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Abstract

In this thesis we will consider Standard Model (SM) Leptogenesis scenarios

and determine the maximally allowed entropy production with respect to the

mass of the lightest right handed neutrino. We extend the SM Leptogenesis

model as a Minimal Supersymmetric Standard Model (MSSM) to determine

the viability of the Stau as the next to lightest supersymmetric particle (NLSP).

We consider the viability of the Stau NLSP by taking into account the entropy

dilution factor found in the MSSM Leptogenesis scenario and considering Big

Bang Nucleosynthesis constraints.
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Chapter 1

Introduction

Leptogenesis is an attractive model of baryogenesis for creating a lasting matter-

antimatter asymmetry in the early universe. In the extended Standard Model

the right handed neutrinos are very massive, between the order of 109 ∼ 1015

GeV, and their CP-violating decays is the key to how Leptogenesis can generate

such an matter-antimatter asymmetry. Leptogenesis also requires the mass of

the left handed neutrinos to be less than 0.1 eV, and because of the see-saw

mechanism, we �nd Leptogenesis to be consistent with this range of masses for

the right handed neutrinos. In the process of Leptogenesis, these right handed

neutrinos decay out of thermal equilibrium into either a set of a lepton and a

Higgs, lH, or an anti-lepton and an anti-Higgs l̄H̄. These decays, and the in-

teractions between the decay products, are represented with a set of Boltzmann

equations (included in chapter 3.4), which determines the maximal Baryon-

Lepton asymmetry available.

In this thesis we extend the simplest model of leptogenesis into MSSM and

explore the possibility of the Stau as the Next lightest supersymmetric particle.

By extending the model into MSSM, we further complicate the model as we

have to introduce the sneutrino, the super symmetric partner of the neutrino,

as an additional decaying particle, and introduce new decay channels for the

neutrino. As a constraint on the Stau abundance, we consider how massive,

long lived, charged particles will e�ect the abundances generated from Big Bang

Nucleosynthesis.
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In Chapter 1 we will explore the mathematical framework of SM and MSSM,

in addition to the see-saw mechanism and sphaleron processes both central to

the mechanism of Leptogenesis. In Chapter 2 we expand on the cosmological

underpinnings of the model of baryogenesis and outline the potential for entropy

production in the early universe. Chapter 3 contains the calculations which

determine the peak entropy production allowed in SM Leptogenesis, and the

extension of the model into MSSM. Finally in Chapter 4 we utilize the peak

entropy production available in the MSSM Leptogenesis scenario to calculate

the Relic density of the Stau, in order to determine the viability of it as the

Next to Lightest Supersymmetric Particle (NLSP) candidate.
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Chapter 2

Particle Theory

2.1 The standard model

The standard model of particle physics is a mathematical framework which de-

scribes interactions between particles through three fundamental forces, which

are the strong, weak and electromagnetic interactions. The motivation for this

model of interactions is to unify these forces and introduce a mass generating

mechanism for the fundamental particles, i.e. the Higgs mechanism. The struc-

ture of the standard model is fundamentally based upon quantum �eld theory,

a model in which a lagrangian constructed from quantized �elds determines the

dynamics of particle interactions[1, 2].

Quantum Chromodynamics is a non-abelian gauge theory generated by sym-

metry group SU(3) which describes the strong interactions between quarks. The

gauge bosons associated with the group SUc(3) are the 8 spin one particles called

gluons, Gµi . Any particles interacting with gluons, i.e. transforms under rotation

of this group, are said to carry colour. These interactions are generally catego-

rized as the strong interactions. The lagrangian determines the kinematics and

dynamics of this model for massless quarks.

LQCD = ψ̄q(i /D)ψq −
1

4
GiµνG

µν
i

/D = γµDµ = γµ(∂µ + igs
λi
2
Aµi)

Gµνi = ∂µAνi − ∂νA
µ
i + gsfijkA

µ
jA

ν
k

(2.1.1)
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lR lL νL
Q
e −1 −1 0

IW3 0 −1/2 +1/2

Y −1 −1/2 −1/2

Table 2.1.1: Hypercharge for right handed and left handed leptons.

Electro-weak theory, constructed from unifying Quantum electrodynamics and

weak-theory, is a non-abelian gauge theory generated from the symmetry group

SUL(2)⊗UY (1). There are 3 spin one bosons associated with SUL(2), W
µ
i ,

where the L indicates that only left handed fermions are a�ected by this sym-

metry. There is only one spin one gauge boson associated with the UY (1)

symmetry, Bµ, where the Y denotes the weak hypercharge. The combined 4

spin one particles which describe SUL(2)⊗UY (1) are di�erent from the gluons

mentioned above as the interaction state and mass state are not congruent.

Consequently the physical bosons which mediate the weak interaction, W±, Z0

and the photon, arise as a result of mixing between the gauge bosons. This

manifests itself in the weak mixing angle, which is important in determining

the masses of these particles. The particle chirality becomes extremely relevant

for this interaction as well, as the right handed leptons do not interact with

the massive W± bosons, and additionally there are no right handed neutrinos

as these right handed leptons also do not have any SU(2) gauge interactions.

Moreover the hypercharge, de�ned as Y = Q
e −I

W
3 , for the right handed leptons

is di�erent from the left handed as they do not take part in the neutral current

IW3 . The Lagrangian for massless leptons is given as:

LEW = Ψ̄L
l (i /DL)ΨL

l +ψ̄Rl (i /DR)ψRl −
1

4
W i
µνW

µν
i −

1

4
BµνB

µν

DµL = ∂µ + ig
τi
2
Wµ
i − ig

′ 1

2
Bµ

DµR = ∂µ − ig′Bµ

(2.1.2)

In the standard model there are 12 spin one gauge bosons which follows from

the its gauge group SUc(3)⊗SUL(2)⊗UY (1) and the additional scalar boson (the
Higgs boson) which arises from the Higgs mechanism. This Higgs mechanism is
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also responsible for generating the mass of the fermions, the W± and Z bosons.

LSM = Lquarks + Lleptons + Lgluons + LW,B + LHiggs + LqH + LlH (2.1.3)

The SM lagrangian includes the interaction and kinematic terms for both strong

and electro-weak interactions, Lquarks + Lleptons + Lgluons + LW,B , the Higgs

self interaction and mass term, LHiggs, as well as the mass generating terms

for the leptons and quarks ,LqH + LlH . Within this model there are 6 lep-

tons e, µ, τ, νe, νµ, ντ , de�ned as particles which do not interact strongly, and 6

hadrons u, d, c, s, t, b de�ned as particles which do interact strongly.

The Higgs mechanism explains how fundamental particles such as quarks

and the charged leptons gain mass through electro-weak symmetry breaking.

Both LlH + LqH are of the form ψ̄′
L
Y φψ′

R
, where Y is the Yukawa coupling

and H denotes the Higgs �eld, φ = 1√
2
(V +H, 0)T . For the leptons the Yukawa

coupling is a 3x3 diagonalized matrix, but for the quark sector the story is more

complicated. Since the Yukawa interactions from down type quarks ψ̄′
L
q Y φψ

′R
dq

conserves hypercharge it is gauge invariant, but as the Yukawa interaction for

uptype quarks ψ̄′
L
q Y φψ

′R
uq does not conserve hypercharge they are not permit-

ted. Therefore we introduce the charge conjugate of the Higgs �eld to remedy

this, φ̃ = iτ2φ = 1√
2
(0, V +H)T [1].

LqH = −Ψ̄′
L
pY pqφψ

′R
uq − Ψ̄′

L
pY pqφ̃ψ

′R
dq + h.c.

= −Ψ̄′
L
pM

u
pqψ
′R
uq − Ψ̄′

L
pM

d
pqψ
′R
dq

− Ψ̄′
L
p

Mu
pq

V
ψ′
R
uqH − Ψ̄′

L
p

Md
pq

V
ψ′
R
dqH + h.c.

(2.1.4)

Where Mu,d = Y u,dV√
2

is the mass matrix which determines the mass for up type

and down type quarks. These matrices are not diagonalized so we introduce

a unitary transformation matrix ULψ
†
MψU

R
ψ = Mdiag, which transforms the

gauge eigenstate into the mass eigenstateψ′L,R = UL,Rψ ψL,R. As it turns out

this introduction of the unitary matrix has some interesting consequences when

it comes to the charged current weak interaction, which only a�ect the left

handed particles.

Lcc =
−g√

2

(
ūLULu γ

νWνU
L
Dd
′L + h.c.

)
=
−g√

2

(
ūLV γνWνd

′L + h.c.
) (2.1.5)
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Here, V ≡ ULu
†
ULd is known as the "Cabibbo-Kobayashi-Maskawa" matrix which

determines the mixing between the top type quarks.

2.2 MSSM

The Minimal Supersymmetric Standard Model is the simplest supersymmetric

extension of the standard model, and is constructed by replacing every stan-

dard model �eld with a supermultiplet. Since the supersymmetry transforms a

fermion into a boson or a boson into a fermion [3]

Q |Fermion〉 = |Boson〉

Q |Boson〉 = |Fermion〉
(2.2.1)

the supermultiplet collects the pairs which transform into each other. Then for

every scalar and spinor �eld we will introduce a chiral super�eld, and for every

vector �eld similarly a vector super�eld.

(νLi)→ (νLi , ν̃Li) (2.2.2)

This doubles the number of existing particles in the standard model, while

keeping the existing interactions between the SM particles unchanged. An-

other strength of this approach is that the superpartners of the SM particles

all transform equivalently under gauge transformations GSM . The Higgs sector

introduces a second Higgs, as we cannot charge conjugate the Higgs �eld to

generate mass for the down type quarks and the charged leptons as mentioned

in the previous section. As such the SM Higgs potential is transformed from

φ → φu and φ̃ → φd. When we construct the supersymmetric lagrangian, we

will consider the gauge symmetries and the superpotential as the set of inter-

actions allowed by the model. The gauge groups are maintained from SM and

the super potential is of the form[3]

WMSSM = ÛY uQ̂Ĥu − D̂Y dQ̂Ĥd − ÊY eL̂Ĥd + µĤdĤu (2.2.3)

The lagrangian density for a fully normalizable supersymmetric theory is then

determined by Lgauge and Lchiral. The gauge transformations for vector super-
�elds are:

Aaµ → Aaµ + ∂µΛa + gfabcAbµΛc

λa → λa + gfabcλbΛc
(2.2.4)
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Particles Super�elds spin 0 spin 1/2 SU(3)⊗SU(2)⊗U(1)
squarks, quarks Q̂ (ũL, d̃L) (uL, dL) (3,2, 1

6 )

u= u, c, t Û ũ∗R u†R (3̄,2,− 2
3 )

d= d, s, b D̂ d̃∗R d†R (3̄,2, 1
3 )

sleptons, leptons L̂ (ν̃, ˜̀
L) (ν, `L) (1,2,− 1

2 )

` = e, µ, τ ; ν = νe, νµ, ντ Ê ˜̀∗
R `†R (1,1, 1)

Higgs, higgsinos Ĥu (H+
u ,H0

u) (H̃+
u , H̃0

u) (1,2, 1
2 )

Ĥd (H0
d,H

−
d ) (H̃0

d, H̃
−
d ) (1,2,− 1

2 )

Table 2.2.1: The chiral supermultiplets in MSSM and their gauge group repre-

sentation.

Particles Super�elds spin 1/2 spin 1 SU(3)⊗SU(2)⊗U(1)
gluino, gluon Ĝa g̃ g (8,1, 0)

wino, W bosons Ŵ i W̃±, W̃ 0 (W±,W 0) (1,3, 0)

bino, B bosons B̂ B̃0 B0 (1,1, 0)

Table 2.2.2: The gauge supermultiplets in MSSM and their gauge group repre-

sentation.

Where Aµ is a massless gauge boson �eld, fabc is the totally antisymmetric

structure that de�nes the gauge group and λa is a two component Weyl fermion

gaugino. The on-shell degrees of freedom associated with the two �elds amounts

to 2 fermionic helicity and 2 bosonic states. But for the o�-shell degrees of free-

dom, the weyl fermion has 2 complex degrees of freedom (4 real degrees) where

as the gauge boson only has 3 degrees; as such we introduce a real bosonic aux-

iliary �eld Da so the theory becomes consistent o�-shell. Da can be expressed

fully in terms of scalar �elds, Da = −g(φ∗T aφ), where T a is the gauge group

generator. This auxiliary �eld does not have any kinematic terms, is of dimen-

sion [mass]2 and can be eliminated from the on-shell calculations by considering

the trivial solution to the equation of motion Da = 0. The lagrangian density

for each gauge group is then also determined by a, which runs from 1-8 for

SU(3)c, 1-3 for SU(2)L and 1 for U(1)Y .

Lgauge =− 1

4
F aµνF

µνa + iλ†aσ̄µ∇µλa +
1

2
DaDa

F aµν =∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν

(2.2.5)
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The Chiral super�eld's free particle lagrangian takes is of the form:

Lfree = −∂µφ∗i∂µφ+ iψ†
i
σ̄µ∂µψi + F ∗iFi (2.2.6)

Where Fi is an auxiliary �eld, φ is a complex scalar �eld and ψ is a lefthanded

Weyl fermion �eld. The transformation of these chiral �elds which keep the free

lagrangian invariant are

φi →φi + εψi

(ψi)α →(ψi)α − i(σµε†)α∂µφi + εαFi

Fi →Fi − iε†σ̄µ∂µψi

(2.2.7)

The interaction lagrangian is then determined by the interaction between the

�elds.

Lint = −1

2
W ijψiψj +W iFi + c.c (2.2.8)

The most general non-gauge interactions of chiral multiplets are determined by

the superpotential, as both W i and W ij are de�ned as derivative of the super

potential with respect to the scalar �elds.

W ij =
δ2

δφiδφj
W

W i =
δW

δφi

(2.2.9)

The combination of Lfree +Lint contains additional auxiliary �eld terms which

determines the equations of motion F ∗i = −W i and Fi = −W ∗i, and can

therefore be expressed algebraically in terms of the scalar �elds. We can chose

to express WiW
i as a scalar potential, V (φ, φ∗), given in terms of the super

potential to further simplify the lagrangian. As such the total lagrangian for

the chiral �elds becomes[3]:

Lchiral = −∂µφi∗∂µφ+ iψ†
i
σ̄µ∂µψi −

1

2
(W ijψiψj +W ij∗ψ†iψ

†
j )− V (φ, φ∗)

(2.2.10)

By combining the chiral and gauge lagrangian supplemented by mixed terms

which are una�ected by gauge transformations of the gauge and chiral �elds,

we obtain the MSSM lagrangian.

L = Lchiral+Lgauge−
√

2g(φ∗T aψ)λa−
√

2gλa†(ψ†T aφ)+g(φ∗T aφ)Da (2.2.11)
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R-parity is a property that all MSSM interactions have to ful�l. All interac-

tions must conserve R-parity, where we assign the value -1 to supersymmetric

partners, and the value 1 to SM particles. Thus in an interaction which includes

one supersymmetric particle in the initial state, the R-parity demands that there

is an odd number of supersymmetric partners in the �nal state. As an example

a process includes one initial SM particle and one initial supersymmetric part-

ner 1 × (−1) = (−1), the �nal state of the interaction must also conserve this

property. Therefore in a two body �nal state for this interaction one of the �nal

state particles has to be a SM particle and the other a supersymmetric partner.

2.3 See-saw Mechanism

The See-saw Mechanism is in principle a mathematical technique to explain why

we can detect neutrino �avour oscillations for the left handed neutrinos, and why

there exists a mass di�erence between the neutrinos and more massive standard

model particles eg. quarks or leptons. The simplest extension of the standard

model using this mechanism introduces three new massive right handed neutrino

�elds, which are una�ected by electroweak interactions[4]. The majorana mass

term in the extended standard model lagrangian for the right handed neutrinos

has the form:

LνRmajorana = −1

2
ψ̄NMRψN (2.3.1)

Where the ΨN is a mixed state of right handed neutrinos and the charged

conjugated right handed neutrino �eld, which can be shown to be a left handed

�eld.

ψN = ψRν + ψRCν (2.3.2)

In addition to this mass term you can introduce the dirac mass term.

Lνdirac = −ψ̄Rν
Y νv√

2
ψLν (2.3.3)

Now if we combine these terms into a lagrangian for the full neutrino mass

terms, we see that we construct a mass-matrix of the form:

Lνm = −(ψ̄Lν , ψ̄N )

(
0 MD

MD MR

)
(ψLν , ψN ) (2.3.4)
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To �nd the mass eigenstates we diagonalize this matrix.

λ(MR − λ)−M2
D = 0

λ2 −MRλ−M2
D = 0

(2.3.5)

Since the Majornana mass of the right handed neutrinos are signi�cantly larger

than the Dirac mass, we can use the limit MR �MD �nd the mass eigenstates

of the left handed neutrinos λ− and right handed λ+:

λ+ ≈MR

λ− =
MR −

√
M2
R + 4M2

D

2

(2.3.6)

By expanding the square root we gain:

MR

2

(
1−

√
1 +

4M2
D

M2
R

)
=
MR

2

(
1− 1− 2

M2
D

M2
R

)
= −M

2
D

MR
(2.3.7)

By varying the value of MR we can e�ectively reduce the mass eigenstate of

the left handed neutrino as low as we want, hence the name: The see-saw

mechanism. We can now re-express this mass eigenstate as:

mν = −mD
1

MR
mT
D (2.3.8)

2.4 Stau mixing

Stau mixing follows directly from the associated high mass of the stau[5]. It

is the only slepton with a signi�cant mixing between the right handed and left

handed states. Unlike the SM analogue-fermions present in MSSM whose masses

are generated from the superpotential Yukawa interaction, the Slepton's mass is

generated from 4 distinct mass terms: Superpotential terms, soft SUSY breaking

scalar mass, soft SUSY breaking trilinear terms and D-mass terms. The soft

SUSY breaking trilinear terms are dependent on mixing terms between the left

and right handed states. The D-mass and soft SUSY breaking scalar mass terms

on the other hand contribute to the mass individually from both their left and

right states. The superpotential contains both mixing terms between the left

and right states. By collecting these terms, we can construct a mass matrix

containing all 4 of these contributions to the stau mass.

L 3 (τ̃ †L, τ̃
†
L)M2

τ̃ (τ̃L, τ̃L)T (2.4.1)
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WhereM2
τ̃ is constructed by the terms mentioned above:

M2
τ̃ '

(
m2
τ̃L

+m2
τ +D(τ̃L) mτ (−Aτ + µ cotβ)

ml(−Aτ + µ cotβ) m2
τ̃R

+m2
τ +D(τ̃R)

)
(2.4.2)

in whichm2
τ̃L

andm2
τ̃R

are results of the soft SUSY breaking scalar masses, which

are present regardless of whether or not electroweak symmetry is spontaneously

broken.

The SUSY breaking trilinear terms are of the form L 3 −(−Aτmτ )(τ̃ †Lτ̃R +

τ̃Rτ̃
†
L) generated from the terms in the lagrangian for the soft SUSY break-

ing interaction between the slepton and Higgs bosons. These terms are not

present if electroweak symmetry is unbroken; similarly the terms terms involving

τ̃ †Lτ̃R+h.c. generated from the super potential also disappear if EW-symmetry is

unbroken. As a result, the o� diagonal terms are absent if electroweak symmetry

is not spontaneously broken. The D-terms are of the form:

D(τ̃L) =M2
Z cos(2β)(−1

2
+ sin2θW )

D(τ̃L) =M2
Z cos(2β)(−sin2θW )

(2.4.3)

We now diagonalize the matrix to produce 2 mass states τ̃1,2 the in which τ̃1 is

de�ned as the lighter of the two.(
τ̃1

τ̃2

)
=

(
cos θτ̃ − sin θτ̃

sin θτ̃ cos θτ̃

)(
τ̃L

τ̃R

)
(2.4.4)

By substituting in for the D-terms in eq. 2.4.2 before we diagonalize, we can

obtain an expression for θτ̃ which determines the size of the mixing between the

left handed and right handed stau.

θτ̃ = tan−1

(
m2
τ̃L

+m2
τ +M2

Z cos(2β)(− 1
2 + sin2θW )−m2

τ1

mτ (−Aτ + µ tanβ

)
(2.4.5)
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2.5 Sphaleron processes

The standard model of particle physics is extremely reliable way of determining

electroweak (QFD) and strong (QCD) interactions through perturbation theory.

But additionally there are processes allowed, or rather not prohibited, by the

SM Lagrangian which violate many of the quantities conserved under interac-

tions arising from perturbative methods. The sphaleron is one such process, as

it is the classical set of solutions which minimizes the action and is therefore a

minimum of the Lagrangian, similar to a saddle point in that it is an inherently

unstable. Additionally since these processes do not conserve baryon and lepton

number, because they are not derived from perturbation theory, and therefore

they provide a unique mechanism for generating such a Baryon-lepton asymme-

try in the early universe. For temperatures in the range 1012GeV & T & 100GeV

sphaleron processes are in equilibrium[6]. This temperature regime lines up well

with the expected temperature expected from Leptogenesis. An example of one

such process would be three baryons interact to produce 3 anti-leptons, or one

quark into anti 2 quarks and one anti lepton.

Figure 2.5.1: One of the 12 possible baryon+lepton violating sphaleron processes. Figure

taken from [6]

15



Chapter 3

Cosmology

3.1 Entropy production

Entropy production in the early universe is fuelled by massive particles decay-

ing out of equilibrium, as there can be no net gain in entropy for a system in

equilibrium. This necessarily requires the particle to have decoupled from the

heat bath and maintain an abundance larger than that of the equilibrium abun-

dance, Y � YEQ. Take a particle species ψ, a long lived and non relativistic

particle which has decoupled from the heat bath and has a pre-decay abundance

of
nψ
s . The particle species' energy density is proportional to R

−3, but since the

radiation density is proportional to R−4, it grows relative to it by a factor of

R. Given the long lived nature of this particle species it will come to dominate

the energy density of the universe. As such when it decays, it will generate a

signi�cant amount of entropy. When the particle decays at time t ∼ τ since

decoupling (where τ is mean lifetime of the particle), at temperature T = TD

and the energy density of the universe, ρ ∼ ρψ = sYψmψ. Before the decay, the

temperature TD and lifetime of the particle is related by[7]:

H2(TD) ≡ H2
D ∼ Gρ ∼ YψT 3

D

mψ

m2
Pl

∼ τ−2 (3.1.1)

from which we can derive an expression for the temperature before decay:

TD ∼ 3

√
m2
Pl

Yψmψτ2
(3.1.2)
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Based on the assumption that the particle will decay into relativistic particles

which will rapidly thermalize, i.e. fall into thermal equilibrium. Assuming the

decays happen instantaneous, this decay then yields ρR the radiation density of

the universe after the decay of this massive particle.

ρR ∼ g∗T 4
RH (3.1.3)

Because of energy conservation the energy density per comoving volume before,

H2
Dm

2
Pl , and after this decay we can express TRH as:

TRH ∼ 4

√
H2
Dm

2
Pl

g∗
∼ 4

√
m2
Pl

g∗τ2
(3.1.4)

Now the ratio between the entropy before and the entropy after the decay is

expressed as

Safter
Sbefore

=
g∗R

3T 3
RH

g∗R3T 3
D

∼ 4

√
g∗
Y 4
ψm

4
ψτ

2

m2
Pl

(3.1.5)

In which S is the total entropy of the Universe. As a result of this, it appears

the Universe is reheated from the particle species decay.

Tafter
Tbefore

=
TRH
TD

= 3

√
Safter
Sbefore

(3.1.6)

Counter intuitively, in fact the temperature never increases, it only serves to

slow the temperature decrease which would be realized in the absence of ψ.

From this we can also �nd the relationship between the relative abundance Yχ

of other particles, before and after the decay, since the increase in entropy will

a�ect the relative abundance as Yχ =
Nχ
s [8].

Y afterχ =
1

∆
Y beforeχ (3.1.7)

where ∆ =
Safter
Sbefore

is the entropic dilution factor. For standard cosmology,

where there is no entropy production, ∆ = 1. For alternative models such as

Leptogenesis instances of entropy production may be required, and ∆ may be

take values larger than one in these cases, ∆ ≥ 1.

3.2 Big Bang Nucleosynthesis

The model Big Bang Nucleosynthesis explains the mechanics of how the lighter

elements (other than 1H) are produced after e+e− annihilation epoch. Of special
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importance is the temperature at the end of baryogenesis since it determines

the amount of particles which are able to overcome the coulomb potential and

bind into heavier elements. Consider a Nuclear statistical equilibrium[7],

nA = gA

(
mAT

2π

) 3
2

exp

(
µA −mA

T

)
(3.2.1)

where a non-relativistic particle species A(Z), with mass number A and charge

Z, has the chemical potential µA. This equation also holds for both neutron

and protons individually. If the nuclear reaction rate which produces A out of

interactions between Z protons and (A-Z)neutrons exceeds the expansion rate

of the Universe, we maintain a chemical equilibrium. In this equilibrium the

chemical potentials are related by:

µA = ZµP + (A− Z)µn (3.2.2)

Which can be expressed in terms of neutron and proton number densities, and

substituted into 3.2.1 in addition to the binding energy of a nucleon.

BA ≡ Zmp + (A− Z)mn −mA (3.2.3)

Then we obtain an expression for the number density of a nucleon.

nA = gAA
3
2 2−A

(
2π

mN

) 3(A−1)
2

nZp n
A−Z
n exp

(
BA
T

)
(3.2.4)

It is useful to introduce the notation nN = nn+np+
∑
i(AinAi) for this section,

as the number fraction contributed by a speci�c nuclear species A(Z) is de�ned

as:

XA =
nAA

nN∑
i

Xi = 1
(3.2.5)

This fraction of a nucleon A(Z) in NSE is then found to be:

XA =gA[ζ(3)A−1π
(1−A)

2 2
3A−5

2 ]A
5
2

(
T

mN

) 3(A−1)
2

× ηA−1XZ
p X

A−Z
n exp

(
BA
T

) (3.2.6)

Where ζ(3) ' 1.2 is the Riemann-zeta function, and η ≡ nN
nγ

is the ratio between

the number of nucleons to the number of photons per comoving volume. We will
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now examine the initial conditions, and then consider the conditions necessary

for production of light elements during nucleosynthesis:

• Inital conditions (T � 1MeV, t � 1 sec): The ratio between the two

nucleons, the proton and the neutron, is crucial to the accuracy of the

model as the production of the 4He abundances absorb virtually all neu-

trons. Thus interactions which exchange neutron and proton numbers

(weak interactions)

n↔p+ e− + ν̄e

n+ νe ↔p+ e−

n+ e+ ↔p+ ν̄e

(3.2.7)

are of high importance as they maintain the thermal equilibrium between

the two nucleons species. By comparing the weak interaction rate against

the Hubble expansion parameter we can determine when these interactions

fall out of equilibrium. From [7] eq.(4.19) we can write a simple expression

which holds for T & me:

Γweak
H

∼ T

0.8MeV
(3.2.8)

This equation implies that at temperatures above 0.8 MeV, we can expect

the ratio between the nucleons to mirror the equilibrium values of Xn '
Xp. Since the reaction rates for nuclear reactions above T ∼ 1 MeV are

also larger than the expansion rate one can maintain a nuclear statistical

equilibrium. For values closer to and below 0.8 MeV, the weak interactions

fall out of equilibrium and one expects to to generate an asymmetry in

the nucleon numbers. The fact that the nucleons did not coalesce into the

light elements until low temperatures can be attributed to nuclei with large

binding energy, e.g. 4He and 12C , do not fall into equilibrium abundance

of unity until the temperature reaches T ∼ 0.3 MeV and the high entropy

of the system,η � 1.

• T = 10MeV, t = 10−2 sec : The epoch is dominated by radiation and

takes place before the decoupling of the neutrinos from the heat bath and

the subsequent annihilation of e+e−. Additionally in this epoch the weak

interaction rates are signi�cantly larger than the expansion rate H, which

means the ratio between the neutrons and protons n
p closely matches the
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equilibrium value of 1. The lighter elements, e.g. 3He , fall into NSE but

the abundances are extremely small. This follows from the small value of

η = 10−9 and means that the NSE is dominated by neutrons and protons.

Xn, Xp ' 0.5

Xi = O(10−12 ∼ 10−126)
(3.2.9)

• T ' 1MeV, t = 1 sec : As the Universe moves towards this temperature

the neutrinos decouple from the heat bath and shortly after the e+e−

annihilate, this causes the entropy of the photons to increase signi�cantly.

This entropy transfer causes a relative temperature increase of the photons

to the neutrinos by a factor of (11/4)1/3. As the temperature lowers

even more, weak interactions freeze out (interaction rate lower than the

expansion rate of the Universe, Γweak
H < 1) and the ratio between neutrons

and protons reaches an equilibrium value of (n/p)freeze out ' 1
6 . As in the

�rst epoch, the light nuclear species still have small abundances compared

to the number density of the neutrons and protons in NSE. As the weak

interactions are still present but heavily suppressed, the ratio decreases of

n/p from 1/6 to 1/7.

Xp '
1

7

Xn '
6

7

Xi ' O(10−12 ∼ 10−108)

(3.2.10)

• T = 0.1 ∼ 0.3 MeV , t = 1 to 3 minutes : As the Temperature of the heat

bath approches 0.3 MeV, the 4He mass fraction becomes close to unity.

But the rate of the production of 4He is mainly limited by two factors: the

colomb-barrier suppression becomes signi�cant at this temperature, and

the number density of D, 3He and 3H which fuel the production are so

small at T∼ 0.5 MeV. This causes the density to fall below the NSE value.

It is �rst at T∼ 0.1 MeV that the abundances of these fuels are high enough

to maintain the NSE abundance of 4He. By the time the abundance of
4He becomes signi�cant, the coulomb-barrier suppression comes such a

factor that despite the binding energy of 12C and 16O being higher than
4He, the nucleosynthesis of these elements is suppressed signi�cantly. But

there is some production of Li which is valuable in determining limits on
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nucleosynthesis, as its production is strongly e�ected by abundances of D

and 4He.

The accuracy that BBN provides is responsible for some of the strongest

bounds on allowed masses/lifetimes for baryogenesis, and is especially sensitive

to the charge of these particles. Problematically for this thesis, the potential

Stau NLSP can create bound states with the heavier elements, e.g. 4Heτ−,

which can cause problems with overproduction of heavier elements if the life-

time is large enough[9, 10]. The mechanism responsible for the overproduction

is only possible in Catalyzed BBN (CBBN), in which bound states between

massive negatively charged particles X− and light nuclei is allowed. 6Li has

in Standard BBN (SBBN) a cross section of the interaction D+4He→ γ+6Li,

which is strongly suppressed compared to the other diagrams in SBBN as a

result of the production of a �nal state photon. In CBBN, the interaction of

D+4HeX− → X−+6Li does not have a �nal state photon as it is absorbed by

the charged particle, which manifests itself as a signi�cant increase in the cross

section of the order O(107) compared to the SBBN case. The BBN bounds are

included in all Graphs below to determine the viability of the NLSP candidate.

3.3 Baryogenesis

There are three basic conditions required to generating a baryon asymmetry

from an initially baryon symmetric state[7]:

• Baryon number violating processes: Naturally we want interactions which

produce some asymmetry between baryons and anti-baryons. If not the

current asymmetry would only re�ect the initial asymmetry in the uni-

verse.

• Charge Parity and Charge violating processes: Without C and CP vi-

olating processes inducing a preference for baryons or anti baryons, the

B-non-conserving reactions would produce baryons and anti-baryons at

the same rate. Thus there will be no produced asymmetry baryon num-

ber. To remedy this we have to include C and CP violating processes.

• Non-equilibirum interactions: While in thermal equilibrium, reactions

which produce asymmetry has an equal probability of being reversed be-

cause of CPT conservation. As such an additional condition is that the
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reactions which produce this asymmetry fall out of equilibrium, i.e. the

reaction rate is less than the expansion rate of the universe. This e�ec-

tively means that in the regime Γ
H < 1, the particles are less likely to

pair-annihilate and washing out produced asymmetry.

Leptogenesis is one such process which might be used to generate such an

asymmetry in the early universe. The sphaleron processeses, already present in

SM, are responsible for the baryon number violation. Non equilibrium decays

can arise from the expansion of the universe which is present in standard cos-

mology. Finally the massive right handed neutrinos' weak interactions violate

both C and CP.

3.4 Leptogenesis

Central to baryogenesis is the mechanism of asymmetry production [11].

ηB =
YB − YB̄

Yγ
(3.4.1)

This asymmetry is given by YB , YB̄ and Yγ , which are the baryon, anti-baryon

and photon abundances respectively. The mechanism of thermal Leptogenesis

is an e�ective way of producing such an asymmetry. Leptogenesis' strength lies

in the CP violating interaction of the heavy, right handed, majorana neutrinos,

which is the massive partners of the left handed neutrinos. When these massive

partners decay, as a result of their majornana nature they do not conserve lepton

number. Additionally sphaleron processes, which violate B+L (baryon + lepton

number) result in non-conservation of baryon number. As such an asymmetry

in the lepton number can be transferred to an asymmetry in the baryon number.

Neglecting the asymmetry production caused by the decay of N2,3 (simpli�ed

thermal Leptogenesis) the Boltzmann equations for the system can be written

as follows:

dNN1

dz
= −(D + S)(NN1 −Neq

N1) (3.4.2)

dNB−L
dz

= −ε1D(NN1 −Neq
N1)−WNB−L (3.4.3)

Where z = M1

T , and D & S are the decay and scattering rates per co-moving

volume.
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D,S =
ΓD,S
(Hz)

(3.4.4)

In addition the amount of right handed neutrinos and B-L asymmetry are

given as NN1
and NB−L. These quantities are all given for a comoving volume

containing one photon. The Hubble parameter is given by:

H '
√

8π3g∗
90

M2
1

MPl

1

z2
≈ 1.66g∗

M2
1

MPl

1

z2
(3.4.5)

Where g∗ = gSM = 106.75 is the total number of degrees of freedom, and

MPl = 1.22 × 1019GeV is the Planck mass. The degrees of freedom from N1

are disregarded, because in the preferred regime of strong washout the right

handed neutrinos are non-relativistic. An important variable of Leptogenesis is

how quickly the asymmetry is allowed to e�ciently be brought into equilibrium

by the washout processes. To determine if the washout is strongly or weakly

forcing the decay into an equilibrium state, we introduce a decay parameter K

[11].

K =
ΓD(z =∞)

H(z = 1)
=
m̃1

m∗
(3.4.6)

We can �nd the e�ective neutrino mass form formulas similar to the ones found

with the seesaw mechanism, but for �xed M1, as the other more massive neu-

trinos are disregarded in the simple model of Leptogenesis.

m̃1 =

(
m†DmD

)
11

M1
(3.4.7)

Where m̃1 can be shown to fall within the range of m1 ≤ m̃1 ≤ m3 [12]. With

the equilibrium neutrino mass of the order:

m∗ =
16π5/2√g∗

3
√

5

v2

MPl
' 1.08× 10−3eV (3.4.8)

The B-L asymmetry that remains when N1 freezes out can be converted into

the baryon asymmetry.

ηB =
asph
f

Nf
B−L (3.4.9)

Where asph = 28
79 amount of B-L asymmetry transferred to baryon asymmetry

by sphaleron processes, f = 2387
86 is the dilution factor by production of pho-

tons during Leptogenesis and Nf
B−L is the �nal value for the B-L asymmetry

produced during Leptogenesis. Nf
B−L can also be expresssed as[11]:

Nf
B−L =

3

4
ε1(M1, m̄

2
1)κf (m̃1,M1, m̄

2
1) (3.4.10)
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where ε1 the generated CP asymmetry, and κf is e�ciency factor. In general one

also has to consider how the lepton asymmetry is distributed among the lepton

�avours, but the suggested "one �avour" approach with assumed large mixing

angles for the left and right handed neutrinos is accurate to O(1) corrections.

3.5 Timeline of Leptogenesis

Its useful to construct a timeline of events to better get an understanding of at

what temperature regimes the di�erent steps of Leptogenesis takes place. T is

the temperature of the heatbath andM1 is the mass of the lightest right handed

neutrino.

• T � M1: Interactions and decays in the early universe serve to produce

some initial abundance of massive right handed neutrinos, where we will

only be considering the lightest N1[11]. As the temperature lowers, N1

will start to decay and the inverse decays will push it into a thermal equi-

librium. These interactions are described by a set of Boltzmann equations

in chapter 3.4. The initially produced B-L asymmetry from the N1 decay

is quickly washed out because of the washout interactions, which will be

described further in chapter 3.6.

• T>M1: The equilibrium density of N1 slowly decreases as N1 slowly be-

come more non-relativistic and the inverse decays less likely as a result of

change of temperature.

• T'M1: Around z ' 3−8, where z is de�ned as the ratio between neutrino

mass and the temperature of the heat bath N1

T , the neutrinos become fully

non-relativistic. Therefore the generated B-L asymmetry is less likely to

be washed out by inverse decays and scattering interactions (particularly

the ∆L = 2) as they are sensitive to the high mass of the N1. Since this

region is where the majority of the asymmetry is produced, we can de�ne

TB = M1

z'(3−8) as the temperature of Baryogenesis.

• T<M1: At temperatures this low the interactions between N1 and the

heat bath becomes so unlikely that it decouples from the heat bath. As

the temperature becomes even lower the neutrinos freeze out, as freeze

out occurs as the interaction rate becomes lower than the expansion rate

of the universe Γ
H < 1, and the produced B-L asymmetry becomes �xed.
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3.6 Washout

Washout is a collective term for all interactions which reduce and/or change the

total asymmetry produced between a particle's decay and freeze out[11]. Since

the out of equilibrium decay of a heavy right handed neutrino would produce

some asymmetry in the lepton number, the strength of the washout, and how

quickly the asymmetry is pushed back into equilibrium, becomes important.

From eq.3.4.6 we can determine in which region of washout we are in. For strong

washout regime K& 3 the N1 decays are quickly brought into equilibrium, and

forK < 1 we are in the weak washout regime whereN1 is much slower at pushing

the system into a equilibrium. We can determine the washout by looking at the

∆L = 1, 2 scattering processes as well as the inverse decay channels to determine

how much asymmetry is produced during Leptogenesis. The washout for the

right handed heavy neutrino decay process can be separated into two functions

describing the behaviour of either decay, inverse decay and ∆L = 1 scatterings

dependent on m̃1 or ∆L = 2 scatterings dependent on the heavy neutrino masses

M1.

W (z) = Wo(z; m̃1) + ∆W (z;M1m̄
2) (3.6.1)

In the low temperature limit ∆W (z;M1m̄
2) becomes expressable as a function

of M1, m̃1 and z [11].

∆W (z;M1m̄
2) ' ω

z2

(
M1

1010Gev

)( m̄
eV

)2

(3.6.2)

where ω ' 0.186 is a dimensionless constant. For values of z > zB no asymmetry

is produced, and we can introduce a dampening factor on the e�ciency factor.

κ̄f (m̃1,M1m̄
2) = κf (m̃1)e

−
∫∞
zB

∆Wdz
(3.6.3)

Keep in mind the κf (m̃1) is the e�ciency factor in the regime where M1 is

su�ciently small such that the contribution from the ∆W term is negligible.

For zB large enough, we can substitute in the lower energy limit and obtain:

κ̄f (m̃1,M1m̄
2) = κf (m̃1)e

− ω
zB

( M1
1010Gev

)( m̄eV )
2

(3.6.4)

Where zB is the local minimun for the integral given in the exponential 3.6.3,

which generates the peak value for κf . Since zB = M1

TB
we can interpret TB

as temperature of baryogenesis, the point at which the neutrinos are full non-

relativistic.
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The decay channels of the extended SM neutrino:

• Decay and inverse decay: N1 ↔ lφ, N1 ↔ l̄φ̄

• ∆L = 1 scatterings: N1l↔ t̄q, N1 l̄↔ tq̄, N1t↔ l̄q, N1t̄↔ lq̄

• ∆L = 2 scatterings : ll↔ φ̄φ̄, l̄l̄↔ φφ and lφ̄↔ l̄φ

The ∆L = 2 scattering interactions are mediated by the massive right handed

neutrinos, and are therefore sensitive to their masses, M1,2,3.

For K ' 3, the strong washout regime, the inverse decays quickly lower

temperature of the right handed neutrinos to non-relativistic energies[6]. Ad-

ditionally, since the decay and inverse decay are so strong, the number of neu-

trinos quickly fall into equilibrium and washout any initial asymmetry present

before Leptogenesis. As a result, the strong washout regime has a negligible de-

pendence on initial conditions. The e�ciency factor (3.6.3) is strongly peaked

around zB � 1, which in turn implies that the majority of the asymetry is

produced around the temperature of baryogenesis TB .

3.7 CP-asymmetry

Charge parity asymmetry is a trait some interactions/decays have, if the pos-

sible CP �nal states have a non equal probability to occur. The CP violation

arises from interference of loop diagrams with tree level[13]. These corrections

can be assumed to be of the order αN , where α is the coupling parameter for

the loop particles, and N is the number of loops in the lowest order diagram

which interferes with tree level to produce ε 6= 0. The CP-asymmetry gener-

ated by right handed neutrino decays arise from tree level and one order loop

corrections of the two �nal states lφ and l̄φ̄. Assuming standard mass hierarchy

for the massive neutrinos of extended SM, i.e. M1 �M2,3, the CP-asymmetry

generated by heavy neutrino decay can be expressed as[13, 14]:

ε =
Γ(N1 → lφ)− Γ(N1 → l̄φ̄)

Γ(N1 → lφ) + Γ(N1 → l̄φ̄)
(3.7.1)

The maximal asymmetry from N1 decays can then be found by considering
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tree level and lepton-higgs interactions to obtain the simple expression [11, 15]

εmax1 (M1, m̃1,m1) =
3

16π

M1

v2
(m3 −m1) (3.7.2)

If one chooses to express m̄2 as a function of m1, matm and msol you can

simplify the expression such that for m1 = 0 the maximal CP asymmetry is

only dependent on M1. For m1 ≥ 0 we introduce the function β(m̃1,m1) ≤ 1

which is maximized for the limit m1

m̃1
→ 0.

β(m1) =
m3 −m1

matm
(3.7.3)

εmax1 (M1, m̃1,m1) = εmax1 (M1)β(m̃1,m1) (3.7.4)

Setting β = 1 and assuming m3 ' matm:

εmax1 (M1) =
3

16π

M1matm

v2
(3.7.5)

where κf (m̄1) is the e�ciency factor for low M1 masses where the ∆W term is

negligible.
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Chapter 4

Limits on entropy production

4.1 Maximal ηB

We now want to �nd the maximal value of ηmaxB with respect to M1[6]. By

di�erentiating ln ηB we obtain the peak value with respect to the heavy neutrino

mass:
d ln ηB
dM1

= 0 (4.1.1)

Using the identity above and Equation (3.4.9), substituting for ε1 and κf , we

�nd an expression:

d lnM1

dM1
−
d
(
ω
zB

) (
M1

1010Gev

) (
m̄
eV

)2
dM1

= 0 (4.1.2)

Which after some simpli�cation yields an equation easily reducible to express

M1 (
ω

zB

)(
M1

1010Gev

)( m̄
eV

)2

= 1 (4.1.3)

Solve for M1, assume m̄1 ' matm ' m3 and ω ' 0.186:

M1 =
zB
ω

(
eV

m̄

)2

1010GeV = 2× 1013zB

(
0.05eV

m3

)2

GeV (4.1.4)
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Then we substitute this value for M1 into (3.4.9) to obtain a new expression for

ηmaxB , only dependent on κ, m3 and zB :

ηmaxB =
asph
f

3

4

3

16π

M1m3

v2
κf (m̃1)e

− ω
zB

( M1
1010Gev

)( m̄eV )
2

' 10−2 3

16π

2× 1013

1762
5× 10−11zB

(
0.05eV

m3

)
κf (m̃1)e

−0.186
(

2×103

400

)

' 8× 10−6zBκf (m̃1)

(
0.05eV

m3

)
(4.1.5)

with v = 174GeV. Now we can determine how large the range for the baryon

asymmetry can be, by considering zB and κf . The value zB can be found for

any given K by the approximation in eq.4.1.6 below[11].

zB ' 1 +
1

2
ln

(
1 +

πK2

1024

[
ln

(
3125πK2

1024

)]5
)

(4.1.6)

For the upper bound of zB we �nd m̃1 ' matm yielding zB ' 8. For m̃1 '
msol we �nd zB ' 8. Where the matm and msol are the measured masses

for atmospheric and solar neutrinos respectively. For the lower limit on strong

washout, K ' 3 m̃1 ' 3× 10−3eV and zB ' 3. This gives a mass range for the

max value of M1, for �xed mass for m3 = 0.05:

M1(zB ' 8) ' O(1014)Gev

M1(zB ' 6) ' O(1014)Gev

M1(zB ' 3) ' O(1013)Gev

(4.1.7)

Now using �gure. 9 in [11] for Mh ' 125GeV, we �nd the expected e�ciency

factors for the given value of m̃1.

κf (m̃1 = matm) ' 5× 10−3

κf (m̃1 = msol) ' 3× 10−2

κf (m̃1 = 3× 10−3eV) ' 0.17

(4.1.8)

The maximal value for for the baryon asymmetry, ηmaxB , can then be found to

have the values:

ηmaxB (κf ' 5× 10−3, zB ' 8) ' 6× 10−8

ηmaxB (κf ' 3× 10−2, zB ' 6) ' 5× 10−7

ηmaxB (κf ' 0.17, zB ' 2) ' 3× 10−6

(4.1.9)
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These values di�er as expected from the equation given in [8] since they do not

take into account the dampening e�ect of ∆W .

ηmaxB (κf ' 5× 10−3,M1 ' O(1014)GeV) ' 1.3× 10−6

ηmaxB (κf ' 3× 10−2,M1 ' O(1014)GeV) ' 8× 10−6

ηmaxB (κf ' 0.17,M1 ' O(1013)GeV) ' 5× 10−6

(4.1.10)

4.2 Late time entropy production from the baryon

asymmetry

To determine the entropy production generated between the decay of the heavy

neutrino and the surface of last scattering, we compare the asymmetry measured

from the Cosmic Microwave Background Radiation and the ones found in the

previous section. The ηCMBR
B is found experimentally and becomes the lower

bound on allowed CP asymmetry[6].

ηCMBR
B = (6.3± 0.3)× 10−10 (4.2.1)

The asymmetry is reduced by a factor of ∆, the entropy dilution factor, from

the peak of asymmetry produced until the current measurable value of ηCMBR
B .

ηpeakB = ∆−1ηCMBR
B (4.2.2)

This does also strictly imply there exists a lower bound on the entropy produc-

tion after the heavy neutrinos have decayed in the early universe, if one found

ηCMBR
B = ηpeakB then there is no entropy production present. In addition since

there are no mechanisms to account for negative entropy generation, this con-

dition becomes the lower bound on entropy production. We can now �nd the

entropy measure ∆ by using eq. 3.1.7.

∆sol =
ηmaxB (κf ' 5× 10−3, zB ' 8)

ηCMBR
B

' 6× 10−8

6.3× 10−10
' 102

∆atm =
ηmaxB (κf ' 3× 10−2, zB ' 6)

ηCMBR
B

' 5× 10−7

6.3× 10−10
' 8× 103

∆peak =
ηmaxB (κf ' 0.17, zB ' 2)

ηCMBR
B

' 3× 10−6

6.3× 10−10
' 5× 104

(4.2.3)

The ∆peak value matches well with the assumption stated in [8], which found the

upper bound of ∆ < 2×104 for the case of hirarical neutrinos andM1 > 4×1013.
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Keep in mind the equation used to calculate these values in reference [8] uses

a linear approximation, and as such does not take into account the dampening

factor from washout from eq. 3.6.4, and is therefore inaccurate for ∆sol and

∆atm when considering the strong washout regime.

4.3 MSSM extension of Leptogenesis

When going from extended SM to the Minimal Supersymmetric Standard Model

there are a couple of problems we need to consider. Firstly, by adding the su-

persymmetric parter of the massive right handed neutrino, the sneutrino, we

need to consider the new decay, inverse decay and ∆L = 1, 2 interactions for

the sneutrino that could produce a lepton asymmetry. Supplementary decay

processes such as Ñ → φ̃l or Ñ → φ̃∗ l̄ also contribute to the lepton asymmetry;

chapter 4.3.1 includes these decay and inverse decays. Secondly, we have to

look at the already existing interactions that generate CP-asymmetry[14], for

example MSSM corrections to N → lφ seen in the �g.4.3.1.

Figure 4.3.1: Supersymmetric corrections to the decay N1 → lH which contributes to the

genetration of CP asymmetry. Taken from ref.[14]

The immediate problem is that the washout terms ∆L = 1, 2 become strictly

harder to compute, especially since the technique of separating into terms pro-

portional to m̃1 and M1 becomes di�cult. This is because the additional

washout processes may include further mixing between the MSSM particles not

present in SM. Since we wish to avoid such complications, we chose a simple
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extension by assuming that the washout in the MSSM extension is identically

separable just like in SM.

W (z) = WSM (z; m̃1,M1) +WExtended(z; m̃1, M̃1)

= Wo(z; m̃1) + ∆W (z;MN1) + ∆W (z;MÑ1
)

(4.3.1)

Keep in mind that the ∆W terms describe the individual ∆L = 2 interactions

for both the sneutrino and the neutrino with no interference terms, i.e. we as-

sume that for at large temperatures the ∆L = 2 loop corrections are negligible.

Additionally, we can predict that the washout will act similarly at low temper-

atures, the interactions which dominate in SM also similarly dominate for the

extension into MSSM. As such, the approximation used in 3.6.2 can hold for the

sneutrino washout as well. We now extend the e�ciency factor, from eq.3.6.3,

with an additional term in the dampening factor for the sneutrino.

κ̄f (m̃1,M1m̄
2) = 2κf (m̃1)e

−
∫∞
zB

∆WN1
+∆WÑ1

dz
(4.3.2)

We will assume that κf for low energies, where the ∆W terms are negligible,

will be increased by a factor 2 directly following from the relation between decay

width of the neutrino and sneutrino, ΓN = ΓÑ . This equality demands that

the ∆L = 1 interactions are of the same order for both the sneutrino and the

neutrino. By also assuming that the masses of the neutrinos are equal, since the

supersymmetric corrections are small compared to their mass, mN1
≈ mÑ1

,we

can simplify eq.4.3.2 [16].

κ̄f (m̃1,M1m̄
2) = 2κf (m̃1)e

−2 ω
zB

( M1
1010Gev

)( m̄eV )
2

(4.3.3)

Now that we have an expression for the e�ciency factor, the next problem is the

CP asymmetry. With the extention into MSSM, we introduce new correctional

terms to the already existing decays as seen in �gure 4.3.1, as a consequence

we also must consider the diagrams leading to CP-violation from the sneutrino

decay[14].

ε̃Nl =
ΓNl − ΓNl̄
ΓNl + ΓNl̄

, ε̃N
L̃∗

=
ΓNL̃ − ΓNL̃∗

ΓNL̃ + ΓNL̃∗

ε̃Ñ
∗

l =
ΓÑ∗l − ΓÑ l̄
ΓÑ∗l + ΓÑ l̄

, ε̃Ñ
L̃

=
ΓÑL̃ − ΓÑ∗L̃∗

ΓÑL̃ + ΓÑ∗L̃∗

(4.3.4)

where the �rst two equation takes care of the CP asymmetry generated by N1

decays, and the remaining two the Ñ1. It is bene�cial to express the total
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CP-asymmetry:

ε̃i = ε̃Nil + ε̃Ni
L̃∗

+ ε̃
Ñ∗i
l + ε̃Ñi

L̃
= 4ε̃Nil (4.3.5)

Where ε̃Nil = 2εNii is taken from the SM asymmetry calculation. Now that we

have both of these measures, we can use eq 3.4.9 to calculate a new value for the

baryon asymmetry, but �rst we have to calculate the new peak mass for MN1

using eq 4.1.2.

MMSSM
N1

=
1

2
MSM
N1

(4.3.6)

This luckily enough cancels the factor of 2 added to the exponential in eq. 4.3.3

so the total e�ciency factor for MSSM gains a factor of 2, κMSSM = 2κSM .

Keep in mind, we also gain a factor of 1
2 , because of ηB = nB

s , as the entropy

density s is dependent on g∗ which is twice as large for MSSM, gMSSM
∗ = 2gSM∗ .

We now substitute these into 3.4.9 to obtain the MSSM values for the baryon

asymmetry.

ηMSSM
B =

1

2

asph
f

3

4
εMSSM
1 (MMSSM

1 )κMSSM
f (m̃1)e

−2 ω
zB

(
MMSSM1
1010Gev

)
( m̄eV )

2

=
1

2

asph
f

3

4
8εSM1 (

MSM
1

2
)2κSMf (m̃1)e

−2 ω
zB

(
MSM1

2×1010Gev

)
( m̄eV )

2

= 4ηSMB

(4.3.7)

So to �nd the corrected dilution factor ∆MSSM for the MSSM extension, we

substitute into eq.3.1.7.

∆sol =
4× ηmaxB (κf ' 5× 10−3, zB ' 8)

ηCMBR
B

' 24× 10−8

6.3× 10−10
' 4× 102

∆atm =
4× ηmaxB (κf ' 3× 10−2, zB ' 6)

ηCMBR
B

' 20× 10−7

6.3× 10−10
' 3× 104

∆peak =
4× ηmaxB (κf ' 0.17, zB ' 2)

ηCMBR
B

' 12× 10−6

6.3× 10−10
' 2× 105

(4.3.8)

Further discussion of the assumptions used in this chapter are included in Ap-

pendix A.

4.3.1 MSSM spesi�c interactions

The new interactions from extending to MSSM include the decay channels for

Ñ1, and introduce additional decay terms to N1 decays:
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• Decay and inverse decay for Ñ1: Ñ1 ↔ l̃φ, Ñ1 ↔ lφ̃, Ñ1 ↔ l̃∗φ̄, Ñ1 ↔ l̄φ̃∗

• Decay and inverse decay for N1: N1 ↔ lφ, N1 ↔ l̃φ̃, N1 ↔ l̄φ̄, N1 ↔ l̃∗φ̃∗

We also gain new interactions in the ∆L = 1, 2 processes similar to the ones

added in the decays and inverse-decays.

4.4 Stau relic density calculations

Within MSSM one usually considers two di�erent candidates for the Next Light-

est Supersymmetric Particle (NLSP), the stau τ̃ and the lightest neutralino χ0
1.

In this thesis we will only consider the stau candidate. By using the numer-

ical package micrOMEGAs to calculate the Ω0 we can �nd the expected relic

abundance for the stau measured today for ∆ = 1 as micrOMEGAs does not

consider entropy production scenarios. [17]. The main stau decay we care about

is the τ̃ → τΨ3/2 channel, since it gives us an easy way to calculate the lifetime

of the stau from only a few parameters, speci�cally m3/2 and mτ̃ [18].

Γ2-Body
τ̃ =

m5
τ̃

48πm2
3/2MPl

×

(
1−

m2
3/2

m2
τ̃

)4

(4.4.1)

WhereMPl is the reduced planck mass, m3/2 is the mass of the gravitino andmτ̃

is the mass of the stau. This requires terms dependent on mτ to be negligible

compared to the mass of the gravitino , m3/2. We can now �nd a value of the

lifetime for this interaction by using the simple relation τ2-Bodyτ̃ = 1

Γ2-Bodyτ̃

.
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Chapter 5

Stau NLSP

5.1 Lifetime considerations

Since the lifetime of the stau is sensitive to the gravitino mass we can locate

a region which ensures that the decays do not happen late enough to impact

the aboundances of hadronic elements created during BBN. By using bounds

found in ref [9] for stau masses of the order 300GeV, using eq. 4.4.1 to calculate

the gravitino lifetime and �nally converting from relic density of stau Ωτ̃ to the

abundance Yτ̃ using eq. 5.1.1 [19], we can determine which combinations of

yields and lifetimes which can be excluded from BBN considerations.

Ωχh
2 =

s(T0)h2

ρc
MχYχ(T0) = 2.742× 108 Mχ

GeV
Yχ(T0) (5.1.1)

where s is the current entropy density, h is the uncertainty in the Hubble rate

and χ denotes the particle species considered. It is important to note that this

equation only holds for Yχ ≡ nχ
s . Where as the equation under is valid for

Y ′χ ≡
nχ
nγ
:

Ωχh
2 = 2.742× 108 Mχ

GeV
Yχ(T0) = 3.91× 107 Mχ

GeV
Y ′χ(T0) (5.1.2)

Where the s in Yτ̃ is the entropy density after e± annihilation-epoch, s ≈ 7nγ .

The biggest constraint on Yτ̃ is the overproduction of
6Li from the larger masses

of the gravitino. For the lower masses, the main constrain on the abundance is

the p ↔ n conversion which is sensitive to pion density, produced through tau

decays.
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Figure 5.1.1: Graphs with yields found by micrOMEGAs' against the lifetime found from

eq.4.4.1 for �xed gravitino mass (plotted from left to right) 0.1GeV, 1GeV, 10GeV and 100GeV.

Any point of the generated set (red) which falls above or to the right of the BBN bounds (blue)

are not viable as candidates for NLSP.

We now plot the relic density of the stau Ωτ̃ against the lifetime of the stau

ττ̃ , using micrOMEGAs to calculate the relic density of the stau. To obtain

these values, we constructed 700 generic MSSM models with the stau as the

choice for NLSP, which micrOMEGAs uses to determine decay widths of the

MSSM particles. It can then use these widths in addition to a set of Boltzmann

equations, as well as the interactions included in the generic MSSM models, to

determine the relic densitites.[17].

36



 [s]τ

­5
10

­4
10

­3
10

­2
10

­1
10 1 10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

 Y
× 

τ
m

­13
10

­12
10

­11
10

­10
10

­9
10

­8
10

­7
10

­6
10

­5
10

Lifetime

 [s]τ

­5
10

­4
10

­3
10

­2
10

­1
10 1 10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

 Y
× 

τ
m

­13
10

­12
10

­11
10

­10
10

­9
10

­8
10

­7
10

­6
10

­5
10

Lifetime

 [s]τ

­5
10

­4
10

­3
10

­2
10

­1
10 1 10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

 Y
× 

τ
m

­13
10

­12
10

­11
10

­10
10

­9
10

­8
10

­7
10

­6
10

­5
10

Lifetime

 [s]τ

­5
10

­4
10

­3
10

­2
10

­1
10 1 10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

 Y
× 

τ
m

­13
10

­12
10

­11
10

­10
10

­9
10

­8
10

­7
10

­6
10

­5
10

Lifetime

Figure 5.2.1: Graphs with yields found by using eq.5.2.1 against the lifetime found from

eq.4.4.1 for �xed gravitino mass (plotted from left to right) 0.1GeV, 1GeV, 10GeV and

100GeV.Any point of the generated set (red) which falls above or to the right of the BBN

bounds (blue) are not viable as candidates for NLSP.

5.2 Checking stau yields

With these plots we now compare the values to additional approximations found

in reference [9] and [20]. The yields found in [9], gives us a simple linear ap-

proximation.

Yτ̄ ' 7× 10−14 ×
( mτ̄

100GeV

)
(5.2.1)

The values found using this approximation matches fairly well with the values

calculated from micrOMEGAs. The variance of the abundance in the values

generated from micrOMEGAs is larger as the equation only linearly associates

the stau mass to the abundance. The relation in [20] is sensitive to wether the
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Figure 5.2.2: Graphs with yields found by using eqs.5.2.2 against the lifetime found from

eq.4.4.1 for �xed gravitino mass (plotted from left to right) 0.1GeV, 1GeV, 10GeV and 100GeV.

Any point of the generated set (red) which falls above or to the right of the BBN bounds (blue)

are not viable as candidates for NLSP.

stau is left or right handed, as such we have two relations to plot:

Yτ̃1=τ̃R = 1.59× 10−12
( mτ̃1

1TeV

)0.9

Yτ̃1'τ̃L = 1.07× 10−12
( mτ̃1

1TeV

)0.9
(5.2.2)

These values are yet again accurate to the generated micrOMEGAs set, but do

map more closely than the simple approximation.
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5.3 Plots using gaugino - NLSP mass relation

The next challange is �nding a lower bound on the gravitino mass as a function of

the stau mass. One can �nd one such lower bound by looking at the mechanism

of gaugino mediation. Since the lower bound found for the gaugino mass has

to be strictly larger than the NLSP mass, we can use this lower bound for the

stau[21]. (
m3/2

m1/2

)
min

=
8π
√
C√

3`D

(
M4

Mc

)D−4
D−2

(5.3.1)

Here, D is the number of extra dimensions above the energyscale Λ, `D is a

constant depending on the number of extra dimensions and Mc is mass scale

for compacti�cation. This equation gives us a tool to relate the mass of the

gravitino, m3/2, with the mass of the gaugino, m1/2, in such a way that we can

better determine the lifetime of the stau by substituting into eq.4.4.1. We will

now consider how choice of D and Mc a�ects the lifetime.

5.3.1 Stau yields for D=5

For the region we are interested in we choose Mc in the order of GUT scale

1016 ∼ 2 × 1016, with the chosen color red in Fig.5.3.1 to Fig.5.3.6. For this

region, the values of
(
m3/2

m1/2

)
min

corresponds to a range from 0.22 to 0.28. Com-

pared to lifetime generated by eq. 4.4.1, the range of lifetimes is much smaller,

and the range falls in the region of larger lifetimes 104 ∼ 106 seconds. Addition-

ally, of the points fall outside of the BBN bounds before adjusting for entropy

production, clearly visible in Fig.5.3.1,Fig.5.3.2 and Fig.5.3.3.

After adjusting for entropy production, Shown in Fig.5.3.4 to Fig.5.3.6, show

the majority of points for ∆ ' 2 × 105 still fall outside the allowed region for

BBN. The generated set from micrOMEGAs does not fall below the boundry in

the range of allowed values of lifetimes found from eq. 5.3.1. This is problematic,

as this is for the case of maximally allowed entropy production for MSSM allowed

by the method derived in this thesis. The two other approximations do not

bene�t signi�cantly from the entropy production either, and do also fall outside

of the allowed region.
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Figure 5.3.1: Graphs with yields found by micrOMEGAs against the lifetime dependent on

gravitino mass found from 5.3.1. From left to right, the ratio between gaugino and gravitino

given in eq. 5.3.1 determined for D=5: 0.22, 0.24, 0.26 and 0.28, and for D=6: 0.12, 0.14,

0.16 and 0.18. If any point of the D=5 set (red) and D=6 set (green) falls above or to the

right of the BBN bounds (blue) they are not viable as candidates for NLSP.

5.3.2 Stau yields for D=6

Considering the same region of compacti�cation Mc, as in Chapter 5.3.1, for

D=6 the region the values of
(
m3/2

m1/2

)
min

corresponds to a range from 0.12 to

0.18. The yields, marked with green in Fig.5.3.1 to Fig.5.3.6, still fall in the

disallowed region for all three approximations when not considering late time

entropy production. The results when taking the entropy production into ac-

count does push the region of high yields and short lifetimes into the allowed

region, as seen in Fig.5.3.4. For the region of 0.12 and 0.14, a notable third of

the points fall in the allowed region below the BBN constraints.
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Figure 5.3.2: Graphs with yields found by eq.5.2.1 against the lifetime dependent on grav-

itino mass found from 5.3.1. From left to right, the ratio between gaugino and gravitino given

in eq.5.3.1 determined for D=5: 0.22, 0.24, 0.26 and 0.28, and for D=6: 0.12, 0.14, 0.16 and

0.18. If any point of the D=5 set (red) and D=6 set (green) falls above or to the right of the

BBN bounds (blue) they are not viable as candidates for NLSP.

5.4 Discussion

Consider the lifetime dependent on gaugino mass found using eq. 5.3.1 compared

to the lifetime found with eq. 4.4.1. We can clearly see that the case of lifetime

dependent on the gaugino mass, does not �t well for the region of Mc ≈ 1 ∼
2 × 1016 and D = 5, as the abundances from micrOMEGAs do not fall in the

allowed region. This case marked with red in Fig.5.3.4 to Fig.5.3.6. Even for

the case of m3/2 ∼ 0.12 to m3/2 ∼ 0.18m1/2, for Mc ≈ 1 ∼ 2× 1016 and D = 6,

only a handful points with short lifetimes and high abundance cases become

allowed, marked with green in Fig.5.3.4 to Fig.5.3.6. Adjusting the Value of
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Figure 5.3.3: Graphs with yields found by using eqs.5.2.2 against the lifetime for dynamic

gravitino mass found from 5.3.1.From left to right, the ratio between gaugino and gravitino

given in eq. 5.3.1 determined for D=5: 0.22, 0.24, 0.26 and 0.28, and for D=6: 0.12, 0.14,

0.16 and 0.18. If any point of the D=5 set (red) and D=6 set (green) falls above or to the

right of the BBN bounds (blue) they are not viable as candidates for NLSP.

Mc for D = 5 yields no signi�cant change in the number of points found in the

allowed region until values of Mc ∼ 107GeV.
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Figure 5.3.4: Graphs with yields found by using micrOMEGAs against the lifetime depen-

dent on gravitino mass found from 5.3.1 and for ∆ = 2× 105 to account for late-time entropy

production. From left to right, the ratio between gaugino and gravitino given in eq. 5.3.1

determined for D=5: 0.22, 0.24, 0.26 and 0.28, and for D=6: 0.12, 0.14, 0.16 and 0.18. D=5

(red), D=6 (green) and BBN bounds (blue).

For Mc ∼ 107GeV for D = 6, the ratio between
(
m3/2

m1/2

)
min

reaches the

value of 0.05, and assuming that the points are adjusted towards the left by the

reduction in this ratio, pushes wast majority, roughly 2/3 below the BBN bound.

For the �xed gravitino masses, marked with red in Fig.5.1.1 to Fig.5.2.2, the

generated abundances fall well within the allowed region for gravitino masses

of 0.1GeV and 1GeV, both with and without taking entropy production into

account.

For the case of the gravitino mass between 10GeV to 100Gev, the abundances

with longer lifetimes fall within the disallowed region. A signi�cant amount of
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Figure 5.3.5: Graphs with yields found by eq.5.2.1 against the lifetime dependent on grav-

itino mass found from 5.3.1 and for ∆ = 2× 105 to account for late-time entropy production.

From left to right, the ratio between gaugino and gravitino given in eq. 5.3.1 determined for

D=5: 0.22, 0.24, 0.26 and 0.28, and for D=6: 0.12, 0.14, 0.16 and 0.18. D=5 (red), D=6

(green) and BBN bounds (blue).

points also fall above the BBN bound when adjusted for late time entropy

production. As the region of gravitino masses from 0.1 to 10 Gev seems to

yield a signi�cant region of allowed staus, even without adjusting for entropy

production, it stands to reason that one would expect a conservative value of

the gravitino mass to be above 10GeV. Consequently, it also seems reasonable

to assume the case of stau abundance from gravitino mass from eq.5.3.1 to yield

more valuable results compared to the simpli�ed yield from static gravitino

mass.

44



 [s]τ

­5
10

­4
10

­3
10

­2
10

­1
10 1 10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

 Y
× 

τ
m

­13
10

­12
10

­11
10

­10
10

­9
10

­8
10

­7
10

­6
10

­5
10

Lifetime

 [s]τ

­5
10

­4
10

­3
10

­2
10

­1
10 1 10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

 Y
× 

τ
m

­13
10

­12
10

­11
10

­10
10

­9
10

­8
10

­7
10

­6
10

­5
10

Lifetime

 [s]τ

­5
10

­4
10

­3
10

­2
10

­1
10 1 10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

 Y
× 

τ
m

­13
10

­12
10

­11
10

­10
10

­9
10

­8
10

­7
10

­6
10

­5
10

Lifetime

 [s]τ

­5
10

­4
10

­3
10

­2
10

­1
10 1 10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

 Y
× 

τ
m

­13
10

­12
10

­11
10

­10
10

­9
10

­8
10

­7
10

­6
10

­5
10

Lifetime

Figure 5.3.6: Graphs with yields found by eq.5.2.2 against the lifetime dependent on grav-

itino mass found from 5.3.1 and for ∆ = 2× 105 to account for late-time entropy production.

From left to right, the ratio between gaugino and gravitino given in eq. 5.3.1 determined for

D=5: 0.22, 0.24, 0.26 and 0.28, and for D=6: 0.12, 0.14, 0.16 and 0.18. D=5 (red), D=6

(green) and BBN bounds (blue).
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Chapter 6

Open issues

In this section we will brie�y discuss topics which fell outside of the scope of

this thesis. Initially, in the re-expression of Leptogenesis in MSSM, it became

apparent that the washout term dependent onM1 and m̃1, ∆W (M1, m̃1), could

not be easily expressed in the same way for the sneutrino. It is likely that the

interactions included in the washout would have to include terms with both the

sneutrino and the neutrino masses, and as such could not be expressed in the

same manner as in this thesis. In the SM scenario, the lower bound on the mass

of the lightest left handed neutrino is set to zero, m1 = 0 or β = 1, and since

the maximal CP asymmetry, eq.3.7.1, is directly dependent on the m1 mass, by

setting it to zero the equations are greatly simpli�ed, only dependent on M1 for

�xed m3 mass. This correction is not large, but this m1 contribution directly

reduces the maximal CP-asymmetry, in turn reducing the maximally allowed

baryon asymmetry.
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Chapter 7

Conclusion

In this thesis we have considered if late time entropy production can be utilized

to facilitate a stau NLSP with respect to BBN constraints. As a bound on the

amount of allowed entropy production we have considered the mass of the right

handed heavy neutrino and its super symmetric partner, the sneutrino, as their

decays are responsible for the majority of our chosen stau NLSP. We deter-

mined the amount of produced entropy by considering the decay of a massive

right handed neutrino from extended SM. This decay gave us a measure of the

baryon number density, ηB , which is dependent on the mass of the lightest right

handed neutrino M1. From this dependency, we determined the peak value of

M1 with respect to ηB , and calculated the di�erence between the CMBR value

to obtain the peak value of the entropy dilution factor. We extended the SM

Leptogenesis model to MSSM by considering the additional interactions intro-

duced, with the addition of the Sneutrino, we discovered an increase in the

upper bound of entropy production by a factor of 4.

The stau abundances, generated with mircOMEGAs, match well with the

abundances found by using methods in other papers [9] and [20]. The bounds

of BBN limit signi�cantly the set allowed particles with long mean lifetimes, as

such it is not surprising that for the majority of points for long lifetimes can be

disregarded. The region we should be interested in is then for high abundances

and shorter lifetimes. The plots with gravitino mass dependent on the gaugino

mass, ∆peak and D = 5, all fall above the BNN bounds invalidating the stau as
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an NLSP for D = 5. The same does not hold for the same case with D = 6,

where there exists a section of points which fall below the BBN bound, yielding

a region with an allowed Stau NLSP.
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Chapter 8

Appendix A

8.1 Assumptions to derive ηMSSM
B

Under is the list of assumptions used in chapter 4.3 to �nd ηMSSM
B :

• The boltzman equation for the MSSM extension of Leptogenesis is similar

for both the neutrino and the sneutrino:

dNN1

dz
= −(DN1

+ SN1
)(NN1

−Neq
N1

)

dNÑ1

dz
= −(DÑ1

+ SÑ1
)(NÑ1

−Neq
Ñ1

)

dNB−L
dz

= −ε̃N1 DN1
(NN1

−Neq
N1

)− ε̃Ñ1 DÑ1
(NÑ1

−Neq
Ñ1

)−WNB−L

(8.1.1)

where ε̃Ñ1 and ε̃N1 are CP violating terms for the sneutrino and neutrino

respectively.

ε̃Ñ1 = ε̃Ñ
∗

l + ε̃Ñ
L̃

ε̃N1 = ε̃Nl + ε̃N
L̃∗

(8.1.2)

• The e�ciency factor κ can be found by evaluating the integral derived

from the boltzmann equations in eq.8.1.1 [11, 15].

κ(z) =− 4

3

∫ z

zi

dz′
DN1

DN1 + SN1

dNN1

dz′
e−
∫ z
z′ dz

′′WN1
(z′′)

− 4

3

∫ z

zi

dz′
DÑ1

DÑ1
+ SÑ1

dNÑ1

dz′
e−
∫ z
z′ dz

′′WÑ1
(z′′) + F (mN1

,mÑ1
)

(8.1.3)

49



where F (mN1 ,mÑ1
) is the interference terms for the washout interactions

between the neutrino and the snautrino, and assumed to be negligible

compared to the size of the two integrals. Since the decay width and

scattering terms can be assumed to separately be of the same order, we

can once again can assume that these integrals also can be taken to be of

the same order, and so we gain a factor of 2.

κMSSM = 2κSM (8.1.4)

Valid when the ∆L = 2 corrections are neglected.

• For the CP asymmetry generated by the new processes introduced from

extension into MSSM, we can �nd[14]:

ε̃i = ε̃Nil + ε̃Ni
L̃∗

+ ε̃
Ñ∗i
l + ε̃Ñi

L̃
= 4ε̃Nil (8.1.5)

Where ε̃Nil is the MSSM CP asymmetry generated from the decay of the

neutrino into a lepton-higgs �nal state. The contribution to the asymme-

try from this decay can be separated into two di�erent style of diagrams,

radiative corrections and vertex corrections, represented in �g. 4.3.1a and

�g. 4.3.1b respectively.

ε̃Nil = ε̃Nil (wave) + ε̃Nil (vertex) (8.1.6)

The diagrams which contribute to radiative and vertex corrections are

doubled when going from SM to the MSSM, and by directly calculating

the set of asymmetries from eq. 4.3.4 we �nd contributions of the form[14]:

ε̃Nil (vertex) = − 1

8π

∑
k

g(yk)Iki

ε̃Nil (wave) = 2εNil (wave) = − 1

4π

∑
k 6=i

MiMk

M2
k −M2

i

Iki
(8.1.7)

Where is de�ned as g(x) = ln (1+x)
x . Now considering the other decay

channels for the neutrino and sneutrino the result is the contribution is

equal vertex and wave correction, are all of similar size.

ε̃Nil (wave) = ε̃Ni
L̃∗

(wave) = ε̃
Ñ∗i
l (wave) = ε̃Ñi

L̃
(wave)

ε̃Nil (vertex) = ε̃Ni
L̃∗

(vertex) = ε̃
Ñ∗i
l (vertex) = ε̃Ñi

L̃
(vertex)

(8.1.8)
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The CP asymmetry contriubtion from each of these corrections present in

MSSM is therefore twice the size, and one �nds the relation ε̃Nil = 2εNii .

As such we gain a total factor of 8 when considering the 3 additional

interactions which generate CP-asymmetry in the MSSM scenario.

• We need the strength of the total washout to be of the order similar to

the SM washout, O(WSM ) ' O(WMSSM ). Additionally, the washout

processes related to ∆L = 2 interactions have need to have negligible in-

terference terms between the neutrino and sneutrino, ∆W = ∆W (MN1
)+

∆W (MÑ1
).

• We require the low temperature limit of ∆W (MÑ1
) is similar to the neu-

trino limit found in eq. 3.6.2.
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