
A Generating Set Sear
h Method ExploitingCurvature and Sparsity�Lennart Frimannslundy Trond SteihaugzAbstra
tGenerating Set Sear
h methods are one of the few alternatives for optimising high�delity fun
tions with numeri
al noise. These methods are usually only eÆ
ientwhen the number of variables is relatively small. This paper presents a modi�-
ation to an existing Generating Set Sear
h method, whi
h makes it aware of thesparsity stru
ture of the Hessian. The aim is to enable the eÆ
ient optimisationof fun
tions with a relatively large number of variables. Numeri
al results show ade
rease in the number of fun
tion evaluation it takes to rea
h the optimal solution,sometimes by signi�
ant margins, on noisy as well as smooth problems, for a modestas well as a relatively large number of variables.Keywords: Nonlinear programming, derivative{free optimization, pattern sear
h,generating set sear
h, sparsity.1 Introdu
tionWe 
onsider the un
onstrained optimisation problemminx2Rn f(x); (1)where f : Rn 7! R. Suppose that f is only available asef(x) = f(x) + �; (2)where the error term � is either sto
hasti
 or numeri
al in nature. By numeri
al noise wemean the noise whi
h 
an arise from, for instan
e, the dis
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s, University of Bergen. E-mail: trond.steihaug�ii.uib.no
57



f requires 
omputing an integral, solving a di�erential equation or any other subproblemwhi
h is solved inexa
tly. The same input will always give the same output, but the fun
-tion will not be smooth. An example of su
h a fun
tion o

urs in [1℄, where the obje
tivefun
tion 
ontains an integral. The trun
ation error stemming from the 
omputation of theintegral makes the fun
tion look like the one in �gure 1. There is an underlying smoothfun
tion, but it is obs
ured by noise. On su
h methods derivative-based methods 
aneasily run into trouble, sin
e �nite di�eren
e-based derivatives may be very ina

urateand automati
 di�erentiation often is unhelpful as well. Generating Set Sear
h (GSS)Methods are a good alternative in this 
ase. GSS methods are 
omprehensively reviewedin [12℄. Although usually easy to implement, GSS methods in their most basi
 form often
onverge slowly. Modi�
ations to speed up 
onvergen
e were suggested as early as in1960 by Rosenbro
k [17℄. Two re
ent approa
hes using 
urvature information have beensuggested [2, 7℄. The main modi�
ation to basi
 GSS in these papers is that the sear
hdire
tions the methods 
onsider are dynami
. The introdu
tion of a dynami
 sear
h basisis shown to signi�
antly redu
e the number of fun
tion evaluations required to rea
h theoptimiser, in most 
ases.Apart from slow 
onvergen
e, GSS methods are often unsuitable for problems wherethe number of variables n is large. In [16℄, one proposes a method e�e
tive for theoptimisation of smooth fun
tions whi
h 
an be de
omposed into element fun
tions. Let�k � f1; 2; : : : ; ng ; k = 1; : : : ; n and let j�kj be the 
ardinality of the set �k. Letfk : Rj�k j 7! R; k = 1; : : : ; n, where �k are the indi
es of x on whi
h fk depend. If f is ofthe form f(x) = nXk=1 fk(x); (3)then f is said to be partially separable, or totally separable depending on the 
ardinality ofthe sets �k. Separability of f is 
losely related to the sparsity stru
ture of the derivatives,but we make the distin
tion be
ause separability stru
ture is de�ned even if the fun
tionis not di�erentiable. Theory on separability of fun
tions 
an be found in [11℄.Given a totally separable fun
tion one 
an obtain the value of f at as many as 3n� 1points at the 
ost of only 2 f -evaluations, as long as the points in question are alignedwith the 
oordinate axes. The optimisation algorithm in [16℄ exploits this fa
t to solvesmooth problems of the form (1) with f of the form (3) for up to more than 5000 variables.We wish to exploit separability of f , on noisy fun
tions.In [7℄ an algorithm whi
h solves (1) where the fun
tion is of the form (2) using average
urvature information to speed up 
onvergen
e was developed. However, as n grows,the algorithm be
omes in
reasingly unable to exploit this information. In this paper wepresent an extension to the algorithm of [7℄, whi
h utilises the sparsity pattern of theHessian of f in (2). Although noise 
an potentially eliminate any sparsity pattern fromr2f in r2 ef , a priori knowledge about r2f through knowledge about the separabilitystru
ture (3) or known Hessian sparsity stru
ture is assumed to be valid for r2 ef as well.
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Figure 1: ex � x2 with noise.This paper fo
uses on un
onstrained optimisation, but extensions toward 
onstrainedoptimisation dis
ussed in [4, 13, 14℄ are appli
able.2 Generating Set Sear
hGSS methods are a 
lass of methods whi
h sear
h along the ve
tors of a generating setor positive basis. A generating set 
onsists of ve
tors vi; i = 1; : : : ; r su
h that for anyx 2 Rn , x = rXi=1 
ivi; 
i � 0; i = 1; : : : ; r:In words, the ve
tors in the set positively span Rn . It is shown in [3℄ that to positivelyspan Rn , n + 1 � r � 2n, depending on the ve
tors. The positive and negative of theCartesian 
oordinate ve
tors, say ei; i = 1; : : : ; n are an example of a generating set with2n ve
tors. These methods are also known as pattern sear
h, the name Generating SetSear
h was 
oined in [12℄.Let the set of sear
h dire
tions D be de�ned asD = r[i=1 fpig :Asso
iate with ea
h pi a step length Æi. Then, a pseudo 
ode for a method we will 
allCompass Sear
h is:
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Compass Sear
hGiven x; Ætol; � � 1 > � > 0,Repeat until 
onvergen
e,For ea
h pi 2 D,If f(x + Æipi) < f(x);x x + ÆipiÆi  �Æielse,Æi  �Æiend.end.end.� and � need not be 
onstant throughout. We will 
all one run of the repeat-loop asweep. For this and other GSS methods one 
an expe
t linear 
onvergen
e, see [12℄ andthe referen
es therein.Rosenbro
k's method [17℄ is based on Compass Sear
h with 2n sear
h dire
tions. Itregularly rotates the sear
h ve
tors in D by aligning the prin
ipal sear
h dire
tion to anaverage gradient and generates (n � 1) additional dire
tions through the Gram-S
hmidtpro
ess. It uses the positive and negative of the resulting ve
tors as its new sear
hdire
tions.2.1 GSS Methods Using Curvature InformationWe look at two di�erent methods employing 
urvature information.The Method of Coope and Pri
e This method for un
onstrained optimisation ofsmooth fun
tions, is des
ribed fully in [2℄. It minimises the fun
tion on su

essively�ner grids whi
h are de�ned by the sear
h dire
tions vi; i = 1; : : : ; n and the step lengthsasso
iated with ea
h dire
tion. The method sear
hes along both the positive and negativeof these dire
tions, and hen
e has 2n sear
h dire
tions. In the pro
ess of sear
hing alongthe 
urrent dire
tion, say, vi, the method obtains the fun
tion values at three points alongthis line. From these three points it 
reates an interpolating quadrati
 fun
tion. The steplength Æi 
orresponding to vi is then based on the distan
e from the 
urrent iterate to theminimiser of the interpolating fun
tion.
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Using the parallel subspa
e theorem (see, e.g. theorem 4.2.1 of [6℄) the method gener-ates 
onjugate sear
h dire
tions, one dire
tion at a time from the n initially non-
onjugatesear
h dire
tions. On
e a 
onjugate dire
tion has been found, the algorithm deletes a non-
onjugate dire
tion, to maintain the number of sear
h dire
tions. The generated 
onjugatedire
tions are stored in a matrix V
, whi
h be
omes an indire
t approximation to (r2f)�1on
e n 
onjugate dire
tions have been found, by the relationV
V T
 � (r2f)�1:The method is able to perform a �nite di�eren
e Newton step from time to time. On
ethe entire inverse Hessian approximation is in pla
e, the algorithm starts building up anew approximation. The algorithm terminates exa
tly on quadrati
 fun
tions.A Method Exploiting Average Curvature Information This method is des
ribedfully in [7℄. Let the sear
h basis D 
onsist of the positive and negative of the 
olumnve
tors of the orthogonal matrixQ = � q1 q2 � � � qn � ;where qi is 
olumn i. By adaptively shu�ing the order of the dire
tions in D on
e persweep, the algorithm is able to gather average 
urvature information from the history offun
tion evaluations. The algorithm builds up what in [7℄ is 
alled a 
urvature informationmatrix, CQ, one element at the time, by the formula(CQ)ij = f(xij + Æiqi + Æjqj)� f(xij + Æiqi)� f(xij + Æjqj) + f(xij)ÆiÆj : (4)where Æi and Æj are the step lengths along the sear
h dire
tions qi and qj respe
tively, atany given time. The point xij is usually di�erent for ea
h (CQ)ij. CQ is required to besymmetri
, so only the lower triangle of CQ is 
omputed. The expression (4) equals adire
tional se
ond derivative, (CQ)ij = qTi r2f(exij)qj (5)for some exij in the re
tangle with the four points xij + Æiqi + Æjqj, xij + Æiqi, xij + Æjqjand xij as 
orner points. (See e.g. lemma 3.5 in [5℄.) If the step lengths are suÆ
ientlylarge then average 
urvature information is obtained, thus smoothing out the e�e
ts ofnoise. The method is able to obtain O(n) CQ-elements per sweep, so the entire matrix CQ
onsisting of n2+nn unique elements is 
omputed in O(n) sweeps. When CQ is determined,the matrix C, given by the formula C = QCQQT ; (6)is 
omputed. The positive and negative of the eigenve
tors of C are taken as the newsear
h basis, and Q is updated a

ordingly.
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3 A S
heme for Exploiting SparsityWe now propose an extension to the algorithm of [7℄. Assume f is separable. The indi-vidual fk and �k de�ne j�kj � j�kj Hessian stru
tural information, and by assembling allthe individual matri
es, we have a sparsity stru
ture for the entire Hessian. If sparsitystru
ture is not known a priori, it 
an be dete
ted by the te
hnique of [10℄, or it is pos-sible to obtain the information from 
omputational graphs, whi
h are used in Automati
Di�erentiation (AD). (See, e. g. [9℄ for more on AD.)However, sparsity is relative to the 
oordinate system. CQ will not be sparse if Q 6= I,and neither will the matrix C from (6) be unless the fun
tion is quadrati
, due to trun-
ation error in (4). Therefore, we impose the restri
tion that C have the same sparsitystru
ture as the Hessian.Whenr2f is full, we need to 
ompute n2+n2 CQ-elements by (4). If the Hessian is sparsewith, for instan
e, O(n) unique elements, we would like to 
ompute no more elements inCQ than there are unique elements in the Hessian itself. O(n) elements 
an be 
omputedin O(1) sweeps.We do this by writing (6) as the equationQTCQ = CQ; (7)where the unknown is the matrix C. Let D and B be n � n-matri
es. The Krone
kerprodu
t (D 
B) is an n2 � n2-matrix(D 
 B) = 264 D11B � � � D1nB... ...Dn1B � � � DnnB 375 : (8)See e.g. [8℄. Useful identities are(D 
 B)�1 = (D�1 
B�1); (9)and (D 
 B)T = (DT 
 BT ); (10)Using the Krone
ker produ
t, (7) 
an be rewritten as(QT 
QT )ve
(C) = ve
(CQ); (11)where ve
 is an operator ve
 : Rn�n 7! Rn2 whi
h sta
ks the entries of a matrix in ave
tor su
h that the equivalen
e between (7) and (11) holds. Denote the 
olumns of thematrix C by 
i; i = 1; : : : ; n; that is,C = � 
1 
2 � � � 
n � :
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Then ve
(C) = ( 
T1 
T2 � � � 
Tn )T : (12)If we examine the matrix (QT 
QT ) it reads(QT 
QT ) = 264 Q11QT � � � Qn1QT... ...Q1nQT � � � QnnQT 375 : (13)The �rst row 
onsists of produ
ts involving only the elements of q1. The se
ond row
onsists of produ
ts involving only the elements of q1 and q2. Similarly, ea
h of theremaining rows 
ontain produ
ts involving elements of only two q-ve
tors. Sin
e theve
-operator is also applied to CQ in the right-hand side of (11), the row made up ofthe ve
tors qi and qj 
orresponds to the element (CQ)ij in ve
(CQ). We now want toredu
e the number of variables in (11) based on our knowledge of symmetry and sparsitystru
ture. Sin
e we require C to be symmetri
 we 
an, for all r > s, add the 
olumns
orresponding to Csr to the 
olumns 
orresponding to Crs and delete the former 
olumns.This means we only 
onsider the elements in the lower triangle of C. A

ordingly, wedelete all the rows whi
h do not 
orrespond to 
omputation of elements in the lowertriangle of CQ. Furthermore, sin
e C has a 
ertain sparsity stru
ture, we 
an delete all
olumns whi
h 
orrespond to elements Crs we know are to be zero.Having removed the 
olumns 
orresponding to zero elements, we must also removethe same number of rows. We have some freedom when it 
omes to whi
h rows areto be removed. We want the resulting 
oeÆ
ient matrix after row removal to be well
onditioned. If we were working in a Cartesian 
oordinate system, then the two ve
torsused to 
ompute Crs by a di�eren
e formula like the one in (4) would be the 
oordinateve
tors er and es, and any nonsingular submatrix of (13) would be well 
onditioned. Sin
ewe are working in the 
oordinate system de�ned by the ve
tors qi; i = 1; : : : ; n, the 
losestwe 
an get to er and es are the ve
tors with their maximum absolute elements in positionr and s, that is, ve
tors qi and qj su
h thatmaxk j(qi)kj = j(qi)rj;and maxk j(qj)kj = j(qj)sj:So, for ea
h nonzero Crs we pi
k the ve
tors qi and qj and keep the 
orresponding row.Let � be the number of unique nonzero elements in the Hessian. Sin
e we want anequation system with � equations an unknowns, we need to modify the ve
 to take thisinto a

ount. Let ve
 be the operator whi
h sta
ks the nonzero elements of the lowertriangle of a matrix in a ve
tor. Let 
Q signify the �-ve
tor of CQ-entries that we 
ompute.The resulting �� � equation system be
omesAve
(C) = 
Q; (14)
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where A is the resulting matrix from modifying (QT 
 QT ). In our experiments, usingthe heuristi
 just des
ribed, A was usually very well 
onditioned.Sin
e we need to 
ompute � 
Q-elements and 
an 
ompute O(n) elements per sweep,the right-hand side 
Q will be available in O( �n) sweeps. Then we solve (14) and 
onstru
tC with the inverse of the operator ve
.3.1 The Relationship between C and the HessianIn this se
tion we examine the error kC �r2fk:First we need a te
hni
al result. De�ne
 = ve
(C);Then we have k
k � kCkF � p2k
k: (15)Too see this, suppose that C has n diagonal and 
 o�-diagonal nonzero elements. Wethen have k
k =  n+
Xi=1 
2i! 12 ; (16)and kCkF = 0�X8(r;s)C2rs1A 12 : (17)Not 
ounting terms C2rs where Crs is known to be zero, the sum in (17) 
ontains n + 2
nonnegative elements. All of the terms in the sum in (16) are present in (17), so 
learlyk
k � kCkF . As for the se
ond inequality, we havep2k
k = kp2
k =  n+
Xi=1 (p2
i)2! 12 : (18)This 
an be written  2 n+
Xi=1 
2i!12 =  n+
Xi=1 
2i + n+
Xi=1 
2i! 12 : (19)The �nal sum of (19) 
ontains a sum of 2n + 2
 nonnegative elements. All the n + 2
elements in (17), (still not 
ounting terms C2rs where Crs is known to be zero) are presentin (19), so the se
ond inequality of (15) holds as well.Now we 
an turn our attention to the relationship between C and the Hessian.
64



Lemma 1 Let f be twi
e 
ontinuously di�erentiable. Assume A in (14) is invertible andlet 
 be the solution to (14). Let element l, l = 1; : : : ; � of 
Q in (14) be 
omputed by (4)and be equal to qTi r2f(exl)qj for the appropriate ve
tors qi and qj by (5). De�neN = �[l=1�exl	 ; (20)and let Æ = maxx;y2N kx� yk; (21)and N = �x 2 Rn ����maxy2N kx� yk � Æ� : (22)Let f be Lips
hitz-
ontinuous in N with Lips
hitz-
onstant L. Then, the matrix C ob-tained by applying the inverse of the operator ve
 on 
, satis�eskC �r2f(x)k � p2��(A)LÆ;where x 2 N and �(A) is the 
ondition number of A.Proof. Let hl = ve
(r2f(exl)); l = 1; : : : ; �. The Hessian has the same sparsity stru
tureas C, so 
Q 
an be written 
Q = 26664 (Ah1)1(Ah2)2...(Ah�)�
37775 ;where (Ahl)l is the lth element of the ve
tor Ahl. If we now let El be the matrix with 1in position (l; l) and zero everywhere else, we have
 = A�1 �Xl=1 (ElAhl):The Hessian mapping r2f : Rn 7! Rn�n is assumed to be Lips
hitz-
ontinuous in N , thatis, kr2f(x)�r2f(y)k � Lkx� yk for all x; y 2 N : (23)Let x 2 N . De�ne ve
(r2f(x)) = h:Then we have 
 = A�1 �Xl=1 (ElA(h+ �l));
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where �l = hl � h:This expands to 
 = A�1(E1 + � � �+ E�)Ah+ �Xl=1 A�1ElA�l:The �rst part of the expression redu
es to just h, sin
e the sum of the El be
omes theidentity matrix. The se
ond term be
omes an error term, whose norm is bounded byk
� hk = k �Xl=1 A�1ElA�lk � �kA�1k�maxl kElk� kAk�maxl k�lk� : (24)All the El have unit norm, and the norms kAk and kA�1k together make up the 
onditionnumber of the matrix A, �(A). We now need a bound on maxl k�lk. We havemaxl kexl � xk � Æ;sin
e x and all the exl are in N . Thus, by (23):maxl kexl � xk � Æ ) maxl kr2f(exl)�r2f(x)k � LÆ:By (15) we havemaxl k�lk = maxl kh� hlk � maxl kr2f(exl)�r2f(x)kF � LÆ:This turns (24) into k
� hk � ��(A)LÆ;and �nally, by (15), kC �r2f(x)kF � p2��(A)LÆ:�4 Preliminary Numeri
al ResultsNumeri
al test were performed on three fun
tions from [15℄, for various sizes of n. All thefun
tions have a minimum value of zero. The results on smooth fun
tions are listed in table1. The 
olumns 
ontain, from left to right, the number of variables, the number of uniquenonzero elements to be determined �, the number of fun
tion evaluations performed torea
h the solution, the number of C-matri
es 
omputed and hen
e the number of timesthe positive basis D is updated, and the �nal fun
tion value obtained, for the method
66



using sparsity and the method of [7℄ (marked \regular" in the table), respe
tively. The
onvergen
e 
riterion used in the experiments on smooth fun
tions wasmaxi Æi < 10�7:The results on the extended Rosenbro
k fun
tion agree very well with our expe
tations.The Hessian of the extended Rosenbro
k fun
tion has O(n) elements, so as expe
ted thenumber of C-matri
es and hen
e D-updates is relatively 
onstant for the sparse method,
onsistent with the bound O( �n) for obtaining the desired CQ-elements. In the 
ase of theregular method, D-updates be
ome fewer as n grows, 
onsistent with the bound O(n) onthe 
omputation of CQ in this 
ase. In addition, the sparse method uses fewer fun
tionevaluations to rea
h the optimum, apparently sin
e it is able to 
hange sear
h basis andhen
e adapt to the lands
ape of the fun
tion more often than the regular method.On the Broyden tridiagonal fun
tion we see a similar pi
ture, although the savings infun
tion evaluations are not as apparent here as on the extended Rosenbro
k fun
tion.The reason this seems to be that frequent basis updates is not 
ru
ial on this fun
tion.The same 
an be said about the results on the Broyden banded fun
tion. Note that onthe two Broyden fun
tions, when n = 64 and n = 128, no basis 
hange takes pla
e in the
ase of the regular method, whi
h then in reality be
omes Compass Sear
h.We also tested on the fun
tions with noise, spe
i�
allyef(x) = f(x) + max(10�4 � jf(x)j; 10�4) � �; (25)where � is uniformly distributed in the interval [�1; 1℄. This noise s
heme is adopted from[18℄. On these problems, the 
onvergen
e 
riterion used wasmaxi Æi < 10�4:The results are listed in table 2. Sin
e we add noise to the problems by (25) we 
annotexpe
t to �nd a lower fun
tion value than 10�4. On the extended Rosenbro
k fun
tion thepi
ture is very mu
h the same as with no noise. However, the regular method terminatesprematurely for n equal to 32, 64, and 128. The sparse method terminates prematurelyfor n = 128. On the Broyden fun
tions we also have the same pi
ture as when no noiseis added.5 Con
luding RemarksWe have proposed and extension to the algorithm of [7℄ to make it aware of sparsity, andthereby enable solution of problems with n relatively large. We have managed to redu
ethe number of fun
tion evaluations it takes to rea
h a minimum on all three test fun
tionsas n grows. The results hold promise, and mu
h 
an be done to improve the results still, for
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Extended Rosenbro
k Fun
tionSparse Regularn � #feval #Basis f � #feval #Basis f �4 6 893 16 1.53e-15 1051 14 3.52e-138 12 1972 18 5.89e-16 2870 11 3.26e-1616 24 3669 17 1.99e-15 8128 8 9.62e-1632 48 7368 17 3.65e-15 20632 6 2.77e-1564 96 14849 17 1.63e-15 65284 4 1.18e-14128 192 29781 17 3.26e-15 190884 3 2.13e-13Broyden Tridiagonal Fun
tionSparse Regularn � #feval #Basis f � #feval #Basis f �4 7 355 6 1.53e-13 365 5 4.62e-138 15 826 7 2.59e-13 781 3 1.20e-1316 31 1556 6 8.25e-13 1672 2 7.97e-1332 63 3384 7 4.09e-13 4153 1 7.52e-1464 127 6440 7 1.70e-12 9186 0 1.42e-12128 255 14997 8 1.41e-12 18879 0 8.61e-12Broyden Banded Fun
tionSparse Regularn � #feval #Basis f � #feval #Basis f �4 10 457 6 5.08e-15 382 5 2.56e-138 35 824 3 1.36e-14 804 3 4.28e-1316 91 1667 3 5.05e-14 1682 2 2.34e-1332 203 3439 2 6.90e-13 3437 1 9.31e-1364 427 6709 2 1.45e-12 7524 0 1.76e-13128 875 13450 2 2.24e-12 15070 0 3.96e-13Table 1: Numeri
al results, smooth fun
tions.
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Extended Rosenbro
k Fun
tionSparse Regularn � #feval #Basis f � #feval #Basis f �4 6 808 15 3.63e-5 874 11 3.52e-48 12 1635 15 2.67e-3 2251 9 1.31e-416 24 3113 14 2.36e-2 7556 8 4.35e-332 48 7014 14 2.36e-2 10623 3 3.06e164 96 14085 16 1.38e-1 5236 0 1.22e2128 192 29321 17 1.86e1 6629 0 2.49e2Broyden Tridiagonal Fun
tionSparse Regularn � #feval #Basis f � #feval #Basis f �4 7 182 3 5.25e-5 220 3 6.71e-58 15 383 3 3.66e-5 400 2 9.09e-516 31 855 4 1.86e-4 923 1 1.98e-432 63 1710 4 6.69e-4 1955 0 9.15e-464 127 3436 4 1.03e-4 4460 0 2.03e-3128 255 6834 4 1.70e-3 8146 0 4.81e-3Broyden Banded Fun
tionSparse Regularn � #feval #Basis f � #feval #Basis f �4 10 205 3 1.73e-5 264 4 2.70e-58 35 460 2 5.76e-5 434 2 7.89e-516 91 893 1 1.13e-4 925 1 1.50e-432 203 1687 1 1.93e-4 1885 0 2.53e-464 427 3734 1 2.81e-4 3791 0 7.56e-4128 875 6799 1 8.60e-4 7504 0 1.33e-3Table 2: Numeri
al results, noisy fun
tions.
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instan
e in
orporating ideas like the one in [16℄ mentioned in the introdu
tion, and dealingwith the great number of te
hni
al issues whi
h arise when 
onverting the algorithm of[7℄ to handle sparse Hessians.Referen
es[1℄ J. Borggaard, D. Pelletier, and K. Vugrin. On sensitivity analysis for problemswith numeri
al noise. AIAA Paper 2002{5553, Presented at the 9th AIAA/ISSMOSymposium on Multidis
iplinary Analysis and Optimization, Atlanta, Georgia, 2002.[2℄ I. D. Coope and C. J. Pri
e. A dire
t sear
h 
onjugate dire
tions algorithm forun
onstrained minimization. ANZIAM Journal, 42(E):C478{C498, 2000.[3℄ Chandler Davis. Theory of positive linear dependen
e. Ameri
an Journal of Mathe-mati
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