M. Phil. Thesis

AN AUTOMATED SYSTEM TO
ANALYZE SYSTEM DYNAMICS MODELS

By
Ahmed AbdelTawab AbdelGawad

Supervisors

Prof. Pal 1. Davidsen
Dr. Mohamed M. Saleh

Department of Information Science
University of Bergen

2004

ABSTRACT

For a very long time, software oriented to analyze system dynamics models
using eigenvalue analysis technique was not more than a dream. System
Dynamics has been hampered by the lack of such software used to analyze the
relationship between the structure and behavior in complex, dynamic models

automatically.

In this thesis, An A to Z mathematical background has been developed, based
on Control Theory literature as well as the previous work in the filed of
applying eigenvalue analysis to the system dynamics models”, this is in addition
to the development of a Matlab code to automate the examination process of
the structural origin of different modes of behavior exhibited by a system
dynamics model using mathematical method crystallized in the mathematical
background. This method allows for an investigation of how model behavior is
created from the underlying model structure and how this behavior feeds back
to change the relative significance of the model behavior. They also allow us to
identify the dynamics of relative significance of the various parameters that

governs the gains of the links and loops of the model.

By automating this method into Matlab code, System Dynamists have the
luxury of behavior to structure identification in a fast and an accurate way that
can be further implemented as a part of the simulation package to make the

analysis an intermediate process through the modeling process.

" Nathan B. Forrester, Christian C. Kampmann, Mohamed M. Saleh and Pal I. Davidsen.

ACKNOWLEDGMENTS

The author wishes to express sincere appreciation to Professor Pal I. Davidsen
and Dr. Mohamed M. Saleh for their assistance in the preparation of this

research.

In addition, special thanks to Dr. Nabil Saeed who gave me the chance to study

for this degree in the first place.

Thanks to my close friend Bahaa EIl-Din Ali who the least I can say about him

is “a friend in need is a friend indeed”.

Thanks to my sister Assmaa for giving me the idea of using the Data Flow
Diagram to enhance the implementation chapter, and helping me in drawing

the diagrams.

Thanks to my friend Essam AbdelMottaleb for his great effort in revising the

mathematical background and the application chapters.

Thanks to the members and management of the Information and Decision
Support Center for their help through the whole research and thesis
articulation, especially Reem AbdelHaliem and Sherine Haikal for their sincere

effort in the revision of the thesis.

Thanks to my parents and sisters who have been encouraging me to finish this

work all the time, without their encouragement this work was not to be done.

To My Parents

TABLE OF CONTENTS

Abstract 3
Acknowledgments 5
Table of Contents 9
Table of Figures 13
Chapter 1 Introduction And Literature Review 15

1.1 Introduction

1.1.1 What is a model?

1.1.2 What is SyStem dyNamiCS?.......cc.ecveirirerinieieieieene sttt ettt ettt eeeae s

1.1.3 Eigenvalue Analysis
1.2 Literature reviewcccocceucuennnn.

1.2.1 The Work of Nathan B. Forrester

1.2.2 The Work of Christian C. Kampmanic.ecceeverieeierienieenienieeeseenesseessesseseeessesssensesseens 21

123 The Work of Mohamed M. Saleh and Pal I. Davidsenc.cccooeveneieiinininieeeceene 22
1.3 Purpose Of the RESEATCHc..cceeuiiiieieeiee ettt 22

Chapter 2 The Analysis Package: Mathematical Background 23

2.1 IMEPOAUCHION ...ttt ettt
2.2 System DYRAMICS MOGEIS...............cccoocveiiieeiiiiiiieeiie ettt

2.2.1 System Dynamics Model's Equations

222 System Dynamics Model's Inputs and OULPULS..........ccceerverieriereeieniieeerieeeesieeeesee e eeeenns 29
2.3 State Variables and State Equations and Other EQUALIONS..................cccccoeveieoiiceneannne. 31
2.4 Linear vs. Nonlinear MOdEIS..................ccccouiiiiiiiioiiiiii et 33

24.1 LiNEAr MOGELS. ...ttt ettt

242 Nonlinear Models

243 MOdel LINEATIZATION.eviueieieiieiieiieieete sttt ettt ettt sb et ee e e eneeneas 36
2.5 State SPACe FOFM..........cc.ccoooiiiiiiiiiiiiii it 38
2.6 Eigenvalues and the Characteristic EQUALION................ccccoieieiieeiieiieeee e 44

2.6.1 BAZONVAIUCS. ...ttt ettt b et eneenea

2.6.2 The Characteristic Equation

2.6.3 The State Space FOrm SOIUTIONooviviiiiiiiiiieieiieiee et 45

2.6.4 The Eigenvalues and their Corresponding Modes of Behavior...........cccceeeecevenieninienenene 47

2.6.5 The Cases 0f EIZENVALUEc..coueiiiiiiiiiieicicic sttt 54
2.7 Identifying the Dominant EiGenvallecc.cccovveviiviiciiaciiiienieeieeieeeeeee e 66
2.8 The Dominant Eigenvalue EIQSEICILY...........c..ccccoveviiviiciieiiiieiieeeieeeeeie e 69

2.8.1 The Eigenvalue SenSItIVILYcc.coveiiiriririeneieieceenteet ettt s 69
2.8.2 The Eigenvalue EIAStiCItycceoeiirininieiiiiiiiitetentee ettt 70
2.8.3 The Dominant Eigenvalue Elasticity Values of the Links of the Compact Model................. 71

2.8.4 The Dominant Eigenvalue Elasticity Values of the Links of the Full Model......................... 71

2.8.5 The Dominant Eigenvalue Elasticity for the Inputsc.ccceoiiiiiiiniieiiceeeecee 77

2.8.6 The Dominant Eigenvalue Elasticity for the Loopsccoceoeiririneniieeceeeeecee 78

Chapter 3 The Analysis Package: Computer Implementation 83

3L IREFOAUCTION ... ettt ettt ettt
3.2 The analysSis FURCHIONccciouiiiiii ettt

3.2.1 Extracting Objects of the Model.........c.ooiiiiiiiiiiieeeee e

322 Emptying and Initializing Checkpoints...

323 Calculating Number of Time StEPS......c.eeteririererieiiiieie sttt ettt ettt st ene

324 User-Interaction: Selecting Level to Study

325 User-interaction: Selecting Inputs to Study

3.2.6 Suggesting Time Steps to Apply Eigenvalue Analysis t0........cccocevverevieieceninenenenieenennenne

3.2.7 Plotting the Selected Level t0 StUAYevveriirieierieierieeseeee e ens

3.2.8 User-interaction: Selecting Time Steps to Apply Eigenvalue Analysis to.

329 Computing Adjacency Matrix and Jacobians of the Model...........ccooeieiiioiiiinineeee

3.2.10 Finding Independent LOOPScceueiriiiriiieieeeete ettt

3.2.11 Applying Eigenvalue Analysis at the Selected Time Steps.........cccovererieiririnenereeeeenn

3.2.12 Computing Linearly Independent Loops’ Elasticity Values associated with the Dominant

BIZENVALUC ...ttt sttt sttt be
3.2.13 Ending and Closing Checkpoints..
3.2.14 Printing t0 OULPUL FIl ...c..ieiiiieieiieiee ettt ettt ne e
3.3 The extractModelObjects FUNCLION.c..cccioueioieiieieeeeeee et
3.3.1 Computing Number of Levels and Auxiliaries
332 Extracting Objects’ Names and Equations...............
3.4 The computeSystemJacobians Function
34.1 Computing Symbolic Full Gain MatriXccceeirireneiieieeriieseeece e
342 Computing Model AdJacency MatriXccueeeeruerierienienienieeiesieeee sttt
343 Computing Model Adjacency Matrix to Edges Matrix
344 Computing Symbolic Link Gain to Input Jacobian MatriX.........ccceceeeeeririeneneenieseerieneenes 115
3.5 The findIndependentCycles FURCHION...................c.c.ccoeveeieciiecieeieeieesieeie e 116
3.5.1 Finding ALl LOOPS....c.eveervirieieriieieniieiesieeiesieeieee et 116
352 Computing the Cycles” MAtriX ...cc.eeveririerierieieeieie ettt sttt et st eae e eaesse e naeens 117
353 User-interaction: Suggesting Loops to be tested for Linear Independency............ccccouenenn. 117
354 Identifying Independent CYCIEScovirvieriieieriieierieetesie ettt e et st saeens
3.6 The findDominantEigenvalue FUNCIIOMNccccceiieiieiiaiieesieeeeee e
3.6.1 Computing Analysis Time Step Length...................
3.6.2 Computing Contributions of Eigenvalues
3.7 The computeLinkElasticity FUNCLIONc.ccouvueiieiiaiaieiieeee e
3.7.1 Computing Sensitivity associated with Dominant Eigenvalue Values............cccoceveneeennne. 123
3.7.2 Computing All Links’ Elasticity associated with Dominant Eigenvalue Values and Related
CRECKPOINES ...ttt ettt ettt et ettt e bt e at et e bt e bt eat et e e bt e bt eabesbeeste bt eatenaeeseenbesneentesbeans 124
3.8 The computelnputElasticity Function
3.8.1 Computing Inputs’ Elasticity Values Associated with the Dominant Eigenvalue 128
3.9 The computelndependentCycleElasticity FUNCION.................ccceveveiiieereeiiiieeieeieeeenn, 129
3.9.1 Computing Linearly Independent Loops’ Elasticity Values Associated with the Dominant
BIZENVALUC ...ttt ettt ettt re
3.10 The printOutputs FURCHIONccoooveeceeiianiaieeneeennn,
3.10.1 Printing All Eigenvalues and Their Dominance Percentage.....
3.10.2 Identifying Links of the Model...........cccooiiiiiiiiiiiiininiicieece e
3.10.3 Printing Links® GaiNS.........cceriieiieriieieniieiesieeieieete e stesteeseestesseessesssessesseessessaessesssensessnenne

3.10.4 Printing Links’ Dominant Eigenvalue Elasticity Values
3.10.5 Printing Links” Dominant Eigenvalue Elasticity Values (Sorted)

3.10.6 Printing Inputs’ Dominant Eigenvalue Elasticity Values...........cccoooererniiininenceecne
3.10.7 Printing Inputs’ Dominant Eigenvalue Elasticity Values (Sorted)
3.10.8 Printing AL LOOPS ..uveeueeiiiiieieeiterieetete ettt ettt ettt ettt et et e b s e sbeestesbesane e
3.10.9 Printing User-selected Linearly Independent Loops........c.ccccvevereieciiininincnenicincnenenn
3.10.10 Printing User-Selected Linearly Independent Loops’ Dominant Eigenvalue Elasticity
VAIUES e ettt 145
3.10.11 Printing User-Selected Linearly Independent Loops’ Dominant Eigenvalue Elasticity
VAlUES (SOTEEA) ...vveuvieeieieitietieit ettt ettt et e sttt et e etteste et ebeeteesbeeseesbessaessesseessassaessasseassasseessensenssensessaans
311 The jac Function
312 The differentiate Functionccccccoeeeeeennen.

3.13 The differentiateGraph Function.........................
3.14 The computePathsGain FUnction
3.15 The computePathsGain2 Function
Chapter 4 The Analysis Package: Application On The Mgm 157
ol INEPOGUCTION ...ttt 159
4.2 The Market Growth Model OVErvIewcccuoiiiiiiiioiaiiieeesese sttt 159
4.3 The Market Growth Model Sectors
43.1 The Operations and SaleSMEN SECLOTSevuerieriirieriieienteeteteeitete ettt eae 162
43.2 The Operations and Market SECLOTScevueruieieriieieriieienie ettt ettt 164
433 The Capacity SECLOT......eeruieuieieetieieeiieteetteteeetet e et e e st et e e it ebeseeebesaeensesseensesseensesseensenaeanne 166
4.4 The Analysis of the Market Growth Model Behavior...................cccccooeioiaoeoiacieeneien 168
4.4.1 Overview
442 The State Variables..........cccoereiiiiiiiieneeee ettt
443 Linearly Independent LOOPSc.eoviecieririieriieieii ettt ettt sre e see e saeesaesse e saeens
444 The Behavior of the Backlog
445 Eigenvalue Analysis at the Selected Time Instants.c.coceeereienineneieieeeeeeeeee 172
4.5 INSIGRE GAINE ..o e 194

Chapter 5 Conclusion And Future Extensions 203

5.1 COMCIUSION ...t

5.2 FUtUFe EXIENSIONSc..ocoiiiiiiiiiiiiit ittt
5.2.1 TheoretiCal EXTENSIONS. ..c..teutirtiriteiieiieteriteteettete ettt ettt ettt ettt et sbe et e bt et sbe e e saeenee
522 Implementation Extensions
523 More Functions Extensions
References 209
Appendix A Market Growth Model Equations 215
A1 MOl EQUATIONS ..ottt ettt enseenees 217
Appendix B Market Growth Model Links, Inputs And Loops 223
B.1 Market Growth Model LinKS...............cccccoooovviiiiiiieiiicieeeeeeee e 225
B.2 Market Growth Model INDULSccccociiiiiiiiiiiiiiieii et 227
B.3 Market Growth Model LOOPDS..............c.ccccocuiiriiiiiiiiiiiiie sttt 228
B.4 Market Growth Model Linearly Independent LOODS..................cccocoeueeiciioiioiiiiieieenne. 233
Appendix C Functions Description 235
Appendix D Variables Description 243
Appendix E Internal Functions 263
EL L QRAIYSIS. N ..ot e 265
E.2 computelndependentCycleElAStICItY. Icccccueveiviiiiiiiiieeeeee e 277
E.3 computeINDUIELGSTICIEY. Iccoooveeiieiiieieeie ettt 279
E.4 cOmputeLinKEIQSTICIEY . M.........cc.ooovviiiiieiieeeeee ettt se s 279
E.5 COMPUIEPAIRS GAINTN...........c..ooveeiieeiieciieciieie ettt ettt ereese s 283
E.6 computePathS GAIN2.M............ccccueuiiiiiiiiiiiti ettt 284
E.7 computeSyStemJIACOBDIANS. Mccccoceviiiiiiiiiieieiietet ettt 285
E.8 deleteZerOSROW.M............c.cocueiieiieiee ettt 286
E.9 differentiateGrapR.iicc.cccioiiiieeeeee et 286
E 10 extractModelOBJECtS. Mcc.oceeeieiie ettt 288
E. 11 findDominantEiGEenVAIUE. Mc..cooouioiiiiieieeeeee et 289
E. 12 findIndependentCyCles.cccoociioiiiiieieeeeee et 291
EL I3 JACTN i et 293
E 14 PFINEOUIDULS. M ..ottt et et e ettt e et e snb e e sseesaseenee s 295
Appendix F External Functions 307
Fil FEACHADIIN ...t 309
FL2 AOIZPOW. M.t 309
F.3 QUDAIRANIL ..ot e 310

Fid QUICYCSIIN ..ot e 311

TABLE OF FIGURES

Figure 1. The Yeast Cells MOAEL.........cciiiiiiiiieiiiieciesieie ettt sbeesae e ssnessa e saenseens 27
Figure 2. The System Time CONStant T........c..ccceecueiiiiieriieiiiiieeeeseesie et ere e see e esseeaessaesseesseesseenseens 48
Figure 3. The System Damped Frequency Q..........ocvooieiiiiiiieiiesieeee et ees 48
Figure 4: Zero Value EigenvalUe..........ccoooieiiieiieieiie ettt ae e sneesneeseenseens 55
Figure 5: The Behavior Corresponding to Zero Value Eigenvaluecccecveiiioiinienienieceeieeee 55
Figure 6: Positive Real EiZenvaluecccoooiiiiiiiii et 57
Figure 7: Mode of Behavior Corresponding to Positive Real Eigenvalue...........coccoociniiniiiiiinnnnn. 57
Figure 8: Negative Real EiZenvalue........cccooiiiiiiiiiiiiiiieeeeeeeeee e 59
Figure 9: Mode of Behavior Corresponding to Negative Real Eigenvalueccoceoeiiiniiiinncne.n 59
Figure 10: Pure Imaginary Eigenvalue...........occooiiiiiiiiiieeee e 61
Figure 11: Mode of Behavior Corresponding to Pure Imaginary Eigenvaluecccoocvvvvenieiieinnnnnns 61
Figure 12: Imaginary Eigenvalue with Positive Real Part...........c.cccoevveriiiiinieiiiecieee s 63
Figure 13: Mode of Behavior Corresponding to Imaginary Eigenvalue with Positive Real Part........... 63
Figure 14: Imaginary Eigenvalue with Negative Real Partcccccceoeiiiinininininiiieccncnc 65
Figure 15: Mode of Behavior Corresponding to Imaginary Eigenvalue with Negative Real Part.......... 65
Figure 16: The Context Level Diagram of Both Simulation and Analysis Packages Together.............. 87
Figure 17: The Data Flow Diagram (DFD) Level Zero: Simulation and Analysis Packages................ 88
Figure 18: The DFD Level One: Extracting Objects of the Modelccceoieiiiiiiiiiiieeee 89
Figure 19: The DFD Level One: Emptying and Initializing Checkpoints.............ccooeerienieieniienceene 90
Figure 20: The DFD Level One: Calculating Number of Time Stepscccoererererenesenceeieeeene 91
Figure 21: The DFD Level One: Selecting Level to Studyoccooeiiiiiiiieeee e 92
Figure 22: The DFD Level One: Selecting Inputs to Study..........cocereriiiiiiiieeeeceeeeeeee e 93
Figure 23: The DFD Level One: Suggesting Time Steps to Apply Eigenvalue Analysis to 95
Figure 24: The DFD Level One: Plotting Selected Level to Studyocvevveeeiiecieiiienienieeeiecieeieeins 96
Figure 25: The DFD Level One: Selecting Time Steps to Apply Eigenvalue Analysis to..................... 97
Figure 26: The DFD Level One: Computing Adjacency Matrix and Jacobians of the Model 98
Figure 27: The DFD Level One: Finding Independent LooOps.........ccceceeierieiienienieiieeieeee e 99
Figure 28: The DFD Level One: Applying Eigenvalue Analysis at the Selected Time Steps............ 100
Figure 29: The DFD Level Two: Computing Numeric Full Gain Matrix and Numeric Links’ Gains to
INPuts JACODIAN IMALITXeetieieeiieieie ettt ettt ettt ettt e et e ee et e eneeeneenseenneas 101
Figure 30: The DFD Level Two: Computing Polarity of the Linearly Independent Loops 102
Figure 31: The DFD Level Two: Computing Compact Gain MatriXc.cceceereerieneneneneseneeeeeenees 103
Figure 32: The DFD Level Two: Computing Eigenvalues and Eigenvectors of the Compact Gain
IMLAETIX .ttt ettt ettt ettt et ene 104
Figure 33: The DFD Level Two: Identifying Dominant Eigenvalue...........c.cccceoveeiirienieneeneeieene 105
Figure 34: The DFD Level Two: Computing Links’ Elasticity Values associated with the Dominant
EIENVALUC.cuiiiieiicieceeeet ettt ettt ettt e e s e st e s see s e enseenseese e seenseenseensenseensenn 106
Figure 35: The DFD Level Two: Computing Inputs’ Elasticity Values associated with the Dominant
EIENVALUC.cuiiiieiieieceeeeet ettt ettt e e st e st e s se et e enseenseeseenseenseenseensenseennean 107
Figure 36: The DFD Level One: Computing Independent Loops’ Elasticity Values associated with the
Dominant Eigenvalte.ooouiiiiiiiiieiiet ettt et e neas 108
Figure 37: The DFD Level One: Ending and Closing Checkpointsceeoeereeierienieneeneee e 109
Figure 38: The DFD Level One: Printing to Output File..........ccoocoiiiiiiiiiiiieeeeee e 110
Figure 39: The DFD Level Three: Computing Number of Levels and Auxiliaries...........ccccceceeeenennee. 112
Figure 40: The DFD Level Three: Extracting Objects’ Names and Equationscccceceeeerierienennee. 112
Figure 41: The DFD Level Three: Computing Symbolic Full Gain MatriX..........ccceeeveveverveneenneennnne. 114
Figure 42: The DFD Level Three: Computing Model Adjacency MatriX.........cccoecveevereenieenieevenenenne. 115
Figure 43: The DFD Level Three: Computing Model Adjacency Matrix to Edges Matrix 115
Figure 44: The DFD Level Three: Computing Symbolic Link Gain to Input Jacobian Matrix............ 116
Figure 45: The DFD Level Three: Finding All LOOPS........cocverierieeieeieeiereeie et 117
Figure 46: The DFD Level Three: Computing the Cycles” MatriXccoeceeveereereeiienieneeseeee e 117
Figure 47: The DFD Level Three: Suggesting Loops to be tested for Linear Independency............... 118
Figure 48: The DFD Level Three: Identifying Independent Cycles..........cccoereeriieiinienieneeiceie e 119
Figure 49: The DFD Level Four: Computing Analysis Time Step Lengthccocooviiiiinininnennn. 120
Figure 50: The DFD Level Four: Computing Contributions of Eigenvaluesccccooevceniniieieneenee. 122

Figure 51: The DFD Level Four: Computing Sensitivity associated with Dominant Eigenvalue Values
... 123
Figure 52: The DFD Level Four: Computing All Links’ Elasticity associated with Dominant
Eigenvalue Values and Related Checkpoints........c.ceveeieriierieecieiieiierie e 124
Figure 53: The DFD Level Five: Finding All Paths between Two Variables in the Compact Model.. 125
Figure 54: The DFD Level Five: Computing Gain and Dominant Eigenvalue Elasticity Values of the k™

Path ottt 126
Figure 55: The DFD Level Four: Computing Gains the Pathsccocooeiiiiiiiiieee e 127
Figure 56: The DFD Level Four: Computing Inputs’ Elasticity Values Associated with the Dominant

BAZENVAIUC. ...ttt sttt a et e e e e bttt eaeebe st e st et eneenes 129
Figure 57: The DFD Level Three: Computing Linearly Independent Loops’ Elasticity Values

Associated with the Dominant Eigenvaluecceceiiiiieniiiiiiiieiieeec e 130
Figure 58: The DFD Level Three: Printing All Eigenvalues and Their Dominance Percentage.......... 131
Figure 59: The DFD Level Three: Identifying Links of the Model...........cccooovevieiiinienienieeeie e 132
Figure 60: The DFD Level Three: Printing Links” Gains.........ccccceeveriiecireienienienieeie e 133
Figure 61: The DFD Level Three: Printing Links’ Dominant Eigenvalue Elasticity Values............... 134
Figure 62: The DFD Level Three: Printing Links’ Dominant Eigenvalue Elasticity Values (Sorted). 137
Figure 63: The DFD Level Three: Printing Inputs’ Dominant Eigenvalue Elasticity Values............... 139
Figure 64: The DFD Level Three: Printing Inputs’ Dominant Eigenvalue Elasticity Values (Sorted) 141
Figure 65: The DFD Level Three: Printing All LOOPScocveieiereniiieeieieeeee e 143
Figure 66: The DFD Level Three: Printing User-selected Linearly Independent Loops..................... 144
Figure 67: The DFD Level Three: Printing User-Selected Linearly Independent Loops’ Dominant

Eigenvalue ElastiCity VAIUCS.........ccceivieriieriieiiciesietcete ettt saaesae s essesssessaenseennees 146
Figure 68: The DFD Level Three: Printing User-Selected Linearly Independent Loops’ Dominant

Eigenvalue Elasticity Values (SOTted).......c.couievvirierieiiieiieiesieseese et seee e esreesseeesesseennees 148
Figure 69: The DFD Level Four: Computing Jacobian by Calling Differentiate..............cccevevrnen.ne. 150
Figure 70: The DFD Level Five: Performing Differentiationc..cccceeeevievienineninicnenieneeceieneenes 151
Figure 71: The DFD Level Six: Performing Differentiation to Graph Functioncc.cccccevieniennnnne. 153
Figure 72: The DFD Level Four: Computing Gains of Paths (Related to Computing Polarity of the

Linearly Independent LOOPS)cc.ceruieriieieeieiieiee ettt ettt eneas 154
Figure 73: The DFD Level Six: Computing Gains of Paths (Related to Computing Gain and Dominant

Eigenvalue Elasticity Values of the k™ Path)co.coooiviieioeioeeeoeeeeeeeeeeeeeeeee e 155
Figure 74: The DFD Level Five: Computing Gain of a Path Excluding a Specififed Link.................. 156
Figure 75: The Model structure including the Salesmen, Operations, Market and capacity sectors.... 161
Figure 76: Salesmen-HIriNg SECLOTc.eccvirieiieiiieirieie e ste st e sttt ere et esteesteeseessessaesseesseeseenneses 163
FAgUIE 77: MATKE SECLOT.....eeviiiiieiecieeteett ettt et e te e teebeeaesseesteesseeseesseesseessesssesseeseenseessesssenees 165
Figure 78: Capacity EXPansion SECLOTc.ccveriieriieiieeieiieitesieeieeteeeeeeseeseeeteensesnsessaesseesseensesnsesnesees 167
Figure 79: Behavior 0f BacklOgc.oeoiiiiiiieiieieeiece et 171
Figure 80: Plot of Eigenvalues of the MOdel............ccooiiriiiiiieiinieieeee et 176
Figure 81: Market Growth Model Loops 1,2,3,4,6,7,9 and 13ccoociiiiiieiieieeeeeeee e 196
Figure 82: Market Growth Model Loops 5, 8, 10, 11, 12, 14, 15 and 16cccoeiveiiieiiiieeeee 197
Figure 83: Behavior of Backlog after 10% Increase in “Time For Delivery Delay Recognition By

MATKEE” ..ottt ettt ettt et et b e bbbt ettt st e bt et et ene 200

Figure 84: Behavior of Backlog after 10% Decrease in “Time For Delivery Delay Recognition By
MATKEE ...ttt ettt et et et a e bbbttt et s ate it e nbeente et e 201

Chapter 1

Introduction and Literature Review

Chapter 1: Introduction and Literature Review

1.1 Introduction

The real benefit of a system dynamics model cannot be crystallized until it is
possible to determine the causes of the behavior observed in this model, So that
an extension to System Dynamics emerges from the Control Theory and
Mathematics to deeply understand the model behavior as well as discovering
the dominant modes in that behavior and the dominant structures that cause
them.
Before going any further, a set of definition is essential. These definitions aim
at answering three basic questions:

e What is a model?

e What is system dynamics?

e What is the eigenvalue analysis?

1.1.1 What is a model?

An interesting and very descriptive definition by Geoffrey Gordon in his book
“System Simulation”, the second edition 1989:
“We define a model as the body of information about a system gathered
for the purpose of studying the system.”
— Geoffrey Gordon (1989)
Another dictionary definition of a model that describes the model more deeply

from the structure point of view:

17

Chapter 1: Introduction and Literature Review

"A simplified representation of a system or phenomenon, as in the
sciences or economics, with any hypotheses required to describe the
system or explain the phenomenon, often mathematically.”

— Webster's Electronic Dictionary and Thesaurus

1.1.2 What is system dynamics?

In the 1950s, Jay W. Forrester developed the System dynamics which is a
branch of modeling deals with simulation models.

“System dynamics is an approach to the study of complexity. Originally

developed at the Massachusetts Institute of Technology by Jay

Forrester, system dynamics is a unique method devised to help

managers and public policymakers design and implement high leverage

policies for sustainable success.”

— The back cover of Business Dynamics by John D. Sterman (1999)

And as Forrester tells in his paper about the new product diffusion in an open
market; trying to explain the true purpose of system dynamics:

“One can identify a system only in terms of an objective. Here the

objective is to identify and to explain one of the systems which can

cause stagnation of sales growth even in the presence of an

unlimited market. In particular, we deal here with that system

which causes sales stagnation, or even sales decline, to arise out

of an overly cautious capital investment policy. In this system

’

inadequate capacity limits the growth in product sales.’

18

Chapter 1: Introduction and Literature Review

—Jay W. Forrester (1975)

1.1.3 Eigenvalue Analysis

“Eigenvalue analysis of dominant feedback loops promises to be a
powerful new tool for identifying the structural origins of behavior

in system dynamics models.”

— Nathan B. Forrester (1983)
Eigenvalue analysis is a mathematical method developed to identify the
leverage points in a model, without having to do tedious and erroneous

simulation experiments.

1.2 Literature review

The contribution in the field of system dynamics models analysis although
various, it 1s considerably modest; which is considered a result of the
discontinuous nature of the research in this field.

Research in system dynamics models analysis started in 1982, by the
introduction of Eigenvalue analysis approach by Nathan B. Forrester in his
Ph.D. thesis, introduced to the M.L.T.; which was a prosperous start. He
continued his work by a paper introduced in 1983 to the 1983 International
System Dynamics Conference in Massachusetts, Nathan Forrester was the first
to look back in the origin of the system dynamics science, the control theory,
and tries to adapt yet other mathematical methods to help system dynamists, to

analyze their models and interesting ways to find out new stabilizing policies.

19

Chapter 1: Introduction and Literature Review

Leaving a very wide step of thirteen years, and in the 1996 International
System Dynamics Conference, Christian C. Kampmann introduced his
interesting paper to compete what Nathan Forrester started and towards the
completeness of the whole work, he introduced other interesting mathematical
approaches to enrich the research of system dynamics models analysis, like the
Graph or Network Theory to express system dynamics model in a matrix form
that can be searched for paths and loops, and it was considered a great step
forward.

Another wide step of nearly four years, another stream started, and in 2000 and
2001 Mohamed M. Saleh and Pal I. Davidsen introduced a more complete
piece of work to the system dynamics conference 2000, 2001. They paved the
road that starts at the system dynamics models and ends at the models
Eigenvalue full analysis. This was concluded nearly totally with Saleh's Ph.D.
thesis under the supervision of Davidsen introduced to the University of
Bergen.

And one step is still needed, this step has been demanded, starting from Nathan
Forrester and ending by Saleh. There should be an automated way to complete
the task of Eigenvalue analysis, i.e. a computer package that takes the system
dynamics model, and make the whole analysis work and introduce the needed
results to the modeler, who by all means in dispense with the tedious

mathematical processes.

20

Chapter 1: Introduction and Literature Review

1.2.1 The Work of Nathan B. Forrester

In his Ph.D. thesis (MIT — 1983) Nathan B. Forrester introduced the eigenvalue
analysis and frequency response techniques applied to his US economy system
dynamics model. He aimed at producing a proper stabilizing policy for his
model.

Then in his paper submitted to the international System Dynamics Conference
(1984), he continued his work, but this time he was very specific and
concentrated on the eigenvalue analysis techniques as a method to analyze loop
dominance, and compared the eigenvalue analysis with other two traditional
approaches used to do the same task. Moreover he introduced to model linear
approximation using Taylor series to convert a nonlinear model into a linear
one to give the possibility to apply eigenvalue analysis on nonlinear models.

He related each eigenvalue identified in the model with one of the produced
modes of behavior that constitutes the total behavior of that model.

In another words he related the model structure with value of the eigenvalue

using the eigenvalue elasticity concept.

1.2.2 The Work of Christian C. Kampmann

In his valuable paper submitted to the International System Dynamics
Conference (1996), he introduced to the expression of the system dynamics
model as digraph. Moreover he introduced the linearly independent loop set,
and he could solve a system of equations to find their eigenvalue elasticity

values.

21

Chapter 1: Introduction and Literature Review

1.2.3 The Work of Mohamed M. Saleh and Pal 1. Davidsen

In their paper submitted to the International System Dynamics Conference
(2000), and in the thesis of Mohamed M. Saleh, which he submitted to the
University of Bergen (2003) under the supervision of Pal I. Davidsen, a full
mathematical framework was introduced to complete the story of the

eigenvalue analysis.

1.3 Purpose of the Research

The purpose of this research could be divided into three different pieces:

1. Putting a standard (symbols and names) for the mathematical presentation
needed for the eigenvalue analysis that complies with those of the control

theory

2. Developing a full user-friendly software package, that implements the

eigenvalue analysis technique

3. Analyzing the market growth model, and identifying the leverage points

in that model

22

Chapter 2
The Analysis Package: Mathematical

Background

Chapter 2: The Analysis Package: Mathematical Background

2.1 Introduction

This chapter investigates in details; the mathematical foundation of the
eigenvalue analysis, in terms of its steps applied to system dynamics models.
Section 2.2 discusses in brief the system dynamics model from its equations
perspective, besides introducing a definition for the inputs and the outputs of
the model and explaining how to identify inputs as well as choosing outputs.
Section 2.3 defines the state variables and identifies them in the system
dynamics model.

Section 2.4 goes back again to the model, this time from the linearity and
nonlinearity perspective; and introduces the definitions of linear and nonlinear
model, in addition to introducing a mathematical way to convert a nonlinear
model into a linear one.

Section 2.5 shows how to put the state equations into the state space form.
Section 2.6 identifies the characteristic equation and then eigenvalues of the
model from the state space form. The eigenvalues of the model are discussed in
details starting by their nature as complex numbers and ending by their
corresponding different modes of behavior identified in model behavior.
Section 2.7 shows how to identify the dominant eigenvalue on the behavior of
some state in the model.

Section 2.8 concerns on computing the dominant eigenvalue elasticity values
for every link, constant and linearly independent loop in the model.

Section 2.8.6 discusses loops and linearly independent loops of the model and

their dominant eigenvalue elasticity values.

25

Chapter 2: The Analysis Package: Mathematical Background

2.2 System Dynamics Models

"A little learning (or knowledge) is a dangerous thing."

—Pope, Alexander (1688 - 1744).
Identifying a system dynamics model from the stock and flow perspective is
not enough. The core of the model lies in the equations that contain dynamics.
Its limbs are its inputs and outputs where external world can deal with it and
where it can respond.
Before going into the system dynamics model eigenvalue analysis steps, two
important issues about system dynamics model need to be discussed:

1. Equations.

2. Inputs and outputs.

2.2.1 System Dynamics Model's Equations

By setting the stock and flow diagram aside, and giving a look at the equation
view in any system dynamics simulation software package, we would identify
that; the model consists of a set of mathematical equations that build up the
dynamic system. Those equations are of two types:
1. A set of first order differential equations, defining the dynamics in the
dynamic system (the levels' equations).
2. A set of algebraic equations, defining the static relations in the dynamic
system (the auxiliaries' equations).
Collectively we can say that the system dynamics model is a set of first order

differential equations with embedded static relations (the algebraic equations).

26

Chapter 2: The Analysis Package: Mathematical Background

Figure 1 shows the stock and flow of the yeast cells model, this model explains
the life cycle of the yeast cells; every cell produces alcohol as long as being
alive. It also, reproduces through cell division process. The problem exists in
that as the alcohol concentration increases the cells deaths, and their population
decreases till totally vanishes. Table 1 shows the equations listing of the yeast
cells model, and from it we would notice that the first two equations are
integral equations (levels), while the rest are algebraic equations (auxiliaries)

followed by the values of the inputs (constants).

Cells

Births Deaths

Cell Life Time

Cell Division Time
Eff Alicohol On Deaths

Eff Alicohol On Births

Alcohol Generation

——=—

Alcohol

IS all

L2 =
Alcohol Per Cell Cells
Generation

Figure 1. The Yeast Cells Model

27

Chapter 2: The Analysis Package: Mathematical Background

Alcohol

S0
= +dt*Alcohol Generation
§ Milliliters

Cells

!

& -dt*Deaths
= +dt*Births
§ Cells

Alcohol Generation

O Cells*Alcohol Per Cell Generation
§ Milliliters/Minutes

Births

O Cells*Eff Alcohol On Births/Cell Division Time
§ Cells/Minutes

Deaths

O Cells*Eff Alcohol On Deaths/Cell Life Time
§ Cells/Minutes

Eff Alcohol On Births

O (-0.1*Alcohol)+1.1
8 Dimensionless

Eff Alcohol On Deaths

O exp(Alcohol-11)
8 Dimensionless

<> Alcohol Per Cell Generation

< 0.01
§ Milliliters/Cells/Minutes

<> Cell Division Time

O 15
§ Minutes

10

< Cell Life Time

<& 30
§ Minutes

Table 1: The Yeast Cells Model’s Equations

28

Chapter 2: The Analysis Package: Mathematical Background

The first equation in Table 1:

Alcohol = INTEGRAL(Alcohol Generation, 0)
This can be rewritten in mathematical form:

Alcohol
0

t
Alcohol = I Alcohol Generation - dt

fo

By differentiating both sides:

i(A lcohol) = Alcohol Generation (D

dt

The second equation in Table 1:

Cells = INTEGRAL(Births — Deaths, 1)

This can be rewritten in a mathematical form:

t
= I(Births — Deaths)- dt

)

Cells
1

Cells

By differentiating both sides:

d

E(Cells) = Births — Deaths 2

The terms j_t(A lcohol) and 6jl—t(Cells) are the net flow rates to Alcohol and

Cells level variables respectively, and both of their equations are differential

and of the first order.

2.2.2 System Dynamics Model's Inputs and Outputs

In the control theory, models are classified as Single Input Single Output SISO

or Multi Input Multi Output MIMO (Kuo, B. C., 1995). System dynamics

29

Chapter 2: The Analysis Package: Mathematical Background

models can be classified the same way, after identifying their inputs and

choosing their outputs.

2.2.2.11dentifying the Inputs

According to the concept of inputs in the control theory, inputs of the model are
these influences (variables) that act on the model from outside and are not
affected by what happens inside it (Kheir, Naim A., 1996). Exactly this is the
definition of the constants in a system dynamics model —of course, except the
initial values of the levels—, so that the inputs of the system dynamics model
can be any collection of its constants. This is decided by the modeler —
reflection of the system in his/her mind— because modelers may like to have
constants that would never change inside the model time span, so that they can
not be accepted as inputs.

For yeast cells model, the inputs might be any collection of the following
model constants: Alcohol Per Cell Generation, Cell Division Time or

Cell Life Time . Then the chosen set would be placed in a vector that is called

the input vector and has the symbol u T, for example, if we take all the previous

list of constants to be inputs, the input vector would be:

Alcohol Per Cell Generation
u= Cell Division Time
Cell Life Time

" Mathematical symbol for a vector will always be a lower case bold non-italic letter like x,
mathematical symbol for a matrix will always be an upper case bold non-italic letter like X and
mathematical symbol for an element of a vector or a matrix will always be a lower case non-bold italic
letter with index as subscripts like X;

30

Chapter 2: The Analysis Package: Mathematical Background

2.2.2.2Choosing the Outputs

Again according to the concept of inputs in control theory, output variables are
observable quantities and are measurable (Kheir, Naim A., 1996). In system
dynamics model this definition is still valid, and outputs are always the choice
of the user or the modeler. They can be any collection of the variables of the
model.

For Yeast Cell model, the outputs might be any collection of the following list
of variables: Alcohol , Cells , Alcohol Generation , Eff Alcohol On Births ,
Eff Alcohol On Deaths , Births and Deaths .

The chosen set would be placed in a vector that is called the output vector and

has the symbol y, for example, if we take Alcohol, Cells and
Alcohol Generation to be the outputs, the output vector will be:

Alcohol
y= Cells (4)

Alcohol Generation

2.3 State Variables and State Equations and Other
Equations

Before going any further, the definition of State variables of dynamic model
should be very clear.
“The state of a system refers to the past, present, and future conditions
of the system. From a mathematical sense, it is convenient to define a set

s

of state variables and state equations to model dynamic systems.’

—Kuo, B. C. (1995).

31

Chapter 2: The Analysis Package: Mathematical Background

“The state variables must satisfy the following conditions:
At any initial time t = t,, the state variables x,(ty), x:(ty), ... , X.(ty) define
the initial state of the system.
Once the inputs of the system for t > t) and the initial state defined
above are specified, the state variables should completely define the
future behavior of the system.”
—Kuo, B. C. (1995).
“The state of a dynamic system is the smallest set of variables (called
state variables) such that the knowledge of these variables at t = t,,
together with knowledge of the input for t > t,, completely determines the
behavior of the system for any time t > t,.”
—Ogata, K. (1997).
This concludes that the state variables are the smallest set variables that define
the state of the dynamic system, at the initial time. Also, the state of the system
in the future depends on their present values.
These definition and conditions of State variables are conformable with that of
the levels variables of the system dynamics model.
Back to the yeast cells model, the state variables are: 4lcohol and Cells , and
their differential equations are the state equations of the model equations (1)
and (2).
As we did with inputs and outputs, we would place the states in a vector and

call it the state vector and give it the symbol x:

Alcohol
X = (5)
Cells

32

Chapter 2: The Analysis Package: Mathematical Background

In addition the other variables of the model —the auxiliary variables— would be
placed in a vector form, this vector would have the symbol z:

Alcohol Generation
Births
z= Deaths
Eff Alcohol On Births
| Eff Alcohol On Deaths |

The time derivative of state vector —the net rates vector— would be:

;’l_t(A lcohol)

X = d—X: d
t E(Cells)

It is noticeable that the net rates do not have distinct names for themselves;
they have their names from the states they are connected to. Also, the rates (not
the net rates) are considered to be of the auxiliary variables, so that and from
equations (1) and (2), we will find that the net rates are some auxiliary
variables added or subtracted to or from each others, i.e. net rates are

polynomials of the first degree of auxiliary variables.

2.4 Linear vs. Nonlinear Models

From the design and the analysis point of view, models are Linear or
Nonlinear. And although linear systems don't exist in practice, nearly all
analysis methods in control theory are based on the assumption that systems are

linear.

33

(6)

(7

Chapter 2: The Analysis Package: Mathematical Background

2.4.1 Linear Models

A dynamic system is called linear when the principle of superposition holds.
Meaning that; the model response to the change in several parameters can be
calculated by changing one parameter at a time and adding the results. Also if
cause and effect are proportional, this means that the model is linear (Ogata, K.,
1997).

The model is said to be linear, if the following equation holds for all equations
of its auxiliary variables as well as net rates,

Zy=ax teetay xy thzyteetby zy top Tty uy (®)
Where: x, :i € Z* <N *, z,:j€Z <N, and u, :k € Z" <N are the level,
oqe . . . L + Lo +
auxiliary and input variables respectively, a, :i € Z" <N _, b, :je€Z <N,

and ¢, :k €Z" <N are constants and N , N_and N, are the number of

level, auxiliary and input variables respectively.
By expressing every variables in the model as a deviation from chosen specific

initial operating point that is selected on its behavior, i.e. by replacing x , ...,
Xy s Zysees Zy 5 Uy, .ooand uy by: X, +6x,, ..., Xy +0xy , Z,+6z,

ceis Zy +0zy , U +Ou,,...and u, +0u, respectively.

* The Set of Positive Integers 1, 2, 3, ..., denoted Z* (Weisstein, E. W. (1999) Concise Encyclopedia of
Mathematics CD-ROM).

34

Chapter 2: The Analysis Package: Mathematical Background

While those & terms are very small values, and the values having tilde over

them are the chosen specific initial operating point values, then also z, would
be expressed as z, + 0z, :

LIy t0z, =a (X +0x)+ tay (Xy +0xy)
+b(2,+0z) +...+by (2 +0zy)

+o, () +ou)+...+cy (y +ouy)

L2 40z, =(aX +otay Xy +bzZi+.by 2y Hop ey Uy)

+(@0x,+...4ay 6x, +boz, +...+by 6z, +cou, +...+cy Ouy)

Taking into consideration that the originally chosen initial operating point

should be selected from the behavior of the Z,, i.e. it satisfies the original

equation of z, . In terms of mathematical equations:

Z,=ax, t+tax, +bz +-+b, z Fcu t-teu,

5.0z, =a0x,+--+a,0x, +b oz, +--+b, 0z, +c0u, +--+c,ou,)

2.4.2 Nonlinear Models

Generally all systems are nonlinear. So that, most practical models have
nonlinear relationships among their variables, which implies that those models
are nonlinear and that equation (8) does not hold for all their variables, but they

take the following form:
2y = (X Xy 2 s Zy Uty) (10)

Where: f (.) is a nonlinear function.

But as stated previously, the analysis process requires the model equations to

be linear, so that modifications to the equations of the nonlinear model is

35

Chapter 2: The Analysis Package: Mathematical Background

needed to change their nonlinear nature into linear, but under an important

condition that is not to change the model behavior.

2.4.3 Model Linearization

The model linearization processes is the process of changing the model from
nonlinear into linear, i.e. to put variables having the form of equation (10) in
the form of equation (8) or (9), without changing the behavior within a
limitation boundaries, and this is possible using Taylor Series.

If we have a model that has an equation like equation (10), which has a
nonlinear part, by expressing all variables of the model as a deviation from

chosen specific normal operating point that is selected from the behavior of z, ,

1e.byreplacing x,, ..., Xy , 2z, ..., 2y ,U,...and u, by: X, +x,, ...,
Xy +06xy , z+0zy, ... , Zy +6zy , u;+o6u;, ... and uy +6uy
respectively.

While those 6 terms are very small values, and the values having tilde over

them are the chosen specific initial operating point values, then z, would also
be expressed as z, +0z,, where originally the chosen initial operating point
should be selected from the behavior of the z,, i.e. it satisfies the original

equation of z, . In terms of mathematical equations:

Fy=f B Xy s Z e By sty

u

L2400z, =f (X +0x,.., Xy +0xy ,
Z,+0zy,..., 2y +0zy , (11)

Uy +0Uy,...,tly +0uUy)

36

Chapter 2: The Analysis Package: Mathematical Background

Equation (11) could be expanded using Taylor Series:

2,402, = [Fees By s By By ey)
0 0
+l 5x1+...+i oxy
ox,|. .. Oxy |
X, Z,u x X, Z,a
0
+i oz, +...+ A o0z,
azliiﬁ aZNz _
0 0
+l ou, +...+ Y ou,,
ouy |, . Ouy | ‘
+H.OT.
i3 Z i
X z])
Where: x = :2 , Z= :2 , U= :2 and H OT. is the total amount of the
‘)EN Z~N ZZN

higher order terms, taking into consideration that those o terms were assumed
to be very small values, the higher order terms H O T . other than the first order
terms would have very small values, and can be ignored compared to those of

the first order terms. Also Z, =f (X|,..., Xy ,Z5---sZ y ,LZI,...,L;NI); the last

equation could be reduced to:

N, a N, 6f N, f
0z, =) —| Ox,+) —| Oz, + ou 12
' ;axl X, Z,a l ; Zj %,z ' ;81/‘](X, Za ' ()
Where: si i€eZ <N, g J€Z" <N, and g keZ <N
Xz Zi J %, 2,0 k1%, 7,0

are all constants, and could be replaced by a, :i €Z" <N , b, :j€Z <N,

and ¢, :k € Z" <N, respectively.

0z, =a)0x,+--+ay Oxy +b0z,+-+by 0z, +c,du,++cy duy (13)

37

Chapter 2: The Analysis Package: Mathematical Background

By comparing equations (10) and (13) —taking into consideration that the &
terms represents a small deviation (change) in the original term; i.e. still
expressing the original term if the initial value of the original term is exactly
known—, it should be noticeable that the nonlinear relation could be replaced

with a linear one.

2.5 State Space Form

At this point, we want to put those state equations of the linear or the linearized
model in a general matrix form that is suitable for the analysis process, this
form is called the state space from.

By applying equation (12) on the h™ element in the net rates vector —as
previously clarified, the net rate is a polynomial of the first degree of auxiliary

variables—:

N,
ox . +Zi

- — Oz .
% 2 A R

Nll
5z, +z§i su, (14)

k=1 OU

Taking into consideration that 7 € Z* <N _, it would be obviously noticed that

the three summations represents matrix multiplication results; so that, equation

(14) can be rewritten to be:

ox=J, _ OX+Jy, |

y Z

~ﬁ§Z+JX,ui~ Su (15)

A 5 Z,0

38

Chapter 2: The Analysis Package: Mathematical Background

ox, ox, oz, ou,
. o0x, ox, oz, ou,

Where: ox=| .° |, ox=| .|, oz=| . and ou=| . are the
OX Ox 0z . ouy.

deviations in the net rates, level variables, auxiliary variables and the input
variables vectors respectively.

Also, J, 45 g

, and those J's are

X,Z

9 ~ o~ o~
X, Z,0
%7, Z

called the Jacobian®.
By applying equation (12) on the g™ element in the auxiliary variables vector:
NX

5, =3 L

i=l i

NZ(
PR S (16)

i ou,

N.'
é‘xi+z:(;9i

%, 7,0 j=1¥e

%, %, %, 2,

And again, geZ"<N_. So that, the three summations represents matrix

multiplication results; as a result, equation (16) can be rewritten to be:

oz=1J,, - ox+J,, . oz+J,, - ou (17)
oz oz oz
Where: J, | =— ,J | . =— and J, | =— .
221X, Z,0 ax %z 21X, Z,u 6Z %z UK, Z,u au %z

Equations (15) and (17) could be merged in the following form:
sx| [J.. 1 J., sx| [J.,
..... = | b N U ..
{52} L J} j&} L}

¥ Named after the German mathematician CARL GUSTAV JACOB JACOBI (Kreyszig, E., 1993).
a ox
J:a([x,y]) ou Ov

Su (18)

%, 2,

o) | o
ou Ov

39

Chapter 2: The Analysis Package: Mathematical Background

¥ relates all the variables of the model to each other

Z,X | U Zz
H

. Ji&x ; JXZ
The matrix :—I~-1--~-.f ------ -

using their gain values, so that it is called the System Jacobian (Kampmann,
C.E., 1996), or it could be called the Full Gain Matrix after the full version of
the model —in contrast with the Compact Gain Matrix of the compact version
of the model (Saleh, M.; Davidsen, P. 1., 2000) — and because it contains the
gains of all model links.

Also, from equation (17):

oz=1J

Z,X

ou

X, Z,u

. ox+J,,

. oz+J,,

X, Z.

noz—J,, ou

X, Z,0

% oz = Jz,x

X, Z.

v ox+J,,

X, Z.

(=3, ou

X, Z,0

) ~l~l)é‘z =J,

X, Z

v ox+J,,

X%,z

noz=(1-7J,, ou

-1
Jz,x

- 5X+(I—J,,,

X,Z

-1
Jz,u

%, %, %, Z,il %, 2,

By substituting in equation (15):

nox=J, ox

%%,

e @

X, Z,0

ou

X, Z,0

5 X

DR

X, Z,0

)y

X, Z,0

+JX,Z

Zu

. ox+(I-J,,

zX |5 7

5u)

X, Z,u

+J

X,u

ox

X, Z,u

ou

X, Z,u

LOK=T,

i ox+J,

X, Z

%, 7,0 (I_JZ’Z

iiﬁ(I_J

)_] Jz,x

. ou+d .

X, Z.

LZl%, 7,0

+J,."Z

-1
Jz,u

%,7,0

k= (J

)

X, Z,0 g

+J,.(’z

o)5x
X, Z,0

ou

iiﬁ(I_Jz’Z

-1
Jz,u

X, Z,u

+1J, aT-J) +J.
(%213, 7,0 LLZIR, 7,0 %, Z,0 XUlg 7,0

-1
Jz,x

By putting A=J I Ji.

iiﬁ(I_JZ’Z

X, Z,u

P

el i7ﬁ

40

Chapter 2: The Analysis Package: Mathematical Background

and B=1J.

X,Z

+J.

%, 2, ,u

-1
Jz,u

i (I - Jz,z

%, 7,

ox=Ao0x+Bdou (19)
In control theory context the matrix A is called the System Matrix, while in
system dynamics context it would be the Compact Gain Matrix as stated
previously. The matrix B is called the Input Matrix or Control Matrix.
Using the same method used with the last equation:
oy =Cox+Dou (20)
5y,

o
Where: oy =):/2 1s the output vector. C and D are the QOutput Matrix and

5)’1\/},

Feedforward Matrix respectively —control theory context—.

oy

_ o

%46 On

Also, C=J

il

= and D=J,

s

X, Z,0
6X X,Z,u X, Z,u

Back to the yeast cells example:

0 0
Ji(x =

polynomial of auxiliary variables, i.e. there is no direct connections from x

, and this 1s normal, because we deal with the net rates as a

X, Z,u

elements to x elements, but the connections are through z elements —as

discussed before—.

J_00100
00 00 0 1 -1

X, Z, 0

41

z,2

X,u

Chapter 2: The Analysis Package: Mathematical Background

-0.1 0]
exp (A lcohol —11) 0
0 1/100
0 1/15*Eff Alcohol On Births
i 0 1/15*Eff Alcohol On Bin‘hs_i’i,l~l
0 0 0 0 0]
0 0 0 00
0 0 0 00
1/15*Cells 0 0 0O
0 1/30%Cells 0 0 0]
[0 0 0 o :
0 0 0} and this is normal too, for the same reason discussed

previously forthe J_, .

The full gain matrix can be identified easily by joining the pervious J's.

The system matrix or compact gain matrix easily computed:

0 1/100

A =| (-1/150*Cells (1/15*Eff Alcohol On Births

-1/30*Cells *exp(Alcohol -11)) -1/30*Eff Alcohol On Deaths)

X, Z,u

And, the input matrix according to the previously chosen input vector:

B =|(-1/225*Cells (1/900*Cells
*Eff Alcohol On Births) *Eff Alcohol On Deaths)

0 Cells

X, Z,u

All those matrices would be evaluated at any selected operating point at X, Z

and @ to complete the eigenvalue analysis process.

42

Chapter 2: The Analysis Package: Mathematical Background

Back to equation (19), and by dividing both sides by ot which represents a
very small time change. And by taking limits to both sides while of
approaches 0:

limézAlim§+Blim@
3t—0 Ot 5t—0 Ot 5t—0 Ot

From the definition of the differentiation:

. X=Ax+Bu (21)
At this point we are assuming that A and B are constants and don't include
any functions of time.
Under normal model simulation conditions, the u vector is a constant vector all
the time, which implies that u equals 0.

S X = Ak (22)

Equation (22) represents homogeneous system of linear simultaneous
differential equations of the first order; this system should be solved to find
some analytical expression for the x vector, and to solve such a system we

need to find out the characteristic equation and the eigenvalues of the system.

43

Chapter 2: The Analysis Package: Mathematical Background

2.6 Eigenvalues and the Characteristic Equation

2.6.1 Eigenvalues

Eigenvalues are a special set of scalars (real or complex numbers) associated
with a linear system of equations (the linear or linearized system of equations
of the model in a matrix form — equation (22)), they are also known as the
characteristic roots or proper values, or latent roots (Kreyszig, E., 1993)
(Weisstein, E. W. (1999) Concise Encyclopedia of Mathematics CD-ROM).

The eigenvalues are computed as the roots of the characteristic equation.

2.6.2 The Characteristic Equation

The characteristic equation is the equation that is solved to find a matrix's
eigenvalues; it is also called the characteristic polynomial. From equation (19),
the matrix A is a matrix of a system of linear equations, if there is a vector

r # 0 such that:

Ar =Ar (23)

Where: A is a scalar value.

If equation (23) could be solved, then A is one of the eigenvalues and r is its
corresponding right eigenvector (called right; because the vector is multiplied

to the right of matrix A , and it will be the left eigenvector if the multiplication

" In German it is called Eigenwert, "Eigen" is a German word that means Proper, while "wert" means
Root (Kreyszig, E., 1997).

44

Chapter 2: The Analysis Package: Mathematical Background

is to the left of matrix A). To compute the eigenvalues and their corresponding
right eigenvectors equation (23) could be reduced to:
S(A=M)r=0

Using Cramer's Rule, a system of linear equations has nontrivial solutions only

if the determinant of the system vanishes, so we obtain the characteristic
equation (Kreyszig, E., 1993):

A-M]=0 (24)

This equation has solutions that equal the number of rows or columns of the A
matrix. The set of all solutions of equation(24), is the set of eigenvalues. By
taking each eigenvalue and substituting in equation(23), we get its

corresponding eigenvector.

2.6.3 The State Space Form Solution

The solution of equation (22) could be on the following form (Kreyszig, E.,
1993):

(t0) 2(t+10)

. A A (2-10)
x=ce"""r +c,e r,+-+ce ry

or,

x=>ceh My (25)

45

Chapter 2: The Analysis Package: Mathematical Background

Where: ¢,, ¢,, ... and ¢, are constants, r,, r,, ... and r, are the right
eigenvectors’’ of the system and A A, ... and X, are their corresponding

eigenvalues.

The constant term ¢, can be computed using the initial conditions at ¢ =¢,,

x=x. Note that the x vector is very well-known at every time step —by the
initial time step; the x vector should be completely known to be able to start
the simulation anyway. After that, at every new time step the vector x is

known from the pervious step—, substituting in equation (25):

X =Cn ety ke Ty
SX=EC ATC, Ty O
The last formula expresses the matrix product of a vector containing all the ¢,

terms and the full right eigenvector r = [rl r, T,] ",

" These set of eigenvectors are should be linearly independent or their corresponding eigenvalues are
different.

* Although r is a lower case letter, it is used to express the right eigenvectors matrix; because this
matrix is the arrangement of right eigenvectors beside each other in columns. Also 1 would be used ro
express the left eigenvalues matrix.

46

Chapter 2: The Analysis Package: Mathematical Background

=r X (26)

2.6.4 The Eigenvalues and their Corresponding Modes of Behavior

2.6.4.1The Eigenvalue as a Complex Number

The Real numbers are subfield from Complex numbers (Weisstein, E. W.
(1999) Concise Encyclopedia of Mathematics CD-ROM). So that it is possible
to express all eigenvalues —real, imaginary or complex— as complex numbers,
but sometimes with zero imaginary part in the real numbers eigenvalue case
and sometimes with zero real part in the imaginary numbers eigenvalue case.

This way all eigenvalues can be put in the form of o * j @, where each of those

symbols o and o has its effect on the behavior of the model.

For fully understanding the effect of the eigenvalue on the behavior, it would
be useful to define some factors like o which is the Damping Factor or the
Damping Constant where o =—o, as shown in figure 2, we can identify that
the behavior of the system damps faster and goes to a steady state faster as the
value of « is greater, and vise versa. This is because of 7 which is the Time

Constant of the system being inversely proportional with the damping factor.

47

Chapter 2: The Analysis Package: Mathematical Background

Figure 2. The System Time Constant t

X ®

Figure 3. The System Damped Frequency ®

And

Also, because of @ which is the Conditional Frequency or Damped
Frequency, which expresses the frequency of the behavior of the damped
system —i.e. taking into consideration the effect of « on that system—, shown in

figure 3.

48

Chapter 2: The Analysis Package: Mathematical Background

For i" eigenvalue A, =0; £ jo,, by utilizing the phasor form of complex

number (Edminister, Joseph A., 1972), and looking back at the analytical

solution of the x vector, equation (25), and noting that:

. eli (e40) — e("f i)(t-t)

-‘e}‘[(t-t0) :eai("to)eif“’f (t-t0)

Equation (25) could be rewritten to be:

NX
X = Ciea[(t-to)eijwi(t»to)l‘i
i=1
X i
)) . . th
Note that x=| : |[,alsor, = : [, sothat we can write only the k™ net rate:
Xy, Tiv,
N,

T - o, (t+ty) *jw, (ty)
SoX —ZCie e Vi

i
i=1

27

Where: ¢, is a constant and we can multiply it to r, (that contains constant

Cilh Ci
terms) which gives out another vector of constants ¢,r, =| : |[=]| :
Ci riNx C[NX
NX
. - +iw. (-
SX, :zcikeo—‘ (t fo)e—/wz(’ 1) (28)

in
It is easily noticed that, the behavior of one net rate is a combination of added
or subtracted terms, each of those terms is related to one of the eigenvalues;
which means that all eigenvalues of the system have effect on every net rate.
But with a specific amplification value, this is what is meant by the constant
term multiplied to each exponential term (the exponential term is the sources of

dynamics in the behavior as it would be clarified).

49

Chapter 2: The Analysis Package: Mathematical Background

At this point it is important to discuss the exponential term and relate it to the

o; (o)

graph of the behavior of the net rate. The term e is well-known, it is the
source of exponential growth or decay —according to the sign of the o, — that

i (t-t,

appears in the behavior of the model. But, the other term e) needs more
investigation, this term appears only if the eigenvalue has an imaginary part,
and this means that the model has another conjugate eigenvalue because
complex eigenvalues come in pairs (Kreyszig, E., 1993). It might be noticed

that the + sign was used to denote the two conjugate eigenvalues.

Before going any further, let's investigate the value of ¢, for both conjugate
eigenvalues. Back to equation (26), and taking into consideration that

1= (r’1)T , where 1 is the left eigenvector (Kreyszig, E., 1993):

S =r!
Cl
c .
2
Jl=rx
Cy.
¢
&) T
=1 1, L, | %
Cy.
T
c, 1,
T
¢, L' |-
= . X
T
CNX lN.x
c. =17x

50

Chapter 2: The Analysis Package: Mathematical Background

If a model has two conjugate eigenvalues A, and A, ,,, then their corresponding

+19

left eigenvectors 1, and 1., would be conjugate and their right eigenvectors r,

+1

and r,

i+l

would be conjugate too (Kreyszig, E., 1993), consequently 1.” and

1./ would be conjugate. Multiplying both 1" and 1., to the same x keeps

i+1

the conjugate relation, which means that both ¢, and ¢,,, would be a conjugate

ri+1

pair. As a result ¢,r, and ¢ would be a conjugate pair too, consequently

i+l

c; and ¢, are conjugate pair too.

Starting from the last deduction; for the conjugate eigenvalues, the two

constants ¢, and ¢, are both conjugate, i.e. we can replace ¢, by ¢,

k
which is the conjugate of ¢, .

The addition or subtraction of the two terms that contains the two complex

conjugate eigenvalues looks like the following:

(2t jw; (t-t — (t-ty) —jo; (t-t (¢t jw; (t-t — —jo(tt
c[.kea’(o)erz(0)+Cikeol(o)e le(o)zeo'z(0)(0”{6]&)'(U)+Cike Ja’z(0))

(t-t0)

Jen(t-to)

By utilizing Euler's Formula®® to the ¢/ and e~ terms:

e erlh) - cos(a, (¢ -to))ij sin(a)l. (1 -to))
. C.keo—i(t-tO)ejwi([-[O)+CT.k€O—i(t-t0)e_jwi([-[0) =
Tt [

e""(""))(cik cos(a)[. (1 -to))+j sin(a),- (1 -to))+5,-k COS(“’[(1 'to))_j sin(a)l. (t 'tO)))

% By the Swiss mathematician LEONHARD EULER:

+j6

e’ =cos@=*jsind

51

Chapter 2: The Analysis Package: Mathematical Background

ol ieilit) o Loi(tty) mjer(tt) _
Sege 't et +c e’ e " =

eai(t-tO)((Cik +c,)COS(wi (t 'to))+j (Cik —Cy)sin(a),- (t _IO)))

By replacing ¢, by %(cos v, +j siny,) and ¢, with %(cosn//i —jsiny,). So

that the term (c,, +¢;) equals cos@ and the term j (¢, —c;) equals —siné:

o; (t—to)eja),- (t-to) +CT-keGi (t—to)e—ja)l- (t-19) _
1

eai(t-tO)(CosW,' Cos(wi (1 'to))_Sinlf’/i sin(a)l. (¢ _tO)))

Seye

The relation cosy cos (a)l. (t -1,)) —siny sin (a)l. (t -1,)) , using Trigonometric
simplification, equals cos(a)l. (t-1y)+y,) o

-'-Cl-kem(t_t())ejwi(t_t()) +C_ikeai(t_t0)e_jwi(t_t0) _

1) cos(a)l. (t-1y)+y,)

The last equation, gives a very interesting result, a cosine wave with angular

siny, _1Cy —C, .
VMYV _ g Sk ik Thig gives the

displacement y, which equals tan™ —
Ccosy; Cip TCy

oscillations appears in the behavior of the model. And this way we could

tjw;(t-ty)

explain the effect of the e term.

Before leaving this section, another two important parameters should be
defined:

¢ which is the Damping Ratio { =cos@; where 6 is the argument or phase

of the eigenvalue, i.e. the angle between the eigenvalue and the positive real

sk

sin(0+¢) = cos O cos p—sin Fsin g -

52

Chapter 2: The Analysis Package: Mathematical Background

line in the complex plane, and by using trigonometric simplification:
sin@ =4/1-¢* T,

@, which is the Natural Undamped Frequency, and it is the modulus of the

. . 2 2
eigenvalue, i.e. ®, =Vo + " .

M sin? @+ cos? @ =1
s.sin®@=1-cos’ @

s.sin@=+1-cos* 8.

53

Chapter 2: The Analysis Package: Mathematical Background

2.6.5 The Cases of Eigenvalue

2.6.5.1The first case

Shown in figure 4, the eigenvalue has zero real value and zero imaginary value:

Therefore « =0, this implies no damping over the behavior of the model.

And o =0, this implies no oscillations.

This case is a special case; it expresses a plateau (a fixed value that is added
forever to the total behavior).

The mathematical expression of the i"™ element (related to the i™ eigenvalue) of

the behavior of the k™ net rate x , , is:

=Ci

Where: ¢, will stays constant forever, the behavior of this case is shown in

figure 5.

54

Chapter 2: The Analysis Package: Mathematical Background

Imaginary A

< X n >
Real

\/

Figure 4: Zero Value Eigenvalue

Lo

Figure 5: The Behavior Corresponding to Zero Value Eigenvalue

55

Chapter 2: The Analysis Package: Mathematical Background

2.6.5.2The second case

Shown in figure 6, the eigenvalue has positive real value and zero imaginary

value:

Therefore o = -0, , this implies that damping over the behavior of the model is
negative (i.e. damping is diminishing).

And o =0, this implies no oscillations.

The mathematical expression of the i element of the behavior of the k™ net

rate x, , 1S:

. -t
Where: ¢, remains constant forever, and the term et expresses a pure

exponential growth, the behavior of the model in this case is shown in figure 6.
The time constant 7 or the Doubling Time of this behavior could be computed
as follows:

o (t2~9) =2 cy e’ (ti—t0)

Cy €

el (ta=to)=0i (t1=t0) _ 2

o, (t,—t,)=In(2)

Also 7 could be identified from the behavior graph itself as shown in figure 6.

56

Chapter 2: The Analysis Package: Mathematical Background

Imaginary A

0 R Real

o=4w,

n

A

\/

Figure 6: Positive Real Eigenvalue

Figure 7: Mode of Behavior Corresponding to Positive Real Eigenvalue

57

Chapter 2: The Analysis Package: Mathematical Background

2.6.5.3The third case

Shown in figure 8, the eigenvalue has negative real value and zero imaginary

value:

Therefore a = o, , this implies that damping over the behavior of the model is
positive (i.e. damping is growing).

And o =0, this implies no oscillations.

The mathematical expression of the i element of the behavior of the k™ net

rate x, , 1S:

. —o; (t—t
Where: ¢, remains constant, and the term e il ~to) expresses a pure

exponential decay, the behavior of the model in this case is shown in figure 9.
The time constant 7 or the Half-life Time of this behavior could be computed

as follows:

Also 7 could be identified from the behavior graph itself as shown in figure 9.

58

Chapter 2: The Analysis Package: Mathematical Background

Imaginary A

0 Real

A

o=4o,

\/

Figure 8: Negative Real Eigenvalue

Figure 9: Mode of Behavior Corresponding to Negative Real Eigenvalue

59

Chapter 2: The Analysis Package: Mathematical Background

2.6.5.4The fourth case

Shown in figure 10, the eigenvalue has an imaginary value —this means that it
has another conjugate eigenvalue— The eigenvalue has zero real value and

imaginary value:

Therefore « =0, this implies no damping.

And o = w, , this implies that oscillations exist.

The mathematical expression of the i element of the behavior of the k™ net
rate X , is:

. 0(t-ty) Jjoy(ttg) |, =— O(r-ty) —joy(t-to)
X, =cye " e +c e Ve

X = cos(a)l. (t -t0)+l//,~)

1C; —c, — .
—k ik "and both ¢, and ¢, remain constant forever, the

Where: y, =tan —
Cix TCi

behavior of this case is shown in figure 11.

60

Chapter 2: The Analysis Package: Mathematical Background

Imaginary A
A 7
=0,
[4
> | >
0 Real

Figure 10: Pure Imaginary Eigenvalue

Figure 11: Mode of Behavior Corresponding to Pure Imaginary Eigenvalue

61

Chapter 2: The Analysis Package: Mathematical Background

2.6.5.5The fifth case

Shown in figure 12, the eigenvalue has an imaginary value —this is means that it
has another conjugate eigenvalue— The eigenvalue has positive real value and

imaginary value:

Therefore o = -0, , which implies that damping over the behavior of the model
is negative (i.e. damping is diminishing).
And o = w, , this implies that oscillations exist.

The mathematical expression of the i™ element of the behavior of the k™ net

rate X , is:
xki — cikeo-i (f'fo)eja’i () +Eikeo-i (f'fo)e—ja’i (t1)
. o;(t=t)
LXy =e Cos(a)l. (z‘ -t0)+l//l.)
_1Cy —C, _ :
Where: y, =tan™' —“—% 'and both ¢, and ¢,, remain constants forever, and
Cir TCy

the term % (™) expresses a pure exponential growth —the envelope of the

oscillations—, the behavior of this case is shown in figure 13.
The time constant z or the doubling time of the envelope of this behavior

could be computed as in the third case:

Also 7 could be identified from the behavior graph itself as shown in figure 13.

62

Chapter 2: The Analysis Package: Mathematical Background

w=a1-¢*

Real

Figure 13: Mode of Behavior Corresponding to Imaginary Eigenvalue with Positive Real Part

63

Chapter 2: The Analysis Package: Mathematical Background

2.6.5.6The sixth case

Shown in figure 14, the eigenvalue has an imaginary value —this is means that it
has another conjugate eigenvalue— The eigenvalue has negative real value and
imaginary value:

iy KO)

1

Therefore a = o, , which implies that damping over the behavior of the model
is positive (i.e. damping is growing).
And o = w, , this implies that oscillations exist.

The mathematical expression of the i element of the behavior of the k™ net

rate x, , 1s:
. —0;(t-1g) _Jjaw(t-ty) |, = —oi(ttg) —jo(t-tg)
X, =Cy e +c,e e
cy o ,oilt)
X, =e cos(a, (1 -1,)+w,)
1Sk —Ca _ :
Where: y; =tan” ——, and both ¢, and ¢, remain constants forever, and
cy +C;
ik ik

the term e (™) expresses a pure exponential decay —the envelope of the
oscillations—, the behavior of this case is shown in figure 15.
The time constant 7 or the half-life time of the envelope of this behavior could

be computed as in the second case:

Also 7 could be identified from the behavior graph itself as shown in figure 15.

64

Chapter 2: The Analysis Package: Mathematical Background

Imaginary
A=, 3

Figure 15: Mode of Behavior Corresponding to Imaginary Eigenvalue with Negative Real Part

65

Chapter 2: The Analysis Package: Mathematical Background

2.7 Identifying the Dominant Eigenvalue

The total behavior of a level variable is related to the addition of the modes of
behavior corresponding to the eigenvalues of the model, but with different
percentages of effect. So that it is possible to specify one eigenvalue (or two
conjugate pair if the eigenvalue has imaginary part) or more that affect mostly
the behavior of that level variable.

The identification process of the dominant eigenvalue depends mainly on an
experimental method suggested by Saleh, M. and Davidsen, P. (2000, 2001).
This method depends on doing some experiments; in each experiment only one
eigenvalue is allowed to affect the behavior while blocking all the other
eigenvalues, then finding the dominant eigenvalue would be easy by directly
comparing the results of the experiments to each other.

The last method might be improved slightly by computing the percentage of
contribution of each eigenvalue on the level under study which allows
arranging them according to their dominance over the level behavior, so that it
would be possible to take more than only one dominant eigenvalue.

Back to equation (28), which can be rewritten to be:

M(t-tg) 2 (t-10)

. Iy ME
xk —clke +CZke +"'+an€
or,

X =X FX g+t Xy,

66

Chapter 2: The Analysis Package: Mathematical Background

Each component in the right hand side of the last equation can be treated
individually because all those components are added to or subtract from each
others, so that by taking only one element:

X, =

By integrating both sides of the last equation, there are two cases:

I. X #0:
[i)
—_)‘x t7t0
j X, dt = J.cl.ke dt
X to
ind t
X ki Mt =)
'[kg :J-c,.ke ‘et
Jodt
X ki to
X t
_ Mt =Nty
J.dxk,—jcike e "dt
X to
ity
u _ Cuf at|f
kilg, = ,
k }\’[0
At
o~ _Ce ! At Nt
X =X e e
A
i
C,; = -
Xy = (e (1) 1)+x .
i)\‘ ki
i
or,

G (29)

67

Chapter 2: The Analysis Package: Mathematical Background

2. X =0
X i ¢
j X, dt = J.cl.kex‘ ()
X to
" dx ki t 0t)
I dt =Jcike dt
5, dr 1
ki 0
X i t
dx :Icikdt
X ty
X ¢
Xiilg, :ciktto
X X TCq (t _to)
X =Ci (t _t0)+xk1
or,
ox, =c, ot
SOX, = ZCik ot (30)
=

By calculating the term Jx,, for each eigenvalue, it would be possible to

distinguish the contribution of each eigenvalue in the behavior of x, , where:

I ox,,
. contribution,, = —*~ (31)
X

Where: contribution,, is the contribution in the behavior of the k™ state due to
A, only, also we should note that the term JSx, expresses the total contribution

of all eigenvalues in the value of the k™ state.
By arranging the values of contribution of each eigenvalue in a descending

order it would be possible to identify the dominance order of those eigenvalues.

68

Chapter 2: The Analysis Package: Mathematical Background

In this context only the most dominant eigenvalue would be considered —the
eigenvalue with highest contribution value—, but it is still very possible to test
the effect of the second or the third dominant eigenvalue on the behavior of a

State.

2.8 The Dominant Eigenvalue Elasticity

The aim of the analysis process is to identify the leverage points in the model
structure. Therefore the aim of this section is to relate the dominant eigenvalue
with the links of the model using what Forrester, N. (1982), has suggested to

quantify that retaliation, which the eigenvalue elasticity.

2.8.1 The Eigenvalue Sensitivity
For a link that starts from a level variable x ; and ends at the net rate of another
level variable x,, the k™ eigenvalue sensitivity to the gain of that link s ki 18

defined as: the change in the k™ eigenvalue due to the change in the gain of that

link:
O\
Sk = j (32)
Y
or, in matrix form:
O\,
=—kK 33
FT A (33)
The matrix S, , can be directly computed (Saleh, M., 2003):
S, =11,/ (34)

69

Chapter 2: The Analysis Package: Mathematical Background

Where: 1, and r, are the left and right eigenvectors of the k™ eigenvalue

respectively.

2.8.2 The Eigenvalue Elasticity
For a link that starts from a level variable x ; and ends at the net rate of another
level variable x, , the k™ eigenvalue elasticity for the gain of that link £ ki HE s

defined as: the relative change in the k™ eigenvalue to the relative change in the

gain of that link (Saleh, M., 2003):

o Ohy [Ny (35)
Y Say [ay
1o,
N Sa, !
Using the definition from equation (32):
. 1
SE =k—skijaij (36)
k
Or, in matrix form:
~E, = isk *A S (37)
A

Where: E, is the k™ eigenvalue elasticity matrix for the compact version of the

model.

1 The thesis normal mathematical symbolic notation would be contradicted for the elasticity matrix
elements; upper case letters would be used instead of lower case letters, in order not to confuse the
reader with the exponent function.

¥ The symbol _x is the Mathworks' Matlab notation for array multiplication operator (each element

from matrix to the left of the operator is multiplied by the corresponding element from the matrix to the
right of the operator).

70

Chapter 2: The Analysis Package: Mathematical Background

2.8.3 The Dominant Eigenvalue Elasticity Values of the Links of the

Compact Model

Applying equation (37) to compute the dominant eigenvalue elasticity values of
the links of the compact model enables us to relate the system behavior to the
links of the compact version of the system dynamics model, i.e. the links
between state variables and net rate variables.

At this point an interesting property of the eigenvalue elasticity measure —
firstly noticed by Forrester, N. — should be stated: the eigenvalue elasticity
values is like electric current, that is, all eigenvalue elasticity values entering a
variable in the model should come out of it again (Forrester, N. B., 1982), this
property was proved after that by Saleh, M. (Saleh, M., 2003) —like: Kirchoff
Current Law, in Electric Circuits (Edminister, Joseph A., 1972)—.

This interesting property would greatly help in distributing the dominant
eigenvalue elasticity value of the link between two variables in the compact
version of the model, among the links between the same two variables, in the

full version of the model.

2.8.4 The Dominant Eigenvalue Elasticity Values of the Links of the

Full Model

J. 1J
Back to equation (18), the full gain matrix is {:]-5—’5~-1f--~-~-—’-~} ; for any two

variables having a link between them in the model, the full gain matrix has a

corresponding element that has a value equals to the gain between those two

71

Chapter 2: The Analysis Package: Mathematical Background

variables, taking into consideration that this element column number is the
number of the variable that the link starts from, and that the element row
number is the number of the variable that the link ends at, giving that the
variables of the model were numbered. The other elements of the full gain
matrix that are not corresponding to links in the model equal zero.

In Graph Theory; such a matrix is called a digraph (directed graph), also
adjacency matrix. And various well-know exhaustive search algorithms could
be applied on that digraph to find paths between two variables or to find loops,
the details of those algorithms are out of this scope of this context

Back to the compact gain matrix and its corresponding computed dominant
eigenvalue elasticity values matrix, in the compact version of the model, only
variables that has a nonzero element in the compact gain matrix, has a
corresponding nonzero element in the compact dominant eigenvalue elasticity
values matrix and vice versa; 1.e. only variables that has gain between them has
a dominant eigenvalue elasticity value, and this is normal because if there is a
gain between two variables in compact model, it means that there is a direct or
indirect link or links between those two variables in the full version of the
model, and zero gain means that there is no link between the two variables, and
of course if there is no link between the two variables, there would be no

dominant eigenvalue elasticity value between them equation (36).

" The interested reader might refer to "Graph Theory" (Diestel, R., 2000), "Advanced Engineering
Mathematics" (Kreyszig, E., 1993) and the "Digraph toolbox" (Bahar, M.; Jantzen, J., 1995)

72

Chapter 2: The Analysis Package: Mathematical Background

Suppose that the k™ eigenvalue is the dominant eigenvalue, using equation (36)
enables computing the dominant eigenvalue elasticity value of the link between
the level variable x; and the net rate of the level variable x,: E, —for
simplicity it might be said: to the level variable x, directly instead of the net
rate of the level variable x,, and it would be more simple to drop the level
variable statement and directly say x ; and x, —.

Using one of the path identification algorithms to extract paths from the full

model, it would be possible to identify the direct and indirect paths that starts

from x, and ends at x,, excluding paths that pass through other states —

because the gains and the dominant eigenvalue elasticity values of those paths
that pass through other states are included within their original paths and taking
them into consideration within this computation leads to erroneous

redundancy—. Let those identified paths to be P, , P,

Jiy? T jip?

...and P, ~where N
is the total number of paths that starts from x ; and ends at x, , excluding paths

that pass through other states.

P

ﬂ2""’PﬁN }

Py :{P Jin?
Let the gains of those paths tobe g, , g, , ... and g, respectively. And
Ji Ji2 JiN
let their dominant eigenvalue elasticity values to be £,, , E,, , ... and
J1 J12

E,, respectively. Note that the summation of the gains and the summation of
JIN

the dominant eigenvalue elasticity values of those paths together equals a; and

E,; respectively (Saleh, M.; Davidsen, P. L., 2000).

73

Chapter 2: The Analysis Package: Mathematical Background

a; = Z gr,

P, ePﬁ

Ey= 2 Euw

Py ePy
The gain of each individual path could be easily computed, i.e. the values of

gp

> 8 and g Py by multiplying the gains of the elements g, (links)
of each path individually from the full gain matrix (Kuo, B. C., 1995) and

(Ogata, K., 1997).

8p, = H 8,

l,eP

To compute the dominant eigenvalue elasticity value of each path individually

(Saleh, M.; Davidsen, P. 1., 2000):

E,;
Ey =8, —© (38)
s]l.\' aU
Or, by utilizing equation (36):
S i
EkPﬁy =8&p, % (39)
' A

Where: E,, is the dominant eigenvalue elasticity values for the path P, .

Jis
Note that, £,, is also the dominant eigenvalue elasticity value for every
Jls
element in the path P, .

Also it is important to note that: one link ¢, could be a member of more than

one path in the full version of the model and each of those paths has its distinct
dominant eigenvalue elasticity value; in this case its dominant eigenvalue

elasticity value of that link is the summation of all dominant eigenvalue

74

Chapter 2: The Analysis Package: Mathematical Background

elasticity values of all paths that pass through this link (Forrester, N. B., 1982)

and (Saleh, M., 2003).

E, = Z EkPj,- (40)

The dominant eigenvalue elasticity values for all links of the full version of the
model could be computed using equation (40), i.e. compute the Full Dominant
Eigenvalue Elasticity Values Matrix.

Also by utilizing the eigenvalue to gain sensitivity definition, we can find the

dominant eigenvalue sensitivity for all links in the full the model:

8y
E =g —_r
kt kt
r r 7\’

From equation (39) and (40):

g
A

S Sk

== 2 {gP Ei]

L U AN

From as previously indicated; g P, = H g, :

[V EPﬁ K

. 8o, E;
. Sk/{r N = z (L H g-(V J y J
ko Py o\ 4Py 4

75

Chapter 2: The Analysis Package: Mathematical Background

1 N
The term — H g, ,can be simplified to H g
{0

81, t,eP; t,eP; -,

E,.
SSp =M Z [[H }g&J k%/J (41)

Py o\ e, {0, a;

Back to the yeast cells example, the matrix A has three nonzero elements from
Alcohol (column 1) to Cells (row 2), from Cells to Alcohol and from Cells
to Cells .

Let's take the link from A4lcohol to Cells , its gain equals:

—1/150*Cells —1/30*Cells *exp(A lcohol —11).

Note that: at each time step through simulation period, the matrix A elements
will be of specific numerical values. And easily the E matrix elements could
be numerically computed using equation (36). So that, let's assume that this
numerical evaluation is done and the last gain expression is in numerical form

and let's suppose that it equals a,, and k™ eigenvalue is the dominant one, so
that i1ts dominant eigenvalue elasticity value numerically equals £, ;.

By applying an exhaustive search algorithm on the full gain matrix of the
model, to find all possible paths from Alcohol to Cells, the path from
Alcohol to Cells contains two different paths:

P, : Alcohol > Eff Alcohol On Births => Birth > Cells
P, : Alcohol > Eff Alcohol On Deaths > Deaths => Cells

Easily the gain of each path could be computed, by multiplying gains of its

elements. Let's suppose that the gains of those paths are g, and g, for P, and

P, respectively.

76

Chapter 2: The Analysis Package: Mathematical Background

By utilizing equation (38), the dominant eigenvalue elasticity for each path

individually is:

E
_ k21
EkPl =8p-
as
E
_ k21
Esz =8p,-
ay)

Where: E,, and E,;, are the dominant eigenvalue elasticity values for P, and
P, respectively.
Note that, E,, is the dominant eigenvalue elasticity values for every element

in P, and the same for £, and the elements of P,.

2.8.5 The Dominant Eigenvalue Elasticity for the Inputs

To get the full benefit of the knowledge of the dominant eigenvalue elasticity
values of the system dynamics model links, it should be possible to change the
gains of those links to be able to change the dominant eigenvalue, i.e. changing
the gain of a link so that the eigenvalue and of course the system behavior
would change in a desirable way.

As stated before the model inputs or constants or parameters are the
controllable part of the model, so that it should be possible to compute the
dominant eigenvalue elasticity values for the model inputs. Utilizing the
following relation (Saleh, M., 2003):

£y, = 2alh “2)
© ou, fu,

Where: E, is the dominant eigenvalue elasticity value for the input u, .
q

77

Chapter 2: The Analysis Package: Mathematical Background

By rearranging the terms of equation (42):

1 o\,
ku = __uq
© A Ou,

Applying the Chain Rule (Kreyszig, E., 1993):

N, 0
popfzom),
k

=08, Ou,

Where: N, is the number of all links in the full model.

But from the definition of the eigenvalue to gain sensitivity s,, = s k.
r g/{r
[%
E, =—|)s -
kuq kk (; kt, a . q

Where: s,, can be computed directly using equation (41).

2.8.6 The Dominant Eigenvalue Elasticity for the Loops

(43)

The loops of a model are the most meaningful building blocks. As stated

before, the full gain matrix is a digraph, and could be searched using search

algorithms; to find paths between two variables, and loops by identifying paths

that starts from a variable and ends at the same variable.

By identifying loops, their gains and dominant eigenvalue elasticity values

could be identified.

2.8.6.11dentifying Loops in the Model

Kampmann, C. E. (1996) suggested a binary matrix that relates the links with

the loops:

78

Chapter 2: The Analysis Package: Mathematical Background

1 K
V4 K
l=c| (44)
/ v, Ky

Where: x; expresses the i™ loop, ¢ ; expresses the i™ link. N . and N, are the

number of all loops and all links in the model respectively. The matrix C

would be a non-square binary matrix:

C:[Cij]

Where: ¢, = 1 if the link 7, is a component in loop &; , 0 otherwise.

Back to the yeast cells model, and by applying a search algorithm to the model,
the following four loops would be identified:

k,: Cells = Births > Cells

K, : Cells = Deaths > Cells

K, . Alcohol = Eff Alcohol On Births = Births >
Cells > Alcohol Generation = Alcohol

Kk, . Alcohol = Eff Alcohol On Deaths = Deaths >
Cells = Alcohol Generation = Alcohol

Also,

79

Chapter 2: The Analysis Package: Mathematical Background

: Alcohol = Eff Alcohol On Births
: Alcohol = Eff Alcohol On Deaths
:Cells = Alcohol Generation

:Cells = Births

:Cells = Deaths

:Eff Alcohol On Births > Births
:Eff Alcohol On Deaths => Deaths
:Alcohol Generation = Alcohol

o : Births > Cells

10 - Deaths => Cells

w) —_

N

2 =)}

oo

S S TS TS T S T S S
W

w [\S) —_

~

[e] = [=)

5 T T S e T e S NN N
W

=)

~
S

o = o O
- o o O
- = o O
o = o O
- o o O
- o O
o = o =

o o o =
o o = O
- o = O

2.8.6.2Linearly Independent Loops and their Dominant Eigenvalue Elasticity

Values

As stated before, Forrester, N. B. (1982) has discovered the similarity between
eigenvalue elasticity and electric current. Also Kampmann, C. E. (1996)

suggested equation (44), but he stated that solving this equation in its form

80

Chapter 2: The Analysis Package: Mathematical Background

wouldn't be possible, also he added (from the graph theory) that for this
equation to be solvable; the set of all loops should be replaced by a smaller set
of loops that is their number equals to (total number of links — total number of
variables + 1). And that this is exactly the number of any selected linearly
independent loop set.

So that in equation (44), by replacing the C with another smaller matrix C_, to

relate the eigenvalue elasticity values of links with that of a linearly

independent loop set of loops.

Ekﬂl Ektq
kt, _C ki (45)
Ekaé EkKNK_

Where: £,, and E,, express the dominant eigenvalue elasticity values of the
i “J

i"™ loop and the j™ link respectively.
Or, in matrix form:

E,, =CE (46)
Equation (46) could be easily solved for E,, using least squares solution, but

the real problem is how to select the matrix C, from the rows of the matrix C,

in other words; how to select the linearly independent loops set.
“The rank of a matrix A is the maximum number of linearly independent
columns of A, or it is the order of the largest nonsingular matrix
contained in A.”

—Kuo, B. C. (1995).

81

Chapter 2: The Analysis Package: Mathematical Background

This makes it easy to find out the C,., knowing that it is not unique for the

model, i.e. there could be more than one linearly independent loops set
(Kampmann, C. E., 1996), also Kampmann suggested that the user should
select the most significant set for his model from the user's point of view.

Back to the yeast cells model, by computing the rank of the matrix C; it equals
4. This is while; the total number of links equals 10 and the total number of
variables equals 7, so that the number of linearly independent loops set, should
be 10 — 7 + 1 = 4, which is the same result of the rank. Which also means that

all loops in the model are linearly independent, 1.e. C =C.

Easily by substituting in equation (45) and solving it for the eigenvalue
elasticity values of the loops, this system of equations is over determined
system; i.e. the number of equations is greater than the number of unknowns.
But it is still a consistent system that could be solved and give exact values to

the unknowns.

82

Chapter 3
The Analysis Package: Computer

Implementation

Chapter 3: The Analysis Package: Computer Implementation

3.1 Introduction

This chapter focuses on the implementation of the functions of the Analysis
package using the programming language of Mathworks Matlab mathematical
package. The Analysis package consists of many functions that aim at applying
the eigenvalue analysis steps on system dynamics models in Powersim
constructor text file format. In fact, the Analysis package functions don’t deal
directly with the model file; instead they take their intputs from the Simulation
package'". The following sections of this chapter present the functions of the
package.

Section 3.2 3.2presents the analysis function; which is the backbone function
of the Analysis package that calls all the other functions.

Section 3.3 presents the extractModelObjects function; which extracts
information from inputs that come from the Simulation package to the Analysis
package.

Section 3.4 presents the computeSystemJacobians function; which computes in
symbolic form, two of the most important matrices needed through the usage of
the package.

Section 3.5 presents the findIndependentCycles function; which finds sets of

loops and does their calculations.

1" The Simulation package is a Powersim model text file parser and simulation package implemented
by Bahaa El-Din Ali Abdel-Aleem as a technical part of his master thesis — Bergen University.

85

Chapter 3: The Analysis Package: Computer Implementation

Section 3.6 presents the findDominantEigenvalue function; which identifies the
dominant eigenvalue.

Sections 3.7, 3.8 and 3.9 ©present the computeLinkElasticity,
computelnputElasticity, computelndependentCycleElasticity functions; which
compute dominant eigenvalue elasticity values for links, inputs and linearly
independent loops respectively.

Section 3.10 presents the printOutputs function; which prints all outputs of the
package.

Sections 3.11, 3.12 and 3.13 present the jac, differentiate, differentiateGraph
functions respectively; which are related to finding different differentiations
inside the package.

In order to make the explanation of the functions as clear and sorted as
possible; the analysis function —although it is the main function in the Analysis
package that calls all the other functions— is treated through explanation as a
normal function, and all functions would be explained in the order of their call.

Shown in figure 16; the context level diagram of both simulation and analysis
packages together, which declares the relation among the main entities and
both packages as a single process. While in figure 17; the data flow diagram
(DFD) level zero of both packages, which declares the relation and data flow
between them in details. For more information about the data stores (variables);

the reader should refer to the appendices.

86

Chapter 3: The Analysis Package: Computer Implementation

0
Model Equations Analysis Results >

Input File ¢ Main Output File

SI0Y)) J9S)
s3d10Y)

}{

q

User

Figure 16: The Context Level Diagram of Both Simulation and Analysis Packages Together

87

Chapter 3: The Analysis Package: Computer Implementation

checkpoints
Files

© T+ i

Input File Output File

D6 |modelObjectsStructVector O

D7 |constantsVector O

D8 |constantsValuesVector O

D9 | modelObjectsValuesMatrixO

Y YVvY VYV

D10| netflowsValuesMatrix O

Simulate

»-
<
<
>

OD3 |initialTime

D4 |finalTime O

DS [timeStepLength o

D2 |outFileName o—

D11{levels2Study o—-
Lq D1 [inFileName

Arguments D12 inputs2Study o—

D13(internalSteps oO——

D14(loops2Study o—

Display
Information
and Choices

User

Figure 17: The Data Flow Diagram (DFD) Level Zero: Simulation and Analysis Packages

88

Chapter 3: The Analysis Package: Computer Implementation

3.2 The analysis Function

The analysis function is the backbone of the Analysis package; it carries out a
big part of the eigenvalue analysis process as well as it calls all other functions

of the Analysis package.

3.2.1 Extracting Objects of the Model

The function calls another function named extractModelObjects to compute the
following scalars and vectors:

numLevels: number of levels

o numAuxiliaries: number of auxiliaries
o modelObjectsNamesVector: vector of names of all level and all auxiliary
variables together
o modelObjectsEquationsVector: vector of equations of all net-flows and
all auxiliary variables together
For more information about the internals of this process, the reader should refer

to the section of extractModelObjects function.

—>| D15| numLevels
1.1 ,—>| D16| numAucxiliaries

| D6 | modelObjectsStructVector Call -
extractModel D17| modelObjectsNamesVector

Objects
—>| D18| modelObjectsEquationsVector

Figure 18: The DFD Level One: Extracting Objects of the Model

% Extracting Objects of the Model
[numLevels ,
numAuxiliaries ,
modelObjectsNamesVector ,
modelObjectsEquationsVector] = extractModelObjects (
modelObjectsStructVector) ;

89

Chapter 3: The Analysis Package: Computer Implementation

3.2.2 Emptying and Initializing Checkpoints

The Analysis package generates eight checkpoint files; these checkpoint files
enable the user to check the accuracy of the internal calculations performed by
the package concerning his/her model through the analysis process.
The following code listing contains the process of emptying and initializing of
only one checkpoint file. The other checkpoint files have the same lines of code
to perform file emptying and initializing, they differ just in the text printed
inside each file.
The function performs the following steps:
e Empties the file by opening it in the write mode; this creates the file if it
doesn’t exist or overwrites it otherwise
e Writes the initialization lines (specific for each checkpoint file) into the
empty file

e C(loses the file

Empty and
Initialize
Checkpoints
Files

Checkpoints Files Checkpoints Files >

Figure 19: The DFD Level One: Emptying and Initializing Checkpoints

% Emptying and Initializing Checkpoint (0)

fid = fopen(['checkpoint O.csv'] , 'w');

fwrite(fid , ['This checkpoint file generated by
"findDominantEigenvalue.m" at the end of the file,' sprintf('\n')]
) ;

fwrite(£fid , ['it contains the following:' sprintf('\n')]);
fwrite(fid , ['it computes the error (E) and percentage error (PE)'
sprintf('\n') 1);

fwrite(£id , ['between the absolute value of:' sprintf('\n') 1);
fwrite(£fid , ['nmext time step State Vector X(t+l),' sprintf('\n')

90

Chapter 3: The Analysis Package: Computer Implementation

1);
fwrite(£id , ['the one comes from simulation' sprintf('\n') 1);

fwrite(£fid , ['and the computed one from the (alpha / lambda) *
exp (lambda * dt) equations ...' sprintf('\n\n') 1);
fwrite(£fid , ['Time;' 1);
for I = 1 : numLevels,
fwrite(fid , ['E (X' num2str(I) ');PE (X' num2str(I) ');' 1]

)i

end

fwrite(£id , [sprintf('\n\n') 1);
fclose(£fid);

3.2.3 Calculating Number of Time Steps

The function calculates the number of time steps numTimeSteps using the
values of the following variables:

o initialTime: initial time

o finalTime: final time

o timeStepLength: length of the time step

The function performs this calculation according to the following equation:

finalTime —initialTime

numTimeSteps = - +1
timeStepLength
| D3 |initialTime
(1.3
|D4 |finalTime Compute D19| numTimeSte ps
Number of
| D5 |timeStepLength Time Steps

Figure 20: The DFD Level One: Calculating Number of Time Steps

o

% Calculating Number of Time Steps
numTimeSteps = ((finalTime - initialTime) / timeStepLength) + 1;

3.2.4 User-Interaction: Selecting Level to Study

The function needs user-interaction to make decisions concerning the flow of

its execution flow.

91

Chapter 3: The Analysis Package: Computer Implementation

This is the first user-interaction; the function needs the user to decide the level
variable he/she wants to study its behavior.
The function performs the following steps:

e Goes into an endless while-loop

e Prints all levels in a numbered style using a for-loop

e Asks the user to choose the level he/she wants to study its behavior by

entering its corresponding number
e Saves the user input into a variable named levels2Study
e Checks levels2Study and ends the while-loop if levels2Study is of an

appropriate value, or keeps looping inside the while-loop

Select Level ¢
to Study

o User

| D15| numLevels

D11

> level2Study

| D17| modelObjectsNamesVectoro———

Figure 21: The DFD Level One: Selecting Level to Study

[+

% User-Interaction: Selecting Level to Study
endLoop = true;
while (endLoop)

for I = 1 : numLevels,

disp([int2str(I) ' - ' char(modelObjectsNamesVector(I)

) 1)

end

levels2Study = input(['Enter the number of the level, you are
intersted' sprintf('\n') 'in studying (ex.: 2):' sprintf('\t') 1]
)i

if length(levels2Study) ~= 1 | levels2Study > numLevels |
levels2Study < 1,
disp('Wrong Input(s), try again ...');
else
endLoop = false;

end

end

92

Chapter 3: The Analysis Package: Computer Implementation

3.2.5 User-interaction: Selecting Inputs to Study

Exactly using the same way in the previous section, the function needs the user
to decide his/her set of inputs out of the set of all constants in the model.
The function performs the following steps:

e Goes into an endless while-loop

e Prints all constants in a numbered style using a for-loop

e Asks the user to choose the set of constants he/she wants to consider as

inputs by entering their corresponding numbers in a vector form
e Saves the user input into a variable named inputs2Study
o Checks inputs2Study and ends the while-loop if inputs2Study 1is

appropriate, or keeps looping inside the while-loop

User

o <
| D7 | constantsVector O—,—‘

Figure 22: The DFD Level One: Selecting Inputs to Study

Select Inputs D12|inputs2Study

to Study

% User-Interaction: Selecting Inputs to Study
endLoop = true;
while (endLoop)
for I = 1 : length(constantsVector),
disp([int2str(I) ' - ' char(constantsVector(I)) 1);
end
inputs2Study = input(['Enter the number of constants, you would
like to' sprintf('\n') 'consider as inputs (ex.: 30 or [1,2,3]
or [1:50]):' sprintf('\t') 1);
if isempty(inputs2Study),
inputs2Study = [1 : length(constantsVector) 1];
endLoop = false;
elseif inputs2Study > length(constantsVector) | max(
inputs2Study) > length(constantsVector) | min(inputs2Study) < 1,
disp('Wrong Input(s), try again ...');
else
endLoop = false;

end

93

Chapter 3: The Analysis Package: Computer Implementation

end

3.2.6 Suggesting Time Steps to Apply Eigenvalue Analysis to

Applying eigenvalue analysis to all time steps would consume a lot of time
according to the computer processing power and speed, so that the function
helps the user by dividing the behavior of the user-selected level into spans
according to the Behavior Pattern Index (BPI), and choosing points in the
middle of each of these span.
The function performs the following steps:

e Computes curvature: the curvature using the following equation:

netflowsValuesMatrix (t) - netflowsValuesMatrix (t — 1)

curvature(t) =
() timeStepLength

e Computes BPI: the BPI using the following equation (Saleh, M.;

Davidsen, P. 1., 2000):

BPI(1) :Sgn(curvature(1)]

netflowsValuesMatrix (t, levels2Study)

e Conditions BPI to replace zeros and non-numeric values (division-by-
zero results) by suitable values

e Combines repeated similar BP/I into spans and saves them into a vector
named BPI spans

e Chooses a step in the middle of each BPI span and saving them into a

vector named suggestedInternalStep

94

Chapter 3: The Analysis Package: Computer Implementation

1.6 >| D20| BPI_spans

Suggest Time
Steps to
Apply
Eigenvalue
Analysis to

| D10| netflows ValuesMatrix

D21| suggestedInternalStep

Figure 23: The DFD Level One: Suggesting Time Steps to Apply Eigenvalue Analysis to

% Suggesting Time Steps to Apply Eigenvalue Analysis to

curvature = zeros(size(netflowsValuesMatrix(: , levels2Study))

) ;

curvature(2 : end) = diff(netflowsValuesMatrix(: , levels2Study)
) / timeStepLength;

BPI = sign(curvature(:) ./ netflowsValuesMatrix(: , levels2Study

))
if isnan(BPI(end)),
endLoop = true;
J [length(BPI) 1;
I length(BPI) - 1;
while (endLoop),
if ~isnan(BPI(I)),
endLoop = false;

else
Jg=[J, 1I1;
I =1I-1;
end
end
BPI(J) = BPI(I):;
end

endLoop = true;
J_All = find(isnan(BPI));
for K = J All.',
if isnan(BPI(K)),

Jd = K;

I =K+ 1;

while (endLoop),

if ~isnan(BPI(I)),
endLoop = false;

else

1
=
S
H
-
-

end
end
BPI(J) = BPI(I):;
end

end

95

Chapter 3: The Analysis Package: Computer Implementation

BPI spans = diff(BPI);

BPI spans=[1 ; find(abs(BPI spans(:)) == 2) ; numTimeSteps];
suggestedInternalStep = BPI spans + [round(diff(BPI spans) / 2)
; 0 1;

suggestedInternalStep(end) = [];

3.2.7 Plotting the Selected Level to Study

The function plots the behavior of the user-selected level divided into the BPI

spans computed in the previous section.

| D9 | modelObjectsValuesMatrix

| D11 | levels2Study

Plot the

| D17| modelObjectsNames Vector Selected Display Information and Choices >

Level to
Study

| D19| numTimeSteps

| D20| BPI_spans

Figure 24: The DFD Level One: Plotting Selected Level to Study

% Plotting Selected Level to Study

plot (modelObjectsValuesMatrix(1 : numTimeSteps , levels2Study) ,
'LineWidth' , 2);

set(gca , 'XTick' , BPI spans);

set(gca , 'XTickLabel' , { num2str(round((BPI spans - 1) *
timeStepLength * 10) / 10) });

set(gca , 'XGrid' , 'on'):

axis tight;

xlabel('time');

title(char(modelObjectsNamesVector(levels2Study)));

3.2.8 User-interaction: Selecting Time Steps to Apply Eigenvalue
Analysis to

Although the function has computed the most appropriate time steps to apply
the eigenvalue analysis to, the user is free to select the time steps he/she would
like. So that the function prints the suggested time steps and waits for user

input, then saves into a vector named internalSteps.

The function performs the following steps:

96

Chapter 3: The Analysis Package: Computer Implementation

e Goes into an endless while-loop

e Prints the model time range and the suggested time steps

o Asks the user to select the time steps he/she wants to apply the
eigenvalue analysis to by entering them in a vector form

e Saves the user input into a vector named internalSteps

o Checks internalSteps and ends the while-loop if internalSteps is

appropriate, or still looping inside the while-loop

| D4 | timeStepLength

Select Time
Steps to
Apply
Eigenvalue
Analysis to

D22|internalSteps

| D19| numTimeSteps

| D21

suggestedInternalStep

Figure 25: The DFD Level One: Selecting Time Steps to Apply Eigenvalue Analysis to

% User-interaction: Selecting Time Steps to Apply Eigenvalue Analysis
to
endLoop = true;
while (endLoop)
disp(['Time Steps range is from 1 to ' int2str(numTimeSteps)
1)
disp(['Corresponding to Time Instants range from' num2str (
initialTime) ' to ' num2str(finalTime)]);
disp(['it is suggested to do analysis at the following time
steps: ' sprintf('\n') int2str(suggestedInternalStep.') 1);
disp(['Corresponding to following time instants: ' sprintf (
'\n') num2str([(suggestedInternalStep - 1) * timeStepLength].'
) 1)
internalSteps = input(['Enter the time steps, you are
intersted' sprintf('\n') 'in studying (ex.: 30 or [1,2,3] or [
1:50 1):' sprintf('\t') 1);
if isempty(internalSteps),
internalSteps = [1 : numTimeSteps 1];
endLoop = false;
elseif max(internalSteps) > numTimeSteps | min(internalSteps)
<1,
disp('Wrong Input(s), try again ...');
else

endLoop = false;

97

Chapter 3: The Analysis Package: Computer Implementation

end

end
3.2.9 Computing Adjacency Matrix and Jacobians of the Model

The function calls another function named computeSystemJacobians to
compute the following matrices:
o symbolicFullGainMatrix: the full gain matrix of the model in symbolic
form
o symbolicLinkGain2InputJacobianMatrix: the Jacobian of the links’
gains to the inputs of the model in symbolic form
e modelAdjacencyMatrix: the model adjacency matrix or model digraph
o modelAdjacencyMatrix2EdgesMatrix: a dictionary matrix to translate a
link into its start and end variables, and vice versa
For more information about the internals of this process, the reader should refer

to the section of computeSystemJacobians function.

| D7 |constants\/ector D23| symbolicFullGainMatrix

| D8 |c0nstantsValuesVector D24|symbolicLinkGainZlnputJacobianMatrix
:)
| D12| inputs2Study Call & D25| modelAdjacencyMatrix
computeSystem-
. Jacobians . . .
| D17| modelObjectsNamesVectoro D26| modelAdjacencyMatrix2Edges Matrix

| D18| modelObjectsEquationsVedbs

Figure 26: The DFD Level One: Computing Adjacency Matrix and Jacobians of the Model

% Computing Adjacency Matrix and Jacobians of the Model

[symbolicFullGainMatrix ,
symbolicLinkGain2InputJacobianMatrix , ...
modelAdjacencyMatrix ,
modelAdjacencyMatrix2EdgesMatrix] = computeSystemJacobians (

modelObjectsNamesVector , modelObjectsEquationsVector ,

constantsVector , constantsValuesVector , inputs2Study)

98

Chapter 3: The Analysis Package: Computer Implementation

3.2.10Finding Independent Loops

The function calls another function named findIndependentCycles to compute
the following matrices and scalar:
o allCyclesVerticesMatrix: all loops found in the model in terms of the
variables (Vertices) they pass through
o independentCyclesVerticesMatrix: the linearly independent loops in
terms of the variables (Vertices) they pass through
o independentCyclesEdgesMatrix: the linearly independent loops in terms
of the links (Edges) they pass through
o numberIndependentCycles: number of linearly independent loops in the
model
For more information about the internals of this process, the reader should refer

to the section of findIndependentCycles function.

D27| allCyclesVerticesMatrix

o User

Call D28

| D17 | modelObjectsNamesVecto! findIndependent-
Cycles D29

independentCyclesVertices Matrix

independentCyclesEdgesMatrix

| D25| modelAdjacencyMatrix

D30| numberIndependentCycles

| D26| modelAdjacencyMatrix2Ed:

Figure 27: The DFD Level One: Finding Independent Loops

Finding Independent Loops

— o°

allCyclesVerticesMatrix ,
independentCyclesVerticesMatrix ,
independentCyclesEdgesMatrix ,

numberIndependentCycles] = findIndependentCycles (
modelAdjacencyMatrix , modelAdjacencyMatrix2EdgesMatrix ,

modelObjectsNamesVector) ;

99

Chapter 3: The Analysis Package: Computer Implementation

3.2.11 Applying Eigenvalue Analysis at the Selected Time Steps

The following steps would be repeated for to the model for every user-selected

time step using for-loop.

timeStepLength O

|1)5

constantsValuesVector O

|D8

| D9 |modelObjectsValuesMatri)C

| D10| netflows ValuesMatrix O

| Dll|levels2$tudy O

| D12|inputs2Study O

| D13|internalSteps o—
| D15| numLevels o—

D33| signIndependentCyclesMatrix

| D17| modelObjectsNamesVectorO

D. inantEi luesMatri
| D19| numTimeSteps 38| dominantEigenvaluesMatrix

- - - —>| D40| dominancePercentage Matrix
| D23| symbolicFullGainMatrix
TYVYYVYY —>| D41| checkpoint_0
| D24| symbolicLink Gain2InputJ@ebienMgtrix .
- D42| checkpoint_1
| D25| modelAdjacencyMatrix o— Apply
Eigenvalue D44| numericLink ElasticityMatrix
| D26| modelAdjacencyMatrixZEdgps-M&HJx Analysis at
the Selected D46| numericInputElasticityMatrix
| D28| independentCyclesVertice sMatrix— Time Steps

AMAA —>| D47| numericLink GainMatrix
—>| D49| checkpoint_2

D50

| D31 | numericLink Gain2InputJ:

| D32| numericFullGainMatrix O——mMm—

checkpoint_4

| D34| numericCompactGainMat

D51 | checkpoint_7

| D35| rightEigenvectorsMatrix O—————
4>| D52| checkpoint_8

| D36| diagonalEigenvaluesMatrio——mM

| D37| leftEigenvectorsMatrix O

| D39| dominantEigenvaluesPositionMatrix

| D43| currentTimeStep [e;

| D44| numericLink ElasticityMa©rix

| D45

numericLink SensitivityByDeminantEigenvalueMatrix—

| D47| numericLink GainMatrix O

Figure 28: The DFD Level One: Applying Eigenvalue Analysis at the Selected Time Steps

% Eigenvalue Analysis at the Selected Time Steps
for currentTimeStep = internalSteps,

end

100

Chapter 3: The Analysis Package: Computer Implementation

3.2.11.1 Computing Numeric Full Gain Matrix and Numeric Links’

Gains to Inputs Jacobian Matrix

The full gain matrix symbolicFullGainMatrix and the links’ gains to inputs
Jacobian symbolicLinkGain2InputJacobianMatrix have been computed in a
symbolic form in a previous section, in this section the function substitutes all
symbolic variables with their corresponding values to convert the matrices

from symbolic into numeric form.

1.11.1

- " Compute
| D9 |mOdel()bjeﬂsval“esM‘““[;jt Numeric Full D31| numericLink Gain2InputJacobianMatrix
A Gain Matrix
| D17| modelObjectsNamesVecto and Numeric D32| numericFullGainMatrix
Links’ Gains
to Inputs
Jacobian

\ Matrix)

Figure 29: The DFD Level Two: Computing Numeric Full Gain Matrix and Numeric Links’ Gains
to Inputs Jacobian Matrix

% Computing Numeric Full Gain Matrix and Numeric Links’ Gains to

Inputs Jacobian Matrix

numericLinkGain2InputJacobianMatrix = double (

subs (symbolicLinkGain2InputJacobianMatrix , modelObjectsNamesVector ,
modelObjectsValuesMatrix(currentTimeStep , :))):
numericFullGainMatrix = double(subs (symbolicFullGainMatrix ,
modelObjectsNamesVector , modelObjectsValuesMatrix(currentTimeStep ,
:)))

3.2.11.2 Computing Polarity of the Linearly Independent Loops

The polarity of a loop could be computed by multiplying its links’ gains (taking
their signs into consideration). The sign of the final result (loop gain) is the
polarity of that loop.

For more information about the internals of this process, the reader should refer

to the section of computePathsGain function.

101

Chapter 3: The Analysis Package: Computer Implementation

| D28|independentCyclesVertice i
Compute
| D32| numericFullGainMatrix Polarity of
the Linearly

Independent
Loops

D33(signIndependentCyclesMatrix

Figure 30: The DFD Level Two: Computing Polarity of the Linearly Independent Loops

% Computing Polarity of the Linearly Independent Loops
signIndependentCyclesMatrix(currentTimeStep , :) = sign(
computePathsGain (numericFullGainMatrix ,

independentCyclesVerticesMatrix));
3.2.11.3 Computing Compact Gain Matrix

The function divides the full gain matrix into 4 divisions: A, A,, A,, and
A,, according to the following relation:

Ay §A12 _

A21 §A22 - J EJz,z

Z,X |
S

J EJ,,"z

XX i

Where: |~~~ || is the full gain matrix (System Jacobian).

Then, the function computes the compact gain matrix in a numeric form
numericCompactGainMatrix (the gain matrix of the compact version of the
model) according to the following equation:
numericCompactGainMatrix = A, + A,(I-A,,)'A,,
But the relation: A, =0, is always valid:
. numericCompactGainMatrix = A,,(I1- A,,) " A,
For more information the reader should refer to the mathematical background

chapter.

102

Chapter 3: The Analysis Package: Computer Implementation

| D15| numLevels

Compute
Compact Gain
Matrix

| D32| numericFullGainMatrix D34 numericCompactGainMatrix

Figure 31: The DFD Level Two: Computing Compact Gain Matrix

o°

Computing Compact Gain Matrix

% [All Al2]

% [1

% [A21 A22]

% m * n *

% m m

%

% m * n *

% n n

% m = length(levelsVector)

o°

n

length(auxiliariesVector)

Note: All will always be a null matrix

o°

Al2 = numericFullGainMatrix(1 : numLevels , numLevels+l : end);

A21 = numericFullGainMatrix(numLevels+l : end , 1 : numLevels);
A22 = numericFullGainMatrix(numLevels+l : end , numLevels + 1 : end
) ;

numericCompactGainMatrix = Al2 * inv(eye(size(A22)) - A22) *
A21;

3.2.11.4 Computing Eigenvalues and Eigenvectors of the Compact Gain
Matrix
After computing the compact gain matrix in a symbolic form, it would be easy
for function to compute its eigenvalues and right eigenvector (using Matlab
internal function eig), and then to compute its left eigenvector by computing

the transpose of the inverse of its right eigenvector.

1= (r")T

Where: 1 and r are the left and right eigenvectors respectively.

103

Chapter 3: The Analysis Package: Computer Implementation

For more information the reader should refer to the mathematical background
chapter.

1.11.4

Compute D35
Eigenvalues

| D34| numericCompactGainMatrgq———p»| and D36| diagonalEigenvaluesMatrix
Eigenvectors

rightEigenvectorsMatrix

of the D37| leftEigenvectorsMatrix
Compact Gain

\ Matrix)

Figure 32: The DFD Level Two: Computing Eigenvalues and Eigenvectors of the Compact Gain
Matrix

% Computing Eigenvalues and Eigenvectors of the Compact Gain Matrix
tempNumericCompactGainMatrix = sym(numericCompactGainMatrix , '4'):;
[rightEigenvectorsMatrix , ...

diagonalEigenvaluesMatrix] = eig(tempNumericCompactGainMatrix);
rightEigenvectorsMatrix = double(rightEigenvectorsMatrix) ;
diagonalEigenvaluesMatrix = double(diagonalEigenvaluesMatrix) ;
leftEigenvectorsMatrix = inv(rightEigenvectorsMatrix).';

3.2.11.5 Identifying Dominant Eigenvalue

The function calls another function named findDominantEigenvalue to
compute the following matrices and vectors:
e dominantEigenvaluesMatrix: the matrix of the values of eigenvalues for
every time step sorted according to their dominance
e dominantEigenvaluesPositionMatrix: the matrix of positions of
eigenvalues for every time step sorted according to their dominance
e dominancePercentageMatrix: the matrix of dominance percentage of
eigenvalues for every time step sorted according to their dominance
o tempCheckpoint 0: a vector to carry the data of checkpoint 0

o tempCheckpoint I: a vector to carry the data of checkpoint 1

104

Chapter 3: The Analysis Package: Computer Implementation

Then the function uses the variables tempCheckpoint (0 and tempCheckpoint 1
to fill checkpoint 0 and checkpoint I respectively.
For more information about the internals of this process, the reader should refer

to the section of findDominantEigenvalue function.

| D5 |timeStepLength o—

D9 delObjects ValuesMatrix0O———
| |mo ebjects valnes ! D38|dominantEigenvaluesMatrix

| D10| netflowsValuesMatrix O

D39| dominantEigenvaluesPositionMatrix

1.11.5
| D11| levels2Study call
findDominant-
Eigenvalue

D40| dominancePercentage Matrix

| D35| rightEigenvectorsMatrix O >

D41 | checkpoint_0

| D36| diagonalEigenvaluesMatrixO0—— D42| checkpoint_1

D37|leftEigenvectorsMatrix ~O——

| D43| currentTimeStep o—-

Figure 33: The DFD Level Two: Identifying Dominant Eigenvalue

o°

Identifying Dominant Eigenvalue

[dominantEigenvaluesMatrix(currentTimeStep , :) , ...
dominantEigenvaluesPositionMatrix(currentTimeStep , :) ,
dominancePercentageMatrix(currentTimeStep , :) , ...

tempCheckpoint 0 ,
tempCheckpoint 1] = findDominantEigenvalue (
rightEigenvectorsMatrix , leftEigenvectorsMatrix ,

diagonalEigenvaluesMatrix , netflowsValuesMatrix(currentTimeStep , :

).' , netflowsValuesMatrix(currentTimeStep + 1 , :).' ,
modelObjectsValuesMatrix(currentTimeStep , 1 : numLevels).' ,
modelObjectsValuesMatrix(currentTimeStep + 1 , 1 : numLevels).' ,

timeStepLength , levels2Study , currentTimeStep);
checkpoint 0 = [checkpoint 0 ; tempCheckpoint 0(:).' 1;
checkpoint 1 = [checkpoint 1 ; tempCheckpoint 1(:).'];

3.2.11.6 Computing Links’ Elasticity Values associated with the

Dominant Eigenvalue
The function calls another function named computeLinkElasticity to compute
the following matrices and vectors:

o numericLinkElasticityMatrix: a matrix of links’ elasticity values

associated with the dominant eigenvalue

105

Chapter 3: The Analysis Package: Computer Implementation

o numericLinkSensitivityByDominantEigenvalueMatrix: a matrix of links’
sensitivity values associated with the dominant eigenvalue divided by
the value of the dominant eigenvalue

o tempCheckpoint 2: a vector to carry the data of checkpoint 2

o tempCheckpoint 4: a vector to carry the data of checkpoint 4

o tempCheckpoint 7: a vector to carry the data of checkpoint 7

o tempCheckpoint 8: a vector to carry the data of checkpoint 8

Then the function uses the variables tempCheckpoint 2, tempCheckpoint 4,
tempCheckpoint 7 and tempCheckpoint § to fill checkpoint 2, checkpoint 4,
checkpoint 7 and checkpoint 8 respectively.

For more information about the internals of this process, the reader should refer

to the section of computeLinkElasticity function.

| D25| modelAdjacencyMatrix O————

|D26| modelAdjacencyMatrix2EdgesM

—>| D44| numericLinkElasticityMatrix

D45| numericLink SensitivityByDominantEigenvalue Matrix

| D32| numericFullGainMatrix

| D34| numericCompactGainMat D49| checkpoint_2

Call &
el computeLink- §
Elasticity

| D35| rightEigenvectorsMatrix O D50| checkpoint_4

| D36| diagonalEigenvaluesMatrixO D51 | checkpoint_7

—>| D52| checkpoint_8

| D37| leftEigenvectorsMatrix

| D39| dominantEigenvaluesPosition}

| D43| currentTimeStep o—

Figure 34: The DFD Level Two: Computing Links’ Elasticity Values associated with the
Dominant Eigenvalue

% Computing Links’ Elasticity Values associated with the Dominant
Eigenvalue
[numericLinkElasticityMatrix(: , currentTimeStep) , ...
numericLinkSensitivityByDominantEigenvalueMatrix(: ,
currentTimeStep) , ...
tempCheckpoint 2 , ...
tempCheckpoint 4 , ...
tempCheckpoint 7 , ...

106

Chapter 3: The Analysis Package: Computer Implementation

tempCheckpoint 8] = computeLinkElasticity(
numericCompactGainMatrix , numericFullGainMatrix ,
modelAdjacencyMatrix , modelAdjacencyMatrix2EdgesMatrix ,
rightEigenvectorsMatrix , leftEigenvectorsMatrix ,
diagonalEigenvaluesMatrix , dominantEigenvaluesPositionMatrix (
currentTimeStep , 1) , currentTimeStep);
checkpoint 2

[checkpoint 2 ; tempCheckpoint 2(:).' 1;
checkpoint 4

[checkpoint 4 ; tempCheckpoint 4(:).' 1;
checkpoint 7

[checkpoint 7 ; tempCheckpoint 7(:).' 1;
checkpoint 8

[checkpoint 8 ; tempCheckpoint 8(:).' 1;
3.2.11.7 Computing Inputs’ Elasticity Values associated with the

Dominant Eigenvalue

The function calls another function named computelnputElasticity to compute
the following matrix:
o numericlnputElasticityMatrix: a matrix of inputs’ elasticity values
associated with the dominant eigenvalue
For more information about the internals of this process, the reader should refer

to the section of computelnputElasticity function.

| D8 |c0nstantsValuesVector

| D12| inputs2Study

1.11.7

Call q
computelnput-
Elasticity

| D31| numericLink Gain2InputJacebian

D46| numericInputElasticityMatrix

| D43| currentTimeStep

| D44| numericLink ElasticityMatgx——

| D45| numericLink SensitivityByDeminantEige

| D47| numericLink GainMatrix O

Figure 35: The DFD Level Two: Computing Inputs’ Elasticity Values associated with the
Dominant Eigenvalue

% Computing Inputs’ Elasticity Values associated with the Dominant

Eigenvalue
numericInputElasticityMatrix(: , currentTimeStep) =
computeInputElasticity(numericLinkGainMatrix(: , currentTimeStep)

, numericLinkGain2InputJacobianMatrix , numericLinkElasticityMatrix(

: , currentTimeStep) , constantsValuesVector , inputs2Study ,

107

Chapter 3: The Analysis Package: Computer Implementation

numericLinkSensitivityByDominantEigenvalueMatrix(: , currentTimeStep

))i
3.2.12Computing Linearly Independent Loops’ Elasticity Values

associated with the Dominant Eigenvalue

The function calls another function named computelndependentCycleElasticity
to compute the following matrix:
o independentCyclesElasticityMatrix: a matrix of linearly independent
loops’ elasticity values associated with the dominant eigenvalue
For more information about the internals of this process, the reader should refer

to the section of computelndependentCycleElasticity function.

| D29|independentCyclesEdges

Call

| D44| numericLink ElasticityMatiix D48| independentCyclesElasticityMatrix

4 g
IndependentCycle-
Elasticity

Figure 36: The DFD Level One: Computing Independent Loops’ Elasticity Values associated with
the Dominant Eigenvalue

% Computing Independent Loops’ Elasticity Values associated with the
Dominant Eigenvalue

independentCyclesElasticityMatrix =
computeIndependentCycleElasticity(independentCyclesEdgesMatrix ,

numericLinkElasticityMatrix);

3.2.13Ending and Closing Checkpoints

The following code listing contains the process of ending and closing of only
one checkpoint file. The other checkpoint files have the same lines of code to
perform file ending and closing.
The function performs the following steps:

e Computing mean, mean absolute, maximum and minimum of

checkpoint values over the time range

108

Chapter 3: The Analysis Package: Computer Implementation

e Opening the checkpoint file in the append mode; to write to the file
without overwriting it
e Writing the needed lines of the previously computed values

e Closing the file

| D41| checkpoint_0 oO—
| D42| checkpoint_1 oO—
| D49| checkpoint_2 Oo—

nd and Close Checkpoints Files >

Check points

-
<
>
-
P

| D50| checkpoint_4

| D51| checkpoint_7

| D52| checkpoint_8 o—

Figure 37: The DFD Level One: Ending and Closing Checkpoints

% Ending and Closing Checkpoint (1)
mean checkpoint 1 = mean(checkpoint 1);
mean abs checkpoint 1 = mean(abs(checkpoint 1));
max checkpoint 1 = max(checkpoint 1);
min checkpoint 1 = min(checkpoint 1);
fid = fopen(['checkpoint l.csv'] , 'a');
fwrite(£fid , [sprintf('\n') 'Mean;']);
for I =1 : 2 * numLevels,
fwrite(fid , [num2str(mean checkpoint 1(I)) ';' 1);
end
fwrite(£id , [sprintf('\n') 'Mean Abs.;']);
for I =1 : 2 * numLevels,
fwrite(fid , [num2str(mean abs checkpoint 1(I)) ';' 1);
end
fwrite(£id , [sprintf('\n') 'Max;']);
for I =1 : 2 * numLevels,
fwrite(fid , [num2str(max checkpoint 1(I)) ';' 1);
end
fwrite(£id , [sprintf('\n') 'Min;']);
for I =1 : 2 * numLevels,
fwrite(fid , [num2str(min checkpoint 1(I)) ';' 1);
end
fclose(fid);

109

Chapter 3: The Analysis Package: Computer Implementation

3.2.14Printing to Output File

The function calls another function named printOutputs to print all its outputs
into the output file using the output file name specified by the user.
For more information about the internals of this process, the reader should refer

to the section of printOutputs function.

|D2 |0utFileName O
| D5 |timeStepLength O
| D7 |c0nstantsVect0r O
| D11|levels2Study O
| D12| inputs2Study O
| D13| internalSteps O
| D17| modelObjectsNamesVectorOo———

| D25| modelAdjacencyMatrix ~O——

| D27 | allCyclesVerticesMatrix O_l Output File

| D28| independentCyclesVerticesMa

| D33| signIndependentCycles Matpix——

| D38| dominantEigenvaluesMatriz

| D40| dominancePercentage Matrix

| D44| numericLink ElasticityMatiix

| D46| numericInputElasticityMatgix

| D47| numericLink GainMatrix O

| D48| independentCyclesElasticityMatrix

Figure 38: The DFD Level One: Printing to Output File

% Printing to Output File

printOutputs(levels2Study , inputs2Study , modelAdjacencyMatrix ,
internalSteps , timeStepLength , dominantEigenvaluesMatrix ,
dominancePercentageMatrix , numericLinkGainMatrix ,
numericLinkElasticityMatrix , numericInputElasticityMatrix ,
independentCyclesElasticityMatrix , allCyclesVerticesMatrix ,
independentCyclesVerticesMatrix , signIndependentCyclesMatrix ,

modelObjectsNamesVector , constantsVector , outFileName) ;

110

Chapter 3: The Analysis Package: Computer Implementation

3.3 The extractModelObjects Function

The extractModelObjects function extracts information from inputs comes
from the Simulation package to the Analysis package; the vector of structures
modelObjectsStructVector.
An element of the vector modelObjectsStructVector has four fields:
e Name: the name of the object the structure contains
e Fquation: the equation of that object
e Value: a variable used to contain an instantaneous values for
calculations of that object in previous step (inside the Simulation
package)
e State: a Boolean variable that equals one if the object is a state and zero
for any other object
The function extracts its outputs using that information as would be explained

in the next sections.

3.3.1 Computing Number of Levels and Auxiliaries

The number of levels numLevels is computed by summing the field state of all
elements of the modelObjectsStructVector; 1.e. modelObjectsStructVector.state.
While the number of auxiliaries numAuxiliaries is computed by summing the

logical invert of the field state of all elements of the modelObjectsStructVector.

111

Chapter 3: The Analysis Package: Computer Implementation

D15| numLevels

Compute
Number of
Levels and
Auxiliaries

D16

| D6 | modelObjectsStructVector O numAuxiliaries

Figure 39: The DFD Level Three: Computing Number of Levels and Auxiliaries

o

% Computing Number of Levels and Auxiliaries
numLevels = sum([modelObjectsStructVector.state]);

numAuxiliaries = sum(~[modelObjectsStructVector.state]);

3.3.2 Extracting Objects’ Names and Equations

The vector of objects’ names modelObjectsNamesVector is computed by
collecting the field name of all elements of the modelObjectsStructVector in a
vector; i.e. collecting all modelObjectsStructVector.name. While the vector of
objects’ equations modelObjectsEquationsVector is computed by collecting the
field equation of all elements of the modelObjectsStructVector in a vector; i.e.

collecting all modelObjectsStructVector.equation.

1.1.2 >| D17| modelObjectsNamesVector

Extract
Objects’
Names and
Equations

| pé | modelObjectsStructVector D18| modelObjectsEquationsVector

Figure 40: The DFD Level Three: Extracting Objects’ Names and Equations

% Extracting Objects’ Names and Equations
modelObjectsNamesVector = [modelObjectsStructVector.name];

modelObjectsEquationsVector = [modelObjectsStructVector.equation];

3.4 The computeSystemJacobians Function

The computeSystemJacobians function computes two Jacobian matrices in
symbolic form; one of them is the full gain matrix symbolicFullGainMatrix, the
other one is the Jacobian of the vector of the links’ gains to the vector of the

inputs symbolicLinkGain2InputJacobianMatrix, this Jacobian matrix is used in

112

Chapter 3: The Analysis Package: Computer Implementation

the calculations of the inputs’ elasticity values associated with dominant
eigenvalue.

Moreover the function computes two other important matrices; the model
adjacency matrix modelAdjacencyMatrix and the model adjacency matrix to
edges matrix modelAdjacencyMatrix2EdgesMatrix, which is a dictionary
matrix used to find the link number if its start and end variables are known and

vice versa.

3.4.1 Computing Symbolic Full Gain Matrix

The function calls another function named jac to compute the full gain matrix
in symbolic form, which is the Jacobian of the vector of equations of net-flows
and auxiliaries concatenated to the vector of names of states and auxiliaries
concatenated, and before it ends; it substitutes the constants with their
corresponding values to compute the final result of the symbolic full gain
matrix.

The function performs this calculation according to the following equation:

FullGainMatrix - | 5102
symbolicFullGainMatrix = %;%
ox | Oz

Where:

x : is the vector of net-flows
x : 1s the vector of states

z : is the vector of auxiliaries

The last equation could be simplified to:

113

Chapter 3: The Analysis Package: Computer Implementation

symbolicFullGainMatrix =

But: modelObjectsEquationsVector = [XT i ZT]
and modelObjectsNamesVector = I:XT ; ZT] .

0 (model ObjectsEquations Vector)
0 (modelObjectsNamesVector)

. symbolicFullGainMatrix =

For more information about the internals of this process, the reader should refer

to the section of jac function.

| D7 | constantsVector O—

| D8 |constantsValuesVector

Call Jac and
Substitute
Constants

| D17| modelObjectsNamesVectorO D23| symbolicFullGainMatrix

| D18| modelObjectsEquationsVeats

Figure 41: The DFD Level Three: Computing Symbolic Full Gain Matrix

% Computing Symbolic Full Gain Matrix
symbolicFullGainMatrix = jac(modelObjectsEquationsVector.' ,

modelObjectsNamesVector) ;

symbolicFullGainMatrix = subs(symbolicFullGainMatrix ,

constantsVector , constantsValuesVector);

3.4.2 Computing Model Adjacency Matrix

The function creates the model adjacency matrix by creating a matrix of zeros
that has the same size of the full gain matrix and has the same zero elements,

while replacing the non-zero elements by ones.

114

Chapter 3: The Analysis Package: Computer Implementation

Compute
Model
Adjacency
Matrix

| D23| symbolicFullGainMatrix D25| modelAdjacencyMatrix

Figure 42: The DFD Level Three: Computing Model Adjacency Matrix

% Computing Model Adjacency Matrix
modelAdjacencyMatrix = zeros(size(symbolicFullGainMatrix));
modelAdjacencyMatrix(find(symbolicFullGainMatrix ~= 0)) = 1;

3.4.3 Computing Model Adjacency Matrix to Edges Matrix

The computeSystemJacobians function creates the model adjacency matrix to
edges matrix by replacing each one in the model adjacency matrix by its

number among the other ones.

Compute
| D25| modelAdjacencyMatrix O——— P Model
Adjacency
Matrix to
Edges Matrix

D26| modelAdjacencyMatrix2EdgesMatrix

Figure 43: The DFD Level Three: Computing Model Adjacency Matrix to Edges Matrix

% Computing Model Adjacency Matrix to Edges Matrix
modelAdjacencyMatrix2EdgesMatrix = modelAdjacencyMatrix;
modelAdjacencyMatrix2EdgesMatrix(find(modelAdjacencyMatrix ~= 0))

= [1 : nnz(modelAdjacencyMatrix)];

3.4.4 Computing Symbolic Link Gain to Input Jacobian Matrix

The computeSystemJacobians function collects the links’ gain in symbolic
form from the symbolic full gain matrix and puts them into a vector, then it
uses jac function to compute the link gain to input Jacobian matrix in symbolic
form, and then replaces the constants with their corresponding values.

For more information about jac function the reader should refer its section.

symbolicLinkGain2InputJacobianMatrix = [2—6}
u

115

Chapter 3: The Analysis Package: Computer Implementation

Where: ¢ vector of links and u vector of inputs.

| D7 | constantsVector O /

1.9.4

Compute

- Symbolic
| D12| inputs2Study Link Gain to

| D8 |c0nstantsValuesVect0r

D24| symbolicLink Gain2InputJacobianMatrix

Input
Jacobian
Matrix

| D26| modelAdjacencyMatrix2 ix

Figure 44: The DFD Level Three: Computing Symbolic Link Gain to Input Jacobian Matrix

% Computing Symbolic Link Gain to Input Jacobian Matrix
[x , vy]1 = find(modelAdjacencyMatrix2EdgesMatrix ~= 0);
for I =1 : length(x),

symbolicLinkGainVector (modelAdjacencyMatrix2EdgesMatrix(x(I)
, Y(I))) = symbolicFullGainMatrix(x(I) , y(I));
end
symbolicLinkGain2InputJacobianMatrix = jac(symbolicLinkGainVector ,
constantsVector (inputs2Study));
symbolicLinkGain2InputJacobianMatrix = subs (
symbolicLinkGain2InputJacobianMatrix , constantsVector ,

constantsValuesVector);

3.5 The findindependentCycles Function

The function finds all loops in the model, also it finds a set of linearly
independent loops (Kampmann, C. E., 1996), by letting the user to choose a set
of important loops from his/her point of view out of the all loops set, then the
function tries to construct a set of linearly independent loops that contains the
user-selected loops as much as possible and completes this set with the shortest

possible loops.

3.5.1 Finding All Loops

The findIndependentCycles function uses allcycsn function to find all loops in
the model. For more information the reader should refer to the "Digraph

toolbox" (Bahar, M.; Jantzen, J., 1995).

116

Chapter 3: The Analysis Package: Computer Implementation

D27| allCyclesVertices Matrix

1.10.1

Find Al 8
Loops

| D25| modelAdjacencyMatrix D53| numberCycles

Figure 45: The DFD Level Three: Finding All Loops

% Finding All Loops
allCyclesVerticesMatrix = allcycsn(modelAdjacencyMatrix) ;

numberCycles = size(allCyclesVerticesMatrix , 1);
3.5.2 Computing the Cycles’ Matrix
The cycles’ matrix is the matrix where all cycles (loops) are expressed in

binary form by the links they pass through and not by the variables they pass

through (Kampmann, C. E., 1996).

Compute the g
Cycles’
Matrix

|D26| modelAdjacencyMatrix2EdgpsMa D54| allCyclesEdgesMatrix

Figure 46: The DFD Level Three: Computing the Cycles’ Matrix

% Computing the Cycles’ Matrix
allCyclesEdgesMatrix = zeros(numberCycles , max(max (
modelAdjacencyMatrix2EdgesMatrix)));
for I = 1 : numberCycles,
oneCycle = nonzeros(allCyclesVerticesMatrix(I , :)).';
for J = 1 : size(oneCycle , 2) - 1,

K modelAdjacencyMatrix2EdgesMatrix(oneCycle(J + 1) ,

oneCycle(J));
allCyclesEdgesMatrix(I , K) = 1;
end
end
3.5.3 User-interaction: Suggesting Loops to be tested for Linear
Independency

Using a code similar to that of the user-interaction to choose inputs and level to

study in previous section, the findIndependentCycles function prints all loops in

117

Chapter 3: The Analysis Package: Computer Implementation

the model to the user, and let him/her to choose a set of important loops from

his/her point of view in a vector form.

User Suggest
© Loops to be D14|loops2Study
| D17| modelObjectsNamesVecto-o—, E tesfed for
Linear
Independency

|D27 allCyclesVerticesMatrix O———

Figure 47: The DFD Level Three: Suggesting Loops to be tested for Linear Independency

% User-interaction: Suggesting Loops to be tested for Linear
Independency
endLoop = true;
while (endLoop),
% Printing All Loops
disp([sprintf('\n') 'All Loops:' sprintf('\n') 1);
for I = l:size(allCyclesVerticesMatrix , 1) ,
tempPrint = [];

oneIndependentCycle = nonzeros(allCyclesVerticesMatrix(I ,
disp(['Loop' sprintf('\t') num2str(I) ':' sprintf('\t

for J = l:size(oneIndependentCycle , 2)-1 ,
tempPrint = [tempPrint , char(modelObjectsNamesVector (
oneIndependentCycle(J))) 1;
if J ~= size(oneIndependentCycle , 2)-1 ,
tempPrint = [tempPrint , ' --> '];
end
end
disp(tempPrint):;
end
loops2Study = input(['Enter the number(s) of the Loop(s) you
are intersted' sprintf('\n') 'in studying in a vector form (ex.:
[1,2,6]):' sprintf('\t') 1);
if max(loops2Study) > size(allCyclesVerticesMatrix , 1) |
min(loops2Study) < 1 | size(loops2Study , 1) ~= 1,
disp('Wrong Input(s), try again ...');
else
endLoop = false;
end

end

118

Chapter 3: The Analysis Package: Computer Implementation

3.5.4 Identifying Independent Cycles

The findIndependentCycles function computes the number of the linearly
independent loops set by computing the binary rank of the all loops matrix

(Kampmann, C. E., 1996).

numberIndependentCycles = rank(allCyclesEdgesMatrix) ;
Then the function puts the user-selected loops in the previous step to the top of

the loops matrix and after these loops the rest of the loops come in their
original order which is an ascending order according to the length of the loops.
Then it tries to construct a set of linearly independent loops by removing a loop
from the matrix and test its rank, which has two cases:

1. The rank remains the same; which means that the removed loop is
linearly dependant on the other remaining loops, and goes for testing
another loop

2. The rank changes; which means that the removed loop is linearly
independent on the other remaining loops, and then the functions

retrieves that loop and goes for testing another loop

D28|independentCyclesVerticesMatrix

| D54| allCyclesEdges Matrix o— P Identify D29

Independent
Cycles

independentCyclesEdgesMatrix

D30| numberIndependentCycles

Figure 48: The DFD Level Three: Identifying Independent Cycles

independentCyclesEdgesMatrix = allCyclesEdgesMatrix;
independentCyclesVerticesMatrix = allCyclesVerticesMatrix;

templ = independentCyclesEdgesMatrix(loops2Study , :):

temp2 = independentCyclesVerticesMatrix(loops2Study , :);
independentCyclesEdgesMatrix(loops2Study , :) = [];
independentCyclesVerticesMatrix(loops2Study , :) = []:
independentCyclesEdgesMatrix = [templ ; independentCyclesEdgesMatrix
1;

119

Chapter 3: The Analysis Package: Computer Implementation

independentCyclesVerticesMatrix = [temp2 ;

independentCyclesVerticesMatrix] ;

for I = 1 : numberCycles,
tempCycles = independentCyclesEdgesMatrix;
tempCyclesn = independentCyclesVerticesMatrix;
independentCyclesEdgesMatrix(I , :) = 0;
independentCyclesVerticesMatrix(I , :) = 0;
if ~(rank(independentCyclesEdgesMatrix) ==
numberIndependentCycles),
independentCyclesEdgesMatrix = tempCycles;
independentCyclesVerticesMatrix = tempCyclesn;
end

end

3.6 The findDominantEigenvalue Function
The function aims at identifying the eigenvalue that dominates the behavior of

the selected level to study.

3.6.1 Computing Analysis Time Step Length

The length of the analysis time step is taken to be equal to the simulation time

step length.
1.11.5.1
| D5 |timeStepLength Com.pute q D61| analysisTimeStepLength
Analysis Time
Step Length

Figure 49: The DFD Level Four: Computing Analysis Time Step Length

% Analysis Time Step Length
analysisTimeStepLength = timeStepLength;

120

Chapter 3: The Analysis Package: Computer Implementation

3.6.2 Computing Contributions of Eigenvalues

As stated in the mathematical background chapter, there are two cases that
could result when computing the change in the value of a level due to each
eigenvalue, according to the nature of the eigenvalue:

1. For non-zero eigenvalue; A, #0:

ox :%‘(exf& —1)

2. For zero eigenvalue; &, =0:
ox,, =c, ot
Where:
5x,,: The change in the k™ state due to the i eigenvalue = deltaStateTerms(i,k)
¢,: The integration constant in the equation of the k™ level due to the i"

eigenvalue, called alpha by Saleh, M. and Davidsen, P. (Saleh, M.; Davidsen,

P. I, 2000), note that: ¢, =1/x where: 1. and x are the left eigenvectors

associated with the i" eigenvalue and the initial value of the net-flows values
vector respectively.

ot : The length of the analysis time step

To compute the i eigenvalue contribution in the behavior of the k™ state

contribution, ; the following equation is used:

Xgi
X

contribution,; =

These contribution values are stored in one vector, and then sorted in

descending order; to get the most dominant eigenvalue.

121

Chapter 3: The Analysis Package: Computer Implementation

| D9 | modelObjectsValuesMatrixo————

| D10| netflowsValuesMatrix . / 1.11.5.2 \

| D11| levels2Study c Comg)ute
ontributions

of
Eigenvalues

D38| dominantEigenvaluesMatrix

D39| dominantEigenvaluesPositionMatrix

D40

dominancePercentage Matrix

| D35| rightEigenvectors Matrix D41 | checkpoint_0

| D36| diagonalEigenvaluesMatrixO——— D42| checkpoint_1

| D37

leftEigenvectorsMatrix ~O——

| D43| currentTimeStep

| D61| analysis TimeStepLength

Figure 50: The DFD Level Four: Computing Contributions of Eigenvalues

% Computing Contributions of Eigenvalues
alphasVector = leftEigenvectorsMatrix.' * netflowsValuesVector;

deltaStateTerms = (zeros(size(rightEigenvectorsMatrix)));

for K = 1 : numLevels ,
if eigenvaluesVector(K) == 0,
deltaStateTerms(: , K) = rightEigenvectorsMatrix(: , K)
.* (alphasVector(K) * analysisTimeStepLength) ;
else
deltasStateTerms(: , K) = rightEigenvectorsMatrix(: , K)
.* (alphasVector(K) * (exp(eigenvaluesVector(K) *
analysisTimeStepLength) - 1) / eigenvaluesVector(K));
end
end
deltaState = sum(deltaStateTerms , 2);
for K = 1 : numLevels ,
flags = zeros(numLevels , 1);
flags(K) = 1;
if ~isreal(eigenvaluesVector(K)),
conjK = find(eigenvaluesVector == conj(eigenvaluesVector(K
)))
flags(conjkK) = 1;
end
deltaStateTerm = sum(deltaStateTerms(levels2Study , :) .*

flags.');
contribution = deltaStateTerm / deltaState(levels2Study);
dominancePercentageVector = [dominancePercentageVector , 100 *

real (contribution) 1;
end
[dominancePercentageVector , dominantEigenvaluesPositionVector] =

sort (dominancePercentageVector) ;

122

Chapter 3: The Analysis Package: Computer Implementation

3.7 The computeLinkElasticity Function

The function computes links’ elasticity values associated with dominant

eigenvalue.

3.7.1 Computing Sensitivity associated with Dominant Eigenvalue

Values
The sensitivity values matrix is computed by the following relation:
S, =L,r.”
Where: 1, and r, are the left and right eigenvectors of the k™ eigenvalue

respectively.
The elasticity values matrix is computed by the following relation:

1
Ek :}\’_Sk .*A

k

Where: E, 1s the k™ eigenvalue elasticity matrix for the system compact gain

matrix.

Compute
Sensitivity

| D36| diagonalEigenvaluesMatrix associated
with

| D35| rightEigenvectorsMatrix

D45| numericLink SensitivityByDominantEigenvalue Matrix

| D37| leftEigenvectorsMatrix]?ominant
Eigenvalue

Values

| D39| dominantEigenvaluesPositi

Figure 51: The DFD Level Four: Computing Sensitivity associated with Dominant Eigenvalue
Values

% Computing Sensitivity associated with Dominant Eigenvalue Values
numericSensitivityMatrix = leftEigenvectorsMatrix(: ,
dominantEigenvaluePosition) * rightEigenvectorsMatrix(: ,
dominantEigenvaluePosition).';
numericLinkSensitivityByDominantEigenvalueMatrix =

numericSensitivityMatrix / diagonalEigenvaluesMatrix (

123

Chapter 3: The Analysis Package: Computer Implementation

dominantEigenvaluePosition , dominantEigenvaluePosition) ;
3.7.2 Computing All Links’ Elasticity associated with Dominant

Eigenvalue Values and Related Checkpoints

To compute the all links’ elasticity values associated with dominant
eigenvalue; the following steps would be repeated for every link in the compact
version of the model, i.e. for every non-zero value in the compact gain matrix.
Also, the calculations of the related checkpoints files are done in the same
process (checkpoints calculations code lines are omitted from this section, the

interested reader should refer to the appendices).

1.11.6.2 D44| numericLink ElasticityMatrix
| D25| modelAdjacencyMatrix O———
Compute All -
Links’ D49| checkpoint_2
|D26| modelAdjacencyMatriXZEdgk%(-ﬁ-x—\ Flastici
asticity
associated D50(checkpoint_4
| D32|numericFullGainMatrix O with
Dominant D51| checkpoint_7
| D34| numericCompactGainMatri Figenvalue
Values and D52| checkpoint_8
| D43| currentTimeStep o— Related
\ Checkpoints)

| D45

numericLink SensitivityByDeminantEigenvalue Matrix

Figure 52: The DFD Level Four: Computing All Links’ Elasticity associated with Dominant
Eigenvalue Values and Related Checkpoints

o

% Computing All Links’ Elasticity associated with Dominant Eigenvalue
Values

numericElasticityMatrix =
numericLinkSensitivityByDominantEigenvalueMatrix .*
numericCompactGainMatrix;

% The Full Elasticity Values Matrix

[x , vy 1 = £find(numericCompactGainMatrix ~= 0);

for I = 1 : length(x),

end
3.7.2.1Finding All Paths between Two Variables in the Compact Model

The computeLinkElasticity function uses allpathn function to find all paths

between two variables in the compact model (a level and a net-flow), and then

124

Chapter 3: The Analysis Package: Computer Implementation

removes paths that pass through other levels to avoid redundancy computation
error.
For more information the reader should refer to the "Digraph toolbox" (Bahar,

M.; Jantzen, J., 1995).

1.11.6.2.1

Find All Paths
between Two
Variables in]
the Compact

Model

D25| modelAdjacencyMatrix

D62 pathsMatrix

Figure 53: The DFD Level Five: Finding All Paths between Two Variables in the Compact Model

% Finding All Paths between Two Variables in the Compact Model

pathsMatrix = allpathn(y(I) , x(I) , modelAdjacencyMatrix) ;
% Deleting paths that pass through a level
w = [];
for K = 1 : size(pathsMatrix , 1) ,

path = nonzeros(pathsMatrix(K , :));

if any(path(2 : end - 1) <= numLevels),

w=I[wEKI];

end

end

pathsMatrix(w , :) = [];
3.7.2.2Computing Gain and Dominant Eigenvalue Elasticity Values of the k"

Path
After finding the paths, the computeLinkElasticity function uses
computePathsGain function to compute the gain of these paths.
For more information the reader should refer to computePathsGain section.
The elasticity value of any path is computed by the following relation:
s

Ep,=gp x

Where:

E, : The dominant eigenvalue elasticity values of the path P.

125

Chapter 3: The Analysis Package: Computer Implementation

gp: The gain of the path P.
%: The ratio of the path sensitivity to the dominant eigenvalue s to the

dominant eigenvalue A.

1.11.6.2.2

Compute
Gain and

numericFullGainMatrix O

| D32

| D45| numericLink SensitivityBy i i i Dominant D63| pathsElasticityValuesVector
Eigenvalue
| D62 | pathsMatrix O Elasticity

Values of the
kth Path

Figure 54: The DFD Level Five: Computing Gain and Dominant Eigenvalue Elasticity Values of
the k™ Path

% Computing Gain and Dominant Eigenvalue Elasticity Values of the kth
Path

pathsGainsVector = computePathsGain(numericFullGainMatrix ,
pathsMatrix) ;

% the Elasticity value of the kth path

pathsElasticityValuesVector = pathsGainsVector *
numericLinkSensitivityByDominantEigenvalueMatrix(x(I) , y(I));

3.7.2.3Computing Gain and Dominant Eigenvalue Elasticity Values of the

Elements of the k™ Path

Every path in the compact model is corresponding to one or more paths in the
full model, and in the last step the function has computed the gain and
dominant eigenvalue elasticity of the path in the compact model. What is
needed now is to divide this dominant eigenvalue over the corresponding paths,
since their gains could be computed easily using computePathsGain2 function,
this function performs the following:

e Gets one of the paths out of the paths matrix pathsMatrix and removes

the padding zeros

126

Chapter 3: The Analysis Package: Computer Implementation

e Adds the dominant eigenvalue elasticity of that path to the dominant

eigenvalue elasticity of every link in that path

E =) E,

PD{ﬂ}
Where:

E,: Dominant eigenvalue elasticity of link / which is contained in the

path P.

e Computes the ratio % for every link in that path

| D28| independentCyclesVerticesiatrix

Compute
Gains of the
Paths

D33(signIndependentCyclesMatrix

| D32| numericFullGainMatrix

Figure 55: The DFD Level Four: Computing Gains the Paths

% Computing Gain and Dominant Eigenvalue Elasticity Values of the
Elements of the kth Path
for K = 1 : size(pathsMatrix , 1) ,
% the kth path from y(I) to x(I)
path = nonzeros(pathsMatrix(K , :));
% for each element in the path
for J =1 : length(path) - 1 ,
numericLinkElasticityVector (
modelAdjacencyMatrix2EdgesMatrix(path(J+1) , path(J))) =
numericLinkElasticityVector (modelAdjacencyMatrix2EdgesMatrix(path (
J+l1) , path(J))) + pathsElasticityValuesVector (K) ;
numericFullElasticityMatrix(path(J+1) , path(J)) =
numericFullElasticityMatrix(path(J+1) , path(J)) +
pathsElasticityValuesVector(K);
tempPathGain = computePathsGain2(numericFullGainMatrix ,
path , path(J+1) , path(J));
tempPathSensitivityByDominantEigenvalueMatrix = tempPathGain

* numericLinkSensitivityByDominantEigenvalueMatrix(x(I) , y(I)

127

Chapter 3: The Analysis Package: Computer Implementation

);
numericFullSensitivityByDominantEigenvalueMatrix(path(J+1)
, path(J)) = numericFullSensitivityByDominantEigenvalueMatrix (
path(J+1) , path(J)) +
tempPathSensitivityByDominantEigenvalueMatrix;
numericLinkSensitivityByDominantEigenvalueVector (
modelAdjacencyMatrix2EdgesMatrix(path(J+1) , path(J))) =
umericLinkSensitivityByDominantEigenvalueVector (
modelAdjacencyMatrix2EdgesMatrix(path(J+1) , path(J))) +
tempPathSensitivityByDominantEigenvalueMatrix;
end
End

3.8 The computelnputElasticity Function

The function computes the dominant eigenvalue elasticity values of the inputs.

3.8.1 Computing Inputs’ Elasticity Values Associated with the

Dominant Eigenvalue

The function computes the dominant eigenvalue elasticity of the inputs one at a
time; it goes into a for-loop with rounds number equals to the number of inputs,
and every round it performs this calculation according to the following

equation:

| EEAY
E =— S " lu
O Z;" ou

Where:

E: The dominant eigenvalue elasticity value of the input u

or,
ou

: Element of the numericLinkGain2InputJacobianMatrix

128

Chapter 3: The Analysis Package: Computer Implementation

|D8 |c0nstantsValuesVector O

/ 1.11.7.1 \

| D12| inputs2Study Computing

Inputs’
| D31| numericLink Gain2InputJ Elasticity

Values \—>| D46| numericInputElasticityMatrix
| D43| currentTimeStep Associated

with the
| D44| numericLink ElasticityMatgx—— Dominant

Eigenvalue
value Matrix

| D45| numericLink SensitivityBy

| D47| numericLink GainMatrix

Figure 56: The DFD Level Four: Computing Inputs’ Elasticity Values Associated with the
Dominant Eigenvalue

[

% Computing Inputs’ Elasticity Values Associated with the Dominant
Eigenvalue
for I = 1 : numInputs,

numericInputElasticityVector(I) = constantsValuesVector(I) *
sum(numericLinkGain2InputJacobianMatrix(: , I) .*
numericLinkSensitivityByDominantEigenvalueVector) ;

end

3.9 The computelndependentCycleElasticity Function

The function computes the independent cycles (loops) elasticity values matrix

associated with dominant eigenvalue.

3.9.1 Computing Linearly Independent Loops’ Elasticity Values

Associated with the Dominant Eigenvalue

The function computes the dominant eigenvalue elasticity of all linearly

independent loops one time using the matrix form; it performs this calculation

according to the following equation:
E,=CE,

Where:

E,: The vector of dominant eigenvalue elasticity values of the link /

E_: The vector of dominant eigenvalue elasticity values of the loop x

129

Chapter 3: The Analysis Package: Computer Implementation

The reduced cycles’ matrix C, 1s not a square matrix so that it can not be

inversed and the last equation can not be solved using Cramer’s, although it can

be rewritten as:

And Matlab can find solution and compute E, using a least squares technique.

1.12.1

Compute
Linearly
Independent
Loops’

. Elasticity D48
|D |numerchlnkElastlcltyMatﬁx——> Values
Associated

with the
Dominant

\ Eigenvalue)

| D29| independentCyclesEdges i

independentCyclesElasticityMatrix

Figure 57: The DFD Level Three: Computing Linearly Independent Loops’ Elasticity Values
Associated with the Dominant Eigenvalue

% Computing Linearly Independent Loops’ Elasticity Values Associated

with the Dominant Eigenvalue

S [k1 1 [11 1]
% [k2] [12]
$ [. 1 =¢Cc* [. 1
% [1 [Im]

% [kn 1

%

% k: links o 1l: loops

Cr = independentCyclesEdgesMatrix.';

independentCyclesElasticityMatrix = Cr \ numericLinkElasticityMatrix;

3.10 The printOutputs Function

The printOutputs function prints the outputs of the analysis function into a file

specified by the user.

3.10.1Printing All Eigenvalues and Their Dominance Percentage

The function performs the following steps:

130

Chapter 3: The Analysis Package: Computer Implementation

e Prints a title for this section with the name of the level to study

e Goes into a for-loop that has rounds equal to the user-selected time steps

for analysis in order to print a tilted information section about each of

these steps separately

o Inside the previous for-loop; it goes into another for-loop that has steps

equal to the number of eigenvalues in order to print the values of all

eigenvalues as well as percentage of their contributions

e Prints a line in order to separate this section from the next section

D2 |outFileName

DS |timeStepLength

D11]levels2Study

D13]internalSteps

D17 modelObjectsNamesVectorO

D38| dominantEigenvaluesMatrig———

D40(dominancePercentage Matro———

Print All
Eigenvalues
and Their
Dominance
Percentage

Output File

Figure 58: The DFD Level Three: Printing All Eigenvalues and Their Dominance Percentage

[

fwrite(fid , [

contribution to the level variable ''

levels2Study))

lll:l]);

% Printing All Eigenvalues and Their Dominance Percentage

'The eigenvalues and their dominance percentage

' char(modelObjectsNamesVector (

)i
)

for I = internalSteps ,
fwrite(£id , [sprintf('\n') 1
fwrite(£id , [sprintf('\n') 1
fwrite(f£fid , ['Time instant '
timeStepLength) ':' 1);
fwrite(£id , [sprintf('\n') 1
fwrite(£id , [!
fwrite(£id , [sprintf('\n') 1
fwrite(£id , [sprintf('\n') 1
for g =1 :

fwrite(f£id ,

[num2str (

) ', with percentage contribution: '

dominancePercentageMatrix(I

7

J))

131

)i
)

num2str((I

int2str(

l%. 1

1

)i

length(dominantEigenvaluesMatrix(I , :

dominantEigenvaluesMatrix(I ,

1) *

)).,
J)

Chapter 3: The Analysis Package: Computer Implementation

fwrite(£id , [sprintf('\n') 1);
end
end
fwrite(£id , [sprintf('\n') 1);
fwrite(f£id , I
' ''1);
fwrite(£id , [sprintf('\n') 1);

3.10.21dentifying Links of the Model

The function identifies the links of the model by identifying the non-zero
values in the full gain matrix, and then saves their indices into two separate

vectors; one for the rows and one for the columns, to use them in the following

sections.
QOutput File >
| D2 | outFileName 0,
Links of the ¢ Dss
to
| D25| modelAdjacencyMatrix Model
D56(from

Figure 59: The DFD Level Three: Identifying Links of the Model

% Finding Links of the Model
[

to , from] = find(modelAdjacencyMatrix) ;

3.10.3 Printing Links’ Gains

The function performs the following steps:
e Prints a title for this section
e Goes into a for-loop that has rounds equal to the user-selected time steps
for analysis in order to print a tilted information section about each of

these steps separately

132

Chapter 3: The Analysis Package: Computer Implementation

e Inside the previous for-loop; it goes into another for-loop that has steps

equal to the number of eigenvalues in order to print the values of all

eigenvalues as well as percentage of their contributions

e Prints a line in order to separate this section from the next section

D2 |outFileName

D5 |timeStepLength

D13|internalSteps

D>/
«

D17| modelObjectsNamesVectorO

>
>
-«

D47| numericLinkGainMatrix O

-

D55| to

D56| from

1.14.3

Print Links’ q

Gains

Output File >

Figure 60: The DFD Level Three: Printing Links’ Gains

% Printing Links’
fwrite(fid ,
fwrite(£id , I
for I =
fwrite(fid ,
fwrite(fid ,
fwrite(fid ,
timeStepLength)
fid ,
fid ,
fid ,
fwrite(fid ,
for J =1 :

fwrite (
fwrite (

fwrite (

fwrite (

1 -—> 1

numericLinkGainMatrix(J ,

[sprintf (

Gains

"\n') 1

internalSteps ,

|\n|
|\n|

['Time instant

[sprintf (
[sprintf (

1)

)i

) 1
) 1

' num2str((I

)
) i

[sprintf('\n') 1]
[1

[sprintf('\n') 1]
[sprintf('\n') 1]

)
) i

) i

'All links and their gains:'

size(numericLinkGainMatrix ,
fid ,
char (modelObjectsNamesVector(to(J)))
I)))1

1) *

[char(modelObjectsNamesVector(from(J)))

num2str ((

fwrite(£id , [sprintf('\n') 1);
end
end
fwrite(£id , [sprintf('\n') 1);
fwrite(fid , I
'
fwrite(£id , [sprintf('\n') 1);

133

Chapter 3: The Analysis Package: Computer Implementation

3.10.4Printing Links’ Dominant Eigenvalue Elasticity Values

The function performs the following steps:

e Prints a title for this section

e Goes into a for-loop that has rounds equal to the user-selected time steps
for analysis in order to print a tilted information section about each of
these steps separately

¢ Inside the previous for-loop; it goes into another for-loop that has steps
equal to the number of links in order to print the names of all links as
well as their corresponding dominant eigenvalue elasticity value

e Meanwhile, it saves the links’ names and the values of links’ gains
effect on the real and imaginary parts of the dominant eigenvalue into

two separate vector to be used in the next section

e Prints a line in order to separate this section from the next section

| D2 |outFileName O—

|D5 timeStepLength O—

| D13|internalSteps :

| D17| modelObjectsNamesVecto Print l'Jinks’ Output File >
Dominant

| D38| dominantEigenvaluesMatr'@—l Eigem.'a'lue D57| tempPrint
Elasticity

| D40| dominancePercentage Matr{—— Values D58| tempPrint_I

| D47| numericLink GainMatrix O——

| D56| from o—

Figure 61: The DFD Level Three: Printing Links’ Dominant Eigenvalue Elasticity Values

% Printing Links’ Dominant Eigenvalue Elasticity Values
fwrite(£id , [sprintf('\n') 1);

fwrite(£id , ['All links and their elasticity wvalues to the
dominant eigenvalue:']);

tempPrint = {};

134

Chapter 3: The Analysis Package: Computer Implementation

tempPrint I = {};

for I = internalSteps ,
fwrite(£id , [sprintf('\n') 1);
fwrite(£id , [sprintf('\n') 1);

fwrite(fid , ['Time instant ' num2str((I - 1) *
timeStepLength) ':' 1);

fwrite(£id , [sprintf('\n') 1);

fwrite(£id , [' 1)

fwrite(£id , [sprintf('\n') 1);
fwrite(£id , [sprintf('\n') 1);
fwrite(£fid , ['The dominant eigenvalue is: ' num2str(
dominantEigenvaluesMatrix(I)) ', with percentage contribution: '
int2str (dominancePercentageMatrix(I)) '%.' 1):;
fwrite(£id , [sprintf('\n') 1);
if isreal(dominantEigenvaluesMatrix(I)),
for J = 1 : size(numericLinkElasticityMatrix , 1) ,
fwrite(f£id , [char(modelObjectsNamesVector(from(J)
)) ' --> ' char(modelObjectsNamesVector(to(J))) ': ' num2str(
real (numericLinkElasticityMatrix(J , I))) 1);
fwrite(£id , [sprintf('\n') 1);
tempPrint{ J , I } = [char(modelObjectsNamesVector (
from(J))) ' --> ' char(modelObjectsNamesVector(to(J))) ': !

num2str (real (numericLinkElasticityMatrix(J , I))) 1;

dummy linkElasticity Sorted(J , I) = real(

numericLinkElasticityMatrix(J , I));
end
else
for J = 1 : size(numericLinkElasticityMatrix , 1) ,

fwrite(f£id , [char(modelObjectsNamesVector(from(J)
)) ' --> ' char(modelObjectsNamesVector(to(J))) ': ' num2str(
(numericLinkElasticityMatrix(J , I))) 1);

fwrite(£id , [sprintf('\n') 1);

tempPrint{ J , I } = [char(modelObjectsNamesVector (
from(J))) ' --> ' char(modelObjectsNamesVector(to(J))) ': !
num2str (real (numericLinkElasticityMatrix(J , I) *
dominantEigenvaluesMatrix(I) / abs(dominantEigenvaluesMatrix(I)
))) 1;

tempPrint I{ J , I } = [char(modelObjectsNamesVector (
from(J))) ' --> ' char(modelObjectsNamesVector(to(J))) ': '
num2str (imag(numericLinkElasticityMatrix(J , I) *
dominantEigenvaluesMatrix(I) / abs(dominantEigenvaluesMatrix(I)
))) 1;

dummy linkElasticity Sorted(J , I) = real(
numericLinkElasticityMatrix(J , I) * dominantEigenvaluesMatrix(I)
/ abs(dominantEigenvaluesMatrix(I)));

dummy linkElasticity Sorted I(J , I) = imag(

135

Chapter 3: The Analysis Package: Computer Implementation

numericLinkElasticityMatrix(J , I) * dominantEigenvaluesMatrix(I)
/ abs(dominantEigenvaluesMatrix(I)));
end

end
end
fwrite(£id , [sprintf('\n') 1);
fwrite(f£id , I
! 1)
fwrite(£id , [sprintf('\n') 1);

3.10.5Printing Links’ Dominant Eigenvalue FElasticity Values

(Sorted)

The function performs the following steps:

e Sorts the elements of each of the two vectors that contains the values of
links’ gains effect on the real and imaginary parts of the dominant
eigenvalue from the last section

e Prints a title for this section

e Goes into a for-loop that has rounds equal to the user-selected time steps
for analysis in order to print a tilted information section about each of
these steps separately

e Inside the previous for-loop; it goes into another for-loop that has steps
equal to the number of links in order to print the names of all links as
well as their corresponding dominant eigenvalue elasticity value

e Prints a line in order to separate this section from the next section

136

Chapter 3: The Analysis Package: Computer Implementation

| D2 | outFileName oO——

| D5 | timeStepLength O—

internalSteps

|DB

Print Links’

. - ~ Dominant
| D38| dominantEigenvaluesMatri® Eigenvalue Output File >
Elasticity
| D40| dominancePercentageMatr Values
(Sorted)

| D57| tempPrint o—

| D58| tempPrint_I o——

Figure 62: The DFD Level Three: Printing Links’ Dominant Eigenvalue Elasticity Values (Sorted)

o°

Printing Links’ Dominant Eigenvalue Elasticity Values (Sorted)
[dummy linkElasticity Sorted , ...
IX] = sort(dummy linkElasticity Sorted , 1);
[dummy linkElasticity Sorted I , ...
IX I] = sort(dummy linkElasticity Sorted I , 1);
IX = flipud(IX);
IX I = flipud(IX I);
fwrite(£id , [sprintf('\n') 1);
fwrite(£fid , ['All Links and their elasticity wvalues to the
dominant eigenvalue (Sorted):' 1);
for I = internalSteps ,
fwrite(£id , [sprintf('\n') 1);
fwrite(£id , [sprintf('\n') 1);
fwrite(fid , ['Time instant ' num2str((I - 1) *
timeStepLength) ':' 1);
fwrite(£id , [sprintf('\n') 1);
fwrite(£id , [1)
fwrite(£id , [sprintf('\n') 1);
fwrite(£id , [sprintf('\n') 1);

fwrite(£id , ['The dominant eigenvalue is: ' num2str(

dominantEigenvaluesMatrix(I)) ', with percentage contribution: '
int2str(dominancePercentageMatrix(I)) '%.' 1);
fwrite(£id , [sprintf('\n') 1);
fwrite(£id , [sprintf('\n') 1);
if ~isreal(dominantEigenvaluesMatrix(I)),
fwrite(£id , ['Effect on the Envelope:']);
fwrite(£id , [sprintf('\n') 1);
fwrite(£id , [sprintf('\mn') 1);
end
for J = 1l:size(numericLinkElasticityMatrix , 1) ,
fwrite(fid , tempPrint{ IX(J , I) , I });
fwrite(£id , [sprintf('\mn') 1);

end

137

Chapter 3: The Analysis Package: Computer Implementation

if ~isreal(dominantEigenvaluesMatrix(I)),
fwrite(£id , [sprintf('\n') 1);
fwrite(£id , ['Effect on the Frequency:' 1);
fwrite(£id , [sprintf('\n') 1);
fwrite(£id , [sprintf('\n') 1);
for J = 1l:size(numericLinkElasticityMatrix , 1) ,
fwrite(fid , tempPrint I{ IX I(J , I) , I });
fwrite(£id , [sprintf('\n') 1);
end
end
end
fwrite(£id , [sprintf('\n') 1);
fwrite(f£id , I
' 1)
fwrite(£id , [sprintf('\n') 1);

3.10.6 Printing Inputs’ Dominant Eigenvalue Elasticity Values

The function performs the following steps:

e Prints a title for this section

e Goes into a for-loop that has rounds equal to the user-selected time steps
for analysis in order to print a tilted information section about each of
these steps separately

¢ Inside the previous for-loop; it goes into another for-loop that has steps
equal to the number of inputs in order to print the names of all inputs as
well as their corresponding dominant eigenvalue elasticity value

e Meanwhile, it saves the inputs’ names and the values of inputs’ gains
effect on the real and imaginary parts of the dominant eigenvalue into
two separate vector to be used in the next section

e Prints a line in order to separate this section from the next section

138

Chapter 3: The Analysis Package: Computer Implementation

Output File

\

|D2 outFileName o—

| D7 |constantsVector o—

|D5 timeStepLength o——

| D12|inputs2Study P;;I;L]Iil:lgn;tts’
| D13|internalSteps E E];%:sﬂt‘ileiltl;e

| D38| dominantEigenvaluesMatrig——

| D40| dominancePercentageMatrgq——

| D46| numericInputElasticityMatpix——F——

Values

D57| tempPrint

DS8| tempPrint_I

Figure 63: The DFD Level Three: Printing Inputs’ Dominant Eigenvalue Elasticity Values

% Printing Inputs’

dummy InputElasticity Sorted

zeros(size(

numericInputElasticityMatrix));

dummy InputElasticity Sorted

I

= zeros(size(

numericInputElasticityMatrix));

fwrite(f£id ,
fwrite(fid , [

dominant eigenvalue:']);

[sprintf('\n'

tempPrint = {};

tempPrint I = {};
for I = internalSteps ,
fwrite(fid ,
fwrite(fid ,
fwrite(fid , [

timeStepLength) ':' 1);

[sprintf (
[sprintf (

) 1)

'All inputs and their elasticity values to the

"\n') 1);
'\n') 1);

'Time instant '

num2str((I

fwrite(£id , [sprintf('\n') 1);

fwrite(£fid , [' 1)
fwrite(£id , [sprintf('\n') 1);

fwrite(£id , [sprintf('\n') 1);

fwrite(fid , ['The dominant eigenvalue is:

dominantEigenvaluesMatrix(I))

int2str (dominancePercentageMatrix(I))

fwrite(£id , [sprintf(

for J =1 :

fwrite(fid ,

)) e
)i

fwrite(fid ,

1%.' 1

'\n') 1);

if isreal(dominantEigenvaluesMatrix(I)),

[sprintf (

length(inputs2Study),

'\n') 1);

num2str (real (numericInputElasticityMatrix(J ,

Dominant Eigenvalue Elasticity Values

1) *

num2str (

', with percentage contribution:

)i

tempPrint{ J , I } = [char(constantsVector (

inputs2Study(J))) ': '

numericInputElasticityMatrix(J ,

num2str (real (

I))) 1:

139

[char(constantsVector(inputs2Study(J)
I)))1

Chapter 3: The Analysis Package: Computer Implementation

dummy InputElasticity Sorted(J , I) = real(
numericInputElasticityMatrix(J , I));
end
else
for J = 1 : length(inputs2Study),
fwrite(fid , [char(constantsVector(inputs2Study(J

)) ': ' num2str((numericInputElasticityMatrix(J , I))) 1):;
fwrite(£id , [sprintf('\n') 1);
tempPrint{ J , I } = [char(constantsVector (
inputs2Study(J))) ': ' num2str(real(

numericInputElasticityMatrix(J , I) * dominantEigenvaluesMatrix (
) / abs(dominantEigenvaluesMatrix(I)))) 1;

tempPrint I{ J , I } = [char(constantsVector (
inputs2Study(J))) ': ' num2str(imag(
numericInputElasticityMatrix(J , I) * dominantEigenvaluesMatrix (
) / abs(dominantEigenvaluesMatrix(I)))) 1;

dummy InputElasticity Sorted(J , I) = real(
numericInputElasticityMatrix(J , I) * dominantEigenvaluesMatrix (
) / abs(dominantEigenvaluesMatrix(I)));

dummy InputElasticity Sorted I(J , I) = imag(
numericInputElasticityMatrix(J , I) * dominantEigenvaluesMatrix (
) / abs(dominantEigenvaluesMatrix(I)));

end
end

end
fwrite(£id , [sprintf('\n') 1);
fwrite(f£id , I
! 1)
fwrite(£id , [sprintf('\n') 1);

3.10.7Printing Inputs’ Dominant Eigenvalue Elasticity Values

(Sorted)

The function performs the following steps:

e Sorts the elements of each of the two vectors that contains the values of

inputs’ gains effect on the real and imaginary parts of the dominant

eigenvalue from the last section

e Prints a title for this section

140

Chapter 3: The Analysis Package: Computer Implementation

e Goes into a for-loop that has rounds equal to the user-selected time steps
for analysis in order to print a tilted information section about each of
these steps separately

e Inside the previous for-loop; it goes into another for-loop that has steps
equal to the number of inputs in order to print the names of all inputs as
well as their corresponding dominant eigenvalue elasticity value

e Prints a line in order to separate this section from the next section

| D2 | outFileName oO—

| D5 | timeStepLength o—

| D13| internalSteps
Print Inputs’

Dominant

| D38| dominantEigenvaluesMatr
Elgem‘ra'lue Output File >
| D40| dominancePercentage Matrp Elasticity
Values
(Sorted)

| D46| numericlnputElasticityMat@ix——

| D57| tempPrint o———

| D58| tempPrint_I o—

Figure 64: The DFD Level Three: Printing Inputs’ Dominant Eigenvalue Elasticity Values
(Sorted)

o°

Printing Inputs’ Dominant Eigenvalue Elasticity Values (Sorted)
[dummy InputElasticity Sorted , ...
IX] = sort(dummy InputElasticity Sorted , 1);
[dummy InputElasticity Sorted I , ...
IX I] = sort(dummy InputElasticity Sorted I , 1);
IX = flipud(IX);
IX I = flipud(IX I);
fwrite(£id , [sprintf('\n') 1);
fwrite(£id , ['All inputs and their elasticity values to the
dominant eigenvalue (Sorted):' 1):;
for I = internalSteps ,
fwrite(£id , [sprintf('\n') 1);
fwrite(£id , [sprintf('\n') 1);
fwrite(fid , ['Time instant ' num2str((I - 1) *
timeStepLength) ':' 1);
fwrite(£id , [sprintf('\n') 1);
fwrite(fid , [' 1)

141

Chapter 3: The Analysis Package: Computer Implementation

fwrite(£id , [sprintf('\n') 1);
fwrite(£id , [sprintf('\n') 1);
fwrite(£id , ['The dominant eigenvalue is: ' num2str(
dominantEigenvaluesMatrix(I)) ', with percentage contribution: '
int2str(dominancePercentageMatrix(I)) '%.' 1);
fwrite(£id , [sprintf('\n') 1);
fwrite(£id , [sprintf('\n') 1);
if ~isreal(dominantEigenvaluesMatrix(I)),
fwrite(£id , ['Effect on the Envelope:']);
fwrite(£id , [sprintf('\n') 1);
fwrite(£id , [sprintf('\mn') 1);
end
for J = 1l:size(numericInputElasticityMatrix , 1)
fwrite(fid , tempPrint{ IX(J , I) , I });
fwrite(£id , [sprintf('\mn') 1);

$IX(:,1)

end
if ~isreal(dominantEigenvaluesMatrix(I)),
fwrite(£id , [sprintf('\n') 1);
fwrite(£id , ['Effect on the Frequency:' 1);
fwrite(£id , [sprintf('\n') 1);
fwrite(£id , [sprintf('\n') 1);
for J = 1l:size(numericInputElasticityMatrix , 1) ,
fwrite(fid , tempPrint I{ IX I(J , I) , I });
fwrite(£id , [sprintf('\n') 1);
end
end
end
fwrite(£id , [sprintf('\n') 1);
fwrite(f£id , I
' 1)
fwrite(£id , [sprintf('\n') 1);

3.10.8 Printing All Loops

The function performs the following steps:
e Prints a title for this section
e Goes into a for-loop that has rounds equal to the number of loops in
order to print a tilted information section about each of these loops

separately

142

Chapter 3: The Analysis Package: Computer Implementation

Inside the previous for-loop; it goes into another for-loop that has
rounds equal to the number of links in the current loop in order to save

these links inside temporary characters vector separated by ' --> ', and

ends the inner for-loop.

e Prints temporary characters vector.

e Ends the first for-loop and prints a line in order to separate this section

from the next section

| D2 | outFileName

1.14.8

Output File

B Print Al

| D17| modelObjectsNamesVectorO

Loops

L}{ D57| tempPrint

| D27| allCyclesVerticesMatrix

Figure 65: The DFD Level Three: Printing All Loops

% Printing All Loops

fwrite(£id , [sprintf('\n') 1);

fwrite(f£id , ['All loops:' 1):

for I = l:size(allCyclesVerticesMatrix , 1) ,
tempPrint = [];
oneCycle = nonzeros(allCyclesVerticesMatrix(I , :)).';
fwrite(£id , [sprintf('\n') 1);

fwrite(£id , [sprintf('\n') 1);
fwrite(£id , ['Loop ' num2str(I) ':' 1);
fwrite(£id , [sprintf('\n') 1);
fwrite(£id , [! 1)
fwrite(£id , [sprintf('\n') 1);
fwrite(£id , [sprintf('\n') 1);
for J = 1l:size(oneCycle , 2)-1 ,
tempPrint = [tempPrint , char(modelObjectsNamesVector (
oneCycle(J))) 1;
if J ~= size(oneCycle , 2)-1 ,
tempPrint = [tempPrint , ' --> '];
end

end

fwrite(f£id , tempPrint);

fwrite(£id , [sprintf('\n') 1);
end
fwrite(£id , [sprintf('\n') 1);

143

Chapter 3: The Analysis Package: Computer Implementation

fwrite(fid , [
' N D
fwrite(£id , [sprintf('\n') 1);

3.10.9Printing User-selected Linearly Independent Loops

The function performs the following steps:

e Prints a title for this section

e Goes into a for-loop that has rounds equal to the number of linearly
independent loops in order to print a tilted information section about
each of these loops separately

e Inside the previous for-loop; it goes into another for-loop that has
rounds equal to the number of links in the current loop in order to print
the links of that loop separated by ' -->".

e Prints a line in order to separate this section from the next section

1.14.9

Print Output File >

| D17| modelObjectsNamesVecto! User-selected
Linearly D57| tempPrint

Independent

\ Loops)

| D2 | outFileName

| D28| independentCyclesVertice

Figure 66: The DFD Level Three: Printing User-selected Linearly Independent Loops

o

% Printing User-selected Linearly Independent Loops
fwrite(£id , [sprintf('\mn') 1);
fwrite(f£fid , ['Linearly independent loops:' 1);
fwrite(£id , [sprintf('\mn') 1);
for I = l:size(independentCyclesVerticesMatrix , 1) ,

tempPrint = [];

oneCycle = nonzeros(independentCyclesVerticesMatrix(I , :)
).';
fwrite(f£id ,
fwrite(fid ,
fwrite(£fid ,
fwrite(fid ,
fwrite(£fid ,

sprintf('\mn') 1);

sprintf('\n') 1);

'Loop ' num2str(I) ':' 1);
sprintf('\n') 1);

- 1)

Lo T o T o T o T |

144

Chapter 3: The Analysis Package: Computer Implementation

fwrite(£id , [sprintf('\n') 1);
fwrite(£id , [sprintf('\n') 1);

for J = 1l:size(oneCycle , 2)-1 ,

tempPrint = [tempPrint , char(modelObjectsNamesVector (
oneCycle(J))) 1;
if J ~= size(oneCycle , 2)-1 ,
tempPrint = [tempPrint , ' --> '];
end

end
fwrite(fid , tempPrint);
fwrite(£id , [sprintf('\n') 1);
end
fwrite(£id , [sprintf('\n') 1);
fwrite(fid , I
' 1);
fwrite(£id , [sprintf('\n') 1);

3.10.10 Printing User-Selected Linearly Independent Loops’

Dominant Eigenvalue Elasticity Values

The function performs the following steps:

e Prints a title for this section

e Goes into a for-loop that has rounds equal to the user-selected time steps
for analysis in order to print a tilted information section about each of
these steps separately

e Inside the previous for-loop; it goes into another for-loop that has steps
equal to the number of the user-selected linearly independent loops in
order to print the names of all user-selected linearly independent loops
as well as their corresponding dominant eigenvalue elasticity value

e Meanwhile, it saves the user-selected linearly independent loops’ names
and the values of links’ gains effect on the real and imaginary parts of
the dominant eigenvalue into two separate vector to be used in the next

section

145

Chapter 3: The Analysis Package: Computer Implementation

e Prints a line in order to separate this section from the next section

| D2 |0utFileName oO—
|D5 timeStepLength o— 1.14.10

Print
|D13|internalSteps p| User-Selected .

TTI—F "o Output File >

| D28| independentCyclesVerticesMatri Independent

Loops’ D59| dummy_IndependentCyclesElasticity_Sorted
|D33 signIndependentCycles Matpi Dominant

Eigenvalue D60| dummy_IndependentCyclesElasticity_Sorted I
| D38| dominantFEigenvaluesMatrixo—— Elasticity
\ Values)

| D40| dominancePercentage Matrix——

| D48| independentCyclesElasticityMatrix—

Figure 67: The DFD Level Three: Printing User-Selected Linearly Independent Loops’ Dominant
Eigenvalue Elasticity Values

% Printing User-Selected Linearly Independent Loops’ Dominant

Eigenvalue Elasticity Values
fwrite(£id , [sprintf('\n') 1);
fwrite(fid , ['Independent loops'' elasticity values:']);
independentCyclesElasticityMatrix =
independentCyclesElasticityMatrix.';
dummy IndependentCyclesElasticity Sorted = zeros(size(
independentCyclesElasticityMatrix));
dummy IndependentCyclesElasticity Sorted I = zeros(size(
independentCyclesElasticityMatrix));
for I = internalSteps ,

fwrite(£id , [sprintf('\n') 1);

fwrite(£id , [sprintf('\n') 1);

fwrite(fid , ['Time instant ' num2str((I - 1) *
timeStepLength) ':' 1);

fwrite(£id , [sprintf('\n') 1);

fwrite(f£id , [' 1)

fwrite(£id , [sprintf('\n') 1);

fwrite(£id , [sprintf('\n') 1);

fwrite(fid , ['The dominant eigenvalue is: ' num2str(

dominantEigenvaluesMatrix(I)) ', with percentage contribution: '
int2str (dominancePercentageMatrix(I)) '%.' 1):
fwrite(£id , [sprintf('\n') 1);
if isreal(dominantEigenvaluesMatrix(I)),
for K = 1l:size(independentCyclesVerticesMatrix , 1) ,
fwrite(£fid , ['Loop ' num2str(K) ' (Polarity: '
num2str (signIndependentCyclesMatrix(I , K)) '): ' num2str(real(
independentCyclesElasticityMatrix(I , K))) 1);
fwrite(£id , [sprintf('\n') 1);
dummy IndependentCyclesElasticity Sorted(I , K) = real(

146

Chapter 3: The Analysis Package: Computer Implementation

independentCyclesElasticityMatrix(I , K));
end
else
for K = l:size(independentCyclesVerticesMatrix , 1) ,
fwrite(£id , ['Loop ' num2str(K) ' (Polarity: '
num2str (signIndependentCyclesMatrix(I , K)) '): ' num2str(
independentCyclesElasticityMatrix(I , K)) 1);
fwrite(£id , [sprintf('\n') 1);
dummy IndependentCyclesElasticity Sorted(I , K) = real(
independentCyclesElasticityMatrix(I , K) *
dominantEigenvaluesMatrix(I) / abs(dominantEigenvaluesMatrix(I)
))i
dummy IndependentCyclesElasticity Sorted I(I , K) =
imag(independentCyclesElasticityMatrix(I , K) *
dominantEigenvaluesMatrix(I) / abs(dominantEigenvaluesMatrix(I)
))i
end
end
end
fwrite(£id , [sprintf('\n') 1);
fwrite(fid , [
! 1)
fwrite(£id , [sprintf('\n') 1);

3.10.11 Printing User-Selected Linearly Independent Loops’

Dominant Eigenvalue Elasticity Values (Sorted)

The function performs the following steps:

e Sorts the elements of each of the two vectors that contains the values of
user-selected linearly independent loops’ gains effect on the real and
imaginary parts of the dominant eigenvalue from the last section

e Prints a title for this section

e Goes into a for-loop that has rounds equal to the user-selected time steps
for analysis in order to print a tilted information section about each of

these steps separately

147

Chapter 3: The Analysis Package: Computer Implementation

e Inside the previous for-loop; it goes into another for-loop that has steps
equal to the number of the user-selected linearly independent loops in
order to print the names of all user-selected linearly independent loops
as well as their corresponding dominant eigenvalue elasticity value

e Prints a line in order to separate this section from the next section

| D2 |0utFileName oO——— / A\
1.14.11
| DS |timeStepLength o— Print
User-Selected
| D13| internalSteps Linearly
Independent
D33| signIndependentCycles Matgi Loops’ .
Dominant Output File >
| D38| dominantEigenvaluesMatr{ Eigenvalue
Elasticity
| D40| dominancePercentageMatri—— Values

\ (Sorted))
I Sorted

| D60| dummy_IndependentCyclesElastieity—Sorted I

| D59| dummy_IndependentCycle

Figure 68: The DFD Level Three: Printing User-Selected Linearly Independent Loops’ Dominant
Eigenvalue Elasticity Values (Sorted)

o

% Printing User-Selected Linearly Independent Loops’ Dominant
Eigenvalue Elasticity Values (Sorted)
[dummy IndependentCyclesElasticity Sorted ,
IX] = sort(dummy IndependentCyclesElasticity Sorted , 2);
[dummy IndependentCyclesElasticity Sorted I ,
IX I] = sort(dummy IndependentCyclesElasticity Sorted I , 2);
dummy IndependentCyclesElasticity Sorted = fliplr(
dummy IndependentCyclesElasticity Sorted);
dummy IndependentCyclesElasticity Sorted I = fliplr(
dummy IndependentCyclesElasticity Sorted I);
IX = fliplr(IX);
IX I = fliplr(IX I);
fwrite(£id , [sprintf('\n') 1);
fwrite(£id , ['Independent loops'' elasticity wvalues (Sorted):']
)i
for I = internalSteps,
fwrite(£id , [sprintf('\n') 1);
fwrite(£id , [sprintf('\n') 1);
fwrite(£fid , ['Time instant ' num2str((I - 1) *
timeStepLength) ':' 1);
fwrite(£id , [sprintf('\n') 1);

148

Chapter 3: The Analysis Package: Computer Implementation

fwrite(£id , [! 1)

fwrite(£id , [sprintf('\n') 1);

fwrite(£id , [sprintf('\n') 1);

fwrite(fid , ['The dominant eigenvalue is: ' num2str(

dominantEigenvaluesMatrix(I)) ', with percentage contribution: '
int2str (dominancePercentageMatrix(I)) '%.' 1):
fwrite(£id , [sprintf('\n') 1);
fwrite(£id , [sprintf('\n') 1);
if ~isreal(dominantEigenvaluesMatrix(I)),
fwrite(£id , ['Effect on the Envelope:']);
fwrite(£id , [sprintf('\mn') 1);
fwrite(£id , [sprintf('\n') 1);
end
for K = l:size(independentCyclesVerticesMatrix , 1),
fwrite(£fid , ['Loop ' num2str(IX(I , K)) ' (Polarity: '
num2str (signIndependentCyclesMatrix(I , IX(I , K))) '"): !
num2str (dummy IndependentCyclesElasticity Sorted(I , K)) 1);
fwrite(£id , [sprintf('\n') 1);
end
if ~isreal(dominantEigenvaluesMatrix(I)),
fwrite(£id , [sprintf('\n') 1);
fwrite(£fid , ['Effect on the Frequency:' 1);
fwrite(£id , [sprintf('\n') 1);
fwrite(£id , [sprintf('\n') 1);
for K = 1l:size(independentCyclesVerticesMatrix , 1),
fwrite(fid , ['Loop ' num2str(IX I(I , K)) '
(Polarity: ' num2str(signIndependentCyclesMatrix(I , IX I(I , K)
)) '"): ' num2str(dummy IndependentCyclesElasticity Sorted I(I , K
)) 1)
fwrite(£id , [sprintf('\n') 1);
end
end
end
fwrite(£id , [sprintf('\n') 1);
fwrite(f£id , I
' 1)
fwrite(£id , [sprintf('\n') 1);

3.11 The jac Function

The jac function computes Jacobian, according to the following equation:

149

Chapter 3: The Analysis Package: Computer Implementation

>
. ox . .
]ac(x,y)=g= R
%y O
ayl ayn

And to implement this; the function performs the following steps:
e Goes into a for-loop that has rounds equal to the number of elements in
the first vector x
e Goes into a for-loop that has rounds equal to the number of elements in

the second vector y

e Uses the function differentiate to differentiate all elements of x to y

| D17| modelObjectsNamesVectorO
1.9.1.1
Call ¢
differentiate

D23| symbolicFullGainMatrix

| D18| modelObjectsEquationsVeats

Figure 69: The DFD Level Four: Computing Jacobian by Calling Differentiate
% jac(x , vy)
for I =1 : length(x),
for J = 1 : length(y),
out(I , J) = differentiate(x(I) , y(J));

end

end

3.12 The differentiate Function

The differentiate function computes partial differentiation, according to the

following equation:

diﬁ‘erentiate(x, y) = ?
y

And to implement this; the function performs the following steps:

150

Chapter 3: The Analysis Package: Computer Implementation

e Tests if the input x is ifThenElse function, and if so it differentiates both
values of the ifThenElse to the input y by sending them to the symbolic
toolbox, i.e. the if-true and if-false values, and returns another
ifThenElse, with the same condition, but with the new differentiated
if-true and if-false values

e Tests if the input x is graph function, and if so it replaces it with the
differentiateGraph function with the same arguments of the graph
function

e Sends all other x and y values to the symbolic toolbox to do the

differentiation

| D1 7| modelObjectsNamesVectorO

1.9.1.1.1

Differentiate

| D18| modelObjectsEquations Ve s D23| symbolicFullGainMatrix

Figure 70: The DFD Level Five: Performing Differentiation

% differentiate(S , a)
str = char(S);

if strncmp(str , 'ifthenelse' , 10),

ixl = strfind(str , '(');
ix2 = strfind(str , ',"');
ix3 = strfind(str , ")');

var0 = str(1 : ix1(1) - 1);
varl = str(ix1(1) + 1 : ix2(1) - 1);
var2 = str(ix2(1) + 1 : ix2(2) - 1);
var3 = sym(str(ix2(2) + 1 : ix2(3) - 1));
var4d = sym(str(ix2(3) + 1 : ix3(1) - 1)):
var3 = maple('map' , 'diff' , var3 , a);
var4 = maple('map' , 'diff' , var4 , a):;
if var3 == sym(0) & var4 == sym(0),
R = sym(0);
else
R =sym([varO '"(' varl ',' var2 ',' char(var3) ',' char(
vard) ')' 1);

end

151

Chapter 3: The Analysis Package: Computer Implementation

elseif strncmp(str , 'graph' , 5),

ixl = strfind(str , '(');

ix2 = strfind(str , ',');

varl = sym(str(ix1(1) + 1 : ix2(1) - 1));

var2 = maple('map' , 'diff' , varl , a);

else

end

R

R

= sym(strrep(str , 'graph' , 'differentiateGraph')) * var2;

= maple('map' , 'diff' , S , a);

3.13 The differentiateGraph Function

The differentiateGraph function computes differentiation of graph function,

according to the following equation:

0 (graph (inp, x, y))
8(inp)

differentiateGraph (inp,x,y) =

And to implement this; the function performs the following steps:

Tests if the inputs of the original graph function inp, x and yare of a
numeric values, if not it returns a symbolic expression
differentiateGraph(inp,x, y) , else the following steps apply

If the input x is not inside the range of the vector inp and on one of its
sides, it returns slope of the line connecting the last two points in the inp
vector from the related side

If the input x 1s not inside the range of the vector inp and is not on one
of its sides, it returns zero because the line after the range of the vector
inp 1s parallel to the x-axis meaning zero slope

If the input x is inside the range of the vector inp, and is between two
points in the inmp vector, it returns the of the slopes of the line

connecting the two points enclosing the input x

152

Chapter 3: The Analysis Package: Computer Implementation

e If the input x is inside the range of the vector inp, and is on one of the
points in the inp vector, it returns the mean value of the slopes of the
line connecting this point and the two points at each side in the inp

vector

| D1 7| modelObjectsNamesVectoro

1.9.1.1.1.1

| D18| modelObjectsEquations Ve ate

Differentiate
Graph

D23| symbolicFullGainMatrix

o°

Functions

Figure 71: The DFD Level Six: Performing Differentiation to Graph Function

differentiateGraph(inp , x , y)

n = (nargin - 1) / 2;

x = varargin(1 : n);

y = varargin(n + 1 : end);
x = cell2num(x);

y = cell2num(y)

inp = subs(inp);

if isnumeric(inp),

[x , IX] = sort(x);

y =y(IX);
% Find indices of subintervals, x(k) <= inp < x(k + 1),
% or inp < x(1) or inp >= x(end)
k = sum(x < inp); %$ 0 ---> n
if k == 0,
% Extrapolate
if inp == x(1),
out = ((y(2) -y(1))/ (x(2) -x(1))) / 2;
else
out = 0;
end
elseif k == n,
% Extrapolate
if inp == x(end),
out = ((y(end) - y(end -1)) / (x(end) - x(end
1)))/ 2;
else
out = 0;
end
else

[+

% Interpolate

153

Chapter 3: The Analysis Package: Computer Implementation

if inp == x(k),
out =mean([(y(k + 1) -y(k))/ (x(k+ 1) - x(
k)), (y(k) -y(k-1))/ (x(k) -x(k-1))1);
else
out = (y(k+1) -y(k))/ (x(k+1) -x(k)) ;
end
end
else
out = sym(['differentiateGraph(' char(inp) ',"' rowv(x) ',!
rowv(y) ")'"1);

end

3.14 The computePathsGain Function

The computePathsGain function computes the gains of set of paths, according

to the following equation:

8p :]i[gf

leP
And to implement this; the function performs the following steps:
e Goes into a for-loop that has rounds equal to the number of paths
o Inside the previous for-loop; it goes into another for-loop that has steps
equal to the number of links of the path that is in-turn

e Multiply the gains of the links utilizing the previous for-loop

1.11.2.1

Compute
Gains of
Paths

| D28| independentCycles Vertice siMatri

| D32| numericFullGainMatrix D33| signIndependentCyclesMatrix

Figure 72: The DFD Level Four: Computing Gains of Paths (Related to Computing Polarity of the
Linearly Independent Loops)

154

Chapter 3: The Analysis Package: Computer Implementation

[be2

pathsMatrix Oo—
1.11.6.2.2.1

Compute

| D32
Gains of

numericFullGain Matrix

D64| paths GainVector

Paths

Figure 73: The DFD Level Six: Computing Gains of Paths (Related to Computing Gain and
Dominant Eigenvalue Elasticity Values of the k™ Path)

GV = ones(1 , size(paths , 1));
for i = 1 : size(paths , 1),
cn = paths(i , 1 : max(find(paths(i , :)))):
for j =1 : length(cn) - 1,
Gv(i) =G6Gv(i) *G(en(j+1) , cn(3));:
end

end

3.15 The computePathsGain2 Function

The computePathsGain2 function computes the gain of a path excluding the

gain of a specific link that starts and ends at specific nodes, it is the same as the

computePathsGain function, but it works only for only one path using the same

equation of the computePathsGain function taking into consideration that it

leaves the specific link and don't multiply it to others.

And to implement this; the function performs the following steps:

e Goes into a for-loop that has rounds equal to the number of links of the

path

e Multiply the gains of the links utilizing the previous for-loop, excluding

the link specified by the user

| D26| modelAdjacencyMatrix2Ed@esMatrix

1.11.6.2.3

| D34| numericCompactGainMatrix Compute
Gain of a
| D45| numericLink SensitivityBy Deominas Path D44 numericLinkElasticityMatrix
Excluding a
| D62| paths Matrix O Specified
Link
| D63| paths Hasticity ValuesVectod

155

Chapter 3: The Analysis Package: Computer Implementation

Figure 74: The DFD Level Five: Computing Gain of a Path Excluding a Specififed Link

GV = 1;
path(1 : max(f£ind(path)));
for j =1 : length(cn) - 1,

cn

if ~((en(j + 1) == eNode) & (cn(j) == sNode))
GV = GV * G(en(j+1),en(j)):
end

end

156

Chapter 4

The Analysis Package: Application on the MGM

Chapter 4: The Analysis Package: Application on the MGM

4.1 Introduction

This chapter applies the mathematical foundation of the eigenvalue analysis
using the implemented Matlab code, to one of the system dynamics classical
models. This chapter contains four sections other than this overview.

Section 4.2 and 4.3 give an overview about the market growth model taking
into consideration its different sectors and important loops.

Section 4.4 declares the steps of the eigenvalue analysis of the behavior of the
Backlog level variable of the market growth model as well as the resuts of the
Analysis package.

Section 4.5 gives brief comments on the results of the Analysis package.

4.2 The Market Growth Model Overview

Basically Jay W. Forrester made his market growth model to show the
feedback relationships frequently governing the growth of a new product in an
open market. Despite the simplicity of the model, it exhibits a various
interesting modes of behavior. The model consists of four main sectors, the
Operations sector (relating orders to the resulting deliveries) the Salesmen
sector (relating budget to the resulting salesmen), the Market sector (relating
the delivery delay to the resulting sales effectiveness) and the Capacity sector
(relating the ordering of production to the resulting production capacity). These
sectors were originally coupled with switches to activate or deactivate one of
them at a time. The full set of equations written for Powersim Studio, are listed

in the appendix.

159

Chapter 4: The Analysis Package: Application on the MGM

In this chapter, we will focus on the seventh run documented in Forrester's
original paper — he called it: "Delivery Delay Goal Based on Past
Performance". The run demonstrates the effects of operating with an eroding

goal structure and is characterized by setting all of the four switches to 1:

The model, portrayed in figure 75, is characterized by three major feedback
loops, one reinforcing loop and two balancing loops. The reinforcing loop
causes salesmen to be hired (or fired) as a result of an increasing (or
decreasing) budget, resulting from the deliveries caused by the orders generated
by the salesmen. The first, upper, balancing loop causes a reduction (or
increase) in orders generated as a result of a decrease (or increase) in the sales
effectiveness in response to an increased (or decreased) in the observed
delivery delay resulting from an increasing (pr decreasing) backlog caused by
an order left unmatched (or matched) by the delivery capacity. The second,
lower, balancing loop causes an increase (or decrease) in capacity in response
to (no) capacity ordering resulting from the observation of an increase (or

decrease) in the delivery delay, caused by insufficient (or sufficient) capacity.

Switch 1 =1, Switch 2 =1, Switch 3 = 1 and Delivery Delay Weighting = 1

160

Chapter 4: The Analysis Package: Application on the MGM

)

Salesmen
Hiring

0

Budget

)

Orders Booked

U

)

Sales
Effectiveness

Backlog
Delivery Rate
Delivery Rate .

Average Delivery Delay
Production Production
Capacity Capacity

P Ordering

161

Figure 75: The Model structure including the Salesmen, Operations, Market and capacity sectors

Chapter 4: The Analysis Package: Application on the MGM

4.3 The Market Growth Model Sectors

4.3.1 The Operations and Salesmen Sectors

Figure 76 shows the structure of the Operations and Salesmen sectors. It
portrays the salesmen hiring process as well as the relationship between the
orders booked generated by the salesmen and sales budget that allows for
expansion, generated by the deliveries that results from the orders booked.
These sectors incorporate two main loops****, a balancing and a reinforcing

loop:
o Salesmen > Salesmen Hired > Salesmen (B1)

e Backlog = Delivery Delay Minimum = Production Capacity Fraction
- Delivery Rate - Delivery Rate Average Adjustment = Delivery Rate
Average > Budget > Indicated Salesmen > Salesmen Hired >

Salesmen = Salesmen Switch = Orders Booked = Backlog (R2)

HH As identified by Jay W. Forrester in his original paper (Forrester, 1968).

162

Chapter 4: The Analysis Package: Application on the MGM

Salesmen Switch C)

Salesmen Hired /Q

i) ~z
Salesmen <]Orders Booked

Backlog
Q <]Delivery Rate

R2

Indicated Salesmen

Budget Delivery Rate Average

Figure 76: Salesmen-Hiring Sector

163

Chapter 4: The Analysis Package: Application on the MGM

4.3.2 The Operations and Market Sectors

Figure 77 shows the structure of the Operations and Market sectors. These
sectors determine both the product attractiveness and the consequent sales
effectiveness resulting from delivery delay observed by the market, this
delivery delay determined by the relationship between the rate of orders
generated and the delivery rate governed by the capacity.

Also these sectors incorporates two main balancing loops®**:

e Backlog = Delivery Delay Minimum - Production Capacity Fraction

- Delivery Rate > Backlog (B3)

e Backlog = Delivery Delay Minimum = Production Capacity Fraction
—> Delivery Rate > Delivery Rate Average Adjustment - Delivery Rate
Average > Delivery Delay Indicated = Delivery Delay Recognized By
Company Adjustment = Delivery Delay Recognized By Company —>
Delivery Delay Recognized By Market Adjustment > Delivery Delay
Recognized By Market = Sales Effectiveness From Delay Multiplier =
Sales Effectiveness From Delay Switch = Sales Effectiveness = Orders

Booked = Backlog (R4)

W As identified by Jay W. Forrester in his original paper (Forrester, 1968).

164

Chapter 4: The Analysis Package: Application on the MGM

Sales Effectiveness
From Delay Initial

Sales Effectiveness
From Delay Final
Sales Effectiveness

From Delay Clip Time

Sales Effectiveness
From Delay Clip

Sales Effectiveness
Sales Effectiveness

Maximum ales Effectiveness
om Delay Switch From Delay Multiplier
Delivery Delay
. Recognized By Market
Sales Effectiveness
\\
\
\
\
\
\
\
|
) -
Delivery Delay
Recognized By Company
R4 ,
h
Orders Booked <] |
//
1
!

Delivery Delay
Delivery Delay

Minimum
m Indicated
B3 I'I:I'I
Delivery Rate [> Q_ . L= =
P oo T Backlog
Delivery Rate Average

Production Capacity
Fraction 5

Figure 77: Market Sector

165

Chapter 4: The Analysis Package: Application on the MGM

4.3.3 The Capacity Sector

Figure 78 shows the structure of the Capacity sector that responds to the
delivery delay by providing additional production capacity in case the delivery

delay increases and vice versa.

skkok

. 3k
This sector incorporates only a single main reinforcing loop

e Production Capacity = Production Capacity Ordering = Production
Capacity Receiving In Transit 1 = Production Capacity Receiving
Progress 2 -> Production Capacity Receiving In Transit 2 -
Production Capacity Receiving Progress 3 =2 Production Capacity
Receiving In Transit 3 & Production Capacity Receiving = Production

Capacity (RS)

stk

As identified by Jay W. Forrester in his original paper (Forrester, 1968).

166

Chapter 4: The Analysis Package: Application on the MGM

Delivery Delay
Recognized By Company

Delivery Delay
Traditional
Delivery Delay
Management Goal

Delivery Delay

Weighting Delivery Delay
Operating Goal
Delivery Delay
Minimum
clivery Delay
Condition
Delivery Delay
Weighting Complement
Delivery Rate Delivery Delay Bias
Production Capacity I;I
. . Production Capacity Capacity Expansion
Production Capacity <] Receiving Fraction
Receiving Delay 4

~

Production Capacizy
Order j RS

I

L

L
L

\ apacity Expansion

N . .
Production Capacity. Fraction Switch

Ordering

Figure 78: Capacity Expansion Sector

167

Chapter 4: The Analysis Package: Application on the MGM

4.4 The Analysis of the Market Growth Model Behavior

4.4.1 Overview

Basically there are four major analysis steps:

e Step 1: List all state variables in the model and select the state variable

that you want to investigate.

e Step 2: Select a meaningful set of linearly independent loops

(Kampmann, 1996).

e Step 3: Plot the behavior of the chosen state variable, chop the behavior

into several phases, and pick a sample time instant from each phase.

e Step 4: For each time instant, conduct an eigenvalue analysis along the

following steps:

o Step A: Compute the eigenvalues and identify the dominant one.

o Step B: Identify the dominant links that most significantly

influence the dominant eigenvalue.

o Step C: Identify the dominant loops that most significantly

influence the dominant eigenvalue.

o Step D: Identify the dominant inputs that most significantly

influence the dominant eigenvalue.

168

Chapter 4: The Analysis Package: Application on the MGM

In the following, we document the results of applying this analysis to the

Market Growth Model.

4.4.2 The State Variables

In Forrester's Market Growth model — in its seventh run, there are eight state
variables; also, there are three states variables hidden in the third order delay
associated with the Production Capacity Receiving. Here are the state

variables:

1. Salesmen

2. Backlog

3. Delivery Rate Average

4. Delivery Delay Recognized By Company

5. Delivery Delay Recognized By Market

6. Delivery Delay Traditional

7. Production Capacity

8. Production Capacity On Order

9. Production Capacity Receiving In Transit 1
10. Production Capacity Receiving In Transit 2

11. Production Capacity Receiving In Transit 3

In this chapter we will focus on the behavior of the Backlog.

169

Chapter 4: The Analysis Package: Application on the MGM

4.4.3 Linearly Independent Loops

The second step in the analysis is to identify a meaningful set of linearly
independent loops. The first five loops in this set are indicated in figure 76,
figure 77 and figure 78. In this model, the total number of independent loops is
sixteen while the total number of loops is twenty five. The appendix contains
the full list of all loops in the model, and also the set of linearly independent

loops selected for this study.
4.4.4 The Behavior of the Backlog

Figure 79 portrays the behavior of the Backlog. By visual inspection and by
utilizing Behavior Pattern Index'""'" (BPI) (Saleh, 2002), it is possible to
identify eleven phases through which the behavior passes during the whole

simulation up until time 100.

Moreover, eleven time instants can be sampled at the center of each phase

(marked by the hollow diamonds in figure 79).

Those time instants and the associated phases and phase signs are shown in

table 2.

1177 The angle between the slope vector x and the curvature vector % (Saleh, 2002).

170

Chapter 4: The Analysis Package: Application on the MGM

Backlog

x 10

IX

VIII

VII

VI

v

111

11

1.4

Months

Figure 79: Behavior of Backlog

XI

95.375| 99.75

87

IX

VIII

VII

59.5 | 68.25 |77.625

VI

1

5

v

III

16.5 | 35.25 | 42.75

II

0.75

I

Time
(Months)

Phase No.

Phase

Sign

Table 2: Time Instants and their Phase Signs

171

Chapter 4: The Analysis Package: Application on the MGM

4.4.5 Eigenvalue Analysis at the Selected Time Instants

4.4.5.1Eigenvalues

4.4.5.1.1 Eigenvalues of the Model

Time

Months) | *75 16.5 35.25 42.75 51 59.5 68.25 77.625 87 95.375 99.75
pmact] v | 0 | 0 | 0 | v | o | o |t o o oo
cures| At | oves | e | oo | S | e omwia g T azmy | me [
Eigenvalue 3| -0.014473 ;818§§33§i l%%%06459838353i (l(()).?57191317i J;g.'égggéi J;g.'gigggi ;g:fggéi -0.0011933 +E)961430i107631 +2)9614371022761 +2)%001692602034i
cumes] s | 20 | e | oaem Toares | vimr oo [oy | oo | g | atims
Eigenvalue 5| -0.13927 | 0.0074115 | -0.14208 | -0018081 | 101 | D267 | 15566 | 012415 | 002661 | -043819 | -0.4545
Eigenvalue 6| -0.15820 | -0.16702 | -0.24826 | -0.13759 | -0.4222 | -042392 | -0.16849 | -0.18457 | -0.4287 | -1.0011 | -0.99938
Eigenvalue 7| -027589 | -0.36194 | -0.46532 | 021996 | -1.0011 | -1.0007 | 045405 | 045209 | -1001 | X250 | 019
Eigenvalue 8| -0.76705 | -0.45279 | 0999 | -0.4s081 | 0001 | 020037 | 099907 | 099931 | (%1300 | 0I3T | 0019623
T e e P e A R A A A

172

Chapter 4: The Analysis Package: Application on the MGM

L 0.75 16.5 35.25 42.75 51 59.5 68.25 77.625 87 95.375 99.75
(Months)
Eigenvalue -0.29813 -0.28276 |-0.00049333 -0.24373 -0.25951 -0.018241 -0.25618 0.0050924 | -0.0099171 | -0.0048915 0.010114
10 -0.0702421 -0.134451 | -0.00658851 | -0.135361 -0.092521 -0.0102531 -0.120311 -0.187571 -0.183391 -0.194921 -0.201541
Eigenvalue 0 -0.082634 0.012717 0.0051127 -0.021749 -0.019896 0.0081169 0 0 0 0
11 -0.0680951 -0.19361 -0.179341 -0.170461 -0.172441 -0.190861

173

Chapter 4: The Analysis Package: Application on the MGM

4.4.5.1.2 Rank of Eigenvalues according to Dominance**
Time
(Months) 0.75 16.5 35.25 42.75 51 59.5 68.25 77.625 87 95.375 99.75

Eigenvalue 1 10 8 8 7 6 5 7 2 3 2 2
Eigenvalue 2 8 1 2 3 2 2 2 9 5 11 5
Eigenvalue 3 6 4 4 2 4 11 6 3 10 9 11
Eigenvalue 4 4 6 11 5 9 9 10 11 1 4 9
Eigenvalue 5 3 2 5 11 11 4 3 10 11 5 3
Eigenvalue 6 2 7 6 9 7 7 11 4 6 7 7
Eigenvalue 7 9 10 7 10 5 6 4 5 8 3 8
Eigenvalue 8 1 11 9 6 10 3 8 7 9 8 10
Eigenvalue 9 11 9 10 8 8 8 9 8 4 10 4
Eigenvalue 10 7 5 3 4 3 10 5 1 2 1 1
Eigenvalue 11 5 3 1 1 1 1 1 6 7 6 6

HH Based on their percentage contribution.

174

Chapter 4: The Analysis Package: Application on the MGM

0.25 0.3 0.3

0.2 |

0.15 I
0.1 l

t\/’

Il N GRS B Sl G
5w CoeT AT H 9 -04 -0.4

Eigenvalue 1 Eigenvalue 2 Eigenvalue 3

-0.35

Eigenvalue 4 Eigenvalue 5 Eigenvalue 6

175

Chapter 4: The Analysis Package: Application on the MGM

0.2 0.2
0 ———————— \
D o LN D OO A \:3./
gﬁ’ o ,,3;1’ A & {1’,\,\951’ ® 6:6\
0.4
-0.6 1
-0.8 A
1
-1.2 -1.2 -1.2
Eigenvalue 7 Eigenvalue 8 Eigenvalue 9

o]\ / 9
S - =Im
02 | w/ \.
-0.25
Eigenvalue 10 Eigenvalue 11

Figure 80: Plot of Eigenvalues of the Model

176

Chapter 4: The Analysis Package: Application on the MGM

4.4.5.1.3 Dominant Eigenvalues
Time
0.75 16.5 35.25 42.75 51 59.5 68.25 77.625 87 95.375 99.75
(Months)
Eigenvalue 8 2 11 11 11 11 11 10 4 10 10
Value of the 0.012717 | 0.0051127 | -0.021749 | -0.019896 | 0.0081169 | 0.0050924 -0.0048915 | 0.010114
Eigenvalue | /0705 | 003368 51036 | [0.17934i | -0.17046i | -0.17244i | -0.19086i | -0.18757i | CO217H 1 019492 | -0.20154i
Percentage
Cont§l§'i§l§)§1ti0n 1331.4 % 86.397 % 68.634 % 125.51 % 114.12 % 105.56 % 122.88 % 75.027 % 102.77 % 130.06 % 127.56 %
Mode of | exponential | exponential growing growing decaying decaying growing growing exponential | decaying growing
Behavior decaying growing oscillatory | oscillatory | oscillatory | oscillatory | oscillatory | oscillatory decaying oscillatory | oscillatory
Time
Constant 0.9 20.6 54.5 135.6 31.9 34.8 32.9 136.1 32.1 141.7 68.5
(Months)
Time Period
(Months) X X 32.5 35 36.9 36.4 85.4 33.5 X 322 31.2

% The percentage contribution of the dominant eigenvalue might be greater than 100%, simply because the other less dominant eigenvalues have percentage contributions

that might be negative. Nevertheless the total sum of all percentage contributions must equal 100%.

177

Chapter 4: The Analysis Package: Application on the MGM

4.4.5.2Rank of Dominant Eigenvalue Links' Elasticity Values

4.4.5.2.1 Marginal Effect on the Real Part of the Dominant Eigenvalue
Time
(Months) 0.75 16.5 35.25 42.75 51 59.5 68.25 77.625 87 95.375 99.75
Link 1 39 42 35 36 40 40 40 40 32 40 40
Link 2 15 16 13 13 3 3 16 13 17 9 13
Link 3 38 32 40 40 34 34 33 33 5 33 33
Link 4 14 49 2 2 2 2 2 2 34 2 2
Link 5 1 9 34 35 46 46 39 39 23 46 39
Link 6 7 6 28 25 31 31 28 25 14 32 25
Link 7 13 50 41 41 32 33 41 41 49 34 42
Link 8 10 4 26 28 29 29 27 28 12 30 28
Link 9 49 12 19 20 33 32 19 19 21 26 19
Link 10 52 52 45 45 35 38 43 48 47 39 48
Link 11 43 48 8 8 16 17 8 4 39 8 4
Link 12 33 39 39 37 21 24 30 31 6 23 32
Link 13 41 14 52 52 52 52 52 52 24 52 52

178

Chapter 4: The Analysis Package: Application on the MGM

(ijl'zfls) 0.75 16.5 3525 42.75 51 59.5 68.25 77.625 87 95.375 99.75
Link 14 26 17 9 9 17 12 17 17 46 17 17
Link 15 34 18 43 43 41 41 44 44 48 41 44
Link 16 32 41 38 39 23 26 32 30 8 25 31
Link 17 47 47 7 7 15 16 7 8 38 7 8
Link 18 40 13 51 51 51 51 51 51 16 51 51
Link 19 18 27 23 22 19 19 22 22 41 20 21
Link 20 16 26 22 21 18 20 21 23 42 19 20
Link 21 17 28 21 23 20 18 20 21 40 18 22
Link 22 24 25 14 17 7 5 12 9 | 13 1
Link 23 36 31 36 34 37 37 38 38 30 35 38
Link 24 28 34 48 48 44 44 45 45 51 42 47
Link 25 29 33 47 47 42 43 46 47 52 43 46
Link 26 23 23 15 14 6 6 1 12 3 1 10
Link 27 27 35 46 46 43 42 47 46 50 44 45
Link 28 25 24 17 15 5 7 10 10 2 12 9
Link 29 46 46 6 6 14 15 6 7 37 6 7

179

Chapter 4: The Analysis Package: Application on the MGM

(ijl'zfls) 0.75 16.5 3525 42.75 51 59.5 68.25 77.625 87 95.375 99.75
Link 30 48 38 50 50 50 50 50 50 22 50 49
Link 31 30 36 44 44 39 39 43 43 43 38 43
Link 32 9 3 25 27 28 28 26 27 11 29 27
Link 33 42 43 1 1 1 1 | 1 31 1 1
Link 34 3 1 33 33 48 48 37 37 26 48 37
Link 35 6 5 27 24 30 30 25 24 13 31 24
Link 36 35 30 32 32 38 36 36 36 29 37 36
Link 37 45 45 5 5 13 14 5 6 36 5 6
Link 38 31 40 37 38 22 25 31 29 7 24 30
Link 39 50 37 49 49 49 49 49 49 27 49 50
Link 40 8 2 24 26 27 27 24 26 10 28 26
Link 41 2 10 31 31 47 47 35 35 25 47 35
Link 42 44 44 4 4 12 13 4 5 35 4 5
Link 43 21 21 12 12 1 10 15 16 20 16 16
Link 44 5 8 29 29 25 22 29 32 44 27 29
Link 45 4 51 20 19 45 45 23 20 45 45 23

180

Chapter 4: The Analysis Package: Application on the MGM

(MToi:ﬂfns) 0.75 16.5 3525 42.75 51 59.5 68.25 77.625 87 95.375 99.75
Link 46 12 1 18 18 26 21 18 18 9 21 18
Link 47 1 7 3 3 8 1 3 3 15 3 3
Link 48 20 20 1 1 10 9 14 15 19 15 15
Link 49 51 15 42 42 24 23 42 42 33 22 41
Link 50 19 19 10 10 9 8 13 14 18 14 14
Link 51 22 22 16 16 4 4 9 1 4 10 12
Link 52 37 29 30 30 36 35 34 34 28 36 34

181

Chapter 4: The Analysis Package: Application on the MGM

4.4.5.2.2 Marginal Effect on the Imaginary Part of the Dominant Eigenvalue
Time
(Months) 0.75 16.5 35.25 42.75 51 59.5 68.25 77.625 87 95.375 99.75

Link 1 X X 11 13 31 31 22 22 X 31 22
Link 2 X X 17 22 10 14 11 14 X 13 9

Link 3 X X 14 14 24 24 15 15 X 24 15
Link 4 X X 45 45 52 52 45 45 X 52 45
Link 5 X X 10 12 3 3 21 21 X 5 21
Link 6 X X 26 21 22 19 28 28 X 22 25
Link 7 X X 15 15 30 30 23 23 X 30 23
Link 8 X X 29 19 21 17 26 27 X 20 28
Link 9 X X 31 34 8 8 31 31 X 8 31
Link 10 X X 4 4 42 42 5 5 X 42 13
Link 11 X X 46 46 51 51 51 51 X 47 47
Link 12 X X 42 42 35 33 40 40 X 38 39
Link 13 X X 1 1 1 1 1 1 X 1 1

Link 14 X X 3 3 7 7 3 3 X 4 3

Link 15 X X 6 6 25 25 6 6 X 25 14

182

Chapter 4: The Analysis Package: Application on the MGM

(ijl'zfls) 0.75 16.5 3525 42.75 51 59.5 68.25 77.625 87 95.375 99.75
Link 16 X X 41 41 34 35 42 42 X 37 38
Link 17 X X 50 50 50 50 50 50 X 51 51
Link 18 X X 2 2 2 2 2 2 X 2 2
Link 19 X X 36 35 36 38 36 35 X 34 34
Link 20 X X 35 36 38 37 35 36 X 32 36
Link 21 x x 37 37 37 36 34 34 x 33 35
Link 22 x x 21 29 14 1 9 7 x 9 5
Link 23 x x 12 11 28 28 20 20 X 27 20
Link 24 x x 33 33 39 40 37 37 X 41 42
Link 25 x x 32 32 40 39 38 39 x 39 41
Link 26 x x 24 27 13 12 7 10 x 10 7
Link 27 x X 34 31 41 41 39 38 x 40 40
Link 28 x x 23 26 12 13 8 9 X 1 6
Link 29 x x 49 49 49 49 49 49 x 50 50
Link 30 X X 44 44 44 44 44 44 X 44 44
Link 31 x X 39 39 32 32 33 33 x 35 33

183

Chapter 4: The Analysis Package: Application on the MGM

(ijl'zfls) 0.75 16.5 3525 42.75 51 59.5 68.25 77.625 87 95.375 99.75
Link 32 X X 28 18 20 16 25 26 X 19 27
Link 33 X X 51 52 45 46 46 46 X 45 46
Link 34 X X 9 10 5 5 19 19 X 7 19
Link 35 X X 25 20 19 18 27 25 X 21 24
Link 36 X X 8 9 27 27 18 18 X 28 18
Link 37 x x 48 48 48 48 48 48 X 49 49
Link 38 x x 40 40 33 34 41 41 x 36 37
Link 39 x x 43 43 43 43 43 43 X 43 43
Link 40 x x 27 17 18 15 24 24 X 18 26
Link 41 x x 7 8 4 4 17 17 x 6 17
Link 42 x x 47 47 47 47 47 47 X 48 48
Link 43 x x 20 25 17 22 14 13 X 16 12
Link 44 x x 30 30 23 23 29 29 X 23 29
Link 45 x x 5 5 9 9 4 4 X 17 4
Link 46 x x 38 38 6 6 32 32 x 3 32
Link 47 x X 52 51 46 45 52 52 X 46 52

184

Chapter 4: The Analysis Package: Application on the MGM

i 0.75 16.5 35.25 42.75 51 59.5 68.25 77.625 87 95.375 99.75
(Months)

Link 48 X X 19 24 16 21 13 12 X 15 11
Link 49 X X 16 16 29 29 30 30 X 29 30
Link 50 X X 18 23 15 20 12 11 X 14 10
Link 51 X X 2 28 11 10 10 8 X 12 8
Link 52 X X 13 7 26 26 16 16 X 26 16

185

Chapter 4: The Analysis Package: Application on the MGM

4.4.5.3Dominant Eigenvalue Inputs' Elasticity Values

4.4.5.3.1 Marginal Effect on the Real Part of the Dominant Eigenvalue
Time
(Months) 0.75 16.5 35.25 42.75 51 59.5 68.25 77.625 87 95.375 99.75
Input 1 11 10 12 12 12 12 13 13 12 12 13
Input 2 2 1 5 5 5 5 5 5 2 5 4
Input 3 16 15 14 14 14 15 14 14 4 14 14
Input 4 15 16 15 15 13 13 15 15 16 13 15
Input 5 1 13 6 6 15 14 6 6 6 15 7
Input 6 3 3 3 2 2 2 2 3 13 2 2
Input 7 4 2 1 1 1 1 1 1 14 1 3
Input 8 10 9 11 11 11 11 12 12 11 11 12
Input 9 14 14 2 3 3 3 3 2 15 3 1
Input 10 12 4 4 4 6 6 4 4 5 6 5
Input 11 9 8 10 10 10 10 11 11 10 10 11
Input 12 5 12 13 13 4 4 7 7 1 4 6
Input 13 8 7 9 9 9 9 10 10 9 9 10

186

Chapter 4: The Analysis Package: Application on the MGM

Time

0.75 16.5 35.25 42.75 51 59.5 68.25 77.625 87 95.375 99.75
(Months)
Input 14 7 6 8 8 8 8 9 9 8 8 9
Input 15 13 11 16 16 16 16 16 16 3 16 16
Input 16 6 5 7 7 7 7 8 8 7 7 8

187

Chapter 4: The Analysis Package: Application on the MGM

4.4.5.3.2 Marginal Effect on the Imaginary Part of the Dominant Eigenvalue
Time
(Months) 0.75 16.5 35.25 42.75 51 59.5 68.25 77.625 87 95.375 99.75
Input 1 X X 13 13 12 12 13 13 X 12 13
Input 2 X X 14 14 5 5 14 14 X 5 14
Input 3 X X 5 5 13 13 6 6 X 13 6
Input 4 X X 6 6 14 14 7 7 X 14 7
Input 5 X X 7 7 6 6 5 5 X 6 5
Input 6 X X 2 2 2 2 2 2 X 2 2
Input 7 X X 1 1 1 1 1 | X 1 1
Input 8 X X 12 12 11 11 12 12 X 11 12
Input 9 X X 16 16 16 16 16 16 X 16 16
Input 10 X X 4 4 4 4 4 4 X 4 4
Input 11 X X 11 11 10 10 11 11 X 10 11
Input 12 X X 15 15 15 15 15 15 X 15 15
Input 13 X X 10 10 9 9 10 10 X 9 10
Input 14 X X 9 9 8 8 9 9 X 8 9
Input 15 X X 3 3 3 3 3 3 X 3 3

188

Chapter 4: The Analysis Package: Application on the MGM

i 0.75 16.5 35.25 42.75 51 59.5 68.25 77.625 87 95.375 99.75
(Months)
Input 16 X X 8 8 7 7 8 8 X 7 8

189

Chapter 4: The Analysis Package: Application on the MGM

4.4.5.4Dominant Eigenvalue Independent Loops' Elasticity Values

4.4.5.4.1 Marginal Effect on the Real Part of the Dominant Eigenvalue
Time
(Months) 0.75 16.5 35.25 42.75 51 59.5 68.25 77.625 87 95.375 99.75
Loop 1 3 14 8 8 5 6 8 8 13 7 8
Loop 2 2 1 4 4 4 4 4 4 3 5 4
Loop 3 1 15 10 10 14 14 13 10 10 14 13
Loop 4 15 2 3 3 6 5 3 3 5 4 3
Loop 5 11 7 7 7 7 7 6 6 1 6 6
Loop 6 16 16 11 11 8 8 14 14 11 8 14
Loop 7 14 4 16 16 16 16 16 16 6 16 16
Loop 8 10 6 9 9 10 10 9 9 12 10 9
Loop 9 13 3 15 15 15 15 15 15 4 15 15
Loop 10 8 10 14 13 12 11 12 12 15 12 11
Loop 11 7 8 13 12 11 12 10 13 16 11 10
Loop 12 6 9 12 14 13 13 11 11 14 13 12
Loop 13 4 13 2 2 2 2 1 1 8 1 1

190

Chapter 4: The Analysis Package: Application on the MGM

Time

0.75 16.5 35.25 42.75 51 59.5 68.25 77.625 87 95.375 99.75
(Months)
Loop 14 5 5 1 1 1 1 2 2 9 2 2
Loop 15 12 12 5 5 9 9 7 7 7 9 7
Loop 16 9 11 6 6 3 3 5 5 2 3 5

191

Chapter 4: The Analysis Package: Application on the MGM

4.4.5.4.2 Marginal effect on the imaginary part of the dominant eigenvalue
Time
(Months) 0.75 16.5 35.25 42.75 51 59.5 68.25 77.625 87 95.375 99.75
Loop 1 X X 9 9 9 9 9 9 X 8 9
Loop 2 X X 10 10 5 5 10 10 X 5 10
Loop 3 X X 3 3 6 6 4 4 X 10 4
Loop 4 X X 11 14 4 4 11 11 X 4 11
Loop 5 X X 8 8 7 7 7 7 X 6 7
Loop 6 X X 5 5 15 15 5 5 X 15 5
Loop 7 X X 1 1 1 1 1 1 X 1 1
Loop 8 X X 6 6 8 8 6 6 X 7 6
Loop 9 X X 2 2 2 2 2 2 X 2 2
Loop 10 X X 14 11 14 14 14 13 X 14 13
Loop 11 X X 12 12 13 13 13 14 X 12 15
Loop 12 X X 13 13 12 12 12 12 X 13 14
Loop 13 X X 16 16 16 16 16 16 X 16 16
Loop 14 X X 4 4 3 3 3 3 X 3 3
Loop 15 X X 7 7 10 10 8 8 X 9 8

192

Chapter 4: The Analysis Package: Application on the MGM

i 0.75 16.5 35.25 42.75 51 59.5 68.25 77.625 87 95.375 99.75
(Months)
Loop 16 X X 15 15 11 11 15 15 X 1 12

193

Chapter 4: The Analysis Package: Application on the MGM

4.5 Insight Gained

In this chapter the eigenvalue analysis approach was applied to the market

growth model, focusing on the behavior of the Backlog level variable.

Although the simplicity of the market growth model, in a good way it reflects
the firm exerted efforts to market its products. The management of such a firm
need knowledge about key elements or leverage points that could help them to

strengthen desirable behavior or weaken undesirable behavior.

Concerning the benefits of using the eigenvalue analysis and its results to help
mangers and decision takers, some concepts should be clear first; if the aim is
changing the difference between the maximum and minimum limits of the
backlog —as it is the level to study in this context—, the management of the firm
should take into consideration the variables that have larger marginal effect on
the real part of the dominant eigenvalue. While if the management is interested
in changing the periodic time of the cycles in the backlog, the variables that
have larger values in its marginal effect on the imaginary part of the dominant

eigenvalue are the variables to get the focus.

When checking the marginal effect on either real or imaginary parts of the
dominant eigenvalue, three kinds of results could be checked; these dominant
eigenvalue elasticity values of model's linearly independent loops, links or
inputs. In this context, the linearly independent loops 14 and 13 share the first

position when talking about the marginal effect on the real part of the dominant

194

Chapter 4: The Analysis Package: Application on the MGM

eigenvalue and this is for most of the simulation time. While linearly
independent loops 7, 9 and 14 have the largest value of the marginal effect on

the imaginary part of the dominant eigenvalue.

According to the results of the eigenvalue analysis of the model's links; link 47
(Orders Booked - Backlog), link 4 (Backlog - Delivery Delay Indicated) and
link 33 (Delivery Delay Indicated > Delivery Delay Recognized By Company
Adjustment) in order, are the links that have the largest marginal effect on the
real part of the dominant eigenvalue most of the simulation time. While link 13
(Delivery Delay Recognized By Company > Delivery Delay Recognized By Company
Adjustment), link 18 (Delivery Delay Recognized By Market > Delivery Delay
Recognized By Market Adjustment) and link 14 (Delivery Delay Recognized By
Company > Delivery Delay Condition) in order, are the links that have the largest
marginal effect on the imaginary part of the dominant eigenvalue most of the

simulation time.

By checking figure 81 and figure 82; it could be easily identified that both
links 33 and 4 are elements of both linearly independent loops 13 and 14, and
link 47 1s an element of linearly independent loop 13. While links 13, 18 and

14 are elements of linearly independent loops 7, 9 and 14 respectively.

195

Chapter 4: The Analysis Package: Application on the MGM

Switch 2
Sales Effectiveness

Maximum

Salesmen Constant

Sales Effectiveness

From Delay Multiplier
Sales Effectiveness Delivery Delay

Sales Effectiveness
From Delay Initial /

Sales Effectiveness
From Delay Clip

Switch 1 Ljink 47 .
K6 @ Delivery Delay

Minimum

Sales Effectiveness
From Delay Final

Time For Delivery
Delay Recognition By
Market

Backlog Sales Effectiveness

From Delay Clip Time

\
R2 Lijik 45 Lhk 1 \

. R4
V@bmw @ B13

®Production Capacity _
Fraction M

Delivery Rate [>
Delivery Delay

ecognized By Company
ink 13

Salesmen Adjustment
Time

7
Production Capacity
L]

Delivery Delay
Recognized By
Company Adjustment
Delivery Rate
Averaging Time

Delivery Delay
Indicated

@ Backlog '

Revenue To Sales //Delivery Rate Average L a

’
]

r u
Delivery Rate
L J

Figure 81: Market Growth Model Loops 1,2, 3,4, 6,7,9 and 13

Time For Delivery
Delay Recognition By
Company

196

Chapter 4: The Analysis Package: Application on the MGM

Production Capacity -
Initial N
\

Production Capacity

Time For Delivery

Production CapacityN
Delay Tradition

Receiving
Link 2 Delivery Delay
Production Capacit i i . iti i [
Receiving In Trgnsit Producpn Capacity . ot - Delivery Delay Traditional Adjustment
Lo Receivihg Delay Production Capacrty[> Management Goal
7 7 Receiving
/ T "
/ . . Delivery Delay
/
. . J
Production Capaci X Pr;duc?lc.m CDaplacny _ Link[t RS Lidks Weighting
Receiving Progress 3 \ eceiving Delay S~
\,
I“ Lin \\\ \q I'" _
\ @ ! Production Capacity On ' Delivery Delay
N i H i ‘Recognized By Compan
Production Capacity 1 Order D(;z/l\l/vgry Delay = = 9 4 pany
L .) eighting
Receiving In Transit /)
7 ! \ Complement
/ / \
/ /! Link|s2 ! 5 Bl4 14
. o / ! R16 R15
Production Capaci 7)) ;
Receiving Progress 2[> / Production Capacity Capacity Expansion
\ Lin Ordering Nﬂon Switch
\
O '
P ti it - i .) Delivery Delay Bias
rodlulc ion Capacll y - Capacity Expansion y y
Receiving In Transit 1 }
\ Fraction
N

Lipk 51 \‘,
P C)
Production Capa%t [> O’

Ordering /|
Switch 3

&

Figure 82: Market Growth Model Loops 5, 8, 10, 11, 12, 14, 15 and 16

197

Chapter 4: The Analysis Package: Application on the MGM

Testing management policies to decide the best policy is valuable, but not
enough. Somehow managers and decision takers would appreciate suggesting
new policies. In other words the system dynamics paradigm won't fulfill
management needs by just simulating the policies designed by this
management. It should be in the course of designing policies based on their
very well-known needs, for example; they might ask for damping the
oscillations presented in the behavior of the Backlog or increasing the period of
that oscillations or how to increase or decrease time constant of the envelope of

that oscillations.

As stated before, inputs are the controllable objects in a system dynamics
model. So that, by reviewing the table of inputs elasticity values associated
with the dominant eigenvalue, it would be easily noted that Time For Delivery
Delay Recognition By Market takes rank 1 most of the time for both marginal
effect on both the real and the imaginary parts of the dominant eigenvalue;
which indicates that to control the behavior of the Backlog, Time For Delivery
Delay Recognition By Market should be changed according to its elasticity
value associated with the dominant eigenvalue. Time For Delivery Delay
Recognition By Market has positive elasticity value nearly all the time, which
means that an increase in its gain consequently would increase both real and
imaginary parts of the dominant eigenvalue and vice versa, in other words they

are directly proportional to each other.

198

Chapter 4: The Analysis Package: Application on the MGM

The marginal effect of Time For Delivery Delay Recognition By Market on the

real part of the dominant eigenvalue on average equals 0.14, while its marginal

effect on the imaginary part of the dominant eigenvalue on average equals 0.27.

Changing its value by 10%, leads to an increase around 1.4% in the real part of

the dominant eigenvalue shown in figure 83 (the dashed line), and an increase

around 2.7% in the imaginary part of the dominant eigenvalue shown in figure

84 (the dashed line).
"Time For Delivery Delay Recognition By Market" Elasticity Value
. Associated with the Dominant Eigenvalue
Time q .
Dominant Eigenvalue - "
(Months) Marginal Effect on Real | Marginal Effect on
Total Effect Part of the Dominant Imaginary Part of the
Eigenvalue Dominant Eigenvalue
0.75 -0.76705 0.40479 0.40479 X
16.5 0.03368 0.025932 0.025932 X
35.25 0.012717 - 0.19361 | -0.23866 +0.1226i 0.10669 0.24619
42.75 | 0.0051127 - 0.17934i |-0.24021 +0.13257i 0.12567 0.24389
51 -0.021749 - 0.170461 | -0.28977 +0.16611 0.20144 0.26642
59.5 -0.019896 - 0.17244i [-0.29156 +0.17271i 0.20499 0.26984
68.25 | 0.0081169 - 0.190861 [-0.26772 +0.13245i 0.12096 0.2731
77.63 | 0.0050924 - 0.187571 |-0.27304 +0.128851 0.12139 0.27644
87 -0.021574 -0.049707 -0.049707 X
95.38 | -0.0048915 - 0.19492i1 |-0.31705 +0.13292i 0.14083 0.31361
99.75 0.010114 - 0.201541 | -0.2947 +0.125771 0.11084 0.30063

199

Chapter 4: The Analysis Package: Application on the MGM

Backlog

x 10

91.4 99.4

72.8 825

55.4 63.6

31.538.9 46.5

1.4

Months

Figure 83: Behavior of Backlog after 10% Increase in “Time For Delivery Delay Recognition By Market”

200

Chapter 4: The Analysis Package: Application on the MGM

Backlog

x 10

91.4 99.4

72.8 825

55.4 63.6

31.538.9 46.5

1.4

Months

Figure 84: Behavior of Backlog after 10% Decrease in “Time For Delivery Delay Recognition By Market”

201

Chapter 5

Conclusion and Future Extensions

Chapter 5: Conclusion and Future Extensions

5.1 Conclusion

The purpose of this thesis is divided into three main targets:

1. Standardizing the concepts and mathematical symbolic expressions in the
field of system dynamics models analysis, and in the same time comply
with the control theory concepts and mathematical symbols

2. Design and implement a computer package to perform the eigenvalue
analysis process on a system dynamics model

3. Apply eigenvalue analysis on the Market Growth Model of Jay W. Forrester

In the light of the purpose stated above, in the first chapter; a brief introduction to
the idea has been given, as well as reviewing some related literature.

In the second chapter; a mathematical and theoretical background has been
established taking the standardization issue into consideration.

In the third chapter; a full design and implementation of the Analysis package on
Matlab was introduced and fully explained.

In the fourth chapter; an interesting application of the eigenvalue analysis to the
Market Growth model was introduced as a case study, giving a brief on the model
and its important technical aspects like its states, links and loops, moreover
showing the analysis steps as well as the results and experiments to test these
results.

In the fifth chapter; a conclusion to the whole work is given as well as mentioning

the aimed at extensions and future work.

205

Chapter 5: Conclusion and Future Extensions

5.2 Future Extensions

5.2.1 Theoretical Extensions

Eigenvalue analysis was applied successfully to linear as well as non-linear system
dynamics models (after applying linearization) under the conditions of that models
being time-invariant and deterministic; further investigation should be devoted to
the application of eigenvalue analysis to time-variant models as well as stochastic
models, because models of these kinds cover a wide range of system dynamics
models; especially in the filed of economics where models deal with exogenous
variables in the form of time series, also where relations among variables have a

probabilistic fashion.

5.2.2 Implementation Extensions

In this version of the Analysis package; models with time delays (models
containing variables delayed in time) are not dealt with directly, i.e. the user has to
replace these variables delayed in time with their proper replacements using
additional stocks and flows; so that some further implementation is needed to
automate this replacement process, and keep the user away.
Also this version is based on another commercial package, so that it is badly
needed to implement it as a stand alone program, and this could be done by one of
two ways:

1. Leave the Matlab code and re-implement the whole package into any other

programming language and then compile it to a stand alone program.

206

Chapter 5: Conclusion and Future Extensions

2. Let Matlab to convert the Analysis package code into C language and
compile it directly to a stand alone program.

In fact, the second option is not possible with the current version of the Analysis

package; because this version depends highly on Matlab symbolic toolbox, at the

same time, code depending on this toolbox can not be converted into a stand alone

program unless a replacement to the symbolic toolbox on Matlab is used.

5.2.3 More Functions Extensions

In this version of the Analysis package; only graph (table) function and if-then-else
relation are implemented, this is of course in addition to the ordinary mathematical
operations and functions (addition, multiplication, exponential function ... etc.)
that did not need implementation because Matlab already has them.

More functions need to be implemented in order to give the package the capability

to analyze a wider range of system dynamics models.

207

References

References

Bahar, M. and J. Jantzen (1995). Digraph toolbox.

Belikov, B. S. (1986). General methods for solving physics problems. Moscow,
Mir publishers.

Beltrami, E. (1998). Mathematics for Dynamic Modeling, Academic Press.

Bowman, C. F. (1994). Algorithms and Data Structures an Approach in C. New
York, Oxford University Press Inc.

Deif, A. S. (1982). Advanced Matrix Theory for Scientists and Engineers, Abacus
Press.

Diestel, R. (2000). Graph Theory. New York, Springer-Verlag.

Dorf, R. C. and R. H. Bishop (2000). Modern Control Systems, Prentice Hall.

Edminister, J. (1972). Schaum's Outline of Electric Circuits, McGraw-Hill.

Forrester, J. W. (1968). Market Growth as Influenced by Capital Investment.
Industrial Management Rev. (MIT). 9: 83-105.

Forrester, J. W. (1975). Market Growth as Influenced by Capital Investment.
Collected Papers of Jay W. Forrester. Cambridge MA, Productivity Press.

Forrester, J. W. (1978). Market Growth as Influenced by Capital Investment.
Managerial Applications of System Dynamics. E. B. Roberts. Cambridge MA,
Productivity Press.

Forrester, N. B. (1982). A Dynamic Synthesis of Basic Macroeconomic Theory:
Implications for Stabilization Policy Analysis, M. L. T.

Forrester, N. B. (1983). Eigenvalue Analysis of Dominant Feedback Loops. Intl.
System Dynamics Conf., Chestnut Hill, MA.

Friedland, B. (1987). Control System Design, McGraw-Hill Book Company.

Gopal, M. (1993). Modern Control Theory, Wiley Eastern Limited.

Gordon, G. (1989). System Simulation. New Delhi, Prentice-Hall of India.

Grantham, W. J. and T. L. Vincent (1993). Modern Control Systems Analysis and
Design, John Wiley & Sons, Inc.

211

References

Hanselman, D. C. and B. R. Littlefield (1997). Mastering MATLAB 5: A
Comprehensive Tutorial and Reference, Prentice Hall.

Kampmann, C. E. (1996). Feedback Loop Gains and System Behavior. 1996
International System Dynamics Conference, Cambridge, Massachusetts, System
Dynamics Society.

Kendall, K. E. and Kendall, J. E. (2002). Systems Analysis and Design. Upper
Saddle River, NJ, Prentice-Hall Inc.

Kheir, N. A. (1996). Systems Modeling and Computer Simulation. New York,
Marcel Dekker Inc.

Kreyszig, E. (1993). Advanced Engineering Mathematics. New York, John Wiley
& Sons, Inc.

Kuo, B. C. (1995). Automatic Control Systems. Englewood Cliffs, NJ, Prentice-
Hall, Inc.

Nise, N. S. (1994). Control Systems Engineering, John Wiley & Sons, Inc.

Ogata, K. (1997). Modern Control Engineering. Upper Saddle River, NJ, Prentice-
Hall Inc.

Palm, W. J. (2000). Introduction to Matlab 6 for Engineers, McGraw-Hill
Science/Engineering/Math.

Richardson, G. P. and A. L. Pugh, III (1981). Introduction to System Dynamics
Modeling with DYNAMO. Cambridge MA, Productivity Press.

Saleh, M. (1998). An Object Oriented Approach to Automate System Dynamics
Model Optimization, Department of Information Science, University of Bergen,
Norway.

Saleh, M. (2002). The Characterization of Model Behavior and its Casual
Foundation, Department of Information Science, University of Bergen, Norway.

Saleh, M. and P. I. Davidsen (2000). An Eigenvalue Approach To Feedback Loop
Dominance Analysis In Non-Linear Dynamic Models. 18th International
Conference of the System Dynamics Society, Bergen, Norway, System Dynamics
Society.

212

References

Saleh, M. and P. I. Davidsen (2001). The Origins of Business Cycles. The 19th
International Conference of the System Dynamics Society, Atlanta, Georgia,
System Dynamics Society.

Sterman, J. D. (2000). Business Dynamics : Systems Thinking and Modeling for a
Complex World. Boston, Irwin/McGraw-Hill.

The Mathworks (2002). Using Matlab Version 6, The Mathworks, Inc.

The Mathworks (2002). Using Simulink Version 5, The Mathworks, Inc.

Weisstein, E. W. (1999). Concise Encyclopedia of Mathematics CD-ROM.

White, J. (2004). System Dynamics (22.554 and 24.509).

213

Appendix A

Market Growth Model Equations

Appendix A: Market Growth Model Equations

A.1 Model Equations

Market Growth Model equation details conform to the Powersim environment:

O Backlog

< 8000
& -dt*Delivery Rate
= +dt*Orders Booked
§ Unit
Delivery Delay Recognized By Company
<& Delivery Delay Indicated
= +dt*Delivery Delay Recognized By Company Adjustment
§ Month
Delivery Delay Recognized By Market
< Delivery Delay Recognized By Company
= +dt*Delivery Delay Recognized By Market Adjustment
§ Month
Delivery Delay Traditional
< Delivery Delay Recognized By Company
= +dt*Delivery Delay Traditional Adjustment
§ Month
Delivery Rate Average
<& Delivery Rate
= +dt*Delivery Rate Average Adjustment
§ Unit/Month
Production Capacity
< Production Capacity Initial
= +dt*Production Capacity Receiving
§ Unit/Month
Production Capacity On Order
<& Production Capacity Ordering*Production Capacity Receiving Delay
¢ -dt*Production Capacity Receiving
= +dt*Production Capacity Ordering
§ Unit/Month
Production Capacity Receiving In Transit 1
<> Production Capacity Ordering*(ProductionCapacityReceivingDelay/3)
<7 -dt*Production Capacity Receiving Progress 2
= +dt*Production Capacity Ordering
§ Unit/Month
Production Capacity Receiving In Transit 2

217

Appendix A: Market Growth Model Equations

< Production Capacity Receiving In Transit 1
¢ -dt*Production Capacity Receiving Progress 3
= +dt*Production Capacity Receiving Progress 2
§ Unit/Month
Production Capacity Receiving In Transit 3
< Production Capacity Receiving In Transit 2
¢ -dt*Production Capacity Receiving
= +dt*Production Capacity Receiving Progress 3
§ Unit/Month
Salesmen
<& 10
= +dt*Salesmen Hired
§ Man
Delivery Delay Recognized By Company Adjustment
(Delivery Delay Indicated-Delivery Delay Recognized By Company)
O /Time For Delivery Delay Recognition By Company
§ Month/Month
Delivery Delay Recognized By Market Adjustment
(Delivery Delay Recognized By Company-Delivery Delay Recognized By
Market)
O /Time For Delivery Delay Recognition By Market
§ Month/Month
Delivery Delay Traditional Adjustment
(Delivery Delay Recognized By Company-Delivery Delay Traditional)
O /Time For Delivery Delay Tradition
§ Month/Month
Delivery Rate
O Production Capacity*Production Capacity Fraction
§ Unit/Month
Delivery Rate Average Adjustment
O (Delivery Rate-Delivery Rate Average)/Delivery Rate Averaging Time
§ (Unit/Month)/Month
Orders Booked
O Sales Effectiveness*Salesmen Switch
§ Unit/Month
Production Capacity Ordering
O Production Capacity*Capacity Expansion Fraction Switch
§ (Unit/Month)/Month
Production Capacity Receiving
Production Capacity Receiving In Transit 3
O /(ProductionCapacityReceivingDelay/3)

218

Appendix A: Market Growth Model Equations

§ (Unit/Month)/Month
= Production Capacity Receiving Progress 2
Production Capacity Receiving In Transit 1
O /(ProductionCapacityReceivingDelay/3)
§ (Unit/Month)/Month
= Production Capacity Receiving Progress 3
Production Capacity Receiving In Transit 2
O /(ProductionCapacityReceivingDelay/3)
§ (Unit/Month)/Month
= Salesmen Hired
O (Indicated Salesmen-Salesmen)/Salesmen Adjustment Time
§ Man/Month
O Budget
O Delivery Rate Average*Revenue To Sales
§ Dollar
O Capacity Expansion Fraction
GRAPH(DeliveryDelayCondition,0,0.5,[-0.07,-0.02,0,0.02,0.07,0.15"Min:-
O 0.07;Max:0.15"])
§ 1/Month
O Capacity Expansion Fraction Switch
O IF(Switch3=0,0,CapacityExpansionFraction)
§ 1/Month
O Delivery Delay Condition
(Delivery Delay Recognized By Company/Delivery Delay Operating Goal)
O -Delivery Delay Bias
§ Dimensionless
O Delivery Delay Indicated
O Backlog/Delivery Rate Average
§ Month
O Delivery Delay Minimum
O Backlog/Production Capacity
§ Month
O Delivery Delay Operating Goal
DeliveryDelayTraditional
*DeliveryDelayWeighting+DeliveryDelayManagementGoal
O *DeliveryDelayWeightingComplement
§ Month
O Delivery Delay Weighting Complement
O 1-DeliveryDelayWeighting
§ Dimensionless
O Indicated Salesmen

219

Appendix A: Market Growth Model Equations

O Budget/Salesman Salary
§ Man
O Production Capacity Fraction
GRAPH(DeliveryDelayMinimum,0,0.5,{0,0.25,0.5,0.67,0.8,0.87,0.93,0.95,0.9
O 7,0.98,1"Min:0;Max:1"])
§ Dimensionless
O Sales Effectiveness
O Sales Effectiveness From Delay Switch*Sales Effectiveness Maximum
§ (Unit/Month)/Man
O Sales Effectiveness From Delay Clip
[F(TIME>=SalesEffectivenessFromDelayClipTime,SalesEffectivenessFromD
O elayFinal,SalesEffectivenessFromDelaylnitial)
§ Dimensionless
O Sales Effectiveness From Delay Multiplier
GRAPH(DeliveryDelayRecognizedByMarket,0,1,[1,0.97,0.87,0.73,0.53,0.38,
O 0.25,0.15,0.08,0.03,0.02"Min:0;Max:1"])
§ Dimensionless
O Sales Effectiveness From Delay Switch
[F(Switch2=0,SalesEffectivenessFromDelayClip,SalesEffectivenessFromDela
O yMultiplier)
§ Dimensionless
O Salesmen Switch
O IF(Switch1=0,SalesmenConstant,Salesmen)
§ Man
<& Delivery Delay Bias
0.3
§ Dimensionless
< Delivery Delay Management Goal
&2
§ Month
<& Delivery Delay Weighting
Ol
§ Dimensionless
<& Delivery Rate Averaging Time
Ol
§ Month
<& Production Capacity Initial
< 12000
§ Unit/Month
< Production Capacity Receiving Delay
O 12

220

Appendix A: Market Growth Model Equations

§ Month
<& Revenue To Sales
& 12
§ Dollar/Unit
<& Sales Effectiveness From Delay Clip Time
<O 36
§ Month
<& Sales Effectiveness From Delay Final
Ol
§ Dimensionless
<& Sales Effectiveness From Delay Initial
Ol
§ Dimensionless
<& Sales Effectiveness Maximum
< 400
§ (Unit/Month)/Man
< Salesman Salary
< 2000
§ Dollar/Man
< Salesmen Adjustment Time
< 20
§ Month
<& Salesmen Constant
<& 60
§ Man
<& Switchl
Ol
§ Dimensionless
<& Switch2
Ol
§ Dimensionless
< Switch3
Ol
§ Dimensionless
< Time For Delivery Delay Recognition By Company
O 4
§ Month
< Time For Delivery Delay Recognition By Market
&6
§ Month
<& Time For Delivery Delay Tradition

221

©00e

Appendix A: Market Growth Model Equations

O 12

§ Month

start 0

stop 100

dt 0.5

method Euler(fixed step)

222

Appendix B

Market Growth Model Links, Inputs and Loops

Appendix B: Market Growth Model Links, Inputs and Loops

B.1 Market Growth Model Links

Link Description
Link 1 ProductionCapacity > DeliveryDelayMinimum
Link 2 ProductionCapacity = DeliveryRate
Link 3 ProductionCapacity = ProductionCapacityOrdering
Link 4 Backlog = DeliveryDelayIndicated
Link § Backlog = DeliveryDelayMinimum
Link 6 Salesmen = SalesmenSwitch
Link 7 Salesmen = SalesmenHired
Link 8 DeliveryRateAverage = Budget
Link 9 DeliveryRateAverage = DeliveryDelaylndicated
Link 10 DeliveryRateAverage = DeliveryRateAverageAdjustment
Link 11 DeliveryDelayRecognizedByCompany >
DeliveryDelayRecognizedByMarketAdjustment
Link 12 DeliveryDelayRecognizedByCompany —>
DeliveryDelayTraditionalAdjustment
Link 13 DeliveryDelayRecognizedByCompany >
DeliveryDelayRecognizedByCompanyAdjustment
Link 14 DeliveryDelayRecognizedByCompany = DeliveryDelayCondition
Link 15 DeliveryDelayTraditional = DeliveryDelayTraditionalAdjustment
Link 16 DeliveryDelayTraditional = DeliveryDelayOperatingGoal
Link 17 DeliveryDelayRecognizedByMarket -
SalesEffectivenessFromDelayMultiplier
Link 18 DeliveryDelayRecognizedByMarket =
DeliveryDelayRecognizedByMarketAdjustment
Link 19 Productio'nCapacilj{Receiw:nigInT ransit 1 =
ProductionCapacityReceivingProgress 2
Link 20 Productio'nCapacilj{Receiw:nigInT ransit 2 =
ProductionCapacityReceivingProgress 3
Link 21 | ProductionCapacityReceivingInTransit 3 = ProductionCapacityReceiving
Link 22 ProductionCapacityReceiving =2 ProductionCapacity
Link 23 ProductionCapacityReceiving = ProductionCapacityOnOrder
Link 24 |ProductionCapacityReceiving > ProductionCapacityReceivingInTransit 3
Link 25 Productio'nCapacil}/Receivfnngrogress 3 >
ProductionCapacityReceivinglnTransit 2
Link 26 ProductionCapacityReceivingProgress 3 >
ProductionCapacityReceivingInTransit 3
Link 27 ProductionCapacityReceivingProgress 2 >
ProductionCapacityReceivingInTransit 1
Link 28 ProductionCapacityReceivingProgress 2 >
ProductionCapacityReceivingInTransit 2

225

Appendix B: Market Growth Model Links, Inputs and Loops

Link Description

SalesEffectivenessFromDelayMultiplier —>

Sl SalesEffectivenessFromDelaySwitch
Link 30 DeliveryDelayRecognizedByMarketAdjustment >
DeliveryDelayRecognizedByMarket

Link 31 DeliveryDelayTraditionalAdjustment = DeliveryDelayTraditional

Link 32 Budget = IndicatedSalesmen

Link 33 DeliveryDelaylndicated =
DeliveryDelayRecognizedByCompanyAdjustment

Link 34 DeliveryDelayMinimum = ProductionCapacityFraction

Link 35 SalesmenSwitch = OrdersBooked

Link 36 | DeliveryDelayWeightingComplement = DeliveryDelayOperatingGoal

Link 37 SalesEffectivenessFromDelaySwitch = SalesEffectiveness

Link 38 DeliveryDelayOperatingGoal = DeliveryDelayCondition

Link 39 DeliveryDelayRecognizedByCompanyAdjustment >

DeliveryDelayRecognizedByCompany

Link 40 IndicatedSalesmen = SalesmenHired

Link 41 ProductionCapacityFraction = DeliveryRate

Link 42 SalesEffectiveness = OrdersBooked

Link 43 DeliveryDelayCondition = CapacityExpansionFraction

Link 44 SalesmenHired = Salesmen

Link 45 DeliveryRate = Backlog

Link 46 DeliveryRate = DeliveryRateAverageAdjustment

Link 47 OrdersBooked = Backlog

Link 48 CapacityExpansionFraction =2 CapacityExpansionFractionSwitch

Link 49 DeliveryRateAverageAdjustment = DeliveryRateAverage

Link 50 CapacityExpansionFractionSwitch =2 ProductionCapacityOrdering

Link 51 | ProductionCapacityOrdering = ProductionCapacityReceivinglnTransit 1

Link 52

ProductionCapacityOrdering > ProductionCapacityOnOrder

226

Appendix B: Market Growth Model Links, Inputs and Loops

B.2 Market Growth Model Inputs

Input Name
Input 1 Switchl
Input 2 RevenueToSales
Input 3 SalesmenAdjustmentTime
Input 4 SalesmanSalary
Input § DeliveryRateAveragingTime
Input 6 TimeForDeliveryDelayRecognitionByCompany
Input 7 TimeForDeliveryDelayRecognitionByMarket
Input 8 Switch2
Input 9 SalesEffectivenessMaximum
Input 10 TimeForDeliveryDelayTradition
Input 11 DeliveryDelayManagementGoal
Input 12 DeliveryDelayWeighting
Input 13 DeliveryDelayBias
Input 14 Switch3
Input 15 ProductionCapacityReceivingDelay
Input 16 ProductionCapacitynitial

227

Appendix B: Market Growth Model Links, Inputs and Loops

B.3 Market Growth Model Loops

Loop Description

Loop 1

Salesmen = Salesmen Hired

Loop 2

Delivery Rate Average > Delivery Rate Average Adjustment

Loop 3

Delivery Delay Recognized By Company > Delivery Delay Recognized By
Company Adjustment

Loop 4

Delivery Delay Traditional = Delivery Delay Traditional Adjustment

Loop 5

Delivery Delay Recognized By Market = Delivery Delay Recognized By
Market Adjustment

Loop 6

Production Capacity Receiving In Transit 1 = Production Capacity
Receiving Progress 2

Loop 7

Production Capacity Receiving In Transit 2 = Production Capacity
Receiving Progress 3

Loop 8

Production Capacity Receiving In Transit 3 = Production Capacity
Receiving

Loop 9

Backlog = Delivery Delay Minimum —> Production Capacity Fraction =
Delivery Rate

Loop 10

Production Capacity = Production Capacity Ordering = Production
Capacity Receiving In Transit 1 = Production Capacity Receiving
Progress 2 = Production Capacity Receiving In Transit 2 = Production
Capacity Receiving Progress 3 = Production Capacity Receiving In
Transit 3 = Production Capacity Receiving

Loop 11

Backlog = Delivery Delay Indicated = Delivery Delay Recognized By
Company Adjustment = Delivery Delay Recognized By Company =>
Delivery Delay Recognized By Market Adjustment = Delivery Delay

Recognized By Market = Sales Effectiveness From Delay Multiplier =

Sales Effectiveness From Delay Switch = Sales Effectiveness = Orders

Booked

Loop 12

Backlog = Delivery Delay Minimum - Production Capacity Fraction =
Delivery Rate - Delivery Rate Average Adjustment > Delivery Rate
Average = Budget = Indicated Salesmen = Salesmen Hired = Salesmen
=2 Salesmen Switch = Orders Booked

Loop 13

Backlog = Delivery Delay Minimum = Production Capacity Fraction =
Delivery Rate - Delivery Rate Average Adjustment = Delivery Rate
Average = Delivery Delay Indicated = Delivery Delay Recognized By
Company Adjustment = Delivery Delay Recognized By Company —>
Delivery Delay Recognized By Market Adjustment = Delivery Delay
Recognized By Market = Sales Effectiveness From Delay Multiplier -
Sales Effectiveness From Delay Switch = Sales Effectiveness = Orders
Booked

228

Appendix B: Market Growth Model Links, Inputs and Loops

Loop Description

Loop 14

Production Capacity = Delivery Rate > Backlog = Delivery Delay
Indicated - Delivery Delay Recognized By Company Adjustment -
Delivery Delay Recognized By Company => Delivery Delay Condition =
Capacity Expansion Fraction = Capacity Expansion Fraction Switch =
Production Capacity Ordering = Production Capacity Receiving In
Transit 1 = Production Capacity Receiving Progress 2 = Production
Capacity Receiving In Transit 2 = Production Capacity Receiving
Progress 3 2 Production Capacity Receiving In Transit 3 = Production
Capacity Receiving

Loop 15

Production Capacity = Delivery Rate = Delivery Rate Average
Adjustment - Delivery Rate Average > Delivery Delay Indicated >
Delivery Delay Recognized By Company Adjustment = Delivery Delay
Recognized By Company > Delivery Delay Condition = Capacity
Expansion Fraction = Capacity Expansion Fraction Switch = Production
Capacity Ordering > Production Capacity Receiving In Transit 1 >
Production Capacity Receiving Progress 2 = Production Capacity
Receiving In Transit 2 = Production Capacity Receiving Progress 3 >
Production Capacity Receiving In Transit 3 = Production Capacity
Receiving

Loop 16

Production Capacity = Delivery Delay Minimum => Production Capacity
Fraction = Delivery Rate = Backlog > Delivery Delay Indicated >
Delivery Delay Recognized By Company Adjustment = Delivery Delay
Recognized By Company > Delivery Delay Condition = Capacity
Expansion Fraction = Capacity Expansion Fraction Switch = Production
Capacity Ordering = Production Capacity Receiving In Transit 1 -
Production Capacity Receiving Progress 2 = Production Capacity
Receiving In Transit 2 = Production Capacity Receiving Progress 3 =
Production Capacity Receiving In Transit 3 = Production Capacity
Receiving

Loop 17

Production Capacity = Delivery Delay Minimum —> Production Capacity
Fraction = Delivery Rate = Delivery Rate Average Adjustment =
Delivery Rate Average = Delivery Delay Indicated > Delivery Delay
Recognized By Company Adjustment = Delivery Delay Recognized By
Company -> Delivery Delay Condition = Capacity Expansion Fraction >
Capacity Expansion Fraction Switch = Production Capacity Ordering >
Production Capacity Receiving In Transit 1 = Production Capacity
Receiving Progress 2 = Production Capacity Receiving In Transit 2 >
Production Capacity Receiving Progress 3 = Production Capacity
Receiving In Transit 3 = Production Capacity Receiving

229

Appendix B: Market Growth Model Links, Inputs and Loops

Loop Description

Loop 18

Production Capacity = Delivery Rate > Backlog = Delivery Delay
Indicated - Delivery Delay Recognized By Company Adjustment -
Delivery Delay Recognized By Company => Delivery Delay Traditional
Adjustment > Delivery Delay Traditional - Delivery Delay Operating
Goal = Delivery Delay Condition = Capacity Expansion Fraction >
Capacity Expansion Fraction Switch = Production Capacity Ordering >
Production Capacity Receiving In Transit 1 = Production Capacity
Receiving Progress 2 = Production Capacity Receiving In Transit 2 >
Production Capacity Receiving Progress 3 = Production Capacity
Receiving In Transit 3 2 Production Capacity Receiving

Loop 19

Production Capacity = Delivery Rate > Delivery Rate Average
Adjustment - Delivery Rate Average > Delivery Delay Indicated =
Delivery Delay Recognized By Company Adjustment = Delivery Delay
Recognized By Company = Delivery Delay Traditional Adjustment =
Delivery Delay Traditional = Delivery Delay Operating Goal > Delivery
Delay Condition = Capacity Expansion Fraction = Capacity Expansion
Fraction Switch = Production Capacity Ordering = Production Capacity
Receiving In Transit 1 = Production Capacity Receiving Progress 2 >
Production Capacity Receiving In Transit 2 = Production Capacity
Receiving Progress 3 = Production Capacity Receiving In Transit 3 >
Production Capacity Receiving

Loop 20

Production Capacity = Delivery Delay Minimum => Production Capacity
Fraction = Delivery Rate = Backlog > Delivery Delay Indicated >
Delivery Delay Recognized By Company Adjustment = Delivery Delay
Recognized By Company > Delivery Delay Traditional Adjustment >
Delivery Delay Traditional = Delivery Delay Operating Goal = Delivery
Delay Condition = Capacity Expansion Fraction = Capacity Expansion
Fraction Switch = Production Capacity Ordering = Production Capacity
Receiving In Transit 1 > Production Capacity Receiving Progress 2 >
Production Capacity Receiving In Transit 2 = Production Capacity
Receiving Progress 3 = Production Capacity Receiving In Transit 3 >
Production Capacity Receiving

Loop 21

Production Capacity = Delivery Delay Minimum > Production Capacity
Fraction = Delivery Rate > Delivery Rate Average Adjustment >
Delivery Rate Average = Delivery Delay Indicated = Delivery Delay
Recognized By Company Adjustment > Delivery Delay Recognized By
Company => Delivery Delay Traditional Adjustment = Delivery Delay
Traditional = Delivery Delay Operating Goal = Delivery Delay Condition
- Capacity Expansion Fraction = Capacity Expansion Fraction Switch =
Production Capacity Ordering > Production Capacity Receiving In
Transit 1 = Production Capacity Receiving Progress 2 = Production
Capacity Receiving In Transit 2 > Production Capacity Receiving
Progress 3 2 Production Capacity Receiving In Transit 3 = Production
Capacity Receiving

230

Appendix B: Market Growth Model Links, Inputs and Loops

Loop Description

Loop 22

Production Capacity = Delivery Rate > Delivery Rate Average
Adjustment - Delivery Rate Average = Budget = Indicated Salesmen >
Salesmen Hired = Salesmen = Salesmen Switch = Orders Booked =
Backlog = Delivery Delay Indicated = Delivery Delay Recognized By
Company Adjustment = Delivery Delay Recognized By Company =>
Delivery Delay Condition = Capacity Expansion Fraction = Capacity
Expansion Fraction Switch = Production Capacity Ordering =
Production Capacity Receiving In Transit 1 = Production Capacity
Receiving Progress 2 = Production Capacity Receiving In Transit 2 =
Production Capacity Receiving Progress 3 = Production Capacity
Receiving In Transit 3 = Production Capacity Receiving

Loop 23

Production Capacity = Delivery Delay Minimum = Production Capacity
Fraction = Delivery Rate > Delivery Rate Average Adjustment >
Delivery Rate Average > Budget = Indicated Salesmen = Salesmen Hired
> Salesmen > Salesmen Switch = Orders Booked = Backlog = Delivery
Delay Indicated = Delivery Delay Recognized By Company Adjustment =
Delivery Delay Recognized By Company —> Delivery Delay Condition >
Capacity Expansion Fraction = Capacity Expansion Fraction Switch =
Production Capacity Ordering > Production Capacity Receiving In
Transit 1 = Production Capacity Receiving Progress 2 = Production
Capacity Receiving In Transit 2 > Production Capacity Receiving
Progress 3 2 Production Capacity Receiving In Transit 3 = Production
Capacity Receiving

Loop 24

Production Capacity = Delivery Rate > Delivery Rate Average
Adjustment > Delivery Rate Average = Budget = Indicated Salesmen >
Salesmen Hired = Salesmen = Salesmen Switch = Orders Booked >
Backlog = Delivery Delay Indicated = Delivery Delay Recognized By
Company Adjustment = Delivery Delay Recognized By Company =>
Delivery Delay Traditional Adjustment = Delivery Delay Traditional >
Delivery Delay Operating Goal = Delivery Delay Condition = Capacity
Expansion Fraction = Capacity Expansion Fraction Switch = Production
Capacity Ordering = Production Capacity Receiving In Transit 1 =
Production Capacity Receiving Progress 2 = Production Capacity
Receiving In Transit 2 = Production Capacity Receiving Progress 3 =
Production Capacity Receiving In Transit 3 = Production Capacity
Receiving

231

Appendix B: Market Growth Model Links, Inputs and Loops

Loop Description

Loop 25

Production Capacity = Delivery Delay Minimum => Production Capacity
Fraction = Delivery Rate = Delivery Rate Average Adjustment >
Delivery Rate Average = Budget = Indicated Salesmen > Salesmen Hired
> Salesmen > Salesmen Switch = Orders Booked = Backlog = Delivery
Delay Indicated = Delivery Delay Recognized By Company Adjustment =
Delivery Delay Recognized By Company > Delivery Delay Traditional
Adjustment = Delivery Delay Traditional = Delivery Delay Operating
Goal = Delivery Delay Condition = Capacity Expansion Fraction >
Capacity Expansion Fraction Switch = Production Capacity Ordering =>
Production Capacity Receiving In Transit 1 = Production Capacity
Receiving Progress 2 = Production Capacity Receiving In Transit 2 =
Production Capacity Receiving Progress 3 = Production Capacity
Receiving In Transit 3 = Production Capacity Receiving

232

Appendix B: Market Growth Model Links, Inputs and Loops

B.4 Market Growth Model Linearly Independent Loops

Loop Description

Loop 1 Salesmen = Salesmen Hired
Backlog = Delivery Delay Minimum - Production Capacity Fraction >
Loop 2 Delivery Rate = Delivery Rate Average Adjustment = Delivery Rate

Average > Budget = Indicated Salesmen = Salesmen Hired = Salesmen
- Salesmen Switch = Orders Booked

Loop 3

Backlog = Delivery Delay Minimum —> Production Capacity Fraction =
Delivery Rate

Loop 4

Backlog = Delivery Delay Minimum —> Production Capacity Fraction =
Delivery Rate - Delivery Rate Average Adjustment > Delivery Rate
Average > Delivery Delay Indicated = Delivery Delay Recognized By
Company Adjustment > Delivery Delay Recognized By Company —>
Delivery Delay Recognized By Market Adjustment = Delivery Delay
Recognized By Market > Sales Effectiveness From Delay Multiplier -
Sales Effectiveness From Delay Switch = Sales Effectiveness = Orders
Booked

Loop 5

Production Capacity = Production Capacity Ordering = Production
Capacity Receiving In Transit 1 = Production Capacity Receiving
Progress 2 = Production Capacity Receiving In Transit 2 = Production
Capacity Receiving Progress 3 = Production Capacity Receiving In
Transit 3 = Production Capacity Receiving

Loop 6

Delivery Rate Average > Delivery Rate Average Adjustment

Loop 7

Delivery Delay Recognized By Company > Delivery Delay Recognized By
Company Adjustment

Loop 8

Delivery Delay Traditional > Delivery Delay Traditional Adjustment

Loop 9

Delivery Delay Recognized By Market = Delivery Delay Recognized By
Market Adjustment

Loop 10

Production Capacity Receiving In Transit 1 = Production Capacity
Receiving Progress 2

Loop 11

Production Capacity Receiving In Transit 2 = Production Capacity
Receiving Progress 3

Loop 12

Production Capacity Receiving In Transit 3 = Production Capacity
Receiving

Loop 13

Backlog = Delivery Delay Indicated = Delivery Delay Recognized By
Company Adjustment = Delivery Delay Recognized By Company —>
Delivery Delay Recognized By Market Adjustment = Delivery Delay

Recognized By Market = Sales Effectiveness From Delay Multiplier -

Sales Effectiveness From Delay Switch = Sales Effectiveness = Orders

Booked

233

Appendix B: Market Growth Model Links, Inputs and Loops

Loop Description

Loop 14

Production Capacity = Delivery Rate > Backlog = Delivery Delay
Indicated - Delivery Delay Recognized By Company Adjustment -
Delivery Delay Recognized By Company => Delivery Delay Condition =
Capacity Expansion Fraction = Capacity Expansion Fraction Switch =
Production Capacity Ordering = Production Capacity Receiving In
Transit 1 = Production Capacity Receiving Progress 2 = Production
Capacity Receiving In Transit 2 = Production Capacity Receiving
Progress 3 2 Production Capacity Receiving In Transit 3 = Production
Capacity Receiving

Loop 15

Production Capacity = Delivery Delay Minimum > Production Capacity
Fraction = Delivery Rate = Backlog > Delivery Delay Indicated >
Delivery Delay Recognized By Company Adjustment = Delivery Delay
Recognized By Company > Delivery Delay Condition = Capacity
Expansion Fraction = Capacity Expansion Fraction Switch = Production
Capacity Ordering > Production Capacity Receiving In Transit 1 >
Production Capacity Receiving Progress 2 = Production Capacity
Receiving In Transit 2 = Production Capacity Receiving Progress 3 >
Production Capacity Receiving In Transit 3 = Production Capacity
Receiving

Loop 16

Production Capacity = Delivery Rate > Backlog = Delivery Delay
Indicated - Delivery Delay Recognized By Company Adjustment -
Delivery Delay Recognized By Company => Delivery Delay Traditional
Adjustment > Delivery Delay Traditional = Delivery Delay Operating
Goal = Delivery Delay Condition = Capacity Expansion Fraction >
Capacity Expansion Fraction Switch = Production Capacity Ordering >
Production Capacity Receiving In Transit 1 = Production Capacity
Receiving Progress 2 = Production Capacity Receiving In Transit 2 >
Production Capacity Receiving Progress 3 = Production Capacity
Receiving In Transit 3 = Production Capacity Receiving

234

Appendix C

Functions Description

Appendix C: Functions Description

Name allcycsn
File Name | allcycsn.m
Package digraph toolbox
A (square (Boolean) successor matrix (n,n)): model adjacency
Inputs ;
matrix
Outputs cycles (matrix (?,n), each row contains.the node numbers in a walk
around a cycle; the matrix is padded with 0's on the right)
e Ennn The algorithm is an exhaustive traversal of the digraph with pruning.
An early version is in APL in Evans & Larsen (1981).
Name allpathn
File Name | allpathn.m
Package digraph toolbox
From (from-node, a number)
Inputs To (to-node, a number)
A (square successor matrix (n,n))
Outputs allpaths (matrix (?,n), each row contains the node numbers in a walk
on a path; the matrix is padded with 0's to the right)
. e The algorithm is a traversal of the digraph. It uses the reach-ability
Description .
matrix to prune the traversal.
Name analysis
File Name | analysis.m
Package analysis package
modelObjectsStructVector
modelObjectsValuesMatrix
Inputs initialTime
finalTime
timeStep
internalStep
Outputs N/A
e Ennn The main function in the Analysis package, it calls all the other
functions, and executes the steps of the eigenvalue analysis.
Name computeLinkFlasticity
File Name | computeLinkElasticity.m
Package analysis package

237

Appendix C: Functions Description

numericCompactGainMatrix
numericFullGainMatrix
modelAdjacencyMatrix
modelAdjacencyMatrix2EdgesMatrix

Inputs rightEigenvectorsMatrix
leftEigenvectorsMatrix
diagonalEigenvaluesMatrix
dominantEigenvaluePosition
currentTimeStep
numericLinkElasticityVector
numericSensitivityByDominantEigenvalueVector
tempCheckpoint 2

Outputs temgCheckgoint:4
tempCheckpoint 7
tempCheckpoint 8

. . Computes links elasticity values associated with dominant

Description | .
eigenvalue.

Name computeSystemJacobians

File Name | computeSystemJacobians.m

Package analysis package
modelObjectsNamesVector
modelObjectsEquationsVector

Inputs
constVector
constValVector
symbolicFullGainMatrix

Outputs symbolicLinkGain2 InputJ acobianMatrix
modelAdjacencyMatrix
modelAdjacencyMatrix2EdgesMatrix

Description | Computes the system Jacobian matrix.

Name computelndependentCycleElasticity

File Name | computeIndependentCycleElasticity.m

Package analysis package

Ty indepepdqntCycle@dgesMgtrix
numericLinkElasticityMatrix

Outputs independentCyclesElasticityMatrix

Tosartiion Computes independgnt cycl‘es (loops) elasticity values matrix
associated with dominant eigenvalue.

Name computelnputElasticity

File Name | computelnputElasticity.m

Package analysis package

238

Appendix C: Functions Description

numericLinkGainVector
numericLinkGainVector
numericLinkGain2InputJacobianMatrix

Inputs numericLinkElasticityVector
constantsValuesVector
numericSensitivityByDominantEigenvalueVector

Outputs numericlnputElasticity Vector

. e Computes inputs elasticity values associated with dominant

Description | .
eigenvalue.

Name deleteZerosRow

File Name | deleteZerosRow.m

Package analysis package

Inputs a (input matrix)

Outputs res (output matrix)

Description | Removes rows of all zeros in a matrix.

Name differentiateGraph

File Name | differentiateGraph.m

Package analysis package
input vector

Inputs output vector
input value to find differentiation at

Outputs out (output differentiation of the graph function at the input point)

. e The differentiation of the customized interpolation function to suites

Description .
that one of System Dynamics simulators.

Name findDominantEigenvalue

File Name | findDominantEigenvalue.m

Package analysis package
rightEigenvectorsMatrix
leftEigenvectorsMatrix
diagonalEigenvaluesMatrix
numericSlopeVector

iy nextNumericSlopeVector
levelsValuesVector
nextLevelsValuesVector
timeStepLength
levels2Study
currentTimeStep

239

Appendix C: Functions Description

alphasMatrix
eigenvaluesMatrix
dominantEigenvaluesMatrix

Outputs dominantEigenvaluesPositionMatrix
dominancePercentageMatrix
tempCheckpoint 0
tempCheckpoint 1
Description | Finds the dominant eigenvalue.
Name extractModelObjects
File Name | extractModelObjects.m
Package analysis package
Inputs modelObjectsStructVector
numStates
Outputs numAuxi}iaries
modelObjectsNamesVector
modelObjectsEquationsVector
Extracts all objects of the model (names of levels, names of
Tosariion auxiliaries3 equations ...) from thq vector of structures . .
"modelObjectsStructVector", which comes from the Simulation
package.
Name findIndependentCycles
File Name | findIndependentCycles.m
Package analysis package
modelAdjacencyMatrix
Inputs modelAdjacencyMatrix2EdgesMatrix
modelObjectsNamesVector
allCyclesVerticesMatrix
Outputs ?ndependentCyclesVerticesMgtriX
independentCyclesEdgesMatrix
numberlndependentCycles
e Ennn Finds a set of independent loops, it tries the user selection from the
loops of the model and completes them with the shortest set.
Name jac
File Name |jac.m
Package analysis package
X
Inputs y
Outputs out
.. Computes the Jacobian matrix of two vectors x and y
Description

where: out(i,j) = dx(i)/dy(j)

240

Appendix C: Functions Description

Name

computePathsGain

File Name

computePathsGain.m

Package

analysis package

Inputs

G (gain matrix)
paths (matrix (?,n), each row contains the node numbers in a walk
around a path; the matrix is padded with 0's on the right)

QOutputs

GV (gain vector (1,?))

Description

Calculates paths gains for all given paths in a system

Name

pathgain2

File Name

pathgain2.m

Package

analysis package

Inputs

G (gain matrix)

path (matrix (?,n), each row contains the node numbers in a walk
around a path; the matrix is padded with 0's on the right)

eNode (end node)

sNode (start node)

Outputs

GV (gain value)

Description

Calculates path gain for a given path in a system starting at sNode
and ends at eNode

Name

printOutputs

File Name

printOutputs.m

Package

analysis package

Inputs

levels2Study
modelAdjacencyMatrix
internalStep

timeStepLength
dominantEigenvaluesMatrix
dominancePercentageMatrix
numericLinkGainMatrix
numericLinkElasticityMatrix
numericlnputElasticityMatrix
independentCyclesElasticityMatrix
allCyclesVerticesMatrix
independentCyclesVerticesMatrix
signIndependentCyclesMatrix
modelObjectsNamesVector
constantsVector

outFileName

Outputs

N/A

241

Appendix C: Functions Description

Prints the outputs of the analysis function as well as saving it to a

Description | ;. called output.out.

Name reachabi

File Name | reachabi.m

Package digraph toolbox

Inputs r (square Boolean reach-ability matrix)

Outputs M (square matrix)

Reach-ability matrix of the input square matrix m, where:
Description | r(i,)) = 1 if node i is reachable from node j; 0 otherwise
The matrix m is turned into a Boolean inside.

242

Appendix D

Variables Description

Appendix D: Variables Description

Name Al2

Type Matrix

Class Double

Rows

T Number of levels
Columns | 7 er of auxiliaries
Number

Name A2]

Type Matrix

Class Double

Rows Number of auxiliaries
Number

Columns 1\, ber of levels
Number

Name A22

Type Matrix

Class Double

Rows Number of auxiliaries
Number

Columns |\, e of auxiliaries
Number

Name BPI

Type Double

Class Vector

Rows '
R Number of selected time steps
Columns 1

Number

Name BPI_spans

Type Double

Class Vector

Rows

. Number of found BPI spans
Columns 1

Number

Name |

Type Double

Class Scalar

245

Appendix D: Variables Description

Rows 1

Number

Columns 1

Number

Name J All

Type Double

Class Scalar

Rows 1

Number

Columns 1

Number

Name K

Type Double

Class Scalar

Rows 1

Number

Columns 1

Number

Name allCyclesVerticesMatrix
Type Double

Class Matrix

Rows

Number Number of loops
Columns Number of levels + Number of auxiliaries + 1
Number

Name alphasMatrix

Type Double (Complex)
Class Matrix

Rows .
Number Number of time steps
Columins Number of levels
Number

Name checkpoint 0

Type Double

Class Matrix

Rows)
Number Number of selected time steps

246

Appendix D: Variables Description

Columns Number of levels * 2
Number

Name checkpoint_1

Type Double

Class Matrix

Rows _
Number Number of selected time steps
Columns Number of levels * 2
Number

Name checkpoint_2

Type Double

Class Matrix

Rows '
N Number of selected time steps
Columns Number of levels * 2
Number

Name checkpoint 4

Type Double

Class Matrix

Rows .
Number Number of selected time steps
Columns (Number of levels + Number of auxiliaries) * 2
Number

Name checkpoint 7

Type Double

Class Matrix

Rows .
Number Number of selected time steps
Columns Number of levels * 2
Number

Name checkpoint_8

Type Double

Class Matrix

Rows '
Number Number of selected time steps
Columns Number of levels * 2
Number

247

Appendix D: Variables Description

Name constantsValuesVector
Type Double
Class Vector
Rows 1
Number
Columns Number of constants
Number
Name constantsVector
Type Symbolic
Class Vector
Rows 1
Number
Columins Number of constants
Number
Name currentTimeStep
Type Double
Class Scalar
Rows 1
Number
Columns 1
Number
Name curvature
Type Double
Class Vector
Rows)
+
Number Number of time steps + 2
Columns 1
Number
Name diagonalFEigenvaluesMatrix
Type Double (Complex)
Class Matrix
Rows
Number Number of levels
Columns Number of levels
Number
Name dominancePercentageMatrix
Type Double

248

Appendix D: Variables Description

Class Matrix

Rows .
Number Number of time steps
Columns Number of levels
Number

Name dominantEigenvaluesPositionMatrix
Type Double

Class Matrix

Rows .
Number Number of time steps
Al Number of levels
Number

Name dominantEigenvaluesMatrix
Type Double (Complex)
Class Matrix

Rows .
Number Number of time steps
Lt Number of levels
Number

Name eigenvaluesMatrix
Type Double (Complex)
Class Matrix

Rows .
Number Number of time steps
Columns Number of levels
Number

Name endLoop

Type Logical

Class Scalar

Rows 1

Number

Columns 1

Number

Name fid

Type Double

Class Scalar

Rows 1

Number

249

Appendix D: Variables Description

Columns 1

Number

Name finalTime

Type Double

Class Scalar

Rows 1

Number

Columns 1

Number

Name independentCyclesEdgesMatrix

Type Double

Class Matrix

Rows))

Number Number of linearly independent loops
Columns | ./ ber of links

Number

Name independentCyclesElasticityMatrix
Type Double (Complex)

Class Matrix

Rows))

Number Number of linearly independent loops
Columns .

Number Number of time steps

Name independentCyclesVerticesMatrix
Type Double

Class Matrix

Rows))

Number Number of linearly independent loops
Columns Number of levels + Number of auxiliaries + 1
Number

Name initialTime

Type Double

Class Scalar

Rows 1

Number

Columns 1

Number

250

Appendix D: Variables Description

Name inputs2Study

Type Double

Class Vector

Rows 1

Number

Columns)
Number Number of inputs
Name internalSteps

Type Double

Class Vector

Rows 1

Number

Columns)
Number Number of selected time steps
Name leftEigenvectorsMatrix
Type Double (Complex)
Class Matrix

Rows

Number Number of levels
Columns Number of levels
Number

Name levels2Study

Type Double

Class Scalar

Rows 1

Number

Columns 1

Number

Name max_checkpoint 0
Type Double

Class Vector

Rows 1

Number

Al Number of levels * 2
Number

Name max_checkpoint 1
Type Double

Class Vector

251

Appendix D: Variables Description

Rows 1

Number

Lt Number of levels * 2
Number

Name max_checkpoint 2
Type Double

Class Vector

Rows 1

Number

Columns Number of levels * 2
Number

Name max_checkpoint 4
Type Double

Class Vector

Rows 1

Number

Columns (Number of levels + Number of auxiliaries) * 2
Number

Name max_checkpoint 7
Type Double

Class Vector

Rows 1

Number

Columns Number of levels * 2
Number

Name max_checkpoint 8
Type Double

Class Vector

Rows 1

Number

Al Number of levels * 2
Number

Name mean abs checkpoint 0
Type Double

Class Vector

Rows 1

Number

252

Appendix D: Variables Description

Columns Number of levels * 2
Number

Name mean_abs checkpoint 1
Type Double

Class Vector

Rows

Number

Columns

Number

Name mean abs checkpoint 2
Type Double

Class Vector

Rows 1

Number

SUULILE Number of levels * 2
Number

Name mean_abs checkpoint 4
Type Double

Class Vector

Rows 1

Number

Colmns (Number of levels + Number of auxiliaries) * 2
Number

Name mean_abs checkpoint 7
Type Double

Class Vector

Rows 1

Number

Columns Number of levels * 2
Number

Name mean_abs_checkpoint 8
Type Double

Class Vector

Rows 1

Number

Columns Number of levels * 2
Number

253

Appendix D: Variables Description

Name mean_checkpoint 0
Type Double

Class Vector

Rows 1

Number

Columns Number of levels * 2
Number

Name mean_checkpoint 1
Type Double

Class Vector

Rows 1

Number

Al Number of levels * 2
Number

Name mean_checkpoint 2
Type Double

Class Vector

Rows 1

Number

Lt Number of levels * 2
Number

Name mean_checkpoint 4
Type Double

Class Vector

Rows 1

Number

Columns (Number of levels + Number of auxiliaries) * 2
Number

Name mean_checkpoint 7
Type Double

Class Vector

Rows 1

Number

Columns Number of levels * 2
Number

Name mean_checkpoint 8
Type Double

254

Appendix D: Variables Description

Class Vector

Rows 1

Number

Columns Number of levels * 2
Number

Name min_checkpoint 0
Type Double

Class Vector

Rows 1

Number

Columins Number of levels * 2
Number

Name min_checkpoint 1
Type Double

Class Vector

Rows 1

Number

Lt Number of levels * 2
Number

Name min_checkpoint 2
Type Double

Class Vector

Rows 1

Number

Columns Number of levels * 2
Number

Name min_checkpoint 4
Type Double

Class Vector

Rows 1

Number

Columns (Number of levels + Number of auxiliaries) * 2
Number

Name min_checkpoint 7
Type Double

Class Vector

Rows 1

Number

255

Appendix D: Variables Description

Columns Number of levels * 2

Number

Name min_checkpoint 8

Type Double

Class Vector

Rows 1

Number

Columns Number of levels * 2

Number

Name modelAdjacencyMatrix

Type Double

Class Matrix

ROWS Number of levels + Number of auxiliaries
Number

Lt Number of levels + Number of auxiliaries
Number

Name modelAdjacencyMatrix2EdgesMatrix
Type Double

Class Matrix

ojs Number of levels + Number of auxiliaries
Number

Columns Number of levels + Number of auxiliaries
Number

Name modelObjectsEquationsVector

Type Symbolic

Class Vector

Rows 1

Number

Columns Number of levels + Number of auxiliaries
Number

Name modelObjectsNamesVector

Type Symbolic

Class Vector

Rows 1

Number

Columins Number of levels + Number of auxiliaries
Number

256

Appendix D: Variables Description

Name modelObjectsStructVector
Type Structure
Class Vector
Rows 1
Number
Columns Number of levels + Number of auxiliaries
Number
Name modelObjectsValuesMatrix
Type Double
Class Matrix
Rows)
|
Number Number of time steps + 2
Columins Number of levels + Number of auxiliaries
Number
Name netflowsValuesMatrix
Type Double
Class Matrix
Rows)
+
Number Number of time steps + 2
Lt Number of levels
Number
Name numAuxiliaries
Type Double
Class Scalar
Rows 1
Number
Columns 1
Number
Name numLevels
Type Double
Class Scalar
Rows 1
Number
Columns 1
Number
Name numLinks
Type Double

257

Appendix D: Variables Description

Class Scalar

Rows 1

Number

Columns 1

Number

Name numTimeSteps

Type Double

Class Scalar

Rows 1

Number

Columns 1

Number

Name numberIndependentCycles
Type Double

Class Scalar

Rows 1

Number

Columns 1

Number

Name numericCompactGainMatrix
Type Double

Class Matrix

Rows

Number Number of levels

Columns Number of levels

Number

Name numericFullGainMatrix
Type Double

Class Matrix

Rojs Number of levels + Number of auxiliaries
Number

Columns Number of levels + Number of auxiliaries
Number

Name numericlnputElasticityMatrix
Type Double (Complex)

Class Matrix

Rows)

Number Number of inputs

258

Appendix D: Variables Description

Columns .

Number Number of time steps
Name numericLinkElasticityMatrix
Type Double (Complex)
Class Matrix

Rows)

Number Number of links
Columns .

Number Number of time steps
Name numericLinkGain2InputJacobianMatrix
Type Double

Class Matrix

Rows)

Number Number of links
Columns)

Number Number of inputs

Name numericLinkGainMatrix
Type Double

Class Matrix

Rows)

Number Number of links
Columns .

Number Number of time steps
Name numericLinkSensitivityByDominantEigenvalueMatrix
Type Double (Complex)
Class Matrix

Rows)

Number Number of links
Columns .

Number Number of time steps
Name outFileName

Type Char

Class Vector

Rows 1

Number

Columns

Number Output file name length

259

Appendix D: Variables Description

Name rightEigenvectorsMatrix

Type Double (Complex)

Class Matrix

Rows

Number Number of levels

SOINTIITE Number of levels

Number

Name signlndependentCyclesMatrix

Type Double

Class Matrix

Rows Number of time steps

Number

Columns Number of linearly independent loops
Number

Name suggestedInternal Step

Type Double

Class Vector

Rows :

Number Number of selected time steps
Columns 1

Number

Name symbolicFullGainMatrix

Type Symbolic

Class Matrix

L0 Number of levels + Number of auxiliaries
Number

Colmns Number of levels + Number of auxiliaries
Number

Name symbolicLinkGain2InputJacobianMatrix
Type Symbolic

Class Matrix

Rows :

Number Number of links

Columns :

Number Number of inputs

Name tempCheckpoint 0

Type Double

260

Appendix D: Variables Description

Class Matrix

Rows)

Number

Columns Number of levels * 2
Number

Name tempCheckpoint 1
Type Double

Class Matrix

Rows)

Number

Columns Number of levels * 2
Number

Name tempCheckpoint 2
Type Double

Class Matrix

Rows)

Number

Columns Number of levels * 2
Number

Name tempCheckpoint 4
Type Double

Class Matrix

Rows)

Number

Colmns Number of levels + Number of auxiliaries
Number

Name tempCheckpoint 7
Type Double

Class Matrix

Rows)

Number

Columns Number of levels * 2
Number

Name tempCheckpoint 8
Type Double

Class Matrix

Rows)

Number

261

Appendix D: Variables Description

Columns Number of levels * 2

Number

Name tempNumericCompactGainMatrix

Type Symbolic

Class Matrix

Rows

Number Number of levels

Columins Number of levels

Number

Name tempSymbolicFullGainMatrix

Type Symbolic

Class Matrix

ROWS Number of levels + Number of auxiliaries
Number

Lt Number of levels + Number of auxiliaries
Number

Name tempSymbolicLinkGain2InputJacobianMatrix
Type Double

Class Matrix

Rows)

Number Number of links

Columns)

Number Number of inputs

Name timeStepLength

Type Double

Class Scalar

Rows 1

Number

Columns 1

Number

262

Appendix E

Internal Functions

Appendix E: Internal Functions

The following are the full listings of the Analysis package functions on Matlab 6.5.

E.1 analysis.m

It is the main function in the Analysis package; it calls all the other functions, and

executes the steps of the eigenvalue analysis.

1 function analysis(modelObjectsStructVector , constantsVector ,
constantsValuesVector

, modelObjectsValuesMatrix , netflowsValuesMatrix , initialTime ,
finalTime , timeSt

epLength , outFileName)

4 % Filename: analysis.m

5 % Author: Ahmed AbdelTawab AbdelGawad

6 % Package: Analysis Package

7 % Inputs: modelObjectsStructVector

8 % modelObjectsValuesMatrix

9 % initialTime

10 % finalTime

11 % timeStepLength

12 % internalSteps

13 % Outputs: N/A

14 % Description: The main function in the Analysis package, it
calls all the

15 % other functions, and executes the steps of the eigenvalue
16 % analysis

19 disp([sprintf('\n') 'Starting Analysis' 1);

21 % Extract Model Objects

22 [numLevels , numAuxiliaries , modelObjectsNamesVector ,
modelObjectsEquationsVector

1 = ...

23 extractModelObjects(modelObjectsStructVector) ;

24
25 % Empty and Initialize checkpoint (0)
26 fid = fopen(['checkpoint O.csv' 1 , 'w');

27 fwrite(fid , ['This checkpoint file generated by
"findDominantEigenvalue.m" at the

end of the file,' sprintf('\n') 1);

28 fwrite(fid , ['it contains the following:' sprintf('\n') 1);
29 fwrite(fid , ['it computes the error (E) and percentage error
(PE) ' sprintf('\n') 1

)

30 fwrite(fid , ['between the absolute value of:' sprintf('\n')]
) ;

31 fwrite(fid , ['next time step State Vector X(t+1),'

265

Appendix E: Internal Functions

sprintf ('\n') 1);

32 fwrite(fid , ['the one comes from simulation' sprintf ('\n')]

) ;

33 fwrite(fid , ['and the computed one from the (alpha / lambda) *
exp (lambda * dt) eq

uations ...' sprintf('\n\n') 1);

34 fwrite(fid , ['Time;' 1);

35 for I = 1 : numLevels,

36 fwrite(fid , ['E (X' num2str(I) '");PE (X' num2str(I) ');' 1]
) ;

37 end

38 fwrite(fid , [sprintf('\n\n') 1);
39 fclose(fid);

40
41 % Empty and Initialize checkpoint (1)
42 fid = fopen(['checkpoint 1l.csv' 1 , 'w');

43 fwrite(fid , ['This checkpoint file generated by
"findDominantEigenvalue.m" at the

end of the file,' sprintf('\n') 1);

44 fwrite(fid , ['it contains the following:' sprintf('\n') 1);
45 fwrite(fid , ['it computes the error (E) and percentage error
(PE) ' sprintf('\n') 1

)

46 fwrite(fid , ['between the absolute value of:' sprintf('\n')]
)

47 fwrite(fid , ['next time step Slope Vector X dot(t+1),'
sprintf ('\n') 1);

48 fwrite(fid , ['the one comes from simulation' sprintf('\n')]

)

49 fwrite(fid , ['and the computed one from the alpha * exp (lambda
* dt) equations

' sprintf ('\n\n') 1);

50 fwrite(fid , ['Time;"' 1);

51 for I = 1 : numLevels,

52 fwrite(fid , ['E (X' num2str(I) '''");PE (X' num2str(I)
)yt 1)

53 end

54 fwrite(fid , [sprintf('\n\n') 1);

55 fclose(fid);

56
57 % Empty and Initialize checkpoint (2)
58 fid = fopen(['checkpoint 2.csv'] , 'w');

59 fwrite(fid , ['This checkpoint file generated by
"computeLinkElasticity.m" at the e

nd of the file,' sprintf('\n') 1);

60 fwrite(fid , ['it contains the following:' sprintf('\n') 1);
61 fwrite(fid , ['for every time step:' sprintf('\n') 1);

62 fwrite(fid , ['The error between sum of row(i) and column(i
) of' sprintf('\n')]

)

63 fwrite(fid , ['the compact Elasticity values matrix, also the
percentage error (PE)

.'" sprintf('\n")]);

64 fwrite(fid , ['(they should be the same, for any Level the
Elasticity value enterin

g' sprintf('\n') 1);

65 fwrite(fid , ['should be the same value leaving (Forrester, N.,
1983)) ' sprintf('\n
\n'") 1);

266

Appendix E: Internal Functions

66 fwrite(fid , ['Time;' 1);

67 for I = 1 : numLevels,

68 fwrite(fid , ['E (r&c' num2str(I) ');PE (r&c' num2str(I)
it 1)

69 end

70 fwrite(fid , [sprintf('\n\n') 1);

71 fclose(fid);

72
73 % Empty and Initialize checkpoint (3)
74 fid = fopen(['checkpoint 3.csv'] , 'w');

75 fwrite(fid , ['This checkpoint file generated by
"computeLinkElasticity.m" at the e

nd of the file,' sprintf('\n')]);

76 fwrite(fid , ['it contains the following:' sprintf('\n') 1);
77 fwrite(fid , ['for every time step:' sprintf('\n') 1);
78 fwrite(fid , ['The sum of all elements of the compact
Elasticity values matrix' spr

intf('\n') 1);

79 fwrite(fid , [' (should egaul 1)' sprintf('\n\n') 1);
80 fwrite(fid , ['Time;SUM(E)' sprintf('\n\n') 1);

81l fclose(fid);

82
83 % Empty and Initialize checkpoint (4)
84 fid = fopen(['checkpoint 4.csv'] , 'w');

85 fwrite(fid , ['This checkpoint file generated by
"computeLinkElasticity.m" at the e

nd of the file,' sprintf('\n') 1);

86 fwrite(fid , ['it contains the following:' sprintf('\n') 1);
87 fwrite(fid , ['for every time step:' sprintf('\n') 1);

88 fwrite(fid , ['The error between sum of row(i) and column(i
) of' sprintf('\n')

1)

89 fwrite(fid , ['the full Elasticity values matrix, also the
percentage error (PE).'

sprintf('\n') 1);

90 fwrite(fid , [' (they should be the same, for any variable
(Level or Auxiliary) the'

sprintf ('\n') 1);

91 fwrite(fid , ['Elasticity value entering should be the same
value leaving' sprintf (

"\n\n') 1);

92 fwrite(f£fid , ['Time;' 1);

93 for I = 1 : numlLevels + numAuxiliaries,

94 fwrite(fid , ['E (r&c' num2str(I) ');PE (r&c' num2str(I)
it 1)

95 end

96 fwrite(fid , [sprintf('\n\n') 1);
97 fclose(f£id);

98
99 % Empty and Initialize checkpoint (5)
100 fid = fopen(['checkpoint 5.csv' 1 , 'w');

101 fwrite(fid , ['This checkpoint file generated by
"computeIndependentCycleElasticity

.m" at the end of the file,' sprintf('\n') 1);

102 fwrite(fid , ['it contains the following:' sprintf('\n') 1);
103 fwrite(fid , ['numericLinkElasticityMatrixComputed = Cr *
independentCyclesElastici

tyMatrix' sprintf('\n') 1);

267

Appendix E: Internal Functions

104 fwrite(fid , ['error (E) = numericLinkElasticityMatrix -
numericLinkElasticityMatri

xComputed' sprintf('\n') 1);

105 fwrite(fid , ['and also the percentage error (PE) ...'
sprintf ('\n\n') 1);

106 fclose(fid);

107
108 % Empty and Initialize checkpoint (7)
109 fid = fopen(['checkpoint 7.csv' 1 , 'w');

110 fwrite(fid , ['This checkpoint file generated by
"computeLinkElasticity.m" at the e

nd of the file,' sprintf('\n') 1);

111 fwrite(fid , ['it contains the following:' sprintf('\n') 1);
112 fwrite(fid , ['for every time step:' sprintf('\n') 1);

113 fwrite(f£fid , ['The error between sum of col(1) and col(i)
of' sprintf('\n') 1)

114 fwrite(fid , ['the Elasticity values matrix and the full
Elasticity values matrix r

espectively,' sprintf('\n') 1);

115 fwrite(fid , ['also the percentage error (PE).' sprintf('\n')
1)

116 fwrite(fid , [' (they should be the same, for all Levels, the'
sprintf('\n') 1);

117 fwrite(fid , ['Elasticity value entering any Level in both
matrices should be the s

ame value' sprintf ('\n\n') 1);

118 fwrite(fid , ['Time;' 1);

119 for I = 1 : numLevels,

120 fwrite(fid , ['E (r&c' num2str(I) ');PE (r&c' num2str(I)
i1)

121 end

122 fwrite(fid , [sprintf('\n\n') 1);

123 fclose(fid);

124
125 % Empty and Initialize checkpoint (8)
126 fid = fopen(['checkpoint 8.csv' 1 , 'w');

127 fwrite(fid , ['This checkpoint file generated by
"computeLinkElasticity.m" at the e

nd of the file,' sprintf('\n') 1);

128 fwrite(fid , ['it contains the following:' sprintf('\n') 1);
129 fwrite(fid , ['for every time step:' sprintf('\n') 1);

130 fwrite(f£id , ['The error between sum of row(i1) and row(1)
of' sprintf('\n') 1)

131 fwrite(fid , ['the Elasticity values matrix and the full
Elasticity values matrix r

espectively,' sprintf('\n') 1);

132 fwrite(fid , ['also the percentage error (PE).' sprintf('\n')
1)

133 fwrite(fid , [' (they should be the same, for all Levels, the'
sprintf ('\n') 1);

134 fwrite(fid , ['Elasticity value leaving any Level in both
matrices should be the sa

me value' sprintf('\n\n') 1);

135 fwrite(fid , ['Time;' 1);

136 for I = 1 : numLevels,

137 fwrite(fid , ['E (r&c' num2str(I) ');PE (r&c' num2str(I)
it 1)i

268

Appendix E: Internal Functions

138 end

139 fwrite(fid , [sprintf('\n\n') 1);

140 fclose(fid);

141

142 % Time Steps

143 numTimeSteps = ((finalTime - initialTime) / timeStepLength)
+ 1;

144

145 % Which level to study its behavior?
146 endLoop = true;

147 while (endLoop)

148 for I = 1 : numLevels,

149 disp([int2str(I) ' - ' char(modelObjectsNamesVector(I))
1)

150 end

151 levels2Study = input(['Enter the number of the level, you are
intersted' sprint

f£('\n') 'in studying (ex.: 2):' sprintf('\t') 1);

152 if length(levels2Study) ~= 1 | levels2Study > numLevels |

levels2Study < 1,

153 disp('Wrong Input(s), try again ...');
154 else

155 endLoop = false;

156 end

157 end

158

159 % Which constants are inputs?

160 endLoop = true;

161 while (endLoop)

162 for I = 1 : length(constantsVector),

163 disp([int2str(I) ' - ' char(constantsVector(I)) 1);
164 end

165 inputs2Study = input(['Enter the number of constants, you
would like to' sprint

f('\n') 'consider as inputs (ex.: 30 or [1,2,3] or [1:50]):'

sprintf('\t') 1);
166 if isempty(inputs2Study),

167 inputs2Study = [1 : length(constantsVector) 1;
168 endLoop = false;

169 elseif inputs2Study > length(constantsVector) | max(
inputs2Study) > length(c

onstantsVector) | min(inputs2Study) < 1,

170 disp('Wrong Input(s), try again ...');

171 else

172 endLoop = false;

173 end

174 end

175

176 % suggesting time steps to study according to Behavior Pattern
Index

177 curvature = zeros(size(netflowsValuesMatrix(: , levels2Study
)))

178 curvature(2:end) = diff(netflowsValuesMatrix(: ,
levels2Study)) / timeStepLengt

h;

179 BPI = sign(curvature(:) ./ netflowsValuesMatrix(: ,
levels2Study));

269

Appendix E: Internal Functions

180
181
182
183
184

if isnan(BPI(end
endLoop = true;
J = [length(BPI

I = length(BPI
while (endLoop

)
) ’

)),

) 1]
- 1;

7

185 if ~isnan(BPI(I)),

186 endLoop = false;

187 else

188 g =100, I1;

189 1 =1 - 1;

190 end

191 end

192 BPI(J) = BPI(I);

193 end

194 endLoop = true;

195 J All = find(isnan(BPI));

196 for K = J All.',

197 if isnan(BPI(K)),

198 J = K;

199 1 = K + 1;

200 while(endLoop),

201 if ~isnan(BPI(I)),

202 endLoop = false;

203 else

204 g =[J0, I1;

205 1 =1 + 1;

206 end

207 end

208 BPI(J) = BPI(I);

209 end

210 end

211 BPI spans = diff(BPI);

212 BPI spans=[1 ; find(abs(BPI spans(:)) == 2) ;
numTimeSteps 1 ;

213 suggestedInternalStep = BPI spans + [round(diff(BPI spans) /
2) ; 01;

214 suggestedInternalStep(end) = [];

215

216 % Plot the level selected to study

217 plot(modelObjectsValuesMatrix(1 numTimeSteps , levels2Study
) , 'Linewidth' , 2)

218 set(gca , 'XTick' , BPI spans);

219 set(gca , 'XTickLabel' { num2str(round((BPI spans - 1) *
timeStepLength * 10)

/ 10) })i

220 set(gca , 'XGrid' ‘on');

221 axis tight;

222 xlabel('time');

223 title(char(modelObjectsNamesVector(levels2Study)));
224

225 % Which time steps to study the selected level behavior at?
226 endLoop = true;

227 while (endLoop)

228 disp(['Time Steps range is from 1 to ' int2str(numTimeSteps)

1)

270

Appendix E: Internal Functions

229 disp(['Corresponding to Time Instants range from' num2str((
initialTime - 1)

* timeStepLength) ' to ' num2str((numTimeSteps - 1) *
timeStepLength) 1);

230 disp(['it is suggested to do analysis at the following time
steps: ' sprintf ('\

n') int2str(suggestedInternalStep.') 1);

231 disp(['Corresponding to following time instants: '

sprintf ('\n') num2str([(s

uggestedInternalStep - 1) * timeStepLength].') 1);

232 disp(['Corresponding to Time Instants range from 1 to '
num2str((I - 1) * ti

meStepLength) 1);

233 internalSteps = input(['Enter the time steps, you are
intersted' sprintf('\n')

'in studying (ex.: 30 or [1,2,3] or [1:50]):' sprintf('\t') 1);
234 if isempty(internalSteps),

235 internalSteps = [1 : numTimeSteps];

236 endLoop = false;

237 elseif max(internalSteps) > numTimeSteps | min(internalSteps)
< 1,

238 disp('Wrong Input(s), try again ...');

239 else

240 endLoop = false;

241 end

242 end

243

244 % Variables Initializations

245 checkpoint 0 = [];

246 checkpoint 1 [1;

2477 checkpoint 2 [1;

248 checkpoint 4 = [];

249 % % % % % % checkpoint 6 = [];

250 checkpoint 7 = [];

251 checkpoint 8 = [];

252

253 dominantEigenvaluesMatrix = zeros(numTimeSteps , numLevels) ;
254 dominantEigenvaluesPositionMatrix = zeros(numTimeSteps ,
numLevels) ;

255 dominancePercentageMatrix = zeros(numTimeSteps , numLevels);
256 % Compute Jacobians of the model

257 [symbolicFullGainMatrix , symbolicLinkGain2InputJacobianMatrix
, modelAdjacencyMatri

x , modelAdjacencyMatrix2EdgesMatrix] =

258 computeSystemJacobians (modelObjectsNamesVector ,
modelObjectsEquationsVector , ¢

onstantsVector , constantsValuesVector , inputs2Study);

259

260 % Variables Initializations

261 numLinks = max(max(modelAdjacencyMatrix2EdgesMatrix));

262 numericLinkElasticityMatrix = zeros(numLinks , numTimeSteps) ;
263 numericLinkSensitivityByDominantEigenvalueMatrix = zeros (
numLinks , numTimeSteps) ;

264 numericLinkGainMatrix = zeros(numLinks , numTimeSteps) ;

265 numericInputElasticityMatrix = zeros(length(inputs2Study) ,
numTimeSteps) ;

266

267 % Finding Set Independent Loop

271

Appendix E: Internal Functions

268 [allCyclesVerticesMatrix , independentCyclesVerticesMatrix ,
independentCyclesEdgesM

atrix , numberIndependentCycles] =

269 findIndependentCycles (modelAdjacencyMatrlx ,
modelAdjacencyMatrix2EdgesMatrix ,

modelObjectsNamesVector) ;

270

271 % Variables Initializations

272 signIndependentCyclesMatrix = zeros(numTimeSteps ,
numberIndependentCycles) ;

273

274 % 'for loop' of the selected analysis time steps

275 for currentTimeStep = internalSteps ,

276 disp(['Step: ' , num2str(currentTimeStep) ' of: ' , num2str(
numTimeSteps) 1]

) ;

277

278 % Compute Numeric Full Gain Matrix and Numeric Link Gain to
Input Jacobian Matrix

279 tempSymbolicLinkGain2InputJacobianMatrix = .

280 subs(symbolicLinkGain2InputJacobianMatrix , sym('TIME') |,
currentTimeStep) ;

281 numericLinkGain2InputJacobianMatrix = .

282 double(subs(tempSymbolicLinkGain2InputJacobianMatrix ,
modelObjectsNamesVec

tor , modelObjectsValuesMatrix(currentTimeStep , :)));

283 tempSymbolicFullGainMatrix = .

284 subs(symbolicFullGainMatrix , sym('TIME') , (currentTimeStep *
timeStepLeng

th) + initialTime);

285 numericFullGainMatrix =

286 double(subs(tempSymbol1cFu11Ga1nMatr1x ,
modelObjectsNamesVector , modelObj

ectsValuesMatrix(currentTimeStep , :)));

287
288 % Polarity of Independent Cycles
289 signIndependentCyclesMatrix(currentTimeStep , :) = sign(

computePathsGain (nume

ricFullGainMatrix , independentCyclesVerticesMatrix));

290

291 [x , y 1 = find(modelAdjacencyMatrix2EdgesMatrix ~= 0);

292 for I =1 : length(x),

293 numericLinkGainMatrix(modelAdjacencyMatrix2EdgesMatrix(x(I)
, vy I)),

currentTimeStep) =

294 numericFullGainMatrix(x(I) , v(I));
295 end

296

297 % The Compact Model Gain Matrix
298 % [A1l A12]

299 % []

300 % [A21 A22]

301 %

302 $m*n *

303 $mm

304 %

305 $m * n *

306 $ nn

272

Appendix E: Internal Functions

307 %

308 % m = length(levelsVector)

309 $ n = length(auxiliariesVector)

310 % Note: All will always be a null matrix

311 Al2 = numericFullGainMatrix(1 : numLevels , numLevels+1l : end
) ;

312 A21 = numericFullGainMatrix(numLevels+l : end , 1 : numLevels

) ;

313 A22 = numericFullGainMatrix(numLevels+l : end , numLevels+l
end) ;

314 numericCompactGainMatrix = Al2 * inv(eye(size(A22)) - A22)
* A21;

315

316 % Computing the eigenvalues and eigenvectors of the Compact Gain
Matrix

317 tempNumericCompactGainMatrix = sym(numericCompactGainMatrix ,
ldl)’.

318 [rightEigenvectorsMatrix , diagonalEigenvaluesMatrix] = eig(
tempNumericCompact

GainMatrix) ;

319 rightEigenvectorsMatrix = double(rightEigenvectorsMatrix) ;
320 diagonalEigenvaluesMatrix = double(diagonalEigenvaluesMatrix) ;
321 leftEigenvectorsMatrix = inv(rightEigenvectorsMatrix).';

322

323 % Finding the dominant eigenvalue

324 [dominantEigenvaluesMatrix(currentTimeStep , :) ,
dominantEigenvaluesPositionM
atrix(currentTimeStep , :) , dominancePercentageMatrix (
currentTimeStep , :) , tem

pCheckpoint 0 , tempCheckpoint 1] =

325 findDominantEigenvalue(rightEigenvectorsMatrix ,
leftEigenvectorsMatrix , di

agonalEigenvaluesMatrix , netflowsValuesMatrix(currentTimeStep ,

)." , netflowsVal

uesMatrix(currentTimeStep + 1 , :).' , modelObjectsValuesMatrix(

currentTimeStep ,

1 : numLevels).' , modelObjectsValuesMatrix(currentTimeStep + 1 , 1
numLevels) .'

, timeStepLength , levels2Study , currentTimeStep);

326 checkpoint 0 = [checkpoint 0 ; tempCheckpoint 0(:).' 1;

327 checkpoint 1
328

329 % Computing the symbolic links elasticity values associated with
the

330 % dominant eigenvalue

[checkpoint 1 ; tempCheckpoint 1(:).' 1;

331 [numericLinkElasticityMatrix(: , currentTimeStep) ,
numericLinkSensitivityByDo
minantEigenvalueMatrix(: , currentTimeStep) , tempCheckpoint 2 ,

tempCheckpoint 4

, tempCheckpoint 7 , tempCheckpoint 8] =

332 computeLinkElasticity(numericCompactGainMatrix ,
numericFullGainMatrix , mod

elAdjacencyMatrix , modelAdjacencyMatrix2EdgesMatrix ,
rightEigenvectorsMatrix , left

EigenvectorsMatrix , diagonalEigenvaluesMatrix ,
dominantEigenvaluesPositionMatrix(c

urrentTimeStep , 1) , currentTimeStep);

333 checkpoint 2 [checkpoint 2 ; tempCheckpoint 2(:).' 1;
334 checkpoint 4 = [checkpoint 4 ; tempCheckpoint 4(:).' 1;
335 checkpoint 7 [checkpoint 7 ; tempCheckpoint 7(:).' 1;

273

Appendix E: Internal Functions

336 checkpoint 8 = [checkpoint 8 ; tempCheckpoint 8(:).' 1;
337

338 % Computing the symbolic inputs elasticity values associated
with the

339 % dominant eigenvalue

340 [numericInputElasticityMatrix(: , currentTimeStep)] =
341 computeInputElasticity(numericLinkGainMatrix(: ,
currentTimeStep) , numeri

cLinkGain2InputJacobianMatrix , numericLinkElasticityMatrix(: ,
currentTimeStep) ,

constantsValuesVector , inputs2Study ,
numericLinkSensitivityByDominantEigenvalueMatr

ix(: , currentTimeStep));

342

343 end

344

345 % Computing independent cycles elasticity values associated with

dominant
346 % eigenvalue
347 independentCyclesElasticityMatrix =

348 computeIndependentCycleElasticity(1ndependentCyclesEdgesMatrlx

, numericLinkElas

ticityMatrix);

349

350 % end checkpoint (0)

351 mean checkpoint 0 = mean(checkpoint 0);

352 mean abs checkpoint 0 = mean(abs(checkpoint 0));
353 max checkpoint 0 = max(checkpoint 0);

354 min checkpoint 0 = min(checkpoint 0);

355 fid = fopen(['checkpoint O.csv' 1 , 'a');

356 fwrite(fid , [sprintf('\n') 'Mean;' 1);

357 for I =1 : 2 * numlLevels,

358 fwrite(fid , [num2str(mean checkpoint 0(I)) ';' 1);
359 end

360 fwrite(fid , [sprintf('\n') 'Mean Abs.;' 1);

361 for I =1 : 2 * numLevels,

362 fwrite(fid , [num2str(mean abs checkpoint 0(I)) ';']
363 end

364 fwrite(fid , [sprintf('\n') 'Max;' 1);

365 for I =1 : 2 * numLevels,

366 fwrite(fid , [num2str(max_checkpoint O0(I)) ';' 1);
367 end

368 fwrite(fid , [sprintf('\n') 'Min;' 1);

369 for I =1 : 2 * numLevels,

370 fwrite(fid , [num2str(min checkpoint O0(I)) ';' 1);
371 end

372 fclose(fid);

373

374 % end checkpoint (1)

375 mean checkpoint 1 = mean(checkpoint 1);

376 mean abs checkpoint 1 = mean(abs(checkpoint 1));
377 max _checkpoint 1 = max(checkpoint 1);

378 min checkpoint 1 = min(checkpoint 1);

379 fid = fopen(['checkpoint 1.csv' 1 , 'a');

380 fwrite(fid , [sprintf('\n') 'Mean;' 1);

381 for I =1 : 2 * numLevels,

274

Appendix E: Internal Functions

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436

end
fclose

[)

(

fid

fid
1 :
fid
fid
1 :
fid
fid
1 :
fid

fid

N~

N~

1

) ;

num2str (mean checkpoint 1(I))

sprintf ('\n")
numLevels,

'Mean Abs. ;'

]

)

7

num2str (mean abs checkpoint 1(I

sprintf ('\n")
numLevels,

'Max; '

]

) ;

num2str (max_checkpoint 1(I)

sprintf ('\n")
numLevels,

'"Min; '

]

) ;

num2str (min_ checkpoint 1(I)

% end checkpoint (2)

mean checkpoint 2 = mean(checkpoint 2);

mean abs checkpoint 2 =
max checkpoint 2 = max(checkpoint 2);
min checkpoint 2 = min(checkpoint 2);
fopen (

fid =
fwrite
for I
fwrite
end

end
fclose

[)

(

(

(

fid
1 :
fid

fid
1 :
fid
fid
1 :
fid
fid
1 :
fid

fid

1

2

1

~

[

) ;

[
*
[

'checkpoint 2.csv']

sprintf ('\n")
numLevels,

'Mean;'

lal

]

) ;

) ;

)

)

mean (abs(checkpoint 2)

num2str (mean checkpoint 2(I))

sprintf ('\n")
numLevels,

'Mean Abs. ;'

]

)

7

num2str (mean abs checkpoint 2(I

sprintf ('\n")
numLevels,

'Max; '

]

) ;

num2str (max_checkpoint 2(I)

sprintf ('\n")
numLevels,

'"Min; '

]

)i

num2str (min_ checkpoint 2(I)

% end checkpoint (4)

mean checkpoint 4 = mean(checkpoint 4);

mean abs checkpoint 4 =
max checkpoint 4 = max(checkpoint 4);
min checkpoint 4 = min(checkpoint 4);
fopen (

fid =
fwrite
for I
fwrite
end

(

(

fid
1 :
fid
fid
1 :
fid

fid

1

2

1

[

[
*
[

'checkpoint 4.csv']

sprintf ('\n")

'Mean;'

lal

]

) ;

(numLevels + numAuxiliaries

) ;

)

)

)

mean (abs(checkpoint 4)

1

num2str (mean checkpoint 4(I))

sprintf ('\n")

(numLevels + numAuxiliaries
num2str (mean abs checkpoint

sprintf ('\n')

'Mean Abs. ;'

'Max; '

]

) ;

]

)
)
4

7

(I

275

Appendix E: Internal Functions

437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

for I
fwrite
end

end
fclose

[)

(

(

1
fid

fid

2

1

1

2

1

) ;

*

[

[

*

[

(numLevels + numAuxiliaries),
num2str (max_checkpoint 4(I)

sprintf ('\n') 'Min;"' 1);
(numLevels + numAuxiliaries),
num2str (min_ checkpoint 4(I)

% end checkpoint (7)

mean checkpoint 7 = mean(checkpoint 7);

mean abs checkpoint 7

max checkpoint 7 = max(checkpoint 7);
min checkpoint 7 = min(checkpoint 7);

fid =
fwrite
for I
fwrite
end

end
fclose

[)

fopen (

(

(

(

fid
1
fid

fid
1 :
fid
fid
1 :
fid
fid
1 :
fid

fid

1

2

1

~

[

) ;

[

*

'checkpoint 7.csv' 1 , 'a');
sprintf ('\n') 'Mean;']);
numLevels,

[num2str (mean checkpoint 7(I)

sprintf ('\n') 'Mean Abs.;']);
numLevels,

num2str (mean abs checkpoint 7(I

sprintf ('\n') 'Max;' 1);
numLevels,
num2str (max_checkpoint 7(I)

sprintf ('\n') 'Min;"' 1);
numLevels,
num2str (min_ checkpoint 7(I)

% end checkpoint (8)

mean checkpoint 8 = mean(checkpoint 8);

mean abs checkpoint 8

max checkpoint 8 = max(checkpoint 8);
min checkpoint 8 = min(checkpoint 8);

fid =
fwrite
for I
fwrite
end

fopen (

(

(

fid
1 :
fid

fid
1 :
fid

fid
1 :
fid
fid
1 :
fid

1

2

1

N~

N~

~

[

[
*
[

'checkpoint 8.csv' 1 , 'a');
sprintf ('\n') 'Mean;']);
numLevels,

num2str (mean checkpoint 8(I)

sprintf ('\n') 'Mean Abs.;']);

numLevels,

num2str (mean abs checkpoint 8(I

sprintf ('\n') 'Max;' 1);
numLevels,
num2str (max_checkpoint 8(I)

sprintf ('\n') 'Min;"' 1);
numLevels,
num2str (min_ checkpoint 8(I)

)

)

)

)

)

)

mean (abs(checkpoint 7)

)

mean (abs(checkpoint 8)

)

276

Appendix E: Internal Functions

492 fclose(fid);
493

494 % Printing to output file

495 printOutputs(levels2Study , inputs2Study , modelAdjacencyMatrix
, internalSteps , ti

meStepLength , dominantEigenvaluesMatrix , dominancePercentageMatrix
, numericLinkGai

nMatrix , numericLinkElasticityMatrix , numericInputElasticityMatrix
, independentCyc

lesElasticityMatrix , allCyclesVerticesMatrix ,
independentCyclesVerticesMatrix , sig

nIndependentCyclesMatrix , modelObjectsNamesVector , constantsVector
, outFileName) ;

496

497 disp([sprintf('\n') 'Finishing Analysis']);

E.2 computelndependentCycleElasticity.m

It computes independent cycles (loops) elasticity values matrix associated with

dominant eigenvalue.

1 function independentCyclesElasticityMatrix =
computeIndependentCycleElasticity (indep
endentCyclesEdgesMatrix , numericLinkElasticityMatrix)

4 % Filename: computeIndependentCycleElasticity.m
5 % Author: Ahmed AbdelTawab AbdelGawad

6 % Package: Analysis Package

7 % Inputs: independentCyclesEdgesMatrix

8 % numericLinkElasticityMatrix

9 % Outputs: independentCyclesElasticityMatrix

10

[)

% Description: Computes independent cycles (loops) elasticity
values

11l % matrix associated with dominant eigenvalue

14 disp(['Computing Independent Cycle Elasticity' 1);

=
(&)
o\°

[k11 [111

[k21 [121

[.1 =Cr * [.]
[.1 [1Im]

[kn]

MNNNRERRE
NP OWwWOow-J
o o° o° o o o°

ki: links , 1j:loops

N
w
o\°

24 Cr = independentCyclesEdgesMatrix.';

277

Appendix E: Internal Functions

26 % A least squares solution is computed

27 independentCyclesElasticityMatrix = Cr \
numericLinkElasticityMatrix;

28

29 warning off MATLAB:divideByZero;

30

31 % checkpoint (5)

32 numericLinkElasticityMatrixComputed = Cr *
independentCyclesElasticityMatrix;

33 E = abs(numericLinkElasticityMatrix -
numericLinkElasticityMatrixComputed) ;

34 PE = abs(100 * E ./ numericLinkElasticityMatrix) ;
35 fid = fopen(['checkpoint 5.csv'] , 'a');
36 fwrite(fid , ['Time;" 1);

37 for I =1 : size(E , 1),

38 fwrite(fid , ['E (lnk' num2str(I) ''');PE (lnk' num2str(I)
)1)

39 end

40 fwrite(fid , [sprintf('\n\n') 1);

41 for J =1 : size(E , 2),

42 fwrite(fid , [num2str(J) ';' 1);

43 for I =1 : size(E , 1),

44 fwrite(fid , [num2str(E(I , J)) ';'" 1);
45 fwrite(fid , [num2str(PE(I , J)) ';' 1);
46 end

47 fwrite(fid , sprintf('\n'));

48 end

49

50 mean checkpoint 5 [mean(E.') ; mean(PE.') 1;
51 mean checkpoint 5 = mean checkpoint 5(:).';

52

53 mean abs checkpoint 5
54 mean abs checkpoint 5

[mean(abs(E.')) ; mean(abs(PE.')) 1;
mean abs checkpoint 5(:)."';

55

56 max_checkpoint 5 = [max(E.') ; max(PE.')];
57 max_checkpoint 5 = max checkpoint 5(:).';
58

59 min_checkpoint 5 [min(E.') ; min(PE.') 1;
60 min checkpoint 5 = min checkpoint 5(:).';

61

62 fwrite(fid , [sprintf('\n') 'Mean;' 1);

63 for I =1 : 2 * gize(E , 1),

64 fwrite(fid , [num2str(mean checkpoint 5(I)) ';' 1);
65 end

66 fwrite(fid , [sprintf('\n') 'Mean Abs.;']);

67 for I =1 : 2 * gize(E , 1),

68 fwrite(fid , [num2str(mean abs checkpoint 5(I)) ';' 1);
69 end

70 fwrite(fid , [sprintf('\n') 'Max;']);

71 for I =1 : 2 * gsize(E , 1),

72 fwrite(fid , [num2str(max checkpoint 5(I)) ';' 1);
73 end

74 fwrite(f£id , [sprintf('\n') 'Min;']);

75 for I =1 : 2 * gize(E , 1),

76 fwrite(fid , [num2str(min checkpoint 5(I)) ';"' 1);

278

Appendix E: Internal Functions

77 end
78 fclose(fid);

E.3 computelnputElasticity.m

It computes inputs elasticity values associated with dominant eigenvalue.

1 function [numericInputElasticityVector] =
computeInputElasticity(numericLinkGainVe

ctor , numericLinkGain2InputJacobianMatrix ,
numericLinkElasticityVector , constantsV
aluesVector , inputs2Study ,
numericLinkSensitivityByDominantEigenvalueVector)

2

I e
4 % Filename: computelInputElasticity.m

5 % Author: Ahmed AbdelTawab AbdelGawad

6 % Package: Analysis Package

7 % Inputs: numericLinkGainVector

8 % numericLinkGainVector

9 % numericLinkGain2InputdJacobianMatrix

10 % numericLinkElasticityVector

11 % constantsValuesVector

12 % inputs2Study

13 % numericLinkSensitivityByDominantEigenvalueVector

14 % Outputs: numericInputElasticityVector

15 % Description: Computes inputs elasticity values associated with
16 % dominant eigenvalue

R e ettt b
18

19 disp(['Computing Input Elasticity' 1);

20

21 % warning off MATLAB:divideByZero;

22

23 % Variables Initializations
24 numInputs = length(inputs2Study) ;
25 numericInputElasticityVector = zeros(numInputs , 1);

27 % Inputs elasticity values vector calculation
28 for I = 1 : numInputs,
29 numericInputElasticityVector(I) =

30 constantsValuesVector(I) * sum(
numericLinkGain2InputJacobianMatrix(: , I
) .* numericLinkSensitivityByDominantEigenvalueVector) ;

31 end

E.4 computeLinkElasticity.m

It computes links elasticity values associated with dominant eigenvalue.

279

Appendix E: Internal Functions

1 function [numericLinkElasticityVector ,
numericLinkSensitivityByDominantEigenvalueVe

ctor , tempCheckpoint 2 , tempCheckpoint 4 , tempCheckpoint 7 ,
tempCheckpoint 8] =

computeLinkElasticity(numericCompactGainMatrix ,
numericFullGainMatrix , modelAdjace

ncyMatrix , modelAdjacencyMatrix2EdgesMatrix ,
rightEigenvectorsMatrix , leftEigenvec

torsMatrix , diagonalEigenvaluesMatrix , dominantEigenvaluePosition ,
currentTimeStep

2

R R e e e it
4 % Filename: computelLinkElasticity.m

5 % Author: Ahmed AbdelTawab AbdelGawad

6 % Package: Analysis Package

7 % Inputs: numericCompactGainMatrix

8 % numericFullGainMatrix

9 % modelAdjacencyMatrix

10 % modelAdjacencyMatrix2EdgesMatrix

11 % rightEigenvectorsMatrix

12 % leftEigenvectorsMatrix

13 % diagonalEigenvaluesMatrix

14 % dominantEigenvaluePosition

15 % currentTimeStep

16 % Outputs: numericLinkElasticityVector

17 % numericLinkSensitivityByDominantEigenvalueVector

18 % tempCheckpoint 2

19 % tempCheckpoint 4

20 % tempCheckpoint 7

21 % tempCheckpoint 8

22 % Description: Computes links elasticity values associated with
23 % dominant eigenvalue

24§ e oo
25

26 disp(['Computing Link Elasticity' 1);

27

28 % Variables Initializations

29 numLevels = size(numericCompactGainMatrix , 1);

30 numLinks = max(max(modelAdjacencyMatrix2EdgesMatrix));
31 numericLinkElasticityVector = zeros(numLinks , 1);

32 numericLinkSensitivityByDominantEigenvalueVector = zeros (
numLinks , 1);

33 numericFullElasticityMatrix = zeros(size(numericFullGainMatrix
))

34 numericFullSensitivityByDominantEigenvalueMatrix = zeros(size(
numericFullGainMatrix

))

35

36 % Sensitivity and elasticity associated with dominant eigenvalue
values

37 numericSensitivityMatrix =

38 leftEigenvectorsMatrix(: , dominantEigenvaluePosition) *
rightEigenvectorsMatri
x(: , dominantEigenvaluePosition).';

280

Appendix E: Internal Functions

39
40 numericLinkSensitivityByDominantEigenvalueMatrix =

41 numericSensitivityMatrix / diagonalEigenvaluesMatrix (
dominantEigenvaluePosition
, dominantEigenvaluePosition) ;

42
43 numericElasticityMatrix =

44 numericLinkSensitivityByDominantEigenvalueMatrix .*
numericCompactGainMatrix;

45

46 % The Full Elasticity Values Matrix

47 [x , vy] = find(numericCompactGainMatrix ~= 0);
48 for I = 1 : length(x),

49 % Find all paths that starts at y(I) and ends at x(I)

50 pathsMatrix = allpathn(y(I) , x(I) , modelAdjacencyMatrix);
51

52 % Deleting paths that pass through a level

53 w = [1;

54 for K = 1 : size(pathsMatrix , 1) ,
55 path = nonzeros(pathsMatrix(K , :));
56 if any(path(2 : end - 1) <= numLevels),

57 w= [wZKI;

58 end

59 end

60 pathsMatrix(w , :) = [];
61

62 % Computing the kth path gain
63 pathsGainsVector = computePathsGain(numericFullGainMatrix ,
pathsMatrix) ;

64
65 % the Elasticity value of the kth path (from I to J)

66 pathsElasticityValuesVector = pathsGainsVector *
numericLinkSensitivityByDominant
EigenvalueMatrix(x(I) , v(I));

67

68 % The gain and Elasticity value of the kth path from y(I) to x(I)
69 for K = 1 : size(pathsMatrix , 1) ,

70 % the kth path from y(I) to x(I)

71 path = nonzeros(pathsMatrix(K , :));

72

73 % for each element in the path

74 for J = 1 : length(path) - 1 ,

75 numericLinkElasticityVector (modelAdjacencyMatrix2EdgesMatrix (

path(J+1

) ., path(J))) =

76 numericLinkElasticityVector (modelAdjacencyMatrix2EdgesMatrix (
ath (

§+l) , path(J))) + pathsElasticityValuesVector (K) ;

77

78 numericFullElasticityMatrix(path(J+1) , path(J)) =

79 numericFullElasticityMatrix(path(J+1) , path(J)) +

pathsElastic

ityValuesVector(K);

80

81

82 tempPathGain = computePathsGain2(numericFullGainMatrix , path ,

281

Appendix E: Internal Functions

path(J+
1) , path(J));
83

84 tempPathSensitivityByDominantEigenvalueMatrix = tempPathGain *
numericLin

kSensitivityByDominantEigenvalueMatrix(x(I) , y(I));

85

86 numericFullSensitivityByDominantEigenvalueMatrix(path(J+1) ,
path(J)

) = ...

87 numericFullSensitivityByDominantEigenvalueMatrix(path(J+1) ,
path (

J)) + tempPathSensitivityByDominantEigenvalueMatrix;

88

89 numericLinkSensitivityByDominantEigenvalueVector (
modelAdjacencyMatrix2Ed

gesMatrix(path(J+1) , path(J))) =

90 numericLinkSensitivityByDominantEigenvalueVector (
modelAdjacencyMatri

x2EdgesMatrix (path(J+1) , path(J))) +
tempPathSensitivityByDominantEigenvalueM

atrix;

91 end

92 end

93 end

94

95 warning off MATLAB:divideByZero;

96 % checkpoint (2, 3, 4)

97 E1 = abs(sum(numericElasticityMatrix , 1) - [sum(
numericElasticityMatrix , 2) |

L)

98 PE1 = abs(100 * E1 ./ sum(numericElasticityMatrix , 1));
99

100 E2 = abs(sum(numericFullElasticityMatrix , 1) - [sum(
numericFullElasticityMatrix
c2) 1.0)

101 PE2 = abs(100 * E2 ./ sum(numericFullElasticityMatrix , 1));
102

103 colNumericFullElasticityMatrix=numericFullElasticityMatrix(: ,
1 : numLevels) ;

104 rowNumericFullElasticityMatrix=numericFullElasticityMatrix(1
numLevels , :);

105 E3i = abs(sum(colNumericFullElasticityMatrix , 1) - sum(
numericElasticityMatrix ,

1))

106 E30 = abs(sum(rowNumericFullElasticityMatrix , 2) - sum(
numericElasticityMatrix ,

2));

107 PE3i = abs(100 * E3i ./ sum(colNumericFullElasticityMatrix , 1
))

108 PE3o = abs(100 * E30 ./ sum(rowNumericFullElasticityMatrix , 2
))

109

110 tempCheckpoint 2 = [E1(:).' ; PE1(:)."' 1;

111 tempCheckpoint 4 = [E2(:).' ; PE2(:)."' 1;

112

113 tempCheckpoint 7 = [E31(:).' ; PE3i(:).' 1;

114 tempCheckpoint 8 = [E30(:).' ; PE3o(:).' 1;

282

Appendix E: Internal Functions

115

116 fid = fopen(['checkpoint 2.csv' 1 , 'a');

117 fwrite(fid , [num2str(currentTimeStep) ';' 1);
118 for I = 1 : size(numericElasticityMatrix , 1),
119 fwrite(fid , [num2str(E1(I)) ';' 1);

120 fwrite(fid , [num2str(PE1(I)) ';' 1);

121 end
122 fwrite(fid , sprintf('\n'));
123 fclose(fid);

124

125 fid = fopen(['checkpoint 3.csv' 1 , 'a');

126 fwrite(fid , [num2str(currentTimeStep) ';' num2str(abs(
sum(sum(numericElastic

ityMatrix)))) sprintf('\n') 1);

127 fclose(fid);

128

129 fid = fopen(['checkpoint 4.csv' 1 , 'a');

130 fwrite(fid , [num2str(currentTimeStep) ';' 1);
131 for I = 1 : size(numericFullElasticityMatrix , 1),
132 fwrite(fid , [num2str(E2(I)) ';' 1);

133 fwrite(fid , [num2str(PE2(I)) ';' 1);

134 end

135 fwrite(fid , sprintf('\n'));
136 fclose(fid);

137

138 fid = fopen(['checkpoint 7.csv' 1 , 'a');

139 fwrite(fid , [num2str(currentTimeStep) ';' 1);
140 for I = 1 : size(numericElasticityMatrix , 1),
141 fwrite(fid , [num2str(E3i(I)) ';' 1);

142 fwrite(fid , [num2str(PE31i(I)) ';' 1);

143 end
144 fwrite(fid , sprintf('\n'));
145 fclose(fid);

146

147 fid = fopen(['checkpoint 8.csv'] , 'a');

148 fwrite(fid , [num2str(currentTimeStep) ';' 1);
149 for I = 1 : size(numericElasticityMatrix , 1),
150 fwrite(fid , [num2str(E3o(I)) ';' 1);

151 fwrite(fid , [num2str(PE3o(I)) ';' 1);

152 end
153 fwrite(fid , sprintf('\n'));
154 fclose(fid);

E.5 computePathsGain.m

It calculates paths gains for all given paths in a system.

function GV = computePathsGain(G , paths)

4 % Filename: computePathsGain.m
5 % Author: Ahmed AbdelTawab AbdelGawad

283

Appendix E: Internal Functions

o

Package: Analysis Package

Inputs: G (gain matrix)

paths (matrix (?,n), each row contains the node numbers in
a walk around a path; the matrix is padded with 0's on the

o° o

FRPPEPWOWWOJIO
o

0 % right)

1 % Outputs: GV (gain vector (1,7?))

2 % Description: Calculates paths gains for all given paths in a
system
R R e e e
14
15 GV = ones(1 , size(paths , 1));
16

17 for i = 1 : size(paths , 1),
18 ¢cn = paths(i , 1 : max(find(paths(i , :))));

19 for j = 1 : length(cn) - 1,

20 GV(i) =G@GV(i) *G(en(j +1) , cnl(3));
21 end

22 end

E.6 computePathsGain2.m

It calculates path gain for a given path in a system starting at start node and ends at

end node.

function GV = computePathsGain2(G , path , eNode , sNode)

4 % Filename: computePathsGain2.m

5 % Author: Ahmed AbdelTawab AbdelGawad

6 % Package: Analysis Package

7 % Inputs: G (gain matrix)

8 % path (matrix (?,n), each row contains the node numbers in
9 % a walk around a path; the matrix is padded with 0's on the
10 % right)

11 % eNode (end node)

12 % sNode (start node)

13 % Outputs: GV (gain value)

14 % Description: path gain for a given path in a system excluding
15 % one link that starting at sNode and ends at eNode

(find(path)));

= (en) -1,

22 if ~(((en(j + 1) == eNode) & (cn(j) == sNode))
+1),cn(j))

7

284

Appendix E: Internal Functions

E.7 computeSystemJacobians.m

It computes the system Jacobian matrix, links gain to input Jacobian matrix, model

adjacency matrix and model adjacency matrix to edges matrix.

1 function [symbolicFullGainMatrix ,
symbolicLinkGain2InputJacobianMatrix , modelAdjac

encyMatrix , modelAdjacencyMatrix2EdgesMatrix] =
computeSystemJacobians (modelObjec

tsNamesVector , modelObjectsEquationsVector , constantsVector ,
constantsValuesVector

, inputs2Study)

2

I b e
4 % Filename: computeSystemJacobians.m

5 % Author: Ahmed AbdelTawab AbdelGawad

6 % Package: Analysis Package

7 % Inputs: modelObjectsNamesVector

8 % modelObjectsEquationsVector

9 % constantsVector

10 % constantsValuesVector

11 % inputs2Study

12 % Outputs: symbolicFullGainMatrix

13 % symbolicLinkGain2InputJacobianMatrix

14 % modelAdjacencyMatrix

15 % modelAdjacencyMatrix2EdgesMatrix

16 % Description: Computes the system Jacobian matrix, links gain to
17 % input Jacobian matrix, model adjacency matrix and model

18 % adjacency matrix to edges matrix

10 & mm oo -
20

21 disp(['Compute System Jacobians (Symbolic)' 1);

22

23 % symbolicFullGainMatrix
24 gymbolicFullGainMatrix =
25 jac(modelObjectsEquationsVector.' , modelObjectsNamesVector) ;

27 % modelAdjacencyMatrix

28 modelAdjacencyMatrix = .

29 zeros(size(symbolicFullGainMatrix));

30 modelAdjacencyMatrix(find(symbolicFullGainMatrix ~= 0)) = 1;

32 % modelAdjacencyMatrix2EdgesMatrix
33 modelAdjacencyMatrix2EdgesMatrix =
34 modelAdjacencyMatrix;

35 modelAdjacencyMatrix2EdgesMatrix(find(modelAdjacencyMatrix ~= 0
)) = ...

36 [1 : nnz(modelAdjacencyMatrix) 1;

37

38 % symbolicLinkGain2InputJacobianMatrix

285

Appendix E: Internal Functions

39 [x, vy 1 = find(modelAdjacencyMatrix2EdgesMatrix ~= 0);

40 for I =1 : length(x),

41 symbolicLinkGainVector (modelAdjacencyMatrix2EdgesMatrix(x(I)
Yy I))) =

42 gymbolicFullGainMatrix(x(I) , y(I));

43 end

44 symbolicLinkGain2InputdacobianMatrix =

45 jac(symbolicLinkGainVector , constantsVector(inputs2Study));
46

477 symbolicLinkGain2InputdacobianMatrix =

48 subs(symbolicLinkGain2InputJacobianMatrix , constantsVector ,
constantsValuesVec
tor);

49
50 symbolicFullGainMatrix =

51 subs(symbolicFullGainMatrix , constantsVector ,
constantsValuesVector) ;

E.8 deleteZerosRow.m

It removes rows of all zeros in a matrix.

function res = deleteZerosRow(a)

4 % Filename: deleteZerosRow.m

5 % Author: Ahmed AbdelTawab AbdelGawad

6 % Package: Analysis Package

7 % Inputs: a

8 % Outputs: res

9 % Description: Removes rows of all zeros in a matrix
1

14 if isempty(a)
15 return;
16 end

18 if size(a , 2) > 1,

19 res = a(find(sum(a.')) , :);
20 else

21 res = a(find(a ~= 0));

22 end

E.9 differentiateGraph.m

The differentiation of the customized interpolation function to suites that one of

System Dynamics simulators.

286

Appendix E: Internal Functions

1 function out = differentiateGraph(inp , varargin)

2

R i et
4 % Filename: differentiateGraph.m

5 % Author: Ahmed AbdelTawab AbdelGawad

6 % Package: Analysis Package

7 % Inputs: Input Vector

8 % Output Vector

9 % Input Value to find differentiation at

10 % Outputs: out (Output)

11 % Description: The differentiation of the customized
interpolation

12 % function to suites that one of System Dynamics simulators
R R e e e
14

15

16 % differentiateGraph (inp,x,Vy)

17 n = (nargin - 1) / 2;

18 x = varargin(1 : n);

19 y = varargin(n + 1 : end);

20

21 x = cell2num(x) ;

22 vy = cell2num(y) ;

23

24 inp = subs(inp);

25

26 if isnumeric(inp),

27 [x , IX] = sort(x);

28 v = y(IX);

29

30 % Find indices of subintervals, x(k) <= inp < x(k + 1),
31 % or inp < x(1) or inp >= x(end).

32

33 k = sum(X < inp); $ 0 --->n

34 if k == 0,

5 % Extrapolate

6 if inp == x(1),

7 out = ((y(2) -y(1))/ (x(2)-x(1))) / 2;
8 else

9 out = 0;

0 end

1l elseif k == n,

42 % Extrapolate

3 if inp == x(end),

44 out = ((y(end) - y(end -1)) / (x(end) - x(end - 1))

/ 2;

5 else

6 out = 0;

7 end

8 else

9 % Interpolate

0 if inp == x(k),

l out =mean([(y(k + 1) -y(k))/ (x(k+1) -x(k)),

287

Appendix E: Internal Functions

(y(k

) -~y(k-1)) / (x(k) -x(k-1))1);

52 else

53 out = (y(k+1) -y(k))/ (x(k+1) -x(k)) ;
54 end

55 end

56 else

57 out = sym(['differentiateGraph(' char(inp) ',' rowv(x) ',
fowv(y) ")l

58 end

59

60 $------mm -

61 function v = rowv(x)

62 v = sym(x);

63 v = char(v(:).");

64 v([1:8 end-2:end]) = [];
65

66 % ——m e
67 function v = cell2num(x)
68 v = zeros(size(x));

69 for n =1 : length(x)
70 v(n) = x{ n };

71 end

E.10 extractModelObjects.m

It extracts all objects of the model (names of levels, names of auxiliaries, equations
...) from the vector of structures modelObjectsStructVector, which comes from the

Simulation package.

1 function [numLevels , numAuxiliaries , modelObjectsNamesVector ,
modelObjectsEquatio
nsVector] = extractModelObjects(modelObjectsStructVector)

4 % Filename: extractModelObjects.m

5 % Author: Ahmed AbdelTawab AbdelGawad

6 % Package: Analysis Package

7 % Inputs: modelObjectsStructVector

8 % Outputs: numLevels

9 % numAuxiliaries

10 % modelObjectsNamesVector

11 % modelObjectsEquationsVector

12 % Description: Extracts all objects of the model (names of
levels, names

13 % of auxiliaries, equations ...) form the vector of

14 % structures "modelObjectsStructVector", which comes from the
15 % Simulation package

288

Appendix E: Internal Functions

17

18 disp([sprintf('\n') 'Extracting Model Objects']);

19

20 % Compute number of levels and auxiliaries

21 numLevels = sum([modelObjectsStructVector.state]);

22 numAuxiliaries = sum(~[modelObjectsStructVector.state]);

23

24 % Extract objects of the model

25 modelObjectsNamesVector = [modelObjectsStructVector.name] ;

26 modelObjectsEquationsVector = [modelObjectsStructVector.equation

E.11 findDominantEigenvalue.m

It finds the dominant eigenvalue.

1 function [dominantEigenvaluesVector ,
dominantEigenvaluesPositionVector , dominanceP
ercentageVector , tempCheckpoint 0 , tempCheckpoint 1] =
findDominantEigenvalue(rig

htEigenvectorsMatrix , leftEigenvectorsMatrix ,
diagonalEigenvaluesMatrix , netflowsV

aluesVector , nextNetflowsValuesVector , levelsValuesVector ,
nextLevelsValuesVector

, timeStepLength , levels2Study , currentTimeStep)

4 % Filename: findDominantEigenvalue.m
5 % Author: Ahmed AbdelTawab AbdelGawad
6 % Package: Analysis Package

7 % Inputs: rightEigenvectorsMatrix

8 % leftEigenvectorsMatrix

9 % diagonalEigenvaluesMatrix

10 % netflowsValuesVector

11 % nextNetflowsValuesVector

12 % levelsValuesVector

13 % nextLevelsValuesVector

14 % timeStepLength

15 % levels2Study

16 % currentTimeStep

17 % Outputs: dominantEigenvaluesVector
18 % dominantEigenvaluesPositionVector
19 % dominancePercentageVector

20 % tempCheckpoint 0

21 % tempCheckpoint 1

22 % Description: Finds the dominant eigenvalue

25 disp(['Finding Dominant Eigenvalue' 1) ;

27 % Time step used in the analysis process

289

Appendix E: Internal Functions

28 analysisTimeStepLength = timeStepLength;

29
30 % Initializations
31 numLevels = size(diagonalEigenvaluesMatrix , 1);

32 eigenvaluesVector = diag(diagonalEigenvaluesMatrix).';
33 dominantEigenvaluesVector = eigenvaluesVector ;
34 dominancePercentageVector = [];

35

36 % At (t - tao) = 0 --> alphasVector = initial alphasVector and
levelsValuesVector = initial wvalue of slope

37 alphasVector = leftEigenvectorsMatrix.' * netflowsValuesVector;
38

39 deltaStateTerms = (zeros(size(rightEigenvectorsMatrix)));
40 deltaSlopeTerms (zeros(size(rightEigenvectorsMatrix)));

41

42 for K = 1 : numLevels ,

43 if eigenvaluesVector(K) == 0,

44 deltaStateTerms(: , K) = rightEigenvectorsMatrix(: , K) .* (
alphasVector

(K) * analysisTimeStepLength) ;

45 else

46 deltaStateTerms(: , K) = rightEigenvectorsMatrix(: , K) .* (
alphasVector

(K) * (exp(eigenvaluesVector(K) * analysisTimeStepLength) - 1
) / eigenvaluesV

ector(K));

47 end

48 end

49

50 deltaSlopeTerms = rightEigenvectorsMatrix * (alphasVector .* (
exp (eigenvaluesVecto

r(:) * analysisTimeStepLength) - 1));
51

52 deltaState = sum(deltaStateTerms , 2);
53 deltaSlope sum(deltaSlopeTerms , 2
54

55 for K = 1 : numLevels ,

56 flags = zeros(numLevels , 1);

57 flags(K) = 1;

58 if ~isreal(eigenvaluesVector(K)),
59 conjK = find(eigenvaluesVector == conj(eigenvaluesVector(K))
)

60 flags(conjkK)
61 end

62 deltaStateTerm = sum(deltaStateTerms(levels2Study , :) .*
flags.');

63 contribution = deltaStateTerm / deltaState(levels2Study);

64 dominancePercentageVector = [dominancePercentageVector , 100 *
real (contributio

n) l;

65 end

66

67 [dominancePercentageVector , dominantEigenvaluesPositionVector]

= sort (dominancePe
rcentageVector) ;

68 dominancePercentageVector = fliplr(dominancePercentageVector) ;

1;

290

Appendix E: Internal Functions

69 dominantEigenvaluesPositionVector = fliplr(
dominantEigenvaluesPositionVector) ;

70 dominantEigenvaluesVector = dominantEigenvaluesVector (
dominantEigenvaluesPositionVec
tor);

71

72 alphasVector = alphasVector.';

73

74 % checkpoint (0)

75 numericNextTimeStateVector =

76 deltaState + levelsValuesVector;

77 E = abs(nextLevelsValuesVector - numericNextTimeStateVector) ;
78 PE = abs(100 * E ./ nextLevelsValuesVector) ;

79 tempCheckpoint 0 = [E(:).' ; PE(:)."' 1;

80 fid = fopen(['checkpoint O.csv'] , 'a');

81l fwrite(fid , [num2str(currentTimeStep) ';' 1);
82 for I = 1 : length(numericNextTimeStateVector),
83 fwrite(fid , [num2str(E(I)) ';' 1);

84 fwrite(fid , [num2str(PE(I)) ';' 1);

85 end

86 fwrite(fid , sprintf('\n'));

87 fclose(fid);

88

89 % checkpoint (1)

90 numericNextTimeSlopeHatVector =

91 deltaSlope + netflowsValuesVector ;

92 E = abs(nextNetflowsValuesVector - numericNextTimeSlopeHatVector
) ;

93 PE = abs(100 * E ./ nextNetflowsValuesVector);

94 tempCheckpoint 1 = [E(:).' ; PE(:).' 1;

95 fid = fopen(['checkpoint 1l.csv'] , 'a');

96 fwrite(fid , [num2str(currentTimeStep) ';' 1);
97 for I = 1 : length(numericNextTimeSlopeHatVector),
98 fwrite(fid , [num2str(E(I)) ';' 1);

99 fwrite(fid , [num2str(PE(I)) ';' 1);

100 end

101 fwrite(fid , sprintf('\n'));
102 fclose(fid);

E.12 findIndependentCycles.m

It finds a set of independent loops; it tries the user selection from the loops of the

model and completes them with the shortest set.

1 function [allCyclesVerticesMatrix , independentCyclesVerticesMatrix
, independentCyc

lesEdgesMatrix , numberIndependentCycles] = findIndependentCycles (
modelAdjacencyMat

rix , modelAdjacencyMatrix2EdgesMatrix , modelObjectsNamesVector)

4 % Filename: findIndependentCycles.m

291

Appendix E: Internal Functions

O 00 J O Ul
o° o o° o° oP

Author: Ahmed AbdelTawab AbdelGawad

Package: Analysis Package

Inputs: modelAdjacencyMatrix
modelAdjacencyMatrix2EdgesMatrix

modelObjectsNamesVector

Outputs: allCyclesVerticesMatrix
independentCyclesVerticesMatrix
independentCyclesEdgesMatrix

numberIndependentCycles

Description: Finds a set of independent loops, it tries the user
selection from the loops of the model and completes them
with the shortest set

o° o° o° o° o o° o°

o°

26

disp(['Finding Set Independent Loop' 1) ;

% all cycles

allCyclesVerticesMatrix = allcycsn(modelAdjacencyMatrix) ;
numberCycles = size(allCyclesVerticesMatrix , 1);

% the Cycles’ matrix (all cycles expressed in binary form by links)
allCyclesEdgesMatrix = zeros(numberCycles , max(max (

modelAdjacencyMatrix2EdgesMat

rix)));

27 for I = 1 : numberCycles,

28 oneCycle = nonzeros(allCyclesVerticesMatrix(I , :)).';

29 for J =1 : gsize(oneCycle , 2) - 1,

30 K = modelAdjacencyMatrix2EdgesMatrix(oneCycle(J + 1) , oneCycle(
J));

31 allCyclesEdgesMatrix(I , K) = 1;

32 end;

33 end;

34

35 % Which loops to start searching for an independent set with?
36 endLoop = true;

37 while (endLoop),

38 % Printing All Loops

39 disp([sprintf('\n') 'All Loops:' sprintf('\n') 1);

40 for I = 1l:size(allCyclesVerticesMatrix , 1) ,

41 tempPrint = [1;

42 oneIndependentCycle = nonzeros(allCyclesVerticesMatrix(I , :)
).t

43 disp(['Loop' sprintf('\t') num2str(I) ':' sprintf('\t') 1);
44 for J = l:size(onelIndependentCycle , 2)-1 ,

45 tempPrint = [tempPrint , char(modelObjectsNamesVector (
onelIndependentCy

cle(J))) 1;

46 if J ~= size(oneIndependentCycle , 2)-1 ,

47 tempPrint = [tempPrint , ' --> ' 1;

48 end

49 end

50 disp(tempPrint);

51 end

52 loops2Study = input(['Enter the number(s) of the Loop(s) you are

intersted' spr

292

Appendix E: Internal Functions

intf('\n') 'in studying in a vector form (ex.: [1,2,6]):' sprintf('\t")
1)

53 if max(loops2Study) > size(allCyclesVerticesMatrix , 1) | min(
loops2Study)

< 1 | size(loops2Study , 1) ~= 1,

54 disp('Wrong Input(s), try again ...');

55 else

56 endloop = false;

57 end

58 end

59

60 numberIndependentCycles = rank(allCyclesEdgesMatrix) ;

61

62 independentCyclesEdgesMatrix = allCyclesEdgesMatrix;

63 independentCyclesVerticesMatrix = allCyclesVerticesMatrix;
64

65 templ = independentCyclesEdgesMatrix(loops2Study , :);
66 temp2 = independentCyclesVerticesMatrix(loops2Study , :);
67

68 independentCyclesEdgesMatrix(loops2Study , :) = [];

69 independentCyclesVerticesMatrix(loops2Study , :) = [];
70

71 independentCyclesEdgesMatrix = [templ;independentCyclesEdgesMatrix] ;

72 independentCyclesVerticesMatrix =

[temp2; independentCyclesVerticesMatrix] ;

73

74 independentCyclesEdgesMatrix = flipud(independentCyclesEdgesMatrix
)

75 independentCyclesVerticesMatrix = flipud(
independentCyclesVerticesMatrix) ;

76

77 for I = 1l:numberCycles,

78 tempCycles = independentCyclesEdgesMatrix;

79 tempCyclesn = independentCyclesVerticesMatrix;

80 independentCyclesEdgesMatrix(I , :) = 0;
81 independentCyclesVerticesMatrix(I , :) = 0;
82 if ~(rank(independentCyclesEdgesMatrix) ==

numberIndependentCycles),

83 independentCyclesEdgesMatrix = tempCycles;
84 independentCyclesVerticesMatrix = tempCyclesn;
85 end;

86 end;

87

88 independentCyclesVerticesMatrix = flipud/(
deleteZerosRow (independentCyclesVerticesMat
rix));

89 independentCyclesEdgesMatrix = flipud/(
deleteZerosRow (independentCyclesEdgesMatrix)

) ;

E.13 jac.m

It computes the Jacobian matrix of two input vectors.

293

Appendix E: Internal Functions

1 function out = jac(x,y)

2

I i i
4 % Filename: jac.m

5 % Author: Ahmed AbdelTawab AbdelGawad

6 % Package: Analysis Package

7 % Inputs: x

8 % vy

9 % Outputs: out

10 % Description: Computes the Jacobian matrix of two vectors x and
Yy, where:

11 % out(i,j) = dx(i)/dy(j)

I e
13

14 out = sym([]);

15 for I = 1:1length(x),

16 for J = 1:length(vy),

17 out(I , J) = differentiate(x(I) , v(J));
18 end

19 end

20

21 & -

22 function R = differentiate(S , a)

23

24 m o oo -
25 % Filename: jac.m

26 % Author: Ahmed AbdelTawab AbdelGawad

27 % Package: Analysis Package

28 % Inputs: S

29 % a

30 % Outputs: R

31 % Description: Computes the differentiation dsS/da
B2 g st -
33

34 s = sym(S);

35 a = sym(a);

36 str = char(8);

37 if strncmp(str , 'ifthenelse' , 10),

38 ixl1l = strfind(str , '(');

39 ix2 = strfind(str , ',');

40 ix3 = strfind(str , ')');

41 wvaro str(1 : ix1(1) - 1);

42 wvarl str(ix1(1) + 1 ix2(1) -1);

43 var2 str(ix2(1) + 1 ix2(2) -1);

44 var3 sym(str(ix2(2) + 1 : ix2(3) - 1) ;
45 var4 sym(str(ix2(3) + 1 ix3(1) -1) ;
46

47 var3 maple ('map', 'diff',var3,a);

48 var4 maple ('map', 'diff',var4,a);

49

50 if var3 == sym(0) & var4 == sym(0),

294

Appendix E: Internal Functions

51 R = sym(0);

52 else

53 R = sym([var0O '(' varl ',' var2 ',' char(var3) ',' char(var4
) ")t 1)

54 end

55

56 elseif strncmp(str , 'graph' , 5),

57 ix1l = strfind(str , '(');

58 ix2 = strfind(str , ',');

59 varl = sym(str(ix1(1) + 1 : ix2(1) - 1));

60 var2 = maple('map', 'diff',varl,a);

61 R = sym(strrep(str , 'graph' , 'differentiateGraph')) * var2;

63 else
64 R = maple('map','diff',S,a);
65 end

E.14 printOutputs.m

It prints the outputs of the analysis function as well as saving it to a file.

1 function printOutputs(levels2Study , inputs2Study |,
modelAdjacencyMatrix , internalS

teps , timeStepLength , dominantEigenvaluesMatrix ,
dominancePercentageMatrix , numer

icLinkGainMatrix , numericLinkElasticityMatrix ,
numericInputElasticityMatrix , indep
endentCyclesElasticityMatrix , allCyclesVerticesMatrix ,
independentCyclesVerticesMat

rix , signIndependentCyclesMatrix , modelObjectsNamesVector ,
constantsVector , outFi

leName)

% Filename: printOutputs.m

% Author: Ahmed AbdelTawab AbdelGawad
% Package: Analysis Package

% Inputs: levels2Study

% inputs2Study

% modelAdjacencyMatrix

internalSteps

timeStepLength
dominantEigenvaluesMatrix
dominancePercentageMatrix
numericLinkGainMatrix
numericLinkElasticityMatrix
numericInputElasticityMatrix
independentCyclesElasticityMatrix
allCyclesVerticesMatrix
independentCyclesVerticesMatrix
signIndependentCyclesMatrix
modelObjectsNamesVector
constantsVector

outFileName

MNNMNNNRRRRPRRREREREWOOIO U S
WNRFROWVWOJIOUTLPWNEO
o o° o° o° o° o° o° o° o° o° o° o° o° o

295

Appendix E: Internal Functions

24 % Outputs: N/A
25 % Description: Prints the outputs of the analysis function as well

26 % saving it to a file called output.out

2 oo
28

29 disp([sprintf('\n') 'Priniting Outputs']);

30

31 % Empty the output file

32 fid = fopen(outFileName , 'w');

33

34 % Printing all eigenvalues and their dominance percentage

35 fwrite(fid , ['The eigenvalues and their dominance percentage
contribution to the 1

evel variable ''' char(modelObjectsNamesVector(levels2Study)) ''':!'
1)

36 for I = internalSteps ,

37 fwrite(£id , [sprintf('\n') 1);

38 fwrite(fid , [sprintf('\n') 1);

39 fwrite(fid , ['Time instant ' num2str((I - 1) * timeStepLength
) et 1)

40 fwrite(fid , [sprintf('\n') 1);

41 fwrite(fid , [1)

42 fwrite(fid , [sprintf('\n') 1);

43 fwrite(fid , [sprintf('\n') 1);

44 for J = 1 : length(dominantEigenvaluesMatrix(I , :)) ,

45 fwrite(fid , [num2str(dominantEigenvaluesMatrix(I , J)) ',
with percen

tage contribution: ' int2str(dominancePercentageMatrix(I , J)) '$.'

1)

46 fwrite(fid , [sprintf('\n') 1);
47 end

48 end

49 fwrite(fid , [sprintf('\n') 1);
50 fwrite(fid , [

51 fwrite(fid , [sprintf('\n') 1);

52 %

53

54 [to , from] = find(modelAdjacencyMatrix) ;

55 % Printing the Links and the Links Gains

56 fwrite(fid , [sprintf('\n') 1);

57 fwrite(fid , ['All links and their gains:' 1);
58 for I = internalSteps ,

59 fwrite(fid , [sprintf('\n') 1);

60 fwrite(fid , [sprintf('\n') 1);

61 fwrite(fid , ['Time instant ' num2str((I - 1) * timeStepLength
) et 1)

62 fwrite(fid , [sprintf('\n') 1);

63 fwrite(£id , [1)

64 fwrite(fid , [sprintf('\n') 1);

65 fwrite(fid , [sprintf('\n') 1);

66 for Jd =1 : size(numericLinkGainMatrix , 1) ,

67 fwrite(fid , [char(modelObjectsNamesVector(from(J))) ' --> !
char (mo

296

Appendix E: Internal Functions

delObjectsNamesVector(to(J))) ': ' num2str((
numericLinkGainMatrix(J , I))

) 1)

68 fwrite(fid , [sprintf('\n') 1);
69 end

70 end

71 fwrite(fid , [sprintf('\n') 1);
72 fwrite(f£id , [

73 fwrite(fid , [sprintf('\n') 1);

74 %

75

76 dominantEigenvaluesMatrix = dominantEigenvaluesMatrix(: ,
777 dominancePercentageMatrix dominancePercentageMatrix(: ,
78

79 % Printing the Links and the Links' elasticity values

80 dummy linkElasticity Sorted = zeros(size(
numericLinkElasticityMatrix));

81 dummy linkElasticity Sorted I = zeros(size(
numericLinkElasticityMatrix));
82

83 fwrite(fid , [sprintf('\n') 1);

84 fwrite(fid , ['All links and their elasticity values to the
dominant eigenvalue:' |

)

85 tempPrint = { };

86 tempPrint I = { };

87 for I = internalSteps ,

88 fwrite(fid , [sprintf('\n') 1);

89 fwrite(fid , [sprintf('\n') 1);

90 fwrite(fid , ['Time instant ' num2str((I - 1) * timeStepLength
) et 1)

91 fwrite(fid , [sprintf('\n') 1);

92 fwrite(fid , [1)

93 fwrite(fid , [sprintf('\n') 1);

94 fwrite(fid , [sprintf('\n') 1);

95 fwrite(fid , ['The dominant eigenvalue is: ' num2str (
dominantEigenvaluesMatrix

(I)) ', with percentage contribution: ' int2str(
dominancePercentageMatrix(I))

5.1)

96 fwrite(fid , [sprintf('\n') 1);

97

[*) [*) [*) [*) [*) [*) [*) [*) [*) [*) [*) [*) [*) [*) [+ [+ [+ [+ [+ [*)
98 % $ % % % % % %% %% %% %% %% %% %

99 if isreal(dominantEigenvaluesMatrix(I)),
100 for J = 1 : size(numericLinkElasticityMatrix , 1) ,

101 fwrite(fid , [char(modelObjectsNamesVector(from(J))) ' -->
' char
(modelObjectsNamesVector(to(J))) ': ' num2str(real

numericLinkElasticityMatr

ix(Cg, 1))) 1);

102 fwrite(fid , [sprintf('\n') 1);

103 tempPrint{ J , I } = [char(modelObjectsNamesVector(from(J)))
-

' char (modelObjectsNamesVector(to(J))) ': ' num2str(real(
numericLinkElastici

tyMatrix(J , I))) 1;

104 dummy linkElasticity Sorted(J , I) = real(

297

Appendix E: Internal Functions

numericLinkElasticityMatrix(

J ., I));

105 end

106 else

107 for J = 1 : size(numericLinkElasticityMatrix , 1) ,

108 fwrite(fid , [char(modelObjectsNamesVector(from(J))) ' -->
' char

(modelObjectsNamesVector(to(J))) ': ' num2str((
numericLinkElasticityMatrix(

J, I)))1);

109 fwrite(fid , [sprintf('\n') 1);

110 tempPrint{ J , I } = [char(modelObjectsNamesVector(from(J)))
-

' char (modelObjectsNamesVector(to(J))) ': ' num2str(real(
numericLinkElastici

tyMatrix(J , I) * dominantEigenvaluesMatrix(I) / abs/(
dominantEigenvaluesMatrix (

I)))) 1;

111 tempPrint I{ J , I } = [char(modelObjectsNamesVector(from(J))
) -

-> ' char(modelObjectsNamesVector(to(J))) ': ' num2str(imag(
numericLinkElasti
cityMatrix(J , I) * dominantEigenvaluesMatrix(I) / abs(

dominantEigenvaluesMatrix

T))y)y) 1;

112 dummy linkElasticity Sorted(J , I) = real(
numericLinkElasticityMatrix(

J , I) * dominantEigenvaluesMatrix(I) / abs(
dominantEigenvaluesMatrix(I)));

113 dummy linkElasticity Sorted I(J , I) = imag(
numericLinkElasticityMatri

x(J , I) * dominantEigenvaluesMatrix(I) / abs/(
dominantEigenvaluesMatrix(I)))

114 end

115 end

116 % %% %% %% %% % %% % %% %%%% %
117 end

118 fwrite(fid , [sprintf('\n') 1);

119 fwrite(fid , I

1

120 fwrite(fid , [sprintf('\n') 1);

121 %

122

123 % Printing the Links and the Links' elasticity values (Sorted)
124 [dummy linkElasticity Sorted , IX] = sort(

dummy linkElasticity Sorted , 1);

125 [dummy linkElasticity Sorted I , IX I] = sort(

dummy linkElasticity Sorted I , 1);

126 IX = flipud(IX);

127 1X I = flipud(IX I);

128 fwrite(fid , [sprintf('\n') 1);

129 fwrite(fid , ['All Links and their elasticity values to the
dominant eigenvalue (So

rted):' 1);

130 for I = internalSteps ,

131 fwrite(fid , [sprintf('\n') 1);

132 fwrite(fid , [sprintf('\n') 1);

133 fwrite(fid , ['Time instant ' num2str((I - 1) * timeStepLength
) '])

298

Appendix E: Internal Functions

134 fwrite(fid , [sprintf('\n') 1);

135 fwrite(fid , [Y1)

136 fwrite(fid , [sprintf('\n') 1);

137 fwrite(fid , [sprintf('\n') 1);

138 fwrite(f£fid , ['The dominant eigenvalue is: ' num2str(
dominantEigenvaluesMatrix

(I)) ', with percentage contribution: ' int2str(

dominancePercentageMatrix(I))

.01)

139 fwrite(fid , [sprintf('\n') 1);

140 fwrite(fid , [sprintf('\n') 1);

141 if ~isreal(dominantEigenvaluesMatrix(I)),
142 fwrite(fid , ['Effect on the Envelope:']);
143 fwrite(fid , [sprintf('\n') 1);

144 fwrite(fid , [sprintf('\n') 1);

145 end

146 for J = 1l:size(numericLinkElasticityMatrix , 1) ,
147 fwrite(fid , tempPrint{ IX(J , I) , I });
148 fwrite(fid , [sprintf('\n') 1);

149 end

150 if ~isreal(dominantEigenvaluesMatrix(I)),
151 fwrite(fid , [sprintf('\n') 1);

152 fwrite(fid , ['Effect on the Frequency:' 1);
153 fwrite(fid , [sprintf('\n') 1);

154 fwrite(fid , [sprintf('\n') 1);

155 for J = 1l:size(numericLinkElasticityMatrix , 1) ,
156 fwrite(fid , tempPrint I{ IX I(J , I) , I });
157 fwrite(fid , [sprintf('\n') 1);

158 end

159 end

160 end

161 fwrite(fid , [sprintf('\n') 1);

162 fwrite(fid , [

163 fwrite(fid , [sprintf('\n') 1);

164 ¢

165

166 % Printing the Inputs and their elasticity values
167 dummy InputElasticity Sorted = zeros(size(
numericInputElasticityMatrix));

168 dummy InputElasticity Sorted I = zeros(size(
numericInputElasticityMatrix));

169

170 fwrite(fid , [sprintf('\n') 1);

171 fwrite(fid , ['All inputs and their elasticity values to the
dominant eigenvalue:'

1)

172 tempPrint = { };

173 tempPrint I = { };

174 for I = internalSteps ,

175 fwrite(fid , [sprintf('\n') 1);

176 fwrite(fid , [sprintf('\n') 1);

177 fwrite(fid , ['Time instant ' num2str((I - 1) * timeStepLength
) et 1)

178 fwrite(f£id , [sprintf('\n') 1);

179 fwrite(fid , ["1)

299

Appendix E: Internal Functions

180 fwrite(fid , [sprintf('\n') 1);
181 fwrite(fid , [sprintf('\n') 1);

182 fwrite(f£fid , ['The dominant eigenvalue is: ' num2str(
dominantEigenvaluesMatrix
(I)) ', with percentage contribution: ' int2str(

dominancePercentageMatrix(I))
's.0 1)

183 fwrite(fid , [sprintf('\n') 1);

184

185 % 9% %% %% %% %%%%%3%%%% %%

186 if isreal(dominantEigenvaluesMatrix(I)),

187 for J = 1 : length(inputs2Study),

188 fwrite(fid , [char(constantsVector(inputs2Study(J))) ':
num2str

(real (numericInputElasticityMatrix(J , I))) 1);

189 fwrite(fid , [sprintf('\n') 1);
190 tempPrint{ J , I } = [char(constantsVector(inputs2Study(J)))

num2str (real (numericInputElasticityMatrix(J , I))) 1;
191 dummy InputElasticity Sorted(J , I) = real(
numericInputElasticityMatri

x(J, I));

192 end

193 else

194 for J = 1 : length(inputs2Study),

195 fwrite(fid , [char(constantsVector(inputs2Study(J))) ':
num2str

((numericInputElasticityMatrix(J , I))) 1);

196 fwrite(fid , [sprintf('\n') 1);

197 tempPrint{ J , I } = [char(constantsVector(inputs2Study(J)))

num2str (real (numericInputElasticityMatrix(J , I) *
dominantEigenvaluesMatrix(I)
/ abs(dominantEigenvaluesMatrix(I)))) 1;

198 tempPrint I{ J , I } = [char(constantsVector(inputs2Study(J))
) 1.

' num2str (imag(numericInputElasticityMatrix(J , I) *
dominantEigenvaluesMatrix(I

) / abs(dominantEigenvaluesMatrix(I)))) 1;

199 dummy InputElasticity Sorted(J , I) = real(
numericInputElasticityMatri

x(Jd , I) * dominantEigenvaluesMatrix(I) / abs/(

dominantEigenvaluesMatrix(I)))

200 dummy InputElasticity Sorted I(J , I) = imag(
numericInputElasticityMat
rix(J , I) * dominantEigenvaluesMatrix(I) / abs(

dominantEigenvaluesMatrix(I))
) ;

201 end
202 end
203
204
205 end

206 fwrite(fid , [sprintf('\n') 1);
207 fwrite(fid , [

o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°

208 fwrite(fid , [sprintf('\n') 1);
209 %

300

Appendix E: Internal Functions

210

211 % Printing the Inputs and their elasticity values (Sorted)
212 [dummy InputElasticity Sorted , IX] = sort(

dummy InputElasticity Sorted , 1);

213 [dummy InputElasticity Sorted I , IX I] = sort(

dummy InputElasticity Sorted I , 1

) ;

214 1IX = flipud(IX);

215 IX I = flipud(IX I);

216 fwrite(£id , [sprintf('\n') 1);

217 fwrite(£id , ['All inputs and their elasticity wvalues to the
dominant eigenvalue (S

orted):' 1);

218 for I = internalSteps ,

219 fwrite(fid , [sprintf('\n') 1);

220 fwrite(fid , [sprintf('\n') 1);

221 fwrite(

) et 1)
222 fwrite

fid , sprintf ('\n') 1);

([
223 fwrite(fid , [Y1)
224 fwrite(fid , [sprintf('\n') 1);
225 fwrite(fid , [sprintf('\n') 1);
226 fwrite(fid , ['The dominant eigenvalue is: ' num2str(
dominantEigenvaluesMatrix
(I)) ', with percentage contribution: ' int2str(

dominancePercentageMatrix(I))
.01)
227 fwrite(£id , [sprintf('\n') 1);
228 fwrite(£fid , [sprintf('\n') 1);
229 if ~isreal(dominantEigenvaluesMatrix(I)),
230 fwrite(fid , ['Effect on the Envelope:']);
231 fwrite(£id , [sprintf('\n') 1);
232 fwrite(£id , [sprintf('\n') 1);
233 end
234 for J = 1l:size(numericInputElasticityMatrix , 1) ,
235 fwrite(fid , tempPrint{ IX(J , I) , I }); %$IX(:,1)
236 fwrite(£fid , [sprintf('\n') 1);
237 end
238 if ~isreal(dominantEigenvaluesMatrix(I)),
239 fwrite(£fid , [sprintf('\n') 1);
240 fwrite(fid , ['Effect on the Frequency:']);
241 fwrite(£id , [sprintf('\n') 1);
242 fwrite(£id , [sprintf('\n') 1);
(
(

243 for J l:size(numericInputElasticityMatrix , 1) ,
244 fwrite(fid , tempPrint I{ IX I(J , I) , I });
245 fwrite(£fid , [sprintf('\n') 1);

246 end

247 end

248 end

249 fwrite(£id , [sprintf('\n') 1);
250 fwrite(f£id , [

251 fwrite(fid , [sprintf('\n') 1);
252 %

253

254 % Printing All Loops...

301

fid , ['Time instant ' num2str((I - 1) * timeStepLength

Appendix E: Internal Functions

255
256
257
258
259
260
261
262
263
264
265
266
267
268
J)
269
270
271
272
273
274
275
276
277

fwrite(fid
fwrite(fid
for I =

1

1

[sprintf('\n') 1);
['All loops:']);

l:size(allCyclesVerticesMatrix , 1) ,

tempPrint = [];

oneCycle = nonzeros(allCyclesVerticesMatrix(I , :)

fwrite(fid , [sprintf('\n') 1);

fwrite(fid , [sprintf('\n') 1);

fwrite(fid , ['Loop ' num2str(I) ':' 1);

fwrite(fid , [sprintf('\n') 1);

fwrite(fid , [' 1)

fwrite(fid , [sprintf('\n') 1);

fwrite(fid , [sprintf('\n') 1);

for J = 1:size(oneCycle , 2)-1 ,

tempPrint = [tempPrint , char(modelObjectsNamesVector (oneCycle (
) 1;

if J ~= size(oneCycle , 2)-1 ,

tempPrint = [tempPrint , ' --> ' 1;

end

end

fwrite(fid , tempPrint);

fwrite(fid
end

fwrite(fid
fwrite(fid

7

7

7

[sprintf('\n') 1);

[sprintf('\n') 1);
[

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
J)
297
298
299
300
301
302
303
304
305

fwrite(fid

o
°

[)

fwrite(fid
fwrite(fid
fwrite(fid

7

7

7

[sprintf ('\n') 1);

% Printing Independent Loops...

[sprintf('\n') 1);

['Linearly independent loops:']);
[sprintf('\n') 1);
(

for I = l:size(independentCyclesVerticesMatrix , 1) ,

tempPrint = [1;

oneCycle = nonzeros(independentCyclesVerticesMatrix(I , :)).';

fwrite(fid , [sprintf('\n') 1);

fwrite(fid , [sprintf('\n') 1);

fwrite(fid , ['Loop ' num2str(I) ':' 1);

fwrite(fid , [sprintf('\n') 1);

fwrite(£id , [1)

fwrite(fid , [sprintf('\n') 1);

fwrite(fid , [sprintf('\n') 1);

for J = 1l:size(oneCycle , 2)-1 ,

tempPrint = [tempPrint , char(modelObjectsNamesVector (oneCycle (
) 1;

if J ~= size(oneCycle , 2)-1 ,

tempPrint = [tempPrint , ' --> ' 1;

end

end

fwrite(f£id , tempPrint);

fwrite(fid
end

fwrite(fid
fwrite(fid

1

1

[sprintf('\n') 1);

[sprintf('\n') 1);
[

302

Appendix E: Internal Functions

306 fwrite(fid , [sprintf('\n') 1);

307 %

308

309 % Printing the Loops' elasticity wvalues

310

311 fwrite(fid , [sprintf('\n') 1);

312 fwrite(fid , ['Independent loops'' elasticity values:' 1);
313 independentCyclesElasticityMatrix =
independentCyclesElasticityMatrix.';

314 dummy IndependentCyclesElasticity Sorted = zeros(size(
independentCyclesElasticityMa

trix));

315 dummy IndependentCyclesElasticity Sorted I = zeros(size(
independentCyclesElasticity

Matrix));

316

317 for I = internalSteps ,

318 fwrite(fid , [sprintf('\n') 1);

319 fwrite(fid , [sprintf('\n') 1);

320 fwrite(fid , ['Time instant ' num2str((I - 1) * timeStepLength
) et 1)

321 fwrite(fid , sprintf('\n') 1);

([
322 fwrite(fid , [1)
323 fwrite(fid , [sprintf('\n') 1);
324 fwrite(fid , [sprintf('\n') 1);
325 fwrite(fid , ['The dominant eigenvalue is: ' num2str(
dominantEigenvaluesMatrix
(I)) ', with percentage contribution: ' int2str(

dominancePercentageMatrix(I))
5.1)

326 fwrite(fid , [sprintf('\n')])

327 $ % % % %% % %%% %% TSNS
328 if isreal(dominantEigenvaluesMatrix(I)),

329 for K = 1l:size(independentCyclesVerticesMatrix , 1) ,

7

330 fwrite(fid , ['Loop ' num2str(K) ' (Polarity: ' num2str(
signIndepend

entCyclesMatrix(I , K)) '): ' num2str(real(
independentCyclesElasticityMatrix(I

, K)))y 1)

331 fwrite(fid , [sprintf('\n') 1);

332 dummy IndependentCyclesElasticity Sorted(I , K) = real(
independentCycl

esElasticityMatrix(I , K));

333 end

334 else

335 for K = 1l:size(independentCyclesVerticesMatrix , 1) ,

336 fwrite(fid , ['Loop ' num2str(K) ' (Polarity: ' num2str(
signIndepend

entCyclesMatrix(I , K)) '): ' num2str(

independentCyclesElasticityMatrix(I , K)

)1)
337 fwrite(fid , [sprintf('\n') 1);

338 dummy IndependentCyclesElasticity Sorted(I , K) = real(
independentCycl
esElasticityMatrix(I , K) * dominantEigenvaluesMatrix(I) / abs(

dominantEigenvalu

esMatrix(I)));

339 dummy IndependentCyclesElasticity Sorted I(I , K) = imag(
independentCy

303

Appendix E: Internal Functions

clesElasticityMatrix(I , K) * dominantEigenvaluesMatrix(I) / abs/(
dominantEigenva

luesMatrix(I)));

340 end

341 end

342 $ % % %% %% %% %% %% %% %%%% %

343 end

344 fwrite(fid , [sprintf('\n') 1);
345 fwrite(fid , [

346 fwrite(fid , [sprintf('\n') 1);
347 %
348

349 % Printing the Loops' elasticity values (Sorted)

350 [dummy IndependentCyclesElasticity Sorted , IX] = sort(
dummy IndependentCyclesElas

ticity Sorted , 2);

351 [dummy IndependentCyclesElasticity Sorted I , IX I] = sort(
dummy IndependentCycles

Elasticity Sorted I , 2);

352 dummy IndependentCyclesElasticity Sorted = fliplr(

dummy IndependentCyclesElasticity

Sorted) ;

353 dummy IndependentCyclesElasticity Sorted I = fliplr(
dummy IndependentCyclesElasticit

y _Sorted I);

354 1IX = fliplr(IX);

355 IX I = fliplr(IX I);

356 fwrite(fid , [sprintf('\n') 1);

357 fwrite(fid , ['Independent loops'' elasticity values (Sorted):' 1]
) ;

358 for I = internalSteps ,

359 fwrite(fid , [sprintf('\n') 1);

360 fwrite(fid , [sprintf('\n') 1);

361 fwrite(fid , ['Time instant ' num2str((I - 1) * timeStepLength
) et 1)

362 fwrite(fid , [sprintf('\n') 1);

363 fwrite(fid , [' 1)

364 fwrite(fid , [sprintf('\n') 1);

365 fwrite(fid , [sprintf('\n') 1);

366 fwrite(fid , ['The dominant eigenvalue is: ' num2str(
dominantEigenvaluesMatrix

(I)) ', with percentage contribution: ' int2str(

dominancePercentageMatrix(I))

.0 1),

367 fwrite(fid , [sprintf('\n') 1);

368 fwrite(fid , [sprintf('\n') 1);

369 if ~isreal(dominantEigenvaluesMatrix(I)),
370 fwrite(fid , ['Effect on the Envelope:']);
371 fwrite(fid , [sprintf('\n') 1);

372 fwrite(fid , [sprintf('\n') 1);

373 end

374 for K = 1l:size(independentCyclesVerticesMatrix , 1) ,

375 fwrite(fid , ['Loop ' num2str(IX(I , K)) ' (Polarity: '
num2str (signIn

dependentCyclesMatrix(I , IX(I , K))) '): ' num2str(

dummy IndependentCyclesElas

ticity Sorted(I , K)) 1);

304

Appendix E: Internal Functions

376 fwrite(fid , [sprintf('\n') 1);

377 end

378 if ~isreal(dominantEigenvaluesMatrix(I)),

379 fwrite(fid , [sprintf('\n') 1);

380 fwrite(fid , ['Effect on the Frequency:']);

381 fwrite(fid , [sprintf('\n') 1);

382 fwrite(fid , [sprintf('\n') 1);

= l:size(independentCyclesVerticesMatrix , 1) ,
([

383 for K

384 fwrite(fid , 'Loop ' num2str(IX I(I , K)) ' (Polarity: '
num2str (

signIndependentCyclesMatrix(I , IX I(I , K))) '): ' num2str(
dummy IndependentCy

clesElasticity Sorted I(I , K)) 1);

385 fwrite(fid , [sprintf('\n') 1);

386 end

387 end

388 end

389 fwrite(fid , [sprintf('\n') 1);
390 fwrite(f£id , [

391 fwrite(fid , [sprintf('\n') 1);
392
393 fclose(fid);

305

Appendix F

External Functions

Appendix F: External Functions

The following functions are parts of the Digraph toolbox for Matlab 4.2, with
minor changes to suit Matlab 6.5.
The digraph toolbox is available at:

http://fuzzy.iau.dtu.dk/download/digraph.zip

F.1 reachabi.m

For all nodes, it tests if one node is reachable from another.

function r = reachabi(m) ;
Reachability matrix of m

o o°

o\°

function r = reachabi(m) ;

o\°

m square matrix
r square boolean reachability matrix

o\°

o\°

OWoOoJoOUuUlkwhRE
o\°

$ r(i,j) = 1 if node 1 is reachable from
10 % node j; 0 otherwise.
11 % The matrix m is
12 % turned into a boolean inside.
13

14 r =m & 1;

15 r = r | eye(size(r
16 aux = zeros(size(r
17 while prod(prod (+(
18 aux = r ;

19 r = ¢ | (+r * +1) ;
20 end ;

))
))

aux == r))) == 0,

F.2 delzrow.m

In a matrix, it removes any row that all its elements are zeros.

function res=delzrow(a)

[)

$Remove zero rows in a matrix

o\°

function res=delzrow(a)

o\°

res=a;
if isempty(a)
return;

JOoO Ul WNRE
o\°

309

Appendix F: External Functions

9 end

10

11 if size(a,2)>1,

12 res = a(find(sum(a.')),:);
13 else

14 res=a(find(a~=0)) ;

15 end;

F.3 allpathn.m

Find all paths between two nodes.

function allpaths = allpathn(from, to,a)
All paths between two nodes

o° o

o\

function allpaths = allpathn(from, to,a)

o\

from from-node, a number
to to-node, a number
a square successor matrix (n,n)

o® o o

RWOWoo-JoauUuld wNR
(@)
o\

o\

allpaths matrix (?,n), each row contains the node numbers in a

walk on a

11 % path; the matrix is padded with 0's to the right

12 %

13 % The algorithm is a traversal of the digraph. It uses the

reachability matrix
14 % to prune the traversal.

15

16 a=a&l;

17 r=reachabi (a);

18 [n,dum] = size(a) ;

19 paths = from ;

20 allpaths = [] ;

21 emptypath = zeros(l,n+l) ;
22 while ~isempty (paths),

23 [maxp,dist] = size(paths) ;
24 newpaths = [] ;

25 for i=1:maxp,

26 curpath = paths(i,:) ;
27 candids find(a(:,curpath(dist))&r(to,:)"') ;
28 for j = l:length(candids),

1
29 cand = candids(j) ;
30 pl = all(cand ~= curpath) ;
31 p2 = cand == to ;

32 if p2,
33 newpath = emptypath ;
34 newpath(1l: (length(curpath)+1)) = [curpath,cand] ;

35 allpaths = [allpaths;newpath];
36 [p,dum]=size(allpaths) ;

310

Appendix F: External Functions

37 % disp([int2str(p),' paths found'l) ;
38 elseif pl1 ,

39 newpath = [curpath,cand] ;

40 newpaths = [newpaths;newpath] ;

41 end ;

42 end ;

43 end ;

44 paths = newpaths ;

45 end ;

F.4 allcycsn.m

All cycles in graph of a matrix including the node indexes.

function cycles = allcycsn(a)
All cycles in graph of matrix A

o° o

o\

function cycles = allcycsn(a)

o\

a square (boolean) successor matrix (n,n)

cycles’ matrix (?,n), each row contains the node numbers in a walk
round

% a cycle; the matrix is padded with 0's on the right

o\

©

VoL IJaOUTd WNR
o\

o\°

10 % The algorithm is an exhaustive traversal of the digraph with
pruning. An

11 % early version is in APL in Evans & Larsen (1981). To get the cyc-
12 % les as boolean lists, use 'allcycs'.

13

14 [n,dum] = size(a) ;
15 paths = (1:n)"' ;
16 cycles = [] ;

17 emptycyc = zeros(l, (n+l)) ;
18 while ~isempty (paths),

19 [maxp,dist] = size(paths) ;
20 newpaths = [] ;

21 for i=1:maxp,

22 curpath = paths(i,:) ;

23 candids = find(a(:,curpath(dist))) ;
24 for j = 1l:length(candids),
25 cand = candids(j) ;

26 pl = all(cand ~= curpath) ;
27 p2 = cand == curpath(1l) ;
28 p3 = cand > curpath(l) ;

29 if p2,

30 newcyc = emptycyc ;

31 newcyc(l: (length(curpath)+1)) = [curpath,cand] ;
32 cycles = [cycles;newcyc];

33 elseif pl & p3,

34 newpath = [curpath,cand] ;

311

Appendix F: External Functions

newpaths = [newpaths;newpath] ;
end ;

end ;

end ;

paths = newpaths ;

end ;

312

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

