A Generating Set Search Method Exploiting
Curvature and Sparsity™

Lennart Frimannslund! Trond Steihaug?

Abstract

Generating Set Search methods are one of the few alternatives for optimising high
fidelity functions with numerical noise. These methods are usually only efficient
when the number of variables is relatively small. This paper presents a modifi-
cation to an existing Generating Set Search method, which makes it aware of the
sparsity structure of the Hessian. The aim is to enable the efficient optimisation
of functions with a relatively large number of variables. Numerical results show a
decrease in the number of function evaluation it takes to reach the optimal solution,
sometimes by significant margins, on noisy as well as smooth problems, for a modest
as well as a relatively large number of variables.

Keywords: Nonlinear programming, derivative—free optimization, pattern search,
generating set search, sparsity.

1 Introduction
We consider the unconstrained optimisation problem

min f(z), (1)

where f : R" — R. Suppose that f is only available as

f(x) = f(z) +€ (2)

where the error term € is either stochastic or numerical in nature. By numerical noise we
mean the noise which can arise from, for instance, the discretisation involved if evaluating

*This work was supported by the Norwegian Research Council.

tDepartment of Informatics, University of Bergen, Box 7800, N-5020 Bergen, Norway. E-mail:
lennart.frimannslund@ii.uib.no

IDepartment of Informatics, University of Bergen. E-mail: trond.steihaug@ii.uib.no

57

f requires computing an integral, solving a differential equation or any other subproblem
which is solved inexactly. The same input will always give the same output, but the func-
tion will not be smooth. An example of such a function occurs in [1], where the objective
function contains an integral. The truncation error stemming from the computation of the
integral makes the function look like the one in figure 1. There is an underlying smooth
function, but it is obscured by noise. On such methods derivative-based methods can
easily run into trouble, since finite difference-based derivatives may be very inaccurate
and automatic differentiation often is unhelpful as well. Generating Set Search (GSS)
Methods are a good alternative in this case. GSS methods are comprehensively reviewed
n [12]. Although usually easy to implement, GSS methods in their most basic form often
converge slowly. Modifications to speed up convergence were suggested as early as in
1960 by Rosenbrock [17]. Two recent approaches using curvature information have been
suggested [2, 7]. The main modification to basic GSS in these papers is that the search
directions the methods consider are dynamic. The introduction of a dynamic search basis
is shown to significantly reduce the number of function evaluations required to reach the
optimiser, in most cases.

Apart from slow convergence, GSS methods are often unsuitable for problems where
the number of variables n is large. In [16], one proposes a method effective for the
optimisation of smooth functions which can be decomposed into element functions. Let
xe € {1,2,...,n}, k = 1,...,n and let |y,| be the cardinality of the set x;. Let
fe : Rl 5 R, k=1,...,n, where y, are the indices of 2 on which f;, depend. If f is of
the form

f@) = fulx), (3)

then f is said to be partially separable, or totally separable depending on the cardinality of
the sets x,. Separability of f is closely related to the sparsity structure of the derivatives,
but we make the distinction because separability structure is defined even if the function
is not differentiable. Theory on separability of functions can be found in [11].

Given a totally separable function one can obtain the value of f at as many as 3" — 1
points at the cost of only 2 f-evaluations, as long as the points in question are aligned
with the coordinate axes. The optimisation algorithm in [16] exploits this fact to solve
smooth problems of the form (1) with f of the form (3) for up to more than 5000 variables.
We wish to exploit separability of f, on noisy functions.

In [7] an algorithm which solves (1) where the function is of the form (2) using average
curvature information to speed up convergence was developed. However, as n grows,
the algorithm becomes increasingly unable to exploit this information. In this paper we
present an extension to the algorithm of [7], which utilises the sparsity pattern of the
Hessian of f in (2). Although noise can potentially eliminate any sparsity pattern from
V2f in V2f, a priori knowledge about V2f through knowledge about the separability
structure (3) or known Hessian sparsity structure is assumed to be valid for V2f as well.

58

Figure 1: e — 22 with noise.

This paper focuses on unconstrained optimisation, but extensions toward constrained
optimisation discussed in [4, 13, 14] are applicable.

2 Generating Set Search

GSS methods are a class of methods which search along the vectors of a generating set
or positive basis. A generating set consists of vectors v;, i = 1,...,r such that for any
r e R,

r
T = E cvg, ¢, >0, 1=1,...,r.
i=1

In words, the vectors in the set positively span R™. It is shown in [3] that to positively
span R, n+ 1 < r < 2n, depending on the vectors. The positive and negative of the
Cartesian coordinate vectors, say e;, ¢ = 1,...,n are an example of a generating set with
2n vectors. These methods are also known as pattern search, the name Generating Set
Search was coined in [12].

Let the set of search directions D be defined as

D:U{pi}-

Associate with each p; a step length §;,. Then, a pseudo code for a method we will call
Compass Search is:

59

Compass Search
Given x, 040, > 1> [>0,
Repeat until convergence,

For each p; € D,

If f(x+dipi) < f(w),
T < T+ 0;p;
0; + ad;

else,
0; < B0

end.

end.
end.

a and [need not be constant throughout. We will call one run of the repeat-loop a
sweep. For this and other GSS methods one can expect linear convergence, see [12] and
the references therein.

Rosenbrock’s method [17] is based on Compass Search with 2n search directions. It
regularly rotates the search vectors in D by aligning the principal search direction to an
average gradient and generates (n — 1) additional directions through the Gram-Schmidt
process. It uses the positive and negative of the resulting vectors as its new search
directions.

2.1 GSS Methods Using Curvature Information

We look at two different methods employing curvature information.

The Method of Coope and Price This method for unconstrained optimisation of
smooth functions, is described fully in [2]. Tt minimises the function on successively
finer grids which are defined by the search directions v;,7 = 1,...,n and the step lengths
associated with each direction. The method searches along both the positive and negative
of these directions, and hence has 2n search directions. In the process of searching along
the current direction, say, v;, the method obtains the function values at three points along
this line. From these three points it creates an interpolating quadratic function. The step
length 0; corresponding to v; is then based on the distance from the current iterate to the
minimiser of the interpolating function.

60

Using the parallel subspace theorem (see, e.g. theorem 4.2.1 of [6]) the method gener-
ates conjugate search directions, one direction at a time from the n initially non-conjugate
search directions. Once a conjugate direction has been found, the algorithm deletes a non-
conjugate direction, to maintain the number of search directions. The generated conjugate
directions are stored in a matrix V,, which becomes an indirect approximation to (V2f)~!
once n conjugate directions have been found, by the relation

VeV & (VI

The method is able to perform a finite difference Newton step from time to time. Once
the entire inverse Hessian approximation is in place, the algorithm starts building up a
new approximation. The algorithm terminates exactly on quadratic functions.

A Method Exploiting Average Curvature Information This method is described
fully in [7]. Let the search basis D consist of the positive and negative of the column
vectors of the orthogonal matrix

Q=a & - @],

where ¢; is column 7. By adaptively shuffling the order of the directions in D once per
sweep, the algorithm is able to gather average curvature information from the history of
function evaluations. The algorithm builds up what in [7] is called a curvature information
matriz, Cq, one element at the time, by the formula

f(a + 0iqi + 65q5) — f(aY + digi) — f(a + 0;45) + f(a¥)
0:0; '

(Cq)ij = (4)
where 6; and §; are the step lengths along the search directions ¢; and g; respectively, at
any given time. The point 2% is usually different for each (Cgp);;. Cg is required to be
symmetric, so only the lower triangle of Cg is computed. The expression (4) equals a
directional second derivative,

(Cqij = ¢/ V2 (@), (5)

for some Z* in the rectangle with the four points =% + 6;¢; + d;q;, ¥ + 8;q;, 7 + &;q;
and 7 as corner points. (See e.g. lemma 3.5 in [5].) If the step lengths are sufficiently
large then average curvature information is obtained, thus smoothing out the effects of
noise. The method is able to obtain O(n) Cg-elements per sweep, so the entire matrix Co
consisting of “ilj unique elements is computed in O(n) sweeps. When Cj, is determined,
the matrix C, given by the formula

C=QCuQ", (6)

is computed. The positive and negative of the eigenvectors of C' are taken as the new
search basis, and () is updated accordingly.

61

3 A Scheme for Exploiting Sparsity

We now propose an extension to the algorithm of [7]. Assume f is separable. The indi-
vidual fi, and xj define |xx| x |xx| Hessian structural information, and by assembling all
the individual matrices, we have a sparsity structure for the entire Hessian. If sparsity
structure is not known a priori, it can be detected by the technique of [10], or it is pos-
sible to obtain the information from computational graphs, which are used in Automatic
Differentiation (AD). (See, e. g. [9] for more on AD.)

However, sparsity is relative to the coordinate system. C will not be sparse if) # I,
and neither will the matrix C' from (6) be unless the function is quadratic, due to trun-
cation error in (4). Therefore, we impose the restriction that C' have the same sparsity
structure as the Hessian.

When V?{ is full, we need to compute "2% Co-elements by (4). If the Hessian is sparse
with, for instance, O(n) unique elements, we would like to compute no more elements in
Cg than there are unique elements in the Hessian itself. O(n) elements can be computed
in O(1) sweeps.

We do this by writing (6) as the equation

Q"0Q = Cq, (7)

where the unknown is the matrix C. Let D and B be n X n-matrices. The Kronecker
product (D ® B) is an n? x n?-matrix

DbyB --- DB
(DeB)=| : (8)
DnB --- D,,B
See e.g. [8]. Useful identities are
(D®B)™'=(D'®B™"), 9)
and
(D® B)" = (D" ® BY), (10)

Using the Kronecker product, (7) can be rewritten as
(QT ® Q")vec(C) = vec(Cp), (11)

where vec is an operator vec : R"™" — R"" which stacks the entries of a matrix in a
vector such that the equivalence between (7) and (11) holds. Denote the columns of the
matrix C' by ¢;, 1 = 1,...,n, that is,

C’:[cl Cy - cn].

62

Then
vec(C)=(cI &' .. '), (12)

If we examine the matrix (Q7 ® Q") it reads

QHQT e inQT
QRTeQ") = : : (13)
anQT e anQT

The first row consists of products involving only the elements of ¢;. The second row
consists of products involving only the elements of ¢; and ¢,. Similarly, each of the
remaining rows contain products involving elements of only two g¢-vectors. Since the
vec-operator is also applied to Cg in the right-hand side of (11), the row made up of
the vectors ¢; and ¢; corresponds to the element (Cg);; in vec(Cg). We now want to
reduce the number of variables in (11) based on our knowledge of symmetry and sparsity
structure. Since we require C' to be symmetric we can, for all » > s, add the columns
corresponding to C§, to the columns corresponding to C); and delete the former columns.
This means we only consider the elements in the lower triangle of C. Accordingly, we
delete all the rows which do not correspond to computation of elements in the lower
triangle of C. Furthermore, since C has a certain sparsity structure, we can delete all
columns which correspond to elements C,; we know are to be zero.

Having removed the columns corresponding to zero elements, we must also remove
the same number of rows. We have some freedom when it comes to which rows are
to be removed. We want the resulting coefficient matrix after row removal to be well
conditioned. If we were working in a Cartesian coordinate system, then the two vectors
used to compute C,; by a difference formula like the one in (4) would be the coordinate
vectors e, and e;, and any nonsingular submatrix of (13) would be well conditioned. Since
we are working in the coordinate system defined by the vectors ¢;, © = 1,...,n, the closest
we can get to e, and ez are the vectors with their maximum absolute elements in position
r and s, that is, vectors ¢; and ¢; such that

mgx\(%)ﬂ = [(qi)rl;

and
max | (q;)k| = |(4;)s|

So, for each nonzero C,, we pick the vectors ¢; and ¢; and keep the corresponding row.
Let p be the number of unique nonzero elements in the Hessian. Since we want an
equation system with p equations an unknowns, we need to modify the vec to take this
into account. Let vec be the operator which stacks the nonzero elements of the lower
triangle of a matrix in a vector. Let cq signify the p-vector of Cg-entries that we compute.
The resulting p x p equation system becomes

Av—ec(C’) = CQ, (14)

63

where A is the resulting matrix from modifying (QT ® Q7). In our experiments, using
the heuristic just described, A was usually very well conditioned.

Since we need to compute p cg-elements and can compute O(n) elements per sweep,
the right-hand side ¢ will be available in O(2) sweeps. Then we solve (14) and construct
C with the inverse of the operator vec.

3.1 The Relationship between C' and the Hessian

In this section we examine the error

IC = V2£].
First we need a technical result. Define
c =vec(O),
Then we have
el < [IC]lr < V2]¢]. (15)
Too see this, suppose that C' has n diagonal and v off-diagonal nonzero elements. We
then have .
n—+y 2
lell = (Z C?) : (16)
i=1
and

M=

Iclr=| > ci] - (17)
Y(r,s)

Not counting terms C2, where C. is known to be zero, the sum in (17) contains n + 2
nonnegative elements. All of the terms in the sum in (16) are present in (17), so clearly
lle|l < ||Cllr. As for the second inequality, we have

D=

V2|le]| = ||vV2e]| = (Z(\@W) : (18)

i=1

This can be written

NI

n+y % n4y n4-y
(22@) = (Z 2 +Ze$> . (19)
i=1 i=1 i=1
The final sum of (19) contains a sum of 2n + 2y nonnegative elements. All the n + 27
elements in (17), (still not counting terms C?, where C,, is known to be zero) are present
in (19), so the second inequality of (15) holds as well.

Now we can turn our attention to the relationship between C' and the Hessian.

64

Lemma 1 Let f be twice continuously differentiable. Assume A in (14) is invertible and
let ¢ be the solution to (14). Let element I, 1l =1,...,p of cg in (14) be computed by (4)
and be equal to ¢f V2 f(2')q; for the appropriate vectors g; and q; by (5). Define

N=J{#@}, (20)

and let
0 = max ||z —y], (21)
and
N:{xER" max||x—y||§5}. (22)
yeN

Let f be Lipschitz-continuous in N with Lipschitz-constant L. Then, the matriz C o0b-
tained by applying the inverse of the operator Vec on c, satisfies

IO = V2f(2)]| < V2pr(A) LS,
where € N and k(A) is the condition number of A.

Proof. Let h; = vec(V2f(2')), I =1,...,p. The Hessian has the same sparsity structure
as C, so cg can be written

(A,

where (Ah;); is the [th element of the vector Ah;. If we now let F; be the matrix with 1
in position (/,1) and zero everywhere else, we have

p
Cc = A_l Z(ElAhl)

=1

The Hessian mapping V2f : R* s R"*" is assumed to be Lipschitz-continuous in A, that
is,

IV2f(z) — V2f(y)|| < L||z —y|| forall z,y € N. (23)

Let z € N. Define
vec(V2f(z)) = h.

Then we have

c= A1 zp:(ElA(h +a),

=1

65

where

€ = hl — h.
This expands to
p
c=ANE + -+ E,)Ah+ Y A 'EAq.

1=1
The first part of the expression reduces to just h, since the sum of the E;, becomes the
identity matrix. The second term becomes an error term, whose norm is bounded by

P
_ -1 -1
o= Hll = I35 A" Bude] < ol (max 1B A1 (max flal]) . (24)

All the E; have unit norm, and the norms || A|| and [|A™"|| together make up the condition
number of the matrix A, k(A). We now need a bound on max; ||¢;||. We have

max |7 — x| <,

since z and all the 2! are in V. Thus, by (23):
max 17! —z|| <6 = rnlaX||V2f(§l) — V2f(2)]| < Ld.
By (15) we have
max ||| = max||h = ul] < max | V*f(3) = V*f()|lr < L6.
This turns (24) into

le = Rl < pr(A) LS,

and finally, by (15),
IC = V2f(2)][r < V2pr(A) L.

O

4 Preliminary Numerical Results

Numerical test were performed on three functions from [15], for various sizes of n. All the
functions have a minimum value of zero. The results on smooth functions are listed in table
1. The columns contain, from left to right, the number of variables, the number of unique
nonzero elements to be determined p, the number of function evaluations performed to
reach the solution, the number of C-matrices computed and hence the number of times
the positive basis D is updated, and the final function value obtained, for the method

66

using sparsity and the method of [7] (marked “regular” in the table), respectively. The
convergence criterion used in the experiments on smooth functions was

max d; < 107",

The results on the extended Rosenbrock function agree very well with our expectations.
The Hessian of the extended Rosenbrock function has O(n) elements, so as expected the
number of C-matrices and hence D-updates is relatively constant for the sparse method,
consistent with the bound O(2) for obtaining the desired Cg-elements. In the case of the
regular method, D-updates become fewer as n grows, consistent with the bound O(n) on
the computation of Cy in this case. In addition, the sparse method uses fewer function
evaluations to reach the optimum, apparently since it is able to change search basis and
hence adapt to the landscape of the function more often than the regular method.

On the Broyden tridiagonal function we see a similar picture, although the savings in
function evaluations are not as apparent here as on the extended Rosenbrock function.
The reason this seems to be that frequent basis updates is not crucial on this function.
The same can be said about the results on the Broyden banded function. Note that on
the two Broyden functions, when n = 64 and n = 128, no basis change takes place in the
case of the regular method, which then in reality becomes Compass Search.

We also tested on the functions with noise, specifically

f(@) = f(z) + max(107" - [f(2)],107%) - p, (25)

where p is uniformly distributed in the interval [—1, 1]. This noise scheme is adopted from
[18]. On these problems, the convergence criterion used was

max §; < 107%.
2

The results are listed in table 2. Since we add noise to the problems by (25) we cannot
expect to find a lower function value than 10=%. On the extended Rosenbrock function the
picture is very much the same as with no noise. However, the regular method terminates
prematurely for n equal to 32, 64, and 128. The sparse method terminates prematurely
for n = 128. On the Broyden functions we also have the same picture as when no noise
is added.

5 Concluding Remarks
We have proposed and extension to the algorithm of [7] to make it aware of sparsity, and
thereby enable solution of problems with n relatively large. We have managed to reduce

the number of function evaluations it takes to reach a minimum on all three test functions
as n grows. The results hold promise, and much can be done to improve the results still, for

67

Extended Rosenbrock Function

Sparse Regular
n p ##feval F#Basis f* #feval #Basis f*
4 6 893 16 1.53e-15 1051 14 3.52e-13
8 12 1972 18 5.89e-16 2870 11 3.26e-16
16 24 3669 17 1.99e-15 8128 8 9.62e-16
32 48 7368 17 3.65e-15 20632 6 2.77e-15
64 96 14849 17 1.63e-15 65284 4 1.18e-14
128 192 29781 17 3.26e-15 190884 3 2.13e-13
Broyden Tridiagonal Function
Sparse Regular
n p ##feval F#Basis f* #feval #Basis f*
4 7 355 6 1.53e-13 365 5 4.62e-13
8 15 826 7 2.59-13 781 3 1.20e-13
16 31 1556 6 8.25e-13 1672 2 7.97e-13
32 63 3384 7 4.09e-13 4153 1 7.52e-14
64 127 6440 7 1.70e-12 9186 0 1.42e-12
128 255 14997 8§ 1.41e-12 18879 0 8.61le-12
Broyden Banded Function
Sparse Regular
n p ##feval F#Basis f* #feval #Basis f*
4 10 457 6 5.08e-15 382 5 2.56e-13
8 35 824 3 1.36e-14 804 3 4.28e-13
16 91 1667 3 5.05e-14 1682 2 2.34e-13
32 203 3439 2 6.90e-13 3437 1 9.31le-13
64 427 6709 2 1.45e-12 7524 0 1.76e-13
128 875 13450 2 2.24e-12 15070 0 3.96e-13

68

Table 1: Numerical results, smooth functions.

Extended Rosenbrock Function

Sparse Regular
n p #feval F#Basis f* #feval #Basis f*
4 6 808 15 3.63e-5 874 11 3.52e-4
8 12 1635 15 2.67e-3 2251 9 1.31e-4
16 24 3113 14 2.36e-2 7556 8 4.35e-3
32 48 7014 14 2.36e-2 10623 3 3.06el
64 96 14085 16 1.38e-1 5236 0 1.22e2
128 192 29321 17 1.86el 6629 0 2.49e2
Broyden Tridiagonal Function
Sparse Regular
n p #feval F#Basis f* #feval #Basis f*
4 7 182 3 5.25e-5 220 3 6.71e-5
8 15 383 3 3.66e-5 400 2 9.09e-5
16 31 855 4 1.86e-4 923 1 1.98e-4
32 63 1710 4 6.69e-4 1955 0 9.15e-4
64 127 3436 4 1.03e-4 4460 0 2.03e-3
128 255 6834 4 1.70e-3 8146 0 4.81e-3
Broyden Banded Function
Sparse Regular
n p #feval F#Basis f* #feval #Basis f*
4 10 205 3 1.73e-5 264 4 2.70e-5
8 35 460 2 5.76e-5 434 2 7.89e-5
16 91 893 1 1.13e-4 925 1 1.50e-4
32 203 1687 1 1.93e-4 1885 0 2.53e-4
64 427 3734 1 2.8le-4 3791 0 7.56e-4
128 875 6799 1 8.60e-4 7504 0 1.33e-3

69

Table 2: Numerical results, noisy functions.

instance incorporating ideas like the one in [16] mentioned in the introduction, and dealing
with the great number of technical issues which arise when converting the algorithm of
[7] to handle sparse Hessians.

References

1]

[7]

8]

[10]

[11]

J. Borggaard, D. Pelletier, and K. Vugrin. On sensitivity analysis for problems
with numerical noise. ATAA Paper 2002-5553, Presented at the 9th ATAA/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, Atlanta, Georgia, 2002.

I. D. Coope and C. J. Price. A direct search conjugate directions algorithm for
unconstrained minimization. ANZIAM Journal, 42(E):C478-C498, 2000.

Chandler Davis. Theory of positive linear dependence. American Journal of Mathe-
matics, 76:733-746, 1954.

John E. Dennis Jr., Christopher J. Price, and Ian D. Coope. Direct search methods
for nonlinearly constrained optimization using filters and frames. Optimization and
Engineering, 5:123-144, 2004.

C. H. Edwards. Advanced Calculus of Several Variables. Academic Press, 1973. ISBN
0-12-232550-8.

R. Fletcher. Practical Methods of Optimization. John Wiley & Sons Ltd., 1987.
Second Edition, ISBN 0-471-91547-5.

Lennart Frimannslund and Trond Steihaug. A generating set search method using
curvature information. To appear, 2004.

Alexader Graham. Kronecker Products and Matriz Calculations with Applications.
Halsted Press, John Wiley and Sons, New York, 1981. ISBN 0470273003.

Andreas Griewank. Fvaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. Number 19 in Frontiers in Appl. Math. STAM, Philadelphia, PA,
2000. ISBN 0-89871-451-6.

Andreas Griewank and Christo Mitev. Detecting jacobian sparsity patterns by
bayesian probing. Mathematical Programming, 93(1):1-25, 2002.

Andreas Griewank and Philippe L. Toint. On the unconstrained optimization of
partially separable functions. In Michael J. D. Powell, editor, Nonlinear Optimization
1981, pages 301-312. Academic Press, New York, NY, 1982.

70

[12]

[13]

[14]

[15]

Tamara G. Kolda, Robert Michael Lewis, and Virginia Torczon. Optimization by di-
rect search: New perspectives on some classical and modern methods. SIAM Review,
45(3):385-482, 2003.

Robert Michael Lewis and Virginia Torczon. Pattern search methods for linearly
constrained minimization. SIAM Journal on Optimization, 10(3):917-941, 2000.

Robert Michael Lewis and Virginia Torczon. A globally convergent augmented La-
grangian pattern search algorithm for optimization with general constraints and sim-
ple bounds. STAM Journal on Optimization, 12(4):1075-1089, 2002.

Jorge J. Moré, Burton S. Garbow, and Kenneth E. Hillstrom. Testing unconstrained
optimization software. ACM Transactions on Mathematical Software, 7(1):17-41,
1981.

C. P. Price and P. Toint. Exploiting problem structure in pattern search methods for
unconstrained optimization. Technical Report 2004/3, Mathematics and Statistics
department, Canterbury University, Christchurch, New Zealand, 2004.

H. H. Rosenbrock. An automatic method for finding the greatest or least value of a
function. The Computer Journal, 3(3):175-184, October 1960.

Virginia Torczon. Multi- Directional Search: A Direct Search Algorithm for Parallel
Machines. PhD thesis, Department of Mathematical Sciences, Rice University, Hous-
ton, Texas, 1989; available as Tech. Rep. 90-07, Department of Computational and
Applied Mathematics, Rice University, Houston, Texas 77005-1892.

71

