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Preface 
This thesis, submitted for the degree of Philosophiae Doctor at the University of 

Bergen, consists of two parts. The first includes an introduction, an experimental 

section, a summary of the main results of the papers presented in the second part, and 

an overall discussion and conclusion. The second part consists of six research papers.  

The main part of the work has been carried out at the Department of Chemistry 

of the University of Bergen in the period 2012-2016, including a 5 months guest 

research stay at the Department of Chemical and Environmental Engineering of the 

University of the Basque Country. Part of the work was also carried out in 

collaboration with the Arrhenius Laboratory of the Stockholm University.  

The project was partially funded by the Research Council of Norway (grant no. 

190965/S60) in collaboration with additional partners - Statoil ASA, Borregaard 

Industries Ltd., Allskog BA, Cambi AS, Xynergo AS, Hafslund ASA and Weyland 

AS- through the LignoRef project (“Lignocellulosics as a basis for second generation 

biofuels and the future biorefinery”).  

The aim of the work conducted was to develop stable and active catalyst for the 

conversion of lignin in a formic acid/solvent media.  Several catalytic formulations 

have been investigated using both water and ethanol as a solvent. The research was 

also oriented to the understanding of the catalytic LtL reaction system more in detail. 

The fundamental knowledge acquired and the considerable catalyst screening effort 

represent a considerable improvement of the scientific basis for the future 

development of more specific LtL catalysts.  

  



IV 
 

 

  



V 
 

Acknowledgements 
First and foremost I would like to thank Tanja Barth for giving me the opportunity to 

carry out this PhD and for the personal and professional support provided during all 

my time at the University of Bergen. She has given me the freedom I needed to build 

my professional competences within the project. I would also like to thank my 

department colleagues Solmaz Ghoreishi and Camilla Løhre and the master students 

who helped me with the lab work, Agnethe Hertzber, Sveinung F. Simonsen, Audun 

Kronstad and Mari H. Vogt. 

 I would further like to thank the staff at the University of Bergen (UiB) for their 

administrative and professional support:  Bjarte Holmelid and Johan E. Carlson for the 

scientific support and assistance,  Knut Børve for his patience and personal support, 

Inge-Johanne Fjellanger for her assistance with the elemental analysis, Egil Nodland 

and Bjørn Grung for the discussions on experimental design and chemometrics, Mali 

H. Rosnes for helping me with the N2-adsorption analysis, Svein A. Mjøs for his 

assistance on gas-chromatography analysis,  Erwan Le Roux for the technical support, 

and Reidun A. Myklebust, Steinar Vatne, Martin A.,  Hansen and Lisbet Sørensen for 

their technical assistance. I hope I have not missed anyone.  

 My sincerest gratitude further goes to the staff of the Chemical and 

Environmental Engineering from the University of the Basque Country (UPV-EHU) 

without whom I doubt I would have been able to finish this work. I would like to 

particularly thank Pedro L. Arias and Iñaki Gandarias for helping me through this long 

and tedious journey. Working with Nemanja Miletíc has also been a real pleasure. 

Thanks to Aihnoa, Iker Obragon, Iker Garcia and Sara for helping me during my stay 

at the UPV-EHU. I would also like to thank the members of the Arrhenius Laboratory 

of the Stockholm University for their productive collaboration, particularly Wenming 

Hao and Niklas Hedin.   

    

  



VI 
 

Last but not least, a special thanks to Matina Karakitsiu, Ida Portice, Coralie 

Quadri and James Gasson for making Bergen less rainy and the UiB a bit more 

colorful. Thanks to Elvira Jalon and Markus Baumman for contributing to a nicer 

working environment.  

 No me gustaría olvidar a todos aquellos amigos que han hecho que estos cuatro 

años en Bergen sean difíciles de olvidar. Gracias a Mónica, Lolo, Antonio, Belén, 

Dinka, Momo, Mireia, Diana, Leire, Luzzo, Camilla, Guille, Georgina, Tamara, Ona, 

Alba, Maite,  Nicholas, Katerina y el largo etcétera de personas que han llenado de 

alegría mi estancia en Noruega. Un especial agradecimiento a mis compañeros de Olav 

Kyrres Gate por los buenos momentos y mejores fiestas que hemos compartido, 

Humberto, Marquitos, Piero, David y el siempre presente Nico.  Gracias también a los 

Berlinenes y esas escapaditas necesarias, Juan, Imna, Sergio y Azzurra.  

 Y como no un especial agradecimiento a los de la Kuadrilla, por esas 

Navidades,  ese veranito Erasmus, los pintxo-potes, las visitas a Noruega, y sobre todo 

por no dejarme acabar la tesis a tiempo. Un abrazo especial para Ion Ander, Hodei, 

Jon, Gabirel, Unai, Eder, Ioseba, Torti, Winston, Javi, Iker, Otxoa y los de un año 

menos. También, como no, a los Inasmetos y a todos los demás que por espacio no he 

podido incluir.  

 Esta tesis querría dedicársela a mis padres. Me han acompañado desde el 

principio de mi viaje y han sido el mejor apoyo posible en los momentos más difíciles. 

También a mi hermano Iñigo por su apoyo, comprensión y por dejarme ocupar su casa. 

Besarkada handi bat, familia!  



VII 
 

Abstract  

The viability of future lignocellulosic bio-refineries is highly dependent on the 

efficient conversion of the lignin component. A promising and relatively new lignin 

conversion methodology is the Lignin-to-Liquid (LtL) process, which involves the 

conversion of the lignin biopolymer in a reducing formic acid/solvent media. 

However, in order to make this process economically competitive, some important 

process parameters need to be improved: (i) shorter reaction times, (ii) lower reaction 

temperatures and (iii) the reduction of low-value side streams i.e., gas and solid 

phases.  

One possibility to address these challenges is the use of heterogeneous catalysts 

in the process. The main focus of this work was therefore the systematical evaluation 

of different catalysts for the LtL process. Additionally, the valorization of the low-

value solid phase into magnetic activated carbons (MACs) was investigated. MACs 

were produced by KOH chemical activation of the LtL solids (hydrochars) and were 

further evaluated as CO2 sorbents and catalytic supports.  

The activity of different noble metal catalysts such as Rh/Al2O3, Pd/Al2O3, 

Ru/Al2O3 and Ru/C was studied using both ethanol and water as solvents. Traditional 

NiMo catalysts supported on Al2O3, ZrO2 and MACs, on the other hand, were 

analyzed only in ethanol media. The results suggest that the activity of the catalyst is 

highly dependent on the type of metallic system; the effect of the support in the 

activity of the catalyst is limited, although it is a key factor when evaluating its 

stability upon recycling. Noble metal based catalysts increased the oil yield and 

reduced the solid yield for all the reaction conditions and solvent systems studied. 

NiMo, catalysts, on the other hand, were only active in ethanol media and at high 

temperatures (i.e. 320 °C or above).  The oil yield at low temperatures (i.e. 300 °C) 

could be, however, increased by supporting the NiMo species over renewable MACs.  
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The catalyst screening approach carried out in this work revealed the 

complexity of the LtL system: several chemical reactions such as aliphatic ether bond 

cleavage, HDO and alkylation reactions involving the depolymerized lignin monomers 

and formic acid decomposition occur simultaneously. The formic acid aided aliphatic 

ether bond cleavage was the most relevant reaction for the production of bio-oil. It was 

found that formic acid induces a lignin degradation mechanism different from the one 

induced by other hydrogen sources such as H2 or isopropanol. The exact reaction 

mechanism is not fully understood but is believe to happen through a formylation-

elimination-hydrogenolysis/hydrolysis mechanism. HDO and alkylation reactions 

contribute to a lesser extent to the production of bio-oil by stabilizing the lignin 

monomers and hindering their re-polymerization. Furthermore, alkylation reactions 

could also be favored by selecting a suitable solvent. 
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Chapter 1. Introduction  

Among all biomass sources, the lignocellulosic biomass derived from agricultural and 

forestry wastes is considered as the most adequate substitute for fossil sources due to 

its abundance, versatility and lack of competition with food resources.  Yet, the 

efficient and economically feasible conversion of lignin into fuels and chemicals 

remains one of the major technology gaps for the development of lignocellulosic bio-

refineries. Here, the chemical nature of the lignin biopolymers will be described based 

on their botanical origin and the isolation process. After summarizing the most 

relevant advances in the catalytic conversion of lignin, the recently developed Lignin-

to-Liquids (LtL) process will be described and its major challenges addressed.  

1.1 Energy transition: from crude oil to a biomass based energy 

system 

According to the results of the 2015 Revision1 published by the Department of 

Economic and Social Affairs of United Nations (UN-DESA), the world population 

reached 7.3 billion as of mid-2015. The global population is expected to rise in the 

short-to-medium term, reaching between 8.4 and 8.6 billion in 2030 and between 9.5 

and 13.3 billion by the end of the century1. Hence, the demand of natural resources for 

the production of food, energy and chemicals is expected to increase significantly in 

the course of the century.  It is important, therefore, to develop an integrated 

production model that addresses the sustainable and environmentally friendly 

production and distribution of these three basic commodities: food, energy and raw 

materials (chemicals).   

The challenge is of immense magnitude. In terms of food supply, the Food and 

Agriculture Organization (FAO) expects an steady growth of the total agricultural 

product consumption of 1.1 % per year until 20502. The global energy demand is 

estimated to grow even faster, by 48 % between 2012 and 2040 (Figure 1.1, above); 

fossil fuels being the major contributor providing over 78 % of the demand3.  The 

same trend is observed for the bulk chemicals, of which organic chemicals account for 
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47 % of the total shipment value (Figure 1.1, below): the value of bulk chemical 

shipments is expected to grow from $288 billion in 2013 to $454 billion in 20404.  

 

Figure 1.1: World energy consumption in quadribillion BtU (British thermal unit equivalent to 257 
cal.) by country grouping 2012-40 3 (above) and value of industrial bulk chemicals shipments 2012-40 
(billion 2009 dollars)4 (below) 

  



INTRODUCTION                                                                                                                                 5 
 

 
 

Today’s energy and organic chemical production model basically relies on 

fossil sources. Among them, crude oil has displaced coal as the most important energy 

and organic chemical resource in both industrial and post-industrial countries. The 

major amount of the crude oil is consumed for energy applications although around 16 

% is employed for the production of oil-derived products and chemicals5. However, 

the excessive consumption of oil-based commodity products (i.e. energy, 

transportation fuel, materials, plastics and chemicals) is causing an extreme 

environmental impact all over the world. Moreover, the unbalanced geographical 

distribution of the crude oil reserves, which are often found in politically unstable 

regions, have led to military conflicts and the current oil price volatility has 

contributed to the rise and fall of local economies and global markets.  Thus, the 

modern society needs to address as early as possible the transition towards a 

sustainable and environmentally friendly renewable model.  

Based on these concerns, several countries and supranational entities have 

designed and in some cases implemented ambitious policies focused in long term 

sustainability, especially in the energy sector. The European Union has set a 

mandatory target of 20% for the renewable energy share of energy consumption by 

2020 and a mandatory minimum target of 10% for biofuels for all member states6. 

Although the United States (U.S.) carries no mandatory renewable energy targets, the 

U.S. Department of Agriculture and U.S. Department of Energy have set the goal that 

by 2030 20% of transportation fuels and 25% of U.S. chemical commodities should be 

derived from biomass7.The Chinese National Energy Administration has carried out a 

“National Twelfth Five-Year Plan” to reach a consumption of 12 million metric tons 

of biofuels by 2020, mainly ethanol and biodiesel8.  

While energy can be produced by different renewable sources (e.g. wind, solar 

systems, tidal power), the other crude oil based consumer products (e.g. chemicals) 

can only be made from biomass. Biomass is the fourth largest source of energy in the 

world (following oil, coal, and natural gas)9 and the only renewable organic carbon 

resource in nature. Today, ethanol or ethanol blended petrol, as well as bio-diesel 

produced from energy crops, are the main fossil fuel substituents and the demand is 
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increasing. However, the production of the so-called first generation bio-fuels, those 

derived from potential alimentary resources, resulted in the rise of the energy crop 

prices and the subsequent outcry from world-wide consumers and livestock 

producers10. To avoid some of the mentioned concerns, the so-called second 

generation biofuels are attracting more and more attention from researchers, industry 

and policy makers.  

Lignocellulosic material, found in both agricultural and forestry residues, is a 

very promising platform for the production of both second generation bio-fuels and 

renewable chemicals. Lignocellulose is the most abundant form of biomass, with an 

annual production of around 170 billion metric tons11 and its use will not impose a 

direct negative impact on food supplies. However, the transition from a crude-oil 

model to a production system based on lignocellulosic biomass is still a huge 

challenge. The cost of bio-based products in many cases exceeds the cost of oil-

refining and petrochemical processing, and the new products must be proven to 

perform at least as well as their petrochemical equivalents12. Novel and existing 

processes for the conversion of lignocellulosic feedstock need to be further developed 

and/or optimized in order to achieve the economically feasible biomass valorization. 

Moreover, these processes need to be further integrated mimicking the production 

system found in the refining and petrochemical industries. Hence, the key to the most 

efficient use of lignocellulosic biomass is to design suitable and sustainable integrated 

bio-refineries.   
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1.2 Lignocellulosic Bio-refineries: the lignin issue  

Bio-refineries are classified on the basis of a number of key characteristics, mainly 

type of feedstock and platforms. Platforms are defined as the range of bio-refinery 

streams in which the selected feedstock can be processed: these include the syngas, 

biogas, C6 and C6/C5 sugar, plant-based oil, algae oil, organic solutions, lignin and 

pyrolysis oil platforms12.   

Lignocellulosic biomass is a heterogeneous feedstock comprising of three main 

components of different nature: hemicellulose, cellulose and lignin. Among them, 

hemicellulose (20−30%) and cellulose (40−50%) are the polymers containing both C5 

and C6 sugars (hemicellulose) and only C6 sugars (cellulose), the rest being lignin8. 

Therefore, the development of the lignocellulosic bio-refinery concept should focus on 

the integration and optimization of the syngas, pyrolysis oil, C6 and C6/C5 sugar and 

lignin platforms.  

Gasification (i.e. syngas production) and pyrolysis of lignocellulosic biomass 

have been extensively studied and are among the most mature biomass conversion 

technologies13-14.  The objective of the syngas platform is to produce a mixture mainly 

of CO and H2 that can be further converted into lower alcohols, fuel (e.g. Fischer 

Tropsh diesel) and chemical products such as methanol, dimethyl ether (DME) or 

ethanol15. The pyrolysis oil platform, on the other hand, is the thermal decomposition 

of biomass occurring in the absence of oxygen, yielding gas phase, a liquid bio-oil and 

a considerable amount of solid organic products14. In general, both syngas and 

pyrolysis platforms produce low quality fuels that need further processing (syngas-to-

liquids) or up-grading (pyrolysis oils).  Moreover, the narrow range of chemicals 

produced by these methods is insufficient to replace all the crude-oil based commodity 

products. 

A more efficient and flexible way of valorizing lignocellulosic biomass is its 

fractionation into its cellulose, hemicellulose and lignin components and the integral 

conversion of each of these individual biopolymers into fuels and chemicals; i.e. the 



8                                                                                                                                          CHAPTER 1 

 
 

integration of biomass-pretreatment methods with the C6 (cellulose) and C6/C5 

(hemicellulose) sugar and lignin platforms.  

After biomass fractionation, the hydrolysis products from cellulose and 

hemicellulose (i.e. carbohydrates such as glucose or xylose) can be further converted 

into value added chemicals in the so-called C6 and C6/C5 platform. Fermentation 

products such as bio-ethanol, formic acid or adipic acid16; and chemical transformation 

products such as sorbitol, furfural, hydroxymethylfurfural (HMF), levulinic acid are 

some examples of sugar-derived products17-19. The enormous potential of this bio-

refinery platform and its flexibility to tune the fuel/chemical production ratio upon 

demand has attracted the interested of both researchers and private and public 

investors.  Nevertheless, processing large quantities of sugars into fuel and chemicals 

will generate a huge amount of lignin waste, making the viability of the lignocellulosic 

bio-refineries highly dependent on the effective utilization of this lignocellulosic 

component12.  

 

Figure 1.2: Summary of lignin platform products20. 

Lignin is an extremely abundant raw material contributing as much as 30 % of 

the weight and 40 % of the energy content of lignocellulosic biomass12. Its native 

aromatic structure represent the only direct source of renewable aromatics and its 
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conversion can also lead to the production of fuels and fuel-blends21, 22. A summary of 

the major lignin platforms products is given in Figure 1.2. Chemicals (e.g. phenols and 

other aromatic compounds), novel liquid biofuels23 and lignin-based biomaterials such 

as resins, composites and fibers can be produced from this recalcitrant biopolymer. 

However, most of the lignin derived-products are not yet commercial on a large scale, 

mainly due to the high production costs associated with the difficulty of valorizing this 

highly stable and complex molecule.  

1.3 Lignin: Chemical nature, reactivity and isolation methods 

Lignin is a major constituent in structural cell walls of all higher vascular land plants. 

This highly complex cross-linked macromolecule forms part of the secondary cell 

walls of plants. It is responsible for the strength and rigidity of the cell walls and helps 

maintaining the integrity of the cellulose/hemicellulose/pectin matrix8, 20, 24.  Lignin is 

vital for the survival of the plant species since its hydrophobic nature and insolubility 

in aqueous systems prevents the access for degrading chemicals and organisms20.  

The relative amount of lignin in the lignocellulosic material varies not only 

between species, but also between different tissues of an individual plant25. For 

example, the amount of lignin content in softwoods varies from 24 to 33%, in 

temperate zone hardwoods from 19 to 28%, and in tropical hardwoods from 26 to 

35%. In non-wood fiber crops the lignin content is generally lower, ranging from  3% 

for cotton to around 11-15% for sisal and jute20. Grasses such as cereal straws, bamboo 

or sugar cane have higher lignin contents in the range of 15-25%20.  

1.3.1 Native lignin: Structure and reactivity 

From a chemical point of view, lignin can be defined as a complex polyphenol-

network. While its chemistry, biosynthesis and molecular biology are not fully 

understood, it is generally accepted that the lignin structure is built through the 

bonding of three basic phenol derivatives: the so-called monolignols26-28. These three 

basic units, namely p-coumaryl alcohol, coniferyl alcohol  and sinapyl alcohol (Figure 

1.3) are also known as p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S)units, 
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respectively29. The content of each monolignol is related to plant taxonomy: (i) 

softwood lignin (gymnosperm) contains more G units, (ii) hardwood (angiosperm) 

lignin is mainly a mixture of G and S units, while (iii) grass lignin presents a mixture 

of all three aromatic units24. Based on the relative abundance of the monolignols, 

lignins can be classified as type-G (softwood lignin), type-GS (hardwood lignin), type-

H-G-S (grass lignin), and type-H-G (compression wood lignin)25. 

 

Figure 1.3: Lignin monomers: (a) p-coumaryl (H) , (b) coniferyl (G) and (c) sinapyl (S) alcohols30 

Monolignols are predominantly linked either by ether or C-C bonds; in native 

lignin, ether bonds account for over two-thirds of the total linkages8. However, not all 

the ether or C-C bonds are of the same nature (Figure 1.4). The most abundant linkage 

is the β-O-4 accounting for 40-50% of the bonds found in softwood and 50-60 % 

found in hardwood. Other mayor lignin linkages are β-5 (pheylcoumaran) and β- β 

(resinol) bonds31. Additional linkages such as α-O-4 (α-aryl ether), 4-O-5 (diaryl 

ether), 5-5, α-O-γ (aliphatic ether) and β-1 (spirodienone) are also found at lower 

concentrations.  

The linkages between monolignols are the key factor that determines the 

reactivity of the lignin biopolymer and its resistance to chemical digestion, especially 

the reactivity of the most frequent β-O-4 bond8. Another important factor that affects 

the reactivity of lignin is the functional groups attached both to the aromatic rings and 

the lignin ether and C-C linkages such as methoxyl, hydroxyl, and carbonyl groups. 

Among these, the hydroxyl groups and specially the aliphatic hydroxyl groups are 
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among the most abundant ones. In softwood lignin, for example the order of hydroxyl 

contents is as follows: aliphatic OH > phenolic OH > carboxylic OH8. This trend is 

also repeated for hardwood and grass lignin although the type and abundance of 

phenolic OH groups vary.    

 
Figure 1.4: Representative structure of lignin showing four β-O-4 linkages highlighted by dashed 
rectangles32 

1.3.2 Isolation methods: Types of lignin 

The botanical species is not the only factor that affects the chemical structure of the 

lignin-macromolecule. The biomass pretreatment methods, i.e. those methods used for 

the isolation and extraction of lignin from the cellulose and hemicellulose components, 

also determine the nature and reactivity of the lignin bonds33. Furthermore, the 

impurities (minerals, organic acids) in natural biomass might also be solubilized with 

the lignin streams and can play a role in its reactivity, even in some cases causing the 

deactivation of those catalysts used in conversion processes.  
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In this section the most common lignin isolation methods are summarized, with 

a special focus on those processes used for the extraction of the lignins used in this 

dissertation.  Other less common biomass fractionation methods such as ammonia 

fiber explosion (AFEX), oxidative delignification methods, biological methods and hot 

water processes are not considered.  

1.3.2.1 Kraft lignin 

Kraft pulping is the most common chemical process used for the fractionation of 

lignocellulosic biomass. Wood is treated in the presence of sodium sulfide under 

alkaline conditions (Na2S/NaOH). The mixture reacts at temperatures of 155-175 °C 

for several hours yielding a solid (cellulose) and a lignin containing fluid (black liquid) 

fraction34. The lignin is partially cleaved and thiol groups are introduced in the lignin 

structure as shown in Figure 1.5 (left). Traditionally the lignin is precipitated by 

neutralization of the black liquor. Kraft lignin is water-insoluble and its molecular 

mass is lower than that of the original lignin8. The lignin is further redissolved in water 

and acid to overcome conventional filtering and sodium separation problems. 

An additional technology for the extracting high quality lignin from a kraft pulp 

mill is the LignoBoost processes. The lignin is obtained by the evaporation of the 

black liquor and its neutralization with CO2
35.  

 

Figure 1.5: Simplified structures of Kraft lignin (left) and lignosulfonate (right) 
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1.3.2.2 Sulfite process lignin 

Lignosulfonates are produced through the so-called sulfite process. These processes 

consist on the impregnation of biomass with and aqueous solution of sulfur dioxide at 

different pHs.  Sulfonate groups are incorporated within the lignin structure  (Figure 

1.5, right) yielding a water-soluble lignin33.  

1.3.2.3 Organosolv lignin 

In the organosolv process lignin is extracted from biomass in the presence of an 

organic solvent (e.g. ethanol) or a mixture of water and an organic solvent. The 

process is conducted at high temperatures and pressures24. Organosolv pulping or 

fractionation enables the production of high quality cellulose and lignin20.  This type of 

lignin has a less modified structure than Kraft lignin and is largely sulfur-free. To date, 

only Alcell® and Organocell lignins are commercially available24.  

1.3.2.4 Steam explosion 

This process consists of two main stages. First wood is treated with steam at high 

temperatures (between 180 °C and 240 °C) and pressures (1 to 3.5 MPa) for short 

reaction times. Then, the pressure is reduced rapidly and the biomass explodes at 

atmospheric pressure in the presence of different chemicals. The sudden pressure 

release defibrillates the cellulose bundles making the cellulose more accessible for 

subsequent hydrolysis treatments8. Lignin is later recovered as the solid residue from 

the combination of the steam explosion and hydrolysis processes. The nature of the 

steam exploded lignin is highly hydrophobic, with a low level of carbohydrate and 

wood-extractive impurities.  Its molecular mass is relatively low since some acid 

hydrolysis of lignin takes place during the steam explosion process24.   
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1.3.2.5 Alkali-pulping lignin 

Soda pulping is the most common technology to produce alkali-pulping lignin. Soda 

(NaOH) is used as the main pulping chemical although other additives such as 

anthraquinone might be used to decrease the carbohydrate degradation. In soda-

pulping lignin is recovered by and alternative recovery process consisting in an acid 

precipitation-maturation-filtration process. This type of lignin is sulfur-free36-37.   

1.3.2.6 Acid-hydrolysis lignin 

Dilute and concentrated acid treatments are among the most effective pretreatment 

methods for the fractionation of lignocellulosic biomass. Both inorganic and organic 

acids such as sulfuric, oxalic or per-acetic acid can be used38. Depending on the 

concentration of the acid used in the process, the acid fractionation methods are 

divided into weak and strong acid hydrolysis.  

Strong hydrolysis of biomass is normally conducted in the presence of strong 

and concentrated mineral acids (e.g. H2SO4, H3PO4 or HCl) at temperatures lower than 

160 °C. Batch reaction systems are preferred and high biomass loading can be 

processed, between 10 and 40 % in weight39-40.  However, this process requires large 

amounts of acids causing corrosion problems to the equipment. Very little is known 

about the structural change of the lignin upon the acid hydrolysis process. Evstigneyev 

et al.41 studied the structure of a lignin produced by the industrial acid hydrolysis in a 

H2O2-H2SO4 system.  This process leads to an opening of aromatic rings and probable 

formation of muconic acid derivatives. However, the chemical process has little effect 

on alkyl-aryl ether linkages (β-O-4 bonds) between lignin phenyl-propane subunits. 

Dilute acid treatment is considered as a cheap and effective pretreatment 

method due to the low cost and easy availability of the acids38. The method is 

especially suitable for the fractionation of biomass with low lignin content42. In 

general, dilute sulfuric acid is sprayed on raw biomass which is then heated up to 160-

220 °C for few minutes. Low acid (e.g. concentration of H2SO4 < 4 wt.%) and biomass 

(around 5-10 %)43 concentrations  are used. Unlike for strong acid hydrolysis, only 

hemicelluloses are completely converted into sugars and other organic compounds 
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(e.g. furfural and HMF), whereas cellulose and lignin are unaffected38. The dilute acid 

hydrolysis of biomass is often combined with enzymatic hydrolysis to produce 

fermentable carbohydrates for the production of bio-ethanol. During acid hydrolysis of 

biomass, lignin can undergo chemical and structural changes, the most relevant being 

the cleavage of a fraction of the β-O-4 and the shift of the S/G units ratios42.  

1.3.2.7  Enzymatic-hydrolysis lignin:  

As mentioned above enzymatic hydrolysis of biomass is normally performed after a 

first steam explosion or dilute hydrolysis step. In enzymatic hydrolysis, cellulolytic 

enzymes are used to hydrolyze the carbohydrate fraction, leaving behind a cellulose-

enzyme-lignin residue. This process occurs at mild conditions producing some slight 

structural changes in lignin: decrease of the phenolic hydroxyl group content, increase 

of the β-O-4 linkages and increase the molecular weight of lignin44. In addition, 

enzymatic hydrolyzed lignin contains a considerable amount of protein and 

carbohydrate impurities45. 

1.4 Lignin catalytic conversion 

As mentioned in the previous section, lignin is a highly stable and cross-linked 

biopolymer with distinct chemical and physical properties depending on the botanical 

species and the pretreatment method used for its isolation. Numerous strategies have 

been investigated for the valorization of this raw material into fuels and chemicals; 

however, valorization of lignin still remains as one of the most challenging tasks in the 

development of the bio-refinery concept.  

In the present section the most recent advances in the catalytic valorization of 

lignin with heterogeneous catalysts will be summarized. Among the catalytic methods, 

reductive lignin processes will be analyzed further in detail. The summary is based on 

a recent published review on catalytic conversion of lignin for fuels and chemicals8.  

Five main conversion techniques will be described: Hydrolytic methods (both basic 

and acid catalyzed), pyrolytic methods, liquid-phase methods, oxidative methods and 

reductive or hydro-processing methods.  In most research papers, lignin model 
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compounds have been used in an attempt to decrease the complexity of the reaction 

system. 

1.4.1 Hydrolytic methods 

Hydrolytic methods can be further divided regarding the type of catalyst used (i.e. acid 

or base). Base-catalyzed de-polymerization (BCD) refers to those lignin conversion 

processes were a base is used as the catalyst. The main advantage of these methods is 

their ability to produce simple aromatic chemicals under mild conditions8. 

Traditionally, cheap and commercially available bases such as LiOH, NaOH and KOH 

are used. The base is able to catalyze the cleavage of the weaker ether bonds in lignin, 

yielding aromatic-rich oil and high amounts of organic solid products46-48. However, 

the quality of the oil obtained with such processes is low and additional bio-oil up-

grading steps are required49. Other types of catalysts such as organic bases or 

homogenous metal catalysts have been extensively studied8, 50; however, the 

development of heterogeneous basic catalysts has attracted little attention. Bata et al.51 

studied the conversion of Kraft lignin into aromatics in the presence of MgO-modified 

La2O3, CeO2 and ZrO2. MOF-based catalysts or chemically modified layered double 

hydroxides (LDHs) are two of the most recently studied heterogeneous based-

catalysts49, 52.  

Acid-catalyzed conversion of lignin, on the other hand, refers to those 

techniques were the catalyst is of acid nature. Homogeneous mineral acids (e.g. HCl) 

and several homogeneous Lewis acids (FeCl3, ZnCl2, BF3 and AlCl3) have been used 

extensively for the acid-catalyzed conversion of lignin53-55. In the last years, acidic 

ionic liquids have proven to be effective catalysts for the cleaving of the β-O-4 bonds; 

however, their high cost, downstream separation issues and high viscosity hampers 

their use on a commercial scale8, 56-57. Little research has been carried out on the 

catalytic conversion of lignin with solid acids; different types of alumino-silicates 

being among the most studied solids58.   
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1.4.2 Pyrolytic methods 

This concept differs from the above described biomass pyrolytic platform. Pyrolysis of 

lignin refers to the rapid heating of this biopolymer at high temperatures (450-600 °C) 

often in the absence of oxygen. Catalytic pyrolysis of lignin has been widely studied 

for the direct conversion of lignin into bio-oil. The product consists of a non-

condensable gas mixture, a low quality and high viscosity bio-oil and a fraction of 

organic solid products59. The proportion of each pyrolysis product depends on the 

process variables; for example, in the case of fast pyrolysis the production of bio-oil is 

favored 60-61.   

In lignin pyrolysis, catalysis is applied to tune the product distribution towards 

the production of hydrocarbons62-63. Zeolites (e.g. HZSM-5 and H-USY) are the 

preferred catalyst used in fast pyrolysis for this aim64-66. Zeolites have two main effects 

in the process: their acid sites can catalyze the de-polymerization of lignin into 

desirable and stable products, while their porous structure prevents the re-

polymerization of the reaction intermediates. Still, catalytic pyrolysis presents some 

drawbacks: (i) low oil yields, (ii) rapid catalyst deactivation due to intense charring 

and (iii) instability of the zeolites under hydrothermal conditions8, 67.  That is why 

recent investigations center their attention on improving the activity and hydrothermal 

stability of zeolites by chemical modification (Ce, Na) and/or by tuning their synthesis 

methods8, 68.    

1.4.3 Liquid-phase or steam reforming methods 

The liquid-phase reforming (LPR) refers to the conversion of lignin at low 

temperatures in the presence of a solvent, enhancing the heat and mass transfer and 

thus improving the process homogeneity and selectivity. The main differences of LPR 

with respect to pyrolysis are the use of the solvent and the milder reaction 

temperatures69. Various liquids and liquid mixtures such as water, ethanol/water, 

supercritical ethanol and liquid ammonia have been used in LPR of lignin at 

low/moderate pressures70-75. Ethanol and ammonia can easily dissolve the lignin 

feedstock although water is normally preferred for its low cost and green nature. Very 
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little work has been done in catalytic LPR. Jongerious et al.76 developed a sequential 

approach consisting of a first catalytic LPR step on an ethanol/water media in the 

presence of a Pt/Al2O3 catalyst. Ekhe et al.77 demonstrate that lignin could be 

efficiently converted on subcritical methanol in the presence of H-ZSM5. In many 

cases liquid-phase methods are conducted in reductive environments; these methods 

are further discussed in Section 1.4.5.  

1.4.4 Oxidative methods 

Oxidative methods rely on different oxidizing agents -O2, H2O2, nitrobenzene and 

metal oxides- to cleave aryl ether bonds, carbon-carbon bonds, aromatic rings or other 

linkages within lignin. The oxidative de-polymerization of lignin focuses on the 

production of poly-functional aromatic compounds8. A wide variety of aromatic 

aldehydes and carboxylic acids can be obtained through the catalytic oxidation of 

lignin: vanillin, syringaldehyde, muconic acid, etc.  

Base and acid catalysts do not only act as efficient reagents for lignin 

hydrolysis; they also exhibit remarkable activity in lignin oxidation. In the case of the 

base catalyzed oxidation, NaOH, KOH and Na2CO3 are typically used78-80.  The acid-

catalyzed oxidation of lignin mainly focuses on the production of vanillin from Kraft 

lignin81-82.  Polyoxometalate H3PMo12O40 is one of the most active homogenous 

catalysts investigated for the oxidative lignin conversion.  

Homogeneous catalysis with metal salts are also widely used for the selective 

oxidation of lignin and lignin model compounds. Methyltrioxo rhenium (MTO), salen 

complexes, biomimetic metal complexes, metal-free organo-catalytic systems and 

other type of metal salts have been investigated for this purpose21, 83-87.  

In photocatalytic and electrocatalytic oxidation of lignin, on the other hand, 

heterogeneous catalysts are preferred over homogeneous. Heterogeneous 

photocatalysis has been explored as a way to minimize the organic pollutants in the 

gas al liquid phases88-89.   The TiO2- based catalysts are the most frequently used 

oxides because of their high activity, chemical stability, commercial availability and 

low cost. Other semiconductor materials such as ZnO2 and CdS have also been used. 
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The photo-oxidative lignin conversion is initiated when TiO2 absorbs ultraviolet (UV) 

light8.  

In electrocatalytic oxidation IrO2-based electrodes were originally studied for 

the conversion of lignin into mainly vanillin and vanillic acid90. Non-IrO2-based 

electrodes such as Ti/TiO2NT/PbO2
91 and more complex systems such as flow cells 

bearing Ni, Au and PbO2 anodes have also been studied92. Ionic liquids are used as 

electronic mediator systems due to their high conductance, and in some cases, their 

potential to solubilize lignin. Despite the potential of this electrochemical technique, 

the high cost and the electrode fouling issues limit its industrial application8.  

1.4.5 Reductive methods 

Reductive lignin conversion is one of the most popular and efficient strategies applied 

in deconstruction of lignin into components such as phenols and other valuable 

chemicals. It is also a widely used strategy for the upgrading of lignin derived bio-oils 

and the production of hydrocarbons from lignin compounds. The method involves the 

thermocatalytic reduction of lignin in the presence of hydrogen (hydroprocessing) or a 

hydrogen donor molecule (e.g. formic acid, iso-propanol, tetralin)8. Hydrogen donor 

molecules are thought to convert lignin through catalytic transfer hydrogenation 

mechanisms or act as an in situ hydrogen source for lignin hydroprocessing93-94.  In 

some cases a solvent is used to improve the heat and mass transfer rates and enhance 

the miscibility of the reaction mixture93, 95-96. Low molecular weight alcohols, such as 

ethanol, methanol and isopropanol, ionic liquids and water are among the preferred 

choices8.   Alcohols can also act as hydrogen donor molecules as reported in the 

literature95.  

The type of catalysts used in the reductive methods can be classified into: (i) 

iron-group-based catalysts, (ii) the group VI metal-based catalysts, (iii) the platinum-

group-based catalyst, (iv) bimetallic catalysts and (v) bifunctional catalyst. These 

metal-based systems can catalyzed a wide variety of reductive reactions among which 

hydrogenolysis, hydrodexoygenation and hydrogenation are the most relevant.  
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1.4.5.1 Hydrogenolysis 

Lignin hydrogenolysis reactions involve mainly the cleavage of etheric C-O bonds95. 

For the conversion of lignin into bio-oil, the selective hydrogenolysis of aliphatic C-O 

bonds over aryl C-O is preferred. The latter are way more stable bonds and they 

demand higher temperatures and/or pressures for their cleavage. This reaction usually 

takes place in the presence of supported metal catalyst such as Pt, Ru, Ni, Pd, and 

Cu97-98. In the case of real lignin feedstock, the addition of tiny amounts of mineral 

acids or solid acids enhances the de-polymerization efficiency and allows its 

conversion at milder reaction conditions99-100.  

Ni-based catalysts -both in homogenous and heterogeneous forms- have been 

the most widely used type of catalysts for lignin hydrogenolysis101. Heterogeneous Ni 

in the form of Raney nickel or supported over metal oxides and activated carbons have 

been systematically investigated102-104. The introduction of a second metal in the 

supported Ni catalyst has been proven to be an effective strategy to enhance their 

activity. Zang et al.105 proved that carbon supported Ni-W2C can convert not only 

cellulose but also lignin yielding 46 % of monophenols. Similar synergistic effects 

have also been reported for Ni-TiN, NiAu, NiRh, NiRu, NiPd bimetallic systems106-108.  

The more expensive platinum-group metals (PGMs) exhibit even higher 

intrinsic activities than Ni and therefore are widely used in direct hydrogenolysis of 

raw and pretreated lignins. Generally mild conditions are preferred to avoid ring 

hydrogenation and thus preserve the aromatic nature of the resulting bio-oil109. PGMs 

have been supported on a wide variety of inorganic oxides (e. g. Al-SBA-15, Al2O3) 

and activated carbon supports8.  

1.4.5.2 Hydrodeoxygenation 

Hydrodeoxygenation (HDO) involves the simultaneous addition of hydrogen and 

removal of oxygen from the lignin and lignin model compounds. It is considered the 

most efficient method for the up-grading of lignin bio-oil, but is also used in the direct 

lignin conversion8.  In conventional HDO the conversion of lignin proceeds through 

two main routes: hydrogenation-deoxygenation or direct deoxygenation110-111. The 
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HDO catalysts can be divided in three different types: monometallic, bimetallic and 

bifunctional.  

Mo-based monometallic catalysts in their oxide, sulfide, nitride and carbide 

forms have been studied for the HDO reaction of lignin and lignin model compounds 

since the 80s.  Smith et al.112 proved that the MoP is the more active for the HDO of 4-

methylphenol followed than the MoS2, MoO2, and MoO3 phases. Additional transition 

metal phosphides and sulfides (e.g. Ni2P, Fe2P, Co2P, WP  and FeS2) and noble metals 

supported over a wide variety of solids (e.g. Al2O3, SiO2, zeolites ZrO2, activated 

carbon, zeolites) have also been studied8. Platinum group metals alone, however, are 

not good catalysts for the HDO of lignin model compounds if the aromatic nature is to 

be retained113. Most of the studies that focus on the HDO of lignin are, however, 

carried out over lignin model compounds; thus, the HDO of real lignin with 

monometallic catalysts has not been deeply investigated.   

The addition of a second metal to the catalytic system -bimetallic systems- 

offers the possibility to improve the stability and activity of the catalyst and to tailor its 

selectivity to a particular product8. Some reports report that the addition of Co or Ni to 

Mo catalyst could strongly enhance the direct deoxygenation pathway versus the 

hydrogenation-deoxygenation pathway110, while others reported that the improvement 

of HDO performance can be attributed to the enhancement of demethoxylation and 

deoxygenation pathways114-115. Traditionally mixed sulfides of Co, Ni, Mo, and W are 

the most used HDO catalysts8. Other bimetallic catalyst systems, such as PtSn 116, 

PtRh 117, NiRe 118, PtRe 119, and ZnPd 120 have also been evaluated in the lignin HDO. 

However, there are still several challenges to overcome: (i) the deactivation of the 

catalyst due to acid-catalyzed carbon deposition121, (ii) the deactivation of the sulfur 

phases due to the high oxygen content of the bio-oil 122 and (iii) the unknown effect of 

the lignin impurities on the catalyst activity8.  

Bifunctional catalysts containing both metal and acid components were 

developed to solve the deactivation problem of the conventional sulfide-based HDO 

catalysts. Unlike in HDO, in bifunctional catalysis metal-catalyzed hydrogenation and 

acid catalyzed hydrolysis/dehydration are supposed to couple together 123-125 126-127. 
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Several combinations of hydrogenating (e.g. Ni Raney, Pd/C, Pt/Al2O3) and Brønsted 

solid-acid catalysts (e.g. HZSM-5 and Nafion/SiO2)128-130; or even bifunctional 

hydrogenation/hydrolysis catalysts (e.g. Ru/HZSM-5, Ni-HZSM-5)125, 131 have been 

studied. 

1.4.5.3 Hydrogenation  

Hydrogenation is a chemical reaction which employs a pair of hydrogen atoms to 

reduce or saturate organic compounds increasing their H/C ratio. Generally, 

hydrogenation occurs together with hydrogenolysis and deoxygenation (HDO) in 

lignin conversion and bio-oil upgrading processes. The selectivity for hydrogenation 

toward the type of bond (i.e. aromatic C=C, linear C=C or C=O) varies drastically 

depending on the nature of the catalyst132. For example, zerovalent metals (Al, Fe, Mg, 

and Zr) are suitable catalysts for the selective hydrogenation of the C=O groups at 

ambient temperature and pressure and are widely used to increase the chemical 

stability (pH) of the bio-oil133.  

Other advanced approaches for the hydrogenation of lignin derived components 

have recently been reported. A catalytic tandem strategy was recently developed were 

noble- based supported catalysts such as Ru/C and Pt/C were employed to hydrogenate 

pyrolysis oils into polyols and alcohols. These were later converted into light olefins 

and aromatic hydrocarbons over zeolites 134. Pang and co-workers135 reported the 

effective hydrogenation of naphthalene into tetralin in the presence of noble pseudo-

precious metal Mo2C/C prepared via microwave irradiation.  Electrocatalytic 

hydrogenation is a new technique that has been recently developed for the stabilization 

and upgrading of biomass-derived bio-oil. Ru/C 136 and RANEY Nickel 137were 

proven to be effective cathodic catalysts for the hydrogenation and partial HDO of 

phenolic compounds.  

In summary, most of the hydroprocessing catalysts described in this section 

consist of a metal –or a bimetallic system- and a metal oxide or activated carbon 

support. Ni, Co and noble metals alone or in combination mainly with Mo and W are 

the preferable metallic systems; whereas in the case of the support, metal oxides with 
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acidic properties are preferred. These catalyst formulations are repeated for all the 

hydroprocessing reaction types described above.  

Thus, in lignin catalytic reductive methods hydrogenolysis, HDO and 

hydrogenation (even hydrolytic cleavage of lignin) might occur simultaneously in the 

so-called “integrated lignin hydrogenprocessing”. Hence, a catalyst that exhibits high 

activity for all the reactions involved in the integrated lignin hydroprocessing would be 

the preferred candidate. This integrated approach will not only benefit the economy of 

the system, but also increase the possibility to scale up lignin conversion processes.  

1.5 Lignin-to-Liquid concept (LtL) 

A promising and relatively new lignin reductive conversion methodology is the 

Lignin-to-Liquid (LtL) process. In the LtL process the lignin is converted at moderate 

temperatures in the presence of two additional compounds: (i) formic acid (FA) as a 

substitute of molecular hydrogen, and (ii) a solvent, mostly ethanol or water.  

Formic acid has been proved to be more active than molecular hydrogen in the 

reductive conversion of lignin138. This hydrogen donor molecule decomposes mainly 

into molecular hydrogen and CO2 under the LtL conditions creating a reductive 

environment (low amounts of CO and H2O are also produced). Most of the researchers 

believe that formic acid act either as an in-situ hydrogen source or a hydrogen donor 

molecule through catalytic-hydrogen transfer reactions93, 96, 138-140. However, its role in 

the lignin conversion process is not fully understood and there are no published 

mechanisms that can explain why formic acid is more active than other hydrogen 

donors.     

The solvent is added to create a more homogeneous reaction environment and 

increase the mass and heat transfer rates. This allows operating at milder reaction 

conditions and increases the selectivity towards the production of bio-oil. Water is 

considered as a promising reaction media due to its abundance, low cost and green 

nature, although it has a low ability to solubilize most type of lignins.  Ethanol has also 

been identified as one of the most promising alternatives due to is very good solvent 
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properties for biomass and low critical temperature; furthermore, it is one of the main 

fuel type products obtained from the conversion of lignocellulosic feedstock. Other 

alternatives such as iso-propanol and methanol have been studied as well138. 

Overall, the LtL-reaction system combines de-polymerization, deoxygenation 

and hydrogenation of the biopolymer in one step. Lignin is mainly converted into a 

liquid and an organic solid fraction (Figure 1.6). Depending on the solvent used the 

liquid fraction consists of: (i) only one organic phase (ethanol), or (ii) a biphasic 

system (water) composed of a dark- brown organic phase and a water phase. The 

organic bio-oil has a high H/C and low O/C ratio and can be described as a complex 

mixture of aromatic monomers; typically alkylated phenols, guaiacols and catechols. 

Some low molecular weight hydrocarbons, esters and ketones that are thought to be 

derived from the bridging units of the polymer together with the solvents are also 

found; especially when using ethanol as solvent. 

 

Figure 1.6: A simplified scheme of lignin and its degradation products in the LtL reaction approach 

With temperatures typically of 350–400 °C and reaction times of 8–16 h, lignin 

from spruce, pine, birch and aspen wood has been converted into a chemically stable 

LtL bio-oil. Nevertheless, in order to make this bio-oil competitive with fuels and 

chemicals obtained from crude oil, some important process parameters need to be 

improved: (i) shorter reaction times, (ii) lower reaction temperatures and (iii) the 
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reduction of low-value side streams i.e., gas and solid phases. Additional strategies for 

the valorization of the low-value side streams such as the production of activated 

carbons from the solid products could also benefit the overall process economics.   

1.5.1 Catalytic LtL conversion 

One possibility to address these challenges is the use of heterogeneous catalysts in the 

process. As mentioned in Section 1.4.5, catalytic hydrotreatment of lignin has already 

been explored extensively and several catalysts have been evaluated mostly based on 

lignin model compounds. However, very little research has been carried out on the 

catalytic conversion of real lignin feedstock in a formic acid/solvent media: 

 Ligouri and Barth showed that the reaction time and temperature could be 

reduced dramatically when using heterogenous a Pd/C catalyst together with Nafion 

SAC-13100. Nonetheless the use of two types of catalyst present some drawbacks 

form and industrial and economical point of view. 

 In a similar approach alkali lignin was subjected to depolymerization in 

subcritical water at 265 °C in the presence of formic acid and a Pd/C catalyst. A 

maximum oil yield of 33.1 % was obtained when the lignin was reacted in the 

presence of formic acid alone141.  

 Jones et al.140 studied the de-polymerization and hydrodeoxygention of 

organosolv switchgrass lignin in a formic acid/ethanol solvent. They claimed that the 

combination of formic acid and Pt/C promotes the production of lower molecular 

weight compound in the liquid products; after 20 h of reaction time the lignin was 

significantly depolymerized to form liquid products with a 76 % reduction in the 

weighted average molecular weight. The combination of formic acid and Pt/C is 

found to promote the production of larger fractions of lower molecular weight 

compound in the liquid products.  
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 Heeres et al. studied the catalytic conversion of Alcell® lignin in iso-

propanol/formic acid mixtures in a batch set-up using Ru/C as the catalyst. Beside 

iso-propanol, ethanol and methanol in combination with formic acid were also 

explored. Lignin oils were obtained in good yields (71 % relative to lignin input) 

consisting on a mixture of mainly aromatics. 

  Sanhua Huang et al.142 studied a different solvent approach combining both 

water and ethanol (50/50 v/v) for the conversion of Kraft lignin. Several catalyst 

systems such as Ru/C, FHUDS-2 (W-Mo-Ni), Ni/Zeolite and Ni/Al2O3) were 

evaluated.  

However, the aim of most of these studies was to evaluate the effect of 

individual catalyst in the final oil yield and quality. No systematic catalyst-screening 

approach has been conducted to evaluate the effect of the type of metal (base or noble 

metal) and nature of the support (activated carbon, Al2O3, ZrO2) on the LtL conversion 

of lignin. Additional information on the effect of key reaction parameters (i.e. 

temperature and reaction time) in the oil yield and properties is also lacking. 

Furthermore, the specific role of formic acid in the LtL reaction mechanism and its 

synergistic interactions with the catalyst and the solvent has not been thoroughly 

investigated.   

1.6 Objectives of the thesis 

The aim of the thesis is to systematically explore the use of heterogeneous catalysts in 

the LtL conversion, and to develop new and improved catalyst formulations. Catalyst 

development is, however, a challenging task that involves previous fundamental 

knowledge of the specific chemical reaction and significant catalyst screening effort; a 

scientific background that was not available before this work was initiated. Basic 

studies on the role of formic acid in the LtL conversion mechanism have therefore also 

been included in this study.  
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Chapter 2. Experimental procedures & methods 

The following chapter shortly introduces the general LtL experimental procedures and 

main analytical methods and tools used in this thesis. In the experimental section the 

LtL process and work-up procedure is summarized and a short description of the 

reaction systems, lignins and catalysts used is also presented. The method section, on 

the other hand, focusses on the catalyst and bio-oil characterization techniques 

employed and the mathematical data processing methods applied in this project.    

2.1 Experimental procedures 

In most cases- papers A, B, D and E - the LtL experiments were conducted in SS316 

25 mL 4742 non-stirred Parr reactors. A detail description of the amount of reactants 

and the exact reaction conditions are given in the Experimental Section of each paper.  

Briefly summarized: lignin, formic acid, the solvent and the catalyst (10 % by 

weight relative to the amount of lignin) were first added into the reactor. The Parr 

reactor was then heated in a Carbolite LHT oven to the desired temperature; the 

reaction time was monitored from the moment the reactor was introduced in the oven.   

 Different type of lignins, solvents (mainly water or ethanol) and catalysts were 

evaluated in the course of the project. The type and nature of lignins and catalysts 

used are described in more detail later in the section. 

After completed the reaction time, the reactor was cooled down to ambient 

temperature and the amount of produced gases determined by weighting the reactor 

before and after ventilating the gas. The reactor was opened and the liquid mixture 

extracted with a solution of ethyl acetate (EtAc): tetrahydrofuran (THF) (90:10).  The 

solids (unreacted lignin, organic solid products and catalysts) were filtered off. The 

work-up procedure varied at this point depending on the solvent used: 

 When ethanol was selected as the solvent the extracted mixture consisted of 

one organic dark-brown phase. In this case, the liquid phase was directly dried over 

Na2SO4.  
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 When water was selected as the solvent a two well-separated liquid phases 

were obtained, an organic top phase and an aqueous bottom phase. The phases were 

separated by decanting: the water phase was stored in a fridge while the dark-brown 

organic phase was dried over Na2SO4.  

After dewatering the organic phase over Na2SO4, the solution was filtered to 

eliminate the solids and then concentrated at reduced pressure (at 40 °C) to yield a 

dark brown to black liquid. The yields were determined by weight and the oil and 

solids characterized by several analytic techniques that are further described in Section 

2.2. 

In paper C the LtL residual organic solids (hydrochars) were chemically 

activated to produce lignin derived magnetic activated carbons (MACs). Thus, large 

quantities of hydrochar had to be produced using a 5-L stainless steel reactor 

(ESTANIT GmbH). The experimental procedure is described in detail in paper C.   
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2.1.1 Experiments carried out at the University of the Basque Country (UPV-EHU)    

Most of the experiments described in paper F were conducted in a 300 mL SS316 

stainless steel stirred-reactor from Autoclave Engineers (Figure 2.1). Unlike the non-

stirred 4742 Parr reactor, this reaction system had two gas inlets, a liquid inlet, a gas 

outlet, a liquid outlet, a stirring system, a heating mantle and a pressure and 

temperature control system. In addition, a Wilson HPLC 307 pump was connected to 

the reactor what allows feeding liquids at high pressures.  This reaction system made it 

possible not only to pressurize the reactor with different gases (H2, CO2) but also to 

pump liquid mixtures (formic acid, ethanol) continuously into the reactor (Figure 2.1). 

A more detailed description of the different experimental procedures is described in 

detailed in paper F. The reaction time started when the mantle temperature reached the 

desired working temperature.  

  
Figure 2.1: Schematic 300 mL stirred-reactor systems. FA: formic acid 
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2.1.2 Lignin starting materials 

Various lignins from different botanical origin and isolation methods were employed 

in the course of the thesis. The elemental analysis and inorganic ash content is given in 

Table 2.1 The lignins are classified according to their botanical species and isolation 

method.   

Table 2.1: botanic species, isolation method, elemental analysis and ash content of the lignin 

used in this work. 

Lignin Botanical 
species Isolation method 

Elemental analysis 
(wt. %) Ash  

(wt.%) 
C H O 

KL - Kraft pulping process 48.1 5.1 46.7 - 

AL Norwegian 
Spruce Strong acid hydrolysis 62.0 5.5 32.3 1.51 

RL Rice straw Strong acid hydrolysis 46.1 5.0 33,4 14.9 

EL Norwegian 
Spruce 

Weak acid hydrolysis + 
enzymatic hydrolysis 51.9 5.8 41.9 - 

SL Eucalyptus Steam explosion + 
enzymatic hydrolysis 47,6 5,6 41,3 4.4 

    a Inorganic ash content 

Kraft lignin (KL): a commercial low sulfonate alkali lignin (4 wt. % S content), 

namely KL, was purchased from Sigma Aldrich and used as bought. This lignin was 

used to evaluate the effect of the type of lignin in the catalytic LtL; the results are 

presented in paper A.   
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Strong acid hydrolysis lignins (AL and RL): the Technical College of Bergen 

provided two types of lignins of different botanical origin: Norwegian spruce and rice 

straw. They were obtained through strong acid carbohydrate dissolution biomass pre-

treatment processes. In all cases, the lignins were ground, and sieved (<500 μm) prior 

to use. 

 Lignin from Norwegian Spruce (Picea abies), namely AL, was the main 

lignin used for the evaluation of the effect of several process parameters; the 

results are present in papers A and B.  

 Rice straw lignin (Oryza sativa), namely RL, was employed to evaluate the 

effect of different type of catalysts in the LtL process. The results are presented 

in papers D and E and Section 3.2.3.    

Enzymatic hydrolysis lignins (EL and SL): two different providers supplied 

enzymatic hydrolysis lignins using different biomass pretreatment processes. Both 

lignins were  ground, and sieved (<500 μm) prior to use: 

 The Norwegian University of Life Science in Ås used a combination of 

weak acid hydrolysis and enzymatic hydrolysis process to obtain lignin from 

Norwegian Spruce (Picea abies), namely EL. The effect of the type of lignin 

was evaluated for the catalytic conversion of lignin; the results are presented in 

paper A.  

 The bioethanol production facility, SEKAB, used a combination of steam 

explosion and enzymatic hydrolysis processes to isolate eucalyptus lignin, 

namely SL. This lignin was employed to investigate the role of formic acid in 

the LtL processes; the results are presented in paper F.   
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2.1.3 Catalyst screening 

The activity of several types of catalyst was examined in the course of the Ph.D 

project. This can be summarized as follows: 

 Commercial catalysts purchased from Sigma-Aldrich: Pd/Al2O3, Rh/Al2O3 

and Ru/Al2O3 were used to evaluate the interaction of the catalyst and different 

process parameters such as temperature and reaction time. The results obtained are 

presented in papers A and B.  

 Catalyst synthesized at the University of Bergen (UiB):  

 NiMo catalyst supported on activated carbons: Ni and Mo were supported 

on a commercial activated carbon (AC) and two different type of magnetic 

activated carbons (MACs). The synthesis procedure and the results obtained 

are presented in paper D.  

 NiMo catalyst supported on metal oxides: Ni and Mo were supported on 

different sulfated and non-sulfated γ-Al2O3 and ZrO2. The synthesis procedure 

and the results obtained are presented in paper E. 

 Ru on activated carbon (Ru-AC): an additional Ru-AC catalyst was 

synthesized to evaluate the effect of the type of metal, either noble or base 

metal, in the catalytic LtL. The synthesis procedure is further described in 

ANEX I.  
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2.2 Methods 

2.2.1 Catalyst Characterization 

In the present Section, a brief description of the chemical and physical fundaments of 

the most relevant catalyst characterization methods is given. Those less relevant or 

rarely used techniques are therefore not considered. The detailed experimental 

procedures employed are described in the Experimental and/or Supplementary 

Information sections in each paper.  

2.2.1.1 Physisorption of gases (N2-adsorption) 

The physical adsorption, or physisorption, of gases is an analytical technique used to 

determine the textural properties of a solid. It is based in the interaction between a gas 

(adsorbate), N2 in this case, and the solid that is being characterized (adsorbent). The 

result of this analysis is the adsorption-desorption isotherm.  Its interpretation through 

different mathematical models allows obtaining the textural properties of the solid 

(e.g. specific surface area, total pore volume and pore size distribution). The specific 

surface area is normally obtained at the intermediate pressure range and the preferred 

mathematical model for its determination is the so-called BET (Brunauer-Emmett-

Teller) model. The total pore volume refers to the volume occupied by the adsorbate 

inside the adsorbent at a particular pressure; in this project it was defined as p/p0=0.99. 

The pore size distribution is an indirect measurement obtained by applying more 

complex mathematical models. While models such as the Horvath-Kawazoe model 

(HK) or the Barret-Joyner-Halenda model (BJH) are only suitable to determine the 

pore size distribution of micropores or mesoporous, respectively; those models based 

on the density functional theory (DFT) can be applied to evaluate both micro- and 

mesopores simultaneously143.  
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2.2.1.2 X-ray powder diffraction (XRD) 

X-ray diffraction (XRD) relies on the dual wave/particle nature of X-rays to obtain 

information about the structure of crystalline materials. A primary use of this 

technique is the identification and characterization of compounds based on their 

diffraction pattern. X-ray diffraction is based on constructive interference of 

monochromatic X-rays and a crystalline sample. These X-rays are generated by a 

cathode ray tube, filtered to produce monochromatic radiation, collimated to 

concentrate, and directed towards the sample. The interaction of the incident rays with 

the sample produces constructive interference (and a diffracted ray) when conditions 

satisfy Bragg’s law (Equation 2.1, Figure 2.2): 

n λ = 2d sin (Equation 2.1)   

where n (an integer) is the "order" of reflection, λ is the wavelength of the incident X-

rays, d is the interplanar spacing of the crystal and  is the angle of incidence. 

 

Figure 2.2: schematic representation of X-ray constructive interference144 
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In X-ray powder diffraction the sample is scanned through a range of 2 angles; 

thus, all possible diffraction directions of the lattice are attained due to the random 

orientation of the powdered material.  As the crystallites (coherently scattering 

domains, not necessarily the same size as the particles) get smaller, the diffraction 

peaks get wider, and if the crystallites get as small as 30-50 Å (3-5 nm) the peaks are 

hard to observe145.  

2.2.1.3 Analysis of the surface acidity  

It is well known that the catalytic activity of solids and of some transition-metal oxides 

is essentially determined by the presence of surface acid sites. Consequently, studies 

on the nature of these sites and accurate determination of their amount and strength are 

of major importance146. In the present work the characterization surface acid sites was 

conducted through a combination of two analytical techniques: (i) Fourier transform 

infrared spectroscopy (FT-IR) of absorbed pyridine is preferred for the determination 

of the nature (Brønsted or Lewis) of acid sites while (ii) temperature-programmed-

desorption of ammonia (NH3-TPD) is preferred to determine their abundance and 

strength. 

FTIR spectroscopy of adsorbed probe molecules is one of the most widely 

available and well developed methods for studying the composition and structure of 

the surface functional groups of supported metal catalysts. As the vibrational spectrum 

reflects both the properties of the molecule as a whole and the characteristic features of 

separate chemical bonds, FTIR spectroscopy offers the fullest possible information on 

the perturbation experienced by a molecule on contract with the solid surface, and 

often determines the structure of adsorption complexes and of surface compounds147. 

Pyridine is one of the most widely used probe molecules for the characterization of 

Lewis and Bronsted acid sites. Its vibration bands in the 1400-1600 cm-1 regions of the 

IR spectrum of the chemisorbed pyridine can distinguish between the Brønsted and the 

Lewis acidity148.  
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NH3-TPD is one of the most widely used and flexible techniques for 

determining the quantity and strength of the surface acid sites in a solid. During this 

analysis the sample is submitted to an increasing temperature with constant rate and it 

is swept by an inert gas such as helium, argon or nitrogen. The sample surface desorbs 

the NH3 that has been previously chemisorbed and a suitable detector monitors the 

process (thermal conductivity detector (TCD) or mass spectrometer (MS))149. The 

greater the strength of the acid sites, the stronger is the adsorption of the ammonia and 

the higher is the corresponding desorption temperature. The amount and distribution of 

the surface acid sites –relative to their strengths- can also be determined through the 

analysis of the NH3-profile intensity.     

2.2.1.4 Temperature-programmed-reduction (TPR) 

Temperature-Programmed Reduction (TPR) determines which are the reducible 

species present on the catalyst surface and reveals the temperature at which the 

reduction of each species occurs. An important aspect of TPR analyses is that the 

samples need not to have any special characteristics other than containing reducible 

metals. The TPR analysis begins by the flow of an analysis gas -typically hydrogen in 

an inert carrier gas such as nitrogen or argon- through the sample, usually at ambient 

temperature. While the gas is flowing, the temperature of the sample is increased 

linearly with time and the hydrogen uptake monitored150.  

This technique is used for the quantitative and qualitative determination of the 

supported mono- and bimetallic species 149. It can provide evidence of the interaction 

between two different metallic species; furthermore, the area under the TPR peak 

reflects the concentration of that component in the catalyst surface151. It is also 

employed to find the most efficient reduction conditions149.  
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2.2.1.5 Inductively couple plasma atomic emission spectroscopy (ICP-AES) 

The ICP-AES technique, also referred as inductively coupled plasma optical emission 

spectroscopy (ICP-EOS) is widely regarded as the most versatile analytical technique 

in the inorganic chemistry laboratory. After dissolving the solid sample, the solution is 

introduced into the spectrometer and it becomes atomized into a mist-like cloud. This 

mist is carried into the argon plasma through an argon gas stream. The plasma (ionized 

argon) produces temperatures close to 7000 °C, which thermally excites the outer-shell 

electrons of the elements in the sample. The relaxation of the excited electrons as they 

return to the ground state is accompanied by the emission of photons of light with a 

certain energy characteristic of the element. Because the sample contains a mixture of 

elements, spectra of light wavelengths are emitted simultaneously. The spectrometer 

uses a grating to disperse the light, separating the particular element emission and 

directing each to a dedicated photomultiplier tube detector. The more intense this light 

is, the more concentrated the element152. 

In the present thesis this technique was used to determine the elemental 

composition of the catalysts and lignin ashes. Prior to the analysis the ashes and 

catalysts were dissolved in a mixture of different mineral acids in a microwave oven. 

2.2.2 Chemical characterization of bio-oil products 

The major bio-oil characterization techniques used for this work are described below. 

Less central characterization techniques such as FT-IR or electrospray ionization-mass 

spectroscopy (ESI-MS) are only described in the individual papers.  

2.2.2.1 Elemental analysis 

This technique was employed to determine the C, H and O content of the bio-oils. The 

N and S content was not considered in this thesis. The bio-oil sample is first placed in 

an oven and combusted in the presence of oxygen excess at high temperatures (900 

°C). During combustion the C, H, N and S elements produce, in addition to molecular 

nitrogen, O2, H2O, NOx, SO2 and SO3 gases. The combustion is carried out in the 

presence a tungsten trioxide catalyst, that binds alkaline or earth alkaline elements and 
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avoids non-volatile sulfates. The nitrogen oxides (NOx) and sulfur oxides (SO2/SO3) 

are later reduced in to N2 and SO2 respectively in the present of copper; thus, the 

remaining gas stream contains only CO2, H2O, SO2 and N2. The gases are then 

separated in specific adsorption columns and each gas is individually analyzed by a 

thermal conductivity detector (TCD).  

2.2.2.2 Gas chromatography (GC) 

The separation of the individual components of gas and liquid mixtures is often 

performed using gas chromatography. The individual components are separated based 

on their volatility and their affinity to a stationary and mobile phase (chemically inert 

gas). The column containing the stationary phase is inside a heating chamber and is 

connected on one side to an injector system and on the other side to a detector. Typical 

detectors used in gas chromatography are flame ionization (FID), and the more simple 

thermal conductivity (TCD) detectors153. The former detector is preferred for 

quantifying the eluting compounds. In papers A and B a gas chromatograph coupled to 

a FID detector was used for the identification and quantification of several bio-oil 

components. The bio-oil was first silylated to facilitate the analysis.  

Silylation is a derivatization technique consisting on the introduction of a silyl 

group substituent (R3Si) by reaction with a specific functional group within a 

molecule; in this case to the hydroxyl substituents of the lignin mono-aromatics. The 

introduction of the silyl group gives derivatives with enhanced volatility and reduced 

polarity, making them more suitable for GC analysis. The compounds were identified 

and quantified with the aid of different silylated standards. 

Most of the GC analyses were carried out in a chromatograph coupled to a mass 

spectrometry detector (GC-MS). Mass spectrometry (MS) detectors are descriptive 

detectors that consist of an ionization source, a mass separator and a mass analyzer. 

The ionized molecules fragment to give characteristic fragmentation patterns, the 

study of which can aid the identification of the parent molecules. In GC applications, 

the molecules are ionized when they elute from the column after chromatographic 
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separation. Large databases, enabling matching of such fragmentation patterns to 

parent molecules in a library based approach are widely established153.  

2.2.2.3 Gel permeation chromatography- size exclusion chromatography (GPC-SEC) 

Gel permeation chromatography (GPC) is a term used for a type of size exclusion 

chromatography (SEC) that separates analytes on the basis of size. Although normally 

applied to the characterization of polymers, this method is also widely used in the 

characterization of lignin derived bio-oils154.  

GPC-SEC uses the liquid present in the pores of beads as the stationary phase, 

and a flowing liquid as the mobile phase. The separation of the components within the 

mixture occurs via the use of porous beads packed in a column (Figure 2.3, left). The 

smaller analytes can enter the pores more easily and therefore spend more within 

pores, increasing their retention time. Conversely, larger analytes spend little if any 

time in the pores and are eluted quickly, thus showing the distribution of molecular 

sizes in the sample155. As the components exit the column they are detected (e.g. by an 

UV-detector) and the elution behavior of the sample is displayed in a chromatogram.  

The time it takes for a group of molecules of the same size (a fraction) to emerge from 

the column is called its retention time.  

  

Figure 2.3: Graphical representation of a GPC-SEC column (left)156 and a typical GPC-SEC 
chromatogram of a selection of lignin derived LtL bio-oils labeled by the type of catalyst used for its 
production (right)36  
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When a bio-oil is analyzed by GPC-SEC the chromatogram consist in most 

cases of a broad and asymmetric single peak (Figure 2.3, right). By comparing its 

retention time -the point at which peak shows its maximum height- with a calibration 

curve of previously analyzed standards, the average molecular weight of the mixture 

(Mw) can be calculated. This value represents a rough indirect measurement of the 

depolymerization degree achieved during the lignin conversion process.  The analysis 

of the peak shape can provide additional information about the molecular weight 

distribution of the bio-oil sample.  

2.2.3 Chemometric evaluation of LtL reaction systems 

2.2.3.1 Experimental design (DOE) 

Screening of many variables with a limited amount of experimental effort, and to 

extract the maximum possible amount of information from a limited set of 

experiments, is the first step in a sequential chemometrics approach153. The design of 

experiments (DOE) is an efficient procedure for planning the minimum amount of 

experiments needed so that the data obtained can be analyzed to yield valid and 

objective conclusions157. Coupled with statistical and mathematical evaluation, DOE 

can be used to establish relationships among input and response variables optimize 

different reaction parameters and evaluate if a certain input factor has a significant 

effect in the system.     

When applying design of experiments (DOE), choosing the most adequate 

design is a crucial aspect that depends largely on the type of reaction system studied 

and the focus of the investigation153. Full-factorial designs, for example, allow 

complete and systematical evaluation of the interaction between all the input variables, 

whereas other designs, such as the Plackett-Burman design, are preferred for screening 

purposes when only the main effects are of interest.  Within this thesis, DOE was used 

to evaluate the effect of the type of catalytic system, temperature and reaction time on 

several response factors. In paper B, a two-level-full-factorial design was first used for 

catalyst-screening purposes; while in a later step process, optimization was conducted 

based on a central composite design (CCD).  
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2.2.3.2 Response surface methodology (RSM) 

Response surface Methodology (RSM) is a set of mathematical and statistical 

techniques that can be used to define the relationships between the input and response 

variables158. The experimental data is used to derive an empirical (approximation) 

model allowing a more graphical (Figure 2.4) and quantitative interpretation of the 

main effects in the reaction system.  

 

Figure 2.4: Graphical representation of a second-order regression model159  

Depending on the goal and the complexity of the system simpler or more 

complex regression models can be built. For example, for screening purposes less data 

demanding first-order models (linear) with interaction terms are the preferred choice. 

However, often in more complex systems, quadratic terms need to be considered in 

order to build statistically significant regression models. In those cases second-order 

regression models (quadratic) are the best option. In paper B, both linear and quadratic 

regression models with interaction factors were built, the former for catalyst screening 

purposes while the latter for optimization purposes.  
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2.2.3.3 Principal Component Analysis (PCA) 

PCA is a mathematical procedure that allows visualizing correlations between sets of 

independent and dependent variables. In PCA, a new set of linear combinations of 

orthogonal vectors with suitable vector parameters describe the variance present in the 

dataset. The new vectors, or principal components (Figure 2.5), are oriented along the 

maximal residual variance in the data and are completely dependent on the data set153, 

160. The goal is to explain the maximum amount of variance with the fewest number of 

principal components.  

 

Figure 2.5: graphical representation of PCA procedure161 

PCA has been already used in the past to discriminate the effect of reaction 

conditions and reactant concentrations in the properties of the LtL oils162 . In paper B, 

PCA was used to evaluate the possible correlations among several process parameters 

(type of catalytic system, reaction temperature and time), and response variables (oil 

and solid yields, and several properties that define the quality of the oils such as H/C 

ratio, O/C ratio and average molecular weight (Mw)).  
  



 

43 
 

Chapter 3. Summary & main results 

This chapter summarizes the main results of the attached papers presented in Part II. 

To simplify the reader´s understanding of the overall work approach strategy, the 

papers have been grouped and their presentation subdivided into three sections.  

Section 3.1 focuses on the catalytic LtL conversion in water media and includes 

papers A and B. The activity of three different noble metal catalysts (i.e. Rh/Al2O3, 

Pd/Al2O3 and Ru/Al2O3) is evaluated. In addition, the influence of several other 

reaction parameters on the LtL results is investigated using in some cases experimental 

design and chemometric approaches.  

In Section 3.2 different metal-support catalyst combinations are investigated in 

the LtL conversion in ethanol media and includes papers D and E. The investigated 

catalyst can be grouped into: (i) NiMo catalyst on magnetic activated carbons (Section 

3.2.1), (ii) NiMo on metal oxide catalysts (Section 3.2.2) and (iii) a Ru on carbon (Ru-

AC) catalyst (Section 3.2.3).  

One off the key characteristic of the LtL conversion is using formic acid as a 

substitute of molecular hydrogen or a different hydrogen-donor molecule. Our 

previous experience suggests that formic acid is the most active hydrogen source for 

the conversion of the lignin bio-polymer; however, the reason behind this higher 

activity is not fully understood. Thus, in Section 3.3, the role of formic acid in the 

complex LtL system is addressed (Paper F). Additional aspects such as the role of the 

catalyst, the type of solvent and their synergistic interactions with formic acid are also 

discussed. 
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3.1 Water System 

The development of stable and active heterogeneous catalysts is a challenging task that 

involves both fundamental knowledge of the specific chemical reaction and extensive 

experimental effort (i.e. catalyst screening). The LtL process, however, is a relatively 

novel and intricate reaction system and limited number of heterogeneous catalysts 

have been evaluated for it (see Section 1.5.1).  Moreover, most efforts focused on the 

effect of such catalysts on the oil yield and properties paying little attention to the 

synergistic interactions between the catalysts and the other process variables (e.g. type 

of catalyst, temperature and reaction time). 

Therefore, the effects of several process parameters on the catalytic LtL 

reaction were first evaluated to gain fundamental understanding of this complex 

reaction system. These initial tests were carried out in a formic acid/water media in 

non-catalyzed systems and in the presence of γ-Al2O3 and different commercial 

catalysts (Ru/Al2O3, Rh/Al2O3 and Pd/Al2O3). Noble metal base catalysts were 

selected since other base metals such as Ni and Mo proved to be inactive in water 

media163. The results are presented in papers A and B. 

The composition of the feed was held constant for all the experiments described 

in this section. Lignin from strong acid hydrolysis of Norwegian spruce was used if 

not otherwise specified. The aluminas used to synthesize the different commercial 

catalysts were not of the same nature; hence, their acid properties were characterized 

by NH3-TPD and FT-IR of absorbed pyridine to evaluate the effect of the support 

acidity in the LtL reaction. Additional experiments using only γ-Al2O3 as a catalysts 

and non-catalyzed experiment were also carried out. 
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In paper A, the effect of several process parameters on the oil, solid and gas 

phases were investigated. The yields and characteristics of the oil, solid and gas phases 

were highly dependent on the reaction conditions, type of lignin and the presence of γ-

Al2O3 or of a commercial catalyst. The bio-oil contained mainly monoaromatics such 

as phenol, cresol, guaiacol, methylguaiacol, catechol, ethylcatechol, syringol and o-

vanillin. The most relevant results are summarized below: 

 Effect of the commercial catalysts (Ru/Al2O3, Rh/Al2O3 and Pd/Al2O3): The 

presence of the catalysts considerably increased the oil yield while decreasing the 

amount of solid products (hydrochar). The bifunctional catalysts simultaneously 

increased the de-polymerization rate of the lignin biopolymer and the 

hydrodeoxygenation (HDO) rate of the depolymerized lignin monomers. The oil 

yield increase was believed to be a consequence of the kinetic control induced by the 

commercial catalysts in the lignin degradation pathway (Figure 3.1). The 

stabilization of the depolymerized lignin monomers through HDO reactions (k2) 

decreased their re-polymerization tendency hindering the production of solid 

products; the re-polymerization rate of the primary monomers (k3) is faster than the 

re-polymerization rate of the HDO monomers (k4)96. However, later studies proved 

that the higher bio-oil yields obtained in the presence of the catalysts is mainly due 

to the their activity in the formic acid aided aliphatic ether bond cleavage, as 

described in Section 3.3. This is further discussed in Chapter 4.  

 

Figure 3.1: Simplified reaction scheme of lignin degradation36 
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The alumina support played a vital role in the de-polymerization of the lignin 

biopolymer and in the re-polymerization of the depolymerized lignin-monomers.  The 

presence of temperature-stable Lewis acid sites increased the de-polymerization (k1) 

degree of the bio-oils; the higher number of strong acid sitesIV, the lower the average 

molecular weight (Mw) of the oils. The effect of the alumina support in the re-

polymerization mechanism (k3) was also determined by the elemental and FTIR 

analysis of the solid products. The type of noble metal (Ru, Rh, Pd) also has an 

influence on the final oil, solid and gas yields. Ru exhibited higher activity towards the 

productions of bio-oil while the Pd catalyst was the most effective in the reduction of 

the solid phase. The composition of the gas phase was also affected: The Ru catalyst 

was able to induce a higher production of H2 from formic acid, which could have 

favored the conversion towards bio-oil over solid phase.  

 Catalytic effect of the reactor surface: the catalytic effect of the SS316 stainless 

steel in the LtL process was evaluated in the presence and absence of the Ru catalyst. 

To isolate the reactor surface from the reaction media a quartz insert was used. The 

results showed that the reactor surface exhibited considerable catalytic activity: for 

the non-catalyzed experiments a higher oil yield - 8.7 wt % units higher with respect 

to lignin input- and a lower solid yield - 12.6 wt % units lower with respect to lignin 

input- was obtained in the absence of the quartz insert. However, in the presence of 

the Ru catalyst comparable results were obtained with or without the quartz insert, so 

no catalytic effect of the reactor surface was observed. This confirmed that the 

activity of the Ru catalyst is considerably higher than the activity of the reactor 

surface. The Energy Dispersive X-ray (EDXA) analysis of the reactor surface 

suggested that Ni and Mo species could be behind the catalytic activity of the SS316 

stainless steel.  

  

                                                           
IV This concept is referred as active acidity in paper A.   
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 Influence of the type of lignin: the type of lignin was a key factor when 

analyzing the catalytic activity of the commercial catalyst. Three type of lignin were 

tested for this purpose: Kraft lignin (KL), lignin from enzymatic hydrolysis of 

Norwegian spruce (EL) and lignin of strong hydrolysis of Norwegian spruce (AL). 

The commercial catalysts were found to be active only for the EL and AL lignins. 

Comparable oil and solid yields were obtained for the KL lignin in the presence and 

absence of catalysts. The basicity of the reaction media was thought to neutralize the 

effect of the surface acidity of the alumina support and the activity of the catalyst; 

however, these results were not conclusive and will be further discussed in Chapter 4.  

Paper B focuses on the effect of temperature and reaction time on the LtL 

process using a step-wise approach. Initially the effect of the temperature (300-380 °C) 

and reaction time (2-10 h) were evaluated for three different commercial catalysts 

(Ru/Al2O3, Rh/Al2O3 and Pd/Al2O3). The aim of these screening tests was to evaluate 

the differences and similarities among the selected commercial catalysts in a broader 

experimental space. A two-level full-factorial design with three center points was 

devised for each catalyst and the oil and solid yield fitted into a first-order regression 

model with an interaction factor. The surface response models confirmed that the Ru, 

Pd and Rh catalyst behaved similarly for both the oil and the solid yield, with 

regression coefficients that were of the same sign and comparable magnitude. The 

highest oil yields were obtained for the Ru catalysts, followed by the Pd and the Rh 

system. In terms of solid yield the lowest amount was obtained for the Pd catalysts, 

followed by the Ru and the Rh. The effect of the type of catalysts on the H/C ratio, 

O/C ratio and average molecular weight (Mw) in the whole experimental space was 

further assessed by principal component analysis (PCA). The PCA analysis showed 

that the type of catalyst had the strongest effect on the Mw value; the higher number of 

strong acid sitesV of the catalysts, the lower the Mw value of the oil. An additional PCA 

analysis on the composition of the bio-oil was carried out. The results indicated that 

guaiacol and methyl-guaicaol were primary reaction products, catechol was found to 

                                                           
V This concept is referred as active acidity in paper A. 
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be an intermediate while phenol and cresol were end products.  It can be noted that this 

degradation pathway had been previously observed for the non-catalyzed LtL 96, 164. 

In a second step, the influence of temperature (283-397 °C) and reaction time 

(21 min- 700 min) was evaluated for the Ru catalysts and the results compared with 

the non-catalyzed (NC) and the γ-Al2O3 catalyzed systems.  Among the commercial 

catalyst Ru was chosen for the higher oil yields obtained. Previous screening tests 

suggested that the introduction of the quadratic term was necessary to build significant 

regression models. Therefore, in this second step, a central composite design (CCD) 

with axial (α=1.41) and three centre points was devised for each system (NC, 

Ru/Al2O3 and γ-Al2O3), and the oil and solid yield were fitted into a second-order 

regression model with an interaction factor. The aim of this study was to further assess 

the role of the alumina support and the role of the noble metal in a broader 

experimental space.  

 

Figure 3.2: Response surface models for the oil yield. NC: non-catalyzed system, Ru: Ru/Al2O3 
catalyzed system, Al: γ-Al2O3 catalyzed system 
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The response surface for the oil (Figure 3.2) and the solid phases suggests that 

the presence of Al and Ru somehow alters the reaction mechanisms relative to the non-

catalyzed system. In paper A it was already reported that the γ-alumina is able to 

catalyze both the de-polymerization and re-polymerization reactions. In the present 

paper this theory was confirmed, although the exact Lewis-catalyzed lignin hydrolysis 

mechanism could not be elucidated. In any case, the results clearly showed that at low 

temperatures the lignin de-polymerization was favored over the re-polymerization of 

the lignin monomers, while at high temperatures the effect of the Lewis-catalyzed de-

polymerization could be neutralized by a combination of other phenomena. Firstly, 

increasing the temperature is known to favor re-polymerization reactions of the 

unstable lignin monomers. Secondly, the higher solid yield observed at high 

temperatures and long reaction times could also be a consequence of the non-stable 

activity of the alumina support: the surface acidity could cause intense coke deposition 

over the alumina surface leading to the coverage of acid sites. The incorporation of the 

Ru phase seemed to hinder the re-polymerization of the lignin monomers – induced 

kinetic control- and to hinder the deactivation of the catalyst especially at high 

temperatures. Noble metals are known to catalyze HDO reactions; thus, stabilizing the 

lignin monomers and preventing their re-polymerization and the formation of coke 

deposits. However, as mentioned above, later studies proved that the higher bio-oil 

yields obtained by the catalysts are due to their activity in the formic acid aided 

aliphatic ether bond cleavage (see Section 3.3). This is further discussed in Chapter 4.  

In a third step the recyclability of the Ru catalyst was evaluated: no 

deactivation was observed after 3 separate runs. The RSM and PCA assessment of the 

experimental results obtained in step one and step two led to further conclusions about 

the relationship between the reaction parameters -temperature, reaction time and type 

of catalyst- and response variables -oil yield, solid yield, properties of the oil (H/C, 

O/C and Mw) and composition of the oil. Surprisingly, only the Mw value of the oil was 

significantly affected by the type of catalyst; the O/C and H/C ratios and the 

composition of the oil were more temperature and reaction time dependent.  
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Based on the statistically significant second order models and the chemometric 

supported analysis the best results were obtained at 340 °C and 6 h in the presence of 

the Ru/Al2O3 catalyst:  high oil yields coupled with relatively high H/C ratios and low 

O/C ratios and Mw values. In an overall perspective, the results show the potential for 

improving the yields of oil by the use of catalysts which are quite stable, and suggest a 

good potential for tuning the quality and composition of the oil to specific 

requirements.  

3.2 Ethanol system 

Ethanol is another strong solvent candidate for the catalytic LtL. It is a major fuel type 

product obtained from the conversion of lignocellulosic feedstock and therefore a 

widely available and cheap resource in future bio-refineries. In comparison to water, 

ethanol has been proven to be a more effective solvent in the LtL conversion of lignin.  

Recent studies show that ethanol as solvent systematically gives higher oil yields than 

water-based systems165. Moreover, ethanol could provide a more suitable environment 

for the stability of cheaper hydrotreating catalysts based on base metals (i.e. NiMo 

catalysts)166.  

In this thesis, the activities of several hydrotreating catalysts synthesized at the 

University of Bergen (UiB) were evaluated in the conversion of lignin in a formic 

acid/ethanol media. The lignin used was produced from the strong acid hydrolysis of 

rice straw. The composition of the feed was held constant in all cases. The activity of 

the catalyst was evaluated at two different reaction conditions: 340 °C and 6 h, and 

300 °C and 10 h.  

3.2.1 NiMo catalyst supported on magnetic activated carbons (MAC) 

Many lignin conversion processes suffer from significant production of solids 

(hydrochar). Transforming these solid products into functional material would give 

additional value to the lignin and would also reduce its environmental footprint. Paper 

C describes the production of magnetic activated carbons (MAC) by KOH chemical 

activation of two different LtL hydrochars: hydrochar from eucalyptus and hydrochar 
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from spruce lignin (see Section 2.1.3).  MACs are potentially relevant to carbon 

capture and storage (CCS) and gas purification processes.  

The pore size distribution, surface area, and the ultramicropore volume of the 

renewable MACs could be varied by changing the temperature of the chemical 

activation.  When activated at 700 °C, the MACs displayed very high ultramicropore 

volume and correspondingly large uptake of CO2. These properties are important for 

their potential use as CO2 sorbents. After being activated at 800 °C, the MACs 

displayed high specific surface areas and broad pore size distributions (PSD). Such 

properties could be suitable in water purification processes or as catalyst supports. The 

MACs contained significant amounts of embedded nanoparticles of iron oxide 

(magnetic) that displayed soft magnetic behavior with coercivities below 100 Oe-. The 

magnetic properties of MACs may be used to facilitate their separation from liquids 

and have the potential to reduce desorption time, and therefore cycling time of CO2 

temperature swing processes through the application of electromagnetic fields.   

In addition to their sorbent properties, the renewable MACs could also be 

considered as potential catalyst supports. In paper D, two of the previously produced 

MACs were evaluated: (i) a MAC produced from the KOH activation at 800 °C of 

eucalyptus hydrochar (MACE) and (ii) a MAC produced from the KOH activation at 

700 °C of Norwegian spruce hydrochar (MACS). These renewable MACs were used 

to synthesize NiMo-based catalysts (C-MACE and C-MACS) and their catalytic 

activity in the LtL conversion was evaluated. Additionally, the activity of the C-

MACE and C-MACS was compared with the activity of a NiMo catalyst supported on 

a commercial activated carbon (C-AC).  

At 340 °C and 6 h, all the catalysts exhibited considerable activity towards 

lignin conversion (Figure 3.3, left): higher oil yields coupled to lower solids yields 

were obtained in comparison to the non-catalyzed experiment. The best results were 

obtained for the C-MACS catalyst (Spruce hydrochar): 72.2 % of oil –relative to the 

lignin input- and 21.1 % of solids. The commercial based C-AC catalyst yielded 

comparable oil (67.6 %) and solid (20.1 %) amounts, whereas the C-MACE produced 

65.6 % of oil and 27.7 % of solids. Moreover, the oil produced by the C-MACS 
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catalyst was the most upgraded: the C-MACS produced the oil with highest H/C and 

the lowest O/C ratios.  

 

Figure 3.3: oil and solid yields for the experiments NC, C-AC, C-MACE and C-MACS at 340 °C and 
6 h (left) and at 300 °C and 10 h (right).   

At 300 °C and 10 h, all the catalysts generated comparable solid amounts 

(Figure 3.3, right). However, the oil yields obtained for the MAC based catalysts, C-

MACE and C-MACS, were considerably higher. Furthermore, the oil generated by the 

C-MACE and C-MACS catalysts had a higher H/C and lower O/C ratio than the C-AC 

and the non-catalyzed bio-oil. It appears that the NiFe bimetallic species in the C-

MACE and C-MACS catalysts, as observed by XRD, increased the HDO rate of the 

bio-oil components at this temperature, enhancing their stability toward re-

polymerization during the work-up procedure (Paper D). Hence, higher oil amounts 

were recovered.        

The magnetism exhibited by the C-MACS catalyst enables its separation from 

the solid products and the evaluation of its recyclability. The activity of the catalyst 

was evaluated upon three consecutive runs. The catalyst deactivated faster at 340 °C 

than at 300 °C as depicted in Figure 3.4. The loss of magnetism and the leaching of the 

metals seemed to be the most relevant factors that affected the recyclability and 

activity of the catalysts. The recovered solids seemed to be a combination of leached 

catalyst and other lignin derived solid products (hydrochar). The renewable MACs are 

therefore perfect candidates to synthesize NiMo catalyst with outstanding HDO 
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properties for the conversion of lignin into highly up-graded bio-oil; improving their 

stability and recyclability, however, should be further considered.    

 
Figure 3.4: Oil and solid yield for the recycling experiments at 340 °C and 6 h (left) and at 300 °C and 
10 h (right).  

3.2.2 NiMo catalysts supported on metal oxides 

Metal oxides are extensively used in a wide range of catalytic applications. γ-Al2O3 is 

largely studied as catalytic support due to its low cost, stable chemical nature and 

thermal and textural stability. It is therefore a suitable candidate for the synthesis of 

LtL-active catalyst as already demonstrated in Section 3.1. Its Lewis acid sites proved 

to be active towards the de-polymerization and re-polymerization of the lignin 

monomers in formic acid/water media.  

Another suitable candidate for the synthesis of active NiMo catalyst is 

zirconium oxide. ZrO2-based catalysts are known to be highly active HDO catalyst for 

the valorization of phenol type compounds114. Nevertheless, the zirconia supports 

exhibit typically weak acidities and low surface areas. Sulfated zirconias, on the 

contrary, exhibit stronger surface acidities and higher surface areas than their non-

sulfated counterparts167. Sulfated-zirconia is obtained by treating its corresponding 

hydroxide (Zr(OH)4) with a H2SO4 solution. The dried solid is later calcined at the 

desired temperature to produce the sulfated- ZrO2 (SZR). The sulfation process can 

also be applied to the γ-Al2O3 support to further boost its acid properties167.  The 

sulfated alumina (SAR) is, however, obtained using a different process: the γ-Al2O3 is 
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directly impregnated with a solution of H2SO4, dried and calcined at the desired 

temperature.  

In paper E, several NiMo catalysts supported on different sulfated and non-

sulfated aluminas and zirconias were studied for the catalytic LtL conversion. The bare 

support and calcined and pre-reduced catalysts were tested: 

 Bare supports: Four different supports were studied: γ-alumina (AL), sulfated 

γ-alumina (SAL), zirconia (ZR) and sulfated zirconia (SZR). 

 Calcined catalysts: the supports were impregnated with Ni and Mo precursors 

and calcined at 570 °C. Four different calcined catalysts were tested: NiMo supported 

on γ-alumina (NiMo-AL), NiMo supported on sulfated alumina (NiMo-SAL), NiMo 

supported on zirconia (NiMo-ZR) and NiMo supported on sulfated zirconia (NiMo-

SZR). 

 Pre-reduced catalysts: The calcined catalysts were pre-reduced at 550 °C under 

a hydrogen flow. Four different pre-reduced catalysts were tested: H-NiMo-AL, H-

NiMo-SAL, H-NiMo-ZR and H-NiMo-SZR. Two additional monometallic Ni (H-Ni-

SAL) and Mo (H-Mo-SAL) catalyst were also tested. 

The experiments were carried out at 340 °C and 6 h and 300 °C and 10 h. 

Surprisingly, none of the pre-reduced catalysts tested (H-NiMo-AL, H-NiMo-SAL, H-

NiMo-ZR and H-NiMo-SZR) displayed any activity at 300 °C. The pre-reduced NiMo 

catalyst supported on sulfated alumina (H-NiMo-SAL) exhibited the highest activity at 

340 °C and 6 h yielding 76.5 % of oil and 19.3 % of solid (R1-NiMo-SAL experiment, 

see paper E). This value was close to complete lignin conversion since the amount of 

lignin inorganic ashes was of 14.9 %. The oil contained a high number of mono-

aromatics, mainly alkylated phenols although a small number of alkoxy-substituted 

compounds were also found. The recyclability of the H-NiMo-SAL catalyst was also 

studied: no deactivation was observed upon three consecutive runs.  
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At 340 °C and 6 h, only the Lewis acid sites of the alumina-based bare supports 

(AL and SAL) displayed activity towards the hydrolytic cleavage of lignin ether 

bonds, none of the zirconia-based bare supports displayed (ZR and SZR) any activity 

(Figure 3.5, above). Calcined catalyst bearing Ni and Mo oxides (i.e. NiMo-AL, 

NiMo-SAL, NiMo-ZR and NiMo-SZR) exhibited a higher activity than their 

corresponding bare supports (i.e. AL, SAL, ZR and SZR).  

 
Figure 3.5 Oil and solid yield for the bare supports (NC, AL, SAL, ZR and SZR experiments), above; 
and oil and solid yield for the calcined and pre-reduced catalysts (NC, NiMo-AL, H-NiMo-AL, NiMo-
SAL, H-NiMo-SAL, NiMo-ZR, H-NiMo-ZR, NiMo-SZR and H-NiMo-SZR experiments), below. The 
experiments were carried out at 340 °C and 6 h.  

It was also observed that at 340 °C and 6 h those calcined catalysts based on 

acidic supports (NiMo-AL, NiMo-SAL and NiMo-SZR) were significantly more 

active than the non-acidic NiMo-ZR calcined catalyst (Figure 3.5, below). Upon pre-

reduction all the catalysts increased their activity (Figure 3.5, below). The pre-reduced 
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catalysts exhibited comparable activities, despite exhibiting different acidities, surface 

area and number of Ni active sites. Pre-reduction was particularly positive in the case 

of the zirconia (ZR) catalysts: The H-NiMo-ZR pre-reduced catalyst displayed a 

considerably higher activity than the NiMo-ZR calcined catalysts. The higher activity 

was a consequence of the higher number of reduced Ni species and higher surface area 

exhibited by the pre-reduced H-NiMo-ZR catalysts.  

The experiments carried out at 340 °C and 6 h indicate that the overall reaction 

mechanism of the catalytic LtL conversion was especially complex. The oil yield and 

its properties are a consequence of a combination of several catalytic reactions: 

catalytic ether bond hydrogenolysis, Lewis catalyzed ether bond hydrolytic cleavage, 

catalytic HDO and catalytic alkylation of the lignin monomers. The most relevant 

mechanism for the production of LtL oil was found to be the Ni(0)-catalyzed ether 

bond cleavage (hydrogenolysis), as it can be deduced from the results presented in 

Figure 3.5 (below). The CO-chemisorption and BET analysis also suggested that this 

reaction is mainly catalyzed by those Ni species found over the outer surface of the 

catalyst; the Ni species within the pores seem not to have a significant effect on the 

final oil and solid yield.   

HDO and alkylation reactions, in addition, favor the stabilization of the lignin 

monomers and contribute to the oil yields, although to lesser extent than aliphatic ether 

bond hydrogenolysis. Mo was found to be the most active species towards the catalytic 

HDO of the lignin monomers at 340 °C. The Lewis acids sites also catalyze the 

hydrolytic aliphatic ether bond cleavage, but this mechanism is not relevant in the case 

of the calcined and pre-reduced catalysts. The results suggest that the presence of Mo 

does not significantly increase the final oil yield at these reaction conditions despite its 

HDO activity.  
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3.2.3 Ru/C catalyst and overall catalyst screening results 

Noble metals, such as Ru, Rh and Pd, are known to have higher intrinsic 

hydrogenolysis activity than Ni and are widely used in direct reductive conversion of 

raw and pretreated lignins. Already in Section 3.1 we reported the remarkable activity 

of different noble metal catalysts in a formic acid/water media. These catalysts 

exhibited high activities even at temperatures close to 300 °C; among them, Ru 

displayed the highest activity for the conversion of lignin into bio-oil. 

Thus, in this section, the activity of a noble metal based catalyst for the LtL 

conversion of lignin in ethanol media is investigated: a Ru on carbon catalyst (Ru-AC) 

has been chosen for this purpose. The activated carbon used to synthesize the Ru-AC 

catalyst is the same commercial activated carbon described in Section 3.2.1. The Ru 

content of the catalyst, on the other hand, was calculated so that the number of moles 

of Ru was equivalent to the number of moles of Ni supported on those catalysts 

described Section 3.2.1 and Section 3.2.2. The synthesis procedure and 

characterization results for the Ru-AC catalyst are described in detailed in ANNEX I. 

Table 3.1: oil yield, solid yield, elemental analysis and average molecular weight (Mw) of the 
oils for the Ru-AC, H-SA and C-MACS catalyst at different reaction conditions.  

Catalysta Temp. 
(°C)b 

Reaction 
time (h) 

Oil Yield 
(%)c 

Solid 
Yield (%)c 

Elemental 
analysis Oil Mw

d 

(Da) H/C O/C 
NC 340 6 36.0 43.5 1.27 0.13 347 

Ru-AC 340 6 75.2 20.3 1.32 0.17 479 
C-MACS 340 6 72.2 21.1 1.33 0.12 331 

H-NiMo-SAL 340 6 76.5 19.3 1.22 0.15 397 
NC 300 10 49.3 28.2 1.18 0.18 552 

Ru-AC 300 10 75.8 23.9 1.33 0.20 498 
C-MACS 300 10 72.0 27.7 1.27 0.18 515 

H-NiMo-SAL 300 10 51.2 27.0 1.17 0.19 441 
a NC: non-catalyzed experiment, Ru-AC: Ru on commercial activated carbon C-MACS: calcined 
NiMo catalyst on MACS support H-NiMo-SAL: pre-reduced NiMo catalyst on sulfated alumina. b 

Temp: reaction temperature c wt% respect to the lignin input d Average molecular weight of the oil  
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The activity of the Ru-AC catalyst is further compared with the activity of the 

C-MACS and H-NiMo-SAL catalysts (Table 3.1).  C-MACS and H-NiMo-SAL were 

the most active catalyst among the ones studied in Section 3.2.1 and Section 3.2.2, 

respectively. The Ru-AC results are only described in this section, and are not 

included in the papers.  

At 340 °C and 6 h all the catalyst exhibited comparable activities for the 

conversion of lignin (Figure 3.6, left). The highest oil and lowest solid yields were 

obtained for the H-NiMo-SAL catalyst, followed closely by the Ru-AC and the C-

MACS catalyst. The C-MACS catalyst, however, produced the oil with the best 

quality: the highest H/C ratio (1.33) and lowest O/C ratio (0.12) and Mw values (331 

Da) were obtained in the presence of C-MACS.  

 

Figure 3.6: oil and solid yields for the NC, Ru-AC, C-MACS and H-SA catalyst at 340 °C and 6 h 
(left) and oil and solid yields for the NC, Ru-AC, C-MACS and H-SA catalyst at 300 °C and 10 h 
(right) 

At low temperatures (Figure 3.6, right), however, there were significant 

differences among the results obtained for the different catalysts. The H-NiMo-SAL 

catalyst exhibited no catalytic activity as reported in Section 3.2.2. The C-MACS 

catalyst yielded a higher amount of oil when compared to the H-NiMo-SAL catalyst; 

the solid yield was, however, comparable to the one obtained for the NC and H-NiMo-

SAL experiments.  As mentioned in Section 3.2.1, the NiFe species within the C-

MACS are more active than the NiMo species present in the H-NiMo-SAL for the 
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HDO of the bio-oil components at his temperature. This hinders their re-

polymerization during the work-up procedure; thus, a higher amount of oil is 

recovered. The best results were obtained for the Ru-AC catalyst: the highest oil yield 

(75.8 %) and lowest solid yield (23.9 %) was obtained.    

3.3 LtL reaction mechanism: the role of formic acid 

Few studies have focused their attention on comparing the effect of formic acid with 

molecular hydrogen or other hydrogen donor molecules in the de-polymerization of 

lignin. Kloekhorst et al.138 studied the effect of substituting formic acid for 

isopropanol, a well-known hydrogen donor molecule; but the reaction conditions 

chosen in all cases led to oil yields close to full conversion, what makes impossible to 

draw any clear conclusion. Ma et al.168 studied the effect of molecular hydrogen and 

different hydrogen donor molecules in the catalytic solvolysis of lignin with little 

focus on the role of the different species in the reaction mechanism.  

In recent years different research groups have suggested novel reaction 

pathways involving lignin model compounds and formic acid 169-170 or lignin model 

compounds and similar organic acids, such as acetic acid 171. However, these 

hypotheses have never been verified with real lignin feedstock. The experiments 

carried out in paper F are aimed at gaining a better understanding on the role of formic 

acid in the LtL process. Additionally, the role of the catalyst, the type of solvent and 

their synergistic interactions with the formic acid is examined. The catalyst used in this 

paper is the NiMo supported on sulfated alumina (H-NiMo-SAL) studied in Section 

3.2.2. The experimental procedures, reactant amounts and reaction conditions are 

described in the Experimental Section of paper F.  
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Initially, the role of formic acid as a possible in situ hydrogen source or 

hydrogen donor molecule was studied by replacing formic acid either totally or 

partially with H2, a H2/CO2 (1:1) gas mixture or isopropanol, a well know hydrogen 

donor molecule. When substituting formic acid for molecular hydrogen or isopropanol, 

lower oil yields and higher solid yields were obtained and the properties of the oils 

also differed significantly. In contrast, molecular hydrogen and isopropanol generated 

comparable yields and type of oils. These results suggest that both iso-propanol and 

molecular hydrogen follow the same type of reaction mechanism, which is different 

than the one followed by formic acid.  

Blank experiments carried out in the absence of lignin showed that the H-

NiMo-SAL catalyst increased the decomposition rate of formic acid. For the non-

catalyzed blank 57.0 % of formic acid was still present in the system after 51 minutes, 

while in the case of the catalyzed blank only 12.4 % of formic acid was present after 

the same reaction time. In an attempt to determine whether the continuous presence of 

formic acid during the 6 h reaction time could be beneficial to increase the oil yield, 

two additional semi-batch reaction configurations (SBVI) were tested:  

(i) a semi-batch experiment where part of the formic acid is introduced initially 

and the rest continuously (SB1VI) 

(ii) a second semi-batch experiment where formic acid is only introduced 

continuously along the course of the reaction (SB2VI) 

Both the catalytic and non-catalytic systems were considered and the results 

compared with the batch counterparts (BVI), where all the formic acid is introduced 

initially in the reactor. For the non-catalyzed experiments, Figure 3.7 (left) similar oil 

and solid yields are obtained regardless of whether formic acid is added at the 

beginning (BVI experiment) or continuously (SB1VI and SB2VI experiments). For the 

catalyzed experiments (C-BVI, C-SB1VI and C-SB2VI), however, the highest oil and 

lowest solid yield was obtained by far for the batch configuration as depicted in Figure 

3.7 (right).  
                                                           
VI Note that the coding used in this section  does not coincide with the coding used in paper F 
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Figure 3.7: oil and solid yield for the non-catalyzed batch (B) semi-batch SB1 (SB1) and semi-batch 
(SB2) experiments (left)  oil and solid yield for the catalyzed batch (C-B) semi-batch SB1 (C-SB1) 
and semi-batch (C-SB2) experiments (right) 

The results described above suggest that there is a competing reaction between 

the decomposition of formic acid and its interaction with the lignin biopolymer.  In the 

catalyzed experiments (Figure 3.7, right), significant higher oil yields were obtained 

when all the formic acid was present from the beginning in the reactor (C-BVII 

experiment). This indicates that a higher contact time between the lignin and the 

formic acid during the heating and the initial isothermal period favors the conversion 

of lignin. On the other hand, in the catalyzed semi-batch experiments (C-SB1VII and C-

SB2VII) formic acid is slowly added into the reactor, which seems to disfavor the 

lignin-formic acid interaction and favor its decomposition into H2 and CO2: a higher 

amount of formic acid will be decomposed before it can react with the lignin. 

Regarding the non-catalyzed systems, comparable amount of oil and solid were 

obtained with the batch (BVII) and semi-batch configurations (SB1VII and SB2VII). In 

the absence of a catalyst, formic acid is decomposed slowly thus enabling a sufficient 

amount of formic acid to react continuously with the lignin throughout the duration of 

the reaction regardless of the reactor configuration. 

  

                                                           
VII Note that the coding used in this section  does not coincide with the coding used in paper F 
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Based on the existing literature169-171 and the experimental results a formylation- 

deformylation-hydrogenolysis mechanism is proposed for the lignin ether bonds 

cleavage (Figure 3.8). The deformylation step would be catalyzed by an in situ 

generated alkoxide that would act as the based needed for the abstraction of the proton 

in the Cβ; leading to the elimination of the formate attached to the Cγ and the formation 

of an unsaturated bond. The alkoxide could be generated by two different mechanisms: 

(i) the adsorption of alcohols over MoO3 and (ii) the interaction between alcohols and 

Lewis acid sites. The cleavage of the aliphatic ether bond is thought to happen through 

a catalytic hydrogenolysis mechanism, although the less likely hydrolysis and 

solvolysis mechanisms are not fully rejected.  

 
Figure 3.8: Proposed mechanism for formic acid-aided depolymerization of lignin through a 
formylation, elimination, hydrogenolysis  
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The effect of different solvents (i.e. ethanol, methanol and isopropanol) on the 

reaction system was also analyzed in paper F. The results indicated that the primary 

effect of the solvents was the stabilization of the lignin monomers; hindering their re-

polymerization into higher molecular weight products (i.e. hydrochar). The most 

effective solvent for the production of bio-oil was ethanol. This solvent displayed a 

better activity towards etherification (O-alkylation) of highly reactive phenolic 

intermediates and alkylation (C-alkylation) of the aromatic rings.  
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Chapter 4. Discussion  

The results detailed in Chapter 3 -particularly the ones described in Section 3.3- justify 

an additional revision of some of the conclusions reported in the papers presented in 

Part II. 

The results described in Section 3.1 prove that commercial noble metal-alumina 

catalysts were active in the LtL conversion in water as reaction medium.  According to 

the results, the commercial catalysts induce a kinetic control in the lignin degradation 

pathway that favors the conversion of lignin into bio-oil. The stabilization of the 

depolymerized lignin monomers through HDO reactions is believed to decrease their 

re-polymerization tendency increasing the amount of low molecular weight stable 

lignin monomers (bio-oil). Nevertheless, the latter mechanistic elucidation described 

in Section 3.3 (Paper F) suggests that the effect of the catalyst in the overall reaction 

mechanism is more complex. The catalyst is able to increase the HDO rate of the 

lignin monomers contributing to their stabilization. However, this reaction is not so 

relevant for the production of bio-oil - as described in Section 3.2.2 (Paper E) and 

Section 3.3 (Paper F) - as the catalytic aliphatic ether bond cleavage. Thus the 

commercial catalysts would increase the reaction rate of the aliphatic ether bond 

cleavage, which is believed to happen through a formylation-

deformylation(elimination)-hydrogenolysis mechanism.  

The exact mechanistic pathways for the aliphatic ether bond cleavage when 

working in an ethanol medium cannot be entirely transferred, however, to explain the 

mechanism in water media. The deformylation step, for instance, cannot be catalyzed 

by an alkoxide, due to the lack of alcohols in the reaction media. Nonetheless, water is 

known to interact with alumina forming stable surface hydroxyl groups172-173. 

Furthermore, in the case of the commercial catalysts water could also dissociate over 

the metals forming hydroxyl groups attached to the metal surface174-175. This hydroxyl 

species could act as the base needed for the abstraction of the proton in the Cβ, 

although there is no enough experimental evidence to confirm this theory. On the other 

hand, the activity of the alumina catalyst at low temperatures described in Section 3.1 
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(Paper B) indicates that the aliphatic ether bond cleavage could also occur in the 

absence of metallic species. Thus, the prevalent reaction pathway in the presence of 

bare γ-alumina support appear to be a formylation-deformylation-hydrolysis 

mechanism, as suggested by Rahimi and co-workers169; although hydrogenolysis 

reactions catalyzed by the reactor metallic surface could occur simultaneously. The 

Lewis acid sites of the γ-alumina could catalyze the hydrolytic cleavage of lignin at 

low temperatures. At high temperatures, on the contrary, the catalytic effect of the γ-

alumina would be neutralized by the re-polymerization tendency of the monomers and 

the deactivation of the catalyst due to excess coking. The noble metals within the 

commercial catalysts could have a combined effect. On the one hand, they could 

catalyze the de-polymerization of lignin polymer by promoting a formylation-

elimination-hydrogenolysis mechanism. On the other hand, they could hinder the re-

polymerization of the monomers and the production of coke through catalytic HDO 

reactions hindering the deactivation of the catalyst at high temperatures.  

The effect of the type of alumina in the LtL process in water media described in 

Section 3.1 (Paper B) needs also to be revised. The type of alumina is thought to 

influence the pH of the reaction media; thus, in some cases like the alkaline KL lignin, 

the activity of the catalyst could be neutralized. However, the mechanistic studies 

described in Section 3.3 suggest that the nature of the aliphatic ether bond could also 

affect the reaction mechanism. The isolation process employed to extract the lignin 

from the lignocellulosic biomass has an effect on the nature of the aliphatic ether bond 

in the lignin, especially on the abundance of aliphatic hydroxyl (OH-) groups attached 

to the β-O-4 bond (see Section 1.3).  The abundance of aliphatic hydroxyl groups 

would have an effect in the formylation step and would influence the aliphatic ether 

bond cleavage rate; nevertheless, there is not enough experimental evidence to 

evaluate this phenomenon.  
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Noble metals such as Ru were active for the conversion of lignin both in 

ethanol and water system. They exhibited significant catalytic activity for all the 

reaction conditions studied. NiMo based catalysts, however, were only active in 

ethanol, and exhibited scarce catalytic activity at low temperatures (i.e. 300 °C), as 

described in Section 3.2. Furthermore, the results obtained for the monometallic H-Ni-

SAL and H-Mo-SA catalysts in Section 3.2.1 suggested that the Mo does not have a 

significant effect in the bio-oil yield at 340 °C. On the other hand, the results obtained 

for the NiMo catalysts at 300 °C could be improved by the presence of Fe on the 

surface of the catalysts (C-MACE and C-MACS catalysts); the stabilization of the bio-

oil through HDO reactions induced by NiFe species resulted in a higher bio-oil 

recovery. Additional screening experiments based on NiFe catalyst are recommended 

to further investigate their effect in the final oil and solid yield.  

The role of support in ethanol is secondary when comparing with the role of the 

metal phases: comparable oil and solid yields were obtained regardless the textural and 

chemical properties of the different supports studied. In contrast, the oil and solid yield 

are highly dependent on the type of monometallic and bimetallic species. The 

dispersion of the active sites seems not to affect the activity of the catalyst indicating 

that the aliphatic ether bond cleavage is mainly catalyzed by the metal species found in 

the outer surface of the catalyst.  

The type of support used is, however, crucial when evaluating the recyclability 

of the catalysts. The alumina based catalysts could be easily recycled and their activity 

and stability is maintained upon 3 consecutive tests, both for the water (Ru/Al2O3) and 

ethanol system (H-NiMo-SAL). The renewable MACs, however, are recovered with 

difficulty despite their magnetism and they exhibited considerable loss of activity, 

particularly at 340 °C, most probably due to metal leaching.  

In summary, the best results using water as solvent were obtained for the 

Ru/Al2O3 catalysts at 340 °C and 6 h. Practically all the lignin was converted into bio-

oil (86.8 wt%), while only 3.7 % into solids. Furthermore, the Ru/Al2O3 was easily 

recycled and exhibited no deactivation after 3 consecutive runs. In ethanol system, it is 

more difficult to stablish which catalyst gives the best results. At 340 °C and 6 h, the 
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highest oil (76.5 wt %) and lowest solid yield (19.3 wt%) were obtained for the H-

NiMo-SAL catalysts; the catalyst was easily recycled and exhibited no deactivation 

after 3 consecutive runs. At 300 °C and 10 h, however, the H-NiMo-SAL exhibited no 

activity. The highest oil yield (75.8 %) and lowest solid yield (23.9 %) were obtained 

for the Ru-AC catalyst, although the C-MACS catalyst generated comparable oil (72.0 

%) and solid (27.7 %) yields. Thus, the Ru-AC can be considered as the most active 

catalyst in ethanol media, although its recyclability needs to be assessed.     

Overall, the results indicate that the non-catalytic and catalytic LtL reaction 

systems are of great complexity. Several reactions are simultaneously involved in the 

lignin conversion process: aliphatic ether bond hydrogenolysis, aliphatic ether bond 

hydrolysis, alkylation and HDO of the de-polymerized monomers, re-polymerization 

of the lignin monomers and decomposition of formic acid. The most relevant reaction 

mechanism for the production of bio-oil seems to be the formic acid-aided aliphatic 

ether bond cleavage. In ethanol media, this reaction is thought to happen through a 

formylation-deformylation-hydrogenolysis mechanism and could be catalyzed by Ru 

and bimetallic NiMo catalysts.  The deformylation step requires the presence of basic 

species such as alkoxides, that can be generated from the interaction between the 

ethanol and the different metallic species (Ru176, Ni177, Mo178), and/or by the 

interaction between the ethanol and Lewis acid sites179. When the reaction is carried 

out in water media, the ether bond cleavage could be catalyzed solely by γ-alumina, 

which is thought to induce a mechanism involving formylation, deformylation –

catalyzed by hydroxyl groups attached to the surface of the catalyst- and hydrolysis 

steps. HDO and alkylation reactions further contribute to the production of bio-oil by 

stabilizing the lignin monomers; thus, hindering their re-polymerization. Alkylation 

reactions could be further favored by selecting the right solvent: ethanol was a better 

candidate than methanol and isopropanol since it favored the etherification (O-

alkylation) of phenolic intermediates and the alkylation (C-alkylation) of the aromatic 

rings.
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Chapter 5. Conclusions & outlook 

The activity of several noble metal and base metal supported catalysts was evaluated 

for the conversion of lignin in a formic acid/solvent media. The experiments were 

carried out using both ethanol and water as solvents.  

Noble metal catalysts such as Ru were proven more active than base metals (Ni, 

Mo), particularly in water media and/or at low reaction temperatures (i.e. 300 °C). The 

performance of monometallic Ni species at low temperatures (i.e. 300 °C), however, 

could be considerably promoted by the addition of Fe. In fact, the NiFe bimetallic 

system should be considered as a cheaper alternative to the more active Ru catalyst 

when working in ethanol. Future investigations should focus on the reduction of the 

metal loading for the Ru and NiFe catalysts. Furthermore, the optimum Ni/Fe ratio 

should be determined and alternative catalyst synthesis strategies evaluated to increase 

the number of NiFe bimetallic species.  

The effect of the reaction support in the catalytic activity was also studied; 

although the type of support (alumina, zirconia, activated carbon) did not significantly 

affect the activity of the catalyst. Thus, the support should be chosen based on its cost 

and the stability of the resulting catalyst. Magnetic activated carbons (MACs) 

produced by chemical activation of lignin organic phases were found to be suitable 

supports for the synthesis of highly active LtL catalyst. Moreover, the valorization of 

the solid products into valuable products is a positive strategy to enhance the process-

economics in a larger perspective. However, their stability could be further improved. 

Increasing the calcination temperature could partially hinder the leaching of the metals 

and improve the stability of the MAC-based catalysts. The effect of different 

parameters (e.g. type of hydrochar, O/C, H/C ratio and Fe content) on the stability of 

MAC-based catalyst could be also determined. ZrO2 catalysts also constitute a cheap 

and suitable alternative despite their low surface area and low acidity. Among the 

supports studied, alumina was found to be the best candidate. Cheap and chemically 

stable, it is active for the conversion of lignin in water media and the resulting 
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supported catalysts were found to be stable and easy to recycle. Sulfating the ZrO2 and 

γ-alumina, however, does not significantly increase the activity of the resulting solid.  

Additional reaction parameters such as temperature, reaction time and type of 

lignin significantly affect the final LtL results. The effect of both temperature and 

reaction time in the oil yield and quality has been thoroughly investigated. The best 

results both in ethanol and water systems are obtained at 340 °C and 6 h where high oil 

yields coupled with good quality oil- high H/C and low O/C ratio and Mw value- are 

generated. The effect of the type on lignin in the catalytic LtL, on the other hand, is 

still uncertain. Additional experiments are recommended to stablish the relationship 

between the abundance of aliphatic OH- groups – by FTIR or solid state NMR 

techniques- and the ether bond cleavage rate. 

The LtL process is a highly complex reaction system that involves different 

chemical reactions. Formic acid aided aliphatic ether bond cleavage was found to be 

the most relevant reaction for the production of liquid bio-oil. Formic acid induces a 

lignin degradation mechanism different to the one induced by other hydrogen sources 

such as H2 or isopropanol. The exact reaction mechanism is not fully understood but is 

believed to happen through a formylation-deformylation-hydrogenolysis/hydrolysis 

mechanism, depending on the solvent and the catalyst used. HDO and alkylation 

reactions contribute to a lesser extent to the production of bio-oil by stabilizing the 

lignin monomers and hindering their re-polymerization. The HDO activity of the 

catalyst is particularly important when working at lower temperatures: the HDO of the 

bio-oil components hinders the re-polymerization of the more unstable compounds and 

would prevent the formation of downstream solid residues in future bio-refineries. All 

the reactions described above could be catalyzed by different noble metal and base 

metal catalysts. Furthermore, alkylation reactions could also be favored by selecting 

the right solvent. 
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From a basic research perspective, the formic acid aided ether bond cleavage 

mechanism should be further investigated. Using lignin model compounds instead of 

real lignin feedstock would reduce the complexity of the system and could aid in the 

elucidation of the exact reaction mechanism.  The results presented in this work also 

suggest that the fast decomposition of formic acid is detrimental for the LtL 

conversion of lignin. Thus, future investigations should focus in those catalytic 

formulations that exhibit little or no activity towards the decomposition of the acid. 

The exchange of formic acid for a more thermally stable organic acid (i.e. acetic acid) 

could also overcome such problems. In the case of acetic acid, however, H2 or another 

hydrogen donor molecule should be introduced in the reactor to facilitate the 

hydrogenolysis step.   

In conclusion, applying heterogeneous catalysts is a promising option to 

overcome some of the major challenges associated with the LtL process. Reaction 

temperature and time could be reduced by applying different catalytic formulations, 

still producing good quality oil in high yields. Additionally, the catalysts are able to 

stabilize the lignin monomers preventing their re-polymerization into solid products. 

Nevertheless, although the reduction of this low value side stream is in theory 

beneficial for the overall process economics, its conversion into value-added magnetic 

activated carbons (MACs) could be regarded as a better alternative. Moreover, the 

catalyst screening approach presented in this thesis is a step towards the understanding 

of the LtL reaction system, particularly the mechanism of the formic acid-aided 

aliphatic ether bond cleavage. This is especially relevant to develop new and improved 

catalytic formulations. 
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a b s t r a c t

The catalytic solvolysis of 3 lignins of different sources in a formic acid/water media using bifunctional

Ru/Al2O3, Rh/Al2O3, Pd/Al2O3 catalysts was explored in a batch set-up at different temperatures and

reaction times (340–380 ◦C and 2–6 h, respectively). Blank experiments using only gamma–alumina as

catalysts and non-catalyzed experiments were also performed and compared with the supported cata-

lysts results. All the supported catalysts significantly improved the oil yields on a lignin basis, with yields

up to 91.5 wt% using the Ru catalyst. The main components phenol, cresol, guaiacol, methylguaiacol,

catechol, ethylcatechol, syringol and o-vanillin are found in different concentrations depending on the

catalytic system. The stable Lewis acidity in the alumina support has been found to be active in terms

of de-polymerization of lignin, leading to lower average molecular weight oils. In addition, it was found

that alumina plays a significant role in the re-polymerization mechanism of the monomers. The effect of

the type of lignin on the final oil and solid yields was also established, demonstrating that lignins pro-

duced by basic pretreatment of biomass do not show significant increase in oil yield when catalysts on

an acid support like alumina are used. The interpretation is that acid conditions are needed for efficient

de-polymerisation of the lignin.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the biofuel sector, the concept of a “biorefinery” describes all

the processes and technologies involved in converting biomass to

a range of fuels and value-added chemicals. Among the biomass

sources, lignocellulosic biomass (wood, grasses and agricultural

residues) has been identified as a promising alternative for this

purpose [1], since unlike vegetable oil and sugar crops the lignocel-

lulose feedstock avoid the negative side effect of intense farming

[2] and ethical concerns about the use of food as fuel raw materi-

als [3]. For lignocellulosic biomass conversion, most of the research

has been focused on the conversion of cellulose and hemi-cellulose

to biofuels and value added chemicals, and major breakthroughs

have been achieved. However, valorization of lignin, an amorphous

� Selected Paper from Pyrolysis 2014, Birmingham, U.K. 19–23 May 2014.
∗ Corresponding author. Tel.: +47 46230671.

E-mail address: mikel.oregui@kj.uib.no (M. Oregui Bengoechea).

polymer that accounts for 15–30% of the feedstock by weight, and

40% by energy [1], is still a challenge. Only approximately 2% of the

lignin residues available from the pulp and paper industry are used

commercially, with the remaining volumes burned as low value

fuel [4]. Nevertheless, lignin has a significant potential as a feed-

stock for the sustainable production of fuels and bulk chemicals,

and indeed lignin can be regarded as the major aromatic resource

of the bio-based economy [1].

Various pathways have been explored for the conversion of

lignin-rich residual material for fuels or phenols [1,5–7]. Among

them, thermochemical conversion by fast pyrolysis is one of the

central techniques, but the resulting “oil” has a high O/C and low

of H/C ratio. These bio-oils are very acidic and corrosive and often

chemically unstable, making it necessary to further upgrade them

to produce motor fuels and chemicals to be used in the petrochem-

ical industry [8–10]. In comparison to fast pyrolysis, solvolysis pro-

vides the advantages of milder conditions and a single phase envi-

ronment due to the miscibility of the organic products in the (super-

critical) solvent. Further advantages of solvolysis performed in

http://dx.doi.org/10.1016/j.jaap.2015.04.020

0165-2370/© 2015 Elsevier B.V. All rights reserved.
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polar solvents such as ethanol or iso-propanol [11] over fast pyrol-

ysis are a less oxygenated oil fraction and almost no solid residue

(<5%) [12,13]. A promising and relatively new lignin conversion

methodology involves the use of a hydrogen donor solvent instead

of molecular hydrogen [14]. A well-known hydrogen donor is

formic acid (FA), which is converted in situ, either thermally or cat-

alytically, to molecular hydrogen and CO/CO2. Commonly used sol-

vents are alcohols (methanol, ethanol) and water, the latter being a

preferred system for biofuel conversion since it is a “green” solvent.

With temperatures typically of 350–400 ◦C and reaction times of

typically 8–16 h, lignin from spruce, pine, birch and aspen wood has

been converted to a chemically stable bio-oil through a solvolysis

process using formic acid as hydrogen donor. The molar H/C ratio

of the product was between 1.3 and 1.8, and the O/C ratio between

0.05 and 0.1, indicative of a substantial reduction in the oxygen con-

tent compared with the fast pyrolysis process [2,14,15]. However,

in order to make this bio-oil fuel competitive with fuels and chemi-

cals obtained from petroleum, some important process parameters

need to be improved: (i) shorter reaction times, (ii)lower reaction

temperatures and (iii) the reduction of low-value side streams i.e.,

gas and solid residues.

One possibility to address these challenges is the use of catalysts

in the process. Catalytic hydrotreatment of lignin has already been

explored extensively and involves the reaction of lignin in the

presence of a (heterogeneous) catalyst with molecular hydrogen at

elevated temperatures. Several catalytic systems have been eval-

uated both with model compounds and lignin [5,6]. Catalysts such

as Co–Mo/Al2O3 and Ni–Mo/Al2O3 and noble metals on different

supports, Rh/C, Rh/Al2O3, Pd/C, Rh/ZrO2, Ru/C [1] have extensively

been evaluated for this purpose. Although very effective when

using model compounds, only low levels of lignin conversion is

achieved in such lignin based systems [5]. Recent research by

Ligouri and Barth showed that the reaction time and temperature

can be reduced dramatically when using heterogeneous (Pd/C)

catalyst together with Nafion SAC-13 as solid superacid in a formic

acid/water media (2011) [16]. The Pd/C catalyst increases the

hydrogenation rate, while the Nafion SAC-13, a Brønsted acid, acti-

vates the lignin aryl ether sites (de-polymerization) and promotes

their hydrogenolysis to phenols [17]. The lignin was converted at

a reaction temperature of 300 ◦C and a reaction time of 2 h, and

high conversions into oil were achieved. Nonetheless, the use of

two types of catalyst presents some drawbacks from an industrial

and economical point of view. In this perspective, the use of a

bifuntional catalyst were a cheap acid support is used could have

the potential to improve the industrial and economic performance

without lowering the lignin conversion values. Alumina could

be an adequate alternative, although the role of its Lewis acidity

in the lignin de-polymerization and re-polymerization needs

investigation.

In this study, several noble metals supported on alumina,

Ru/Al2O3, Rh/Al2O3 and Pd/Al2O3 are investigated as bifunctional

catalyst in a formic acid/water media for the simultaneous de-

polymerization and hydrodeoxygenation of three different types

of lignins. The conversion of lignin to oil and solids (coke) and the

effect of the alumina as a support with Lewis acid properties are

investigated at different temperatures (340–380 ◦C) and reaction

times (2–6 h), in terms of bulk yields and chemical composition of

the products.

2. Materials and methods

2.1. Chemicals

N,O- Bis(trimethylsilyl) trifluoroacetamide (BSTFA) with

trimethylchlorosilane (TMCS) and pyridine (>99.5 %) was

purchased from Fluka and used as bought. Pentane (>99%),

formic acid (>98%), tetrahydrofuran (>99.9%) and ethyl acetate

(99.8%) were purchase from Sigma–Aldrich and used as bought.

2.2. Catalysts

Ruthenium on alumina (5 wt%), Rhodium on alumina (5 wt%)

and Palladium on alumina (10 wt%) were obtained from

Sigma–Aldrich, and gamma-alumina (97 wt%) was obtained

from Strem Chemicals Inc. These were dried at 80 ◦C for 24 h prior

to use.

2.3. Acidity measurements (NH3-TPD and DRIFT)

Temperature-programmed desorption of ammonia, NH3-TPD,

was performed to determine the total acidity of the samples.

The measurements were carried out in chemisorption analyzer

AutoChem II equipped with a thermal conductivity detector

(Micromeritics, USA). The samples (50 mg) were flushed with

helium at 650 ◦C for 30 min, then cooled down to 40 ◦C and loaded

with ammonia for 30 min. Complete removal of physically adsorbed

ammonia was carried out by purging the saturated samples with

helium at 100 ◦C until no further desorption was recorded. Under

constant flow of helium, the samples were heated up from 100 to

650 ◦C at a heating rate of 10 ◦C/min, and the release of ammonia

was recorded. The total acidity was determined by using calibration

data.

Diffuse reflectance infrared Fourier transform, DRIFT, was used

to distinguish Lewis and Brønsted acid sites of noble-metal contain-

ing catalysts and �-Al2O3. The analyses were done using a VERTEX

70 spectrometer coupled with an external sample chamber that

enables measurements under vacuum (Bruker, Germany). The sam-

ples were dried in situ under vacuum for 1 h at 250 ◦C and later

cooled down to 40 ◦C in order to record the background spectra.

The main measurement features were a spectral range from 1650

to 1350 cm−1, 200 scans, and a resolution of 4 cm−1. Initially, the

catalyst was brought in direct contact with pyridine vapor at 40 ◦C

for 15 min. Analysis where obtained by heating the sample up to

100, 200, or 300 ◦C for 15 min.

2.4. Type of lignins

Low sulfonate alkali lignin (KL lignin) was purchase from

Sigma–Aldrich. Lignin from Norway spruce from strong acid

carbohydrate dissolution pre-treatment (AL) was received from

Technical College of Bergen, and lignin from Norway spruce from

weak acid and enzymatic hydrolysis biomass pre-treatment (EL)

was received from the Norwegian University of Life Science in Ås.

The two latter lignins were ground and sieved (<500 �m). All the

lignins were dried at 80 ◦C for 24 h prior to use.

2.5. Experimental conditions

2.5.1. Experimental set-up

A detailed description is given elsewhere by Kleinert and Barth

[14]. Briefly summarised, lignin (2 g), formic acid (3.075 g), water

(5 g) and the catalyst (0.2 g) were added to a stainless steel reac-

tor (Parr 4742 non-stirred reactor, 25 ml volume). The amounts of

reactants are based on previous experiments for maximising oil

yields. The reactor was closed and heated in a Carbolite LHT oven

to the desired conditions (340 ◦C or 380 ◦C) for a given reaction time

(2 or 6 h). The experimental conditions for all the experiments are

summarized in Supplementary material Table S1.
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2.5.2. Sample work-up

After completed reaction time, the reactors were taken out of

the oven and cooled in an air stream to ambient temperature. The

amount of produced gases was determined by weighting the reac-

tor before and after ventilating the gas. After opening the reaction

container, the liquid reaction mixture was extracted with a solu-

tion of ethyl acetate: tetrahydrofuran (90:10) and the solid phase

(unreacted lignin, reaction products and catalyst) were filtered.

Two well-separated liquid phases were obtained (organic top phase

and aqueous bottom phase). They were separated by decanting,

and the pH and the weight of the aqueous phase was determined.

The organic phase was dried over Na2SO4 and concentrated at

reduced pressure (ca. 250 mm bar) at 40 ◦C to yield a dark brown

to black liquid. The yield was determined by weight. The solids

were characterized by Fourier-transformed infrared spectroscopy

(FT-IR) and elemental analysis. The oil fraction was characterized

by gas chromatography (GC-FID), gel permeation chromatography-

size exclusion chromatography (GPC–SEC) and electrospray soft

ionization mass spectroscopy (ESI-MS).

2.6. GC-FID analysis

The oil was sylilated with BSTFA prior to the GC-FID analysis.

Typically 3 mg of oil was dissolved in 100 �L of pyridine and latter

100 �L of BSTFA with TMS was added. The samples were heated

to 70 ◦C for 20 min. After cooling the mixture was dissolved with

pentane (3 mg of oil/ml of pentane) and analysed by GC-FID.

The samples were analysed on a Thermo Finnigan TRACE GC

Ultra with a FID- detector equipped with a chromatographic HP-

ULTRA2 [(5%-phenyl-methylpolysiloxane], 25 m, 0.200 ID column

from Agilet Technologies. The following heating programme was

applied: 30 ◦C for one minute, and then heating at 10 ◦C/min up

to 250 ◦C. The injector temperature was 250 ◦C, and the detector

temperature was 320 ◦C. Identification of the peaks was made by

comparison with retention times of authentic commercially avail-

able reference compounds that were also sylilated prior to the

analysis. The quantitative data was obtained using hexadecane as

internal standard. Calibration curves were prepared for the follow-

ing compounds: phenol, cresol, guiacol, methylguaiacol, catechol,

ethylcatechol, syringol, o-vanillin.

2.7. Elemental analysis

All samples were analysed for their elemental composition in

the CHNS mode with a Vario EL III instrument using helium as

carrier gas. The amount of oxygen was calculated by difference.

2.8. GPC-SEC

The sample (1 mg) was dissolved in 1 ml of THF. The solution

(20 �L) was injected into a GPC-SEC system equipped with a PLgel

3ìm Mini MIX-E column, and analysed at a flow rate of 0.5 ml/min

of THF at 21.1 ◦C, and the detection was performed with UV at 254

and 280 nm, as well as with RI. The set of columns was calibrated

with a series of polystyrene standards covering a molecular-mass

range of 162–2360 Da.

2.9. FT-IR

The FTIR spectra were recorded by applying the sample to an

attenuated total reflectance (ATR) crystal. The main measurement

features were a spectral range from 4000 to 400 cm−1, 16 scans,

and a resolution of 4 cm−1.

Table 1
Total acidity, acidity retention and active acidty of �-alumina, Rh/Al2O3, Ru/Al2O3

and Pd/Al2O3.

Total aciditya

(mmol NH3/g cat.)

Acidity

retentionb (%)

Active acidity

(mmol NH3/g cat.)a

�-Alumina 1.51 100 (100 ◦C) 1.51 (100 ◦C)

92 (200 ◦C) 1.39 (200 ◦C)

92 (300 ◦C) 1.39 (300 ◦C)

Rh/Al2O3 1.34 100 (100 ◦C) 1.34 (100 ◦C)

71 (200 ◦C) 0.95 (200 ◦C)

49 (300 ◦C) 0.66 (300 ◦C)

Ru/Al2O3 0.78 100 (100 ◦C) 0.78 (100 ◦C)

77 (200 ◦C) 0.60 (200 ◦C)

51 (300 ◦C) 0.40 (300 ◦C)

Pd/Al2O3 0.76 100 (100 ◦C) 0.76 (100 ◦C)

99 (200 ◦C) 0.75 (200 ◦C)

98 (300 ◦C) 0.74 (300 ◦C)

a Data obtained from NH3-TPD.
b Data obtained from DRIFT.

2.10. ESI-MS

Each sample (120 �g/ml) was dissolved in methanol and ana-

lysed by full-scan mass spectrometry (m/z range from 100 to 1000

with 1 scan/s) on an Agilent 6420 Triple Quad LC/MS system (Agi-

lent Technologies, Inc., Palo Alto, CA). Samples of 2 �L were injected

by direct injection into the ESI-MS. Both positive and negative elec-

trospray ionization was used to detect different compounds.

2.11. Gas phase GC

Gas phase GC analysis was performed on a GC-FID/TCD (HP

7890A) and a 30 m Porapak Q Molsieve column equipped with a

FID front detector and a TCD back detector, which was controlled by

an HPChem laboratory data system. The heating programme was

as follows: Initial temperature was 50 ◦C for 22 min after which,

the temperature was raised at a rate of 20 ◦C/min up to 150 ◦C.

15 min after reaching this temperature it was again raised at a rate

of 50 ◦C/min up to 220 ◦C. This temperature was held for 5 min. The

injection port had a temperature of 250 ◦C, the pressure was kept

constant at 255 kPa and the FID was at 300 ◦C.

2.12. Energy dispersive X-ray analysis (EDXA)

Compositional analysis of the reactor surface was carried out

with an EDX spectrometer equipped with an SEM system (JEOL,

JSM-5610LVS). The measurement duration of SEM-EDX analysis

was set to 300 s. The energies of the obtained EDX spectra were

calibrated by Cu·L� and K� lines of a copper (99.96%) plate.

3. Results

3.1. Acidity results

Acidity measurements on the Ru/Al2O3, Rh/Al2O3, Pd/Al2O3

and �-alumina were carried out to determine the type of acid-

ity (Lewis or Brønsted), the acidity retention and total acidity

of the samples. Table 1 shows the total acidity data recorded

by NH3-TPD in the 100–650 ◦C temperature range. The highest

acidity was obtained for the �-Al2O3 (1.51 mmol NH3/g cat.),

with significantly lower acidities for the supported catalysts

(Rh/Al2O3 > Ru/Al2O3 > Pd/Al2O3).

The DRIFT spectra (see Supplementary material Fig. S1) of all

the catalysts show sharp IR bands at 1445 and 1610 cm−1, that are

assigned to Lewis acid sites [18]. IR bands assigned to Brønsted

acid sites (1545 and 1638 cm−1) were not detected in any of the

samples [18]. Based on the IR band at 1445 cm−1, acidity reten-
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Table 2
Elemental composition of the altered and non-altered T316 stainless steel reactor

surface.

Altered surface (%) Non-altered surface (%)

C 32–45 0–4.8

O 28.5–32.5 0

Si 1.5–2.3 1

Fe 11–13 64–65

Cr 9.3–11.5 17

Ni 1.19–2.5 9–12

Mo 4.1–5.8 2.14–2.5

Mn - 2–2.6

tion was also calculated as [peak area (T)/peak area (100 ◦C)] × 100

(Table 1). Increasing the temperature did not influence the Lewis

acid-bound pyridine in Al2O3 and Pd/Al2O3, as peak areas are not

altered. In contrast, increased temperature causes pyridine desorp-

tion in Rh/Al2O3 and Ru/Al2O3 samples, which suggests that their

acidity is rather weak. Given the reaction temperature, only the

acidity obtained above 300 ◦C could actively participate in the reac-

tion, due to its capability to retain pyridine or similar molecules

at the given reaction temperatures. Therefore the active acidity,

define as the fraction of total acidity that actually plays a signifi-

cant role in the reaction was calculated (active acidity (T) = acidity

retention (T) × total acidity) and the results are shown in Table 1.

The catalyst with the highest active acidity is �-Al2O3 followed by

Pd/Al2O3, Rh/Al2O3 and Ru/Al2O3.

3.2. Influence of the reaction surface

3.2.1. Analysis of the reactor surface

The composition of the reactor surface can affect the final results

of our system. The reactor used is a T316 stainless steel Parr reactor.

The metals present in the reactor surface could in principle catalyze

the hydrodeoxygenation reactions and therefore affect the final

product distribution [19]. Furthermore, when the reactor is used

for repeated solvolysis reactions, alterations in the reactor surface

are observed, and the metallic surface turns black. Previous experi-

ence in our group shows an improvement in the oil yields obtained

after the reactor was submitted to 3–4 reaction cycles, suggesting

that these alterations in the reactor surface are beneficial for the

overall process.

To evaluate these changes and the possible metals that could

have a catalytic effect in the reaction system, an EDXA analysis of

the non-altered and the altered reactor surface was carried out. The

results are shown in Table 2.

The composition of the non-altered surface is in accordance to

the data provided by the producer, which confirms the suitability of

this method to analyze the surface composition. When comparing

both surfaces, several differences in the composition are observed.

The content of Fe, Cr and Mn decreases significantly, while the O,C

and Ni and Mo content increases.

3.2.2. Effect of the reactor surface in the non-catalyzed and

catalyzed system

With the aim of evaluating the effect of the reactor surface,

four experiments at a temperature of 340 ◦C and 6 hours were per-

formed. Two of the experiments, NC-Q and NC-1, were carried out

without the catalyst, with and without a quartz insert to prevent

contact between the system and the reactor surface. Subsequently,

the equivalent experiments were carried out using Ruthenium on

alumina (Ru/Al2O3) as catalyst (Ru-Q and RU-1).

Table 3 shows the results for these experiments. When the con-

tact between the system and the reactor surface is reduced by using

the quartz insert, the oil yield decreases by 11 wt% and the solid

yield increases by 13 wt%. However, when the analogous experi-

ments are done in the presence of the Ru catalyst, no significant

difference is observed. Actually, when using the quartz liner, the

oil yield is slightly higher and the solid yield is slightly lower.

3.3. Screening of Rh (Rh/Al2O3), Ru (Ru/Al2O3) and Pd (Pd/Al2O3)

on alumina

3.3.1. Reproducibility and mass balance

Table 3 shows the yields as a function of the inputs for the first

replicate of each system. The lignin mass balance accounts for the

amount of solids and oil (g) divided by the amount of lignin intro-

duced, while the water recovery percentage accounts for the ratio

of water phase recovered (g) with respect to the water phase intro-

duced (g). All the experiments show a total mass balance of nearly

a 100%, only the gamma-alumina (�-Al2O3) system has a value

around 94,8%, which can be assigned to the low water recovery

percentage.

Table 3 shows that the solvolysis approach comprises of four

major products: a gas phase, a solid phase, an aqueous liquid phase

and an organic liquid phase (bio-oil). The amount of gas recovered

after the reaction is very close to the values of the formic acid intro-

duced, which supports that the main components of the gas phase

are the decomposition products of the formic acid. As mentioned

above, the liquid phase obtained after the reaction can be divided

into the clear water phase and the organic oil product. The water

phase recovered mostly accounts for slightly higher amounts than

the one introduced (see Table 3), which suggests that the water does

not act as a reactant, but rather a solvent in the reaction media.

Some water-soluble organics and water produced in deoxygena-

tion reactions [20,21] could account for the increased amounts of

water recovered, and also for the mass loss in the quantified prod-

ucts relative to the lignin input. The solid yield for the catalyzed

systems is calculated after subtracting the amount of catalyst intro-

duced. The sum of this value and the oil yield accounts for over 80 %

of the lignin introduced for all experiments, and is even higher, 95%,

for the Ru catalyst. This supports that the solid and oil are the main

products of the lignin de-polymerization and hydrodeoxygenation.

Table 3
Mass balance of the selected experiments at 340 ◦C.

Name of experiment Oil yield (%

on lignin)

Solid yield (% on

lignin)

Gas phase (% total

input)

Water recovery (%

inital input)

Lignin mass

balance (%)

Total mass

balance (%)

NC-Qa 49.5 35.0 29.5 103.7 84.5 97.3

NC-1a 58.2 22.4 30.5 103.6 80.6 97.9

Ru-Qa 91.2 3.5 29.9 88.2 94.7 93.3

Ru-1a 90.0 5.1 29.1 102.6 95.0 99.3

A-1a 63.1 22.0 30.0 94.8 85.1 94.8

Rh-1a 81.0 4.8 30.0 106.3 85.7 99.9

Pd-1a 81.7 2.8 30.8 101.1 84.4 98.1

NC: non-catalyzed experiment. A: �-alumina (0.2 g). Rh: rhodium on alumina (0.2 g). Ru: ruthenium on alumina (0.2 g). Pd: palladium on alumina (0.2 g). Q: A quartz insert

was used to suppress the effect of the reactor wall.
a Reaction conditions: 340 ◦C and 6 h. 2 g of acid hydrolysis lignin, 5.0 g of water and 3.075 g of formic acid.
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Table 4
Average oil and solid yields for the selected replicates.

Name of experiment Oil yield (% on lignin) Average oil yield and standard deviaton (%) Solid yield (% on lignin) Average solid yield and standard deviaton (%)

NC-1a 58.2 61.6 ± 3.0 22.4 20.6 ± 3.4

NC-2a 62.3 23.0

NC-3a 64.2 16.5

A-1a 63.1 62.8 ± 3.9 22.0 21.6 ± 4.3

A-2a 58.7 25.7

A-3a 66.5 17.1

Rh-1a 81.0 80.5 ± 3.7 4.8 4.6 ± 0.5

Rh-2a 83.9 4.0

Rh-3a 76.6 5.0

Ru-1a 90.0 91.5 ± 6.3 5.1 4.2 ± 1.0

Ru-2a 98.4 4.4

Ru-3a 86.2 3.2

Pd-1a 81.7 82.9 ± 2.2 2.8 2.7 ± 0.3

Pd-2a 85.4 2.4

Pd-3a 81.6 2.9

NC: non-catalyzed experiment. A: �-alumina (0.2 g). Rh: rhodium on alumina (0.2 g). Ru: ruthenium on alumina (0.2 g). Pd: palladium on alumina (0.2 g).
a Reaction conditions: 340 ◦C and 6 h. 2 g of acid hydrolysis lignin, 5.0 g of water and 3.075 g of formic acid.

Table 5
Quantification of the main oil components by GC-FID and molecular weight distributions by GPC-SEC.

GC-FID NC-1a A-1a Ru-1a Rh-1a Pd-1a NC-4b Ru-4b A-4b

Phenol (wt% oil) 1.68 1.44 1.99 1.41 2.47 2.70 1.52 1.56

Cresol (wt% oil) 3.62 3.16 4.27 2.94 5.22 5.90 3.17 3.41

Guaiacol (wt % oil) 2.53 2.18 3.21 2.03 3.44 4.22 2.28 2.42

Methyl guaiacol (wt % oil) 2.38 2.29 2.80 1.91 3.38 3.92 2.13 2.58

Catechol (wt % oil) 2.00 3.15 1.91 1.35 2.05 3.68 1.70 3.35

Ethylcatechol (wt % oil) 1.36 3.24 1.44 0.99 1.69 2.33 1.36 3.76

Syringol (wt % oil) 0.19 0.20 0.22 0.12 0.23 0.47 0.19 0.26

o-Vanillin (wt % oil) 1.81 1.32 1.9 1.33 0 3.00 1.45 0

GPC-SEC NC-1a A-1a Ru-1a Rh-1a Pd-1a NC-4b Ru-4b A-4b

Average molecular weight (Da) 346 215 397 344 323 294 497 211

NC: non-catalyzed experiment. A: �-alumina (0.2 g). Rh: rhodium on alumina (0.2 g). Ru: ruthenium on alumina (0.2 g). Pd: palladium on alumina (0.2 g).
a Reaction conditions: 340 ◦C and 6 h. 2 g of acid hydrolysis lignin, 5.0 g of water and 3.075 g of formic acid.
b Reaction conditions: 380 ◦C and 2 h. 2 g of acid hydrolysis lignin, 5.0 g of water and 3.075 g of formic acid.

Table 4 shows a summary of the results for the three different

replicates carried out for each system, the average of the oil and

solid yield for each system, and the standard deviation from the

average values. It can be observed the Ru system shows the highest

standard deviation in terms of oil yield (6.3 wt%) while the alumina

system shows the highest standard deviation in terms of solid yield

(4.3 wt%).

3.3.2. Effect of the catalyst on the oil and solid yields

From the results in Table 4 we can clearly see the effect of

the catalysts in our reaction system. For the non-catalyzed sys-

tem the average oil yield accounts for 61.6 ± 3.0 wt% and the solid

for 20.6 ± 3.4 wt% of the lignin input. These results are compara-

ble to the ones obtained in the gamma-alumina catalyzed system

(62.8 ± 3.9 wt% oil yield and 21.6 ± 4.3 wt% solid yield). However,

when comparing these systems with the supported catalyst sys-

tems, Rh/ Al2O3, Pd/ Al2O3, Ru/ Al2O3, a substantial increase in the

oil yield together with a decrease in the solid yield is observed. The

best result in terms of oil yield is obtained for the Ru catalyst with an

increase of 29.9 wt%. Both the Pd and the Rh catalyst show compa-

rable oil yield with 82.9 ± 2.2 wt% and 80.5 ± 3.7 wt%, respectively.

In terms of solid yield the best values are obtained for the Pd cata-

lyst, where nearly no solid is found (2.7 ± 0.3 wt%). In the case of the

Ru and Rh systems, slightly higher amounts of solids are obtained,

with an average of 4.2 ± 1.0 wt% and 4.6 ± 0.5 wt%, respectively.

3.3.3. Oil phase composition

The main components in the oil have been quantitatively ana-

lyzed by GC-FID as the tri-methyl silyl (TMS) derivatives. The results

of the quantification are summarized in Table 5. The Ru-catalyzed

system shows the higher abundance of highly hydrogenated and

Table 6
Results of the elemental analysis of the lignin, oils and solids

C (%wt) H (%wt) O (%wt) N(%wt) (O/C) (H/C)

AL lignin 61.27 5.74 32.82 0.16 0.40 1.12

NC-1 Oila,b 73.78 7.37 18.09 0.76 0.18 1.19

A-1 Oila,b 71.47 7.21 20.07 0.32 0.21 1.21

Ru-1 Oila,b 74.29 7.31 17.86 0.54 0.18 1.17

Rh-1 Oila,b 76.97 7.83 14.13 1.07 0.14 1.21

Pd-1 Oila,b 76.97 7.83 14.13 1.07 0.14 1.21

NC-1 Solida,c 73.63 4.98 21.18 0.21 0.22 0.81

A-1 Solida,c 42.60 3.46 53.82 0.12 0.95 0.97

NC: non-catalyzed experiment. A: �-alumina (0.2 g). Rh: rhodium on alumina (0.2 g).

Ru: ruthenium on alumina (0.2 g). Pd: palladium on alumina (0.2 g). AL: acid hydrol-

ysis lignin.
a Reaction conditions: 340 ◦C and 6 h. 2 g of acid hydrolysis lignin, 5.0 g of water

and 3.075 g of formic acid.
b Elemental analysis of the oil.
c Elemental analysis of the recovered solids.

lower oxygenated compounds such as phenol (1.99%) and cresol

(4.27%), followed by the Pd catalyst, the non-catalyzed system, the

alumina catalyzed system and the Rh system. Less hydrogenated

compounds such as catechol and ethyl-catechol are more abundant

in the alumina system (3.15 and 3.24%, respectively), followed by

the palladium, non-catalyzed, ruthenium and Rh systems.

Table 6 gives the elemental composition of the oil. The H/C ratio

is highest when using the Pd, Rh and �-alumina catalyst, although

comparable results are obtained for all the experiments. However

when analyzing the O/C ratio, significant differences are observed.

The Pd and Rh catalyzed oils clearly has the lowest O/C ratio (0.14),

the Ru and the non-catalyzed systems have comparable values, and

the highest value is obtained for the alumina catalyzed system.
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Fig. 1. GPC spectras of the oils for the NC-1, A-1, Ru-1, Rh-1 and Pd-1 experiments. Analytical conditions are given in Section 2.8.

According to the GPC-SEC analysis presented in Table 5, the

�-alumina catalyst generates the oil with the lowest average molec-

ular weight (215 Da), followed by the Rh, Pd, non-catalyzed and Ru

systems. When analyzing the GPC-SEC spectras in Fig. 1, more infor-

mation about the product distribution of the oils can be obtained.

The shape of the peaks are narrower, nearly symmetric for the Rh

and the non-catalyzed oils, but in the case of the Al and Pd the right

side of the curve is less steep implying a higher concentration of

lower molecular weight compounds.

The ESI-MS spectra show a clear difference in the composition

of the oils (see Supplementary material Fig. S2a–e). The alumina

system shows the narrowest product distribution, with high inten-

sity peaks in the low molecular range, 100–300 Da. The Ru, Pd

and Rh catalyst show high intensity peaks in both low molecu-

lar range (100–300 Da) and medium molecular range (300–600 Da)

which could explain the lower proportion of quantified compounds

obtained by the GC-FID. In the case of the non-catalyzed system,

a very wide product distribution is observed, with a high con-

centration of medium molecular range products (300–600 Da) and

intense peaks even in the high molecular mass range.

Overall, the more hydrodeoxygenated oils are obtained in the

case of the supported systems, as shown in the GC-FID and ele-

mental analysis data, while lower average-molecular-weight oils

are obtained in the �-alumina and Pd systems. The reason for these

results will be further discussed in Section 4.

3.3.4. Solid phase composition

The amount of solid phase obtained in the Ru, Rh and Pd cat-

alyst was insignificant, preventing any analysis. However, higher

amounts of solid were recovered in the non-catalyzed and �-

alumina catalyzed systems. In Fig. 2, the FT-IR spectras of the AL

lignin, non-catalyzed solid phase products and gamma alumina

solid phase products are compared with the aim of gaining insight

into the nature of the solids, and the re-polymerization mechanism.

Two main observations can be made: (i) the proportion of

functional groups in the Al solids is much lower than in the non-

catalyzed solid and the lignin; (ii) there are significant differences

between the solid obtained in the Al and the non-catalyzed sys-

tem. It can be observed that the OH stretching signal is broad

(3500–3400 cm−1) for both non-catalyzed and lignin spectra, while

a much narrow signal is found in the alumina solid, suggesting

that a lower abundance of intramolecular H bonding in the latter.

In addition, the CH stretching signal for methyl and methylene

peak (2940–2930 cm−1) is not found in the Al experiment, which

suggests an absence of these functional groups compared to the

non-catalyzed system and the lignin. The same trend is seen for the

carbonyl function above 1700 cm−1, it is quite intense in the lignin

with a peak at 1705 cm−1 which is typical for carboxylic acid. In the

non-catalyzed oil there is a less intense peak at 1788 cm−1, indicat-

ing ester groups and the carbonyl peak is inexistent in the alumina

catalyzed solids. Some of the aromatic nature is retain in the alu-

mina solid, as seen when analyzing the 1605–1600, 1515–1505 and

the 1430–1425 cm−1 ranges, although this peaks are less intense

than in the lignin and non-catalyzed solid [22]. The guaiacyl pattern

is present in the lignin spectra, and the syringyl pattern in both the

lignin and the non-catalyzed system. However, both the lignin and

the alumina catalyzed solids spectra has a strong peak at around

1065 cm−1, which can be assign to the C O ether stretching (all

band indexing is summarized in the Supplementary material Table

S2).

The results of the elemental analysis of the lignin and solid

phases confirme the differences between these solids (Table 6). The

non-catalyzed solids have a high content of carbon (73.63 wt%), fol-

lowed by the lignin (61.27 wt%) and the alumina solids (42.6 wt%),

while the content in O is higher for the alumina (53.82 wt%) and

less than half for the non-catalyzed system (21.18 wt%).

3.3.5. Gas phase

The gas phase was analyzed for the non-catalyzed and the sup-

ported catalyzed systems, and the concentration of CO2, CO, H2 and

some light alkanes (methane, ethane, propane and butane) were

measured, see Table 7.

No water was determined in the gas phase due to the inability

to measure this by the selected method. Nevertheless, the analysis

of the mass balance suggests that the water produced through the

decomposition of the formic acid and the water-gas-shift-reaction

(WGS) mainly condenses in the liquid water phase.

The main gas product in all cases is CO2, produced mainly by

the decomposition of the formic acid but also through decarboxy-

lation and gasification reactions of the lignin and its monomers. The

component with the second highest concentration is H2, which can

have a strong influence in the hydrogenation rate of the depolymer-

ized lignin monomers. The hydrogen seen in these measurements

does not account for all the hydrogen produced from decomposi-

tion of formic acid in the course of the reaction, since considerable

quantities are used for the hydrogenation of the monomers, espe-

cially in the catalytic systems, as suggested by the higher oil yields

(Table 3).

When comparing the different systems the following conclusion

can be stated: (i) the catalytic systems enhance the production of

CO2 (especially Pd and Rh), (ii) the amount of hydrogen is higher in

the Ru system, (iii) the amount of CO is lower in all the catalytic sys-
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Fig. 2. FT-IR spectra for the AL lignin and the solids obtained in the A-1 and NC-1 experiments. For experimental conditions, see Table 1.

tems (especially Ru) and the concentration of light hydrocarbons

which are Fischer–Tropsch type reaction products are higher when

using the Pd and Rh.

3.4. Influence of the type of lignin

Three different types of lignins were tested to evaluate the influ-

ence of the lignin type in the non-catalyzed and catalyzed systems.

To ensure sufficient oil yields in all systems, the experiments were

carried out at 380 ◦C and 2 h reaction time. In total nine experi-

ments were done, one non-catalyzed and two catalyzed (Rh and Ru)

experiments for each lignin. The results obtained are summarized

in Table 8.

The most obvious difference between the three lignins is in the

pH of the recovered water phase. While the KL lignin, which is a low

sulfonate lignin derived from a kraft pretreatment process, yields

a water phase with a basic pH, the EL and the AL lignin yield acidic

water phases. This is highly correlated with the performance of

the catalyst in the different lignin systems. For the KL lignin, with

final water phases pH from 8–9, there is no significant difference

between the non-catalyzed and catalyzed systems. The best results

are obtained for the Rh catalyst, with an oil yield of 52.3 wt% and a

solid yield of 9.99 wt%, but these differences are not significant, and

even lower oil yields are obtained in the case of the Ru catalyst. In

contrast, significant differences in the oil yield values are observed

for those lignins with a final water phase pH lower than 7. Here, the

oil yield is increased and the solid yield decreased when using the

catalysts. In the case of the acid lignin there is an increased of the oil

yield in 30 wt% when using the Ru catalyst, while in the enzymatic

lignin we obtained an increase of 19 wt%. In both cases the solid

yield were reduced.

To further evaluate the role of the alumina support in the AL and

EL lignin, three additional experiments using only the �-alumina

as catalyst where carried out at a temperature of 380 ◦C and 2 h

reaction time (experiments A-4, A-KL and A-EL). These results

are compared with the non-catalyzed and Ru catalyzed results in

Table 8. For both lignins, at this reaction conditions, there is mod-

erate increase in the oil yield when using the alumina compared to

the non-catalyzed system, with a 3.4 wt% increase for the AL lignin

and a 13.7 wt% increase for the EL lignin.

To further confirm the effect of the alumina catalyst in the AL

lignin, the oils obtained were submitted to GPC-SEC and ESI-MS

analysis (see Supplementary material Fig. S3a–c). As shown in Sec-

tion 3.3.3, the average molecular weight of the oil is lower in the

case of the alumina catalyzed experiment than in the case of the

non-catalyzed system (Table 5). Furthermore, when analyzing the

ESI-MS results, it can be observed that the Ru and alumina oil

spectrograms show a narrower product distribution of the oils,

mostly below the 500 Da, while in the non-catalyzed experiments

the product distribution goes up to over 800 Da.

Another aspect that can be evaluated in these results is the

nature of the solids when using the supported catalysts. In the case

of the El lignin, enough solids are recovered to analyze the non-

catalyzed and the Ru supported catalyzed solid phase. In Fig. 3, FT-IR

spectrograms of the solids obtained in the Ru and non-catalyzed

system are compared with the FT-IR spectra of the EL lignin. We can

clearly see that the Ru solids shows the same reduced OH stretching

peak, the lack of the methylene and methyl peak, the low inten-

sity peaks in the aromatic region and the strong ether peak that

appeared in the alumina solids FT-IR spectra in Section 3.3.4. The

non-catalyzed solids also show comparable spectra to the solids

analyzed previously (see Fig. 2).

Table 7
Composition of the gas phase for the selected experiments.

CO2 (%mol) CO (% mol) H2 (% mol) CH4 (% mol) C2H6 (% mol) C3H8 (% mol) C4H10 (% mol)

NC-1a 59.50 7.95 31.33 1.01 0.12 0.04 0.05

Ru-1a 60.69 2.97 34.74 1.35 0.13 0.06 0.06

Pd-1a 62.80 3.34 31.39 2.11 0.15 0.08 0.13

Rh-1a 63.99 3.67 29.88 2.10 0.16 0.09 0.12

NC: non-catalyzed experiment. A: �-alumina (0.2 g). Rh: rhodium on alumina (0.2 g). Ru: ruthenium on alumina (0.2 g). Pd: palladium on alumina (0.2 g).
a Reaction conditions: 340 ◦C and 6 h. 2 g of acid hydrolysis lignin, 5.0 g of water and 3.075 g of formic acid.
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Table 8
Mass balance and aqueous pH of experiment with different lignins at 380 ◦C

Name of experiment Type of lignin pH (water phase) Oil yield (% on lignin) Solid yield (% on lignin) Total Mass balance (%) Lignin mass balance (%)

NC-4a AL 4–5 54.0 26.3 99.1 80.2

Rh-4a AL 3–4 74.0 5.2 95.8 79.2

Ru-4a AL 4 83.9 8.2 102.3 92.1

A-4a AL 3–4 57.4 24.5 97.0 81.9

NC-KLa KL 8–9 47.9 10.4 90.2 58.3

Rh-KLa KL 8–9 52.3 10.0 92.8 52.3

Ru-KLa KL 8–9 44.7 6.9 89.0 51.6

A-KLa KL 8–9 47.0 11.7 92.8 58. 7

NC-ELa EL 5 28.3 25.5 91.3 53.8

Rh-ELa EL 5 45.3 2.9 90.1 48.2

Ru-ELa EL 5 47.7 15.3 91.9 63.0

A-ELa EL 5 42.0 27.1 91.3 69.1

NC: non-catalyzed experiment. A: �-alumina (0.2 g). Rh: rhodium on alumina (0.2 g). Ru: ruthenium on alumina (0.2 g). Pd: palladium on alumina (0.2 g). AL: acid hydrolysis

lignin. KL: kraft lignin. EL: enzymatic hydrolysis lignin.
a Reaction conditions: 380 ◦C and 2 h. 2 g of acid hydrolysis lignin, 5.0 g of water and 3.075 g of formic acid.
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3.5. Influence of the hydrogen partial pressure

To evaluate the influence of the total reaction pressure of the

system in the final oil and solid yield two extra experiments were

carried out, one without catalyst and one with the Ru/Al2O3 cata-

lyst. The proportions of the reactants were held constant, but the

amount of each reactant was reduced to half for the NC-LP and the

Ru-LP experiments. A lower amount of reactant, specially a lower

amount of formic acid, will generate less of gases when the reac-

tor is heated. Since the reactor volume is constant, a lower total

pressure will result, for the same temperature, in a lower hydrogen

partial pressure.

In Table 9, we compare the results of the low pressure

experiments with their higher pressure counterparts. For the

non-catalyzed experiments, with reduced pressure, the oil yield

is decreased to nearly the half, from 58.2 wt% to 29.9 wt%. The

solid yields is correspondingly higher, increasing from 22.4 wt%

to 44.9 wt%. However when the supported Ru catalyst is used this

effect is partially neutralized. The oil yield is lower, but the decrease

is less than in previous case, from 90.0 wt% to 73.7 wt%. In the case

of the solid yield, the increase is not significant, from 5.1 wt% to

6.6 wt%.

Another relevant result is the amount of gas obtained in the

low-pressure experiments. Both for the NC-LP and the Ru-LP the

gas percentage recovered is 3% higher than for their high pressure

Table 9
Gas oil and solid yield for the high pressure and low pressure (LP) and reducted

catalyst loading (LC) experiments.

Name of experiment Oil yield (%

on lignin)

Solid yield

(% on

lignin)

Gas phase

(% total)

Lignin mass

balance (%)

NC-1a 58.2 22.4 30.5 80.6

NC-LPb 29.9 44.9 33.4 74.7

Ru-1a 90.0 5.1 29.1 95.0

Ru-LPb 73.7 6.6 32.4 80.3

Ru-LCa,c 85.2 4.5 30.0 89.7

NC: non-catalyzed experiment. Ru: ruthenium on alumina (0.2 g). LP: low pressure.

LC: low catalyst content.
a Reaction conditions: 340 ◦C and 6 h. 2 g of acid hydrolysis lignin, 5.0 g of water

and 3.075 g of formic acid.
b Reaction conditions: 340 ◦C and 6 h. 1 g of acid hydrolysis lignin, 2.5 g of water

and 1.5375 g of formic acid and 0.1 g of catalyst.
c 0.1 g of catalyst.

counterparts. This increase is observed together with a reduction

in the values of the lignin mass balance percentage, suggesting that

more lignin is gasified at these conditions.

3.6. Influence of the catalyst concentration

The amount of catalyst in the Ru system was reduced to 5 wt% on

lignin (Ru-LC) to evaluate the effect of the catalyst concentration.
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Even when the amount of catalyst was reduced to the half, the oil

and solid yield does not vary significantly (Table 9). This suggests

that the catalyst concentration could be reduced to 5 wt% on lignin

without inducing major changes in the catalyst efficiencies.

4. Discussion

Replicate experiments in Table 4 show low standard deviation

values, from 0.3 to 6% (n = 3) for the oil and solid yields, which sup-

port that the reactions and workup are reproducible. The deviations

that are observed can be caused by inhomogeneity in the lignins,

evaporation of volatile compounds and experimental errors during

the work-up procedure. The consistency of the reaction process and

work-up procedure is further confirmed by mass balances shown

in Table 3, with a total mass recovery above 95 wt% for all the cases,

and higher than 98 wt% for the supported-catalyzed systems.

The effect of the selected catalysts (Ru/Al2O3, Rh/ Al2O3 and

Pd/ Al2O3) is positive for all the experimental conditions tested,

as described in Section 3.3.2. This could be due to kinetic con-

trol of the lignin degradation mechanism by the catalysts. Gasson

and Forchheim [22,23] suggest that the primary reaction in lignin

solvolysis is a fast de-polymerization step, followed by competing

reactions giving hydrodeoxygenation or repolymerisation of the

de-polymerized monomers. The apparent activation energy val-

ues obtained for this kinetic model show that the probability of

re-polymerisation of the lignin monomers is reduced when the

monomers are hydrodeoxygenated and/or alkylated (see the sim-

plified reaction scheme in Fig. 4).

This effect is further confirmed by the results described in Sec-

tions 3.2.2, 3.3.3 and 3.5. Section 3.2.2 shows that the presence of a

metalic reaction surface containing among other metals Ni and Mo,

can increase the oil yield and reduce the solid yield. These metals

are well known catalysts for hydrodeoxygenating reactions [19],

and can also provide the kinetic enhancement discussed above.

Nevertheless, the quantitative results indicate that the activity of

the metallic reaction surface is significantly lower than the activ-

ity of the Ru/Al2O3 catalyst. Section 3.3.3 shows how the Ru, Rh

and Pd systems have the highest H/C and lower O/C ratios in the

oil phase products (Table 6) and the Ru and Pd systems the higher

concentrations of highly hydrodeoxygenated compounds (Table 5).

Finally, the results in Section 3.5 also confirm this kinetic enhance-

ment. The lower hydrogen partial pressure of the system lowers

the hydrogenation rate, which significantly affects the oil and solid

yield in the un-catalyzed system, while the Ru system is not as

strongly affected. The oil yield is reduced to half in the case of the

un-catalyzed system as opposed to only 17 wt % reduction in the

case of the Ru system, and the solid yield is doubled in the un-

catalyzed system while it remains nearly stable for the Ru system.

All this suggests that the Ru, Pd and Rh active phases will catalyze

the hydrodeoxygenation reactions (see Fig. 4), increasing the oil

yield and reducing the solid yield.

Another point for evaluation is to what degree the bifunction-

ality of the catalyst is important. The role of the hydrogenating

active site (Ru, Rh and Pd) has already been discussed, but the

support materials may also play an important role in the lignin

degradation mechanism. Previous work suggests that acid hetero-

geneous catalysts are able to catalyzed the cleavage of ether bonds

and cause de-polymerization of lignin [17,24], the polymerization

of alcohols to ethers (re-polymerization) [25,26] and the deoxy-

genation of hydroxyl and methoxy aromatics [19,20]. Therefore

an effect of the alumina support due to its acid nature could be

expected. The results given in Table 4 show that alumina alone had

no significant effect on the oil and solid yields, which may be due to

the ability of alumina to catalyze both the de-polymerization and

re-polymerization reactions. However, the composition of the oil

shows a clear difference between the non-catalyzed and alumina

catalyzed systems.

Table 5 indicates that the lowest values of average molecu-

lar weight are obtained for the oils from the �-alumina and Pd

systems. The ESI-MS analyses show that the �-alumina has the

highest concentration of low molecular weight compounds, fol-

lowed by the Pd, Ru and Rh systems. The un-catalyzed system is the

only one that shows high concentration of high molecular weight

compounds. These results are in agreement with the acidity mea-

surement in Section 3.1. The �-alumina sample shows the highest

stable acidity and consequently the oil obtained is the one with

the lowest average molecular weight (215 Da). On the other hand,

the oils in the noble metal containing catalysts have significantly

higher average molecular weight in the following order: Pd/Al2O3

(323 Da) < Rh/Al2O3 (344 Da) < Ru/Al2O3 (397 Da). Since this order

is inversely proportional to the active acidity of the catalysts, we can

conclude that stable -strong Lewis acid sites play an important role

in the de-polymerization of lignin into monomers. The acid alumina

support could also be able to catalyze the re-polymerization of the

lignin monomers, which can be confirmed by comparing the FT-IR

spectra for the AL lignin, the non-catalyzed and the alumina sys-

tem. As described in Section 3.3.4, the solid phase from the �-aluna

system has limited or no presence of methylene and carbonyl func-

tionalities, very low concentration of intramolecular H-bonding of

the hydroxyl groups, low intensity of aromatic bands and quite

intense ether functionalities. In addition to this, the elemental com-

position data (Table 6) show that the solid phase has a high O/C

ratio, which suggests that the O atoms have been retained in poly-

phenolic or aryl ether dominated solids. On the other hand, the

lack of ether functionalities and low O/C ratio in the un-catalyzed

system suggest a more graphite like structure of the solid phase

for this system. We can conclude that the alumina support directs

the reactions towards an aryl ether type structure through acid-

catalyzed condensation reactions of the hydroxyl groups present

in the depolymerized lignin monomers. The same comparison was

done for reactions with EL lignin, where solids from the Ru and the

non-catalyzed system were compared. In Fig. 3, the most intense

IR peak for the Ru solid also corresponds to C O stretching, again

indicating a predominance of ether moieties in the solid products.

The importance of the acidity of the reaction system for the final

oil and solid yield can also be evaluated by comparing experiments

with different pH values in the reaction medium. As shown in Sec-

tion 3.4, when the recovered water phase pH is >7 (KL lignin), no

significant effect of the catalyst on the oil or solid yield is observed.

There are two possible explanations for this observation; either

the acid sites of the solid are deactivated, or the influence of the

basicity of the lignin is just through the pH of the reaction mixture.

The increased oil yields obtained from the acidic AL and EL lignins

in the catalyzed systems suggest that the latter mechanism is the

main reason for the lack of effect of the catalyst. Furthermore, if

the �-alumina system is compared with the non-catalyzed system,

we can clearly see that the presence of alumina at 380 ◦C and 2 h

icreases the amount of oil in acidic reaction media (marginally sig-

nificant increase of 3.4 wt% for the A-4 experiment and a significant

increase of 13.7 wt% for the A-EL experiment). This effect is higher

for the EL lignin, which might be due to the higher pH of the reac-

tion system. In the AL lignin, this increase is not so significant, but

the GPC-SEC (Table 5) and the ESI-MS analysis confirms the higher

amount of low molecular weight compounds in the alumina sys-

tem. All this implies that the properties of the selected lignin are a

key factor when selecting the most efficient catalyst.

Finally, the effect of the catalysts in the composition of the gas

phase should also be mentioned. The complexity of the reaction

mechanisms producing the gas phase makes it complicated to ana-

lyze the reasons behind the disparity in the concentration of the

components. It is clear that the lower CO values of the catalyzed
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Fig. 4. Simplified reaction scheme of lignin degradation.

systems (see Section 3.3.5), can be caused by on the one hand,

the displacement of the WGS equilibria towards the production

of H2, predominant in the Ru catalyst, and on the other hand to

the Fishcer–Tropsch type reactions to low molecular weight hydro-

carbons like methane, mainly in the Rh and Pd catalyst. The first

mechanism is supported by the observation that higher H2 amounts

are found in the Ru system even though higher quantities of hydro-

gen are incorporated into the liquid products in the course of the

reaction. The later mechanism is based on the observation that

higher amounts of volatile alkanes are present in the Pd and Rh sys-

tems. Together, this indicates an effect of the catalyst in the final

composition of the gas phase. In any case, the higher amount of

hydrogen in the Ru system could be a reason for the highest oil

yields obtanied in this system.

5. Conclusion

The simultaneous catalytic de-polymerization and hydrodeoxy-

genation of KL, EL and AL lignings was carried out in a formic

acid/water media and their results were compared with the non-

catalytized and a gamma-alumina support catalyzed system. Three

bifunctional catalysts were screened, Rh, Pd and Ru on alumina, and

evaluated in terms of the conversion of the lignin to oil and solids.

A central focus of this paper was to identify the role of the alumina

support and to evaluate its effect on the process. As a summary, the

following conclusions can be made:

• The effect of the supported catalyst (Rh/Al2O3, Ru/Al2O3,

Pd/Al2O3) is positive with regard to an increase on oil yield and a

decrease on solid yield. The best result in terms of oil yield is for

the Ru system, while the most effective one for the reduction of

the solid yield was the Pd system.
• When analyzing the composition of the oils, 8 major compo-

nents are identified and quantified: phenol, cresol, guaiacol,

methyl guaiacol, catechol, ethylcathecol, syringol and o-vanilin.

Ru shows the highest amount of highly hydrodeoxygenated

monomers, followed by the Pd catalysts. However, when ana-

lyzing the average elemental composition of the oils, Pd and Rh

show lower O/C and higher H/C ratios.
• The alumina support plays a vital role in the de-polymerization of

lignin. This has been proved by analyzing the yields and composi-

tion of the oil and by changing the type of lignin and consequently

the pH of the reaction media. The presence of temperature-stable

Lewis acid sites seems to increase the amount of low molecular

weight compounds in the oils.
• The alumina support plays also a role in the re-polymerization

of the lignin monomers. The elemental and FTIR analysis of the

solids suggest an alternative re-polymerization mechanism when

the alumina support is present in the system.
• The type of lignin is a key factor when analyzing the effect of the

selected catalyst. Only lignins that provide acid reaction media

are suitable for this type of bifunctional catalysts.

• The pressure has a strong influence in the final oil and solid yield.

Under reduced pressure conditions, the oil yield is reduced while

the solid yield is increased. This effect is partially neutralized

when using a catalyst. In both cases the amount of lignin gasified

increases.
• The reactor surface has a positive effect on the oil and solid yield.

This is due to mainly its Ni and Mo content, which can catalyze

hydrodeoxygenation reactions.
• The catalyst also affects the decomposition of the formic acid into

molecular H2 and CO/CO2. The Ru catalyst is able to induce a

higher production of H2, while the Rh and Pd catalyst are respon-

sible for a higher production of low molecular weight compounds.
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Abstract 

The catalytic solvolysis of Norway spruce (Picea abies L.) lignin in a formic acid/water media using 
bifunctional Ru/Al2O3, Rh/Al2O3, Pd/Al2O3 catalysts was explored in a batch set-up at different 
temperatures and reaction times (283-397 °C and 21 min-700 min, respectively). Blank experiments 
using only γ–alumina as catalyst and non-catalyzed experiments were also carried out and compared 
with the supported catalysts results. Surface response methodology (RSM) and principal component 
analysis (PCA) were used to evaluate the effect of the reaction conditions and type of catalyst on the 
oil yield, solid residue yield, oil quality and composition. The optimum reaction conditions were found 
to be around 340 °C and 6 h using Ru/Al2O3 as a catalyst, where nearly complete conversion of lignin 
into oil is achieved (83.8 %), while still having high H/C ratios (1.21) coupled with low O/C ratios 
(0.19) and Mw values (500 Da). No correlations between the oil yield and the quality of the oil were 
found. The oil yield strongly depends on the presence of the catalyst, temperature and reaction time, 
while the oil quality is mainly dependent on the reaction conditions (reaction temperature and time). 
The recycling of the catalyst proved that the deactivation of the Ru/Al2O3 catalyst was negligible after 
two separate recycling tests. The results show the potential for improving the yields of oil by the use of 
catalysts which are easily recovered, and suggest a good potential for tuning the oil composition to 
specific composition depending on the requirements of the oil product.  

1. Introduction       

Global warming, volatile oil prices and world political instability point toward the necessity of new 
localized and environmentally friendly ways of producing fuels and oil derived products from non-
alimentary biomass sources1. The development of economically feasible biomass-based bio-refineries 
is recognized as one of the best alternatives to meet all these ongoing challenges2.  Among the biomass 
sources, lignocellulosic biomass (wood, grasses and agricultural residues) has been identified as a 
promising resource for this purpose3, since unlike vegetable oil and sugar crops, the lignocellulose 
feedstocks avoid the negative side effect of intense farming4 and ethical concerns about the use of food 
as fuel raw materials5. 

Extensive work has been carried out on the chemical and enzymatic fractionation of 
lignocellulose, and the subsequent conversion of the cellulose and hemicellulose fractions into 
bioethanol5-6. However, the third component, lignin, comprising between 10-30 % of the feedstock, is 
mostly considered as waste7. Several thermochemical processes have been explored as suitable for the 
conversion of lignin-rich residual materials into fuels or phenols3, 8. A promising and relatively new 
lignin conversion approach, known as lignin-to liquids (LtL), involves the use of formic acid (FA) 
together with a solvent. The solvent can be either ethanol or water, though the latter is preferred due to 
its lower cost and greener nature. High oil yields, with high H/C and low O/C ratios are obtained, still 
retaining the phenol-type structure of the bio- oil components. Therefore this versatile process can be 
used for the production of both a bio-oil that can be blended with conventional fuels and aromatic 
compounds such as phenol, catechol and guaiacol9. 

One of the major research challenges of the LtL method is to obtain high oil yields and good 
quality while decreasing the temperature and the reaction time of the process.  Good oil quality can be 
defined as a high energy content, stable, non-acidic and low viscous oils10, with high H/C and low O/C 
ratios and low average molecular weight distribution (Mw). One alternative to address this challenge is 
the use of a catalyst in order to increase the lignin conversion rate11. Previously in our group, Ru/Al2O3 

(Ru), Rh/Al2O3 (Rh) and Pd/Al2O3 (Pd) have been shown to be active catalysts toward the conversion 
of lignin with formic acid in an aqueous media12. Among other aspects, the activity of the alumina 
support and the influence of the type of noble metal in the oil quality and yield were discussed. 
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However, the results were not conclusive since those effects were mainly studied only at a specific 
reaction conditions, i.e. 340 °C during 6 h.  

A more systematic approach based on experimental design can be used, not only to confirm 
the effect of the alumina support and type of noble metal in the oil yield and quality in a wider 
experimental space, but also to address other aspects that could be interesting from an industrial 
perspective: (i) the optimal reaction conditions, (ii) possible correlations between the oil yield and the 
oil quality, (iii) the influence of reaction temperature and time in the composition of the oil, and (iv) 
activity of the catalysts upon recycling.   

Here, a step-wise approach based on experimental design will be presented. Initially the effect 
of the temperature (300-380 °C) and reaction time (2-10 h) for three different catalytic systems (Ru, 
Rh, Pd) will be evaluated using a full factorial design. Response surface methodology (RSM) and 
principal component analysis (PCA)10, 13 will be used to evaluate the influence of the reaction 
conditions and type of catalyst on the oil yield, solid residue yield, oil quality and composition. An 
additional aim of this screening study is to assess both the similarities and differences within the 
catalytic systems. 

In a second step, the influence of temperature (283-397 °C) and reaction time (21 min-700 
min) on three different reaction systems (non-catalyzed (NC), γ-Al2O3 (Al) and Ru catalyzed systems) 
will be studied based on a central composite design14. Again RSM and PCA will be used to evaluate 
the influence of the reaction conditions and type of system on the oil yield, solid residue yield, oil 
quality and composition. In addition, the role of the noble metal and the γ-alumina support in the 
lignin de-polymerization and hydrodeoxygenation will be evaluated.  

In a third step, the activity of one of the catalysts will be evaluated upon two recycling cycles 
in terms of oil yield and quality.  
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2. Materials and Methods 

2.1 Chemicals 

Formic acid (>98%), tetrahydrofuran (THF) (>99.9%) and ethyl acetate (99.8%) were purchased from 
Sigma Aldrich and used as supplied. Lignin from Norway spruce (Picea abies L.) from strong acid 
carbohydrate dissolution pre-treatment was received from Technical College of Bergen. The lignin 
was ground, sieved (<500μm) and dried at 80 °C for 24 h prior to use. 

2.2 Catalysts 

Ruthenium on alumina (5 wt%), rhodium on alumina (5wt%), and palladium on alumina (10 wt%), 
were obtained from Sigma Aldrich (MO, USA), and γ-alumina (97 wt%) of similar of different nature 
to the one used for the preparation of the Sigma-Aldrich  catalysts was purchased from Strem 
Chemicals Inc (MA, USA). These were dried at 80 °C for 24 h prior to use. 

2.3 Catalyst characterization 

The Al2O3 used to synthesize the supported catalyst (Ru/Al2O3, Rh/Al2O3, Pd/Al2O3) and the γ-
alumina provided by Strem Chemicals Inc are of different nature. Therefore acidity measurements 
were carried out to evaluate the catalytic activity of the acid sites within the aluminas. The type of 
acidity (Lewis or Brønsted), the total acidity, the acidity retention and the active acidity of the 
Ru/Al2O3, Rh/Al2O3, Pd/Al2O3 and γ-alumina catalysts were analysed by NH3-TPD and DRIFT of 
adsorbed pyridine.The active acidity is defined as the fraction of total acidity that actually plays a 
significant role in the reaction (active acidity (T) = acidity retention (T) x total acidity). 

Temperature-programmed desorption of ammonia, NH3-TPD, was performed to determine the 
total acidity of the samples. The measurements were carried out in a chemisorption analyzer 
AutoChem II equipped with a thermal conductivity detector (Micromeritics, USA). A detailed 
description  of the analysis procedure is given elsewhere by Oregui Bengoechea et al.12.  

Diffuse reflectance infrared Fourier transform, DRIFT, was used to distinguish Lewis and 
Brønsted acid sites of noble-metal containing catalysts and γ-Al2O3. The analyses were done using a 
VERTEX 70 spectrometer coupled with an external sample chamber that enables measurements under 
vacuum (Bruker, Germany). A detailed description  on the analysis procedure is given elsewhere by 
Oregui Bengoechea et al.12. 
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2.4 Experimental conditions 

2.4.1 Experimental set-up 

A detailed description is given elsewhere by Oregui Bengoechea et al.12. Briefly summarised, lignin (2 
g), formic acid (3.075 g), water (5 g) and the catalyst (0.2 g) were added to a stainless steel reactor 
(Parr 4742 non-stirred reactor, 25 ml volume). The amounts of reactants are based on previous 
experiments for maximising oil yields. The reactor was closed and heated in a Carbolite LHT oven up 
to the desired conditions (283-397 °C) for a given reaction time (21 min-11 h 40 min).   

2.4.2 Sample work-up  

A detailed description is given elsewhere by Oregui Bengoechea et al.12. Briefly summarized, after the 
reactor was cooled down to the ambient temperature, the produced gas was vented and the gas quantity 
was determined. The reactor was opened and the liquid reaction mixture was extracted with a solution 
of ethyl acetate: tetrahydrofuran (90:10). The solid phase (unreacted lignin, reaction products and 
catalyst) was filtered and dried at ambient conditions for 2 days before weighing. Two well-separated 
liquid phases were obtained (organic top phase and aqueous bottom phase). The phases were separated 
by decantation and the organic phase was dried over Na2SO4 and concentrated at reduced pressure (ca. 
250 mmbar) at 40 °C. The final oil and solid yield was determined by weight (amount of oil/char 
(g.)/amount of introduced lignin (g.)).  The solid yield for the catalyzed systems is calculated after 
subtracting the amount of catalyst introduced. Therefore the solid yield refers to the organic solids 
(char) and the inorganic lignin ashes.  

2.4.3 Recycling of the catalyst 

2.4.3.1 Ash content of lignin: Three crucibles were calcined at 575 °C and weighed to the nearest 0.1 
mg until constant weight (less than ±0,3 mg after one 1 h of heating at 575 °C). Once the weight of 
each crucible is recorded, between 0.5 and 2.0 g of lignin was weighed into each tared crucible. The 
lignin was calcined using the following temperature programme: hold the temperature at 105 °C for 12 
min, increase the temperature until 250 °C at 10 °C /min, hold the temperature at 250 °C for 30 min, 
increase the temperature until 575 °C at 20 °C /min, and hold it at that temperature for 180 min. After 
cooling, the samples were weighed to the nearest 0.1 mg until constant weight. The final ash content is 
calculated as the mean of the three crucibles. 

2.4.3.2 Recycling procedure: The residual solids recovered after the work-up described in Section 
2.4.2, were subjected to a thermal treatment at 360 °C for two hours with a heating ramp of 2 °C /min 
to eliminate the organic (char) residues. After the thermal treatment the resulting solids, catalyst and 
ashes, were re-used at 340 °C and 6 h following the experimental set-up described in Section 2.4.1. 
The oil and solid yields were calculated by weight and the oil was analysed. This procedure was 
repeated again to evaluate the activity of the catalyst upon two recycling-cycles.  

2.5 Characterization of the oils 

2.5.1 GC-FID analysis 

A detailed description is given elsewhere by Oregui Bengoechea et al.12. Briefly, the samples were 
first silylated with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) prior to the GC-FID analysis. 
The samples were analysed on a Thermo Finnigan TRACE GC Ultra with a FID-detector equipped 
with a chromatographic HP-ULTRA2 column from Agilent Technologies. The following heating 
programme was applied: 30 °C for one minute, and then heating at 10 °C /min up to 25 °C. The 
injector temperature was 250 °C, and the detector temperature was 320 °C. Identification of the peaks 
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was carried out by comparison with retention times of authentic commercially available reference 
compounds that were also silylated prior to the analysis. The quantitative data was obtained using 
hexadecane as internal standard. Calibration curves were prepared for the following compounds: 
phenol (Ph), cresol (Cr), guaiacol (Gu), methyl-guaiacol (M-Gu), catechol (Ca) and syringol (Sy), and 
their concentrations were calculated as % weight in the oil. 

2.5.2 Elemental analysis 

All samples were analysed for their elemental composition in the CHNS mode with a Vario EL III 
instrument using helium as carrier gas. The oxygen content was calculated by difference. 

2.5.3 GPC-SEC 

The sample (1 mg) was dissolved in 1 mL of THF. The solution (20 μL) was injected into a GPC-SEC 
system equipped with a PLgel 3 μm Mini MIX-E column, and analysed at a flow rate of 0.5 mL/min 
of THF at 21.1 °C, and the detection was performed with UV at 254 and 280 nm, as well as with IR at 
4000-400 cm-1 range. The set of columns was calibrated with a series of polystyrene standards 
covering a molecular-mass range of 162–2360 Da. 

2.6 Data analysis 

2.6.1 Screening Experiments 

A two-level full-factorial design with three center points was used to evaluate the influence of the 
temperature (x1) and reaction time (x2) in each of the three different supported catalysts (Ru/Al2O3, 
Rh/Al2O3, Pd/Al2O3). The experimental design was done separately for each catalytic system and 
different responses were examined: oil and solid yield, H/C and O/C ratio, average molecular weight 
distribution (Mw) and oil composition (see Section 2.6.1). The selected control variables (temperature 
and reaction time) and their levels for each system are described in Table 1. The relation between the 
coded and the actual values is the following: 

 

Where Xi is the actual value of the variable, X0 is the actual value of Xi at the center point, and 
ΔX is the step change of the variable. 

Table 1: experimental design for catalyst screening 

Experiment 
X1 

Temperature (°C) 
X2 

Reaction time (h) 
Actual Coded Actual Coded 

Xa-1 300 -1 10 +1 
Xa-2 380 +1 10 +1 
Xa-3 300 -1 2 -1 
Xa-4 380 +1 2 -1 
Xa-5 340 0 6 0 
Xa-6 340 0 6 0 
Xa-7 340 0 6 0 

aX: refers to either Ru (Ru/Al2O3 catalyst), Rh (Rh/Al2O3 catalyst) or Pd (Pd/Al2O3 catalyst) 
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2.6.1.1 Response surface methodology (RSM) for the oil and solid yield: Response Surface 
Methodology (RSM) is a set of mathematical and statistical techniques that can be used to define the 
relationships between the response and the independent variables, and the objective is to maximize this 
response10, 15. In the present study oil and solid yields were selected as response variables and fitted in 
a first order polynomial regression model with an interaction factor (see below). First order models 
were selected to screen different supported catalyst (Ru/Al2O3, Rh/Al2O3, Pd/Al2O3) with the 
minimum number of experiments: 

  (1) 

Where Y is the predicted response variable (oil or solid yield); β0, βi, βij are constant regression 
coefficients of the model, and xi, xj (ij= 1,2; i ≠ j) represent the coded values of independent variables 
that are used in statistical calculations. For each system separate oil and solid regression models were 
calculated and their response surface model built. After the regression model was obtained, the 
significance of the regression model was evaluated by the analysis of variance (ANOVA)16.   

2.6.1.2 Principal component analysis (PCA) to evaluate the quality of the oil: Principal component 
analysis (PCA) is a commonly used technique in statistics for simplifying the data by reducing 
multivariable to a 2-D plot in order to characterise the results. The use of principal component analysis 
allows identifying the factors which influence the data so that relationships can be established on a 
qualitative analysis. PCA uses complex matrix transformation which does not impose fixed vectors, 
and is completely dependent on the data set17. PCA has been used in the past to discriminate the effect 
of reaction conditions and reactant compositions in the quality of the LtL oils 4 . In the present study, 
the variables studied to evaluate the quality of the oils are: reaction temperature, reaction time, type of 
catalyst, oil and solid yield, H/C and O/C ratio of the oil and average molecular weight distribution 
(Mw). The variable named catalyst is added to visualize the effect of the type of catalyst. This is a three 
level variable where Ru is represented by the coded level +1, Rh by 0, and Pd by -1. No cross-term is 
considered in this analysis to maximize the explained variance.  

2.6.1.3 Principal component analysis (PCA) to evaluate the oil composition: Eight variables were 
submitted to PCA analysis. Three process variables, reaction temperature, reaction time and type of 
catalyst; and five response variables, named concentration of phenol (Ph), guaiacol (Gu), catechol 
(Ca), cresol (Cr) and methyl-guaiacol (M-Gu) in the oils. No cross-term is considered in the analysis 
to maximize the explained variance. 

2.6.2 Optimization experiments 

A central composite design (CCD) with axial (α=1.41) and three centre points was used to evaluate the 
influence of the temperature (x1) and reaction time (x2) in three different reaction systems (NC: the 
non-catalysed system, Al: the γ-alumina catalysed system and the Ru catalysed system). The Ru 
system represents the best catalytic system in terms of oil yield. CCD allows determining both linear 
and quadratic models and is a good alternative of a three level full factorial design as it provides 
comparable results with a smaller number of experiments18. The experimental design was carried out 
separately for each catalytic system and different responses were examined: oil and solid yield, H/C 
and O/C ratio, and Mw and oil composition (see Section 2.6.1). The selected control variables 
(temperature and reaction time) and their levels for each system are described in Table 2. The relation 
between the coded and the actual values is the following: 
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Where Xi is the actual value of the variable, X0 is the actual value of Xi at the centre point, and 
ΔX is the step change of the variable. For each system separate oil and solid regression models were 
calculated and their response surface model was built. After the regression model of experimental data 
was obtained, the significance of the regression model was evaluated by the analysis of variance 
(ANOVA)16. 

Table 2: experimental design for system optimization 

Experiment 
X1 

Temperature (°C) 
X2 

Reaction time (h) 
Actual Coded Actual Coded 

Xa-1 300 -1 10 +1 
Xa-2 380 +1 10 +1 
Xa-3 300 -1 2 -1 
Xa-4 380 +1 2 -1 
Xa-5 340 0 6 0 
Xa-6 340 0 6 0 
Xa-7 340 0 6 0 

X-aS1 397 +1.41 6 0 
X-aS2 283 -1.41 6 0 
X-aS3 340 0 21 min -1.41 
X-aS4 340 0 11 h 40 min +1.41 

aX: refers to either the Ru catalyzed system (Ru), γ-Al2O3 catalyzed system (Al) or the non-catalyzed system 
(NC) S: refers to the axial points were α=1.41 

2.6.2.1 Response surface methodology (RSM) for the oil and solid yield: Previous screening tests 
suggested that the introduction of the quadratic term was necessary to build significant regression 
models. Therefore, in this section the oil and solid yields were selected as response variables and fitted 
to second-order (quadratic) models in the form of quadratic polynomial equation: 

      (2) 

Where Y is the predicted response variable (either oil or solid yield); β0, βi, βii ,βij  are constant 
regression coefficients of the model, and xi, xj (ij= 1,2; i ≠ j) represent the coded values of independent 
variables that are used in statistical calculations. For each system separate oil and solid second order 
regression models were calculated and their response surface model was built. After the regression 
model of experimental data was obtained, the significance of the regression model by analysis of 
variance (ANOVA).  

2.6.2.2 Principal component analysis (PCA) to evaluate the quality of the oil: The variables studied to 
evaluate the quality of the oils are: reaction temperature, reaction time, type of system, oil and char 
yield, H/C and O/C ratio of the oil and average molecular weight distribution (Mw). The variable 
named system is added to visualize the effect of the type of system. This is a three level variable where 
Ru is represented by the coded level +1, NC by 0, and Al by -1. No cross or quadratic term is 
considered in the analysis to maximize the explained variance. 

2.6.2.3 Principal component analysis (PCA) to evaluate the oil composition: Initially eight variables 
were submitted to PCA analysis. Three process variables, reaction temperature, reaction time and type 
of system; and five response variables, named concentration of Ph, Gu, Ca, Cr and M-Gu in the oils 



PAPER B                                                                                                                       109                      
  

 
 

(see Section 2.5.1). No cross or quadratic term is considered in either analysis to maximize the 
explained variance. 

3. Results and Discussion 

3.1 Acidity Results of Ru/Al2O3, Rh/Al2O3, Pd/Al2O3 and γ-alumina 

Table 3 summarizes the results obtained for the DRIFT and NH3-TPD analysis. IR bands assigned to 
Brønsted acid sites (1545 and 1638 cm-1) were not detected in any of the samples19, suggesting that 
only Lewis acidity (1448 cm-1) is present (see Figure S1, Supplementary Information).  

Table 3: Total acidity, acidity retention and active acidity of γ-alumina, Rh/Al2O3, Ru/Al2O3 and 
Pd/Al2O3.   

 
Total aciditya 

(mmol NH3/g cat.) 
Acidity retentionb  

(%) 
Active acidity 

(mmol NH3/g cat.) 

γ-alumina 1.51 
100 (100 °C) 1.51 (100 °C) 
92 (200 °C) 1.39 (200 °C) 
92 (300 °C) 1.39 (300 °C) 

Rh/Al2O3 1.34 
100 (100  °C) 1.34 (100 °C) 
71 (200 °C) 0.95 (200 °C) 
49 (300 °C) 0.66 (300 °C) 

Ru/Al2O3 0.78 
100 (100 °C) 0.78 (100 °C) 
77 (200 °C) 0.60 (200 °C) 
51 (300 °C) 0.40 (300 °C) 

Pd/Al2O3 0.76 
100 (100 °C) 0.76 (100 °C) 
99 (200 °C) 0.75 (200 °C) 
98 (300 °C) 0.74 (300 °C) 

 a Data obtained from NH3-TPD b Data obtained from DRIFT 

The highest total acidity measured by NH3-TPD was obtained for the γ-Al2O3 (1.51 mmol 
NH3/g catalyst), with significantly lower acidities for the supported catalysts (Rh/Al2O3 > Ru/Al2O3 > 
Pd/Al2O3). Based on the IR band at 1445 cm-1, acidity retention was also calculated as [peak area (T) / 
peak area (100 °C)] x 100 (Table 3). Increasing the temperature did not influence the Lewis acid-
bound pyridine in Al2O3 and Pd/Al2O3, but caused pyridine desorption in the case of Rh/Al2O3 and 
Ru/Al2O3. This suggests that the Lewis sites present in Rh/Al2O3 and Ru/Al2O3 samples are rather 
weak compared to the ones present in Al2O3 and Pd/Al2O3. Therefore the catalyst with the highest 
active acidity is γ- Al2O3 followed by Pd/Al2O3, Rh/Al2O3 and Ru/Al2O3.Note that the calculated 
active acidity is an approximation of the absolute active acidity of the solids since the acid sites titrated 
by NH3 and pyridine are not strictly of the same nature. 

3.2. Screening experiments: effect of the type of catalyst 

3.2.1 Effect of the catalyst, temperature and time on the oil and solid yield 

The main goal of this experimental set was to determine which catalyst performs best in the terms of 
high oil and low solid yield. For this purpose three analogous experimental sets for the Pd, Rh and Ru 
catalysts were subjected to surface response modelling.  The experiments were performed randomly to 
minimize the systematic error. The results obtained for the oil and solid yield are summarized in Table 
4.   



110                                                                                                                       PAPER B 
 

 
 

Table 4:   Experimental design for screening experiments and oil and solid yields 

Exp. Oil 
Yield (%) 

Solid 
Yield (%) 

H/C O/C Mw Ph* Gu* Ca* Cr* M-Gu* 

Pd-1 86.1 12.8 1.19 0.21 444 2.6 4.2 1.1 5.8 3.8 
Pd-2 57.1 6.2 1.18 0.1 305 2.8 3.3 0.7 5.3 3.7 
Pd-3 38.2 60.3 1.24 0.26 538 2.3 3.7 0.3 0.0 3.4 
Pd-4 78.5 7.5 1.15 0.16 404 2.0 2.9 1.7 4.3 2.8 
Pd-5 81.7 2.8 1.21 0.14 323 2.5 3.4 2.0 5.2 3.4 
Pd-6 85.4 2.4 1.19 0.17 332 1.9 2.8 2.0 3.9 2.6 
Pd-7 81.6 2.9 1.21 0.18 340 2.2 3.1 2.0 4.6 3.0 
Rh-1 83.0 16.5 1.22 0.22 556 2.0 3.4 1.1 4.6 3.1 
Rh-2 58.9 5.7 1.18 0.1 187 2.0 2.6 0.6 4.3 2.9 
Rh-3 38.4 56.4 1.25 0.26 561 3.4 5.3 0.3 0.0 5.0 
Rh-4 74.0 5.2 1.15 0.16 296 1.7 2.5 1.1 3.6 2.4 
Rh-5 81.0 4.8 1.21 0.14 344 1.4 2.0 1.3 2.9 1.9 
Rh-6 83.9 4.0 1.2 0.16 388 1.3 1.9 1.7 2.8 1.8 
Rh-7 76.6 5.0 1.2 0.16 420 1.4 2.0 1.5 2.9 1.9 
Ru-1 91.8 10.1 1.23 0.18 688 2.4 4.0 1.3 5.2 3.5 
Ru-2 60.7 5.0 1.19 0.09 359 2.5 2.7 0.4 4.4 0.0 
Ru-3 37.0 61.9 1.25 0.26 721 2.1 3.4 0.3 4.7 3.1 
Ru-4 83.9 8.2 1.17 0.17 497 1.5 2.3 1.7 3.2 2.1 
Ru-5 90.0 5.1 1.21 0.19 490 1.6 4.5 2.4 6.7 4.4 
Ru-6 84.2 3.3 1.21 0.19 522 1.3 3.9 2.1 5.5 1.7 
Ru-7 86.2 3.2 1.21 0.19 487 2.0 3.2 1.9 4.3 2.8 

Pd: Pd/Al2O3 was used as catalyst Rh: Rh/Al2O3 was used as catalyst Ru: Ru/Al2O3 was used as catalyst. The 
experimental conditions are given in Table 1.  *: Phenol (Ph), cresol (Cr), guaiacol (Gu), methyl-guaiacol (M-
Gu), catechol (Ca) and syringol (Sy) yields as %(weight) in the oil 

Table S1, Supplementary Information, shows the results of the analysis of variance (ANOVA) 
of the fitted models for the oil and solids yields. The ANOVA results illustrate that none of the models 
are significant for a 90 % confidence interval. Nevertheless, the aim of this section is not to build 
significant models, but to evaluate the effect of the type of catalyst, temperature and reaction time in 
the response variables. 

Figure 1 and Figure 2 show the surface response models for each catalyst system. The former 
describes the oil yields while the latter the solid yields. Note that the temperature and reaction time 
axes are in different position for the oil and solid yield. The fitted equations for the oil and char yield 
are presented in Table 5. From the results depicted, one main conclusion is obtained: the Ru, Pd and 
Rh systems behave similarly for both the oil and solid yield, with regression coefficients that are of the 
same sign and comparable magnitude.  
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Table 5: Fitted equations for the oil and solid yield 
System Equation 

Pda 

Oil Yield (%)d 
Y = 72.66 + 2.83X1 + 6.63X2 – 17.33X1X2 

Rhb Y = 70.83 + 2.88X1 + 7.38X2 – 14.93X1X2 
Ruc Y = 76.25 + 3.95X1 + 7.9X2 – 19.5X1X2 
Pda 

Solid Yield (%)e 
Y = 13.56 – 14.85X1 – 12.2X2 + 11.55X1X2 

Rhb Y = 13.94 – 15.5X1 – 9.85X2 + 10.1X1X2 
Ruc Y = 13.83 – 14.7X1 – 13.75X2 + 12.15X1X2 

Pd: Pd/Al2O3 system Rh: Rh/Al2O3 system Ru: Ru/Al2O3 system Oil Yield (%): regression model built for the 
oil yield (%) Solid Yield: regression model built for the solid yield (%) 

According to the fitted equations, high temperatures or long reaction times increase the oil and 
decreases the solid yield, while the sign of the cross-term coefficient suggests that the maximum is 
found out of the experimental space, toward the corners.  This is confirmed by the analysis of the 
surface response models in Figure 1, which shows that the highest oil yields are found at low 
temperatures and long reaction times and/or at high temperatures and short reaction times. When 
comparing the oil yields, it is clear that the Ru system gives the highest values, followed by Pd and Rh 
system. Lesser differences are seen in terms of solid yield, with the best results being obtained for the 
Pd catalyst, followed by the Ru and Rh. Therefore, Ru is selected as the best overall catalyst in terms 
of oil and solid yield. The behavior of this catalyst in the experimental space, together with the Al and 
NC system, will be quantitatively analyzed in Section 3.3.1. 

 
Figure 1: Response surface models for the oil yields. Rh: Rh/Al2O3 catalyzed system, Pd: Pd/Al2O3 catalyzed 
system , Ru: Ru/Al2O3 catalyzed system 
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Figure 2: Response surface models for the solid yields. Rh: Rh/Al2O3 catalyzed system, Pd: Pd/Al2O3 catalyzed 
system , Ru: Ru/Al2O3 catalyzed system  

3.2.2 Effect of type of catalyst, temperature and reaction time in the quality of the oil (PCA) 

The aim of this section is mainly to establish the effect of the type of supported catalyst (Ru,Rh and 
Pd) on the quality of the oil, although correlations between reaction time, temperature and oil quality 
will also be discussed. The values of the variables studied are summarized in Table 4. 85 % of the 
explained variance is described by three principal components (PCs). When analyzing the score plots 
(Figure 3a), it can be observed that the objects are somehow grouped together according to the type of 
catalyst (Ru in red, Rh in blue and Pd in green) and reaction conditions. Thus there is a correlation 
between the oil quality, oil and solid yield, the type of catalyst and the reaction conditions.  

When analyzing the loading plots (Figure 3b), some correlations between the design variables 
and the oil quality variables can be observed. The most obvious observation is that the Mw is positively 
correlated to the catalyst variable in all cases. This means that the Ru catalyst gives the oils with the 
highest average molecular weight distributions followed by the Rh and Pd catalysts. Previous results 
obtained in our group 12 suggest that the average molecular weight is dependent on the active acidity 
of the alumina support (see Section 3.1), since lowering the active acidity resulted in an increase in the 
average molecular weight within the oils. This correlation is therefore confirmed by the data present in 
this study. Mw is negatively correlated to the temperature and reaction time on PC1, which explains up 
to 52.5 %. Further analysis of the data in Table 4 confirms this correlation: increasing the temperature 
and prolonging the reaction time resulted in oils with lower molecular weight. For a given reaction 
temperature, lower Mw values are obtained at longer reaction times. 
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Figure 3: Score and loading plots for the quality of the oil. a) Score plots of the PCA analysis for the catalyst 
screening. Pd experiments in green, Rh experiments in blue, Ru experiments in red b) Loading plots of the PCA 
analysis for the catalyst screening. Factors describing the reaction conditions in black, factors describing the oil 
yield (oil), solid yield (char) and quality of the oil (H/C, O/C and Mw) in green. Coding for the response variables 
is given in Table 1. 

A strong negative correlation is found between the temperature and the H/C ratio, while no or 
weak correlations are found between the catalyst and the H/C ratio. When analyzing the data in Table 
4 three trends can be identified: (i) at low temperatures the H/C ratio decreases with the reaction time, 
(ii) at high temperatures the H/C ratio increases with the reaction time, and (iii) slightly higher H/C 
ratios are obtained for the Ru system. In terms of O/C ratio, there is a clear negative correlation 
between this variable and the temperature and reaction time, while no correlation is found between the 
O/C ratio and the catalyst variable. This is confirmed when analyzing the raw data in Table 4, 
illustrating that high temperatures and long reaction times are the most beneficial conditions in terms 
of low O/C ratio. Hence the data show two different behaviors in the elemental analysis of the oils 
depending on the temperature level. At low temperature both the O/C and H/C ratios decrease, while 
at high temperatures the O/C decrease and the H/C increases.  
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Another interesting result is the lack of correlation between the oil yield and the quality of the 
oil (H/C ratio, O/C ratio and Mw value). This is confirmed by both the loading plots and the analysis of 
the raw data. High H/C, O/C ratios and Mw values are obtained at low oil yields. Hence, the best 
reaction conditions are found around the center points: high oil yields coupled with relatively low Mw 
values and O/C ratios and relatively high H/C ratios. 

3.2.3 Influence of the type of catalyst on the concentration of selected compounds 

The values submitted to PCA are given in Table 4. In the data analysis 71.55 % of the variance is 
explained by three PCs. Figure 4 shows the score and loading plots. From the loading plots it can be 
observed that those compounds bearing methoxy-groups, such as Gu and M-Gu, show only a strong 
negative correlation with the temperature. Ca, a compound with two hydroxy-groups,  is positively 
correlated to the catalyst variable and non-correlated with the temperature and reaction time. 
Coumpounds with only one hydroxy-group, such as Ph and Cr, are positively correlated with the 
reaction time. The former, Ph, is also negatively correlated to the catalyst, and while the latter, Cr, is 
positively correlated to the reaction time and catalyst variable.  

These observations are in accordance with the behaviour of the elemental analysis of the oils 
presented in Section 3.2.2. At low temperatures the H/C and O/C ratios decrease with time suggesting 
that at this temperature level de-methoxylation and dehydration reactions of methoxy- and hydroxyl- 
bearing compound are the prevailing reactions. However, at high temperatures, low amount of 
methoxy- bearing compounds are found at low reaction times and the prevailing reaction seems to be 
the alkylation of the monomers, which would justify both the increase of the H/C ratio and the 
decrease of the O/C ratio.  

Previous works20 proposed the following mechanism. Lignin is initially depolymerized into 
primary products bearing methoxy groups such as syringol and different guaiacols. These react further 
accompanied by an increase in the degree of demethoxylation and deoxygenation of the different 
substituted species to yield catechols and thereafter phenols as stable products. Unlike this kinetic 
study, our experimental set is held at different temperatures. This might have distorted the actual 
correlations, but the loading plots still support the mechanism. At low temperatures, when the 
conversion rate is slow, Gu and M-Gu are at high concentrations. Ca is not correlated with any of the 
reaction conditions, which could indicate that this compound is an intermediate. Finally, at long 
reaction times the concentrations of Ph and Cr are the highest which suggests them as the end 
products. In terms of type of catalyst, Ru seems to favor the abundance of both catechol and cresol, 
while Pd seems to be the most suitable catalyst when oils with a high concentration in phenol are 
preferred. 
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Figure 4: Score and loading plots for the composition of the oil. a) Score plots of the PCA analysis for the 
catalyst screening. Pd experiments in green, Rh experiments in blue, Ru experiments in red b) Loading plots of 
the PCA analysis for the catalyst screening. Factors describing the reaction conditions in black, factors 
describing the concentration of certain components in blue. Coding for the response variables is given in Table 1  

3.3 Optimization experiments: Effect of the type of system 

3.3.1 Influence of the type of system, temperature and reaction time on the oil and solid yields 

In Section 3.2 several first order response surface models were built to analyze the effect of the type of 
catalyst, temperature and time, but none of them were statistically significant. In this section, the best 
catalyst in terms of oil and solid yield, Ru, is compared to additional reaction systems NC (non-
catalyzed) and  Al (γ-alumina catalyst) to evaluate which is the effect of the alumina support and the 
noble metal (Ru) in the reaction in a central composite design with a wider experimental basis for the 
modelling. The results obtained for the oil and solid yield are summarized in Table 6. 
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Table 6: Experimental design for optimization experiments and oil and solid yields 

Experiment 
Oil 

Yield (%) 

Solid 
Yield 
(%) 

H/C O/C Mw Ph* Gu* Ca* Cr* 
M-

Gu* 

NC-1 64.8 31.7 1.13 0.2 431 1.9 3.3 1.5 4.2 2.8 
NC-2 50.2 16.2 1.17 0.08 206 2.9 3.7 0.5 5.9 4.3 
NC-3 32.1 57.5 1.17 0.24 553 1.7 3.4 0.6 3.9 2.7 
NC-4 54.0 26.3 1.11 0.17 294 2.7 4.2 3.7 5.9 3.9 
NC-5 58.2 22.4 1.19 0.18 346 1.7 2.5 2.0 3.6 2.4 
NC-6 62.3 23.0 1.21 0.21 327 1.8 2.6 2.9 3.6 2.4 
NC-7 64.2 16.5 1.21 0.2 339 2.1 3.0 2.8 4.3 2.8 

NC-S1 41.4 21.3 1.1 0.15 95 2.8 2.4 0.5 4.2 3.5 
NC-S2 31.0 63.6 1.17 0.29 928 2.1 3.7 0.8 0.0 3.2 
NC-S3 13.5 83.4 1.29 0.33 548 2.2 3.3 0.4 5.1 3.0 
NC-S4 63.2 16.6 1.11 0.16 258 2.4 3.0 1.4 4.7 3.0 
Ru-1 91.8 10.1 1.23 0.18 688 2.4 4.0 1.3 5.2 3.5 
Ru-2 60.7 5.0 1.19 0.09 359 2.5 2.7 0.4 4.4 0.0 
Ru-3 37.0 61.9 1.25 0.26 721 2.1 3.4 0.3 4.7 3.1 
Ru-4 83.9 8.2 1.17 0.17 497 1.5 2.3 1.7 3.2 2.1 
Ru-5 90.0 5.1 1.21 0.19 490 1.6 4.5 2.4 6.7 4.4 
Ru-6 84.2 3.3 1.21 0.19 522 1.3 3.9 2.1 5.5 1.7 
Ru-7 86.2 3.2 1.21 0.19 487 2.0 3.2 1.9 4.3 2.8 

Ru-S1 59.3 5.5 1.11 0.11 91 2.7 4.5 0.6 6.2 2.2 
Ru-S2 45.5 48.3 1.27 0.4 2150 1.5 2.6 0.2 3.6 0.0 
Ru-S3 30.8 67.6 1.17 0.27 2049 2.5 4.7 0.4 5.9 3.9 
Ru-S4 79.8 3.3 1.18 0.16 468 2.8 5.5 2.0 6.7 4.3 
Al-1 84.8 16.1 1.18 0.23 276 1.2 2.3 1.2 2.8 2.3 
Al-2 48.2 17.3 1.2 0.1 178 2.4 2.7 0.6 4.9 4.6 
Al-3 36.8 61.8 1.22 0.27 318 2.3 4.2 0.5 0.0 4.0 
Al-4 57.4 24.5 1.16 0.21 211 1.6 2.4 3.4 3.4 2.6 
Al-5 63.1 22.0 1.2 0.21 215 1.4 2.2 3.1 3.2 2.3 
Al-6 58.7 25.7 1.18 0.17 225 2.0 2.9 3.0 4.3 3.0 
Al-7 66.5 17.1 1.19 0.19 210 2.5 3.6 2.9 5.5 3.8 

Al-S1 43.3 21.0 1.12 0.12 108 2.8 3.0 0.5 5.6 4.5 
Al-S2 49.8 52.1 1.19 0.25 1360 1.9 3.4 0.5 0.0 3.5 
Al-S3 13.3 82.8 1.36 0.32 826 2.1 3.3 0.3 5.5 3.3 
Al-S4 65.4 11.1 1.19 0.16 347 2.4 3.0 1.4 5.1 3.3 

NC: non-catalysed experiments Ru: Ru/Al2O3 was used as catalyst Al: γ-Al2O3 was used as catalyst. S: refers to 
the axial points were α=1.41. The experimental conditions are given in Table 2. *: Phenol (Ph), cresol (Cr), 
guaiacol (Gu), methyl-guaiacol (M-Gu), catechol (Ca) and syringol (Sy) yields as %(weight) in the oil 
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The analysis of the variance (ANOVA) (Table S2, Supplementary Information), shows that all 
the models are significant for a confidence level of 90 %, which allows a quantitative analysis of the 
results. Table 7 displays the second order regression models for the oil and solid yield. The surface 
response models for the oil and solid yield are presented in Figures 5 and 6 respectively.   

Ru gives higher oil and lower solid yields in the experimental space. The maximum oil and 
minimum solid yield is found around the center of the experimental space, and more precisely toward 
the area of low temperatures and long reaction times. This model differs from the one obtained in 
Section 3.2.1 where the maximum was not found within the experimental space. Hence, quadratic 
terms are important to provide significant models of the systems. 

Table 7: Regression second order models for the oil yield and solid yield 
Syst  Equation 
NCa 

Oil Yield (%)d 
Y = 61.56 +2.75X1 +12.40X2 –9.43X12 –8.36X22 –9.13X1X2 

Rub Y = 86.79 +4.41X1 +12.61X2 –19.5X12 –13.57X22 –12.12X1X2 
Alc Y = 62.76 – 3.15X1 +14.06X2 –4.64X12 –8.25X22 –14.3X1X2 
NCa 

Solid Yield (%)e 
Y = 20.64 –13.32X1 – 16.30X2 + 7.58X12 +11.36X22 – 3.93X1X2 

Rub Y = 3.87 –14.92X1 – 18.24X2 +12.15X12 +9.05X22 +12.32X1X2 
Alc Y = 21.6 –10.01X1 –19.29X2 + 4.52X12 +9.72X22 + 9.63X1X2 

NC: non-catalysed reaction system Ru: Ru/Al2O3 was used as catalyst Al: γ-Al2O3 was used as catalyst Oil 
Yield (%): regression model built for the oil yield (%) Solid Yield: regression model built for the solid yield 
(%) 

The NC tests give significantly lower oil yields than the Ru. However, the regression 
coefficients are of the same sign,the shape of the response surface is similar, and the maximum oil 
yield is found around the same area. In the case of the Al, on the other hand, the maximum oil yield is 
not found within the experimental space and the shape of the surface response model differs 
significantly from the ones obtained for the Ru and NC. This is because unlike Ru and NC, the Al 
system is negatively correlated to the temperature, shifting the maximum towards the area of low 
temperatures and long reaction times. 

The analysis of the solid yields (Figure 6 and Table 7), confirms the conclusions described 
above. Note that the axes regarding the temperature and reaction time are on the opposite side to the 
ones in Figure 5. NC and Ru systems behave analogously, although considerably lower solid values 
are obtained for the Ru system. However in the case of the Al system, the lowest solid yields are 
obtained in the areas of low temperatures and long reaction times. This confirms that the presence of 
γ-alumina increases the oil yield at low temperatures, while the presence of the noble metal Ru 
supported on the alumina increases the oil yield in the experimental space.  

The results indicate that the presence of Al and Ru alter somehow the original reaction 
mechanism. Our previous results 12 suggest that alumina is able to catalyze both the de-polymerization 
and re-polymerization reactions. Many research groups21 have reported the hydrolysis of lignin ether 
bonds in the presence of homogenous Lewis acids. It is believed that Lewis acids in combination with 
water or low molecular alcohols yield Brønsted acids that are active for the hydrolytic conversion of 
lignin22.   A similar mechanism could be expected in the case of Lewis solid acids, although the 
mechanism itself is still unclear. In any case, the results presented above clearly show that at low 
temperatures the lignin de-polymerization is favored over the re-polymerization of the monomers. At 
high temperatures, however, the activity towards the hydrolytic lignin conversion could be neutralized 
by a combination of two phenomena.  Increasing the temperature is known to favor re-polymerization 
reactions of the unstable lignin monomers thus yielding a higher amount of solid residues (reference). 
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It is noteworthy that at 380 °C the oil yield is slightly higher for the Al system (57.4 %) than that of 
the NC system (54.0 %) when the reaction time is 2 h, while the oil yield is slightly higher for the NC 
system (50.2 %) than for the Al system (48.2 %) when the reaction time is 10 h. In addition, the higher 
solids yields observed at long reaction times could also be a consequence of the non-stable activity of 
the alumina support at high temperatures: the surface acidity could cause intense coke deposition over 
the alumina surface leading to a more rapid catalyst deactivation.  The incorporation of the Ru phase 
seems to hinder the re-polymerization of the lignin monomers and deactivation of the catalyst. Noble 
metals are known to catalyze HDO reactions of lignin and lignin model compounds in the presence of 
H2 or hydrogen molecular donors such as formic acid23. The active hydrogen species would thus 
stabilize the lignin monomers preventing their re-polymerization and the formation of coke deposits.  
 

 
Figure 5: Response surface models for the oil yield. NC: non-catalyzed system, Ru: Ru/Al2O3 catalyzed system, 
Al: γ-Al2O3 catalyzed system 
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Figure 6: Response surface models for the solid yield. NC: non-catalyzed system, Ru: Ru/Al2O3 catalyzed 
system, Al: γ-Al2O3 catalyzed system 

3.3.2 Effect of type of system, temperature and reaction time in the quality of the oil 

The system variable, accompanied by the temperature, reaction time, oil yield, solid yield and the oil-
quality responses are submitted to an exploratory PCA.  Table 6 describes the values of the different 
responses. 81.5 % of the variance is explained by three PC. The score plots depicted in Figure 7a show 
that the objects are group in terms of system and reaction conditions, although this pattern is less clear 
than in Section 3.2.2. On the other hand, the loading plots in Figure 7b significantly resemble the 
corresponding plots in Section 3.2.2.  

The most obvious correlation is again the one between the system variables and the Mw. This 
means that the Ru systems produce the oils with higher average molecular weights, while the lowest 
Mw values are obtained for the Al. In the absence of catalyst, the values of Mw are lower than the ones 
for the Ru, but higher than the ones for the Al systems. This phenomenon could be due the fact that the 
Ru catalyst, the Ru active phase, can stabilize high Mw oligomers thought hydrodeoxygenation24 and 
alkylation reactions25, while in the case of the Al and NC systems these compounds are re-polymerized 
into solid. The lowest values of Mw obtained in the Al system could be due to the high active acidity of 
the γ-alumina, a phenomenon already observed in Section 3.2.2.  The loading plots and the raw data in 
Figure 7b suggest that the temperature and reaction time are negatively correlated to the Mw, and 
support that high temperatures and long reaction times favor lignin de-polymerization. 
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Figure 7: Score plots and loading plots for composition of the oil. a) Score plots of the PCA analysis for the 
catalyst optimization. Al experiments in green, NC experiments in blue, Ru experiments in red b) Loading plots 
of the PCA analysis for the optimization experiments. Factors describing the reaction conditions in black, factors 
describing the oil yield (oil), solid yield (char) and quality of the oil (H/C, O/C and Mw) in green. The coding for 
the response variables is given in Table 2.  

The behavior of the H/C ratio with respect to the temperature and reaction time is in 
accordance with the results observed in Section 3.2.2. At low temperatures the H/C ratio decreases 
with the reaction time, while at high temperatures this value increases with the reaction time. From the 
loading plot (Figure 7a) no or weak correlations are found between the system, reaction time and H/C 
variables. However, the data in Table 6 clearly show that the Ru (+1) system gives higher H/C ratio 
oils, followed by the Al (-1) and the NC (0) system.  

The O/C ratio is not considerably influenced by the type of system. Temperature is again 
negatively correlated to the O/C ratio, while the correlation with the reaction time is not that clear 
when analyzing the score plots. Nevertheless, the raw data again indicate that the higher the 
temperature and the longer the reaction time, the lower the O/C ratio.   
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As in Section 3.2.2 there is a lack of correlation between the oil yield and the variables 
selected to evaluate the quality of the oil. Some other aspects are also confirmed: (i) the active acidity 
of the catalysts decreases the Mw value, (ii) the H/C ratio is negatively correlated to the temperature, 
(iii) the O/C ratio is negatively correlated to temperature and reaction time, and (iv) the best results are 
found in the center of the experimental space. An additional observation is that the presence of the 
noble metal is positive for the H/C ratio, which can be explained by catalysis of the hydrogenation of 
the end products, as expected. 

3.3.3 Analysis of the concentration of main compounds 

Table 6 describes the values of the variables submitted to exploratory PCA.  As in Section 3.2.3, five 
main components were selected (Ph, Gu, Ca, Cr, MGu). The first three PCs describe only 65.5 % of 
the variance. From the analysis of the score plot in Figure 8a, it can be observed that the objects are 
mainly grouped by the type of the system. The loading plots in Figure 8b show that the variance is 
largely explained by the system variable, especially on PC2. All this indicates that there are significant 
differences on the kinetic or mechanistic pathways between the systems.  

 

 
Figure 8: Score and loading plots of the composition of the oil. a) Score plots of the PCA analysis for the 
optimization experiments. Al experiments in green, NC experiments in blue, Ru experiments in red b) Loading 
plots of the PCA analysis for the optimization experiments. Factors describing the reaction conditions in black, 
factors describing the concentration of certain components in blue. The coding for the response variables is given 
in Table 2. 
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When analyzing the correlations for each compound, no clear patterns are observed. Each 
component is differently correlated to the temperature, reaction time and system variable depending on 
the PC. This shows that the significant difference in the reaction mechanisms prevents clear 
conclusions on how the experimental variables studied affect the composition of the oil using this 
multivariate approach. 

3.4 Recycling of the catalyst 

The inorganic ash content of the lignin used is 1.5 wt%. The average value of the recovered organic 
solids (char) and lignin-derived inorganic ashes for the Ru system, at 340 °C and 6 hours, is 2.7 wt%.  
This means that the solids recovered after the reaction mainly comprises the catalyst. After the thermal 
treatment the organic matter was eliminated, giving a recovered catalyst with a small amount of 
inorganic impurities derived from the lignin (ashes).  

The catalyst was recycled twice, and its activity was evaluated in terms of oil and solid yields. 
For the first cycle three replicates were made (Ru-A1, Ru-A2 and Ru-A3), while two replicates were 
carried out for the second recycling cycle (Ru-B1 and Ru-B2).  

Table 11 shows the results obtained for both cycles.  Surprisingly, the average values show 
that the oil yield is maintained or increased upon recycling. The solid yield is comparable for all the 
reaction cycles. The variation could be assigned to experimental uncertainty during the work-up 
procedure and the catalytic effect of the inorganic lignin impurities (ashes).  

Table 11: Oil yield, H/C and O/C ration of the oil and solid yield for the recycling experiments 

Experiment 
Name 

Oil Yield 
(% on 
lignin) 

Average Oil 
Yield 

(% on lignin) 
(H/C) (O/C) 

Solid Yield 
(% on 
lignin) 

Average Solid 
Yield 

(% on lignin) 

Ru-5 90.0 
86.8 

1.21 0.19 5.1 
3.9 Ru-6 84.2 1.21 0.19 3.3 

Ru-7 86.2 1.21 0.19 3.2 
Ru-A1 84.9 

86.8 
1.20 0.19 2.7 

2.6 Ru-A2 88.7 1.18 0.18 2.5 
Ru-A3 86.7 1.16 0.18 2.5 
Ru-B1 88.9 91.6 1.22 0.20 4.7 4.6 Ru-B2 94.2 1.22 0.19 4.6 

A: refers to the replicates for first recycling cycle B: refers to the replicates for the second recycling cycle. 
Conditions: 340 °C and 6 hours 

Overall, the results show no deactivation of the catalyst in terms of oil and solid yield. The 
H/C and O/C ratio of the oils depicted in Table 11 confirm that there is no catalyst deactivation. The 
H/C ratios decrease slightly for some experiments in the first recycling cycle, but the results are 
comparable or higher for the second cycle. This means that the differences can be understood as a 
function of uncertainties during the work-up and/or the analytic procedures. The O/C ratio is also 
maintained within acceptable uncertainty limits.  
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4. Conclusion 

Lignin from Norway spruce was successfully converted into aromatic based oil in the presence of 
several noble metal catalysts supported in alumina in a formic acid water media. Oils were produced 
over a range of reaction temperatures (283-397 °C) and reaction times (21 min-11 h 40 min). 
Response surface methodology (RSM) has been proven to be a successful tool to build significant 
models for the oil and solid yield within the studied experimental space. Principal component analysis 
(PCA) is proven to be a successful tool to evaluate the effect of the reaction variables on the oil quality 
and composition, and to extract qualitative data on the reaction mechanism. The recycling of the 
catalyst shows that the Ru catalyst fully retains its activity in two separate recycling tests.  

This systematic approach improved the quantitative understanding of the process  and 
successfully confirmed features previously  noted from less extensive investigations 12. For the 
catalysts, both the noble metal and the γ-alumina are active in the LtL process. The former increases 
the oil yield while decreasing the solid yield. The latter is active in the lignin de-polymerization and in 
the re-polymerization of the lignin monomers, and therefore increases the oil yield at low 
temperatures, where re-polymerization is not favored. Among the noble metals studied Ru gives the 
highest oil yield in the whole experimental space. A strong dependency between the active acidity of 
the alumina support and the Mw of the oil has been also confirmed.   

No correlations between the oil yield and the quality of the oil has been found. The oil yield is 
strongly dependent on the presence of the catalyst, temperature and reaction time, while the oil quality 
is mainly dependent on the temperature and reaction time. Therefore, the optimum reaction conditions 
were found to be around 340 °C and 6 h, where nearly complete conversion of lignin into oil is 
achieved while still having high H/C ratios coupled with low O/C ratios and Mw values.  

The study of the composition of the oil confirms that the reaction mechanism differs between 
the supported catalyst (Ru/Al2O3, Pd/Al2O3 and Rh/Al2O3) system, the γ-Al2O3 system and the non-
catalyzed system. In the supported catalyst systems, the reaction comprises several steps. It starts with 
the de-polymerization of the lignin, followed by de-methoxylation, dehydration and alkylation of the 
monomers. At low temperatures de-methoxylation and dehydration reactions are predominant for the 
reaction times studied, while at high temperatures these reactions take place at short reaction times, 
followed by alkylation reactions. Thus, the final products obtained depend on the reaction temperature: 
at high temperature alkylated compounds such as cresol are favored, while at low temperatures non-
alkylated compounds, such as phenol, are more abundant.   

In an overall perspective, the results show the potential for improving the yields of oil by the 
use of catalysts which are easily recovered, and suggest a good potential for tuning the oil composition 
to specific compositions depending on the requirements for the product. Such processing of lignin 
residues to phenol-type product compositions could be a complementary process to the carbohydrate 
conversion in the utilization of lignocellulosic biomass in a bio-based refinery.  
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7. Supplementary Information 

 

Figure S1: DRIFT spectra of pyridine adsorbed on Al2O3, Rh/Al2O3, Ru/Al2O3, and Pd/Al2O3. 
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Table S1: Analysis of the variance (ANOVA) of the built linear models 

System-Product 
Yield (%) 

Source of 
Variation 

Degrees of 
Freedom 

Summ of 
squares 

Mean 
squares 

F 
statisti

c 
p-

value 

Pda-Oil Yield (%) 
Regression 3 1408.10 469.37 2.51 0.235 

Error 3 560.19 186.73 
Total 6 1968.29 

Pda-Solid Yield (%) 
Regression 3 2011.10 670.35 3.25 0.180 

Error 3 619.00 206.33 
Total 6 2630.10 

Rhb-Oil Yield (%) 
Regression 3 1141.60 380.55 2.20 0.267 

Error 3 518.09 172.70 
Total 6 1659.69 

Rhb-Solid Yield (%) 
Regression 3 1757.10 585.71 3.83 0.150 

Error 3 458.83 152.94 
Total 6 2215.93 

Ruc-Oil Yield (%) 
Regression 3 1833.00 611.02 1.83 0.315 

Error 3 999.32 333.11 
Total 6 2832.32 

Ruc-Solid Yield (%) 
Regression 3 2211.10 737.03 4.41 0.127 

Error 3 501.17 167.06 
Total 6 2712.27 

a) ANOVA analysis for the Pd/Al2O3 system b) ANOVA analysis for the Rh/Al2O3 system c) ANOVA analysis for the 

Ru/Al2O3 system 
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Table S2: ANOVA table for the second order regression models  

System Source of 
Variation 

Degrees of 
Freedom 

Summ of 
squares 

Mean 
squares 

F 
statistic 

p-
value 

NCa Oil Yield 
(%) 

Regression 5 2318.30 463.65 4.01 0.077 
Error 5 578.13 115.63 
Total 10 2896.43 

NCa Solid Yield 
(%) 

Regression 5 4443.80 888.77 5.35 0.045 
Error 5 830.38 166.08 
Total 10 5274.18 

Rub Oil Yield 
(%) 

Regression 5 4398.00 879.60 7.12 0.025 
Error 5 617.79 123.56 
Total 10 5015.79 

Rub Solid Yield 
(%) 

Regression 5 6197.10 1239.40 17.24 0.004 
Error 5 359.47 71.89 
Total 10 6556.57 

Alc Oil Yield 
(%) 

Regression 5 2892.90 578.59 5.05 0.050 
Error 5 572.39 114.48 
Total 10 3465.29 

Alc Solid Yield 
(%) 

Regression 5 4698.30 939.66 7.59 0.022 
Error 5 619.02 123.80 
Total 10 5317.32 

a) ANOVA analysis for the non-catalysed system b) ANOVA analysis for the Ru/Al2O3 system c) ANOVA analysis for 
the γ-Al2O3 system
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Abstract 

The role of formic acid together with the effect of the type of solvent and their synergic interactions 
with a NiMo catalyst were studied for the conversion of lignin into bio-oil in an alcohol/formic acid 
media.  Replacing formic acid with molecular hydrogen or isopropanol decreased considerably the oil 
yield, increased the solid yield and altered the nature of the bio-oil. The differences induced by the 
presence of molecular hydrogen were comparable to the ones observed in the isopropanol system, 
suggesting similar lignin conversion mechanisms for both reacting systems. Additional semi-batch 
experiments confirmed that formic acid does not act merely as an in situ hydrogen source or hydrogen 
donor molecule. On the contrary, formic acid seems to react with lignin through a formylation-
elimination-hydrogenolysis mechanism that leads to the de-polymerization of the biopolymer. This 
reaction competes with the formic acid decomposition mainly into H2 and CO2, forming a complex 
reaction system. To the best of our knowledge, this is the first time that the distinctive role/mechanism 
of formic acid has been observed in the conversion of real lignin feedstock. In addition, the solvent 
seems to play also a vital role in the stabilization of the de-polymerized monomers, especially ethanol, 
and in the elimination/deformilation step.  

1. Introduction  

In recent years the efficient valorization of lignin into a bio-oil rich in aromatic compounds has 
become a key issue within the development of the bio-refinery concept. This recalcitrant biomaterial 
accounts for 10-30 wt % of lignocellulosic biomass and can be obtained either from the cooking 
liquors produced in the paper-pulping industry, or as a by-product of biomass pretreatment processes 
for bio-ethanol production1-2. Hence, its efficient conversion into chemicals and fuels is crucial to 
make the processing of large quantities of lignocellulosic biomass economically viable3. Moreover, as 
lignin is the only renewable source of aromatic hydrocarbons, its conversion will also become 
important in the transition from fossil to renewable based economical models. .  

Major challenges need to be addressed when valorizing lignin into chemicals or fuels. The 
production of lignin-derived value added chemicals requires the simultaneous de-polymerization of the 
biopolymer and the subsequent hydrodeoxygenation of the lignin monomers, but still avoiding the 
extensive hydrogenation of the aromatic rings1. Therefore a process that could combine the 
preservation of the aromatic structure with the production of low O/C, high H/C and stable oils in high 
yields would be the optimum approach.  

A wide variety of chemical methods in the presence of different catalysts have been studied 
aiming to convert the highly cross-linked biopolymer into mono-aromatics. All these methods can be 
summarized into four main categories: cracking, hydrolytic, reductive and oxidative catalytic 
processes3. Catalytic cracking or hydrolytic processes, such as pyrolysis or base-catalyzed de-
polymerization (BCD), produce highly viscous oils with a low pH and small heating values. Thus, an 
additional hydroprocessing step is necessary for further bio-oil upgrading. Similarly, oxidation 
processes are not suitable for converting lignin into fuel-blend or chemicals since they tend to produce 
more complex aromatic compounds with additional functionalities3. Lignin reductive de-
polymerization can therefore be the preferred option to efficiently valorize lignin as long as the 
hydrogenation of the aromatic ring is avoided. 
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Among the reductive processes, solvent-aided catalytic conversion has attracted a great deal of 
attention in recent years. In these methods lignin is converted in the presence of a solvent (water, 
ethanol or methanol), a catalyst and either molecular hydrogen or a hydrogen donor molecule (formic 
acid, isopropanol or tetralin)1, 3-7. One of these promising lignin conversion methodologies, known as 
lignin-to liquids (LtL), involves the use of formic acid (FA) and a solvent, among which ethanol gives 
the best results8. High oils yield, with high H/C and low O/C ratios are achieved, still retaining the 
phenol-type structure of the bio-oil components. The catalytic LtL process has also been examined7, 9-

10, obtaining higher oil yields and still retaining its aromatic.  

Nevertheless, very little is understood about the role of formic acid and its influence on the 
conversion of lignin into bio-oil. Formic acid is known to act as an in situ molecular hydrogen source 
or hydrogen donor molecule in several reactions and processes11-18. Few studies have focused their 
attention on comparing the effect of formic acid with molecular hydrogen or other hydrogen donor 
molecules in the de-polymerization of lignin. Kloekhorst et al.7 studied the effect of substituting 
formic acid for isopropanol, a well-known hydrogen donor molecule; but the reaction conditions 
chosen led in all cases to oil yields close to full conversion, what makes impossible to drawn any clear 
conclusion. Ma et al.19 studied the effect of different hydrogen donor molecules and molecular 
hydrogen  in the catalytic solvolysis of lignin with little focus on the role of the different species in the 
reaction mechanism.  

In recent years different research groups have suggested novel reaction pathways involving 
lignin model compounds and formic acid20-21 or lignin model compounds and similar organic acids, 
such as acetic acid22. However, comparison of these hypotheses with the conversion of real lignin is 
lacking. Under this background, the present study aims to gain a better understanding on the role of 
formic acid in the LtL process via a holistic approach. Additionally, the role of the catalyst, the type of 
solvent and their synergistic interactions with the formic acid will be examined.  

Initially, the role of formic acid as a possible in situ hydrogen source or hydrogen donor 
molecule was studied by replacing formic acid either totally or partially with H2, H2/CO2 or a well 
know hydrogen donor molecule; isopropanol. Additional experiments were carried out feeding formic 
acid continuously along the course of the reaction, in order to evaluate the role of formic acid in the 
different reaction stages. Finally, the effect of different solvents such as ethanol, methanol and 
isopropanol on the reaction system was analyzed. Blank experiments were performed to determine the 
non-catalytic and catalytic degradation rates of formic acid under the different reaction conditions.  
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2. Material and Methods 

2.1 Chemicals 

Formic acid (>98%), ethanol (>99.5%), tetrahydrofuran (>99.9%) ethyl acetate (99.8%) and sulfuric 
acid (95-97%) were purchased from Sigma Aldrich and used as received. γ-Alumina (>97%), nickel 
(II) nitrate hexahydrate (99.9+%.Ni) and ammonium molybdate tetrahydrate (99.98%-Mo) were 
purchased from Strem Chemicals Inc and used as received. Eucalyptus lignin from enzymatic 
hydrolysis of biomass was provided by SEKAB. The lignin was ground, sieved (<500μm) and dried at 
100oC for 24 h prior to use. 

2.2 Catalyst synthesis and characterization 

The catalyst was selected from a previous screening study among different NiMo catalysts supported 
on sulfated and non-sulfated γ-alumina and zirconium oxide 23-24. For the synthesis of the selected 
catalyst 10 g of the γ-alumina were first subjected to a thermal treatment on air at 450 oC for 4 h with a 
heating ramp of 3 oC/min. 8 g of the calcined alumina were impregnated with 14 mL of a sulfuric acid 
solution (0.5 wt%) and stirred for 24 hours. The solution was dried and the resulting solid, was 
calcined at 600 oC for 4 h with a heating ramp of 3 oC/min, to obtain a sulfated alumina (AA). The 
NiMo catalyst was later prepared by successive incipient-wetness of the AA with an aqueous solution 
of ammonium molybdate (NH4)6Mo7O24·4H2O) followed by an aqueous solution of nickel nitrate 
(NiNO3·6H2O). The nominal loading of MoO3 and NiO are 12 % and 5 % respectively. After 
impregnation the catalyst was dried at 105 oC for 20 min and calcined under static air at 570 oC for 2 h 
with a heating ramp of 2 oC/min. Finally, the calcined catalyst was subjected to thermal treatment 
under a hydrogen flow (10 v% and 10 mL/min) at 550 oC for 2 h with a heating ramp of 2 oC/min and 
used shortly after the treatment. The resulting solid is named as NiMo/AA.  

The catalyst was characterized by N2-adsorption, ICP-EOS, CO-Chemisorption and 
temperature-programmed desorption of ammonia (NH3-TPD). The methods used for each technique 
are described in the Supplementary Information. The main physic-chemical characteristics of the 
catalyst are summarized in Table 1.  

Table 1: BET surface area, nominal and real NiO and MoO3 content, Ni dispersion and acidity of the 
NiMo/AA  

SBET
 

(m2/g) 
NiO (%)a Ni dispersion 

(%)b 
MoO3 (%)a Acidity 

(mmol NH3/g cat)c Nominal Real Nominal Real 
179.3 5.0 3.6 1.4 12.0 10.7 0,5468 

a Calculated by ICP b Values obtained by CO-chemisorption c Calculated by NH3-TPD for a 
temperature range of 85-340oC 

2.3 Experimental procedure 

2.3.1 Batch experiments 

2.3.1.1 Batch experiments in stirred reactor (BS):Typically (ET-FA-BS experimental series), 
lignin(8.16 g), formic acid (7.14 g), ethanol (12.24 g) and the catalyst (0.816 g) if any, were added to 
an stainless steel (SS316) 300 mL stirred-reactor from Autoclave Engineers. The reactor was weighed 
and sealed. The reactor was pressurized with 40 bar of nitrogen to eliminate the residual oxygen and to 
check for leaks. After degassing the nitrogen the system was heated to 320 oC for 6 h with a stirring 
rate of 700 rpm. The temperature and pressure of the reactor were monitored during the whole process. 
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The reaction time started counting when the reactor mantle reached 320 oC. An additional catalyzed 
experiment (ET-FA-BS-C-R) was carried out to evaluate the reproducibility of the experiments. 

In those experiments where formic acid was replaced by H2 (ET-H2-BS series) or a mixture of 
H2:CO2 (ET-H2/CO2-BS series), the system was pressurized with 17.5 bars of hydrogen or of a mixture 
of H2:CO2 (1:1) after purging with nitrogen.  This is the pressure of the system found at room 
temperature when 7.14 g of formic acid decomposed into gas. When formic acid was partially replaced 
by hydrogen (ET-FA/H2-BS series), 2.75 g of formic acid were added initially in the reactor together 
with the rest of the reactants and the reactor was pressurized with 10.5 bars of hydrogen for the same 
reason as before . In the case where formic acid is replaced by an isopropanol/H2 mixture (ET-ISO/H2-
BS-C experiment), 3.59 g of isopropanol were added initially in the reactor and the reactor was 
pressurized with 10.5 bars of hydrogen. The number of moles of isopropanol in the ET-ISO/H2-BS-C 
experiment were the same as the amount of moles of formic acid used in the ET-FA/H2-BS series.  

2.3.1.2 Batch experiments in non-stirred reactor (BNS): The experiments were carried out in a 
stainless steel reactor (Parr 4742 non-stirred reactor, 25 mL volume). The amounts of reactants were 
calculated considering the volume ratio between the stirred and the non-stirred reaction (the volume 
ratio is 25/300). The reactor was sealed, weighed and heated at 320 oC for 6 h in a Carbolite LHT 
oven; the reaction time started when the reactor was introduced in the oven.  

2.3.2 Semi-batch experiments (SBS)  

Two different semi-batch configurations were performed. For the ET-FA-SBS1 series lignin (8.16 g), 
formic acid (2.75 g), ethanol (9.75 g) and the catalyst (0.816 g) if any were added to the 300 mL 
stirred-reactor as described above. In this case, a solution of formic acid:ethanol (1:1 v/v) was 
continuously fed (0.02 mL/min) with a Wilson HPLC 307 pump during the 6 h reaction time. For the 
ET-FA-SBS2 series, lignin (8.16 g), ethanol (7.57 g) and the catalyst (0.816 g) if any were added to 
the reactor. In this case the  formic acid:ethanol (1:1 v/v) solution was continuously fed at a 0.033 
mL/min flow during the course of the reaction. The flows were calculated so that the amounts of 
formic acid and ethanol after the reaction time were equivalent to the amounts initially added for the 
ET-FA-BS series. The amount of reactants for all the experiments described above are summarized in 
Table S1, Supplementary Information. 

2.3.3 Sample work-up 

A detailed description is given elsewhere by Oregui Bengoechea et al.9. Briefly summarized, after 
reaction completion the reactor was cooled down overnight to ambient temperature,the produced gas 
was vented and the gas quantity determined. The reactor was opened and the liquid reaction mixture 
was extracted with a solution of ethyl acetate: tetrahydrofuran (90:10 v/v).  The solid phase (unreacted 
lignin, reaction products and catalyst) was filtered and dried at ambient conditions for 2 days before 
weighing. A dark-brown organic phase was extracted, dried over Na2SO4 and concentrated at reduced 
pressure (ca. 160 mmbar) at 40oC. The final oil and solid yields were determined by weight and are 
reported relative to lignin input (g of oil or char/g of introduced lignin).  The solid yield for the 
catalyzed systems was calculated after subtracting the amount of catalyst introduced; therefore the 
solid yield refers to the organic solids (char) and the inorganic lignin ashes.  
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2.4 Experiments without lignin (blank experiments) 

2.4.1 Stirred reactor  

Three blank experiments ethanol and formic acid were carried out following the procedure described 
in Section 2.3.1.1: a catalyzed (C) experiment -51 min reaction time- and two non-catalyzed (NC) 
experiments -51 min and 6 h reaction time After the reaction, the liquid inside the reactor was filtered 
and 1 mL of the solution was dissolved in 69 mL of distilled water. 30 mL of the resulting solution 
was titrated with a solution of NaOH (1 mL) to calculate the amount of unreacted formic acid. 

2.4.2 Non-stirred reactor 

Six catalyzed blank experiments with formic acid, the catalyst and a solvent (methanol, ethanol and 
isopropanol) were carried out following the procedure described in Section 2.3.1.2: for each solvent 
the blank was performed twice, for 40 and 68 min. After the reaction, the liquid inside the reactor was 
filtered and 0.5 mL of the solution was dissolved in 45.5 mL of distilled water. 25 mL of the resulting 
solution were titrated with a solution of NaOH (0.085 M) to calculate the amount of unreacted formic 
acid. 

2.5 Characterization of the oils 

2.5.1 Elemental Analysis 

All samples were analyzed for their elemental composition in the CHNS mode with a Vario EL III 
instrument using helium as carrier gas. The amount of oxygen was calculated by difference. 
 

2.5.2 GPC-SEC 

The sample (1 mg) was dissolved in 1 mL of THF. The solution (20 μL) was injected into a GPC-SEC 
system equipped with a PLgel 3ìm Mini MIX-E column, and analyzed at a flow rate of 0.5 mL/min of 
THF at 21.1oC. The detection was performed with UV at 254 and 280 nm, as well as with RI. The set 
of columns was calibrated with a series of polystyrene standards covering a molecular-mass range of 
162–2360 Da. 

2.5.3 GC-MS 

The LtL-oil was analyzed on a 5977A Series GC/MSD System from Agilent Technologies.  A 
EtAc:THF (90:10 v/v) mixture was used as solvent and the samples were analyzed using splitless 
injection at 280 °C (injector temperature) on a 30 m HP-5MS capillary column ((5% phenyl)-
methylpolysiloxane), 0.250 mm ID from Agilent Technologies. A constant gas flow rate of 1 mL/min 
and the following GC oven temperature program were applied: 40oC for 5 min, followed by a heating 
ramp of 6oC/min from 40oC to 280oC and a heating ramp of 40oC/min from 280oC to 300oC. The GC–
MS inter phase valve delay was set to 5 min and the MS detector operated in positive mode at 70 eV 
with an ion-source temperature of 250 °C. Compounds were identified using the ChemStation 
software and the NIST 2.0 library. 

2.5.4 FT-IR 

The FTIR spectra were recorded on a Nicolet iS50 FT-IR Spectrometer from Thermo Scientific by 
applying the sample to an attenuated total reflectance (ATR) crystal. The main measurement features 
were a spectral range from 4000 to 400 cm−1, 16 scans, and a resolution of 4 cm−1. 
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3. Results  

3.1 Reproducibility and effect of the reactors 

Only the ET-FA-BS-C experiment was reproduced to evaluate the uncertainty of the reaction 
procedure. Table 2 (entry 4-5) shows the oil and solid yield for both replicates. For the first replicate, 
ET-FA-BS-C experiment, the oil yield accounts for 38.4 % of the initial lignin input while for the 
second replicate, ET-FA-BS-C-R experiment, the oil yield is 35.0 %. When it comes to the solid yield 
the difference between the experiments is of 2.4 points; 32.9 % for the ET-FA-BS-C and 35.3 % for 
the ET-FA-BS-C-R experiment. The values are therefore within around 3 points uncertainty on the 
yield, which confirms the reproducibility of the experiments. 

In addition, two other experiments were carried out in the non-stirred 25 mL Parr reactor 
(entries 1-2, Table 2). The aim of these experiments was to evaluate the effect of the stirring and the 
reactor volume in the final outcome. Both reactors are made of the same material, 316 Stainless Steel, 
and thus both surfaces should present similar catalytic activity 9. Overall, the experiments in the small 
system give higher lignin recovery yields, but the oil and solid yields are comparable (entries 1-4, 
Table 2). In both cases, a comparable increase in the oil yield, 14.1 for the non-stirred and 15.4 for the 
stirred reactor; together with a comparable decrease in the solid yield, 12.9 for the non-stirred and 10.7 
for the stirred reactor, is observed between the catalyzed and the non-catalyzed counterparts. This 
suggests that the possible negative effect of having a bigger reactor volume such as the mass transfer 
and heat transfer limitations might be overcame by the effect of the stirring. This proves that the tested 
LtL procedure is reproducible and robust.  

3.2 Influence of the source of hydrogen  

The main aim of this paper is to understand the LtL reaction system; that is the interactions between 
the lignin, the formic acid, the catalyst and the solvent, and how they affect the characteristics and 
yield of the oil. As a first hypothesis, we studied the role of formic acid as a possible hydrogen source 
or hydrogen donor molecule. On the one hand, formic acid can decompose either into hydrogen and 
carbon dioxide, or water and carbon monoxide at high temperatures; although its decomposition 
kinetics can be modified by the presence of a catalyst25-29. Previous results in our group suggest that in 
the LtL process formic acid is mainly decomposed into hydrogen and carbon dioxide9 .For this reason, 
the oil and solid yields of those experiments carried out with formic acid were compared with 
experiments where this molecule was substituted either partially (ET-FA/H2-BS) or totally by 
molecular hydrogen or by a mixture of H2:CO2 (1:1) (entries 3-4, 6-11, Table 2).  Both the catalytic 
and the non-catalytic systems were considered. On the other hand, formic acid can also act as a 
hydrogen donor molecule through a catalytic hydrogen transfer mechanism. Isopropanol is known to 
be a good hydrogen donor in catalytic transfer hydrogenation reactions; it decomposes into acetone 
and hydrogen through a reversible reaction4, 30. Hence, isopropanol can be regenerated in situ during 
the course of the reaction31-32. An experiment with isopropanol and hydrogen in the presence of the 
catalyst was performed, ET-ISO/H2-BS-C (entry 12, Table 2) and the results compared with the ET-
FA/H2-BS-C experiment (entry 11, Table 2). 
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Table 2: oil, solid and lignin recovery yields together with the characterization of the oil and solids 

Entry Experiment 
(Aa-Bb-Xc-Cd) 

Oil 
Yield (%) 

Solid 
Yield (%) 

Lignin Recovery 
Yield (%) 

Oils Mw 
(Da) (O/C) (H/C) 

1 ET-FA-BNS-NC 27.5 47.3 74.7 - - - 
2 ET-FA-BNS-C 41.6 34.4 76.0 - - - 
3 ET-FA-BS-NC 23.0 43.6 66.7 0.15 1.28 313 
4 ET-FA-BS-C 38.4 32.9 71.3 0.13 1.26 361 
5 ET-FA-BS-C-R 35.0 35.3 70.3 - - - 
6 ET-H2-BS-NC 14.4 55.6 70.1 0.21 1.33 331 
7 ET-H2-BS-C 19.7 52.0 71.7 0.11 1.39 322 
8 ET-H2/CO2-BS-NC 14.7 55.8 70.5 0.22 1.35 292 
9 ET-H2/CO2-BS-C 17.8 54.2 71.9 0.13 1.40 327 
10 ET-FA/H2-BS-NC 18.3 51.9 70.2 0.20 1.30 532 
11 ET-FA/H2-BS-C 26.6 42.9 69.5 0.17 1.28 540 
12 ET-ISO/H2-BS-C 21.3 51.3 72.7 0.13 1.34 371 
13 ET-FA-SBS1-NC 23.3 44.9 68.2 0.19 1.26 420 
14 ET-FA-SBS1-C 27.3 44.7 76.5 0.15 1.29 467 
15 ET-FA-SBS2-NC 25.2 46.4 71.5 0.22 1.24 513 
16 ET-FA-SBS2-C 29.6 44.3 73.9 0.19 1.31 469 
17 ISO-FA-BS-C 21.7 43.7 65.4 0.15 1.24 387 
18 ME-FA-BS-C 23.8 44.1 67.8 0.17 1.24 364 

aA: refers to the type of solvent bB: refers to the type of hydrogen source cC: refers to the type of reactor and 
reaction configuration dY: refers weather the experiment is catalyzed or non-catalyzed reactor eR: refers to the 
replicate experiment fIn this case refers to isopropanol instead of formic acid gIn this case refers to isopropanol 
instead of ethanol hIn this case refers to methanol instead of ethanol ET: ethanol MET: methanol ISO: 
isopropanol FA: formic acid H: molecular hydrogen CO2: carbon dioxide BS: Batch experiments in stirred 
reactor BNS: Batch experiments in non-stirred reactor SBS: Semi-batch experiments 

The evolution of the pressure depicted in Figure 1 shows that above a temperature of 200 oC, 
or reaction times longer than 50 minutes, the pressures of the systems behave similarly for all the 
experiments. The same happens with the lignin recovery yields that vary between 66.7 wt % (for the 
ET-FA-BS-NC) and 72.7 % (for the ET-ISO/H2-BS-C); hence the reaction conditions are similar in all 
the cases, which allow comparing the modified parameters and drafting conclusions from the 
experimental results.  
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Figure 1a: Pressure vs Temperature for the ET-FA-BS, ET-H2-BS, ET-H2/CO2-BS, ET-FA/H2-BS and ET-
ISO/H2-BS-C series Figure 1b: Pressure vs Reaction time for the ET-FA-BS, ET-H2-BS, ET-H2/CO2-BS, ET-
FA/H2-BS and ET-ISO/H2-BS-C series 

Figures 2a and 2b show the oil and solid yield for the above mentioned experiments. The 
analysis of the graph confirms that the presence of formic acid is positive when it comes to a higher oil 
and lower solid yield. In fact, those experiments with both formic acid and molecular hydrogen give 
better results than the experiments were only H2, H2:CO2 or H2/isopropanol is used. For the non-
catalyzed systems the highest oil yield is obtained for the ET-FA-BS-NC experiment (23.0 %) 
followed by the ET-FA/H2-BS-NC experiment (18.3 %) and the ET-H2/CO2-BS-NC and ET-H2-BS-
NC experiments (14.7 % and 14.4 %, respectively). All the catalyzed experiments give higher oil and 
lower solid yields than their non-catalyzed counterparts; nevertheless, the same trend as in the non-
catalyzed systems is observed: the highest oil yield is obtained for the ET-FA-BS-C (41.6 %) followed 
by the ET-FA/H2-BS-C (26.6 %), and the ET-H2-BS-C and ET-H2/CO2-BS-C experiments (19.7 % 
and 17.8 % respectively). Interestingly, the oil and solid yields of the ET-ISO/H2-BS-C experiment, 
21.3 % and 51.3 %, are closer to the yields obtained for the ET-H2-BS-C and ET-H2/CO2-BS-C 
experiments rather than for the ET-FA/H2-BS-C experiment. This lower activity of isopropanol with 
respect to formic acid is in accordance with previous studies conducted by Toledano et al.4.  

    
Figure 2a: oil and solid yield for the ET-FA-BS-NC, ET-H2-BS-NC, ET-H2/CO2-BS-NC, ET-FA/H2-BS-NC  
Figure 2b: oil and solid yield for the ET-FA-BS-C, ET-H2-BS-C, ET-H2/CO2-BS-C, ET-FA/H2-BS-C and ET-
ISO/H2-BS-C series 
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When comparing the results for the ET-H2-BS and ET-H2/CO2-BS series it is clear that the 
partial pressure of hydrogen does not significantly affect the results in terms of oil and solid yield; at 
least for the pressure range studied. This is in accordance with the results obtained by Zhang et al.33 
and Li et al.6 that claimed that above a certain hydrogen pressure the oil yield stabilizes.  

 
Figure 3a: H/C ratio vs oil yield for the ET-FA-BS (black), ET-H2-BS (red), ET-H2/CO2-BS (green), ET-FA/H2-
BS (purple) and ET-ISO/H2-BS series (maroon) Figure 3b: O/C ratio vs oil yield for the ET-FA-BS (black), ET-
H2-BS (red), ET-H2/CO2-BS (green), ET-FA/H2-BS (purple) and ET-ISO/H2-BS series (maroon) 

 To further confirm the difference between the role of hydrogen, isopropanol and formic acid 
in the lignin conversion, several oil properties were analyzed. The H/C and O/C ratio of the oils with 
respect to the oil yield are depicted in Figure 3a and 3b, respectively. The main conclusion that can be 
drawn from the graphs is that high H/C and low O/C oils do not necessarily mean a higher oil yield. 
Moreover, the oil yield is more affected by the presence of formic acid in the reaction system than by 
the presence of the catalyst. For those systems where no formic acid is used (ET-H2-BS and ET-
H2/CO2-BS series), the presence of the catalyst gives a significant increase in the H/C ratio while the 
oil yield just increases slightly. This indicates that for the experiments with molecular hydrogen the 
increase in the oil yield is an effect of the stabilization of the monomers either by hydrogenation or 
alkylation reactions (discussed below). On the contrary, in the systems where formic acid was used 
(ET-FA-BS and ET-FA/H2-BS series), the presence of the catalyst significantly increases the oil yield 
but slightly decreases the H/C ratio; suggesting that the higher degree of lignin de-polymerization is 
achieved by other reaction mechanism than just a catalytic transfer hydrogenation.  

This difference can also be observed when analyzing the O/C ratio. In all the cases the 
increase of the oil yield in the catalytic versions is accompanied by a decrease in the O/C ratio. 
However, this decrease is less significant when formic acid is present, with minimum differences 
between the ET-FA-BS-NC and ET-FA-BS-C experiments (0.15 and 0.13 respectively). Hence, the 
deoxygenation of the monomers might be an important mechanism for the stabilization of the lignin 
monomers for the experiments without formic acid, but is not so critical when formic acid is present in 
the reaction mixture.  The elemental analysis results also confirm that the ET-ISO/H2-BS-C and ET-
H2-BS-C oils are similar in terms of H/C and O/C ratios, whereas the ET-ISO/H2-C and ET-FA/H2-
BS-C oils give significantly different H/C and O/C ratios. 
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Regarding the average molecular weight of the oils (Mw), all the experiments except for the 
ET-FA/H2-BS series give oils with low average molecular weight distribution (entries 3-4, 6-11, Table 
2), suggesting that the components within the oils are fully depolymerized and stable. This again 
shows the disparity between the ET-ISO/H2-BS-C and the ET-FA/H2-BS-C experiment, since the Mw 
values of the oil are significantly different, 371 Da and 540 Da, respectively. 

The GC-MS analysis confirms the results obtained by the elemental analysis. Typically all the 
oils contain methoxy-, hydroxyl- and alkyl-substituted benzenes, although the abundance and type of 
compounds differs between the oils. In those experiments carried out in the absence of formic acid, the 
catalytic experiments give oils with lower frequency of methoxy- and higher frequency of alkyl-
substituted groups, which explains the higher H/C and lower O/C ratios found by the elemental 
analysis. The GC-MS chromatogram for the ET-H2-BS-NC and ET-H2-BS-C is depicted in Figure 4, 
the behavior of the ET-H2/CO2-BS-NC and ET-H2/CO2-BS-C is analogous and their chromatograms 
are shown in Figure S1, Supplementary information. According to Hensen et al.1, ethanol acts also as 
a capping agent which can stabilize the highly reactive phenolic intermediates by O-alkylation of 
hydroxyl groups and by C-alkylation of the aromatic rings. Our results suggest that the alkylation 
together with the decrease of the methoxy groups, probably through hydrogenolysis, are the 
mechanisms that contribute to the oil yield increase caused by the catalyst for the ET-H2-BS and ET-
H2/CO2-BS series. The partial pressure of hydrogen, however, has no significant effect in the results 
what suggest that there is an excess of hydrogen in the reaction.  

Figure 4: Chromatograms for the ET-H2-BS-NC, ET-H2-BS-C and ET-ISO/H2-BS-C experiments 
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On the contrary, for the ET-FA-BS series only little differences can be observed between the 
catalyzed and the non-catalyzed counterparts; only slightly higher amounts of alkylated compounds 
are found as shown in Figure 5, which is in accordance with the elemental analysis. For both the un-
catalyzed and catalyzed counterparts methoxy substituted phenols are the most abundant type of 
compounds; meaning that in this case the presence of the catalyst does not increase significantly the 
de-methoxylation rate of the lignin monomers.  For the ET-FA/H2-BS series, there is not so good 
correlation between the elemental analysis and the GC-MS results (Figure S2, Supplementary 
Information). In the ET-FA/H2-BS-C oil slightly lower amounts of methoxy and higher amount of 
hydroxyl- and alkyl substituents are found: this could justify the lower O/C ratio but would imply that 
the H/C ratio should be higher.  Nevertheless, the higher Mw values found in this series indicates the 
presence of compounds in the oil that are not detected by GC-MS; and therefore this analysis may not 
be as representative for the oil as in the case of the ET-FA-BS, ET-H2-BS and ET-H2/CO2-BS series.  

Figure 5: Chromatograms for the ET-FA-BS-NC and ET-FA-BS-C experiments 

The GC-MS analysis also shows the resemblance between the ET-ISO/H2-BS-C and ET-H2-
BS-C experiments (Figure 4), and the difference between the former and the ET-FA/H2-BS-C (Figure 
S2). The former contain the same type of compounds, with no methoxy substituted phenols; whereas 
in the latter a considerable amount of methoxy substituted phenols are found. The FTIR spectra of the 
oils support these observations. The spectra of the ET-H2-BS-C and ET-ISO/H2-BS-C experiments are 
identical in terms of both peaks and intensity (Figure 6a) while the ones for the ET-FA/H2-BS-C and 
ET-ISO/H2-BS-C differ considerably (Figure 6b). One of the main differences between the ET-FA/H2-
BS-C and ET-ISO/H2-BS-C spectra is the intensity of the peaks around 1250 cm-1 region. This peak 
corresponds to the guaiacyl ring breathing with C-O stretching34-35; which confirms what it was 
already seen in the GC-MS analysis: the ET-FA/H2-BS-C oil contains a high amount of methoxy 
substituted phenols that are not present in the ET-ISO/H2-BS-C oil.  
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Figure 6a: FT-IR spectrogram of the ET-H2-BS-C and ET-ISO/H2-BS-C experiments Figure 6b: FT-IR 
spectrogram of the ET-FA/H2-BS-C and ET-ISO/H2-BS-C experiments 

3.3 Effect of feeding formic acid continuously 

Certain catalysts can increase the decomposition rate of formic acid36, a phenomenon that could affect 
the interaction between the acid and the lignin and hence the lignin conversion rate. To evaluate the 
activity of our catalyst towards the decomposition of formic acid three blank experiments, with no 
lignin, were carried out. The evolution of the pressure for the blanks and the titration results are shown 
in Figure S3 (Supplementary Information) and Table 3, respectively. Figure S3 (Supplementary 
Information) shows how the pressure of the catalyzed blank test increases significantly faster than the 
pressure in the non-catalyzed blanks. In fact, the catalyzed blank reaches a pressure of 65 bars after 51 
minutes, while the non-catalyzed blank does not even reach 44 bars. After 360 min of reaction time the 
pressure of the non-catalyzed blank is 62 bars.  

The titration results shown in Table 3 confirmed that this pressure increase is correlated with 
the decomposition rate of formic acid. In the non-catalyzed blank test, there is still 57.0 % of formic 
acid left after 51 minutes, whereas for the catalyzed blank there is only 12.4 % left. These results 
indicate that in the catalyzed systems there is almost no formic acid present after the first hour of 
reaction.  

Table 3: Gas amount, residual formic acid percentage and final reactor pressure of the B, B-C and B-F 
blanks 

Catalyst Reaction 
Time (min) 

Gas amount 
(g) 

Volume 
NaOH (ml) 

Formic acid 
(%)a 

Final Reactor 
Pressure (bar) 

No 51 3,8 17,75 57,0 43.7 
Ni-MoAA 51 7,6 3,85 12,4 65.2 

No 360 7,8 0 0 61.3 
aPercentage of formic acid that has decomposed calculated by titration 

In an attempt to determine whether the continuous presence of formic acid during the 6 h 
reaction time could be beneficial to increase the oil yield, two additional reaction configurations were 
proposed: a semi-batch experiment where part of the formic acid is introduced initially and the rest 
continuously (ET-FA-SBS1 series), and a second semi-batch experiment where formic acid is only 
introduced continuously along the course of the reaction (ET-FA-SBS2 series). Both the catalytic and 
non-catalytic systems were considered and the results compared with the batch counterparts (ET-FA-
BS series). These results are summarized in Table 2 (entries 3-4 and 13-16, Table 2).   
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The pressure profiles in the experiments differ greatly as a function of the configuration 
(Figure S4a and S4b, Supplementary information) yet the final reactor pressures are comparable, and 
so are the lignin recovery yields (Table 2). Figure 7 shows the oil and solid yields for the batch and 
semi-batch experiments (entries 3-4 and 13-16, Table 2). In the catalyzed experiments, Figure 7b, the 
highest oil and lowest solid yield is obtained by far for the batch configuration. In the non-catalyzed 
experiments, however (Figure 7a), the results are similar whether formic acid and ethanol are added at 
the beginning or in a continuous way. Interestingly, the oil and solid yields obtained for the semi-batch 
experiments are similar to the ones obtained in the ET-FA/H2-BS series, when molecular hydrogen is 
present. 

 
Figure 7a: oil and solid yield for the ET-FA-BS, ET-FA-SBS1 and ET-FA-SBS2 experiments Figure 7b: oil 
and solid yield for the ET-FA-BS, ET-FA-SBS1 and ET-FA-SBS2 experiments 

Moreover, the nature of semi-batch oils is also more similar to those oils produced in the 
presence of molecular hydrogen (ET-H2-BS and ET-H2/FA-BS series) than to the oils produced in the 
ET-FA-BS series; when only formic acid is added initially in the reactor. The GPC-SEC analysis of 
the oils (entries 13-16, Table 2) indicates that semi-batch experiments give oils with relatively high 
Mw values. In most of the cases, these values are closer to the ones obtained for the ET-FA/H2-BS.  In 
both semi-batch series (ET-FA-SBS1 and ET-FA-SBS2 series) the increase on the oil yield is 
accompanied by an increase of the H/C ratio (Figure S5a, Supplementary Information), a behavior that 
is only observed in those experiments were molecular hydrogen is present (ET-H2-BS). In the case of 
the O/C ratio (Figure S5b), on the other hand, this oil yield increase is accompanied with a decrease on 
the O/C ratio comparable in magnitude to the decrease observed in the ET-FA/H2-BS series. Finally, 
the GC-MS analysis of semi-batch experiments, Figure S6 Supplementary Information, indicates that 
the oils contain a higher amount of identified low volatile compounds. These compounds are similar in 
amount and nature to the ones found in the ET-FA/H2-BS series (Figure S2); both for the non-
catalyzed and catalyzed experiments.  

Therefore, the role of formic acid seems to be different based on the reactor configuration. In 
the catalyzed semi-batch experiments the production of molecular hydrogen and CO2 from the 
decomposition of formic acid is more relevant, and formic acid acts more like a source of hydrogen.  
In the batch experiments, where all the formic acid is from the beginning in contact with the lignin, 
other reactions besides the decomposition seem to occur. These results, together with the formic acid 
reaction rate results on Table 3, suggest that when a catalyst is present formic acid takes part mainly in 
the initial stages of the lignin conversion, and that there is a competition between its decomposition 
and its interaction with the lignin. 
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3.4 Effect of the solvent 

The role of the type of solvent was also considered in this study. Other alcohols with similar physical 
and chemical properties such as isopropanol and methanol have been studied in the presence of the 
NiMo/AA catalyst in the formic acid-aided lignin decomposition (entries 4, 16-17, Table 2).   Figure 8 
shows the evolution of the pressure for the three experiments. The graphs show that initially the 
pressure of the ET-FA-BS-C increases faster than for the ISO-FA-BS-C and ME-FA-BS-C 
experiments but after 40 minutes, when the systems reaches 60 bars, all the systems behave 
analogously. The lower lignin mass balance and the higher amount of gas produced during the reaction 
indicate that in the isopropanol and methanol systems a higher amount of lignin is gasified.  

 
Figure 8a: Pressure vs Temperature for the ET-FA-BS-C, ISO-FA-BS-C and ME-FA-BS-C experiments Figure 
8b: Pressure vs Reaction time for the ET-FA-BS-C, ISO-FA-BS-C and ME-FA-BS-C experiments  

The interaction between formic acid and the different solvents was also studied to evaluate 
their effect on the formic acid decomposition rate. Blank experiments carried out in the small-scale 
reactors show that the decomposition rates of formic acid in isopropanol and methanol are comparable 
or even faster than the decomposition rate in ethanol (Table S2, Supplementary Information). After 40 
minutes of reaction the amount of formic acid still left in the methanol system is 34.8 %, in the ethanol 
system is 47.8 %, and in the isopropanol system 48.8 %. Hence, the decomposition rate of formic acid 
is faster in methanol than in ethanol or isopropanol.  

The oil and solid yield depicted in Figure 9 shows that ethanol is the best solvent for 
increasing the oil and decreasing the solid yield. ISO-FA-BS-C and ME-FA-BS-C experiments have a 
much lower oil yield and a higher solid yield than the ET-FA-BS-C experiments (Figure 9 and entries 
4 and 16-17, Table 2). Still, the GPC-SEC and elemental analysis show that there are not significant 
differences in the type of oils produced.  The Mw values vary from 361 Da, for the ET-FA-BS-C 
experiment, to 387 Da for the ISO-FA-BS-C experiment. The H/C ratios are also comparable (1.26 for 
the ET-FA-BS-C experiment and 1.24 for the ISO-FA-BS-C and ME-FA-BS-C experiments), while a 
bigger variability is found in the O/C ratios that oscillate between 0.13 ( ET-FA-BS-C) and 0.17 ( ME-
FA-BS-C). 
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Figure 9: oil and solid yield for the ET-FA-BS-C, ISO-FA-BS-C and ME-FA-BS-C experiments 

The GC-MS analysis depicted in (Figure S7) show that the types of compounds found in the 
oils are similar, especially between the ET-FA-BS-C and ISO-FA-BS-C experiments. The ME-FA-
BS-C oil contains a higher amount of oxygenated compounds which is consistent with previous 
reports1 and justifies the higher O/C values . These results suggest that the mechanism of de-
polymerization of lignin is similar regardless of the solvent and that is more affected by the presence 
or absence of formic acid.   

4. Discussion: the role of formic acid and the solvent 

The reported experimental results highlighted the paramount role of formic acid in achieving high oil 
yields. Moreover, from the results shown in Section 3.2 it can concluded that the conversion of lignin 
aided by formic acid does not follow the same reaction mechanism as when lignin is converted in the 
presence of molecular hydrogen or an alternative hydrogen donor molecule such as isopropanol. Only 
small differences in the results are observed when isopropanol or hydrogen is used in the system, 
while large differences are seen when these experiments are compared with the experiments performed 
in the presence of formic acid. This difference in the lignin conversion mechanism is clear when 
comparing the oil yields and elemental analysis of the ET-H2-BS and ET-FA-BS series. For the 
former, the addition of the catalysts changes considerably the H/C and O/C ratio while increasing only 
slightly the oil yield. The effect of the catalyst is therefore the stabilization of the monomers by 
hydrodeoxygenation and alkylation which would justify this slight oil increase. For the latter, 
however, the addition of the catalyst increases the lignin depolymerization rate with small differences 
in the H/C and O/C ratio. Moreover, the results of formic acid reaction rate (Table 3) and of the semi-
batch experiments, point out that formic acid plays a role mainly in the first stage of the lignin 
conversion.  

All this suggests that formic acid is involved in the lignin de-polymerization mechanism 
resulting in a reaction pathway that is different from reactions involving molecular hydrogen or 
catalytic transfer hydrogenation. Two mechanisms have been proposed involving lignin model 
compounds and short-chain organic acids for the conversion of this biopolymer into low molecular 
weight components. Stahl et al studied the formic-acid catalyzed depolymerization of a pre-oxidized 
lignin model compound to monoaromatics at 110 oC20; and this investigation was later expanded by 
Wang et al.21 through a DFT study to clarify the reaction mechanism. Their interpretation is that the 
conversion proceeds sequentially via a formylation, elimination and hydrolysis mechanism. The 
elimination of formic acid is the limiting step, and it is catalyzed by a base, in this case sodium 
formate.  
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They claim that the oxidation of the Cα
 carbon is necessary for the conversion of the lignin by 

this process. However, the DFT study proves that this reaction could happen without this previous 
preoxidation, since the effect of the oxidation is to increase the reaction rate of the elimination step by 
lowering the elimination barrier from 38.8 kcal/mol to 20.8 kcal/mol.  This means that if the 
elimination is carried out at 320 oC, the reaction rate of a non-pre-oxidized lignin is comparable to the 
elimination rate of a pre-oxidized lignin at 110 oC, since the Ea/T ratios are also comparable. In our 
process, this elimination step could be favored in the absence of a base by the interaction between the 
catalyst and the solvent. Several studies have reported the formation of alkoxides from the interaction 
of alcohols and solid Lewis acids such γ-alumina37-38. The last hydrolysis step, however, is not likely 
to occur in our system, due to the low amount of water that would be present in the reaction medium 
coming from the gas-shift or hydrogenolysis reactions.  An additional possibility could be the attack of 
the solvent (ethanol) to the alkene intermediate through a solvolysis mechanism. However, no or little 
ethoxy- substituted benzenes have been identified in the oils, even though large quantities of methoxy 
substituted benzenes have been identified. This suggests that solvolysis plays a minor role in the 
reaction mechanism.     

In another approach, Marks et al.22 reported the selective C-O hydrogenolysis of an acetylated 
lignin model compound using leveraged tandem catalytic strategy. The mechanism involved the 
acetylation of the lignin by attacking the hydroxyl group on the Cα and Cγ carbons, which would 
increase the solubility of the lignin in a non-polar solvent. The following steps would be the 
elimination of acetic acid and the hydrogenolysis of the resulting dimer. The reaction is carried out at 
low temperatures (70 oC) and in the presence of a metal triflate and a supported palladium catalysts. In 
our case the acetylation could be substituted by a formylation step since formic acid is a strong proton 
donor and could be coordinated to the hydroxyl- groups of the Cα and Cγ.  The low Brønsted acidity of 
isopropanol would also justify the lower oil yields obtained in the ET-ISO/H2-BS-C experiment39. 

Based on this background and our experimental evidences we propose a reaction mechanism 
initiated by a formylation reaction between formic acid and lignin (Figure 10). Despite the complexity 
of the reaction system the formic acid aided lignin conversion mechanism is believed to continue 
through an elimination-hydrogenolysis pathway, as summarized in Figure 10. The deformylation 
would be the rate limiting step, where the in situ generated alkoxide –from the solvent- could act as the 
based needed for the abstraction of the proton in the Cβ at high temperatures; leading to the elimination 
of the formate attached to the Cγ and the formation of an unsatured bond.  As discussed above, the 
break of the lignin bond seems to occur through a hydrogenolysis mechanism, although the less likely 
hydrolysis and solvolysis mechanisms are not fully discharged. The presence of molecular hydrogen 
will thus be necessary for the reaction to happen. No effect of the hydrogen partial pressure in the 
reaction has been observed probably due to the excess of hydrogen present at the studied reaction 
conditions where the rate limiting step is the previous deformilation. In the case of the non-catalyzed 
experiments the three steps of the reaction would be catalyzed by the reactor surface, whose activity 
has already been proved in previous studies 9, and which activity would be lower than our NiMoAA 
catalyst.        
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Under the reaction conditions, formic acid can either decompose into H2 and CO2 or formylate 
the lignin, and the comparison between the batch and the semi-batch configuration in Section 3.3 
revealed the importance of the relative rate of each of these reactions. In the catalyzed experiments, 
significant higher oil yields were obtained when all the formic acid was present from the beginning in 
the reactor. This indicates that a higher contact time between the lignin and the formic acid during the 
heating and the initial isothermal period favors the formylation reaction. On the other hand, in the 
catalyzed semi-batch experiments formic acid is slowly added into the reactor, which seems to 
disfavor the ligning-formic acid interaction and favor its decomposition into H2 and CO2: a higher 
amount of formic acid will be decomposed before it can formylate the lignin. Regarding the non-
catalyzed systems, comparable amount of oil and solid were obtained with the batch and semi-batch 
configurations. In the absence of a catalyst, formic acid is decomposed slowly thus enabling a similar 
amount of formic acid to react/formylate continuously with the lignin throughout the duration of the 
reaction regardless of the reactor configuration.         

Moreover, when analyzing the properties of the oils in Section 3.3 a resemblance between the 
oils produced in the presence of molecular hydrogen, especially the with ET-FA/H2-BS series, and the 
ET-FA-SBS1 and ET-FA-SBS2 was demonstrated. Hence for the semi-batch experiments the effect of 
both mechanisms is observed: formic acid-aided and H2-aided lignin conversion. This is in accordance 
with the mechanism explained above. An additional confirmation is the evolution of the pressures 
depicted in Figure 1. The higher degree of formylation in the catalyzed systems would hinder the fast 
decomposition of formic acid at the beginning of the reaction (ET-FA-BS and ET-FA/H2-BS series), 
which would justify the similarities in the pressure profiles. 

 
Figure 10: Proposed mechanism for formic acid-aided depolymerization of lignin through a formylation, 
elimination, hydrogenolysis  
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Apart from the indirect role of the solvent in the reaction mechanism as a potential alkoxide 
source, the results in Section 3.4 indicate that the primary effect of the solvent is the ability to stabilize 
the lignin monomers; and therefore affect the final oil and solid yield. These results showed that a 
considerable higher oil yield is obtained when using ethanol as a solvent when compared with 
methanol or isopropanol. This is in accordance with several studies published on the influence of the 
type of solvent on the conversion of lignin with molecular hydrogen and formic acid1, 5, 7, 19. Most of 
this studies show that ethanol is a better solvent than isopropanol or methanol1, 6. 

As mentioned in Section 3.2, Hensen et al1 suggest that the better activity of ethanol is due to 
esterification (O-alkylation) of the highly reactive phenolic intermediated and the alkylation (C-
alkylation) of the aromatic rings. This will prevent the repolymerization of the lignin monomers since 
this compounds are less likely to re-polymerize 35. Li et al 19 also point towards the functionalization of 
the lignin fragments as the reason for the lower degreee of re-polymerization and solid formation of 
the lignin fragments as the reason for the lower degree of re-polymerization and solid formation of the 
lignin monomers, due to  the formation of reactive intermediates by the formation of an ethanol 
catalyst complex. Our results are consistent with these studies. In the case of methanol, a higher 
decomposition rate of formic acid and a lower activity of this media in the O- and C-alkylation could 
justify these results. In the case of isopropanol, the higher steric impediment towards O-alkylation and 
the lower C-alkylation rate would be the main reasons that justify the lower oil and higher solid yields. 

5. Conclusion 

The results discussed support a reaction mechanism where the conversion of lignin is assisted by 
formic acid, which is as such an active species in the reaction. Thus, formic acid is not acting as an in 
situ hydrogen source or as a hydrogen donor molecule.  To the best of our knowledge, these 
observations have never been reported in experiments carried out with real lignin feedstock. When 
substituting formic acid for molecular hydrogen or isopropanol different oil and solid yields are 
obtained; the properties of the oils also differ significantly. In contrast, both molecular hydrogen and 
isopropanol give comparable yields and type of oils, suggesting that they both follow a similar 
reaction pathway and different than formic acid. The comparison of results obtained for the batch and 
the semi-batch experiments revealed that there is a competing reaction between the decomposition of 
formic acid and the chemical reaction between lignin and formic acid. Based on these evidences and 
previous studies a formylation-elimination-hydrogenolysis mechanism for the formic acid-aided lignin 
conversion is proposed.  The main effect of the solvent is the stabilization of the de-polymerized 
monomers, ethanol being the most effective one. In addition, the interaction between the solvent and 
the catalyst might form alkoxides that would favor the rate limiting elimination/deformilation step.   
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8. Supplementary information 

8.1 Catalyst Characterization 

N2-adsorption: The gas adsorption measurements were carried out on a BELSORP-max instrument 
equipped with a low pressure transducer and a turbo molecular pump, allowing measurements with 
high precision from very low pressures (p/p0 = 10-8). Prior to the measurements the samples were 
activated at 120 to 150 °C overnight in a dynamic vacuum. 

ICP-AES: ICP-AES was performed using Optima 2000-DV, Perkin Elmer, USA. Prior to 
measurements, the samples were firstly dissolved in a HCl / HNO3 / HF acid mixture (volume ratio 
2:3:3), subsequently microwaved in a digester for 2 h and diluted with deionized water to 
concentrations within the detection range of the instrument. 

CO-Chemisorption: CO chemisorption was carried out in an AutoChem (Micromeritics) device 
equipped with a calibrated TCD detector. The catalyst sample was placed in a U shaped quartz cell, 
reduced (except for Ru/C which is supplied at reduced state) with the same temperature program, 
flushed with He and cooled down to 35 °C. At this temperature CO pulses were injected to the sample 
until saturation was observed. 

NH3-TPD: Temperature-programmed desorption of ammonia, NH3-TPD, was performed to determine 
the total acidity of the catalyst. The measurements were carried out in chemisorption analyzer 
AutoChem II equipped with a thermal conductivity detector (Micromeritics, USA). The sample (50 
mg) was flushed with helium at 650◦C for 30 min, then cooled down to 40oC and loaded with 
ammonia for 30 min.  Complete removal of physically adsorbed ammonia was carried out by purging 
the saturated samples with helium at 85oC until no further desorption was recorded. Under constant 
flow of helium, the sample was heated up from 85 to 650oC at a heating rate of 10oC/min, and the 
release of ammonia was measured with a calibrated TCD detector.  
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Table S1: Initial reactants added to each experiment. The reactants added in continuous are not 
included  

Entry Experiment 
(Aa-Bb-Xc-Yd) Lignin (g.) Ethanol (g.) F.A (g.) Catalyst (g.) 

1 ET-FA-BNS-NC 0.69 1.12 0.64 0 
2 ET-FA-BNS-C 0.68 1.12 0.63 0.07 
3 ET-FA-BS-NC 8.20 12.25 7.12 0 
4 ET-FA-BS-C 8.18 12.19 7.12 0.82 
5 ET-FA-BS-C-Re 8.17 12.17 7.06 0.82 
6 ET-H2-BS-NC 8.17 12.24 0 0 
7 ET-H2-BS-C 8.16 12.22 0 0.81 
8 ET-H2/CO2-BS-NC 8.17 12.27 0 0 
9 ET-H2/CO2-BS-C 8.18 12.21 0 0.82 
10 ET-FA/H2-BS-NC 8.16 12.14 2.69 0 
11 ET-FA/H2-BS-C 8.17 12.12 2.70 0.82 
12 ET-ISO-H-C 8.15 12.10 3.52f 0.82 
13 ET-ISO/H2-BS-C 8.14 9.31 2.72 0 
14 ET-FA-SBS1-NC 8.18 9.28 2.68 0.82 
15 ET-FA-SBS1-C 8.16 7.53 0 0 
16 ET-FA-SBS2-NC 8.16 7.49 0 0.81 
17 ISO-FA-BS-C 8.17 12.08g 7.10 0.82 
18 ME-FA-BS-C 8.18 12.13h 7.08 0.81 

a)A: refers to the type of solvent b) B: refers to the type of hydrogen source c) C: refers to the type of reactor 
and reaction configuration d) Y: refers weather the experiment is catalyzed or non-catalyzed reactor e) R: refers 
to the replicate experiment f) In this case refers to isopropanol instead of formic acid g) In this case refers to 
isopropanol instead of ethanol h) In this case refers to methanol instead of ethanol ET: ethanol MET: methanol 
ISO: isopropanol FA: formic acid H: molecular hydrogen CO2: carbon dioxide BS: Batch experiments in 
stirred reactor BNS: Batch experiments in non-stirred reactor SBS: Semi-batch experiments   

Table S2: Gas amount and residual formic acid percentage in small scale reactor blanks 

Entry Solvent Reaction Time (min)1 Gas amount (g) Volume 
NaOH (ml) Formic acid (%)1 

1 Ethanol 68 0,7 0 0 
2 Methanol 68 0,7 0 0 
3 Isopropanol 68 0,7 0 0 
4 Ethanol 40 0,1 10,2 47,8 
5 Methanol 40 0,1 7,4 34,8 
6 Isopropanol 40 0,2 10,4 48,8 

1Percentage of formic acid that has decomposed calculated by tritation  
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Figure S1: GC-MS analysis of the ET-H2/CO2-BS-NC and ET-H2/CO2-BS-C oils 

 

 Figure S2: GC-MS analysis of the ET-FA/H2-BS-NC and ET-FA/H2-BS-C oils 
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Figure S3: Pressure vs. Reaction time for the blank experiments: non-catalyzed (NC)  and catalyzed (C) 

 
Figure S4a: Pressure vs. Temperature for the ET-FA-BS, ET-FA-SBS1 and ET-FA-SBS2 series Figure S4b: 
Pressure vs. Reaction time for the ET-FA-BS, ET-FA-SBS1 and ET-FA-SBS2 series 

Figure S5a: H/C ratio vs oil yield for the ET-FA-BS (black), ET-H2-BS (red), ET-FA-SBS1 (blue), ET-FA-
SBS2 (grey) and ET-FA/H2-BS (purple) series Figure S5b: O/C ratio vs oil yield for the ET-FA-BS (black), ET-
H2-BS (red), ET-FA-SBS1 (blue), ET-FA-SBS2 (grey) and ET-FA/H2-BS (purple) series 
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Figure S6: GC-MS analysis for the ET-FA-BS-C, ISO-FA-BS-C and ME-FA-BS-C experiments 

 
Figure S7: GC-MS analysis for the ET-FA-BS-C, ISO-FA-BS-C and ME-FA-BS-C experiments 
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ANNEX I: Synthesis and characterization of the Ru-AC 

catalyst 

Synthesis of the Ru-C catalyst 

The Ru-C catalyst was prepared by incipient-wetness impregnation of a commercial 

activated carbon (AC) with an aqueous solution of ruthenium chloride (RuCl3). The 

nominal Ru loading was calculated so that the number of moles of Ru is equivalent to 

the number of moles of Ni supported on the catalysts described in papers D and E. 

After impregnation the catalysts was dried at 105 °C for 20 min and calcined in an air 

flow (10ml/min) at 470 °C for 2 h with a heating ramp of 2 °C/min.  

The catalyst was characterized by N2-adsorption and X-ray diffraction (XRD). 

N2-adsorption measurements were carried out on a BELSORP-max instrument 

equipped with a low pressure transducer and a turbomolecular pump, allowing 

measurements with high precision from very low pressures (p/p0 = 10-8). Prior to the 

measurements the samples were activated at 120 °C to 150 °C overnight in a dynamic 

vacuum. Specific surface areas (SBET) were calculated in the Brunauer–Emmet–Teller 

(BET) model, using the uptake of N2 at relative pressures of p/p0 = 0.06 - 0.29 were 

used. Care was taken to assure positive and not unphysically large c-values. The total 

pore volume (Vt) was estimated from the uptake at p/p0 = 0.99. 

X-ray diffraction (XRD): XRD patterns were collected by using a PHILIPS 

X'PERT PRO automatic diffractometer operating at 40 kV and 40 mA, in theta–theta 

configuration, a secondary monochromator with Cu-Kα radiation (λ = 1.5418 Å) and a 

PIXcel solid state detector (active length in 2  = 3.347°). Data were collected from 10 

to 90° 2  (step size = 0.02606 and time per step = 600 s) at RT. Fixed divergence and 

anti-scattering slits giving a constant volume of sample illumination were used. 
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Catalyst characterization results 

The Ru-AC catalyst exhibits an IUPAC Type IV isotherm typical for mesoporous 

materials (Figure ANEX.1, left). The surface area of the Ru-AC catalyst is 1003 m2/g 

and the total pore volume 0.7207 for the C-Ru-AC (Table ANEX.1).  

Table ANEX.1: BET surface area (SBET), total pore volume (Vt) and Ru diameter measured 
by XRD 

 SBET (m2/g) Vt (cm3/g)a 
Ru-AC 1003 0.721 

a Calculated by the Scherrer equation using Ru (1 0 0) peaks at 2  =38.4o 

The powder X-ray diffraction (XRD) exhibited the formation of metallic Ru 

particles in the Ru-AC catalyst (Figure ANEX-1, right). Along with the sharp 

crystalline peak of graphite132 at 2  = 26.2o and the broad scattering peak of 

amorphous carbons132-133 at 2  = 20o-30o, the diffraction peaks of metallic Ru particles 

were observed at 2  =38.4o, 42.2o and 43.9o corresponds to the (1 0 0), (0 0 2) and (1 0 

1) planes of the hexagonal Ru structure134. Additional characteristic Ru peaks around 

2  =58.5o and 67,7o typical for hexagonal Ru structure are also observed (PDF: 00-

006-0663). Despite the exposure of the Ru catalyst to ambient air crystalline Ru oxide 

was not observed by XRD; its formation, though, is not completely excluded.  

 
Figure ANEX.1: Adsorption-desorption isotherms for Ru-AC (●), left; and X-ray diffraction patterns 
for Ru-AC. Ru (▪) and C (•), right.  
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