
User-configurable, high-level transformations
with CodeBoost

Karl Trygve Kalleberg

Cand. Scient. Thesis

Department of Informatics,
University of Bergen

2003

2

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Background . 2
1.3 Contents . 2

1.3.1 Organization . 3
1.4 Remarks . 4

2 Toolkits and libraries 5
2.1 Sophus . 5

2.1.1 Higher-level language constructs 6
2.1.2 Coordinate-free numerics . 7

2.2 Object-oriented numerics . 8
2.2.1 A typical Sophus application . 10

2.3 Hierarchical data structures . 11
2.4 Stratego . 11

2.4.1 Terms, rules and strategies . 12
2.4.2 Modularisation and pipeline . 15

2.5 Auxiliary tools . 15
2.5.1 Syntax-aware editor . 15
2.5.2 Version control . 16

3 CodeBoost 17
3.1 Background . 17
3.2 Transformation pipeline . 18

3.2.1 Parsing . 18
3.2.2 Semantic analysis . 19
3.2.3 Transformation . 19
3.2.4 Pretty-printing . 20

3.3 Some transformation examples . 21
3.3.1 AST dump . 21
3.3.2 Simple mutification . 22

3.4 Framework . 24
3.4.1 Configuration files . 25

i

ii CONTENTS

3.5 Totems and totem propagation . 27
3.6 Shortcomings . 29
3.7 Other transformation systems . 29

3.7.1 OpenC++ . 31
3.7.2 TAMPR . 31
3.7.3 ANTLR . 32
3.7.4 XTC . 32
3.7.5 ASF+SDF . 32
3.7.6 ELAN . 33
3.7.7 Blitz++ . 34
3.7.8 Simplicissimus . 34

3.8 Summary . 36

4 Transformations 37
4.1 Augmented libraries . 37

4.1.1 Source-to-source transformations 38
4.1.2 Program traits . 39
4.1.3 Domain-specific optimisations 39

4.2 Inspirational paradigms . 40
4.2.1 Partial evaluation and program specialisation 40
4.2.2 Generative programming . 41

4.3 Algebraic simplification . 42
4.4 Shortcomings . 44
4.5 Summary . 45

5 TigerBoost 47
5.1 Motivation . 47
5.2 Transformations . 47

5.2.1 Constant propagation and folding 48
5.2.2 Elementary totem propagation 48
5.2.3 Loop unrolling . 49
5.2.4 Optimising matrix multiplication 50

5.3 The relation to CodeBoost . 53
5.4 Planned obsolescence . 54
5.5 Summary . 55

6 Symbolic differentiation 57
6.1 Motivation . 57
6.2 Overview . 57
6.3 Implementation . 58

6.3.1 Function constraints . 59
6.3.2 Collect diff operator applications 60
6.3.3 Collect function bodies . 61
6.3.4 Evaluate and inline result . 61

CONTENTS iii

6.3.5 Differentiate expression . 61

6.3.6 Repeat cycle . 63

6.3.7 Emit code . 63

6.4 Shortcomings . 64

6.5 Application . 64

6.6 Summary . 65

7 Mold-L, a matrix description language 67
7.1 Motivation . 67

7.2 Syntax . 69
7.3 Semantics . 69

7.3.1 Operations . 70

7.4 Writing layouts . 71

7.5 Shortcomings . 71

7.6 Summary . 72

8 Matrix transformations 73
8.1 Motivation . 73

8.2 Overview . 74

8.3 Implementation . 74

8.3.1 Matrix layouts . 75
8.4 Compile-time evaluation . 77

8.4.1 Integration . 81

8.5 Shortcomings . 81

8.6 Application . 82

8.7 Summary . 83

9 Further work 85
9.1 Extending Mold-L . 85

9.2 Further augmenting the Sophus library 86

9.3 Robust error handling . 87

9.4 Improving CodeBoost running times . 88

9.5 Documenting and promoting CodeBoost 89
9.5.1 Release early, release often . 89

9.5.2 Central hub for development . 90

9.6 Summary . 90

10 Conclusion 93

A Differentiation rules 97

iv CONTENTS

B Installing CodeBoost 99
B.1 Downloading . 99
B.2 Compiling . 99
B.3 Testing . 100
B.4 Summary . 101

CONTENTS

Preface

As with most scientific work, not all the initially enticing ideas pan out. In retro-
spect, I probably spent too much time on:

The CodeBoost configuration language; the CodeBoost configuration lan-
guage, described in Section 3.4.1 has been through a few incarnations, and each
of them had its own Emacs mode and parsing utilities, which naturally took a bit
of time to craft.

The totem mechanism; apart from the totem experiments done in TigerBoost
(see Chapter 5), I tried out a few different syntaxes for the C++ language before I
finally settled on the very simple explained in this thesis.

Porting CodeBoost; the research group wanted CodeBoost to run on the su-
percomputers where we run the Sophus programs. This turned out to be a very
tricky undertaking. Stratego generates GNU C-specific code, so we were locked
to the GNU C compiler. On the MIPS 64bit architecture, where we run all our So-
phus programs, the GNU C backend is not entirely stable. After a few bug reports
to the GNU C compiler team, we finally managed to compile the code without
the C compiler segfaulting. The matter has still not been resolved entirely, so all
boosting is still done on our workstations.

A few notes on style: When we say “conceptually”, e.g. “conceptually, Code-
Boost proceeds as follows”, we mean that in theory, this is how it should be done,
but in practice, nasty details prevent us from doing it exactly that way. Where this
difference is non-trivial, we explain how and why.

At times, our explanations and examples may appear very detailed and basic
to people familiar with the paradigm of rewriting strategies and Stratego. The
level of detail is deliberate. For CodeBoost to have a future, we need additional
hands to help out. The entry barrier for becoming productive with CodeBoost
is heightened by the lack of proper documentation. We hope that by providing
detailed explanations in this thesis, the entry barrier will be lowered somewhat.

Finally, I would like to hand out my thanks to the people around me throughout
this work.

A heapload of thanks goes to Otto Skrove Bagge for letting me lift his Stratego
formatting tools, LATEX style files and for being an overall nice guy. The weekly

1

CONTENTS

Sophus meetings and its participants have also been a steady source of stimulation.
It is only fitting that Eelco Visser should be honoured for writing Stratego, a

really neat transformation tool without which the current CodeBoost would not
exist.

Moral support has been provided by my colleagues and friends. Of special
mention are: Knut A. Erstad, Stig E. Sandø, Espen Riskedal. Most missing gram-
matical mistakes are due to the delightful assistance of Tilde Broch Østborg. I am
eternally grateful to Sigurd Thune, who loaned me his computer during the final
stages of this thesis, when my own computer completely broke down.

And last, but not least, I would like to direct a huge thank you to my supervisor
Magne Haveraaen for getting me into this in the first place.

This investigation has been carried out with the support of the Research coun-
cil of Norway (NFR), and by a grant of computing resources from NFR’s Super-
computer Committee.

2

Chapter 1

Introduction

In this chapter, we outline our work and put it in a general perspective.
We start by detailing our motivation, continue by putting it in a historical con-

text and conclude by outlining how the remainder of the thesis is organized.

1.1 Motivation

When writing large or complex applications for a specific domain, one often
wishes for a domain-specific language, custom-fitted for the task at hand. A
domain specific language (DSL) is a programming language intended to solve
problems within a limited application domain.

If one primarily implements mathematical models, a language with the full
plethora of mathematical operators and abstractions may be desirable.

Such domain-specific languages, be they built from the ground up, adapted
from existing languages or written in a programmable programming language
such as Lisp, always come at a certain cost.

Usually, the performance of applications written in DSLs is lower than if the
application had been developed in a general programming language.

Additionally, building an entire language is usually very tricky and requires a
significant investment of time. It can seldom be argued beyond doubt that devel-
oping a language to solve a given problem will pay off in the long run, as very few
projects have sufficiently long estimated lifetimes.

One alternative to developing a full-fledged language, is to employ a domain
specific embedded language (DSEL). A domain specific embedded language is a
DSL implemented inside some other language.

An example of this is the Flex (and Lex) lexer generators. The Flex language
deals with regular expressions, and is embedded into a C language container.

Yet another alternative, related approach, is to extend an existing language,

1

CHAPTER 1. INTRODUCTION

henceforth termed the subject language, with a semantically aware, transforming
preprocessor and an accompanying library.

This is the approach we have taken. In this thesis, we show that such a prepro-
cessor can give many of the advantages of a domain-specific language.

1.2 Background

The original idea for a preprocessor for the Sophus numerical library was pro-
posed by Magne Haveraaen in 1995, as part of the SAGA project. From [Hav03]:

The aim of the SAGA project is to demonstrate and quantify the ben-
efits of using algebraic programming techniques as a breakthrough
technology in the area of computational modeling.

The preprocessor is intended to help fill the gap between the abstract model of
a mathematical problem and the concrete implementation that solves it; we want
to write well-structured programs without sacrificing performance.

This implies that the preprocessor is not merely intended to be a high-level
optimizer, but also a tool for adapting and extending the subject language beyond
what a simple textual preprocessor can offer.

When the SAGA project was financed, Jan Heering at CWI used additional
funds to allow T.B. Dinesh to implement the first generation of such a preproces-
sor. It was named CodeBoost (CB1).

This implementation was done using a system called Syntax Definition For-
malism + Algebraic Specification Formalism, SDF+ASF (see Section 3.7.5 and
[BvDH+01]). Dinesh applied CodeBoost to selected parts of the Sophus library
and programs before it was decided that SDF+ASF was not sufficiently powerful
to solve the problems at hand.

Later, Haveraaen was introduced to Eelco Visser’s Stratego rewriting system,
also by way of Heering. Stratego had a more powerful approach to tree traversals.
Otto Skrove Bagge was sent to the University of Utrecht in the winter of 2000 to
learn Stratego and construct the second generation of CodeBoost (CB2).

The work in this thesis is based on the second implementation. Bagge’s master
thesis [Bag03] is the best resource for understanding the innards of CB2, hence-
forth just named CodeBoost.

1.3 Contents

The crux of our work is a handful of optimizations written using the CodeBoost
transformation system (see Chapter 3) , mostly tailored for the Sophus numerical
library (see Section 2.1).

2

1.3. CONTENTS

These transformations were chosen as we wanted:

• To show the flexibility and power available in CodeBoost.

• To investigate the practical aspects of having the user control the application
and aggressiveness of the transformations, instead of just naively applying
them to the entire body of code.

• To marry optimization and programming techniques from the fields of par-
tial evaluation, program derivation and specialization, aspect-oriented pro-
gramming with the high-level clarity of coordinate-free numerics.

• To investigate the feasibility of programming general abstractions in an al-
gebraic programming style without penalties to performance.

In the course of implementing our transformations, initial prototyping was
done in the “toy language” Tiger [App98]. Here, we experimented with control
and parameterization mechanisms for the transformations, and gained familiarity
with the Stratego language on which CodeBoost itself is based.

We then proceeded to implement some simple but vital transformations in
CodeBoost, to gain familiarity with both the transformation system itself, and to
gain practical experience with transformations on the complex C++ AST. These
transformations included various drafts for the in-source syntax for controlling
optimization (analogous to #pragma), as well a rudimentary algebraic simplifier.

Next, we implemented a transformation for doing symbolic differentiation of
simple algebraic expressions, showing that CodeBoost can be utilized for regular
generative programming (in particular program derivation).

Finally, we implemented a very specific optimization for algebraic operations
on sparse matrices. If the matrix layout is known at compile-time, we show that
we can generate hugely improved functions for various algebraic operations on
matrices, and that changing the matrix layout amounts to no more than a recom-
pilation of the program. We are essentially specializing by performing very re-
stricted partial evaluation.

We also show that transformations need not be written in Stratego, and that we
can tie in external programs as helpers in the transformation pipeline, and argue
that this makes CodeBoost very flexible with regards to the nature of transforma-
tions it may facilitate.

1.3.1 Organization

The remainder of this thesis is organized into three parts.
The first part, consisting of Chapters 2, 3 and 4, discusses the general theoret-

ical foundations and background material. A tiny primer on rewriting strategies

3

CHAPTER 1. INTRODUCTION

and the Stratego language is given in Chapter 2. Also given in that chapter is an
overview of the Sophus numerical library, and some of its motivating factors. A
backgrounder on the transformation framework itself follows in Chapter 3. The
part is concluded by Chapter 4 which puts our work in relation to the existing
corpus of transformation work.

The second part, comprised of Chapters 5, 6, 7 and 8, starts by introducing
TigerBoost and outlines our initial experiences with writing algebraically related
transformations. Thereafter, the complex transformations we have developed is
covered.

The thesis is concluded in part three, where Chapter 9 discusses future exten-
sions and improvements, while Chapter 10 summarizes our findings.

Additionally, Appendix B is included as a short guide to installing and testing
the CodeBoost framework.

1.4 Remarks

Familiarity with the C++ language is a prerequisite for understanding some of the
subtle points addressed in the discussion of the transformation implementations.

In general, the C++ code listings have been modified somewhat in the
name of clarity. For instance, in Fig. 8.1 we introduce the global functions
loadMatrixFromFile. The Sophus library has a slightly different, more
complex and flexible way of loading data from files.

The same goes for the listings in Chapter 8. Here, we reference the matrices
using the standard C++ table notation. The matrix classes in Sophus do not have
the [] operator defined on them. The Sophus indexing system is a lot more
complex and flexible. The notation in this thesis has been adopted in order to
illustrate the relevant concepts of the transformation more easily.

In this thesis, we assume there are only two different matrix abstractions in
Sophus, the Tensor and the Mesh classes. The actual situation is more compli-
cated. For instance, the tensor abstractions are implemented using an abstraction
called MeshScalarField, which in turn is derived from the MeshCont ab-
straction.

These intricacies are not relevant for the discussions in this thesis, and will not
be mentioned again, but when perusing the transformation code, some names will
have changed from the descriptions included herein.

4

Chapter 2

Toolkits and libraries

In this chapter, we describe the toolkits and libraries used during this project.
We start by describing the Sophus numerical library and the algebraic style on

which the library is built. Next, we present the Stratego language and the concept
of rewriting strategies for program transformation.

We conclude with a short presentation of auxiliary tools we found indispens-
able in the course of development. Some of these have been developed by mem-
bers of the research group, the others are well-known tools.

2.1 Sophus

The Sophus authors describe the Sophus library thus:

Sophus is a software library carefully designed to mimic the abstract
structure of the mathematics of partial differential equations [PDEs],
as used in the description of many natural and industrial phenomena.
Its apparatus supports coordinate free numerics in the formulation
and development of solvers to problems. By requiring strict adher-
ence to specified interfaces, we have been able to achieve that differ-
ent implementations of the same mathematical concepts are basically
interchangeable. The Sophus library components can be presented
through different layers of abstractions.

Application layer: solvers for PDEs such as a seismic simulator, Seis-
Mod, or a coating problem.

Tensor layer: handles coordinate systems, matrices and vectors and
general differentiation operators.

Scalar field layer: numerical discretisations such as finite differences
and finite elements with partial derivatives.

5

CHAPTER 2. TOOLKITS AND LIBRARIES

Mesh layer: implements grids for sequential and parallel HPC ma-
chines.

The interchangeability of modules within a layer allows software de-
velopers to experiment with different solution strategies and HPC ar-
chitectures without the need for extensive reprogramming. For ex-
ample, the change from a sequential to a parallel version of a seismic
simulator does not involve any reprogramming of the rest of the solver
application. Currently, the Sophus library is implemented using C++.

From a software engineering standpoint, Sophus is considerably more than
a regular C++ library. It brings with it the concept of coordinate-free numerics
(explained below) and a strict style of programming, dubbed the Sophus style.

This style narrows down the immense flexibility of the C++ language to a well-
defined subset by disallowing the usage of some language constructs (pointers),
minimising the usage of some (inheritance) and promoting others (the functional
style).

The main motivation for the style is to follow regular mathematics very
closely, so that implementing a mathematical model using Sophus becomes easier.

As will become apparent throughout the rest of this work, the Sophus style
vastly improves the feasibility of advanced optimisations that in an unrestricted
C++ programming styles would be practically impossible.

2.1.1 Higher-level language constructs

In most languages, C++ included, the chief method of extending the language is
to add new data types and functions, and chunk them together in a library.

Conceptually this is very simple, and can easily remain so in practice as well,
unless the problem domain is particularly complex. The interrelations between
the various entities (in particular methods and data types) in the library may be
well documented and well understood by the library user, but that is not to say
that the compiler itself has any grasp of their semantics.

For languages targeted at a particular domain, it is common to include consid-
erable knowledge about the standard libraries into the compiler: OpenMP support
in the SparcWorks and MIPSPro compilers (as introduced in [CDK+00]) is one
example of this.

Fortran compilers include what is normally considered to be library functions
(such as the intrinsic trigonometric functions) into the compiler proper, in order
to be able to optimise their usage.

In our case, we want the compiler to be aware of properties of the abstractions
provided by Sophus, primarily in order to perform compile-time optimisations.

6

2.1. SOPHUS

However, hard-coding this knowledge into a generic compiler’s pipeline is
hardly appropriate. Many domain-specific optimisations have a very restricted
audience, so its higher cost of maintenance is seldom justified.

The domain-specificity leads us to think that the optimiser should rather go
with the domain-specific library instead of the generic compiler. Thus, one would
ideally like to have library-specific high-level optimisers that can plug into all of
the existing compilers quite easily.

By plug-in, we mean using the compiler’s front-end to do the parsing and se-
mantic evaluation, then perform library-specific optimisation in the internal AST.

Few compilers provide such functionality, IBM’s Montana compiler is one
[Kar98]. Nevertheless, there exists no standardised extension API for modern
compilers. Therefore, the only common interface mechanism between the high-
level optimiser and the compiler proper is by through rewritten source code.

Even then, we run into the very real nuisance that all compilers are not cre-
ated equal. Especially for C++ language, the compilers have a varying degree of
language compliance, forcing us to either restrict our compatibility list, or spend
time on writing compiler-specific workarounds.

Once we have established how much of the C++ language we can reasonably
use, we need to tackle the problem of what our abstractions should look like, and
how they should interface with each other to gain maximal flexibility. This is the
the domain of coordinate-free numerics.

2.1.2 Coordinate-free numerics

In mathematics, there is the distinction between abstract and concrete definitions
and formulations. The concrete definition tells us something about the representa-
tion of a given mathematical object, whereas the abstract definition tells us some-
thing about its properties, regardless of representation.

This is analogous to the what/how dichotomy found in software engineering.
Such a dichotomy is also one the bases for object-oriented programming.

The concrete representation of a natural number may be in the binary or the
decimal system. The chosen representation does not change the fundamental
properties of natural numbers, such as each having a unique successor (Peano).

Uncovering and exploiting the abstract properties of mathematical objects
forms the basis of category theory, which goes so far as to claim that the only
interesting properties of an object are its interactions with other objects.

In software engineering, we have as a basic tenet the separation between spec-
ification (what) and implementation (how).

Solving differential equations numerically is a very common problem in nu-
merics. Traditionally, selecting a coordinate system in which to perform the cal-
culations has been done early on in the implementation process, and permeates

7

CHAPTER 2. TOOLKITS AND LIBRARIES

the entire program. With this approach, changing the representation by going to a
different coordinate system is a sizable chore.

The name “coordinate-free” does not imply that the coordinates are dispensed
with altogether. They are contained at a much lower implementation level, and the
different coordinate systems (such as Cartesian, radial, polar, axis-symmetrical,
etc) may be readily interchanged.

One can think of PDEs as being coordinate-free in the same way as lists
are pointer-free; the complexity of the coordinates is encapsulated inside a well-
defined interface.

If we select the representation early on, solving the the simple linear equa-
tion Ax = b for dense and sparse representations of A will then need two entirely
different implementations.

The alternative, advocated by the coordinate-free approach and common soft-
ware engineering practice, would be to implement the solver not based directly on
the sparse or dense representation of the objects involved, but as an algorithm on
their common interface properties.

In the case of the linear equation, both dense and sparse matrices have the
operations vector addition and inner products defined on them, which may be
used to formulate a general solver.

When have formulated a solver for the problem, targeted towards the the ab-
stract definition of the objects, switching between the sparse and dense represen-
tations is trivial.

To attain maximum efficiency, we may still want to specialise the solver to
make use of the underlying properties of hidden in the concrete definition. If the
matrix A above had been lower-triangular, the solver algorithm could be simpli-
fied.

Uncovering and exploiting such properties is what we wish to use CodeBoost
for. For that to be possible, we need clearly defined semantics of all data types,
and relevant operations on those. This is partly achieved through a strict coding
style, described next, and partly by tagging properties onto objects, described in
Section 3.5.

2.2 Object-oriented numerics

C++ is a huge language. There is virtually always more than one way to solve a
given problem, and the solution taken often depends on the programmer’s prefer-
ence.

To make the optimisation problem feasible, we must enforce some restrictions
on the coding style, in our case the algebraic style. On the macro level, the goals
of such a restriction are as follows:

8

2.2. OBJECT-ORIENTED NUMERICS

• The code should be as close to regular mathematics as practical.

• A mathematical model should map easily over to code so that;

• Changes in the model may easily be transported over to the code.

• Mathematical familiarity and cursory computer programming experience
should be enough to read the code.

Coordinate-free numerics, as described in the previous section, maps nicely
onto the concept of objects and classes in the C++ language. The abstract defini-
tion of a mathematical object becomes a class with a given set of operators. The
concrete definition becomes the actual implementation of that class.

In a micro level, we force particular conventions in order to maximise the
opportunity for beneficial transformations. One such convention is how we denote
and implement parameter passing between Sophus abstractions.

An argument to a member function of a Sophus class is always in one of the
following modes:

• given; the argument is initialised to a given value. Used as first argument to
constructors.

• updated; the argument is modified.

• observed; the argument is not modified.

• deleted; the argument is deleted. Only used for destructors.

By knowing that parameter x is not modified, the transformer can later infer
that all the data invariants of x that were true before the call are still true after-
wards.

If we compare the observed parameter passing mode to the const keyword,
we see that the former is a much stricter convention. In C++, member function
void Foo::f() const is, under given conditions, allowed to modify mem-
bers of a const Foo object, thus we cannot really be certain that the data in-
variants hold after invoking f.

It must be noted that the conventions in the Sophus style are manually en-
forced. We do not have any tools that verify adherence to the style. An interesting
future project may be writing a transformation that flags style breaches and com-
mon mistakes.

9

CHAPTER 2. TOOLKITS AND LIBRARIES

2.2.1 A typical Sophus application

A typical application written using the Sophus library proceeds through the fol-
lowing steps:

1. Initialisation and data input

2. Solver loop

3. Cleanup and filedump

In (1), the problem set is loaded from disk, and possibly massaged into a more
optimal internal representation, as well as allocated the necessary memory slots
and processors used in the following step.

Step (2) is usually a loop that applies the solving algorithm in a step-wise fash-
ion. It is common that the solver slowly converges towards the correct solution,
so that one can weigh the benefit of an accurate solution against the computing
costs and optionally stop the simulation early when the solution is deemed “good
enough”. This is exemplified with the solver for the coating problem, described
in [GHW00].

A variant of step (2), the one used in Seismod, is to run the simulation over
time. Each iteration of the loop calculates a step in time. In this case, there will
be no convergence. The simulation stops when the desired time span has been
evaluated.

Finally, step (3) will deallocate the memory and processors used, then dump
the internal solution to a file for later processing by other programs.

An example of a Sophus program is the Seismod simulator for elastic waves.
Fig. 2.1 shows the solver loop for the simulator.

while(t < stoptime) {
e = Lie(un, g);
sigma = apply(Lambda, e);
a = div(sigma) / rho + fsource;
unp1 = 2 ∗ un − unm1 + a ∗ deltat ∗ deltat;
unm1 = un;
un = unp1;

}

Figure 2.1: The Seismod solver loop

A fuller explanation of the variables and meaning behind the solver is given in
[FJH+01]. We are primarily interested in the properties of the data and functions
involved in this solver loop, and the apply function, which is a general matrix
multiplication, also referred to as mmult.

10

2.3. HIERARCHICAL DATA STRUCTURES

2.3 Hierarchical data structures

The data structures processed by the code in Fig. 2.1 are hierarchical. For instance,
in the Lambda and e tensors, the individual elements are huge meshes.

Fig. 2.2 depicts the relation between the tensors and meshes.

Figure 2.2: The Tensor/Mesh hierarchy

Chapter 7 treats the properties of meshes and tensors in more detail.

2.4 Stratego

As explained in the introduction chapter, the current version of CodeBoost was
implemented in Eelco Visser’s Stratego language ([Vis01a] and [LVV02]).

In a mouthful, Stratego is “a modular language for the specification of fully
automatic program transformation systems based on the paradigm of rewriting
strategies.”

From [EV03]:

In Stratego, basic transformation rules are expressed by means of
labeled conditional rewrite rules. Exhaustively applying all rewrite
rules in a collection of valid rules is often not desirable; a system of

11

CHAPTER 2. TOOLKITS AND LIBRARIES

rules can be non-terminating, or, more frequently, non-confluent. The
latter means that different outcomes of the normalization process are
possible depending on the position of application and the selection of
rules. Therefore, it is necessary to have more control over the applica-
tion of rules. In standard systems based on rewriting, normalization is
controlled by a fixed default RewritingStrategy. In such systems more
control is achieved by encoding the desired strategy with additional
rewrite rules that spell out a traversal over the abstract syntax tree and
apply the transformations in the desired order.

To control the application of transformation rules, Stratego provides a
language for defining rewriting strategies based on primitives for se-
quential programming and abstract syntax tree traversal. A rewriting
strategy selects a number of rules from the available rules and defines
in what order these rules are applied to a program fragment. Thus,
the separation of concerns between logic (transformation rules) and
control is maintained.

Transformation strategies can be defined generically, i.e., parameter-
ized with a rule selection or other strategy to apply. The language
comes with a large library of generic strategies for syntax tree traver-
sal and built-in data type manipulation. In particular, the library con-
tains generic, language independent strategies for language process-
ing such as substitution, unification, and bound variable renaming that
are parameterized with the shape of the relevant language constructs.
Strategies cannot only be used to combine rules into transformations,
but can also be used inside rules to test applicability conditions and
perform local transformations.

In the following sections, we will give a brief primer on the Stratego language,
so that the reader may enjoy the code excerpts provided in subsequent chapters.

2.4.1 Terms, rules and strategies

In Stratego, we perform rewrites (alterations of tree nodes and subtrees) on a tree
structure consisting of terms (nodes) by applying rewriting rules. The application
of these rewriting rules are controlled by strategies.

Given a program expressed as an abstract tree structure, transforming the pro-
gram is a question of applying the transformation rules in the correct order, before
converting it back to a concrete syntax (usually called pretty-printing).

In the next sections, we will explain the meaning of terms, rules and strategies.

12

2.4. STRATEGO

Terms

The basic data abstraction we work on in Stratego is the term. Terms make up a
tree structure, which in turn is also a term. The word term is used to refer to both
leaf nodes, internal nodes and subtrees of this tree structure.

While the human-readable version of terms is on the form
Parent(Child1,Child2), they are stored, modified and passed around
throughout the pipeline in a more efficient binary format.

Figure Fig. 2.3 is provided as an illustration on how actual terms in CodeBoost
appear.

Expr(
Infix(Op(”=”,

Sig(FunDecl(RootName(OpName(”=”)),
ArgList([

VarDecl(NoName,Type([],IdName(” any t”),DNil),[],NoExpr),
VarDecl(NoName,Type([],IdName(” any t”),DNil),[],NoExpr)]),

Type([],IdName(” any t”),DNil),
[],NoQual,NoCInit,NoDecl),(Builtin,Public),[])),

Var(IdName(”c”),Type([],IdName(”int”),DNil),Local),
Infix(Op(”*”,

Sig(FunDecl(RootName(OpName(”*”)),
ArgList([

VarDecl(NoName,Type([],IdName(”int”),DNil),[],NoExpr),
VarDecl(NoName,Type([],IdName(”int”),DNil),[],NoExpr)]),

Type([],IdName(”int”),DNil),
[],NoQual,NoCInit,NoDecl),(Builtin,Public),[])),

Var(IdName(”a”),Type([],IdName(”int”),DNil),Local),
Var(IdName(”b”),Type([],IdName(”int”),DNil),Local))))

Figure 2.3: AST for c = a * b

This term is an abstract syntax tree (AST) for the expression c = a * b.

As we can see, the AST representation is a good deal more complex than the
corresponding concrete syntax. This should not be surprising, given the additional
detail provided in the AST.

We work on this term by applying transformation rules, described next.

13

CHAPTER 2. TOOLKITS AND LIBRARIES

Rules

Rules are snippets of Stratego code that explain how to rewrite (modify) one term
to another. It generally has a name 1, consists of a left-hand side which must
match a given term, a right-hand side which is the resulting term, and a where
clause, which may specify restrictions and expressions to be evaluated in order for
the rule to be applied.

Take the rule in Fig. 2.4 as an example.

simple-rule:
Foo(s) → Bar(s′)
where
〈to-string〉 s ⇒ s′

Figure 2.4: A simple rule

Mental evaluation of this rule proceeds as follows:
First, the left-hand side of -> will match a term Foo(s), where s is a free

variable that is bound at matching time, i.e. it can be any term.
The where clause will apply the strategy to-string to the s term, and

assign the result to the variable s’. Typically, the where clauses get rather long
for non-trivial rules.

s’ is then used to construct the resulting tree, Bar(s’).
This rule will succeed iff the term on which it is applied has Foo as its root

node and the strategy to-string succeeds. So, in order to ensure success of
this rule, we must be certain it is applied where we can expect to find a Foo term.
Deciding when and where to apply rules is the job of strategies, described next.

Strategies

A strategy is a recipe for how to apply the named rules to a given term. Stratego
comes with a number of traversal strategies that allows you to walk the tree in
various ways, applying rules to each node, to some nodes, to least one node or
other combinations thereof.

For example, if we wanted to apply our simple-rule from
the previous section at least once inside a given term, we could do
<oncetd(simple-rule)> term. oncetd will visit each subterm in
term, and attempt to apply simple-rule at each visit. Once simple-rule
succeeds, it will stop the traversal and signal a success. If simple-rule fails
at all nodes, oncetd will signal a failure.

1All strategies and rules are named in lower-case-separated-by-hyphens. In the code listings,
they are marked green.

14

2.5. AUXILIARY TOOLS

In Stratego, it is the programmer’s responsibility to deal with such failures.
Sometimes, we just want to the failure to propagate all the way up, and terminate
the running program. Other times, we want to try alternative strategies when one
fails.

There is a rich set of combinators for this. The ; combinator acts as a logical
and. Given strategy1 ; strategy2, the expression will only succeed if
both strategy1 and strategy2 succeed, in that order. The choice combina-
tor +, can be would succeed if either of strategy1 or strategy2 succeeded.
The order of evaluation is undefined. There is also a left-choice <+ operator to
force the order of evaluation.

Armed with the built-in strategies and a rich set of combinators, one can con-
struct new strategies that apply rules (or other strategies) to the terms in an arbi-
trarily complex manner.

The strategy code excerpts in this thesis are all fairly simple. For a more
complete tutorial, refer to [Vis00].

2.4.2 Modularisation and pipeline

The strategies and rules as described in the previous sections are grouped into
modules. A module is a conceptual unit concerned with handling one particu-
lar transformation. It is analogous to modules in modern OOP languages (e.g.,
packages in Java). An example of a module is the simplify2 transformation
described in Section 4.3.

In CodeBoost, we use modules in two ways: they are either separate trans-
formation steps in a pipeline (details in Section 3.2), or they are library modules,
included into a transformation module.

The dump example in Section 3.3.1 shows a very tiny, but complete module.

2.5 Auxiliary tools

Our basic development toolkit includes a syntax-aware editor, a version control
system and only basic Unix command line utilities.

It is our goal that CodeBoost should be usable in any Unix-like environment.

2.5.1 Syntax-aware editor

We selected Emacs [Sta97] as our editor. Our motivating reason for using Emacs,
apart from prior familiarity, is its ability to be made syntax-aware of our subject
languages.

15

CHAPTER 2. TOOLKITS AND LIBRARIES

The syntax-awareness allows practical conveniences such as automatic indent-
ing, syntax highlighting and rudimentary semantic searching (i.e., list all methods
in file).

We have added two new syntax modes for Emacs: stratego-mode,
which is used for editing Stratego source code, and codeboost-mode, which
is used for editing CodeBoost configuration files. Both are available in the
codeboost-utils CVS module2.

2.5.2 Version control

The CodeBoost source code is managed in a CVS [BF02] repository.
As CodeBoost is research code, disruptive changes happen a lot. At the same

time, smaller bugs are reported, and often we want to issue a fix immediately.
To accommodate this, we follow the common development practice of intro-

ducing radical changes by way of branches.
A branch is a separate line of development; it is conceptually a separate copy

of the source code directory tree. One branch, termed HEAD, always contains the
latest stable source code.

When we decide to rewrite a central part of CodeBoost (which happens fre-
quently), we create a new, experimental, named branch of the tree, introduce the
disruptive changes into that branch, perform adequate testing, then merge the ex-
perimental branch back with the HEAD branch.

The idea is that the ongoing disruptive work, which may and often does last for
a week or more, is performed on a separate tree. This way, both the experimental
branch and the stable branch (HEAD) is available to interested parties at all times.

The merging process is usually quick, and if extra care is taken, can in practice
be finished in much less than an hour.

From time to time, we take a snapshot of HEAD and release it as a versioned
tarball. This typically happens when we have successfully merged in a series of
significant improvements, or when we need a new baseline for presenting ongoing
work.

2See [OSB03] for instructions on how to obtain them.

16

Chapter 3

CodeBoost

This chapter introduces the CodeBoost transformation framework.
We start by putting CodeBoost in a detailed context, then discuss the transfor-

mation pipeline. A small example of a transformation is given.
We continue by introducing parameterization of transformations and the Code-

Boost configuration mechanism. Finally, perceived and experienced shortcomings
of the current implementation are discussed.

3.1 Background

The CodeBoost (CB1) concept was first described in [DHH98]. The underly-
ing idea is to bridge the gap between the compiler’s high-level optimizations and
hand-coded, application-specific optimizations for the domain of numerical soft-
ware written in the algebraic style.

Optimizations performed by the compiler are usually

• fine-grained; work at the expression level. With advanced dependency anal-
ysis, some code-motion is allowed, but is usually fairly restricted.

• general; very little information about user-defined data types can be ex-
ploited. For the compiler to bring out its workhorse optimization tricks, the
user-defined data types have to be broken down into primitive types.

• restricted; the resulting program must be correct according to the semantic
rules of the language.

CodeBoost is an attempt at remedying these shortcomings in regular compilers
by making explicit domain-specific relations among the data types at hand.

The version of CodeBoost, described in [DHH98], has been deprecated and
will not be discussed further.

17

CHAPTER 3. CODEBOOST

The remainder of this thesis concerns itself with the second implementation,
detailed in [Bag03]

3.2 Transformation pipeline

Source code

Parser

Semantic analysis

Transformation Config files

Pretty printing

Compiler

C++

C++

.cb

AST

AST

AST

Figure 3.1: The CodeBoost pipeline

3.2.1 Parsing

The incoming C++ code is preprocessed using the regular C++ preprocessor and
a CodeBoost-specific Perl script. This allows us to easily control which parts of
the code should be seen and modified by CodeBoost in the later steps.

For example, it is not desirable for CodeBoost to see the header files and tem-
plate declarations for the standard C++ library, as we are not interested in per-
forming transformations on them.

The preprocessed code is then parsed using the OpenC++ [Chi96] front-end,
which has been modified to output its internal concrete syntax tree (CST) in the
ATerm format [vdBdJKO00].

From here on out, the incoming code is passed between the pipeline steps as
ATerms. This allows us to insert pipeline steps written in any language we desire,

18

3.2. TRANSFORMATION PIPELINE

provided we can parse and output valid ATerms. The ATerm library has bindings
for the C and Java languages.

3.2.2 Semantic analysis

The semantic analyzer is divided into three parts:

• local variable annotation; the local variables are annotated with their ap-
propriate types, using a simple environment-passing scheme.

• symbol table generation; non-local declarations are collected into a sym-
bol table, and variable names are properly resolved. Function and operator
applications are annotated with a list of possible candidates.

• overload resolution; the function and operator applications are resolved by
calculating the type of all parameter expressions and picking the best-match
candidate from the candidate list.

For proper overloading resolution, CodeBoost has been made aware of the
default language declarations for the built-in operators and some of the standard
library functions. These will be used if no other suitable candidates are found first.

Undeclared variables and functions will not cause CodeBoost to stop, but can
cause trouble at the transformation stage, as complete type information will not be
available. The undeclared variables will be marked as having a type of any t.

At the end of the semantic analysis step, all variables have been tagged with
their appropriate types, and all function/operator applications have been annotated
with the function declaration of their resolved candidate.

3.2.3 Transformation

The primary extension point in CodeBoost is at the transformation stage. A typical
transformation is a Stratego module which receives the AST of the program. The
transformation rewrites the AST and passes the result on to the next step in the
pipeline.

As mentioned, the pipeline steps can be written in any language. However,
CodeBoost provides a convenient library of rules and strategies available to trans-
formations written in Stratego for tasks such as symbol table lookups, type op-
erations (comparison, matching, conversion), various traversal strategies, totem
annotation, pretty-printing for error messages.

In addition, transformations written in the Stratego language will naturally
be able to benefit from Stratego’s extensive collection of traversal strategies and
generic support for variable renaming.

19

CHAPTER 3. CODEBOOST

We have already implemented a handful of transformations for CodeBoost in
the Stratego language. Even though most are primarily targeted at the Sophus
library, some of these transformations are more generally applicable. Adapting
the other transformations to another library is probably not worthwhile, as they
are extremely specific.

As we separate the low-level transformation rules from the high-level traversal
strategies, parts of the specific transformations may be reused. This rule/strategy
separation has made it considerably easier to adapt complete transformation mod-
ules to changing conventions within the evolving Sophus library.

The order in which the transformations are performed, are specified explic-
itly by the user at boosting-time. This gives the user complete control, but also
presents a few drawbacks:

1. uncovering optimization possibilities; sometimes, applying transformation
A may open up for further optimization by transformation B. Unless the user
is aware of this, he may miss out on transformation opportunities.. Example:
Running the expression simplifier is generally desirable after running the
symbolic differentiator, as the output from the differentiator can usually be
simplified considerably.

2. order of transformation; for transformation B to work, it must be preceded
by transformation A. Example: The mutification transformation (described
below) must be applied before in-lining.

In time, we expect to be able to specify these dependencies, and have them
resolved automatically by CodeBoost.

3.2.4 Pretty-printing

After the transformations have been performed, the resulting AST is verified to be
syntactically correct, then fed to the pretty-printer.

The AST is transformed to the device and language-independent, pretty-
printing Box language. The result is emitted as properly indented, human-
readable C++ code.

The pretty-printing step can also highlight parts of the code, and produce a
nice-looking PostScript file using GNU a2ps. We acknowledge that visualizing
the code is very useful to inspect and verify that the transformed code does what
it is intended to.

As we gain experience, it would desirable to improve this aspect of Code-
Boost, to allow easy annotation of profiling results, coloured diffs against the
original code and other conveniences.

20

3.3. SOME TRANSFORMATION EXAMPLES

3.3 Some transformation examples

As instructive examples, we have included two transformations in this chapter.
The first is a debugging aid, the second is a tiny mutification transformation.

3.3.1 AST dump

When debugging both the transformation pipeline and the individual transforma-
tions, it is practical to look at dumps of the internal AST at the various stages.

module dump
imports lib cb
strategies
main = cbio(dump-options, doit)

module-name = !"dump"
module-version = !"$Revision: 1.1 $"
module-id = !"$Id: codeboost-dump-1.r,v 1.1 2003/03/08
20:44:27 karltk Exp $"

dump-options = ![]

doit = debug

Figure 3.2: AST dumper

The code in Fig. 3.2 is a complete transformation module. Its sole purpose is
to dump the internal AST to stderr, and leave the tree intact. It can be inserted
at any stage in the pipeline.

Line one names the module (module dump). Line two, (imports lib
cb types), imports the strategies available in the lib, cb and typesmodules.

In the strategies section, the strategies module-name, module-version
and module-id are meta information sometimes used for debugging of Code-
Boost itself.

main is the starting point of all transformations. The strategy cbio, imported
from the cb module, loads the AST and auxiliary information from the input pipe
(i.e. from the previous pipeline step), performs parameter parsing based on its first
parameter, dump-options, then hands off control to its second parameter, the
doit strategy.

dump-options is a strategy that constructs an empty list: the dump strat-
egy recognizes no command line parameters. Alternatively, the dump-options
parameter to cbio may be skipped altogether.

21

CHAPTER 3. CODEBOOST

doit simply invokes the Stratego library function debug, imported from the
lib module, which will dump the entire tree to stderr.

After doit completes, control is returned to cbio, which takes care of inter-
nal cleanup before the transformation exits.

3.3.2 Simple mutification

This is a cut-down, but complete and working version of the mutify transformation
described in [Bag03].

Fig. 3.3 shows a very simple algebraic expression.

Tensor<float> A,B; A = A + B;

Figure 3.3: A simple algebraic expression

We can expect that the the C++ compiler will internally rewrite this code into
the code given in Fig. 3.4.

Tensor<float> A,B,t0; t0 = A + B; A = t0;

Figure 3.4: Code from Fig. 3.3 after compiler rewrite

If A and B are large structures, the unneeded copying from t0 to A can easily
result in an annoying performance hit.

If the code in 3.3 adheres to the Sophus style (see Section 2.2, we know that
there is a relation between the operators + and += on the Tensor class.

This will allow us to rewrite 3.3 to the the expression in Fig. 3.5.

A += B;

Figure 3.5: After mutification

In the Sophus Tensor class, the += operator is implemented using no unnec-
essary copying.

The regular C++ compiler could not have performed this optimization, as the
C++ language does not specify that there need be any such relation between + and
+= on user-defined types.

The Codeboost mutify transformation solves this problem for us by rewrit-
ing expressions on the form x0 = x0 + x1 to x0+ = x1.

A cut-down version of the mutify transformation is given in Fig. 3.6.
The structure of this module is very simple. It has two main sections;

strategies and rules. The former contains the code for traversals and I/O

22

3.3. SOME TRANSFORMATION EXAMPLES

module mutify
imports lib cb types
strategies
main = cbio(mutify-options, doit)
module-version = !"$Revision:"
module-name = !"mutify"
module-id = !""
mutify-options = ![]
doit = Program(id ,doit′,id)
doit′ = topdown(try(mutify-plus))
rules
mutify-plus:

Expr(Infix(Op("=",sig),Var(n,t,s),Infix(Op("+",sig′),Var(n,t,s),e))) →
Expr(Infix(Op("+=",sig′′),Var(n,t,s),e))

where
〈type-of-expr ; is-tensor〉 e ;
〈is-tensor〉 t ;
〈oncetd(\OpName("=") → OpName("+=")\)〉 sig ⇒ sig′′

is-tensor =
?Type(,IdName("Tensor"),)

Figure 3.6: Cut-down mutification transformation

23

CHAPTER 3. CODEBOOST

with the CodeBoost pipeline. The latter contains the low-level transformations
rules we want to apply.

The program starts at main, which calls off into cbio. The strategy cbio
abstracts away the untidy details of loading and storing the AST as well as param-
eter parsing.

This transformation module has no parameters, so mutify-options is a
strategy constructing an empty list.

cbio will eventually call doit, which starts by loading the symbol table.
Program(id,doit’,id) signifies that we emit a new top-level Program
term, with the first and third parameters (version info and auxiliary tables [such as
symbol table], respectively) are left untouched. The second parameter (program
AST) is handed to the doit’ strategy, and the result is output.

doit is a very simple strategy that traverses all nodes in the AST in a top-
down manner. At each term (node), it tries to apply the mutify-plus rule.
Where the application succeeds, the original term is replaced with the transformed
term.

The mutify-plus rule will only allow itself to be applied to expressions
on the form A = A + B, where both A and B are Tensors. It first checks that
the the type of the term e is Tensor, then it checks that the type of the variable
is also a Tensor. The <type-of-expr ; is-tensor> syntax signifies
strategy composition; first type-of-expr is applied, then is-tensor is ap-
plied. Both must succeed for the transformation to continue.

Additional simple transformations are described in Chapter 4. More advanced
transformations are described in [Bag03] and in Chapters 6 and 8.

3.4 Framework

As described in the previous sections, CodeBoost takes care of parsing C++, main-
taining a symbol table, providing name and type lookup, pretty printing the AST,
parameter passing between transformations.

Additionally, the CodeBoost framework contains convenience scripts for
pretty-printing ATerms, Emacs modes for Stratego and the CodeBoost configura-
tion languages, diffing and folding ATerms. We expect the collection of auxiliary
programs to increase as CodeBoost is applied to real-world tasks.

An extension we made to this framework, was adding the ability to tag lan-
guage constructs with auxiliary information to aid transformations. For example,
we can use a tag to tell CodeBoost that a given variable A should be considered a
null matrix for the remainder of the scope.

The tags we put on the language constructs range from simple flags (null ma-
trix), to an arbitrarily complex description (a complete description of a matrix

24

3.4. FRAMEWORK

layout). The complex descriptions are stored in their own configuration files, and
linked at boosting time.

We will first describe these configuration files, then the process of tagging
their contents onto the language constructs.

3.4.1 Configuration files

In the course of our work, we found it necessary to extend CodeBoost with con-
figuration files. The configuration file extension was mainly prompted by the need
to specify matrix layouts for the matrix optimizations described in Chapter 8.

In the interest of reducing development time, we wanted to go for the sim-
plest configuration language possible. We started out by a simple attribute
= value format, as shown in Fig. 3.7.

max-unrolled-instances = 100
max-nesting = 10
min-chunk-size = 0
max-chunk-size = 100
add-comment = ”CodeBoost was here.”
start-unroll-at = 0
end-unroll-at = max-unrolled-instances
enabled = true

Figure 3.7: Initial CodeBoost configuration format

It quickly became apparent that if we wanted to group parameters to several
transformations into one file, we would have problems with namespace collisions
for the attribute names (in particular, the experimental enabled setting).

Consequently, it was decided to have all attribute names on the form
<context>.<name>. A typical attribute = value pair then becomes
unroll-loops.max-nesting = 10.

As we started specifying matrices, we experienced the need to change and ex-
tend the syntax considerably. With that came the realization that we would proba-
bly be forced to extend the configuration syntax slightly for each new, non-trivial
transformation that dealt with mathematical structures, e.g. a set transformation
may want to specify some properties of its set in a set-syntax.

We wanted to avoid having to rewrite and extend the configuration file parser
for each new transformation added to CodeBoost. We looked at existing for-
malisms which address the problem of using one common syntax across many
and varied semantics. The immediate candidates were XML [TBSM00], SGML
[Gol90] and symbolic expressions.

25

CHAPTER 3. CODEBOOST

Earlier experience with SGML and XML told us that SGML is a more com-
plex language than XML, and that the added power of SGML was not needed for
this task. The choice between XML and symbolic expressions fell in the favour
of symbolic expressions, as we did not want to bring in a full-blown XML parser
at the current stage of development.

Fig. 3.7 rewritten for the new symbolic expression syntax is given in Fig. 3.8.

(context
unroll-loops

(max-unrolled-instances 100)
(max-nesting 10)
(min-chunk-size 0)
(max-chunk-size 100)
(add-comment ”CodeBoost was here.”)
(start-unroll-at 0)
(end-unroll-at max-unrolled-instances)
(enabled true)

)

Figure 3.8: The current CodeBoost configuration format

Notice that we have introduced a block-like context construct instead of
the <context>.<name> syntax shown earlier. The context construct is al-
ways on the form (context <name> ...), where the body ... can be any list of
symbolic expressions.

This body is handed off as a concrete syntax tree (CST) to each transformation.
The task of evaluating this tree is then left to the the transformation itself.

With the reformulation into symbolic expression, we were able to specify ma-
trix layout specifications quite easily. The matrix

a a−b 0
b−a b 0

0 0 1

would be written as shown in Fig. 3.9.
The (layout ...) subexpression will be fed directly to the matrix transformation

as a CST for further processing.
For details on how the specification in Fig 3.9 is handled, refer to Chapter 8.
The open-endedness of the Codeboost configuration format allows almost any

kind of entity to be described. Once an entity is specified in a configuration file, it
must be related to the program source code. This is the task of the totem mecha-
nism, described next.

26

3.5. TOTEMS AND TOTEM PROPAGATION

(context
tensor-optimiser
(layout

tensor-layout-a
(explicit

((a (- a b) 0)
((- b a) b 0)
(0 0 1)))

)
)

Figure 3.9: A complete matrix layout specification

3.5 Totems and totem propagation

We have implemented a mechanism in CodeBoost for tagging language constructs
with auxiliary information, and propagating these tags throughout the program.

The tags can be specified by the programmer in the source code itself, in ex-
ternal configuration files or in some cases, they can be inferred automatically by
CodeBoost.

In our nomenclature, such a tag is called a totem, as the tag is usually an
emblem signifying membership in a special class of entities.

The function call CB TAG(A, ‘‘algebraic-simplification’’,
‘‘unit-matrix’’) tags the variable A with membership in the exclusive
unit-matrix-club, in the algebraic-simplication context.

Each transformation typically has its own context, but as the context name
is decoupled from the transformation name, several transformations may share a
given context, or one transformation may operate on several contexts.

When a transformation, say an algebraic simplifier, is applied to the source tree
containing the expression A◦B (or mmult(A,B)), where A has been marked by
the unit-matrix tag, it knows the expression can be simplified to B by the
properties of matrix multiplication and unit matrices.

The CB TAG construct is useful only for very simple totems that can easily be
written using the C++ syntax. For more advanced totems, we use the CodeBoost
configuration files, described in Section 3.4.1.

A configuration file may be loaded into the source code using the CB IMPORT
construct. Once loaded, all definitions available in the given configuration file may
be tagged onto the desired language constructs.

Fig. 3.10 shows how this is done.
Here, the configuration file matrix-settings.cb is loaded, and all its

definitions are available for tagging. From the context matrix-layout, we

27

CHAPTER 3. CODEBOOST

f() {
Mesh<float> A;
CB IMPORT(”matrix−settings”);
CB TAG(A, ”matrix−layout”, ”layout−a”);

}

Figure 3.10: Importing and tagging totems

retrieve definition layout-a and tag it onto the variable A.
In many cases, we can propagate totems throughout the program using a

general totem tracker that implements a handful of simple, transformation-
independent rules.

For variables, totems are kept throughout their lifetime, until either of the
following occurs:

• assignment; if A is assigned to, it loses all its acquired totems.

• passed as an updated parameter; if A is passed to a function as an updated
parameter, A’s internal state may change, so all totems are dropped.

Totems may propagate from one variable to another over the assignment op-
erator (B = A). This clearly resembles data flow analysis, but we do not use the
dependencies to reorder any expressions.

Currently, totems on classes and functions stick throughout the program.
Some challenges for the totem system remain unsolved. Consider the code in

Fig. 3.11.

template <class T>
Mesh<T> f(Mesh<T> x, Mesh<T> y)
{ return x ∗ y; }
g() {

Mesh<T> a,b,c;
CB TAG(a, ”matrix−layout”, ”unit−matrix”);
c = f(a,b);

}

Figure 3.11: Tracking totems through calls

Unless we do function inlining of f, we cannot currently optimize the multi-
plication expression properly. An alternative to inlining would be to track totems
through the function call and generate a new, specialized version of f.

28

3.6. SHORTCOMINGS

In general, tracking totems is not always straight-forward. As we show in
Chapter 8, sometimes the rules for the propagation of a totem are closely tied to a
given transformation and cannot be satisfied using the generic totem tracker.

3.6 Shortcomings

The primary shortcoming of CodeBoost at the present time is the lack of proper
documentation for end-users and external contributors. While some rudimentary
documentation does exist alongside the source code, we do not have a reference
manual.

Another, more minor goal has been to maintain a certain degree of platform
independence and portability. As our experimentation domain is parallelized nu-
merical software for medium to large computations, we have restricted ourselves
to Unix systems.

Our work has been conducted on Linux, IRIX and Solaris 9, using the gcc
3.0.x, 3.1.x and 3.2.x series of compilers, as well as the MIPSPro compiler on the
IRIX platform and the SparcWorks compiler on Solaris.

However, it turns out that Stratego is not portable between all of our target
platforms. Currently, we can only host CodeBoost on Linux and Solaris.

When developing CodeBoost, we experienced that the Stratego compiling step
is rather time-consuming. This is ameliorated by continual improvements in work-
station processor speeds and improvements made to the Stratego compiler itself.
Consequently, we do not foresee this to be a long-term affliction.

In the process of developing transformation modules, we often have the need
to inspect the intermediate stages of the AST. As Fig. 3.12 shows, this can some-
times be a daunting proposition. It would be nice to have an Emacs mode for
inspecting ATerms, or a command-line ATerm beautifier.

3.7 Other transformation systems

CodeBoost and Stratego are by no means the only transformation systems avail-
able for transforming algebraic and numerical software.

The system that appears to share most of CodeBoost’s goals is the TAMPR
rewriting system.

Generic alternatives to Stratego include OpenC++, SORCERER, ASF+SDF,
ELAN, OBJ[GM97] and Maude [CELM96], among others.

The following sections will introduce the most relevant of these systems.

29

CHAPTER 3. CODEBOOST

Figure 3.12: A typical debugging session

30

3.7. OTHER TRANSFORMATION SYSTEMS

3.7.1 OpenC++

OpenC++ is a version of C++ with a Metaobject Protocol (MOP); it is a tool for
source-code translation of C++ code. It can be used to define new syntax, new
annotations and new object behavior.

However, in practice it turned out not to be sufficient for our needs. It only
provides us with a CST to work on, and it does not offer any kind of tree-rewriting
system. Also, the output after a transformation is pure textual code, not even a new
CST.

Thus, we needed to extend OpenC++ with a rewriting system.

3.7.2 TAMPR

TAMPR[BHW97] is a fully automatic, rewrite-rule based program transformation
system. It generates correct and efficient programs from specifications.

The authors highlight the following features of TAMPR as being novel:

• A declarative approach to specifying transformations.

• A restricted repertoire of constructs for analyzing and transforming pro-
grams.

• Application of transformations to exhaustion.

• An emphasis on sequences of canonical forms for carrying out large-scale
refinements.

• Completely automatic operation.

• The ability to effortlessly ”replay” the application of transformations when
either the program being transformed or the transformations themselves
change.

TAMPR has been used to derive both sequential and parallel programs from
the same high-order functional style specification. Sets of transformation rules
which together define a canonical form are automatically applied to the input
specification until the canonical form is reached.

The transformations can usually be proven to be semantically preserving. The
underpinnings of the TAMPR system were first described in [Boy70].

The user controls where the transformations should be applied by inserting
directives into the source code. This is somewhat related to the concept of totems.

31

CHAPTER 3. CODEBOOST

3.7.3 ANTLR

According to the authors, “ANTLR (ANother Tool for Language Recognition) is
a language tool that provides a framework for constructing recognizers, compil-
ers, and translators from grammatical descriptions containing Java, C++, or C#
actions.”.

Furthermore, ANTLR has the ability to do tree transformations on the internal
AST. The transformations are specified in terms of a tree grammar, where the
rule bodies are specified as actions associated with the grammar productions. The
grammar is compiled into a tree parser by a tool named SORCERER [Par93].

The resulting parser will, when applied to an input tree, build an output tree
according to the production rules. It is thus analogous to a regular token parser,
except the input stream is a tree, not a token stream.

This system only allows for a one-pass traversal. There is no separation be-
tween strategies and rules, as exists in Stratego. Nor is there any form of generic
tree traversal. We consider it too limited for our needs.

3.7.4 XTC

XTC (Transformation Tool Composition) implements the XT component model
and provides support for creating compositions of XT components. An XT com-
ponent is typically written in Stratego.

The XTC API supports easy calling of external Stratego components and mix-
ing them with internally defined transformations.

The XTC system is akin to the CodeBoost pipeline, only a lot more generic; it
is not tied to a particular subject language.

3.7.5 ASF+SDF

The first implementation of CodeBoost was done using the ASF+SDF framework,
described in [BvDH+01]. This framework is divided into the SDF2 syntax for-
malism and the ASF rewriting language.

SDF2 has the following features:

• Modular syntax definition (parametrized modules, symbol renaming).

• Integrated lexical and context-free syntax.

• Declarative disambiguation constructs (priorities, associativity, and more).

• Regular expression shorthands.

• All non-circular context-free grammars allowed!

32

3.7. OTHER TRANSFORMATION SYSTEMS

SDF2 is implemented in two parts: The parse table generator and a scanner-
less generalized LR parser (SGLR). It accepts arbitrary context-free grammars as
input.

The ASF is term rewriting language features:

• Conditional rewrite rules.

• Arbitrary user-defined syntax (the complete language is called ASF+SDF).

• Default rewrite rules (fire only when all other rules fail).

• Traversal functions (for automatically traversing trees).

• Rewriting while preserving layout and source code comments.

• Supported by the MetaEnvironment.

ASF can be used for the definition of semantics of programming languages,
defining many-sorted algebras and defining source code transformations.

The implementation consists of a compiler and an interpreter. The compiler
translates ASF to highly efficient C code. This code is compiled to a standalone
tool by gcc. The interpreter has a slower execution time, but a quicker startup
time.

The ASF+SDF framework was eventually rejected as an implementation
toolkit for CodeBoost. It was replaced with Stratego, as Stratego has a consid-
erably more powerful rewriting language that allows for generic traversals and
detailed control over the rule applications.

3.7.6 ELAN

According to the authors, “The ELAN system provides an environment for spec-
ifying and prototyping deduction systems in a language based on rewrite rules
controlled by strategies.” As such, it strongly resembles Stratego.

Compared to Stratego, ELAN is more focused towards formal proofs and con-
straint solving:

“It offers a natural and simple logical framework for the combination of the
computation and deduction paradigms as it is backed up by the concepts of rewrit-
ing calculus and rewriting logic.”

“It permits to support the design of theorem provers, logic programming lan-
guages, constraint solvers and decision procedures and to offer a modular frame-
work for studying their combination.”

To this end, it offers to kinds of rewrite rules: unlabeled rules, which are
applied using a fixed innermost strategy, and labeled rules, which are applied
according to user-defined strategies.

33

CHAPTER 3. CODEBOOST

As ELAN does not support generic traversals, it does not stand up to our re-
quirements.

3.7.7 Blitz++

The goal of the Blitz++ project is “to develop techniques which will enable C++
to rival – and in some cases even exceed – the speed of Fortran for numerical
computing, while preserving an object-oriented interface.”

To that end, the Blitz++ numerical library has been developed. Blitz++ uses
templates to do loop fusion, unrolling, tiling, and algorithm specialization can be
performed automatically at compile time, it is an example of an augmented (or
active) library.

Blitz++ thus compares more directly with the Sophus+CodeBoost combina-
tion that with CodeBoost directly.

The core optimization mechanisms used in Blitz++ are expression templates
[Vel95b], template meta-programming and generative programming.

A side-effect of the template mechanism in C++ is that it can be used to per-
form partial evaluation at compile-time [Vel95a]. Basic control structures such
as if/else, loops and case switches are available. These structures can be used
to do selective code generation, as the compiler “interprets” these structures at
compile-time. This technique is called template meta-programming.

The template mechanism can also be used to inline expressions into function
bodies, removing the overhead of callback functions. This can be applied to cal-
culating vector and matrix expressions in a single pass, without temporaries.

Most abstractions in Blitz++ are generic; they are parameterized objects and
functions designed to be customized at use-time. They are programmed using the
techniques mentioned above, to take advantage of the C++ template mechanism,
so as to remove the performance penalty of abstraction.

Compared to Sophus and CodeBoost, Blitz++ is limited to the power available
in the C++ template system. The syntax cannot be extended, nor can arbitrary
transformations be specified. The optimizations and abstractions are tightly inter-
woven. The Blitz++ library maintainer is only required to have a good knowledge
of the C++ template mechanism, whereas for Sophus+CodeBoost, good knowl-
edge of Stratego is also required to extend and maintain the optimizations.

3.7.8 Simplicissimus

The authors introduces the Simplicissimus project thus:

For abstract data types (ADTs) there are many potential optimiza-
tions of code that current compilers are unable to perform. These op-

34

3.7. OTHER TRANSFORMATION SYSTEMS

timizations either depend on the functional specification of the com-
putational task performed through an ADT or on the semantics of the
objects defined. In either case the abstract properties on which opti-
mizations would have to be based cannot be automatically inferred by
the compiler. In the Simplicissimus project our aim is to address this
level-of-abstraction barrier by showing how a compiler can be orga-
nized so that it can make use of semantic information about an ADT
at its natural abstract level.

In [SGML01], they present an expression simplifier for user-defined data
types. They use the Matrix Template Library (MTL) [SL998], written in C++,
as their subject body of code.

Their approach is concept-based, with concept defined as follows.

Definition 3.1
Concept: A set A of abstractions together with a set R of requirements, such that
an abstraction is included in A iff it satisfies all the requirements in R.

Their simplifier is equipped with a given set of rules, that are decoupled from
the types they apply to. Each rule has a set of requirements that must be met for it
to be applicable.

Users later provide formal descriptions of their data types, using an in-syntax
specification language, i.e. the descriptions are written as C++ code.

Given the rule requirements and data type descriptions, Simplicissimus will
determine when its various rules are applicable.

In summary, the the compiler is viewed as a compilation generator, and users
are allow to extend the semantic knowledge available to the compiler. Their pri-
mary target group is library designers, who are usually able to justify the extra the
cost of writing the data descriptions for their library data types.

The implementation makes use of advanced C++ techniques, such as expres-
sion templates, template meta-programming, and traits (interface templates), and
separate pipeline step for the GNU C++ compiler.

Simplicissimus is not a complete transformation framework. It is rather an
add-on to the GNU C++ compiler that works on its internal TREE representa-
tion [Cod00]. Similarly, we could replace our OpenC++ front-end and plug the
transformation part of CodeBoost into the GNU C++ pipeline. We have already
rejected this approach, partly because the GNU C++ compiler emits suboptimal
binary code on the platforms we use, and partly because its template handling is
not fully ANSI compliant.

The in-syntax descriptions that allow for expression rewriting are in some
ways similar to the concept of user-defined rewrite rules, available in CodeBoost.
[Bag03] demonstrates a transformation where the user can write simplification

35

CHAPTER 3. CODEBOOST

rules (user-defined rules) inside the C++ syntax. This lowers the entry barrier
for writing simple transformations considerably, as the user no longer needs any
knowledge of Stratego or the CodeBoost framework.

3.8 Summary

The CodeBoost transformation framework is a general source-to-source transfor-
mation framework for the C++ language. To show its real-world applicability, we
have decided to implement a set of domain-specific transformations for programs
written in the algebraic style.

The internal workings of CodeBoost mirror that of a regular compiler, having a
pipeline with preprocessing, parsing, transformation (usually called optimization
step for regular compilers) and an output steps. The main difference between
CodeBoost and a regular compiler is that CodeBoost’s transformations are higher-
level and domain-specific, and its output is in the same language as the input.

When the transformation modules are written with attention towards separat-
ing the transformations from the traversal strategies, extracting and reusing parts
of them becomes considerably easier. Often-used strategies and rules are good
candidates for inclusion into the CodeBoost standard library.

A more detailed overview of CodeBoost can be found in [BHV01]. The most
complete description of its implementation, background and inner workings to
date is given in [Bag03].

36

Chapter 4

Transformations

In this chapter, we present the theoretical groundwork for the transformations we
have implemented.

We start by discussing the decision to group the transformations with the li-
brary instead of the compiler, and its implications.

We then proceed to present the most important paradigms we have been in-
spired by.

Next, we discuss a simple transformation that performs algebraic simplifica-
tion and round off with the experienced shortcomings.

4.1 Augmented libraries

We have earlier argued that a library as collection of classes does not alone fulfill
the stated goals of the Saga project.

In particular, the classes alone cannot fulfill the requirement for improved per-
formance. Also, the Sophus style dictates that some operators may be specified
implicitly, for notational convenience. If the operator + = is specified, the oper-
ator + must be automatically generated. Previous experience told us that a mere
class library could properly handle these cases.

In order to accommodate this, we have augmented our library with abstraction-
specific transformations. These are transformations are then applied to programs
written for the Sophus library through a process called boosting. [CEG+] calls
this an “active library”.

Definition 4.1
The application of (potentially) performance-improving transformations to the
source code of a program, resulting in a semantically equivalent program, also
on source code form, is termed boosting.

37

CHAPTER 4. TRANSFORMATIONS

A boosted program may exhibit significantly improved running times com-
pared to their unboosted versions, but the boosting process may also be done for
notation convenience or to generate parts of the program from specifications.

The Broadway compiler [GL99] has provided inspiration for our work. The
Broadway approach consists of an annotation language and a modified compiler
that together can tailor a library to a specific application.

The annotation language describes properties of the functions and data types
provided by the library. The annotations are used to rank functions by the speci-
ficity. A function multiplying a diagonal matrix by a general matrix is considered
more specific than a function multiplying two general matrices.

A program written for the annotated library is run through the Broadway com-
piler, along with the library annotations. The compiler then rewrites occurrences
of general function applications to more specific function applications. This gen-
erally results in improved running times, as the specialised functions are less com-
putationally expensive than their general counterparts.

4.1.1 Source-to-source transformations

In the realm of high performance computing (HPC), each computer vendor usu-
ally supplies his own computer suite. We have mentioned earlier that there is no
standardised API for plugging new optimisations and transformations into these
compilers.

As one of our requirements for CodeBoost was that it would work on different
HPC computers, the only option left was to implement it as a source-to-source
transformer on the subject language (C++).

After developing the transformations outlined in this thesis, we have had very
good experience with the source-to-source approach.

Its advantages can be summarised as:

• The resulting code is human-readable.

• The resulting code can be fed directly into most C++ compilers.

• We can decide to only transform parts of a program, then use the C++ pre-
processor to mix transformed and non-transformed code.

• We did not need to invent a new intermediate language.

We do not currently anticipate any obstacles that will require a different rep-
resentation than C++ source code for the transformed result.

38

4.1. AUGMENTED LIBRARIES

4.1.2 Program traits

As we concern ourselves primarily with the functional and object-oriented styles
of programming, we are limited to a fairly well known set of language abstrac-
tions. The most interesting of these are classes, templates, functions and expres-
sions.

Each of these abstractions can have various traits. For instance, a method
within a class can be declared private. It has a given return type. It has a given set
of formal parameters. In the C++ language, each abstraction’s possible traits are
clearly defined beforehand.

We also consider invariants as program traits. We define an invariant:

Definition 4.2
Invariant: A rule, such as the ordering of an ordered list or heap, that applies
throughout the life of a data structure or procedure. Each change to the data
structure must maintain the correctness of the invariant.1.

For programs written for the Sophus library, we want our transformer to be
informed of these invariants, so we need to extend the subject language with a
mechanism for specifying these traits.

Please observe that extending the language with new semantics like this does
not imply extending the syntax as well. We will show later that it is possible
to specify additional traits for the various abstractions within the regular C++
syntax. We will also comment on where it would be preferable to have the luxury
of changing the language syntax.

Testing that invariants hold is a cherished software engineering technique for
introducing some stability scaffolding into the program that has recently come
into vogue again, in the form of extreme programming. In particular, see [BF01]
and [JAH01].

If an invariant is known to hold at a particular point in the program, we can
sometimes use that information to optimise the code around that point.

In some ways, this relates to aspect-oriented programming [KLM+97]. We
are concerned with separating the abstract mathematical properties of our objects
from the optimisation opportunities that arise when combining them. We want
programmers to write formally correct programs, then apply our cross-cutting
transformations to obtain a program with improved running time.

4.1.3 Domain-specific optimisations

With our approach, the key to good performance is domain-specific optimisations.
We set a premise that the compiler that ultimately produces the binary code does

1From Free On-Line Dictionary of Computing

39

CHAPTER 4. TRANSFORMATIONS

an adequate job when provided with well-massaged code.
One of our goals is to show that augmenting high-level libraries with suitable

domain-specific optimisations is feasible given access to proper transformation
tools.

Another goal is to show that it is possible to write clean, high-level code with-
out sacrificing runtime performance.

4.2 Inspirational paradigms

4.2.1 Partial evaluation and program specialisation

Given detailed knowledge about our program’s mathematical abstractions we can
automatically specialise both the code and the data structures to fit the problem at
hand better.

Given the expression C = A ◦ B, where A,B and C are matrices, and
we know that A is a diagonal matrix, we can safely transform the code
into C = diagonalMultiply(A,B) without loss in program meaning (the
diagonalMultiply function is assumed to be hand-written in advance).

Thus, if we know various characteristics of the data our program works on, we
can specialise our program to work more optimally on those specific data.

The paradigm of partial evaluation concerns itself with problems of this kind.
By performing partial evaluation, we evaluate and simplify as much of the pro-
gram as possible at compile time (we can seldom evaluate everything at compile-
time, hence ”partial”), so that the resulting program has a (often much) shorter
running time.

In Fig. 4.1, we have a subject program with two inputs; static and dynamic.
The static input we know at compile-time, so we are able to specialise our subject
program to that part of the data. The result of this specialisation is the specialised
program, which will still accept the dynamic input, to produce output

The program specialiser is not allowed to change the semantics of the program.
Given the program p, static input in1 and dynamic input in2, output out is given
by Equation 4.1.

out = [[p]] [in1, in2] (4.1)

.
That is, p applied to inputs in1 and in2 gives output out.
Similarly, the partial evaluation program itself, named mix can be applied to

inputs p and in1 to obtain the specialised program pin1 , see Equation 4.2.

pin1 = [[mix]][p, in1] (4.2)

40

4.2. INSPIRATIONAL PARADIGMS

static input

subject program partial ev aluator

specialised
 program

dynamic
input

output

Figure 4.1: A partial evaluator

The specialised program will, when applied to the dynamic input, yield the
out we had earlier, as shown in Equation 4.3.

out = [[pin1]][in2] (4.3)

Thus, we have the equality in Equation 4.4.

[[p]][in1, in2] = [[[[mix]][p, in1]]][in2] (4.4)

A more thorough introduction to partial evaluation can be found in [JGS93].
The mix program above is typically an interpreter for the language in which

the subject program was written. In our case, we have only implemented a partial
evaluator for a restricted set of operators on a restricted set of data types.

Chapter 8 details our implementation of a transformation that specialises the
matrix multiplication (◦) and point-wise operations (point-wise +, -, *, /) on ma-
trices.

4.2.2 Generative programming

According to [KC00], generative programming is “a software engineering
paradigm based on modeling software system families such that, given a partic-
ular requirements specification, a highly customized and optimized intermediate

41

CHAPTER 4. TRANSFORMATIONS

or end-product can be automatically manufactured on demand from elementary,
reusable implementation components by means of configuration knowledge”.

We have made a transformation for automatic symbolic differentiation of sim-
ple algebraic expressions. It is far from a “software system”, but it was inspired
by the concept of automatically generating a specific family of functions given a
well-defined rule-set.

Currently, the building blocks of our “end-product” are the primitive mathe-
matical abstractions of real numbers, but with some additional work, we should
be able to differentiate over the mathematical abstractions available in Sophus as
well (primarily tensors and meshes).

Given the function float f(float x) { return x∗x; } the user may apply the
differentiation operator to this function: main() { float k = 10; D<f,1>(k); }
and have CodeBoost automatically generate the differentiated function template
<float f(float), int> D(float x) { return 2∗x; }

The differentiation operator D takes as arguments the function to be differen-
tiated (in our case f) and then a list of parameters to differentiate on (here, only
the first).

Naturally, only the derivations requested will actually be generated.
Chapter 6 gives a detailed description of this transformation.
It must be mentioned that there is a branch of computer science named pro-

gram derivation, first described in [BD77]. It concerns itself with generating an
efficient program from an initial specification using semantically preserving trans-
formations.

Our goal for the differentiation operator is not efficiency but removing me-
chanical coding work. We therefore argue that the transformation is closer to the
paradigm of generative programming.

4.3 Algebraic simplification

Both the function differentiation transformation (see Chapter 6) and the matrix
transformations (see Chapter 8) generate algebraic expressions that are not opti-
mal.

For instance, the differentiator may emit code as shown in Fig. 4.2.

((((0 ∗ x) + (42.0 ∗ 1)) ∗ (x + 10)) + ((42.0 ∗ x) ∗ (1 + 0)))

Figure 4.2: A generated expression from diff

If x is one of the primitive types, the compiler is perfectly able to simplify
the expression on its own. However, if x is a user-defined type, the normal sim-

42

4.3. ALGEBRAIC SIMPLIFICATION

plification may no longer apply, so the C++ compiler cannot perform any further
optimisation.

The simplify2 transformation module implements a few very simple alge-
braic simplification rules, which holds for all mathematical objects that are rings.

The rules are given in Fig. 4.3. Additionally, we evaluate constants, i.e. the
expression 10 * 10 is rewritten to 100.

1∗ x→x 0+ x→x x∗1→x x+0→x 0∗ x→0
0+ x→x x∗0→0 0− x→−x x−0→x x/1→x

Figure 4.3: The simplification rules

The transformation starts by loading the configuration file for this transforma-
tion, then continue by applying the simplification rules in a bottom up manner to
all terms of the program.

The configuration file is simply a list of which data types are to be considered
for simplification. By default, only the built-in types float, int, long and
double are considered.

The simplification rules themselves are very short. Fig. 4.4 lists the rules for
simplification over the multiplication operator.

simplify-times: Infix(Op("*",), e, n) → e
where 〈is-one〉 n ; 〈type-of-expr ; is-ring〉 e

simplify-times: Infix(Op("*",), n, e) → e
where 〈is-one〉 n ; 〈type-of-expr ; is-ring〉 e

simplify-times: Infix(Op("*",), e, n) → n
where 〈is-zero〉 n ; 〈type-of-expr ; is-ring〉 e

simplify-times: Infix(Op("*",), n, e) → n
where 〈is-zero〉 n ; 〈type-of-expr ; is-ring〉 e

Figure 4.4: simplify-times

The strategies is-one and is-zero check if the given expression evaluates
to one or zero, respectively. For variables of user-defined types, this gets a bit
tricky, as the only way to know this is by tagging the variables. The next section
explains the details of our tagging mechanism.

is-ring ensures that the expression is of a type we know can be simplified.
If one spends time inspecting the simplify2.r code, it becomes apparent

that performing simple algebraic transformations like the one presented here is

43

CHAPTER 4. TRANSFORMATIONS

nearly trivial using the CodeBoost framework. No significant helper strategies are
introduced.

For many of the trivial cases here, this transformation could easily have been
implemented as a collection of user-defined rules (see [Bag03]), but then we
would need a separate constant folding step afterwards. Furthermore, we suspect
that the simplification transformation described here will be extended significantly
with various identities on Sophus data types, which may prove difficult to specify
accurately using user-defined rules.

4.4 Shortcomings

After finishing the simplification transformation, we consider the the following to
be immediate candidate areas for improvement:

• handle complex data types; The algebraic simplification transformation is
currently very simple. It would be desirable to extend it to simplify all
operators for the Sophus-specific types, meshes in particular.

• simpler totem interface ; The totem subsystem is currently completely de-
coupled from the CodeBoost symbol table. The reason being that totems
do not in general follow the scoping rules of variables and functions. This
makes it necessary to intermix the totem collector with the traversals, which
is a nuisance.

When trying to make the totem mechanism completely transparent for ev-
eryday use, one bumps into the problem that some transformations require
their own, special totem tracking rules. Thus, we would need some kind of
hookable traversal mechanism where the transformation is allowed to hook
in its own totem collection and propagation rules.

Another aspect not thoroughly evaluated yet, is the necessity of the totem
mechanism itself. Essentially, totems are annotations on the AST, that change
during the course of transformation. It may turn out that parsing the configura-
tion files and replacing the in-syntax occurrences of CB IMPORT, CB TAG with
suitable tree-annotations will be sufficient.

Separating the totem propagation from the transforming traversals would then
be easier, as the totem state would not need to be reconstructed on each traversal;
a totem propagation pass may be inserted before the transforming traversal, and
its result will be stored at the relevant terms.

44

4.5. SUMMARY

4.5 Summary

We have presented two simple transformations for the CodeBoost transformation
framework. The first one, an algebraic simplifier, is a stand-alone transformation
intended to be plugged in after the differentiation and matrix optimisation trans-
formation described later in this thesis.

The second one, a totem tracking mechanism, is intended to be used by other
transformations, mainly as a very simple aid to tracking data-invariants throughout
the source code.

Writing the totem system and the algebraic simplification transformation
proved pretty simple, given a modicum of Stratego knowledge. The code is avail-
able in the files src/trans/simplify2.r and src/trans/totem.r.

It is not entirely clear whether the customizability offered by the CodeBoost
configuration format is ultimately practical in the real world, at least for small
transformations as the ones presented in this chapter. Given the fact that the
CodeBoost source code is freely available, it may be easier to provide clearly
commented modification spots in the transformation source code itself.

45

CHAPTER 4. TRANSFORMATIONS

46

Chapter 5

TigerBoost

In this chapter, we present the TigerBoost transformation tool for programs written
in the Tiger language.

We start by outlining the motivation for TigerBoost. We then present the trans-
formations we implemented, and our experiences from doing so. We conclude
with a comparison with CodeBoost and discuss the continued need for TigerBoost.

5.1 Motivation

TigerBoost was created out of a desire to learn Stratego while at the same time
gain worthwhile knowledge on transformations ultimately relevant to the Sophus
library.

TigerBoost can be thought of as a very primitive transformation system for
Tiger [App98] code. It is thus not immediately useful for Sophus, which is written
in C++.

However, compared to CodeBoost, the simpler transformation tool laid out
in TigerBoost allowed for rapid prototyping and experimentation, especially with
respect to matrix optimisations and totems.

In reality, TigerBoost is nothing more than very slight adaptation of Eelco
Visser’s Tiger front-end as it appeared in summer/autumn 2001. Its inception
took place at a meeting between M. Haveraaen, O. Bagge, E. Visser and myself in
June 2001, where E. Visser pointed out that toying with his Tiger front-end would
probably be a productive route towards gaining better familiarity with Stratego.

5.2 Transformations

We implemented four fairly easy transformations in TigerBoost, each outlined
briefly below.

47

CHAPTER 5. TIGERBOOST

5.2.1 Constant propagation and folding

The concept of constant propagation is fairly trivial and a well-known optimisa-
tion technique employed in virtually all modern compilers. In TigerBoost, we only
exploit constant propagation to evaluate simple algebraic expression at compile-
time and to unroll loops.

Given the code in Fig. 5.1 TigerBoost would perform both constant propagator

let
var a := 10
var b := 20

in
c := a + b ∗ b
d := c

end

Figure 5.1: Tiger code fragment

and algebraic simplification to yield the code in Fig. 5.2.

let
var a := 10
var b := 20

in
c := 410
d := 410

end

Figure 5.2: After constant-propagation and folding

In and of itself, the constant propagation transformation is not very interesting,
but as we shall see, it is vital for some of the transformations covered later in this
chapter.

5.2.2 Elementary totem propagation

The full concept of totems is explained in Section 3.5. The first implementations
were done using TigerBoost, and immediately told us that we could easily give
high-yield hints to the optimiser without extending the syntax of the source lan-
guage.

Totems are tags we put on variables and functions to explain to TigerBoost
properties of the code that are otherwise difficult or impossible to infer. Given

48

5.2. TRANSFORMATIONS

these totems, TigerBoost can do more invasive optimisations than would other-
wise be possible.

As the following code shows, totems in TigerBoost follow the normal lan-
guage scoping rules. Given the code snippet in Fig. 5.3,

let
in

let
in

setTotem(A, diagonalMatrix())
setTotem(B, diagonalMatrix())
C := matrixMul(A,B) ;
D := matrixMul(A,C)

end ;
matrixMul(A,B)

end

Figure 5.3: Tiger code fragment

TigerBoost will transform it into the optimised snippet in Fig. 5.4.

let
in

let
in

C := matrixMulDiag(A,B) ;
D := matrixMul(A,C)

end ;
matrixMul(A,B)

end

Figure 5.4: After totem propagation

Only the first matrixMul can be optimised, as we do not know the layout
for C, and the totems are no longer valid once we leave the inner let-block.

Note that the rewrite from matrixMul(A,B) to matrixMulDiag(A,B)
if both A and B are known to be diagonal matrices is an explicit rule in TigerBoost.

5.2.3 Loop unrolling

Unrolling loops is another very well-known optimisation technique, especially
when dealing with high-performance compilers intended for numerical applica-
tions.

49

CHAPTER 5. TIGERBOOST

Our loop-unroller is very straight-forward. Given the code in Fig. 5.5, the

let
in

for x := 0 to 5 do
j := x

end

Figure 5.5: A simple loop

resulting code after run through TigerBoost will be as given in Fig. 5.6.

let
in

j := 0 ;
j := 1 ;
j := 2 ;
j := 3 ;
j := 4

end

Figure 5.6: After loop unrolling propagation

Again, this is not a very exciting optimisation in and of itself. Its power be-
comes apparent when we combine it with the other transformations presented ear-
lier.

5.2.4 Optimising matrix multiplication

Putting the previous optimisations together, we can now perform a potentially
high-yield optimisation on a the very common matrix multiplication operator.

We have already showed one way to optimise the multiplication operator in
Section 5.2.2; Given the tag diagonalMatrix on matrices A and B, the ex-
pression matrixMul(A,B)was rewritten to matrixMulDiag(A,B).

This was further extended upon in TigerBoost to account for properties on
symmetrical, unit, lower and upper matrices. The pattern was simple; given prop-
erty x on A and y on B, we can rewrite matrixMul as shown in Fig. 5.7

The table tells us that matrixMul(A,B), where A is diagonal and B is sym-
metrical, can be rewritten to matrixMulSymm(A,B) 1.

1The full table of combinations was never actually implemented in TigerBoost, just sufficient
amounts to know that it was doable.

50

5.2. TRANSFORMATIONS

x/y unit diagonal symmetrical upper lower

unit unit() B B B B
diagonal A diag(A,B) symm(A,B) upper(A,B) lower(A,B)

symmetrical A symm(A,B) symm(A,B) upper(A,B) lower(A,B)
upper A upper(A,B) upper(A,B) upper(A,B) mul(A,B)
lower A lower(A,B) lower(A,B) mul(A,B) lower(A,B)

Figure 5.7: Simple rewrite rules for matrix multiplication

The drawbacks of this method is that as we add combinations of x and y to the
table, we need to hand-code a specialised version of matrixMul. It would be
preferable if, given a detailed layout of A and B, we could automatically generate
an optimal version of matrixMul.

Armed with the transformations described in the previous sections, this proved
fairly easy.

The way we approached the problem was by inlining the matrixMul func-
tion when we encounter it, then applying constant propagation and folding, loop-
unrolling and then finally some specific rewriting rules for accessing the matrix
elements.

This clearly resembles a partial evaluation of the loop-nest. Its performance
gain is governed largely by the sparseness of the matrices involved.

Let’s step through the details for the code given in Fig. 5.8.
The a 2 element in matrixLayout signifies that the element is non-zero,

but that its exact value is unknown.
Thus, we see that B is a diagonal matrix, whereas A is symmetrical.
TigerBoost will conceptually proceed as follows:

1. Tag A, B and C with the totems described.

2. Inline functions

3. Unroll loops

4. Simplify matrix accesses

5. Propagate any constants

6. Algebraic simplification

The workings of transformations 1,2,3 and 5 should be apparent.

2We would ideally have liked to use , but the Tiger grammar does not allow by itself to be
an identifier.

51

CHAPTER 5. TIGERBOOST

let
function matrixMul(A, B) =

let var T : matrix := C
in

for i := 0 to T.x do
for j := 0 to T.y do

for k := 0 to T.x do
C.d[k].d[i] := C.d[k].d[i] + A.d[k].d[j] ∗ B.d[i].d[k];

end
in

let
var A := createMatrix(4,4)
var B := createMatrix(4,4)

in
setTotem(A, matrixDim(4,4));
addTotem(A, matrixLayout(a , a , a , a ,

a , a , 0, 0,
a , 0, a , 0,
a , 0, 0, a));

setTotem(B, matrixDim(4,4));
addTotem(B, matrixLayout(a , 0, 0, 0,

0, a , 0, 0,
0, 0, a , 0,
0, 0, 0, a));

setTotem(C, matrixDim(4,4));
C := matrixMul(A,B);

end
end

Figure 5.8: A more complete matrix example

52

5.3. THE RELATION TO CODEBOOST

After inlining the function in step (2), the loops can be unrolled completely,
as the value of T.x and T.y are known from the dimensions of C specified by
setTotem(C, matrixDim(4,4)) .

After this loop unrolling, we have a sequence of expressions
such as C.d[0].d[1] := C.d[0].d[1] + A.d[0].d[2] *
B.d[1].d[0]; These expressions are subjected to a matrix access sim-
plification transformation.

The transformation rule MatrixAccessSimplify considers an expres-
sion of the form M.d[i].d[j]. The matrix M’s element layout, given by a pre-
vious matrixLayout tag, is looked up. If the value at M[i,j] is a constant,
the expression M.d[i].d[j] is replaced with this constant.

For MatrixAccessSimplify, M must have a matrixDim tag, a
matrixLayout tag and the indexes must be within their valid ranges (although
our prototype transformation does not verify this).

Thus, C.d[0].d[1] := C.d[0].d[1] + A.d[0].d[2] *
B.d[1].d[0];, given the layouts above, would be translated into
C.d[0].d[1] := C.d[0].d[1] + A.d[0].d[2] * 0;3, which
would in step (5) be rewritten to C.d[0].d[1] := C.d[0].d[1];, and in
step (6) be removed altogether.

The net result is then as given in Fig. 5.9.

C.d[0].d[0] := C.d[0].d[0] + A.d[0].d[0] ∗ B.d[0].d[0] ;
C.d[0].d[0] := C.d[0].d[0] + A.d[0].d[1] ∗ B.d[0].d[0] ;
C.d[0].d[0] := C.d[0].d[0] + A.d[0].d[2] ∗ B.d[0].d[0] ;
C.d[0].d[0] := C.d[0].d[0] + A.d[0].d[3] ∗ B.d[0].d[0] ;
C.d[1].d[1] := C.d[1].d[1] + A.d[1].d[0] ∗ B.d[1].d[1] ;
C.d[1].d[1] := C.d[1].d[1] + A.d[1].d[1] ∗ B.d[1].d[1] ;
C.d[2].d[2] := C.d[2].d[2] + A.d[2].d[0] ∗ B.d[2].d[2] ;
C.d[2].d[2] := C.d[2].d[2] + A.d[2].d[2] ∗ B.d[2].d[2] ;
C.d[3].d[3] := C.d[3].d[3] + A.d[3].d[0] ∗ B.d[3].d[3] ;
C.d[3].d[3] := C.d[3].d[3] + A.d[3].d[3] ∗ B.d[3].d[3]

Figure 5.9: Completely optimised code

5.3 The relation to CodeBoost

Calling TigerBoost a transformation framework is would be a gross boast. There
is no concept of a tunable transformation pipeline, no symbol table exists, there

3In Fig. 5.8, we see that B.d[1].d[0] is 0

53

CHAPTER 5. TIGERBOOST

are no provisions for printing sensible error messages, etc.
We only have the option of running a pre-defined set of transformations once

the tool is compiled. The order cannot be changed without a recompilation. In
the prototyping phase, this did not present a problem, but it would clearly be
inadequate for everyday use.

As Tiger is a very simple language, the transformations can be simple; they do
not need to deal with the complex type system of C++, as we do in CodeBoost.
This has at least two aspects to it:

lower implementation complexity; if we can formulate our example programs
using simple types (structs) and functions, TigerBoost transformations are usually
very small and neat. We experienced that refactoring the code to accommodate
changes in the conceptual idea for a given transformation was vastly easier for the
Tiger language, compared to equivalent refactorings with CodeBoost.

missing language constructs; there are numerous aspects we cannot fully in-
vestigate due to Tiger’s small size. Of notable interest is genericity (templates), in-
heritance and operator overloading. The mutification transformation would make
no sense for Tiger.

Our net experience shows that if the problem can be satisfactorily formulated
as a Tiger program, and that the desired transformation is non-trivial, doing an
initial prototype with TigerBoost is well worth the effort.

However, we must emphasise that transporting the transformations from Tiger-
Boost to CodeBoost is generally not possible. While Stratego brings with it
the possibility of generic, language-independent strategies, this cannot always be
utilised; the underlying languages are too dissimilar.

It has proven more practical to consider the transformations written in Tiger
as throw-away prototypes4, and reimplement the CodeBoost formulation from
scratch.

5.4 Planned obsolescence

As mentioned, TigerBoost was a fork off an early implementation of E. Visser’s
Tiger compiler [Vis01b]. It has not been updated to the more recent versions of
this compiler, nor has it been updated to compile cleanly with the recent releases
of the Stratego language.

The only version of XT [MdJ03] it is known to work with is 0.8.
The lack of updates has been deliberate. It has not been deemed worthwhile to

keep TigerBoost current throughout the year since its creation. Focus has been on

4As Fred Brooks said: “plan to throw one away, you will anyway.”

54

5.5. SUMMARY

CodeBoost. Reviving TigerBoost should not be particularly difficult, if a genuine
need for it arises.

5.5 Summary

Our experience with TigerBoost, and later with CodeBoost, tells us that imple-
menting transformations for the Tiger language is (not surprisingly) significantly
easier.

It was therefore in our opinion a huge win to experiment with various ap-
proaches to totem tagging and propagation in Tiger, as it allowed us to cover more
ground easier.

Furthermore, the loop-optimisations show a nice theoretical gain. Since we
know that the algebraic operations on matrices are mainly implemented as loop-
nests, any improvements on loop structures are potentially valuable.

We managed to show that generating both fully unrolled code for very
sparse matrices and generating specialised loops for the multiplication of ma-
trices was feasible using the Stratego language. The simplest approach where
we only rewrote matrixMul to a hand-written specialised version, such as
matrixMulDiag is nearly trivial to implement, given a working totem mecha-
nism.

Fully evaluating the matrix multiplication and generating unrolled, optimised
code was also fairly straight-forward. However, we suspected at the time that
for larger matrices of intermediate sparseness, re-rolling the code back into loops
would probably be a worthwhile attempt.

Transporting these optimisations over to CodeBoost proved worthless. Given
the simplicity of the Tiger language and also the simplicity of the transformations
outlined here, it was decided to rewrite the transformations from scratch within
the CodeBoost framework.

Experience with both TigerBoost and CodeBoost shows that changing all or
significant parts of a transformation written for TigerBoost is considerably easier
than doing similar changes on transformations written for CodeBoost.

Given this fact, we would recommend TigerBoost only when rapid develop-
ment of “mock-up” transformations is desirable. If a fairly clear understanding
of the transformation is available, implementing directly for CodeBoost is recom-
mended.

55

CHAPTER 5. TIGERBOOST

56

Chapter 6

Symbolic differentiation

In this chapter, we present a transformation for doing automatic program differ-
entiation.

We start by giving our motivations for implementing the transformation, con-
tinue with an explanation of the implementation, then conclude with a discussion
on the current shortcomings of its design and implementation.

6.1 Motivation

It has been shown elsewhere [Bag03] that CodeBoost is suited for implementing
optimising transformations.

In this chapter we seek to show that CodeBoost also can be applied to the field
of generative programming, as introduced in Section 4.2.2.

In particular, we consider the problem of automatic program differentiation.

Definition 6.1
By automatic program differentiation, we mean the process of applying the estab-
lished mathematical rules for differentiation to algebraic expressions in the source
code.

Our goal is to demonstrate that CodeBoost can be employed to reduce the
amount of trivial programming and maintenance required by the developer.

6.2 Overview

We introduce to the C++ language the differentiation operator D, disguised as a
template function. Application of the operator amounts to a function call in the
subject language.

57

CHAPTER 6. SYMBOLIC DIFFERENTIATION

The prototype for the operator is on the form D<f,n0,n1,...,nN>
(a0,a1,...,aM) where

• f is a function reference

• n0,...,nN are indexes into a0,...,aN

• the function f(a0,a1,...,aN) must already be defined

Thus, conceptually D can be applied to the function f, to yield an expression
for f’. The indexes n0,...,nN are used to control which variables to differenti-
ate with respect to. Given the application D<f,1,3>(u,v,w,z), the operator
yields the expression for d

dw
d

du f (u,v,w,z).

double f(double x, double y, double z) { return x∗y∗z; }
usage(double u, double v, double w) { D<f,1>(u,v,w); }

Figure 6.1: An application of D

As we can see, this definition only allows for differentiating named expression,
i.e. functions. We currently have no analogue for [expr]′. Implementation-wise,
we know of no known obstacle for doing this, although the syntax for the operator
itself would have to change slightly.

The currently implemented form is more applicable to Sophus. If the expres-
sion is non-trivial enough to warrant automatic program differentiation, it should
be put into a separate function body anyway.

As D<f>, which in reality is a convoluted function call to f, is replaced with a
strongly modified version of f, the transformation cannot be seen as semantically
preserving from within the C++ language semantics.

Ideally, we would like to compile programs containing the D operator inde-
pendently of CodeBoost. If we defined D as a template function that performed
numerical differentiation when not boosting, the program would not be reliant on
CodeBoost to run.

In the following sections we shall present the implementation in detail, show
some examples of its application and discuss its current shortcomings.

6.3 Implementation

The code for the differentiation transformation resides in src/trans/diff.r.
It will accept any valid C++, and try to perform the following steps on its input:

1. Collect all applications of the differentiation operator.

58

6.3. IMPLEMENTATION

2. Collect all function bodies on which the diff operator is applied.

3. Evaluate and inline result of diff operator applications.

4. Repeat cycle.

The following definition will come in handy:

Definition 6.2
A function that can not be automatically differentiated, nor is allowed to be dif-
ferentiated numerically, is classified as non-differentiable.

If step 1 does not uncover any applications of the diff operator, no (further)
transformation is performed.

If step 2 uncovers the application of the diff operator to a non-differentiable
function, an error will be emitted and the transformation fails.

Step 3 may result in the generation of an application of the diff operator, there-
fore we repeat the entire cycle until we have exhaustively evaluated all diff oper-
ator applications.

Before detailing the steps above, we shall discuss the criteria for differentia-
bility.

6.3.1 Function constraints

The current version of the function differentiator is fairly strict with regards to
which kinds of functions it is willing to differentiate.

One must manually insert a numerical approximation on the functions it fails
to differentiate automatically. In that case, a call to the template function Dn,
shown in figure Fig. 6.2, may be attempted.

The function parameter double f(double, double) in the template
function Dn must be replaced with the prototype of the function we want to dif-
ferentiation.

Both precision- and performance-wise, this replacement may not be satisfac-
tory. One may end up hand-coding the differentiated function in the cases where
the transformation fails.

As previously stated, only fairly simple functions are candidates. They all
must be on the form T0 f(T1 a0, T2 a1, ..., Tn an) { return <expression>; }

Here, T0 through Tn must be types which have the appropriate operators used
in <expression> defined on them.

That is, if a0 is complex, and the <expression> is sqrt(a0), the dif-
ferentiated expression is 1 / (2 * sqrt(a0) * 1). It is then assumed
that type-promotion operators from int to complex are defined, and that T0 is
of an appropriate type.

59

CHAPTER 6. SYMBOLIC DIFFERENTIATION

template <double fn(double,double), int d1>
double Dn(double u, double v) {

if(d1==1) {
double du = 0.001;
double y1 = fn(u+du,v);
double y0 = fn(u,v);
return (y1 − y0) / du;

} else if(d1==2) {
double dv = 0.001;
return (fn(u,v+dv) − fn(u,v)) / dv;

} else {
std::cerr << ”Derivation parameter out of bounds” << endl;
exit(−1);

}
}

Figure 6.2: Numerical differentiation of the first order, using Euler differentiation

Currently, this checking is pretty lax, so for for cases where these assumptions
do not hold, we leave it to the compiler to emit appropriate errors. This is not
ideal, as:

• The compiler will emit error messages with line numbers referring to the
generated code, which the user is never supposed to look at.

• The error message can be arbitrarily cryptic, as the error pertains to the
generated code, not the original user code.

It would be preferable if most of the common mistakes could be caught at
transformation time, and flagged as errors there, when enough knowledge is
around to emit sensible error messages. This is material for further work.

Next, we will detail the steps in the transformation.

6.3.2 Collect diff operator applications

Step (1) traverses the entire program’s AST in a top-down manner, looking for
function applications on the form D<f,i,j,...>(x,y,...).

On each encountered application, the required signature of f is calculated, and
put into a collection.

At the end of the traversal, we have a list of all functions in the program that
needs to be symbolically differentiated.

60

6.3. IMPLEMENTATION

6.3.3 Collect function bodies

Step (2) does another top-down traversal, this time collecting all function bodies
matching the function signatures calculated in step (1).

6.3.4 Evaluate and inline result

Step (3) does the final top-down traversal. Again, we search for all applications of
the D operator, just as in step (1). This time around, we have collected sufficient
information to replace the operator application with the resulting differentiated
expression.

This in itself is a staged process:

• Inline function body for f

• Differentiate expression, on each index in turn.

Inline function body

This stage is straightforward. We inline the function body of f, and do appropriate
variable substitution.

Consider the function in Fig. 6.3.

double f0(double x, double y, double z) { return x∗y∗z; }

Figure 6.3: A sample formula

When we apply the operator D to this function, D<f0,1>(u,u,v), its body
will be inlined and elementary variable substitution takes place. The result is the
expression u*u*v.

6.3.5 Differentiate expression

This stage is the trickiest in the process. In the implementation, it is divided into
multiple, nested strategies.

The outermost strategy concerns itself with differentiating on each index pa-
rameter, in reverse order. Given D<f0,1,2>(u,u,v), the strategy will first
differentiate the body of function f on its second parameter, in this case v.

The result will then be subjected to further differentiation, this time on param-
eter 1, which is u.

The actual symbolic differentiation is left to the diff strategy, shown in
Fig. 6.4.

61

CHAPTER 6. SYMBOLIC DIFFERENTIATION

diff(var) =
(diff-trivial(var) +

diff-mul(var) + diff-div(var) + diff-plusminus(var) +
diff-literal +
diff-tan (var) + diff-sin(var) + diff-cos(var) +
diff-arctan(var) <+ diff-arcsin(var) <+ diff-arccos(var) +
diff-sinh(var) <+ diff-cosh(var) <+ diff-tanh(var) +
diff-sqrt(var) + diff-exp(var) + diff-pow(var) + diff-log(var))

<+ diff-funcall(var)

Figure 6.4: The diff strategy

The diff strategy is applied to the root of the expression tree. Conceptually,
it will traverse this tree in a top-down manner, selecting from the diff-*1 rules
at each node in the tree.

Together, the diff-* rules cover all the differentiation rules, given in Ap-
pendix A.

Each of diff-* rules will call back to diff. This way, we recursively
differentiate the expression tree.

Notice that in Fig. 6.4, the diff-funcall is at the bottom, because we
want to handle known mathematical functions like pow, cos and log as our
primitives.

We could alternatively have employed primitives on the form
D<pow,1>(x,y), but this proved to be an implementation hassle, due to
both the syntactic and semantic complexity of template applications.

The diff-mul should illustrate how diff is called recursively, see Fig. 6.5.

diff-mul(var):
Infix(Op("*",s), f, g) → res
where
〈lognl(DEBUG)〉 "Differentiating *" ;
〈make-op〉 ("*", 〈diff(var)〉 f, g) ⇒ l ;
〈make-op〉 ("*", f, 〈diff(var)〉 g) ⇒ r ;
〈make-op〉 ("+", l, r) ⇒ res ;
〈lognl(DEBUG)〉 "Differentiated *"

Figure 6.5: diff-mul

The rule matches a term on the form Infix(Op(‘‘*’’,s),f,g), where
s, f and g are free variables bound at matching time.

1Shorthand for the diff-mul, diff-trivial, ... rules in figure Fig. 6.4

62

6.3. IMPLEMENTATION

f is the left-hand side of the ∗-operator, while g is the right-hand side. s is
just the signature of the ∗-operator, and is in this case of no interest.

We see that both arguments to the ∗-operator, named f and g, are recursively
differentiated.

The make-op strategy generates the term for an application of a given oper-
ator on two arguments. In this case, we generate for the operators * and +. As
the strategy succeeds, res contains a term, representing the application of Equa-
tion A.1.

6.3.6 Repeat cycle

After stage (2) of step (3) has finished, we have made a complete first pass over
the input program.

The application of the rule diff-funcall in Fig. 6.4, may result in newly
generated applications of the D operator.

These will need to be resolved, so we repeat the three first stages again, and
keep repeating until step (1) does not uncover any calls to the D operator anymore.

6.3.7 Emit code

When all applications of the differentiation operator have “bottomed out”, and
step (1) fails, the modified program is emitted and the transformation ends.

In general, it is not always the case that the diff operator will “bottom out”.
Consider the function in Fig. 6.6.

float f(float x) { return D<f,1>(x); }

Figure 6.6: A differential equation.

This case, where f is defined in terms of its own derivative. It is thus a differ-
ential equation.

Our transformation will cannot solve differential equations, so in this case, the
entire transformation step will fail.

The same applies for cases where there is a mutual interdependence between
the functions f and g, see Fig. 6.7:

float f(float x) { return D<g,1>(x); }
float g(float x) { return D<f,1>(x); }

Figure 6.7: Mutual interdependence

63

CHAPTER 6. SYMBOLIC DIFFERENTIATION

A mutual interdependence of this kind may or may not bottom out, depend-
ing on whether the user has specified D<f,1,....1>(x) or D<g,1,....1>
elsewhere in his program. This is also a differential equation, so the transforma-
tion will fail when trying to differentiate it.

6.4 Shortcomings

Our current implementation has several known shortcomings, summarised below:

• differential equations; We do not solve differential equations. This is con-
sidered intractable. However, the current implementation also suffers from
not reporting this problem to the end-user in a sensible manner.

We should extend it with proper error messages that explain why the trans-
formation fails, and perhaps also even suggest remedies.

• not fully Sophus-aware; We do not differentiate operations on tensors and
meshes. This is a complex issue. Given the symbolic representation of a
tensor, we would be able to differentiate it symbolically. Using Mold-L
(see Chapter 7), we do have the symbolic representation of the tensor, but
we currently do not have code to make it readily available to the Stratego
transformation code.

• general error handling; The error handling is insufficient for general use.
As we do not track line numbers throughout the transformations, it is diffi-
cult to emit sensible warnings and error messages that pertain to the original
source code. The issue of line numbers is also discussed in Chapter 9.

• reliant on CodeBoost; The strong type-checking in the C++ language pro-
hibits defining one global prototype for the D and Dn operators; we need
one prototype for each f we apply the diff operator to.

Consequently, we cannot generally replace applications of the symbolic D
operator with applications of the Dn operator, without a semantically aware
preprocessor. 2.

6.5 Application

The symbolic differentiator may be utilised in the method of manufactured solu-
tion (MMS), as explained in [PK02].

2I.e. naı̈vely replacing the string D< with Dn< would not work

64

6.6. SUMMARY

MMS is a novel and recently developed technique that verifies the observed
order-of-accuracy of the implementation of a numerical algorithm.

The central idea is to modify the governing equations and the boundary con-
ditions by adding forcing functions or source terms in order to drive the discrete
solution to a prescribed or “manufactured’ solution chosen a priori.

Briefly, the method works as follows: We make a PDE solver, such as Sophus.
We then choose a known function for which we want to test the solver. With the
aid of symbolic differentiation, we construct a dataset to guide the PDE solver
towards the correct solution.

By applying either solution accuracy analysis or residual error analysis, one
may determine the accuracy of the solver.

In order to construct the test dataset, a symbolic differentiator is required.

6.6 Summary

The first draft of this transformation was fairly simple to implement. In fact, as
long as we only consider types that act analogously to reals (arguably a sensible
assumption, given the nature of differentiation), the transformation is simple.

To fully accommodate the differentiation operator syntax D<f,n>, we had to
extend CodeBoost with the ability to handle templates with function arguments.
This was also fairly simple, and indicates that the CodeBoost framework itself is
readily extensible.

Given the complexity of C++, generating terms for function calls can some-
times be a bit tricky. In particular, the function signatures are long, and getting
them right by hand can prove tedious. It would probably be a good idea to extend
CodeBoost with helper-functions to alleviate this.

Gaining experience with every-day use of the transformation on production
code would prove invaluable to further improve its practical application. This
would especially be useful for finding which human errors prove to be common,
and how to best deal with these in terms of outputting sensible error messages.

65

CHAPTER 6. SYMBOLIC DIFFERENTIATION

66

Chapter 7

Mold-L, a matrix description
language

In this chapter, we introduce the Mold-L description language for matrix layouts.
After explaining our motivations, we describe the syntax and semantics of

the language. We give a short note about writing the layout descriptions before
concluding with the currently observed shortcomings of the design and implemen-
tation.

7.1 Motivation

The purpose of Mold-L is to as precisely as possible describe the layout of N-
indexed matrices to all relevant CodeBoost matrix transformations.

As we currently focus CodeBoost towards the Sophus numerical library, our
focus has been on specifying layouts for two different families of matrices avail-
able in Sophus: tensors and meshes.

Both are implemented as N-dimensional array structures, and follow a similar
(but not identical) abstract interface. Fig. 7.1 lists the commonalities and differ-
ences in the two abstractions.

Given the disparate characteristics, we thought it prudent to support two dif-
ferent ways of specifying matrix layouts: implicit and explicit.

Definition 7.1
A matrix layout specification where the actual elements are not individually spec-
ified is termed an implicit layout.

Definition 7.2
A matrix layout specification where all the actual elements are individually spec-
ified is termed an explicit layout.

67

CHAPTER 7. MOLD-L, A MATRIX DESCRIPTION LANGUAGE

Common
The operators +, − and ∗ are defined.

The elements 0 and 1 are defined.
They are indexed by multiple indexes.

Tensors
Usually less than 200 elements.

Usually indexed by more than two indexes.
Its elements are typically meshes.

The function apply is defined.

Meshes
Typically millions of elements.

Usually only two indexes.
Its elements are typically rational values.

Data ordered in a block-like layout.

Figure 7.1: Properties of meshes and tensors

Fig. 7.2 shows a sample implicit layout. A sample explicit layout can be found
in Fig. 7.3.

(layout
mesh−a
(implicit

(dim
(x 200)
(y 200))

(any)
((> y 100) 1)
((> x 50) (>= y 30) 0)))

Figure 7.2: A sample implicit layout specification

(layout
tensor−layout−b
(explicit (

(1 0 0)
(0 1 0)
(1 0 0))))

Figure 7.3: A sample explicit layout specification

These layouts are intended to be written by the Sophus library end-user. The
layout and source-code is then fed through CodeBoost, which emits a program
specialised to the given layout.

It is the responsibility of the end-user to tell CodeBoost about the program’s
matrix layout

68

7.2. SYNTAX

A precise Mold-L description will be maintained and propagated through the
program alongside the matrix data, using the totem system developer for Code-
Boost.

At any point in the program where matrices are operated on, the operation may
be sped up considerably if the operation is known to the matrix transformation
collection and precise Mold-L specifications exist for the operation’s parameters.

7.2 Syntax

The Mold-L language is embedded into the CodeBoost configuration files, and its
syntax is therefore based on the well-known symbolic expressions.

layout ::= (layout name mold)
mold ::= (explicit ({row}+))
row ::= ({arith-expr}+)
arith-expr ::= (arith-op {arith-expr}+) | name | value
mold ::= (implicit

(dim { axis-spec }+)
({bounds-spec}+))

axis-spec ::= (name integer-number integer-number)
bounds-spec ::= ({ axis-bound }+ value)
axis-bound ::= (rel-op name integer-number)
rel-op ::= < | > | <= | >=
value ::= integer-number |

Figure 7.4: Complete syntax specification for matrix layouts

A complete syntax for layout specifications is given in Fig. 7.4. name is a reg-
ular symbol matching the regular expression [a-zA-Z-]+ and integer-number
is a regular integer number.

7.3 Semantics

Conceptually, the specifications are parsed, then fully expanded N-dimensional
arrays where each entry contains an algebraic expression are constructed in-
memory. This matrix of symbolic expressions can then be queried at boosting
time.

For the optimisations we have implemented, we only do queries about indi-
vidual elements, so lookups always amount to array references.

69

CHAPTER 7. MOLD-L, A MATRIX DESCRIPTION LANGUAGE

In reality, we only do full in-memory expansion for the explicit case. The
implicit specification is kept in memory as a collection of blocks describing the
matrix element values.

At the lowest level, there are 1-dimensional spans, that describe a strip along
one axis in the N-dimensional matrix (usually, but not necessarily along a row).
Each span specifies the number of elements in the span (its length) and the element
value of common to those elements (either of unknown, one or zero).

At the next level, the spans are in turn collected in spans. If n adjacent spans
have the same length and the same element value, they are collected into a span
with length n.

For regular, two-dimensional matrices, the compactification process stops
here. For N-dimensional matrices, all N levels will be considered.

Consider the matrix

1 1 1
1 1 1
0 0 0
0 0 0

The compactification process will start by considering the first row. It will
generate a span of length 3, with element value 1, denoted < 3,1 >. An identical
span will be constructed for the next row. These two identical spans are then col-
lected into a higher-level span, denoted < 2,< 3,1 >>. The algorithm proceeds
to generate the spans for the two lower rows, < 2,< 3,0 >>.

The list of top-level spans (< 2,< 3,1 >> and < 2,< 3,0 >>) is then used as
the internal representation of the matrix layout for this matrix.

If we did not take steps to compactify the internal representation, boosting a
program working on huge datasets would require equally huge amounts of mem-
ory, preventing us from doing the boosting on regular workstation machines.

Even with our naı̈ve implementation of the span collection, the speed-loss
experienced compared with the direct array lookups is next to negligible.

Needless to say, the implementation details of both the implicit and explicit
case is hidden beneath a predefined interface. Thus, we can change the internal
representation at whim.

7.3.1 Operations

The matrix layouts are meant to aid in specialising matrix operations throughout
the program code. Given the expression A = B⊕C and layouts for A and B, we
can specialise the code for ⊕ to perform the minimum amount of calculations
necessary for that particular expression.

We can also calculate the resulting layout A must have, and propagate the
newly calculated layout as a totem. Thus, if A later should show up in a new

70

7.4. WRITING LAYOUTS

expression, say D = A⊕B, we know A’s layout and specialise this application of
⊕ as well.

Definition 7.3
Merging layout: Calculating the layout for A in the expression A = B⊕C is termed
merging the layouts of B and C over the operator ⊕.

Currently, we support the point-wise versions of multiplication, addition and
subtractions for both tensors and meshes. Additionally, we merge and specialise
for the tensor’s apply function.

7.4 Writing layouts

As an aid to writing the layouts, we have developed a special Emacs mode for
editing CodeBoost configuration files — called codeboost-mode.el — that
takes care of automatic indentation and syntax highlighting. It has been tested
with Emacs 21.

Additionally, we developed a small tool that can automatically generate the
implicit layout specifications from meshes stored in the Norsar format, named
norsar2layout.py. It will currently only uncover any block structures
present in the datasets. Extending it to also recognising other patterns should
be fairly trivial, but will most likely require extending the Mold-L language.

Both of these utilities are available in the codeboost-utils CVS module
from the CodeBoost home page [OSB03].

7.5 Shortcomings

While Mold-L was designed to be tiny from the start, we have already encountered
some areas where it would be advantageous to make extensions:

• diagonal and symmetric layouts; The current Mold-L format is highly
geared towards the Sophus library. It does not cater for specifying all reg-
ular matrix patterns such as diagonal and symmetrical matrices. Both of
these are desirable primitives in the language, as many numerical problems
are formulated with matrices of this kind.

• Voigt notation; When specifying symmetries, one well-known technique
is the Voigt notation, described in [Aul90]. We have been unable to find
any documented adaptations of the Voigt notation for the computer, nor are
we familiar with its everyday use. It will therefore be necessary to consult
expertise familiar with the notation in order to implement a good adaptation.

71

CHAPTER 7. MOLD-L, A MATRIX DESCRIPTION LANGUAGE

We have erred on the side of simplicity for fear of over-engineering a solution
that would never be applied in real-life. Incrementally extending the language
based on experience and user-feedback is our preferred route.

7.6 Summary

The Mold-L language can describe most matrix properties mentioned in
[HMMK92], though it must be mentioned that manually specifying non-trivial
symmetries is tedious.

Both the syntax and the semantics are extensible. The internal semantics of
a Mold-L specification is extremely simple: for the explicit form, it is merely an
N-dimensional array structure where each entry is an algebraic expression; for the
implicit form, it is a collection of potentially overlapping N-dimensional blocks.

72

Chapter 8

Matrix transformations

In this chapter, we present an optimising transformation that performs partial eval-
uation of some algebraic operators on matrices based on matrix layouts specified
at boosting time.

First, we put the transformation in perspective. Next, we describe how the lay-
outs are specified and tracked throughout the program. We continue by explaining
the partial evaluation of an operator, show some benchmark results and round off
by discussing further improvements.

8.1 Motivation

Matrices are arguably the workhorse of mathematical abstractions for numerical
software. This is evidenced by the number of articles written on the subject, the
matrix-related abstractions available in common and uncommon numerical lan-
guages and the concept’s central place in the curriculum for students of numerical
software.

In many numerical programs, the majority of the execution time is spent doing
calculations on matrices. Improving the speed of matrix calculations should there-
fore have a good chance of improving the overall running time of the program.

Volumes have been filled treating this topic before ([ABB+00],[GL96]), but
few of them treat matrix operations within the coordinate-free paradigm.

With the classical approach, usually implemented in languages such as C and
Fortran, the programmer is largely responsible for breaking up the abstract mathe-
matical notion of the matrix into arrays and loops, from where the compiler takes
over and produces the fastest code possible. This breakdown is performed based
on the knowledge the programmer has about the properties of and operations on
the underlying matrices.

The coordinate-free approach makes matrices a full-fledged abstraction of its

73

CHAPTER 8. MATRIX TRANSFORMATIONS

own. This requires a language where the programmer can create his own abstrac-
tions, in the form of classes. In order to reach high efficiency, the compiler must
be smart enough to make use of the properties inherent in these new abstractions,
and break the operations down into optimal loops in its own.

We started experimented with exploiting the well-defined properties of unit,
null, diagonal and (anti-)symmetrical matrices. Refer to Chapter 5 for details.

Work done by F. Gustavsson shows that a block-structured approach to ex-
ploiting the sparseness can result in significant speedups [Gus01]. As the exact
block structures are very problem-specific, we decided to investigate the feasibil-
ity of partially evaluate the matrix operators with respect to the a priori known
layout properties.

8.2 Overview

The input to this transformation is regular C++ source code where the layouts of
the matrix variables have been specified in CodeBoost configuration files, intro-
duced in Chapter 3.

A top-down traversal of the input program is performed. Totems specifying
matrix layouts are tracked during the traversal. When an operator application on
two matrices with known layouts is detected — on the form A⊗B — the evaluator
is called, and a specialised function for that exact expression is generated. The
expression A⊗B is replaced by a function call to the generated function.

Only point-wise addition, subtraction, division and multiplication on matrices,
as well as the general matrix multiplication mmult (known as apply on the
tensor abstraction) are considered.

These elementary algebraic operations were selected as they are conceptually
and algorithmically very simple, they occur often, and they are, especially in the
case of general matrix multiplication, fairly expensive operations.

8.3 Implementation

The implementation consists of two parts: traversal and evaluation.
The traversal part is written in Stratego, and traverses the subject program,

tracks the totems, invokes the evaluator and incorporates the evaluated result back
into the program tree.

The evaluator is written in Python. It takes as input the matrix layouts and the
desired operator, then generates the specialised code. This code is then stitched
back into the program AST by the traverser.

74

8.3. IMPLEMENTATION

All data exchange between the parts is done through Unix pipes, where AST
subtrees are passed in the form of textual ATerms.

The traverser also takes care of parsing the matrix layout files, and passing
them to the evaluator.

8.3.1 Matrix layouts

The previous chapter described the Mold-L specification language and how we
specify the layout of a given matrix. The layouts come in two forms, explicit and
implicit. Explicit layouts are used for meshes, while implicit layouts are used for
tensors.

We use the totem mechanism described in Chapter 3 to tag the layouts onto the
matrix variables in the program. The totems are tracked throughout the program
code. Whenever operations are performed on a totemized variable, we attempt to
calculate the new layout, if possible.

Specifying layouts

The first hurdle to overcome is how to tell CodeBoost what the layout of the matrix
variables are. The code in Fig. 8.1 shows how this is done.

fn() {
Tensor<float> A,B,C;
A = loadMatrixFromFile(”A”);
B = loadMatrixFromFile(”B”);
CB IMPORT(”layout−a”);
CB IMPORT(”layout−b”);
CB TAG(A, ”matrix−layout”, ”layout−a”);
CB TAG(B, ”matrix−layout”, ”layout−b”);
C = mmult(A,B);

}

Figure 8.1: Totemizing matrices.

Assume that the loadMatrixFromFile function loads the matrix data
from a given file.

CB IMPORT loads the configuration file named layout-a, with all its
contexts. From the context matrix-layout, we pick the layout named
layout-a and tag it onto the variable A.

The same goes for variable B.

75

CHAPTER 8. MATRIX TRANSFORMATIONS

When we get to the statement C = mmult(A,B);, CodeBoost knows the
layout of both A and B, it knows that they are both of type Tensor, so the evalu-
ator is invoked.

In addition to the specialised operator code, the evaluator also generates a
specification layout. This layout is propagated upwards in the expression tree,
and in our case is tagged onto C.

Tracking the layouts

The matrix layout is stored as a totem, and is tracked throughout the program
using a totem tracker which implements to a few simple rules.

A matrix is only modified when it is either assigned to, or is sent as a mutable
parameter to a function. In the Sophus style, most C++ operators do not modify
their arguments 1.

The propagation through an algebraic expression is demonstrated by walking
through the transformation for the first line in Fig. 8.2.

D = A ∗ B + C;
nomodify 0u(C);
modify 1u(C);

Figure 8.2: Tracking totems.

First, A * B will be replaced with a call to a generated function;
foo0(A,B). The layout of A * B will be calculated and tagged onto foo0.
When foo0(A,B) * C is replaced with foo1(foo0(A,B),C), the layout
from foo0 is combined with the layout of C to calculate the new layout, which
is tagged onto foo1. The foo1 layout is then propagated over the assignment
operator to D.

The Sophus style tells us which parameters are mutable for a given function.
When a matrix is passed as a mutable parameter to an unknown function, we must
assume that it completely loses its known structure.

On line two, the 0u suffix tells CodeBoost that C is not modified, so all totems
remain intact.

One line three, the 1u tells us that the first parameter, C, is modified. As
Codeboost does not know the semantics of modify, we must assume that C has
completely changed; all its totems are dropped.

The user is free to specify the matrix layout after a call to an unknown function,
so as to help the transformation along. It should be noted that though the layout

1An exception is the << operator, which in Sophus is used to read data into a variable.

76

8.4. COMPILE-TIME EVALUATION

specification should be as precise as possible, even a coarse-grained specification
will be helpful for optimising purposes.

8.4 Compile-time evaluation

The basic dense matrix multiplication algorithm we want to evaluate is given in
Fig. 8.3.

for(int i=0;i<A.rows();i++)
for(int j=0;j<B.cols();j++)

for(int k=0;k<B.rows();k++)
C[i][j] = A[i][k] ∗ B[k][j];

Figure 8.3: The basic dense multiplication algorithm

A naı̈ve partial evaluation of this algorithm in Tiger is shown in Chapter 5. In
that chapter, we expand the three-level dense multiplication loop code above, then
remove all statements where at least one of the operands is zero.

With a less naı̈ve partial evaluator, it is possible to extract common subex-
pressions, re-roll unrolled statements into new loops to save code (and also code
cache) size.

Our current optimizer does both of these things, but only when the layouts of
A and B are given on the implicit form.

Implicit matrix multiplication

For very large matrices, we specify the layout on implicit form. As explained in
Chapter 7, the implicit layout specifies the block structure of the matrix.

When at least some of the blocks are filled with zeros, we can rewrite the
regular O(n3) algorithm to account for these zeros, and avoid performing scalar
multiplication operations on the zero elements.

The transformation works by conceptually unrolling the i,j and k-loops, then
considering the operation C[i,j] += A[i,k] * B[k,j]2 for all appropri-
ate values of i,j and k.

In the layout of A, an element A[i,k] can be either of unknown (denoted as
), zero (denoted as 0) and unit (denoted as 1). The same holds for B[k,j].

When multiplying A[i,k] by B[k,j] in the k-loop, we can simplify the
multiplication according to the rules in Fig. 8.4.

2For notational convenience, we use A[i,k] as a short-hand for A[i][k].

77

CHAPTER 8. MATRIX TRANSFORMATIONS

A[i,k] = 0 or B[k,j] = 0 C[i,j] += 0
A[i,k] = 1 and B[k,j] = 1 C[i,j] += 1

A[i,k] = 1 and not B[k,j] = 1 C[i,j] += B[k,j]
B[i,k] = 1 and not A[k,j] = 1 C[i,j] += A[k,j]

A[i,k] = and B[k,j] = C[i,j] += A[i,k] * B[k,j]

Figure 8.4: Scalar multiplication rewriting rules

After unrolling and expression simplification, we have a long series of simi-
lar statements. In fact, we often observe that several consecutive expression are
identical, save for the indexes, as is exemplified in Fig. 8.5.

C[i][j] += 0; /∗ A[i][0] ∗ B[0][j] = 0 ∗/
...
C[i][j] += 9; /∗ A[i][9] ∗ B[9][j] = 0 ∗/
C[i][j] += A[i][10] ∗ B[10][j]
...
C[i][j] += A[i][99] ∗ B[99][j]

Figure 8.5: Unrolled code

We can easily re-roll the code in Fig. 8.5 back into loops shown in Fig. 8.6.

for(int k=0;k<10;k++) {
C[i][j] += 0; // A[i][k] ∗ B[k][j];

}
for(int k=10;k<100;k++) {

C[i][j] += A[i][k] ∗ B[k][j];
}

Figure 8.6: Rerolled code

This re-looping has a clear resemblance to the simple run-length encoding
(RLE) algorithm known from compression theory (refer to [NlG95] for thorough
introduction).

Interestingly, we can apply the same re-rolling at the i- and j-loop levels as
well. The code in Fig. 8.8 shows a j-level loop rerolled from the code in Fig. 8.7,
using the same algorithm.

Implementation-wise, the conceptual unrolling never occurs. It would pro-
hibitively expensive to completely unroll the i,j,k-loop for the typical ranges of
i,j,k we operate in (typically 1000 and up).

78

8.4. COMPILE-TIME EVALUATION

for(int k=0;k<10;k++) {
C[i][0] += 0; // A[i][k] ∗ B[k][0];

}
for(int k=10;k<100;k++) {

C[i][0] += A[i][k] ∗ B[k][0];
}
// j += 1
for(int k=0;k<10;k++) {

C[i][1] += 0; // A[i][k] ∗ B[k][1];
}
for(int k=10;k<100;k++) {

C[i][1] += A[i][k] ∗ B[k][1];
}
// j += 1
for(int k=0;k<10;k++) {

C[i][9] += 0; // A[i][k] ∗ B[k][9];
}
for(int k=10;k<100;k++) {

C[i][9] += A[i][k] ∗ B[k][9];
}

Figure 8.7: Unrolled code

for(int j=0;j<10;j++) {
for(int k=0;k<10;k++) {

C[i][j] += 0; // A[i][k] ∗ B[k][j];
}
for(int k=10;k<100;k++) {

C[i][j] += A[i][k] ∗ B[k][j];
}

}

Figure 8.8: Rerolled code

79

CHAPTER 8. MATRIX TRANSFORMATIONS

We therefore intermix the compression with the evaluator itself. Whenever an
expression (k-level arithmetic expression or i/j-level loop) is produced, we com-
pare it to the previous expression emitted, and collate them if they are alike. They
are considered alike if their index differ by one on the level (i, j, k) under consid-
eration.

After the loops have been rerolled, the transformation emits the code for the
loop nests, then calculates the layout for the resulting matrix C.

We know that Ci, j = ∑i, j,k Ai,k ∗Bk, j. If all of Ai,k or all of Bk, j are zero, Ci, j

is also zero. If not, we mark it as unknown (). The resulting table is a new
explicit layout. As with the generated code, the new layout table is subjected to
RLE compression on one axis at a time, to reduce memory requirements. The
compressed result is passed on as a totem.

At the end of evaluation, both the resulting code and the layouts are passed
back from the evaluator to the traverser as ATerms.

Explicit matrix multiplication

For matrices specified on the explicit form, we always produce fully unrolled
loops, as they are practically always less than a hundred elements, total.

As figure Fig. 3.9 shows, the layout specifications on the explicit form can
contain arbitrary expressions for a given element in the matrix.

Fig. 3.9 specified the matrix M =

a a−b 0
b−a b 0

0 0 1

.

Whenever an element is referenced, it is replaced by the expression contained
in that element. In theory, this allows us to only store the unique elements, in the
above case a, b and c, but this has not been fully implemented yet.

Assume we multiply a matrix A with the above layout with a unit matrix. The
evaluator will emit the code shown in Fig. 8.9.

C[0][0] = A[0][0] ∗ 1;
C[0][1] = (A[0][0] − A[1][1]) ∗ 1;
C[0][2] = 0;
C[1][0] = (A[1][1] − A[0][0]) ∗ 1;
C[1][1] = A[1][1] ∗ 1;
C[1][2] = 0;
C[2][0] = 0;
C[2][1] = 0;
C[2][2] = 1;

Figure 8.9: Unrolled explicit code

80

8.5. SHORTCOMINGS

As we can see, the elements have been replaced by the expression contained
within them. Also, the code contains some duplicated subexpressions. There is a
common subexpression removal transformation for CodeBoost, not described in
this thesis, that can be used to remove the duplicates in a later pipeline step.

After the code is emitted, the resulting layout is calculated. The multiplication
is evaluated symbolically, and the result is stored as a new explicit layout.

As in the implicit case, both the resulting code and the layout are passed back
to the traverser as ATerms after evaluation is completed.

8.4.1 Integration

At the end of evaluation, the traversal part receives a term describing the spe-
cialised code for the multiplication operator, and a term describing the layout for
the resulting matrix.

The code is stitched into the program as a member function on the data type
(either Mesh or Tensor). The layout is tagged onto this function, as a totem.

8.5 Shortcomings

The previously described transformations ultimately reduce the number of float-
ing point operations necessary to perform simple arithmetic on various kinds of
matrices.

A number of areas for further improvement exist:

• storage patterns for parallelisation; We have not taken the time to investi-
gate data storage patterns more suited for parallel supercomputers. Given
detailed knowledge about the matrix layout, we suspect there is an opportu-
nity for significantly reducing the amount of data traffic between computing
nodes.

• cache optimisation; The naı̈ve storage pattern we employ does not take ad-
vantage of modern computer architectures’ cache mechanism. By com-
pacting the in-memory representation of our matrix structures, it is thought
cache hits and performance would improve. Work done by Hogne Hund-
vebakke suggests that adaptively modifying the traversal order of the large
mesh structures exhibits a statistically significant improvement [Hun02].

• transformation functions; Automatically exploiting non-trivial symmetries
in the matrices where one part (say lower half after LU decomposition) is
a transformed version of the other (say upper half), and the transformation

81

CHAPTER 8. MATRIX TRANSFORMATIONS

function is sufficiently cheap (multiplication by -1), we could reduce the
number of required floating point operations further.

• optimising the remaining operators; the Sophus matrix abstractions have
additional operations not described in this chapter. Some of these, such
as the traversal function map, should benefit greatly from exploiting the
sparseness patterns described by the matrix layouts.

Once all operators are known by the transformation and partially evaluated,
we are may finally change the internal representation freely, and only store
the unique elements of a matrix.

As it is now, we have made some experiments with generating specialised
Mesh classes with internal data representations that store the minimum
amount of data required; If the lower half of the mesh is known to be zero,
it need not be stored.

As the layout propagates and changes, new, specialised Mesh classes are
generated. The problem is that the current implementation of the transfor-
mation only knows how to generate specialised version of a few of the Mesh
operators. When other, unknown operators are invoked, such as minus, un-
specialised code that assumes a standard layout is invoked, which results in
data corruption.

8.6 Application

We do not yet apply the advanced transformation described above to the Sophus
library. Therefore, we do not have any hard benchmarking evidence from real,
live programs.

What we do know, is that the transformation results in code equivalent to the
hand-optimised specialisations of the apply function in the Seismod solver loop
(Fig. 2.1).

We can therefore expect roughly the same runtime characteristics as the hand-
optimised code, as the CodeBoost generated code is virtually identical.

If changes in the formulation of the problem results in new matrix layouts, it
is a trivial matter to regenerate a specialised apply function.

One is therefore free to program and reason about general solutions without
loss of performance.

82

8.7. SUMMARY

8.7 Summary

This chapter has described a set of related transformations which improve the
running time performance of elementary matrix algebra by partially evaluating
matrix operations at boosting time.

The transformations will consult hand-specified layout information for the ma-
trix variables, and insert specialised code for operations on these variables.

As long as the data processed by the specialised program corresponds to the
layout information provided at compile-time, the two programs are semantically
equivalent.

Comparing our generated code with the hand-written code, we see that we can
expect to have the same run-time performance.

83

CHAPTER 8. MATRIX TRANSFORMATIONS

84

Chapter 9

Further work

Sometimes, science has this nasty habit of telling you that the more you uncover,
the less you know. We appear not to have been spared, either.

The following sections will detail some our thoughts that have cropped up
during the process of completing our work.

We first discuss details around the matrix description language and opportuni-
ties for new Sophus-related transformations. Next, we consider a few suboptimal
aspects of CodeBoost, such as inadequate error handling.

Finally, we make a few suggestions on how to improve some non-technical
parts of the development process of CodeBoost.

9.1 Extending Mold-L

The Mold-L matrix specification language cannot easily describe arbitrary lay-
outs on medium to large matrices. In particular, the implicit form as described in
Section 7.3 is not powerful enough to describe all common matrix patterns.

We would like to cater for the following patterns: diagonal, upper, lower,
symmetrical, anti-symmetrical, unit, checkerboard.

We could do this by adding each pattern as a special case in the matrix spe-
cialisation code, but that would mean a combinatorial explosion of totalcases =
specialcases×operators, which is less than desirable.

However, going the case-by-case route is probably worthwhile to gain the nec-
essary insight into how to generalise the algorithms properly. The route should
be coupled with applying the transformations to real-world programs, preferably
ones where the matrix access patterns are known and both generic and hand-
optimised versions of the code exist.

Which leads us to another question. Currently, the dichotomy between im-
plicit and explicit modes is present due to the need for expanding the complete

85

CHAPTER 9. FURTHER WORK

matrix structures in-memory at boosting-time. We tried some naı̈ve compactifi-
cation techniques (see Chapter 8), but the running times when dealing with huge
matrices proved prohibitive.

It may be the case that selecting more advanced data structures and applying
some memoization tricks will vindicate the compactification idea. If so, the im-
plicit/explicit dichotomy can hopefully go away and we will be able to use the
same transformation core for both Tensor and MeshSF objects.

If it is deemed too time-consuming to go the route through partial-evaluation
of the matrix operators, the technique outlined in Section 5.2.4 should be sim-
ple to implement for C++ in CodeBoost as well. This would require us to have
semi-complete “template” code for the various cases, which brings us back to the
problem of combinatorial explosion.

However, it may be the case that there are few enough matrix patterns to justify
this simpler approach, at least for a given application.

9.2 Further augmenting the Sophus library

There are many apparently minor interrelations between the Sophus data types
not currently captured by our transformation collection. This ranges from simple
algebraic identities such as Mesh t; minus(minus(t)) == t; to arbi-
trarily complex algebraic expressions.

Adding algebraic simplification rules for such cases probably makes for a nice
introduction to CodeBoost for new contributors. Some of these simplification
rules can be written using the user-defined rules described in [Bag03], while oth-
ers are probably so complex that they need the full CodeBoost framework, and
therefore need to be a full-fledged transformation.

As described in Section 6.4, we do not properly differentiate over Meshes
and Tensors yet. Getting low and dirty with the various approaches to program
derivation is probably material for an entire thesis by itself.

We have so far only optimised some of the algebraic tensor operators with
respect to the matrix layout. Adding optimised code for the remaining operators
(such as minus, shift) is probably also worthwhile, and should be relatively
simple.

The generated code for the matrix specialisations should eventually be based
on the map-construct instead of loops. This could not be done at the present
moment, as the complete semantics of map operators over tensors and meshes
had not been fully specified yet.

Interestingly enough, one of our minor problems is that there are too few pro-
grams written using the Sophus library. This means we do not get the chance to
test the robustness of our transformations on a decently sized body of code.

86

9.3. ROBUST ERROR HANDLING

9.3 Robust error handling

One of the major obstacles remaining before CodeBoost can be used outside the
research group is graceful error handling. The framework itself mostly handles
errors well enough, but some of the transformations we provide do not.

Detecting semantic errors can be very tricky. For instance, the symbolic differ-
entiator assumes that functions like pow and sqrt are defined on the data types
it differentiates on. Adding proper error-checking may easily clutter the transfor-
mation and make it more resistant to change.

Usually, it is preferable to detect the errors early on, in order to emit sensible
error messages that can explain to the user why a given transformation is not
applied properly. It is the transformation writer’s job to insert instructive error
and warning messages.

This job has not been taken seriously enough with all of our current transfor-
mations. We initially aim for error messages and warnings following the style
of regular compilers, possibly also including with a pretty-printed excerpt of the
offending code.

However, there are a few stumbling blocks for this:

1. The AST does not contain information about the line numbers in the original
source code.

2. The pretty-printed source may be confusingly dissimilar to the original
source code.

3. The faulty code may be the result of a previous transformation step, where
the line numbers no longer correspond with the original source code.

The crucial point here is handling line numbers sensibly. If the error cannot
be traced back to the user’s original code, there is little chance for him to fix the
flawed code.

This tracking problem may become very complex. Consider the code in
Fig. 9.1.

template<T> T foo(T x) { return x.generatedOp(); }
void bar() { Mesh<float> x,y; y = foo(x); }

Figure 9.1: Calling generated code

Assume Mesh::generatedOp() is supposed to be generated
by CodeBoost. If foo() is inlined at transformation step 1 and
Mesh::generatedOp() fails to generate in transformation step 2, there
is no easy way to emit an error that says “x.generatedOp() could not

87

CHAPTER 9. FURTHER WORK

be generated in function template<T> T foo(T)”, as we no longer see
foo().

Keeping track of where the terms move throughout the transformation pipeline
is complex, but it has been done in existing compilers, such as MIPSpro.

One solution may be to employ a relatively new invention in Stratego, called
term annotations. We can add metadata to each term, and have it propagate along
the term throughout the transformations. This metadata would contain line num-
bers and possibly information about the original scope.

To avoid maintenance hassles, we need to figure out a way to separate the error
handling from the transformation rules and traversal strategies in a nice manner.

Some solutions have already been tried out inside the CodeBoost core library.
One simple technique, used in src/sig/cpp-check.r, is to generate special
error terms to signal errors. When a strategy fails, it will return an error terms
containing a relevant error message and possibly some extra error code or infor-
mation. The calling strategy may attempt error handling, or further propagate the
error up the call chain. If the error makes it to the top level, the error is caught,
the error message is emitted and the transformation fails.

9.4 Improving CodeBoost running times

When boosting large bodies of code, CodeBoost may spend minutes performing
its transformations. Some of the transformations (the matrix transformations in
particular) can be quite sluggish and require up to a minute for a given expression,
on today’s computers.

For prototyping research code, this is not a severe obstacle. In our case, the
perceived impact has been lessened by running on fast hardware.

For more widespread adoption of CodeBoost, however, it may become neces-
sary to improve the running times by optimising the transformations themselves,
and reworking the CodeBoost pipeline somewhat.

We currently have three approaches to improving the running time perfor-
mance:

1. remove pipes; instead of using intermediate files or pipes between each
pipeline stage, we could maintain one, in-memory AST which the mod-
ules worked on. Each module would be a shared library, loaded at run-time
by a central dispatching unit. As long as the pipeline stages are written in
Stratego, this should be fairly trivial. For non-Stratego pipeline stages, we
still have the ability to use pipes.

2. optimise individual transformations; the most irksome transformations may
benefit from some hand-optimisation, once their semantics and functional-

88

9.5. DOCUMENTING AND PROMOTING CODEBOOST

ity has been settled. As “premature optimisation is the root of all evil” 1, we
have not done that yet, as our experimentation phase on the transformations’
semantics is still ongoing.

3. improve Stratego compiler; as the Stratego compiler matures, the perfor-
mance of its resulting code may also expected to improve slightly. We do
not expect any big leaps in performance here, though.

While developing CodeBoost, it was not CodeBoost’s own running time that
proved most annoying. The Stratego compiler itself is actually the limiting factor
in the edit-compile-run loop of the development cycle of CodeBoost. Compiling
the diff.r module currently takes around 19 seconds on dual 1.666GHz x86
computer. Compiling all of CodeBoost on the same hardware measures in at about
10 minutes.

For rapid prototyping, it would be nice to have an interpreter for Stratego code,
to allow for very quick experimentation. Older versions of the Stratego bundle
came with a semi-functional interpreter, but it has been deprecated.

9.5 Documenting and promoting CodeBoost

While we do not think it is generally usable at the present time, we ultimately want
people outside our research group to use CodeBoost. We also desire the benefits
from outside input and peer-review.

To this end, we have developed CodeBoost as an open-source project. From
personal experience with other open-source projects, we have a few ideas on how
to foster a community around Codeboost, outlined below.

9.5.1 Release early, release often

Generally, open-source software projects that appear active are more likely to at-
tract outside developers. Additionally, involving the users in the development
process helps counteracting the Ivory Tower-effect, whereby a few academically
minded wizards concoct hair-brained schemes not suited for the real world.

By making frequent releases and starting the release cycle early on when not
all things are set in stone, input from outside sources have a better chance of
affecting the course of development, thus giving the users a say.

At present, we are in the lucky situation that a sizable portion of the
coordinate-free community use the Sophus library. Their experiences and com-
plaints are filtered through Magne Haveraaen, the Sophus designer, before reach-
ing the CodeBoost development team.

1Originally from Tony Hoare, restated by Donald P. Knuth

89

CHAPTER 9. FURTHER WORK

We then get the distilled versions of the problems, along with well-considered
suggestions for how to solve them. This allows us to focus on implementing
transformations that solve concrete shortcomings.

While inviting external parties into this development process may give novel
insights, there is also the risk of diluting the original goals.

For now, we offer information on CodeBoost in the form of papers and a con-
ceptual preview. As the tool matures, we expect to offer pre-compiled packages
for various platforms, and tutorials with examples, to attract outside users.

9.5.2 Central hub for development

By having one, central place for users to get documentation, new releases, report
bugs, get in touch with the developers and discuss between themselves, one is
better able to foster a community.

In our case, we already have a rudimentary web presence [OSB03]. It would
be fairly easy to extend with a bug-tracker and a mailing-list.

However, to have a decent shot at attracting external parties, we will probably
have to solve most of the following tasks:

• documenting the standard library; the CodeBoost standard library contains
a lot of convenience functions useful when writing transformations. These
need to be documented, and small examples should accompany some of
them.

• more regression testing; whenever we change the CodeBoost library or
some of its transformations, we can no longer be certain things do not break.
To alleviate this, we try to keep our suite of regression tests up to date, but
this has been falling behind lately.

• examples; we need a few test-cases to allow interested parties to download
CodeBoost and toy with it. As or transformations are currently tied to the
Sophus library, we probably need a very cut-down version of Sophus for
these examples.

9.6 Summary

To ensure continued development on CodeBoost, getting up to speed for new con-
tributers should be easy. This primarily means we need more and better docu-
mentation. Additionally, the current CodeBoost team should remain available to
answer tricky questions.

90

9.6. SUMMARY

The danger with bringing in new developers is always a dilution of the
project’s focus. It must be emphasised that CodeBoost is geared towards the nu-
merical community, particularly towards programs written in the algebraic style.

We admit that CodeBoost is currently only a research tool. It is not production-
ready, and that getting to a production-ready state will probably take years of
directed effort, as the ground we cover is sometimes both complex and new.

The sum of our experience tells us that CodeBoost is powerful enough to do
most of the transformations we have wanted to do, but that some extensions (par-
ticularly those outlined in the previous sections) are in order. Fortunately, extend-
ing CodeBoost itself has proven to be easy enough, given adequate knowledge of
the Stratego language.

We feel it would be a shame if the effort put into the current CodeBoost version
should end with slow bit rot on an inactive CVS repository in an obscure part of
the Internet. We have therefore proposed a rudimentary plan for raising external
awareness for CodeBoost, with the hopes of attracting external contributors.

Allowing external parties to build directly on our work, without having to la-
boriously re-implement the basic framework, is one of the reasons why CodeBoost
was developed openly in the first place.

91

CHAPTER 9. FURTHER WORK

92

Chapter 10

Conclusion

This chapter summarises our experiences with implementing transformations with
CodeBoost.

The chapter touches on the development process and some implementation-
specific details.

In this thesis, we wanted to demonstrate a few aspects of CodeBoost, namely:

• flexibility; we show the flexibility and power available in the framework.

• user-control; we investigate the practical aspects of having the user control
the application and aggressiveness of the transformations, instead of just
naı̈vely applying them to the entire body of code.

• extensibility; we marry optimisation and programming techniques from the
fields of partial evaluation, program derivation and specialisation, aspect-
oriented programming with the high-level clarity of coordinate-free numer-
ics.

• optimisation; To investigate the feasibility of programming general abstrac-
tions in an algebraic programming style without penalties to performance.

In our experience, the CodeBoost framework has proved to be pleasantly flex-
ible.

The symbolic differentiator described in Chapter 6 shows that we can imple-
ment transformations for symbolic manipulation of non-trivial complexity.

The implementation of the differentiator follows the paradigm of strategic
rewriting rules closely.

For cases where this paradigm is less suited, we have demonstrated that we
can resort to more traditional paradigms, such as imperative programming. Due
to the pipelined nature of CodeBoost, we may insert a transformation step written

93

CHAPTER 10. CONCLUSION

in any language. As an alternative, an external program may be invoked at any
time, from within a regular transformation. The partial evaluator part of the matrix
transformation is an example of external invocation.

In general, very complex transformations are possible. It has been suggested
that complex symbolic evaluation could be performed by established tools such
as Mathematica or Maple. One would invoke the external mathematical package
at suitable inside the transformation.

We have not pursued this path, because problems requiring that complex sym-
bolic evaluation would in all likelihood result in a brittle transformation.

As for user control, experience with regular compilers tells us that tuning a
given transformation to a particular program, or part of a program, is usually
worthwhile, i.e. adjusting the default degree of loop-unrolling and inlining limits.

The user can control the application order of the individual transformations.
In addition, the following tuning facilities incorporated available to our transfor-
mations:

• command line parameters; switches and simple data may be passed to the
transformation, independently of the source code it operates on.

• configuration files; configuration files referenced from inside the source
code can be used to load arbitrarily complex auxiliary data used at boosting
time.

• totems; language constructs can be tagged with flags or auxiliary data
loaded from configuration files.

It turns out that these mechanisms exhibit some overlap. For instance, one
can use both totems and command line parameters to easily pass simple flags or
switches to the transformation.

A significant drawback with the current implementation is that the transfor-
mation itself must handle the cases above differently, even though they all specify
the same flag.

Overall, the degree of control collectively offered by the above mechanisms
has proven more than adequate. Most transformations will only expose a few
switches for tuning, but we have shown that should the need for complex, source-
specific input to the transformation arise, it can be handled by the framework.

Regarding extensibility, we have experienced that adding new functions to the
framework library, or adding new library modules entirely, is rather easy. The
only major stumbling block in extending the library is the lack of reference docu-
mentation for the existing code.

To demonstrate the potential for optimisation, we show a transformation per-
forming partial evaluation of some matrix operations (general matrix multipli-
cation, point-wise addition, subtraction, multiplication and division). Given a

94

description of the matrix layouts, our optimiser generates code identical to the
hand-optimised code.

As long as we only specialise the code for these operations, integrating the
optimiser into the Sophus numerical library is fairly easy. Once we decided to
specialise the internal data representation, in order to optimise the memory usage,
we sort of crashed and burned.

The matrix abstractions in the Sophus library have numerous operations de-
fined on them, some which traverse the internal data and some which operate on
single elements. They all make assumptions about the internal data representa-
tion, as they work directly on it. We ended up needing to generate specialised
versions of all these operations if we were to make changes to the representation.

As we started down the road of specialising all relevant operations, the trans-
formation became large and difficult to maintain. Multiple attempts at splitting it
up were made, but none successful.

Fortunately, progress on the Sophus library solved our problems. The library
is being rewritting so that all traversal of the internal data will be done using map
traversal function.

Changing the internal data representation is then only a matter of specialising
the map function, and a very few point-wise element access functions.

Surprisingly, developing transformations with CodeBoost proved to be trick-
ier than initially thought. Writing a transformation for CodeBoost is a laborious
affair, compared to the simpler TigerBoost framework.

One reason for this is probably personal. The edit-compile-run cycle is very
long, which is anathema to the way I usually work. Compiling a single transfor-
mation for CodeBoost takes approximately 30 seconds on a high-end workstation.
For the smaller TigerBoost framework, compilation time is significantly shorter.

Another aspect is that generating new terms for the C++ AST is hard. As
Fig. 2.3 indicates, the AST for even simple expressions is large. The primary
obstacle is the type information and signatures. Although CodeBoost supplies
auxiliary strategies for building and modifying signatures and types, the process of
constructing a semantically correct term is time-consuming, and usually involves
at least some debugging.

The debugging process is also a bit immature, as debugging tools for Stratego
are non-existent. Debugging a faulty AST usually amounts to manual inspection,
as exhibited in Fig. 3.12.

Alternatively, shotgun debugging may be employed 1, and has proved highly
effective.

In total, we have found that augmenting libraries using CodeBoost is feasible,
but currently far from easy enough. We can achieve the goal of an algebraic

1Inserting debug statements across the program to narrow down the faulty code

95

CHAPTER 10. CONCLUSION

style, separation of concerns as well as performance, at the cost of transformation
complexity.

Developing a transformation is in general too tricky for CodeBoost to be an-
other tool in the regular library developer’s toolbox. Luckily, a simpler approach
exists. The user-defined rewrite rules described in [Bag03] are much easier for a
library developer to write and maintain. They are sufficiently powerful to handle
most kinds of expression simplification, which is very important in the algebraic
style.

Writing full-fledged CodeBoost transformations should be reserved for cen-
tral library abstractions, or cases where the transformation significantly increases
performance or usability of an abstraction.

96

Appendix A

Differentiation rules

This chapter lists the differentiation rules we have implemented for the transfor-
mation described in Chapter 6.

d
dx

[f (x)∗g(x)] = f ′(x)∗g′(x)+ f (x)∗g′(x) (A.1)

d
dx

[f (x)+g(x)] = f ′(x)+g′(x) (A.2)

d
dx

[f (x)−g(x)] = f ′(x)−g′(x) (A.3)

d
dx

[f (x)/g(x)] =
f ′(x)∗g(x)− f (x)∗g′(x))

g(x)2 (A.4)

d
dx

[f (x)c] = c∗ f (x)c−1 ∗ f ′(x) (A.5)

d
dx

[e f (x)] = e f (x) ∗ f ′(x) (A.6)

d
dx

[log f (x)] =
1

f (x)
∗ f ′(x) (A.7)

Figure A.1: Elementary differentiation rules

97

APPENDIX A. DIFFERENTIATION RULES

d
dx

[sin f (x)] = cos f (x)∗ f ′(x) (A.8)

d
dx

[cos f (x)] = −sin f (x)∗ f ′(x) (A.9)

d
dx

[tan f (x)] = (1+ tan f (x)2)∗ f ′(x) (A.10)

d
dx

[
√

f (x)] =
1

2
√

f (x)
∗ f ′(x) (A.11)

d
dx

[sinh f (x)] = cosh f (x)∗ f ′(x) (A.12)

d
dx

[cosh f (x)] = sinh f (x)∗ f ′(x) (A.13)

d
dx

[cosh f (x)] = sech2 f (x)∗ f ′(x) (A.14)

d
dx

[arctan f (x)] =
1

1+ f (x)2 ∗ f ′(x) (A.15)

d
dx

[arcsin f (x)] =
1

√

1− f (x)2
∗ f ′(x) (A.16)

d
dx

[arcsin f (x)] = −
1

√

1− f (x)2
∗ f ′(x) (A.17)

d
dx

[c f (x)] = c f (x)∗ lnc∗ f ′(x) (A.18)

d
dx

[f (y)] = 0 (A.19)

d
dx

[g(x)] = D < g,1 > (x) (A.20)

d
dx

[c] = 0 (A.21)

Figure A.2: Elementary differentiation rules (cont.)

98

Appendix B

Installing CodeBoost

This chapter will explain how to download, compile and install CodeBoost and
accompanying utilities.

Getting CodeBoost up and running should be no more difficult than compiling
and installing any other regular Unix program. We use the the GNU automake
tools, and our source is available as a regular tarball.

Apart from CodeBoost itself, we will need to install the Stratego compiler.

B.1 Downloading

The first package we need is Stratego. Head over to
www.stratego-language.org and get the 0.8.1 release from their
download section. You may try a later release, but this is what we have tested
with. Remember to install the ATerm library first, as Stratego depends on it.

Proceed by getting the CodeBoost 0.2.2 tarball from the download section on
www.codeboost.org. You may try a later version, but the baseline for this
thesis is 0.2.2.

You will also need our patched version of OpenC++. Get the latest version
available on the CodeBoost download page.

While you can also get the sources from CVS, we do not recommend this, as
the CVS tree may be in an unstable state.

B.2 Compiling

Issue the following commands to install Stratego (the signifies the
prompt; it should not be entered):

tar zxf stratego-0.8.1.tar.gz

99

APPENDIX B. INSTALLING CODEBOOST

cd stratego-0.8.1
./configure --prefix=<your desired basepath>
make all install

Now we need to install the OpenC++ compiler. To compile, issue:

tar zxf openc++.tar.gz
cd openc++/src/Unix
make -f Makefile.Linux\footnote{There are {\tt Makefile}s for

other platforms as well, named {\tt Makefile.<platform>}.

A program named occ will be generated. Put this somewhere in your path.
At this point, verify that both occ and sc are available by trying to run them.

If they are not, verify that they both are in your path.
Proceed by installing CodeBoost:

tar zxf codeboost-0.2.2.tar.gz
cd codeboost-0.2.2
./configure --prefix=<your desired basepath>
make all install

At this point, provided no errors occurred, CodeBoost is installed and ready to
run.

B.3 Testing

To get an immediate feel for CodeBoost, we have prepared a few elementary
examples. Get the codeboost-examples tarball from the download page
on www.codeboost.org.

Unpack it, verify that codeboost is in your path (issue which
codeboost), and you’re ready to go.

The examples are conveniently arranged by the transformation they are
demonstrating. For a very trivial demonstration, issue codeboost -t
simplify2 simplify2/test-1.C. CodeBoost will output the trans-
formed code on stdout1.

As explained in Section 3.2.3, sometimes it makes sense to apply the transfor-
mations A and B in sequence as A may have generated code suitable for optimisa-
tion by B.

A small example of this can be observed by first doing:

1You may experience a few warnings on stderr. These are usually harmless

100

B.4. SUMMARY

codeboost -t diff diff/test-1.C
codeboost -t diff -t simplify2 diff/test-1.C

Observe the difference in output from the two commands. The latter will result in
a simpler algebraic expression.

The file examples/README explains in detail how to play with the provided
example code.

B.4 Summary

For regular Unix system administrators and programmers, the installation proce-
dure of CodeBoost is pretty straightforward. However, we would like to offer
distribution-specific packages as a convenience to our users.

Part of the nuisance of installing CodeBoost is installing the auxiliary tools it
requires. Some distributions have already started to include Stratego2. As Stratego
matures, we expect the others to follow, thus mitigating this problem somewhat.

We plan on extending the codeboost-examples with juicy demonstra-
tions as we keep on adding new transformations to the CodeBoost framework.

2Gentoo Linux

101

APPENDIX B. INSTALLING CODEBOOST

102

BIBLIOGRAPHY

Bibliography

[ABB+00] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, and James W.
Demmel. Lapack Users’ Guide. Software, Environments and
Tools, 9. SIAM, Philadephia, USA, 2000.

[App98] Andrew W. Appel. Modern Compiler Implementation in Java.
Cambridge University Press, 1998.

[Aul90] Bertram A. Auld. Acoustic fields and waves in solids, 2nd ed re-
vised. Krieger Publishing Company, 1990.

[Bag03] Otto Skrove Bagge. Codeboost: A framework for transforming
c++ programs. Master’s thesis, University of Bergen, Norway,
2003.

[BD77] Rod M. Burstall and John Darlington. A transformation system for
developing recursive programs. Journal of the ACM, 24(1):44–67,
1977.

[BF01] Kent Beck and Martin Fowler. Planning Extreme Programming.
Reading, Mass.: Addison-Wesley, 2001.

[BF02] Moshe Bar and Karl Franz Fogel. Open Source Development with
CVS, 2nd ed. The Coriolis Group, 2002.

[BHV01] Otto Skrove Bagge, Magne Haveraaen, and Eelco Visser. Code-
Boost: A framework for the transformation of C++ programs.
Technical Report UU-CS-2001-32, Institute of Information and
Computing Sciences, Utrecht University, 2001.

[BHW97] James M. Boyle, T.J. Harmer, and V.L. Winter. The TAMPR
program transformation system: Simplifying the development of
numerical software. In Erlend Arge, Are Magnus Bruaset, and
Hans Petter Langtangen, editors, Modern Software Tools for Sci-
entific Computing, pages 353–372. Birkhäuser, Boston, 1997.

103

BIBLIOGRAPHY

[Boy70] James M. Boyle. A transformational component for programming
language grammar. Technical Report ANL-7690, Argonne Na-
tional Laboratory, Argonne, Illinois, July 1970.

[BvDH+01] M.G.J. van den Brand, A. van Deursen, J. Heering, H.A. de Jong,
M. de Jonge, T. Kuipers, P. Klint, L. Moonen, P.A. Olivier,
J. Scheerder, J.J. Vinju, E. Visser, and J. Visser. The asf+sdf meta-
environment: a component-based language development environ-
ment. In R. Wilhelm, editor, Compiler Construction 2001, pages
365–370. Springer-Verlag, 2001.

[CDK+00] Rohit Chandra, Leo Dagum, Dave Kohr, Dror Maydan, Jeff Mc-
Donald, and Ramesh Menon. Parallel Programming in OpenMP.
Morgan Kaufman Publishers, 2000.

[CEG+] K. Czarnecki, U. Eisenecker, R. Glück, D. Vandevoorde, and T.L.
Veldhuizen. Generative programming and active libraries. In
Proceedings of the 1998 Dagstuhl-Seminar on Generic Program-
ming(1998), Lecture Notes in Computer Science.

[CELM96] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of
maude. In J. Meseguer, editor, Proceedings of the First Inter-
national Workshop on Rewriting Logic and its Applications, vol-
ume 4 of Electronic Notes in Theoretical Computer Science, pages
65–89. Elsevier, Asilomar, Pacific Grove, CA, September 1996.

[Chi96] Shigeru Chiba. Openc++ programmer’s guide for version 2. Tech-
nical Report SPL-96-024, Xerox PARC, 1996.

[Cod00] LLC CodeSourcery. g++ internal representation.
http://gcc.gnu.org/onlinedocs, August 2000.

[DHH98] T.B. Dinesh, Magne Haveraaen, and Jan Heering. An algebraic
programming style for numerical software and its optimisation.
Technical Report SEN-R9844, CWI, Amsterdam, Netherlands,
1998.

[EV03] et. al. Eelco Visser. stratego – strategies for program transforma-
tion. http://www.stratego-language.org/, March 2003.

[FJH+01] Helmer André Friis, Tor Arne Johansen, Magne Haveraaen, Hans
Munthe-Kaas, and Åsmund Drottning. Use of coordinate-free nu-
merics in elastic wave simulation. Applied Numerical Mathemat-
ics, 39:151–171, 2001.

104

BIBLIOGRAPHY

[GHW00] P.W. Grant, M. Haveraaen, and M.F. Webster. Coordinate free pro-
gramming of computational fluid dynamics problems. Technical
Report CSR 2-2000, University of Wales, Swansea, 2000.

[GL96] Gene H. Golub and Charles F. Van Loan. Matrix Computations.
Johns Hopkins Series in the Mathematical Sciences. Johns Hop-
kins University, dec 1996.

[GL99] Samuel Z. Guyer and Calvin Lin. An annotation language for op-
timizing software libraries. In Domain-Specific Languages, pages
39–52, 1999.

[GM97] Joseph Goguen and Grant Malcolm. Algebraic Semantics of Im-
perative Programs. MIT Press, 1997.

[Gol90] Charles F. Goldfarb. The SGML Handbook. Oxford: Oxford Uni-
versity Press, 1990.

[Gus01] Fred G. Gustavson. New generalized matrix data structures lead to
a variety of high-performance algorithms. In Ronald F. Boisvert
and Ping Tak Peter Tang, editors, The Architecture of Scientific
Software, volume 188 of IFIP Conference Proceedings. Kluwer,
2001.

[Hav03] Magne Haveraaen. the saga project. http://www.ii.uib.no/saga/,
March 2003.

[HMMK92] Magne Haveraaen, V. Madsen, and Hans Munthe-Kaas. Algebraic
programming technology for partial differential equations. In Pro-
ceedings of Norsk Informatikk Konferanse (NIK). Trondheim, Nor-
way: Tapir, 1992.

[Hun02] Hogne Hundvebakke. A study of mesh-traversal patterns for the
sophus library and runtime variations on sgi origin (norwegian).
Master’s thesis, University of Bergen, Norway, 2002.

[JAH01] Ron Jeffries, Ann Anderson, and Chet Hendrickson. Extreme Pro-
gramming Installed. Reading, Mass.: Addison-Wesley, 2001.

[JGS93] Neil D. Jones, Carsten K. Gmard, and Peter Sestoft. Partial Eval-
uation and Automatic Program Generation. Prentice Hall Interna-
tional, 1993.

105

BIBLIOGRAPHY

[Kar98] Michael Karasick. The architecture of montana: An open and ex-
tensible programming environment with an incremental c++ com-
piler. In International Symposium on Foundations of Software En-
gineering, pages 131–142, November 1–5 1998.

[KC00] Ulrich W. Eisenecker Krzysztof Czarnecki. Generative Pro-
gramming: Methods, Tools, and Applications. Reading, Mass.:
Addison-Wesley, 2000.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Irwin.
Aspect-oriented programming. In Mehmet Akşit and Satoshi Mat-
suoka, editors, 11th Europeen Conf. Object-Oriented Program-
ming, volume 1241 of LNCS, pages 220–242. Springer Verlag,
1997.

[LVV02] Ralf Lämmel, Eelco Visser, and Joost Visser. The essence of
strategic programming. March 2002. (Draft).

[MdJ03] Joost Visser Merijn de Jonge, Eelco Visser. xt – a bun-
dle of program transformation tools. http://www.program-
transformation.org/twiki/bin/view/Tools/XT, March 2003.

[NlG95] Mark Nelson and Jean loup Gailly. The Data Compression Book.
M&T Books, New York, 1995.

[OSB03] Karl Trygve Kalleberg Otto Skrove Bagge. codeboost – a
c++ transformation framework. http://www.codeboost.org/, March
2003.

[Par93] Terence J. Parr. Sorcerer reference. In Language translation using
PCCTS and C++: A Reference Guide, pages 161–199. Automata
Publishing Company, 1993.

[PK02] Kambiz Salari Patrick Knupp. Verification of Computer Codes in
Computational Science and Engineering. Discrete Mathematics
and Its Applications. CRC Press, October 2002.

[SGML01] Sibylle Schupp, Douglas P. Gregor, David R. Musser, and Shin-
Ming Liu. User-extensible simplification—type-based optimizer
generators. In Reinhard Wilhelm, editor, International Conference
on Compiler Construction, Lecture Notes in Computer Science,
2001.

106

BIBLIOGRAPHY

[SL998] The matrix template library: A generic programming approach to
high performance numerical linear algebra. In International Sym-
posium on Computing in Object-Oriented Parallel Environments,
1998.

[Sta97] Richard Matthew Stallman. GNU Emacs manual : updated for
Emacs version 20.1. Boston: Free Software Foundation, 1997.

[TBSM00] J. Paoli T. Bray and C. M. Sperberg-McQueen. Extensible
markup language (xml) 1.0. http://www.w3.org/TR/2000/REC-
xml-20001006, October 2000.

[vdBdJKO00] M.G.J. van den Brand, H.A de Jong, P. Klint, and P.A. Olivier.
Efficient annotated terms. In Software - Practice and Experience,
pages 30:259–291, 2000.

[Vel95a] T. Veldhuizen. Expression templates. C++ Report, 7(5):26–31,
June 1995.

[Vel95b] Todd L. Veldhuizen. Expression templates. C++ Report, 7(5):26–
31, June 1995. Reprinted in C++ Gems, ed. Stanley Lippman.

[Vis00] E. Visser. The stratego tutorial. Technical Report Technical Docu-
mentation, 0.5, Institute of Information and Computing Sciences,
Utrecht University, 2000.

[Vis01a] Eelco Visser. Stratego: A language for program transformation
based on rewriting strategies. System description of Stratego 0.5.
In A. Middeldorp, editor, Rewriting Techniques and Applications
(RTA’01), volume 2051 of Lecture Notes in Computer Science,
pages 357–361. Springer-Verlag, May 2001.

[Vis01b] Eelco Visser. Tiger in stratego: An exercise in compilation by
transformation. Technical report, 2001.

107

