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Abstract

Generating set Search Methods (GSS), a class of derivative-free methods for un-
constrained optimisation, are in general robust but converge slowly. It has been
shown that the performance of these methods can be enhanced by utilising accumu-
lated information about the objective function as well as a priori knowledge such as
partial separability.

This paper introduces a notion of partial separability which is not dependent
on differentiability. We present a provably convergent method which extends and
enhances a previously published GSS method. Whereas the old method for two
times continuously differentiable functions takes advantage of Hessian sparsity, the
new method takes advantage of the separability properties of partially separable
functions with full Hessians as well. If the Hessian is undefined we show a similar
extension, compared with the old method. In addition, we introduce some new
theoretical results and discuss variants of the method.

Keywords: Unconstrained optimisation, derivative-free optimisation, noisy op-
timisation, generating set search, pattern search, separability, sparsity.

1 Introduction

Direct search methods have been an active area of research in recent years. One
class of direct search methods is Generating Set Search (GSS). For a comprehensive
introduction to these methods, see [7], or papers among e.g. [8, 14, 2, 9]. GSS
methods in their simplest form use only function values to determine the minimum

∗This work was supported by the Norwegian Research Council (NFR).
†Department of Informatics, University of Bergen, Box 7800, N-5020 Bergen, Norway. E-mail:

lennart.frimannslund@ii.uib.no
‡Department of Informatics, University of Bergen. E-mail: trond.steihaug@ii.uib.no

1



of a function. It has been shown that taking derivative information into account
[1], and particularly curvature information [3, 6] can lead to more effective meth-
ods. In addition, a priori knowledge about separability of the objective function
is also helpful in designing more effective methods, and methods that can be ap-
plied to problems of relatively large scale [12, 5]. This paper extends the work and
method presented in [5], introducing a provably convergent variant of that method,
generalises it to a wider class of partially separable functions and presents a more
thorough theoretical foundation than what as been done before. This paper is or-
ganised as follows. In section 2 we present the algorithm of [6], and the extension
outlined in [5], present modifications and extensions, and offer some new theoretical
results. Section 3 presents results from numerical testing, and section 4 offers some
concluding remarks.

2 A GSS Method using Curvature Informa-

tion

A Basic GSS Algorithm GSS algorithms draw their name from the fact that
they search along the members of a generating set. A generating set is a set of
vectors

G =

r⋃

i=1

{vi},

such that for any x ∈ R
n we have,

x =

r∑

i=1

civi, where ci ≥ 0, i = 1, . . . , r.

This can be achieved for r ≥ n + 1, depending on the vectors in G. We will, for the
most part be concerned with sets of the form

G =
n⋃

i=1

{qi,−qi}, (1)

that is, the positive and negative of n vectors, which we in addition define to be
orthonormal. We will call G our search basis. A simple method based on this set
we will call compass search. The step length δi is associated with both qi and
−qi. Pseudo code for compass search is listed in Figure 1. An example of how the
method can work in R

2 is given in Figure 2. In the figure, G consists of vectors at a
45 degree angle to the coordinate axes. The search starts at the black node/point,
marked 0. First the method searches down and to the right, finds a better function
value and steps. This is marked by a grey node. Then it searches down and to
the left, and steps. It then searches up and to the left, but does not find a lower
function value so it does not update x. This is indicated by a white node (marked
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Compass Search

Given x, G, δi ≥ 0, i = 1, . . . , n.

Repeat until convergence:

Select next vector from G, say, qi.

If f(x + δiqi) < f(x),

Take x + δiqi as new point.

Update δi according to some rule in accordance with convergence theory.

end.

Figure 1: Compass search code.

Γ in the figure). Then it searches down and to the right again and steps, and so
on. The step lengths remain the same throughout in this example. Compass search
be modified in many ways. For instance, what is the “next” direction in G can be
defined in more than one way, many rules of updating δi can be applied, and the
set G can be updated, although convergence theory may place some restrictions on
these updates (see e.g. [7]). The method of [6] uses a variant of compass search,
and by adaptively choosing the order in which the search directions are selected, it
is able to compute matrix of curvature information (which is an approximation to
the Hessian if the function is two times continuously differentiable) and replaces G
with the positive and negative of the eigenvectors of this matrix. In [6] numerical
results show that updating G this way can reduce the number of function evaluations
needed to converge dramatically, compared to compass search with the positive and
negative of the coordinate vectors as its search basis G. Curvature information can
be obtained by the formula

f(x + hqi + kqj)− f(x + hqi)− f(x + kqj) + f(x)

hk
= qT

i ∇2f(x+tqi+sqj)qj, s, t ∈ [0, 1],

(2)
where the equation holds for two times continuously differentiable functions. Let
CQ be a symmetric n × n matrix with the result of formula (2) as element (i, j),
with x, h and k not necessarily being the same for each (i, j)-pair. To see that
such information is obtainable in the context of compass search, consider again
Figure 2. If we look at the figure, we see that we often have four points making
up a rectangle, for instance the points marked 0, 1, 2 and Γ. Given four such
points one can compute the appropriate element of CQ with formula (2), since the
numerator of the left hand-side of (2) is made up of the function values of four
points in a rectangle. In higher dimension than 2 one can construct such rectangles
by performing extra function evaluations if this is needed. The algorithm of [6] does
this by shuffling the order in which the search directions are selected. Specifically,
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Figure 2: Compass search in R
2 along vectors 45◦ to the coordinate axes.

it partitions the available directions into triples T of the form

T : ±qi qj ∓qi or T : ±qi −qj ∓qi. (3)

In Figure 2, if we define q1 as down and to the right and q2 as down and to the left,
the directions are searched in the order

q1 q2 −q1 −q2 ,

that is, one triplet of the form (3) and one leftover direction. If the search along
the first two directions of such a triplet is successful, then one will obtain the
required rectangle regardless of whether or not the search along the third direction
is successful. In Figure 2 the search in the third direction is unsuccessful, but as
mentioned the points marked 0, 1, 2 and Γ make up the required rectangle. If search
fails along either of the first two directions then one needs to compute the fourth
point of the rectangle separately. Three directions per element and 2n directions to
choose from enables computation of the order of 2n/3 elements of CQ per iteration,
although one at the most can obtain two elements in the same row or column per
iteration. Diagonal CQ elements can be computed from constellations like the points
marked Γ, 2, 3, that is, three equally spaced points along a straight line.

Alternatively, one can arrange the search directions into pairs rather than triples,
and compute an extra point for each rectangle. This is depicted in Figure 3. In
Figure 3 the point marked by a cross needs to be computed separately in each case,
and can be stepped to if it produces a lower function value, although this is not
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Case 1 Case 2

Case 3 Case 4

Figure 3: The four possible outcomes of successive searches to the east and north. A grey
node signifies a step which has been taken, a white node signifies a step not taken. The
search starts at the black node in each case.
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done in [5, 6]. For instance, if n = 4 and one wants to compute (CQ)21, (CQ)31,
(CQ)24, and (CQ)34, then one can order the directions

q1 q2 −q1 q3 −q2 q4 −q3 −q4 .

Here the search along q1 and q2 provides us with (CQ)21, −q1 and q3 provides us with
(CQ)31, and so on. This way we can compute the order of n elements per iteration.
More complex schemes for obtaining curvature information can be devised, but we
restrict ourselves to pairs and triples in this paper. Once the matrix CQ is complete,
the algorithm computes the matrix

C = QCQQT , (4)

which contains curvature information with respect to the standard coordinate sys-
tem.

In general one can collect curvature information even if the members of G are not
orthogonal. Let P be a matrix with linearly independent columns of unit length,
not necessarily orthogonal, and denote its ith column by pi. Let

f(x) = c + bT x +
1

2
xT Hx,

and let the symmetric matrix CP have its entry (i, j), i > j, computed by

(CP )ij =
f(x + hpi + kpj)− f(x + hpi)− f(x + kpj) + f(x)

hk
= pT

i ∇2f(xij)pj , (5)

where the point xij varies with i and j. Then, since ∇2f is equal to H for all x, we
have that

H = P−T CP P−1.

To see this, observe that since (CP )ij is the result of a difference computation
along pi and pj , the construction of the matrix CP is equivalent to finite difference
computation of the Hessian, along the coordinate vectors, of the function

g(w) = c + bT Pw +
1

2
wT P T HPw.

Here, we have
w = P−1x,

so the Hessian of g satisfies

CP = ∇2g(w) = P T HP,

and the relation follows. For non-quadratic functions we cannot expect to recover
an exact Hessian if the points xij in (5) are different for different i and j, but can
recover the matrix

C = P−TCP P−1. (6)
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The relationship between C and ∇2f is addressed in the following Lemma, which
is a slight variation of Lemma 2 in [6]. Let CP be the matrix with entry (i, j) as in
(5), and let C be the matrix (6). Let

N =
⋃

∀i,j

xij ,

where xij are the same as in equation (5). Let

δ = max
x,y∈N

‖x− y‖,

and let

N =

{
x ∈ R

n

∣∣∣∣max
y∈N
‖x− y‖ ≤ δ

}
.

Lemma 1 Assume f : R
n 7→ R is two times continuously differentiable, and that

∇2f satisfies
‖∇2f(x)−∇2f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ N . (7)

Then, C satisfies
‖C −∇2f(x̃)‖ ≤ ‖P−1‖2nLδ, (8)

where n is the number of variables, and x̃ ∈ N .

Proof. Consider the matrix
CP − P T∇2f(x̃)P. (9)

Element (i, j) of this matrix is equal to

pT
i

(
∇2f(xij)−∇2f(x̃)

)
pj,

so by the relation ‖AB‖ ≤ ‖A‖ ‖B‖ and (7) we can write

|pT
i

(
∇2f(xij)−∇2f(x̃)

)
pj| ≤ ‖pi‖ L ‖xij − x̃‖ ‖pj‖ ≤ Lδ,

where the last two inequalities hold since x̃ ∈ N . The Frobenius norm of the matrix
(9) is the square root of the sum of the squares of its n2 elements, so we have

‖CP − P T∇2f(x̃)P‖2F ≤
n∑

i=1

n∑

j=1

L2δ2 = (nLδ)2.

By applying ‖AB‖ ≤ ‖A‖ ‖B‖, we can now write

‖P−T
(
CP − P T∇2f(x̃)P

)
P−1‖ = ‖C −∇2f(x̃)‖

≤ ‖P−T ‖ ‖CP − P T∇2f(x̃)P‖F ‖P−1‖
≤ ‖P−1‖2nLδ.

�

So, the error in the matrix C compared to the Hessian increases linearly with δ.
For the rest of the paper we assume, for simplicity, that G consists of the positive

and negative of n mutually orthogonal vectors, q1, . . . , qn and that Q is the matrix
with qi as its ith column.
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2.1 Extension to partially Separable Functions

An Extended Definition of Sparsity When a function f : R
n 7→ R is two

times continuously differentiable, one can say that if its Hessian is sparse then the
function partially separable. That is, it can be written as a sum of element functions,

f =
ν∑

i=1

fi (10)

where, with the index sets χi, signifying the elements of x that fi depends on,

χi ⊂ {1, 2, . . . , n} , i = 1, . . . , ν,

we have
fi : R

|χi| 7→ R.

In other words, f is the sum of ν element functions, which each depends on less
than n variables. (For a proof of this, see e.g. Theorem 9.3 of [11].) Let us extend
the notion of a sparse Hessian and consequent separability to non-differentiable
functions.

Given the standard coordinate vectors e1, . . . , en, define the undirected covaria-
tion graph as the graph G(V,E) with n nodes, one node for each of the n coordinate
vectors. Furthermore, let there be an edge between node i and j if and only if there
exist x, h and k such that

f(x + hei + kej)− f(x + hei)− f(x + kej) + f(x) 6= 0.

Define the adjacency matrix of a graph as the |V | × |V | matrix where element
(i, j) is 1 if there is an edge from node i to j, and zero otherwise. Since the
graph is undirected, this matrix is symmetric. Now, if the function f is two times
continuously differentiable then the structure of the adjacency matrix corresponding
to the graph G has the same structure as the Hessian matrix ∇2f . If the Hessian
is not defined, then the adjacency matrix has the same structure as the matrix CP

of (5), with P = I.

Lemma 2 If the covariation graph corresponding to a function f is sparse, then f
is partially separable.

Proof. If G is not complete, then there exists i, j for which

f(x + hei + kej)− f(x + hei)− f(x + kej) + f(x) = 0.

Without loss of generality, assume n = 2. Then we have

f(x1 + h, x2 + k)− f(x1 + h, x2)− f(x1, x2 + k) + f(x1, x2) = 0.

Now, let x1 = x2 = 0 and let h and k be the independent variables. This gives us

f(h, k)− f(h, 0)− f(0, k) + f(0, 0) = 0,
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which can be written

f(h, k) = f(h, 0) + f(0, k)− f(0, 0).

Now we can define, for instance f1(h) = f(h, 0) and f2(k) = f(0, k) − f(0, 0), and
we have that f is if the form (10). �

A graph G(V,E) is sparse if there exist nodes i and j so that there is no edge from
i to j in the edge set E.

Note that we do not require that f is differentiable here. If the objective function
corresponds to a sparse covariation graph and sparse adjacency matrix with, say,
ρ nonzero elements in the lower triangle, then we can obtain the matrix C more
quickly than if the covariation graph is complete. In the following we for simplicity
use the word “Hessian” when discussing the structure of the adjacency matrix,
although that f is two times continuously differentiable is not a requirement for our
method to be applicable.

Application to the Optimisation Method If the search directions of the
method are ordered in doubles as outlined earlier, then computing a full Hessian of
n(n + 1)/2 elements at O(n) elements per iteration takes O(n) iterations, whereas
computing ρ elements at O(n) elements per iteration takes O( ρ

n
) iterations, which

in the case of for instance a tridiagonal Hessian, where ρ = O(n) means that we can
obtain C in a constant number of iterations, independent of n. Advantages of this
are that:

• The method can update the search basis more often, which is important on
functions like the Rosenbrock function.

• The method is effective for larger values of n than the non-sparse method
since the latter for large n sometimes does not rotate at all before terminating,
reducing it to compass search.

• The computed curvature information matrix will be more accurate compared
to the Hessian (if it exists), since they share the same identical zeros, and since
it is likely to have been computed over a smaller region.

In [5], the method of the previous section was extended to take advantage of the par-
tial separability property of functions with sparse Hessians. Sparsity must be seen
as relative to the coordinate system used, even if the second and cross derivatives
vanish at many positions in the Hessian, this does not mean that the directional
second and cross derivatives obtained when applying (2) along arbitrary directions
will be zero as often, if at all. To overcome this difficulty, one can first reformulate
the equation (4) to

QT CQ = CQ. (11)

Equation (11) can be reformulated using Kronecker products. Kronecker products
are useful in light of the relation

AXB = C ⇔ (BT ⊗A)vec(X) = vec(C). (12)
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The operation vec(X) stacks the columns of the matrix X on top of each other in
a vector. By using (12), (11) can be rewritten as

(QT ⊗QT )vec(C) = vec(CQ). (13)

Both C and CQ are symmetric, so we can eliminate all the strictly upper triangular
elements of C from the equation system. (We can of course alternatively eliminate
elements from the lower triangle of C instead.) This we do by first adding the
columns in (QT ⊗ QT ) corresponding to the upper-triangular elements of C to
the columns corresponding to its lower-triangular elements, and then delete the
former columns. After this operation we must delete the same number of rows,
specifically the rows corresponding to the upper or lower triangle of CQ. Otherwise,
the coefficient matrix will be singular. To see this, consider a simple example with
n = 2. Initially, we have equation (11), which looks like

[
Q11 Q21

Q12 Q22

] [
C11 C12

C21 C22

] [
Q11 Q12

Q21 Q22

]
=

[
(CQ)11 (CQ)12
(CQ)21 (CQ)22

]
. (14)

Equation (13) becomes



Q11Q11 Q11Q21 Q21Q11 Q21Q21

Q11Q12 Q11Q22 Q12Q21 Q21Q22

Q11Q12 Q12Q21 Q11Q22 Q21Q22

Q12Q12 Q12Q22 Q12Q22 Q22Q22







C11

C12

C21

C22


 =




(CQ)11
(CQ)12
(CQ)21
(CQ)22


 . (15)

We now want to eliminate element C12, so we add column two to column three in
(15) and delete column two, giving us the overdetermined system




Q11Q11 Q11Q21 + Q21Q11 Q21Q21

Q11Q12 Q11Q22 + Q12Q21 Q21Q22

Q11Q12 Q12Q21 + Q11Q22 Q21Q22

Q12Q12 Q12Q22 + Q12Q22 Q22Q22







C11

C21

C22


 =




(CQ)11
(CQ)12
(CQ)21
(CQ)22


 . (16)

In (16) we can see that rows two and three are the same, so we must eliminate
one of them to obtain a square system with full rank. Let us eliminate the row
corresponding to (CQ)12, and we finally get




Q11Q11 Q11Q21 + Q21Q11 Q21Q21

Q11Q12 Q12Q21 + Q11Q22 Q21Q22

Q12Q12 Q12Q22 + Q12Q22 Q22Q22







C11

C21

C22


 =




(CQ)11
(CQ)21
(CQ)22


 . (17)

A similar scheme for determining the elements of an unknown sparse matrix was
used in [4]. When C is assumed to be sparse we can eliminate the columns in the
equation system corresponding to elements of C which we know are zero. We then
have the option of eliminating up to the same number of rows. The more rows we
eliminate, the smaller the right-hand side, and the faster we can obtain the matrix
C in the context of our optimisation method. The effect on the final solution C
of removing rows depends on both the right-hand side we end up with, and on the
conditioning of the resulting coefficient matrix.
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Existence of Non-singular Coefficient Matrix There always exists a non-
singular ρ× ρ coefficient matrix resulting from the process described above. Given
the n2 × n2 equation system

(QT ⊗QT )vec(C) = vec(CQ), (18)

we first add together the columns in the coefficient matrix corresponding to Cij and
Cji, then delete columns corresponding Cij where i < j and Cij = 0. This can be
done by right-multiplying the matrix (QT ⊗QT ) with a matrix Pc. For instance, if
C is a symmetric tridiagonal 3× 3 matrix, that is

C =



× ×
× × ×
× ×


 ,

then the matrix which adds together the required columns of (QT ⊗QT ) and deletes
the columns corresponding to upper triangular elements of C, as well as the zero
element in the lower triangle of C is:

Pc =




1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1




. (19)

Since columns in (QT ⊗ QT ) are deleted, we must alter vec(C) in (18) as well for
the equation to make sense. Define vec() as the operator that stacks the nonzero
elements of the lower triangle of C in a vector vec(C). This compensates for the
columns Pc removes. We can then write the reduced version of (18) as

(QT ⊗QT )Pcvec(C) = vec(CQ). (20)

The equation system (20) is over-determined, with dimension n2 × ρ. Let Pr be an
ρ× n2 matrix which selects ρ rows from an n2 × ρ matrix, that is, let Pr consist of
zeros except for one unity entry on each row. To reduce (20) to an ρ × ρ system,
we left-multiply both sides of the equality sign with Pr, which finally gives us

Pr(Q
T ⊗QT )Pcvec(C) = Prvec(CQ). (21)

Lemma 3 There exists at least one Pr such that the matrix Pr(Q
T ⊗ QT )Pc is

invertible.
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Proof. The matrix (QT ⊗ QT ) is orthogonal, and hence has full rank. Adding
together columns like the matrix Pc does is an elementary column operation (which
preserves rank), except for the fact that the columns corresponding to Cij and
Cji are set equal. The matrix Pc deletes half of these columns, thus restoring full
rank, as well as deleting additional columns corresponding to Cij known to be zero.
Consequently, the n2 × ρ matrix

(QT ⊗QT )Pc

has rank ρ, and there is at least once selection of ρ rows which results in an (ρ× ρ)
matrix of full rank. �

For simplicity, we introduce the notation

A = Pr(Q
T ⊗QT )Pc, (22)

and
cQ = Prvec(CQ).

Construction of Nonsingular A It turns out not to be obvious which rows
Pr should select when constructing A. For example, if C has a full diagonal, and
Pr does not select rows in (QT ⊗QT ) corresponding to the diagonal of CQ, then A
is singular, and particularly,

Avec(I) = 0. (23)

To see this, consider the left hand-side of (23), which using (22), can be written:

Avec(I) = Pr(Q
T ⊗QT )Pcvec(I)

= Pr(Q
T ⊗QT )vec(I)

= Prvec(QT IQ)

= Prvec(I).

Now the matrix corresponding to vec(I), the identity, is diagonal, but since Pr cuts
all the rows corresponding to the diagonal, then

Prvec(I) = 0,

and we have shown that A is singular in this case. We can extend the result to:

Lemma 4 Let E be a non-zero symmetric matrix with the same sparsity structure
as C such that the vector vec(QT EQ) only has nonzero entries in positions which
are cut by Pr. Then A is singular, and, specifically,

Avec(E) = 0.
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select rows

Let ak be row k of (QT ⊗Q
T )Pc.

Let A = ∅.
For i = 1 to ρ,

choose next aj ∈ {a1, a2, . . . , an2} \A, so that the vectors in A and aj are linearly
independent,

set A = A⋃ {aj} ,

end.

Set A to be the matrix made up of the rows in A, sorted appropriately.

Figure 4: Procedure for constructing nonsingular A.

We can always construct the matrix A in a brute-force fashion by starting with the
matrix

(QT ⊗QT )Pc, (24)

Which is an n2 × ρ matrix of full rank. (It can easily be reduced to an n(n + 1)/2 × ρ
matrix of full rank, since we know that the rows corresponding to CQ elements (i, j)
and (j, i), say, are equal.) To reduce this to a ρ× ρ matrix of full rank we can use
QR-factorisation (on the transpose of matrix (24)), which identifies which rows can
be deleted. Alternatively, and without the need for storing a large matrix, one can
build the matrix A row by row with a procedure like in Figure 4. The procedure
constructs A one row at a time checking if the last added row is linearly independent
from the previously added rows. This can be done by starting with A being zero
and maintaining a QR-factorisation of AT . That the procedure in Figure 4 always
produces a non-singular matrix A regardless of how the for-loop is implemented is
addressed in the following Lemma.

Lemma 5 The procedure select rows produces a matrix A which is nonsingular.

Proof. Let i < ρ. Let Ai be an i× ρ matrix with i linearly independent rows picked
from the rows of (QT ⊗QT )Pc, i.e. the result of select rows after i iterations of the
for-loop. Let aj be row j of Ai, j = 1, . . . , i. After iteration i we have

span {a1, . . . , ai} ⊂ R
ρ.

Since the matrix (QT ⊗QT )Pc has rank ρ, its rows span the entire space R
ρ. There-

fore, if i 6= n there will always be a row in (QT ⊗QT )Pc which, if projected into the
space

R
ρ \ span {a1, . . . , ai} ,

is nonzero. Consequently, given i < ρ linearly independent rows, one can always
find i + 1 linearly independent rows, and repeat the process until A is complete. �
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Whether or not select rows will be effective depends on how the for-loop, and
particularly the “choose next j” statement is implemented. The heuristic of [5]
which often (but not always) produces nonsingular A-matrices, can be used for
selecting the first candidate rows. The heuristic works by noting that including a
specific row in A corresponds to computing a specific element of CQ, say, (CQ)rs.
The element (CQ)rs is computed by searching along the search directions qr and qs,
and the corresponding row in A is constructed from the same vectors. The heuristic
suggests using the (qr, qs)-pairs which mimic the most the coordinate vectors which
would have been used if Q = I, by the rule: For all (i, j), i > j, if Cij 6= 0, then
include the row in A constructed from qr and qs which satisfy

arg max
k

(qr)k = i,

and
arg max

l
(qs)l = j.

We now look at the effect of truncation errors in cQ on C.

Square System We wish to solve

Avec(C) = cQ. (25)

The right-hand side cQ is a vector whose entries are

cQ =




qT
λ1
∇2f(xλ1σ1)qσ1

...
qT
λρ
∇2f(xλρσρ)qσρ


 .

Here λ1, . . . , λρ and σ1, . . . , σρ are the appropriate orderings of the numbers 1, . . . , n.
Let

ηi = vec(∇2f(xλiσi)), i = 1, . . . , ρ, ηi ∈ R
ρ.

Then we can write

cQ =




(Aη1)1
...

(Aηρ)ρ


 ,

where (Aηi)i is the ith element of the vector Aηi. This can be written

cQ =

ρ∑

i=1

EiAηi,

where Ei is an ρ× ρ matrix with 1 in position (i, i) and zeros everywhere else. The
solution vec(C) becomes

vec(C) = A−1
ρ∑

i=1

EiAηi.
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If all the ηi are the same, say, η, we have

vec(C) = η,

regardless of which elements of CQ we choose to compute. If the ηi are not equal
the solution vec(C) will not be independent of which CQ elements are computed,
but it can be shown that the resulting matrix C satisfies

‖C −∇2f(x̃)‖F ≤
√

2κ(A)ρLδ,

for some x̃ ∈ N . κ(A) means the condition number of A. So, the error in C grows
linearly with δ as before, and the condition number of A is a factor. The proof
of this is given in [5], and is similar to the proof we give for least squares solution
below.

Least Squares Solution It is possible to pick more than ρ rows from (QT ⊗QT )Pc

when reducing the size of the equation system. If we choose to compute m elements,
ρ < m ≤ n(n + 1)/2, we get an over-determined equation system which can be writ-
ten

P̂r(Q
T ⊗QT )Pcvec(C) = P̂rvec(CQ), (26)

where P̂r is an m×n2 matrix which deletes the appropriate rows. (26) can be solved
through least-squares solution. Define

Â = P̂r(Q
T ⊗QT )Pc,

and
ĉQ = P̂rvec(CQ),

then (26) can be written
Âvec(C) = ĉQ, (27)

with least squares solution

vec(C) = arg min
c
‖Âc− ĉQ‖2.

Here Â is an m× ρ matrix. ĉQ is m× 1 and can be written

ĉQ =

m∑

i=1

EiÂηi,

where Ei this time is an m × m matrix with zeros everywhere except for a 1 in
position (i, i), so that

vec(C) = (ÂT Â)−1ÂT

m∑

i=1

EiÂηi. (28)
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Here we assume that (ÂT Â) is invertible. If the ηi are all equal the solution is the
same as for the square system. If the ηi are not equal then we can write (28) as

vec(C) = η + (ÂT Â)−1ÂT

m∑

i=1

EiÂεi

where
η = vec(∇2f(x̃)),

for some x̃, and
εi = ηi − η.

Let
c = vec(C).

We then have

‖c− η‖ = ‖
m∑

i=1

(ÂT Â)−1ÂT EiÂεi‖,

an upper bound on which is

‖c− η‖ ≤ m‖(ÂT Â)−1‖ ‖ÂT ‖ ‖Â‖ max
i
‖εi‖.

If f satisfies (7), then it can be shown that

max
i
‖εi‖ ≤ Lδ,

so that
‖c− η‖ ≤ ‖(ÂT Â)−1‖ ‖ÂT ‖ ‖Â‖ mLδ,

which implies

‖C −∇2f(x̃)‖F ≤ ‖(ÂT Â)−1‖ ‖ÂT ‖ ‖Â‖
√

2mLδ,

since, for a symmetric matrix with ρ nonzero elements in the lower triangle, say, B,
we have

‖B‖F ≤
√

2‖vec(B)‖.

2.2 A Generalised Sparse Covariation Graph

Consider the function
f(x) = (x1 + x2)

2. (29)

The covariation graph of this function is complete and its Hessian is full, namely

∇2f(x) =

[
2 2
2 2

]
.
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There are three elements in the lower triangle, but these all have the same value.
As we will see, it is possible to compute the entire Hessian using only one finite
difference computation in this case. To see how this can be the case, observe that
for

U =
1√
2

[
1 1
1 −1

]
,

we have

UT∇2f(x)U =

[
4 0
0 0

]
,

which has only one nonzero element. This gives rise to the following technique. De-
fine the covariation graph with respect to the n×n nonsingular matrix U , GU (V,E),
with n nodes, where each node corresponds one-to-one to a column in U . Let there
be an edge between node i and j of GU if and only if there exist x, h, k such that

f(x + hui + kuj)− f(x + hui)− f(x + kuj) + f(x) 6= 0.

Lemma 6 If the covariation graph of f with respect to a nonsingular matrix U ,
GU (V,E) is not complete, then the function is partially separable, and subject to
a change in variables can be written as a sum of element functions, each with an
invariant subspace.

Proof. We have

f(x + hui + kuj)− f(x + hui)− f(x + kuj) + f(x) = 0,

for all x, h and k. Without loss of generality assume that n = 2 and x = 0. For
simplicity, let us write u1 = p, u2 = q, and let q1 be element 1 of q, and so on. Then
we can write

f(hp1 + kq1, hp2 + kq2)− f(hp1, hp2)− f(kq1, kq2) + f(0, 0) = 0,

which is the same as

f(hp1 + kq1, hp2 + kq2) = f(hp1, hp2) + f(kq1, kq2)− f(0, 0). (30)

Let g(h, k) be the function f
(
y(h, k)

)
, where

y(h, k) =

[
p1 q1

p2 q2

] [
h
k

]
,

using that p and q are linearly independent. Then, (30) can be written

g(h, k) = g1(h) + g2(k),

where for instance

g1(h) = f(hp1, hp2), and g2(k) = f(kq1, kq2)− f(0, 0),
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and g is a sum of element functions, each of which are invariant to changes in one
of the variables. �

Assume for simplicity that U is orthogonal. Now we can compute a full matrix
C with only ρ finite difference computations along the directions of an orthogonal
matrix Q, if there exists an orthogonal matrix U such that CU is sparse, with ρ
nonzero elements in the lower triangle. Usually, we compute ρ elements of the
matrix CQ and impose a sparsity structure on the matrix C in the equation

C = QCQQT .

The matrix C is not sparse in the current context, but let us impose the appropriate
sparsity structure on the matrix

Y = UT CU.

Then, we get
Y = UT CU = UT QCQQT U,

which leads to
QT UY UT Q = CQ,

which can be written

(QT U ⊗QT U)vec(Y ) = vec(CQ).

Using the same techniques as described before, one can reduce the size of this n2×n2

equation system to ρ× ρ and obtain the matrix Y , and finally obtain the matrix

C = UY UT . (31)

To give a concrete example, let us consider an extension of the function (29) to
dimension n,

f(x) = (x1 + · · ·+ xn)2. (32)

Here, let U be an orthogonal matrix with e/
√

n, e being a vector of all ones, as
its first column. The structure of the matrix U T∇2f(x)U is all zero except for
the element in position (1,1). Let Q be an arbitrary orthogonal matrix, and let us
compute the finite difference

(CQ)12 = f(x + q1 + q2)− f(x + q1)− f(x + q2) + f(x),

for some arbitrary x. With the appropriate matrices Pr and Pc we can now construct
the 1× 1 equation system

Pr(Q
T U ⊗QT U)Pcvec(Y ) = cQ,

which gives us
vec(Y ) = Y11 = 2n.

From this we can compute C from (31), which becomes a matrix of all 2’s, which is
equal to the exact Hessian of (32).
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2.3 Convergence Theory

A summary of convergence theory for various types of GSS methods on continuously
differentiable functions is given in [7]. Since we update the search basis regularly,
there are two ways of ensuring global convergence, according to the theory of [7].
One is placing restrictions on when the basis may be updated, and when step lengths
may be reduced and increased. This is incorporated into the method of [6]. However,
the aim of the current method is to update the basis as often as possible, and this
conflicts with the restrictions on basis updates. Consequently, we must ensure global
convergence in a different way.

The second option is to enforce sufficient, rather than simple decrease [9]. By
simple decrease we mean that a step is accepted if

f(x + δiqi) < f(x). (33)

By sufficient decrease we mean accepting a step if

f(x + δiqi) < f(x)− ρ(δi), (34)

where ρ(t) is a nondecreasing continuous function, which in this context additionally
is required to satisfy

ρ(t) = o(t), when t ↓ 0,

for the method to be provably convergent. A function which accomplishes this is

ρ(t) = γ1 · tγ2 , (35)

for γ1 < 0 and γ2 > 1. To allow for long steps γ1 should be small, so we tentatively
set

γ1 = 10−4,

inspired by the Wolfe conditions for line search (see e.g. [11], chapter 3), and γ2 = 2.

2.4 Algorithm Pseudo Code

Pseudocode for the algorithm is given in figures 5 and 6. For simplicity, Figure 5
and the following discussion does not cover the material of section 2.2, since this
extension is relatively straightforward. Let us look at the main part, Figure 5, line
by line. The first part is initialisation, which is determining the initial search vectors,
the positive and negative of the unit coordinate vectors in our implementation, as
well as the initial step lengths, which we in our numerical experiments choose by
the rule:

- If |x0
i | > 0, δi = 0.05|x0

i |.
- If x0

i = 0 and ‖x0‖ > 0, δi = 0.05‖x0‖.
- If ‖x0‖ = 0, δ = 0.05e, where e is a vector of all ones.
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It must be decided which elements of CQ should be computed, which for Q = I we
set as the same elements as the nonzero elements of the lower triangle of C.

The main while loop of the algorithm first tests if the method is deemed to have
converged. There exist several possible convergence criteria, and and replacing one
with another in an algorithm is usually easy. We suggest either

max
i

δi

‖x‖ < tolerance,

or just
max

i
δi < tolerance,

depending on whether or not the variable is assumed to approach zero over the
course of the optimisation.

Next, the method orders the search direction for the given iteration. This is
done the same way as outlined for the method not exploiting sparsity, by ordering
the directions into pairs.

Searching along a direction is done as in Figure 6, where a point is taken if
it gives sufficient decrease. If sufficient decrease is obtained, the method tries to
double the step length.

Having searched along two directions, the method computes a fourth point as
depicted in Figure 3 and computes the appropriate element of CQ. For the re-
maining directions after all pairs of directions are have been searched along, the
method searches along the remaining directions without considering off-diagonal
CQ elements, but still potentially computing diagonal CQ elements.

When we are finished searching along all 2n directions, the method updates step
lengths according to the rule:

- For those j where no step was taken along either qj or −qj, set δj ← 1
2δj .

Once all required off-diagonal elements of CQ have been computed, the search
directions are updated. First we must compute all remaining required diagonal
elements, if any. Then we solve the equation system (21) or (26) depending on
whether we want to solve an over-determined equation system or not. From the
solution we obtain the matrix C, and set the positive and negative of its eigenvectors
as the new search directions. In addition we update step lengths. Let Qold be the
matrix with the n unique (apart from sign) old basis vectors, and Qnew the matrix
containing the corresponding new basis vectors. We update step lengths by the rule

δnew =

∣∣∣∣
(
QT

newQoldδold

) ∣∣∣∣,

the absolute value sign meaning absolute value of each element of the vector QT
newQoldδold,

a relation deduced from wanting to maintain

Qnewδnew = Qoldδold,
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and wanting to keep all step lengths nonnegative.
Next, since Q has changed we must determine which elements of CQ are to be

computed , which is equivalent to generating the matrix A discussed in section 2.1.
This is done with the procedure select rows of Figure 4. If we want to solve an over-
determined equation system then we in the experiments first select rows the using
the method select rows, then select the desired number of extra rows by picking the
first available elements on the diagonal of CQ, then on the first sub-diagonal, and
so on. When the new basis is in place we perform four compass search iterations
along the new search basis before starting to compute CQ and C. The reason for
this, based on initial numerical experience is that it is not helpful to update the
basis too often (i.e. at every iteration, which can be done if C is e.g. tridiagonal),
so we wait for a little while before pursuing a new search basis. It may of course
well be that better rules exist than to just wait four iterations.

Initialise

While not converged

Order directions

For each direction pair

Search along first direction

Search along second direction

Compute extra point and CQ element. Update iterate if extra point gives
sufficient decrease.

end.

For each of remaining directions

Search along direction

Update step lengths

If all desired off-diagonal CQ elements have been computed

Compute remaining desired diagonal elements. Update iterate if a point
giving sufficient decrease is found in the process.

Change basis and update step lengths

Determine which CQ elements are to be computed

Perform ordinary compass search along new basis for 4 iterations.

Figure 5: Pseudocode for the algorithm.
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Given current iterate x, search direction qi, step length δi, γ1 and γ2

If f(x + δiqi) < f(x)− γ1δ
γ2

i

If f(x + 2 · δiqi) < f(x)− 2 · γ1δ
γ2

i ,

Take x + 2 · δiqi as new point.

Set δi ← 2 · δi.

Else

Take x + δiqi as new point.

Compute

(CQ)ii =
f(x + 2δiqi)− 2f(x + δiqi) + f(x)

δ
2
i

.

end.

Figure 6: Searching along a direction.

3 Numerical Results

The method was implemented in Matlab, and tested on functions from [10]. The
functions chosen for testing are:

• The extended Rosenbrock function. This function, used in designing the Rosen-
brock method [13], has a block-diagonal Hessian with block size 2. The func-
tion is designed to have search methods follow a curved valley, so we expect
good results on this function.

• The Broyden tridiagonal function. This function has a tridiagonal Hessian.

• The extended Powell singular function. This function has a block diagonal
Hessian matrix, with block size four. The Hessian is singular in certain sub-
spaces of the domain of the objective function, most importantly at the optimal
solution.

• The discrete boundary value function. This function has a Hessian with five
diagonals.

• The Broyden banded function. This function has a Hessian with 13 diagonals.

The results for these smooth functions are given in Table 1. The column “Sparse”
contains the number of function evaluations performed to reduce the function value
to less than 10−5, when starting from the recommended starting point and com-
puting only the number of CQ elements needed, that is, ρ elements. The column
“LSQ” lists the number of function evaluations to reduce the function value below
the same level, but computing 1.5 times the number of CQ elements strictly needed.
“Full” lists the results of computing the entire matrix CQ. The reason we halt the
methods rather then letting them run until they are deemed to have converged is
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that we are interested in studying the rate of decline produced by the methods,
rather then the effects of a stopping criterion. To prevent stagnation, the methods
were also halted if

max
i

δi ≤ 10−7. (36)

In general one can say that the “Sparse”-column contains the best results and
the “Full”-column the worst, with the “LSQ”-column somewhere in between, and
that the relative differences between the columns depend on the function. On the
extended Powell Singular function, if we do not halt the methods after a value
below 10−5 is obtained, then all of the methods perform a huge number of function
evaluations without making much progress. The true Hessian becomes more and
more ill-conditioned along the paths the methods follow, so it would seem that
singular Hessians lead to bad search directions since zero eigenvalues can correspond
to arbitrary eigenvectors.

We then add noise to the functions, by testing on the function

f̃(x) = f(x) + max
{
10−4 · f(x), 10−4

}
· µ,

where −1 ≤ µ ≤ 1 has a uniform random distribution. We run each instance 10
times, and halt the methods when the objective function value drops below 10−2.
The results are given in Table 2, the average number of function evaluations being
listed. In some instances the methods fail to produce a function value lower than
10−2 before they are halted by the criterion (36). For those instances where this
happened all 10 times, the corresponding entry in the tables says “Fail”. If a method
failed on some, but not all 10 runs, then there is a number in parentheses after the
average number of evaluations, the number is the number of successful runs, and
the average number of function evaluations listed is over those successful runs only.

The picture is largely the same as for smooth functions. As n grows, it be-
comes beneficial to use the “Sparse” or “LSQ” approach. The “Full” approach fails
frequently for large n.

4 Summary

We have presented a provably convergent GSS method which exploits average cur-
vature information as well as partial separability. Numerical results have shown that
taking separability into account gives a method which usually produces a faster rate
of function value decline than not doing so, on smooth as well as noisy functions. In
addition, the method exploiting separability succeeds on some noisy problems for
large n where its counterpart fails.
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Function n Sparse LSQ Full

Extended Rosenbrock 4 603 637 653
8 1249 1346 1938

16 2497 2693 6093
32 4993 5514 18399
64 10273 10538 50163

128 20545 21941 184136
Ext. Powell Singular 4 237 - 204

8 355 572 788
16 936 961 1890
32 1804 2351 5793
64 4669 5915 21797

128 9346 8777 77257
Broyden Tridiagonal 4 219 - 168

8 390 376 449
16 851 897 1003
32 1791 1803 2377
64 3563 3366 5779

128 7611 8000 12035
Discrete boundary value 4 81 - 82

8 191 195 237
16 913 629 1028
32 844 846 3522

Broyden banded 4 215 - 230
8 499 - 500

16 994 - 1156
32 2240 2373 2342
64 4735 4648 5081

128 9242 10344 10647

Table 1: Number of function evaluations needed to reduce the objective function value to
less than 10−5, with γ1 = 10−4 and γ2 = 2. In the experiments reported in the LSQ column
1.5 times the needed amount of CQ elements were computed. A “-” entry signifies that
1.5 times the number of needed elements exceeds the total number of available elements
in CQ.
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Function n Sparse LSQ Full

Extended Rosenbrock 4 496.8 528.3 528.7
8 1022.0 1126.5 1753.2

16 2069.3 2298.1 5604.5(8)
32 4284.2 4771.4 Fail
64 8919.4 9900.8 Fail

128 18773.8 22542.2 Fail
Ext. Powell Singular 4 128.8 - 115.5

8 268.5 262.9 515.0
16 578.4 561.5 1441.7
32 1448.1 1485.4 2428.5(2)
64 3519.4 3452.7 Fail

128 7306.3 8745.3(9) Fail
Broyden Tridiagonal 4 135.9 - 82.4

8 223.6 223.2 231.9
16 428.4 443.0 608.4
32 862.9 868.5 1515.3
64 1804.8 1809.9 3098.1

128 3947.6 4060.1 6207.5
Broyden banded 4 143.2 - 145.8

8 319.6 - 310.5
16 713.0 - 691.3
32 1493.8 1596.3 1594.9
64 3144.4 3197.4 3534.8

128 6810.8 6690.0 7592.0

Table 2: Number of function evaluations needed to reduce the objective function value
with noise added to less than 10−2, with γ1 = 10−4 and γ2 = 2. Average over 10 runs
listed.
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