I or

II disease combined with hormone receptor negativity. 33 patients

(6%) were treated with neo-adjuvant chemotherapy due to locally

advanced disease.

Adjuvant radiation therapy was recommended for patients who

received breast conserving surgery, had primary surgery without

free resection margins, stage II disease with axillary metastasis, as

well as stage III disease.

Specimen characteristics
The tumor samples were fixed in 4% buffered formaldehyde

before processing and embedding in paraffin. Storage time of the

archival formalin-fixed, paraffin embedded tissue samples (blocks)

was up to 17 years. Five mm sections were cut by one person using

the same microtome and mounted onto poly-lysine coated glass

slides. Slides were stored for no longer than two weeks at 4uC until

staining for Ki67 was performed.
Tissue microarray (TMA). H&E stained slides were used

for tumor verification. Briefly, 1.0 mm cores in triplicate were

punched and mounted into a recipient paraffin block using a semi-

automated precision instrument (Minicore 3, Tissue Arrayer,

Alphelys, France). Care was taken to select areas with high tumor

purity and to include the periphery and areas of highest histologic

grade. 190 cases had previously been processed [12,13]; from

these cases three tissue cores with a diameter of 0.6 mm were

obtained by a different instrument (Beecher Instruments, Silver

Spring, MD, USA).

Among the 534 cases with TMA available, 22 cases had tissue

cores devoid of invasive tumor, 21 cases had complete core loss

and 32 cases showed fewer than 100 tumor cells on arrayed spots,

leaving 459 cases (86%) available for proliferation assessment.

Preoperative core needle biopsies (CNB). 182 patients

had undergone both preoperative core needle biopsy and

subsequent primary surgical excision for breast carcinoma. Among

these, 25 cases were excluded due to non-representative or

inadequate material remaining for biomarker assessment. Three

cases had previously been excluded due to lack of informed

consent. In total, 310 cases received preoperative cytology only,

and the remaining cases had either frozen sections, incisional or

excisional biopsies performed; this practice was according to

national guidelines at the time. The number of core biopsies taken

ranged from 1 to 4 (mean= 2.4, median = 2). 92% of the cases had

more than 1 core biopsy available.

Ki67 immunohistochemistry
Immunohistochemistry was performed on 5 mm slides of

formalin-fixed and paraffin-embedded archival tumor tissue. The

sections were de-waxed with xylene/ethanol before target retrieval

in a pressure cooker (Decloaking Chamber Plus, Biocare Medical).

Staining procedures were performed on a DAKO autostainer

using the K4061/Envision Dual Link System (rabbit+mouse).

Sections were incubated for 30 minutes at room temperature with

a monoclonal rabbit antibody (M 7240, clone MIB-1, DAKO) at a

1:100 dilution. Finally, diaminobenzidine (DAB) as chromogen for

10 minutes was followed by haematoxylin as counterstain for

3 minutes. Sections from tonsils were used as positive controls;

negative controls were obtained by replacing the primary antibody

with Tris-buffered saline. Controls were included in each staining

run.

Evaluation of staining
Hormone receptors. Results for estrogen and progesterone

receptors were obtained from the routine pathology reports.

Proliferation by Ki67 Expression in Breast Cancer
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Tumors were considered ER or PR positive if $10% of tumor

nuclei stained positive, according to national guidelines during the

period.

HER2. The established scoring system for DAKO Herceptest

was used. HER2 SISH was performed on IHC 2+ cases (Ventana

INFORM HER2 DNA probe staining). The 2+ cases were

considered HER2 positive if the HER2/Chr17 ratio by SISH was

equal to or greater than 2.0.

Ki67 scoring. All slides were examined and scored by one

pathologist (GK), blinded to patient characteristics and outcome.

The slides were evaluated using light microscopy (Leica DMLB)

with an eye-piece graticule for counting at x630 magnification,

roughly following the approach used by Weidner et al. [14]. Care

was taken to avoid areas of intense inflammation, fibrosis, necrosis,

low cellularity or poor fixation. The slides were scanned at low

magnification (x100) to identify and encircle the hot-spot (HS); this

was defined as the area containing the highest density of Ki67-

labelled tumor cells by visual impression. The hot-spot was usually

situated at the periphery of the carcinoma. Further, the cold-spot

(CS), the area with the lowest density of Ki67 positive tumor

nuclei, was identified. Overall, 23% of all cases (WS) showed

clearly heterogeneous proliferation. In these cases, 500 tumor cells

in consecutive HPFs were counted in both hot and cold spots. For

tumors with homogenous proliferation, or small areas of invasive

tumor, 500 tumor cells at the peripheral part of the tumor were

assessed, and a single figure for Ki67 expression was recorded.

Only stained tumor cells crossing horizontal grid lines were

counted. Any nuclear staining regardless of intensity was

considered positive.

We did not find any correlation between Ki67 expression and

years of storage of the tissue blocks (data not shown). Further, we

found no difference in median Ki67 expression when comparing

patients with 1–2 core biopsies (CNB) available versus 3–4 core

biopsies (data not shown).

In a subset of 50 cases, the slides were evaluated at a different

magnification (x400), with excellent correlation between the

methods (Spearman’s correlation coefficient (r) 0.96, kappa-value
0.79, P,0.001 for both tests).

Observer agreement for Ki67 counts. Intra-observer

variability was evaluated by randomly rechecking 50 cases (WS)

after a period of 6 months, with excellent correlation between the

2 counts (Spearman’s r 0.99, kappa-value 0.88). Moreover, a

separate researcher (SA) assessed 50 cases across all sample

categories showing good inter-observer agreement: WS specimens:

Spearman’s r 0.95; kappa-value 0.71; CNB specimens: Spear-

man’s r 0.93; kappa-value 0.80; TMA specimens: Spearman’s r
0.88; kappa-value 0.74 (P,0.001 for each analysis).

For assessment of Ki67 on CNB, 500 tumor cells were counted

by choosing the most proliferative region if possible. For

assessment of Ki67 on TMA, all available cores were assessed,

and the core with the highest Ki67 score was recorded. TMA

samples with fewer than 100 tumor cells were considered not

interpretable.

Furthermore, an ‘‘average’’ tumor cell proliferation was

estimated as a mean of Ki67-HS and Ki67-CS in cases of

heterogeneity. In a subgroup of 25 cases, the overall average score

was also directly counted on the slides in addition to the estimated

average. This was obtained by counting 200 cells in each of three

representative tumor areas (hot-spot, intermediate area and cold-

spot). There was a strong and positive correlation between the

average score obtained by counting and the estimated mean

(Spearman’s r 0.86, P,0.001, kappa-value 0.62, P=0.001).

Definition of molecular classes of breast cancer
Molecular classes were defined as Luminal A (ER positive and/

or PR positive, Ki67,14%), Luminal B (LuminalB-HER2

negative: ER positive and/or PR positive, Ki67$14%; Lumi-

nalB-HER2 positive: HR positive and HER2 positive regardless of

Ki67), HER2 enriched (ER and PR negative, HER2 positive), and

triple negative (ER negative, PR negative, HER2 negative) based

on published criteria [7].

Statistical methods
Analyses were performed using the SPSS statistical package,

version 18.0 (SPSS Inc., Chicago, IL). Statistical significance was

assessed at the two-sided 5% level. Non-parametric correlations

were tested by the Spearman’s rank coefficient. Bland and Altman

analysis and Wilcoxon signed rank tests were used to compare

related samples. Continuous variables not following the normal

distribution were compared between two or more groups using the

Mann-Whitney U or Kruskal-Wallis H-test. Continuous variables

were categorized based on quartile limits, also considering the

frequency distribution plot for each marker, as well as the number

of events in subgroups. The Cohen’s kappa measure was used to

assess the agreement of two categorical scores.

For survival analyses, the end-point of interest was breast cancer

specific survival (BCSS), defined as the time in months from the

date of diagnosis to the date of death from breast cancer. Patients

with missing data were excluded from analyses. Univariate

survival analyses were performed using the product-limit proce-

dure (Kaplan-Meier method), and differences between categories

were estimated by the log-rank test, with date of diagnosis as the

starting point. Patients who died from other causes were censored

at the date of death. Multivariate survival analyses were conducted

using Cox9 proportional hazards methods. Multivariate analyses

adjusted for standard prognostic factors including tumor size,

histologic grade, nodal status and age. Covariates were examined

by log-log plot and by adding interaction terms to determine their

ability to be incorporated in multivariate models. For continuous

variables, the proportional hazard assumptions were also assessed

by studying the graphs of Schoenfelds residuals.

Results

Clinico-pathologic characteristics of the patients
In the current study, median tumor size was 15 mm (range 3–

110 mm). Table 1 gives an overview of clinico-pathological

features of the complete series. See also table S1 in File S1 for a

summary of clinico-pathologic characteristics in relation to

molecular subclasses.

Among patients that underwent axillary node dissection, the

median number of lymph nodes sampled was 11 (range 1–33).

Ki67 counts in relation to different specimen types
The following results are based upon hot-spot counts, unless

otherwise is stated. The median percentages of Ki67 expression

according to specimen types for both the complete series and paired

cases are listed in Table 2, see also Figure S1-A. Ki67 counts were

significantly higher in WS as compared to CNB (n= 154, Wilcoxon

signed rank test, P=0.001), with a median absolute difference of

2.4% (range 244% to 42%), see Figure S1-B.

Ki67 counts were significantly higher in WS as compared to

TMA (n= 459, Wilcoxon signed rank test, P,0.001), with a

median absolute difference of 10% (range 26 to 76%). Further-

more, an increase in variability of the differences with increasing

proliferation was shown (See Figure S1-C).
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In 137 cases with matched WS, CNB and TMA samples, the

median percentages of Ki67 expression were significantly different

with 17% (WS), 13% (CNB) and 6% (TMA), Wilcoxon signed

rank test, P,0.001 for each analysis. Still, The Ki67 values

obtained on WS were significantly correlated with both CNB

(Spearman’s r 0.56, P=0.001) and TMA (Spearman’s r 0.81, P,

0.001). Further, Ki67 counts on CNB were significantly correlated

with TMA (Spearman’s r 0.49, P,0.001) (See Figure S2).

Using the 14% Ki67 threshold on the entire series (n = 534),

based on WS specimens, 61% of tumors were classified as having

high proliferation. In the CNB series (n = 154), 48% showed high

Ki67 expression, as compared to 25% of the cases when using

TMA specimens (n = 459), as illustrated in Figure S3.

Table 1. Clinico-pathologic characteristics.

Characteristics Complete series

N (%)

Tumor diameter

#2 cm 405 75.8

.2 cm 129 24.2

Histologic grade

1 218 40.8

2 226 42.3

3 90 16.9

Nodal status

Negative 387 72.5

Positive 142 26.6

Missing 5 0.9

Histologic type

Ductal 447 83.7

Lobular 55 10.3

Tubular 8 1.5

Mucinous 16 3.0

Medullary 4 0.7

Unclassified 4 0.7

ER

Positive 451 84.5

Negative 83 15.5

PR

Positive 377 70.6

Negative 157 29.4

HER2

Negative 463 86.7

Positive 71 13.3

doi:10.1371/journal.pone.0112121.t001

Table 2. Ki67 counts according to tissue categories.

Complete series N Median Range Mean

Ki67-WS 534 18 1–94 24

Ki67-CNB 154 13 0.4–89 17

Ki67-TMA 459 7 0.2–83 12

Paired cases

Ki67-WS 137 17 0.8–90 21

Ki67-CNB 137 13 0.4–89 18

Ki67-TMA 137 6 0.2–71 10

WS, whole sections; CNB, core needle biopsies; TMA, tissue micro arrays.
doi:10.1371/journal.pone.0112121.t002
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Associations between Ki67 and clinico-pathological
features
High Ki67 expression by all 3 classes of specimens was

significantly associated with high histologic grade and hormone

receptor negativity (Table 3). Furthermore, elevated Ki67 expres-

sion on WS and TMA was associated with large tumor size, lymph

node metastasis, and HER2 positivity. No associations were found

between high Ki67 and age or tumor type. For cold-spot counts on

full sections, the associations between Ki67 and tumor size and

HER2 status were not significant (See Table S2 in File S1).

Tumor cell proliferation in different molecular subgroups
Based on WS (complete series), the median expression of Ki67

in the Luminal subclass (including Luminal-HER2+) was 17%

(Luminal A subclass 7%, Luminal B subclass 25%). In the HER2+
subclass (HR-, HER2+), the median expression of Ki67 was 35%

whereas the triple negative subgroup demonstrated the highest

Ki67 median of 62% (Kruskal-Wallis test, P,0.001, Figure 1).

Assessment on CNB and TMA revealed the same pattern with

highest proliferation shown for the triple negative group followed

by the HER2+ subgroup. The lowest proliferation was observed in

the Luminal subgroup.

We then applied the 14% cut-off point to WS, CNB and TMA.

Among hormone receptor positive cases, excluding Luminal B/

HER2+, the following figures for the frequency of cases having

high proliferation were 52% (WS), 41% (CNB) and 14% (TMA),

as illustrated in Figure 2. In the study by Cheang and colleagues,

the Luminal B category comprised 36% of the HR+/HER2

negative cases [3]. By applying this frequency to our series, the

following cut-off points for Ki67 would result in a similar size of

the Luminal B (HER2 negative) subgroup: 20% (WS), 15% (CNB)

and 8% (TMA).

We further applied the 14% cut-off point (St Gallen 2011) in the

Luminal subgroup (excluding Luminal B/HER2+) and found

classification agreement in 65% of the cases when comparing WS

and CNB (n= 125, paired cases) as illustrated in Table 4 (kappa-

value 0.29, P,0.001). Of note, 18 cases (14%) initially categorized

as luminal B on CNB were downgraded on WS, whereas 26 cases

(21%) categorized as luminal A on CNB were upgraded. We then

compared the results between WS and TMA (n=350, paired

cases) and found concordance in 59% of cases (kappa-value 0.23,

P,0.001). 143 cases (41%) categorized as luminal A on TMA

were upgraded on WS, whereas only 1 case showed the opposite

pattern.

Tumor cell proliferation and patient outcome
Univariate analyses displayed significant associations between

Ki67-WS and patient survival using a cut-off at the median

(Figure 3, see also table S3 in File S1). Further, significant

influence of Ki67-WS counts was shown for all cut-points

examined (10th–90th percentiles, Figure S4). Multivariate survival

analyses, after adjustment for basic prognostic indicators including

age, tumor size, histologic grade and lymph node status, showed

that Ki67, tumor size and nodal stage were independent

prognostic factors for breast cancer specific survival (Table 5).

Proliferation by Ki67-CS showed similar but weaker effects on

BCSS in univariate analysis (Table S4 in File S1). We further

performed survival analyses after excluding the 33 cases with

locally advanced disease; the results were similar (data not shown).

Table 3. Associations between Ki67 expression and histopathological features.

Ki67-WS (n=534) Ki67-CNB (n=154) Ki67-TMA (n=459)

Variables Median (%) P-valuea Median (%) P-valuea Median (%) P-valuea

Tumor diameter ,0.001 0.089 ,0.001

#2 cm 16.8 11.2 6.2

.2 cm 28.0 16.8 11.2

Histologic grade ,0.001 ,0.001 ,0.001

1 12.0 9.2 4.4

2 19.5 14.1 7.0

3 43.7 40.0 23.4

Nodal statusb 0.002 NS 0.002

Negative 16.8 11.9 6.2

Positive 23.3 14.4 8.7

ER ,0.001 ,0.001 ,0.001

Positive 16.6 11.0 6.0

Negative 42.8 40.0 19.0

PR ,0.001 0.005 ,0.001

Positive 16.8 11.1 6.0

Negative 26.2 19.3 12.0

HER2 ,0.001 0.088 ,0.001

Negative 16.8 11.7 6.0

Positive 32.4 18.4 15.2

NS, not significant.
aMann-Whitney or Kruskal-Wallis tests.
b5 cases (WS), 1 case (CNB) and 4 cases (TMA) with unknown lymph node status were excluded.
doi:10.1371/journal.pone.0112121.t003
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Univariate survival analysis of Ki67 in CNB sections showed all

examined cut-points above the 40th percentile to be prognostic.

Multivariate analyses were performed, adjusting for age, tumor

size, histologic grade and nodal status. In the final model, Ki67-

CNB and nodal status retained prognostic significance.

For Ki67 in TMA sections, univariate survival analyses demon-

strated all examined cut-points above the 10th percentile to be

prognostic. In multivariate analysis, including the variables age, tumor

size, histologic grade and nodal status, Ki67-TMA showed indepen-

dent prognostic impact in addition to tumor size and nodal status.

Finally, Ki67 on WS, CNB and TMA (paired cases, n = 137)

were included in a multivariate analysis. In this model, only Ki67-

WS demonstrated independent prognostic significance. (HR 1.06;

(1.02–1.10), P=0.006, Ki67 included as a continuous variable).

Survival by Ki67 in different molecular subgroups
We also performed subgroup analyses on the complete series

stratified by ER and HER2 status and based on Ki67-WS. In the

luminal category (including Luminal-HER2+; n= 462), univariate

survival analysis revealed a significant association between Ki67 and

BCSS (HR 1.03, 95% CI=1.02 to 1.04; P,0.001), also when using

two categories with a defined cut-point of 14%, (HR 2.9, 95%

CI=1.5 to 5.5; P=0.001; Figure 4). In multivariate analysis

including Ki67 and the basic prognostic variables tumor size,

histologic grade and lymph node status, Ki67 retained prognostic

significance (together with nodal status and tumor size). Further-

more, by excluding the HER2+ cases and focusing on HR+ breast

cancers (n=412), similar results were obtained (data not shown). In

contrast, univariate survival analysis revealed no significant associ-

ation between Ki67 and outcome within the HER2+/HR-

subgroup. By including the HER2+/HR+ cases, the analysis showed

prognostic impact of Ki67 (HR 1.027, 95% CI 1.002–1.053;

P=0.033). Finally, univariate analysis demonstrated no association

between Ki67 and survival in triple negative breast cancer.

Discussion

It is well documented that tumor cell proliferation by Ki67

expression is strongly associated with breast cancer prognosis [15].

After the suggestion of Ki67 as a predictive marker for adjuvant

chemotherapy, observer variation and methodological issues have

been increasingly discussed [8,16]. Some recommendations for

Ki67 assessment were presented in 2011, and the lack of

systematic comparisons of Ki67 expression levels between tissue

microarrays (TMA) and whole sections (WS) was noted [8]. As an

example, the Ki67 cut-off point of 14% recommended for

treatment decisions by the St Gallen 2011 guidelines was based

on data from a series of tissue microarrays combined with gene

expression analysis [3,7]. However, the clinical translation of these

findings has not been well documented.

Here, we found a significant difference in proliferation level

related to specimen type, with median Ki67 staining values of

18%, 13% and 7% for WS, CNB and TMA samples. These

differences might in part be explained by intra-tumor heteroge-

neity, which is seen both at the morphological and molecular levels

[17–25].

Studies based on CNB and TMA specimens are challenging as

the amount of tissue examined is reduced compared with WS

Figure 1. Box plots of tumor cell proliferation by Ki67 expression according to breast cancer molecular subgroups in different
specimen categories. Horizontal lines inside the boxes represent the median value; box limits indicate the 25th and 75th percentiles; whiskers
extend 1.5 times the interquartile range from the 25th and 75th percentiles.
doi:10.1371/journal.pone.0112121.g001

Figure 2. Frequency of cases in the Luminal/HER2- subgroup
showing high proliferation when applying a Ki67 cutoff-point
of 14% to different specimen categories. WS (n=415), CNB
(n=125), TMA (n= 350).
doi:10.1371/journal.pone.0112121.g002
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Table 4. Ki67 concordance between WS, CNB and TMA in the luminal subgroup.

WS Agreement Kappa P-value

LumA LumB

N (%) N (%)

CNB

LumA 48 (38) 26 (21) 65% 0.29 0.001

LumB 18 (14) 33 (26)

TMA

LumA 158 (45) 143 (41) 59% 0.23 ,0.001

LumB 1 (0.3) 48 (14)

doi:10.1371/journal.pone.0112121.t004

Figure 3. Breast cancer specific survival according to Ki67 expression. Survival curves (Kaplan-Meier) are shown for Ki67 expression on WS
(A); TMA (B) and CNB (C). Cut-off points at the median were applied for all specimen categories. The number of events and total number of patients in
each group are shown beside the description of each curve. Numbers at risk are presented below each curve.
doi:10.1371/journal.pone.0112121.g003
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samples. Heterogeneity might especially affect studies using the

hot-spot approach, since these areas are often small and might be

missed on CNB and TMA sections. Still, prior studies of

proliferation markers in breast tumors have shown good statistical

correlation between TMA and full sections for Ki67 [26–28], and

expected associations between Ki67 and clinico-pathologic and

molecular features have been reproduced [29]. Also, the use of

pre-surgical CNB has been validated for various biomarkers with

significant correlation between methods [30]. Good to excellent

agreement has been demonstrated for hormone receptors and

HER2 status, whereas histologic grade has shown only modest

concordance, mainly due to underestimation of mitotic count on

CNB specimens [31–35]. Some studies on Ki67 have shown good

concordance between CNB and WS tissues [36–39], whereas

others have found only fair to moderate agreement [25,40,41].

Notably, even in studies demonstrating a good statistical correla-

tion, there could be marked differences in scores on an individual

basis [36]. In our study, a significant proportion of the cases are

classified differently given a predetermined threshold and with

potential consequences for patient treatment. Importantly, we

found that 21% of Luminal A cases on CNB were upgraded to

Luminal B on WS specimens, similar to other findings [42].

The subdivision of ER-positive tumors into Luminal A and

Luminal B is based on the expression levels of proliferation-related

genes among HER2 negative cases. Studies have revealed that

proliferation levels are continuous, and sub-classification based on

certain cut-points is therefore likely to be arbitrary [43,44].

Although the 14% cut-off point to separate Luminal A from

Luminal B tumors was based on Ki67 expression in TMA samples

and established against gene expression profiles, this cut-point

showed only a modest sensitivity of 77% and a specificity of 78%

in that study [3]. In spite of this, the 14% threshold has been used

in research settings as well as in the St Gallen 2011 statement for

clinical implementation. Interestingly, the size of the Luminal B

subgroup has varied from 8% [45] to 66% [46] in published series.

In our study, the 14% cut-off point results in an overestimation of

the Luminal B subgroup based on WS specimens, whereas the

TMA approach appears to underestimate same group. In the

study by Cheang and colleagues, the Luminal B category

represents 36% of the HR+/HER2 negative cases [3]. We applied

Table 5. Multivariate survival analysis (Cox9 proportional hazards method) using different specimen categories.

Variables N HR 95% CI P-valuea

A. Whole sections (final model; n = 529)

Tumor diameter

#2 cm 404

.2 cm 125 2.3 1.4–3.7 0.001

Nodal status

Negative 387

Positive 142 3.3 2.0–5.3 ,0.001

Ki67 countb

Low, #18.3 265

High,.18.3 264 2.4 1.4–4.1 0.001

B. Core needle biopsies (final model; n = 153)

Nodal status

Negative 112

Positive 41 4.2 1.9–9.5 0.001

Ki67 countb

Low, #12.8 77

High,.12.8 76 2.8 1.1–6.7 0.024

C. TMAs (final model; n = 455)

Tumor diameter

#2 cm 346

.2 cm 109 2.0 1.2–3.5 0.009

Nodal status

Negative 335

Positive 120 3.5 2.0–6.0 ,0.001

Ki67 countb

Low, #7.0 236

High,.7.0 219 2.2 1.3–3.7 0.005

HR, Hazard ratio; CI, confidence interval.
Final models after initial inclusion of age, tumor diameter, histologic grade, nodal status and Ki67.
5 cases (WS), 1 case (CNB) and 4 cases (TMA) were excluded due to missing information on lymph node status.
aLikelihood ratio.
bCut-off point at the median.
doi:10.1371/journal.pone.0112121.t005
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this frequency to our series, and found that the following cut-off

points for Ki67 would result in a similar size of the Luminal B-

HER2 negative subgroup: 20% (WS), 15% (CNB) and 8% (TMA).

Thus, the importance of tissue-specific cut-off points must be

considered, for instance when using core needle biopsies and when

translating data from TMA-based research to a potential clinical

use.

For prognostic purposes, there is no consensus regarding

counting area or how many tumor cells should be scored [8].

Although a previous study showed that both the peripheral,

central and average Ki67 rates were associated with overall

survival [17], two recent studies have revealed that Ki67 has the

strongest prognostic impact when counted in hot-spot areas

[47,48]. Notably, using whole sections and hot-spot readings

corresponds to what is done for mitotic activity as part of histologic

grading. Since prognostic studies have indicated that disease

progression is best predicted by Ki67 counted in hot-spot areas, a

similar approach should probably be considered for predictive

purposes. This must be assessed in carefully designed studies.

Regarding methodology, our study has some limitations, since

pre-analytical and analytical variables can not be completely

standardized in such retrospective studies [8]. Delayed formalin

fixation may result in decreased expression of certain biomarkers

[49], although a study of Ki67 found no decrease in expression

after 180 minutes delay [50]. Of note, it has been shown that

prolonged formalin fixation may cause more extensive masking of

antigens, and that not all of this loss can be recovered by antigen

retrieval [51,52]. Further, the TMA technique carries some

drawbacks, such as sampling errors and loss of information due to

missing tissue cores. Notably, false negative results have been

reported for biomarkers studied on TMA sections [53], but it is not

known whether this is applicable to Ki67. Regarding ER and PR

expression, we used a threshold of 10% for molecular sub-

classification according to national guidelines at the time, as

compared to the 1% threshold recommended by the present St

Gallen guidelines.

In conclusion, tumor cell proliferation as estimated by Ki67 is

significantly dependent on specimen category, and our results

indicate that specimen-specific cut-off values should be established

and validated for clinical use. Furthermore, Ki67 is prognostic

over a wide range of cut-off points. For practical purposes, whole

sections should be preferred when available, in parallel to the

assessment of mitotic count as an integral part of histologic

grading. When using hot-spot readings on whole sections, a cut-off

point of 20% as a minimum for Ki67 seems to be appropriate at

least to predict disease progression. This is also in line with the

recent St Gallen 2013 statement [10]. The value of Ki67 as a

predictive marker needs to be further studied and validated.

Supporting Information

File S1 Supplementary tables. Table S1. Clinico-patholog-

ical features and associations with molecular subtypes of breast

cancer. Table S2. Ki67 assessed in hot-spots and cold-spots on WS

specimens and associations with histopathological variables. Table

S3. Univariate survival analysis according to histopathological

variables (Kaplan-Meier method). Table S4. Unadjusted Cox

proportional hazards analysis used to estimate the prognostic value

of Ki67 expression according to specimen category.

(PDF)

Figure S1 A. Ki67 expression scores across specimen category.

The median and inter-quartile range of Ki67 is shown according

to specimen type. B. Bland-Altman plot is shown for Ki67

expression on whole sections and core needle biopsies. Ki67

difference (WS-CNB) versus average of WS and CNB with 95%

limits of agreement (LOA). The mean difference was 2.8% (95%

LOA between -22 and 27; P=0.005). C. Bland-Altman plot is

shown for Ki67 expression on whole sections and TMA. Ki67

difference (WS-TMA) versus average of WS and TMA with 95%

LOA. The mean difference was 10% (95% LOA between -10 and

36; P,0.001).

(TIF)

Figure S2 Scatter plots with line of equality illustrating
the relationships between counts based on WS, CNB,
and TMA specimens.
(TIF)

Figure S3 Frequency of cases showing high prolifera-
tion when applying a Ki67 cut-off point of 14% to
different specimen categories, WS (n=534), CNB
(n=154), TMA (n=459).
(TIF)

Figure S4 Unadjusted Cox proportional hazards analy-
sis used to estimate the prognostic value of possible
Ki67 cut-off points. The hazard ratio (solid lines) including

95% CI (dashed lines) is shown in dependence of Ki67 cut-off

points based on percentiles, with separate plots for WS (A), TMA

(B), and CNB (C) specimens.

(TIF)

Acknowledgments

We thank Gerd Lillian Hallseth, Randi Hope Lavik and Bendik Nordanger

for excellent technical assistance.

Author Contributions

Conceived and designed the experiments: LAA IMS. Performed the

experiments: GK IMS SA. Analyzed the data: GK IMS SA LAA.

Contributed reagents/materials/analysis tools: JA JE KC. Wrote the

paper: GK IMS SA JA JE KC LAA.

Figure 4. Breast cancer prognosis by molecular subtype.
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each category, the number of events is given followed by the number
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Table S1 Clinico-pathological features and associations with molecular subtypes of 
breast cancer 

Characteristics Luminal Aa Luminal Bb HER2 positive  Triple negative 
 No (%) No (%) No (%) No (%) 
Tumor diameter         
≤2 cm 172 84.3 192 74.4 12 50.0 29 60.4 
>2 cm 32 15.7 66 25.6 12 50.0 19 39.6 

Histologic grade         
1 129 63.2 85 32.9 3 12.5 1 2.1 
2 70 34.3 134 51.9 7 29.2 15 31.3 
3 5 2.5 39 15.1 14 58.3 32 66.7 

Nodal statusc         
Negative 163 80.3 178 69.5 10 45.5 36 75.0 
Positive 40 19.7 78 30.5 12 54.5 12 25.0 

Histologic type         
Ductal 159 77.9 227 88.0 20 83.3 41 85.4 
Lobular 29 14.2 24 9.3 2 8.3   
Tubular 7 3.4 1 0.4     
Mucinous 9 4.4 6 2.3 1 4.2   
Medullary     1 4.2 3 6.3 
Unclassified       4 8.3 

aCut-off point 14% used to separate Luminal A from Luminal B tumors 
bLuminal B includes luminal/HER2+ 
c5 cases with missing information on lymph node status. 
  



Table S2 Ki67 assessed in hot-spots and cold-spots on WS specimens 
and associations with histopathological variables 
 Ki67 WS hot -spot Ki67 WS cold -spot 
Variables Median 

(%) 
P-valuea Median 

(%) 
P-valuea 

Tumor diameter  <0.001  0.146 
≤ 2 cm 16.8  12.6  
> 2 cm 28.0  16.0  

Histologic grade  <0.001  <0.001 
1 12.0  9.5  
2 19.5  13.3  
3 43.7  26.1  

Nodal statusb  0.002  0.025 
Negative 16.8  12.4  
Positive 23.3  16.2  

ER  <0.001  <0.001 
Positive 16.6  11.6  
Negative 42.8  25.6  

PR  <0.001  0.005 
Positive 16.8  11.6  
Negative 26.2  17.8  

HER2  <0.001  0.088 
Negative 16.8  12.0  
Positive 32.4  24.2  

aMann-Whitney or Kruskal-Wallis test 
b5 cases with unknown lymph node status were excluded. 
 
 

  



Table S3 Univariate survival analysis according to histopathological variables (Kaplan-
Meier method) 

   Estimated survival rates (%)  
Variables N Events 5 years 10 years P-valuea 

Tumor diameter      
≤ 2 cm 405 37 96.0 91.8  
> 2 cm 129 42 83.6 72.1 < 0.001 

Histologic grade      
1 218 19 96.3 92.5  
2 226 37 94.6 86.4  
3 90 23 81.1 75.4 < 0.001 

Nodal statusb      
Negative 387 31 96.3 93.0  
Positive 142 45 84.5 71.7 < 0.001 

ER      
Positive 451 51 96.6 90.7  
Negative 83 28 73.2 66.9 < 0.001 

PR      
Positive 377 41 96.8 91.2  
Negative 157 38 83.9 76.9 < 0.001 

HER2      
Negative 463 62 94.6 88.6  
Positive 71 17 83.1 77.2 0.008 

Ki67c      
Low ≤ 18.3 267 20 97.3 93.0  
High > 18.3 267 59 88.7 81.2 <0.001 

a Log rank test 
b 5 cases with unknown lymph node status were excluded.  
c Ki67 assessed on WS; cut-off point at the median. 
 
  



Table S4 Unadjusted Cox proportional hazards analysis used to estimate the prognostic 
value of Ki67 expression according to specimen category. 
Variable Hazard ratio 95% CI P-value* 
Ki67-HS whole section 3.2 1.9-5.3 <0.001 
Ki67-CS whole section 1.8 1.2-2.9 0.009 
Ki67 estimated average 2.8 1.7-4.5 <0.001 
Ki67 CNB 3.0 1.3-7.3 0.013 
Ki67 TMA 2.7 1.6-4.5 <0.001 
Ki67-HS: Ki67 expression assessed in hot-spots; Ki67-CS: Ki67 expression assessed in cold-
spots; Est. average: estimated average of Ki67-HS and Ki67-CS, CNB: core needle biopsy; 
TMA: tissue microarray. 
*Likelihood ratio 
Ki67 categorized at the median. 
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