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ABSTRACT 

The match of geological units of the dissected Kaoko-Dom Feliciano-Gariep orogenic 

system exposed along the coasts of the South Atlantic is poorly understood. Two suites of 

intrusive rocks crop out in the Angra Fria Bay area, a part of the Coastal Terrane of the Kaoko 

Belt in Namibia. U–Pb zircon dating of three samples from the younger suite provided ages of 

574 ± 6, 586 ± 3 and 584 ± 7 Ma, similar to the ages of the oldest syn-collisional granitoids in 

the area. Three samples of the older suite gave ages of 626 ± 5, 622 ± 5 and 620 ± 6 Ma 

respectively, which have not previously been recorded in intrusive rocks of the Kaoko Belt, 

but which coincide with those from the Florianópolis Batholith in the Dom Feliciano Belt in 

Brazil. Zircon ages, Sr–Nd isotopic composition and tectonic position of these granitoids 

suggest that this magmatic complex could be a continuation of the Florianópolis Batholith on 

the African side of the Atlantic Ocean. Consequently, the Angra Fria intrusions and the 

Florianópolis Batholith may represent suitable localities for spatial reconstruction of the 

Gondwana supercontinent in the area, where the robust pre-Mesozoic connecting points are 

scarce.  

Keywords: Gondwana reconstruction, South Atlantic Ocean, plate tectonics, Kaoko Belt, 

Dom Feliciano Belt. 

 

1. Introduction 

Arguably the oldest remark about the connection of American continents with Africa 

and Europe was made by a Dutch geographer Abraham Ortelius in his Thesaurus 

Geographicus (Ortelius, 1596), where he writes (freely translated from Latin): “…Gadir as a 

part of Atlantis or of the Island of America, were not submersed … but were torn away from 
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Europe and Africa by earthquakes and floods." … "The vestiges of the rupture reveal 

themselves, if someone brings forward a map of the World and considers carefully the coasts 

of these three lands where they face each other: it is evident that the promontory of Europe 

and of course Africa, fit the concavity of the Americas." 

A serious discussion of the link between Europe, Africa and the American continents 

started c. 100 year ago. The matching shape of the Atlantic coastlines, the even better fit of 

the continental shelves and the similarities in paleontological records were mentioned when 

Wegener (1912) formulated the continental drift theory. More than 50 years later, Bullard et 

al. (1965) and Smith and Hallam (1970) provided the first quantification of the fit along the 

edges of the Atlantic continental shelves. Since then, ongoing discussion of a rigorous fit of 

South America and Africa is based mainly on studies of syn-rifting or post-break-up features, 

such as the continent-ocean boundaries, prominent fracture zones, salt basins and syn-rifting 

deposits along the Atlantic coasts (e.g. Le Pichon and Hayes, 1971; Sibuet and Mascle, 1978; 

Rabinowitz and LaBrecque, 1979; Martin et al., 1981; Vink, 1982; Unternehr et al., 1988; 

Nürnberg and Müller, 1991; Eagles, 2007; Torsvik et al., 2009; Moulin et al., 2010; Blaich et 

al., 2011; Heine et al., 2013). 

The fit of pre-Mesozoic geological features along the shores on both sides of the South 

Atlantic Ocean remains poorly understood. A major challenge in any correlation of the pre-

rifting geological units are the usually >150 km wide shelves and the syn- to post-rifting 

onshore deposits, which both obscure a substantial part of the pre-Mesozoic geological 

record. De Wit et al. (2008) compiled a list of well-dated steep tectonic features that can serve 

as matching points for the pre-rifting geological record-based re-assembly of Africa and 

South America. However, the shorelines of Uruguay, southeastern Brazil and Namibia cut the 

pre-Mesozoic coastal tectonic units at low angles, which, in combination with the wide 

shelves, may cause a large lateral offset of the corresponding geological units in the map (Fig. 
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1). Therefore, the connection of pre-rifting geological features is apparently easier in the area 

of the Gulf of Guinea and its counterpart in Brazil than in the southern parts of both 

continents (de Wit et al., 2008). 

Porada (1979) discussed the similarities in the evolution of the geological units 

presently called the Dom Feliciano, Kaoko and Gariep belts (Fig. 1) providing the first 

correlation between the pre-Mesozoic geology of southeastern Brazil/Uruguay and Namibia. 

Nevertheless, the exact spatial link of the units exposed along the coasts of Namibia, 

southeastern Brazil and Uruguay is poorly understood and the evidence of their matching 

Neoproterozoic evolution is only based on similar timing of tectonic processes (Basei et al., 

2005; Gross et al., 2009; Oyhantçabal et al., 2009; Lenz et al., 2011). We add new evidence 

for a simultaneous late Neoproterozoic magmatic activity in the northern parts of the Kaoko 

and Dom Feliciano belts. Laser ablation–inductively coupled plasma–mass spectrometry 

(LA–ICP–MS) and secondary ion mass spectrometry (SIMS) zircon U–Pb dating and isotopic 

analysis of magmatic rocks cropping out at the Angra Fria Bay in northwestern Namibia 

reveal the so far unrecognized character of these intrusions in the context of the Kaoko Belt 

evolution and provide argumentation for their temporally and spatially robust correlation with 

the magmatic rocks of the northernmost Dom Feliciano Belt. All directions used below refer 

to the present-day configuration. 

 

2. Geological context 

The Kaoko Belt is part of a N–S trending Neoproterozoic orogenic system involving 

also the Gariep Belt in SW Namibia and the Dom Feliciano Belt in SE Brazil and Uruguay 

(Fig. 1; e.g. Porada, 1979; Basei et al., 2000; Frimmel et al., 2011). The Kaoko Belt consists 

of two major tectonic units represented by the margin of the Congo Craton with its 

sedimentary cover, and the overriding Coastal Terrane (Fig. 1). Both units collided at ca. 
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580–550 Ma (Goscombe and Gray, 2008). The Congo Craton margin is dominated by the 

Archean–Mesoproterozoic basement underlying the metamorphosed Neoproterozoic 

sedimentary cover (Seth et al., 1998; Kröner et al., 2004) represented by clastic sediments and 

carbonates deposited between >740 Ma and ca. 580 Ma in two distinct cycles with contrasting 

sources of the detrital material (Konopásek et al., 2014). The metamorphic grade increases 

from east to west reaching partial melting conditions along the contact with the Coastal 

Terrane (Goscombe et al., 2003). The Coastal Terrane consists of metamorphosed sediments 

and presumably syn-sedimentary volcanic rocks dated at ca. 800 Ma (Konopásek et al., 

2008). Metamorphism of the Coastal Terrane reached partial melting conditions at ca. 650–

630 Ma, i.e. about 80–100 Ma earlier than in the underlying deformed cratonic margin, which 

experienced its metamorphic peak at ca. 550 Ma (Franz et al., 1999). The migmatization of 

the Coastal Terrane was connected with limited magmatism at ca. 650 Ma, whereas the 580–

550 Ma thrusting over the Congo Craton margin was accompanied by intrusion of 

voluminous plutons into the Coastal Terrane rocks (Seth et al., 1998; Kröner et al., 2004; 

Konopásek et al., 2008; Janoušek et al., 2010). 

Gross et al. (2009), Oyhantçabal et al. (2009) and Lenz et al. (2011) correlated the 

Coastal Terrane with the Punta del Este Terrane in the Dom Feliciano Belt (Fig. 1). This 

correlation is based on the common presence of ca. 800–770 Ma igneous rocks 

metamorphosed in the granulite facies at ca. 650–630 Ma, a combination of features unique to 

the Dom Feliciano-Kaoko-Gariep orogenic system. The Punta del Este Terrane crops out to 

the east of a pre-Neoproterozoic crustal domain extending between the Rio de la Plata Craton 

and the Luis Alves Terrane (Fig. 1) representing the western foreland of the Kaoko-Dom 

Feliciano-Gariep orogenic system (e.g. Basei et al., 2000). Along the contact of the western 

foreland with the Punta del Este Terrane there is a suite of granitoid rocks called the Granite 

Belt, which is subdivided into the Aiguá, Pelotas and Florianópolis batholiths (Fig. 1). The 
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timing of these intrusions between ca. 630–570 Ma is coeval with the magmatic activity 

recorded in the foreland unit west to northwest of the Granite Belt (Babinski et al., 1997; 

Leite et al., 1998; Remus et al., 1999; 2000; Koester et al., 2001; da Silva et al., 1999; 2005; 

Hartmann et al., 2002; Gaucher et al., 2008; Oyhantçabal et al., 2009; Passarelli et al., 2010; 

Basei et al., 2011; Chemale et al., 2012; Florisbal et al., 2012a; Martini et al., 2015). 

 

3. The Angra Fria Magmatic Complex  

The Angra Fria Magmatic Complex (AFMC) is part of the Coastal Terrane of the 

Kaoko Belt and crops out in the area of the Angra Fria Bay (Fig. 1). Detailed mapping (Fig. 

2) has revealed that the AFMC consists of two suites of plutonic rocks (Fig. 3a) that intrude a 

migmatitic gneiss complex. The older suite of variably deformed porphyritic granites (Fig. 

3b) and diorites is accompanied by small intrusions of undeformed coarse-grained hornblende 

gabbros (Fig. 3c). The younger suite is represented by hornblende granodiorite–tonalite body, 

coarse-grained, weakly porphyritic biotite granite, medium-grained muscovite-biotite granite 

with weak magmatic or no fabric and a dioritic dyke crosscutting the gneiss complex (Fig. 

3d). The country rocks are clinopyroxene-bearing gneisses, amphibolites and felsic 

migmatitic gneisses. The map presented in Fig. 2 covers the area with the best accessibility 

and much larger extent of the complex, especially along the coast towards the north, cannot 

be ruled out. 

Whole rock powders and zircons extracted from three samples of the older (NJ-57, 

NJ-58 and NJ-59) and three samples of the younger suite (NJ-62, NK-42 and NJ-05) were 

used for U–Pb, Sr–Nd and Hf isotopic analysis. Detailed description of analytical methods is 

provided in the appendix A and the results of the LA–ICP–MS and SIMS U–Pb zircon dating 

of the samples and Hf isotopic analysis are provided as supplementary data. Nd and Sr 
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isotopic ratios were recalculated to their initial values (i) based on the zircon U–Pb ages and 

the results are provided in Tab. 1. All data are quoted with 2uncertainties. 

 

3.1. Sample NJ-57

Sample NJ-57 (S18.23880°, E12.02201°, all coordinates are in WGS 84) is a granitic 

augen orthogneiss (Fig. 3b) consisting of K-feldspar, plagioclase, quartz, biotite and 

accessory muscovite, titanite, apatite, zircon, opaque mineral and small amount of secondary 

chlorite. All felsic minerals show signs of solid-state recrystallization. Cathodoluminescence 

(CL) imaging of the extracted zircons reveals oscillatory zoning with rare featureless cores. 

Some of the grains show disturbance of the oscillatory zoning along their margins. The LA–

ICP–MS isotopic analysis of the oscillatory-zoned parts yielded a concordia (Ludwig, 1998) 

U–Pb age of 626 ± 5 Ma (Fig. 4a) interpreted as the crystallization age of the granitic 

protolith of the orthogneiss, and a mean Hf(i) of -4.9 ± 0.5. The whole-rock isotopic analysis 

yielded 
87

Sr/
86

Sr(i) of 0.70771 ± 0.00001 and Nd(i) of -4.7 ± 0.1 (Tab. 1 and Fig. 5). 

 

3.2. Sample NJ-59

Sample NJ-59 (S18.23999°, E12.02862°) is a diorite with the mineralogy plagioclase, 

amphibole, biotite, subordinate quartz and accessory titanite, opaque mineral, apatite and 

zircon. The sample shows weak sub-solidus deformation concentrated into the quartz 

aggregates. Zircons from this sample are oscillatory zoned in CL and some contain CL-

darker, but still oscillatory-zoned cores. The LA–ICP–MS isotopic analysis of the zircon 

yielded a concordia U–Pb age of 620 ± 6 Ma (Fig. 4b) interpreted as the crystallization age of 

the diorite, and a mean Hf(i) of -4.8 ± 0.5. The whole-rock isotopic analysis provided 

87
Sr/

86
Sr(i) of 0.70784 ± 0.00001 and Nd(i) of -4.4 ± 0.1 (Tab. 1 and Fig. 5). 
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3.3. Sample NJ-58

Sample NJ-58 (S18.23851°, E12.02676°) is a coarse-grained hornblende gabbro (Fig. 

3c) with the same mineralogy as the sample NJ-59. Zircons from this gabbro are either 

oscillatory zoned, or show large featureless cores in CL. When analysed by LA–ICP–MS, 

both zircon types yielded similar isotopic data that combine into a concordia U–Pb age of 622 

± 5 Ma (Fig. 4c) and a mean Hf(i) of -2.8 ± 0.3. SIMS analysis provided isotopic data that 

combine into a slightly younger concordia U–Pb age of 617 ± 4 Ma (Fig. 6a). The LA–ICP–

MS and SIMS ages overlap within their respective errors and are interpreted as the 

crystallization age of the gabbro. The whole-rock isotopic analysis yielded 
87

Sr/
86

Sr(i) of 

0.70698 ± 0.00001 and Nd(i) of -4.0 ± 0.1 (Tab. 1 and Fig. 5). 

 

3.4. Sample NJ-05

Sample NJ-05 (S18.31481°, E12.08529°) represents dioritic dyke crosscutting the 

migmatitic country rocks of the AFMC (Fig. 3d). The diorite has the mineralogy plagioclase, 

amphibole, biotite, subordinate quartz and opaque mineral, and accessory apatite and zircon. 

Zircons from this diorite show non-concentric oscillatory zoning in CL. LA–ICP–MS isotopic 

data from these zircons combine into a concordia U–Pb age of 584 ± 7 Ma (Fig. 4d) 

interpreted as the time of emplacement of the dyke. Mean Hf(i) value of the zircons is -7.7 ± 

0.3. The whole rock isotopic analysis provided 
87

Sr/
86

Sr(i) of 0.71175 ± 0.00001 and Nd(i) of -

8.4 ± 0.1 (Tab. 1 and Fig. 5). 

 

3.5. Sample NK-42

Sample NK-42 (S18.31180°, E12.09936°) represents the granodiorite–tonalite body of the 

younger suite. The rock consists of plagioclase, quartz, K-feldspar, biotite, amphibole with 

accessory titanite, epidote, apatite and zircon. CL images of extracted zircons show concentric 
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oscillatory zoning and no xenocrystic cores. Isotopic dating of the zircon by SIMS provided a 

concordia U–Pb age of 586 ± 4 Ma (Fig. 6b) interpreted as the crystallization age of the 

sample.  The whole rock isotopic analysis provided 
87

Sr/
86

Sr(i) of 0.71268 ± 0.00001 and 

Nd(i) of -6.8 ± 0.1 (Tab. 1 and Fig. 5). 

 

3.6. Sample NJ-62

The sample of muscovite-biotite granite NJ-62 (S18.20823°, E11.98121°) consists of 

K-feldspar, plagioclase, quartz, subordinate muscovite, biotite, chlorite and accessory opaque 

mineral and zircon. CL imaging of the zircons revealed the presence of xenocrystic cores 

surrounded by oscillatory-zoned rims. The analysis of the oscillatory-zoned parts provided a 

mean Hf(i) value of -0.6 ± 0.5. The LA–ICP–MS U–Pb dating of the oscillatory-zoned parts 

yielded a cluster of ages between ca. 560 and 595 Ma (Fig. 4e). A group of the most 

concordant data combines into a concordia age of 574 ± 6 Ma. When the data with apparent 

Pb loss are considered, the resulting upper intercept gives a statistically undistinguishable age 

of 575 ± 6 Ma (Fig. 4f). We interpret these ages as the best estimate of the age of the granite 

crystallization. Analysis of xenocrystic cores yielded one discordant date close to c. 1250 Ma 

and a scatter of dates between c. 800 Ma and the inferred crystallization age of c. 575 Ma 

(Fig. 4e). The whole rock isotopic analysis provided 
87

Sr/
86

Sr(i) of 0.71045 ± 0.00001 and 

Nd(i) of -3.9 ± 0.1 (Tab. 1 and Fig. 5). 

 

4. Discussion 

4.1. Correlation of the AFMC rocks with other granitoid rocks of the Kaoko and Dom 

Feliciano belts  
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The crystallization ages of 626 ± 5, 622 ± 5 and 620 ± 6 Ma from the older suite of the 

AFMC are unique in the geology of the Coastal Terrane and do not overlap with the age of 

any magmatic rock so far dated in this unit. The intrusions associated with the migmatization 

of the Coastal Terrane rocks are ca. 25–30 Ma older (ca. 650 Ma) and the early syn-

collisional intrusions associated with the thrusting of the of the Coastal Terrane over the 

Congo Craton margin are ca. 40–55 Ma younger, i.e. ca. 580–570 Ma (Fig. 7; e.g. Seth et al., 

1998; Konopásek et al., 2008). The ages of these syn-collisional intrusions suggest an origin 

coeval with the granitoid rocks of the younger AFMC suite dated in this work at 574 ± 6, 586 

± 3 and 584 ± 7 Ma (Fig. 7). 

Spatial position of the Angra Fria Magmatic Complex suggests that its intrusive rocks 

could link with the intrusions of the Florianópolis, Pelotas and Aiguá batholiths of the Dom 

Feliciano Belt (Fig. 1). The zircon ages of the older AFMC suite overlap within their 

respective errors with zircon ages of 625 ± 6 – 609 ± 16 Ma known for some intrusions in the 

Florianópolis Batholith (Fig. 1), as well as those intruding the foreland exposed to the north of 

that batholith (Passarelli et al., 2010; Basei et al., 2011; Chemale et al., 2012; Florisbal et al., 

2012a; Martini et al., 2015). These authors also reported ages of 602 ± 4 – 587 ± 9 Ma for 

syn- to post-kinematic granitoids in that region, which are apparently older than the younger 

AFMC suite dated here, but the youngest granitoids overlap within error with samples NJ-05 

and NK-42 dated in this study (Fig. 7). The oldest magmatic rocks from the Pelotas Batholith 

(Fig. 1) with ages of 613 ± 6 and 609 ± 17 Ma (Babinski et al., 1997; da Silva et al., 1999) are 

apparently younger than those for the older suite in the AFMC, but they also overlap within 

analytical uncertainties. Ages for some of the younger granitoids in the Pelotas Batholith 

dated by Babinski et al. (1997) and Koester et al. (2001) at 600 ± 10 – 594 ± 5 Ma are 

apparently older than the younger AFMC suite. The granitoids that intruded the foreland off 

the Pelotas batholith show ages between 583 ± 11 and 550 ± 6 Ma (Leite et al., 1998; Remus 



Konopásek et al.  11 
__________________________________________________________________________________  

et al., 1999; 2000). Intrusions forming the Aiguá Batholith (Fig. 1) were emplaced between 

587 ± 16 and 564 ± 7 Ma, but there are also two intrusions dated at 633 ± 8 and 627 ± 23 Ma 

that intruded the foreland to the west (Fig. 7; Hartmann et al., 2002; Gaucher et al., 2008; 

Oyhantçabal et al., 2009). The comparison above suggests a match of zircon ages of the older 

AFMC suite with the ca. 618–626 Ma old intrusions in the Florianópolis Batholith (Fig. 7)    

The link between the AFMC rocks and granitoids of the Florianópolis Batholith is 

further supported by a good correlation of their Sr–Nd isotopic data (Fig. 5). This similarity 

contrasts with isotopic composition of granitoids of similar age but intruding the foreland 

immediately northwest of the Florianópolis Batholith, which show considerably more 

negative Nd(i) values (Fig. 5; Florisbal et al., 2012b,c; Chemale et al., 2012). On the other 

hand, comparison of the Hf isotopic data with those presented by Chemale et al. (2012) is not 

that straightforward. The Hf(i) values calculated for the zircons from the AFMC granitoids 

are between -0.6 and -7.7, whereas Chemale et al. (2012) reported mostly more negative 

values and also their much larger span between -4.6 and -14.6. 

 

4.2. Correlation of the tectonic position of the AFMC rocks with the granitoids of the 

Florianópolis Batholith 

 

Crucial for linking the AFMC rocks with the granitoids along the Dom Feliciano belt 

of South America is not only their age and similarity in Sr–Nd isotopic data, but also their 

position within the tectonic and metamorphic structure of the Kaoko and Dom Feliciano belts. 

The Punta del Este and Coastal terranes show similarity in protolith ages of the oldest meta-

igneous rocks (i.e. ca. 800–770 Ma), as well as in the timing of peak metamorphism (ca. 650–

630 Ma) and metamorphic grade. These two terranes are considered as one tectonic domain in 

the structure of the Dom Feliciano-Kaoko-Gariep belt system (Gross et al., 2009; Oyhantçabal 
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et al., 2009; Lenz et al., 2011). According to this interpretation, the position of the AFMC in 

the westernmost exposed part of the Coastal Terrane agrees with the tectonic position of the 

Granite Belt that flanks the western limit of the Punta del Este Terrane (Fig. 1). As mentioned 

above, the Sr–Nd isotopic signatures of the AFMC granitoids correlate well with the values 

known for the rocks of the Florianópolis Batholith suggesting that both originated by melting 

of similar sources. 

 

4.3. Link between tectonic units and prominent structures of the Kaoko-Dom Feliciano-

Gariep orogenic system 

 

The genetic relationship between the AFMC and the Florianópolis Batholith is further 

supported by their position in the tectonic maps of Africa and South America, respectively, 

aligned so that they show their relative position shortly before the break-up (Fig. 1; based on 

the work of Heine et al., 2013). This and other reconstructions quoted in the introductory 

chapter are based on syn- to post-rifting geological features that are independent of the 

position of the pre-Mesozoic geological units and thus provide an argumentation for a robust 

spatial link between the AFMC and the Florianópolis Batholith. On the other hand, the 

present-day extent of the continental shelves and syn- to post-rifting deposits along the coasts 

of the South Atlantic does not allow an assessment of the role of potential submerged or 

covered transcurrent shear zones. As the overall sense of movement along major sear zones in 

the Kaoko and Dom Feliciano belts is sinistral (e.g. Goscombe and Gray, 2008; Oyhantçabal 

et al., 2011), the transcurrent movements could have placed the Angra Fria Magmatic 

Complex against the Florianópolis Batholith after the emplacement of the complex 

somewhere farther south in the belt. However, the actual existence and extent of such 

translation is difficult to assess. 
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The spatial link between the Coastal and Punta del Este terranes is not obvious (Fig. 

1). Da Silva et al. (1999) and Koester et al. (2016) have reported the presence of gneisses 

enclosed within the granitoids of the central and northern Pelotas Batholith. These xenoliths 

have protolith ages and geochemical features corresponding to the rocks dated by Lenz et al. 

(2011) in the Punta del Este Terrane in Uruguay. Such findings indicate similar country rocks 

during the emplacement of the Aiguá and Pelotas batholiths and suggest a continuation of the 

Punta del Este Terrane farther to the north.  This fact, together with the strong similarity in 

temporal and metamorphic evolution of the Coastal and Punta del Este terranes mentioned by 

Gross et al. (2009), Oyhantçabal et al. (2009) and Lenz et al. (2011), suggests that these 

terranes may form a coherent unit present along the entire axis of the Kaoko-Dom Feliciano-

Gariep orogenic system with the central part hidden in the shelves and underneath the post-

Mesozoic deposits. 

 De Wit et al. (2008) have connected the southern tip of the system of transcurrent 

shear zones in the Kaoko Belt (the Village and Three Palm shear zones; Goscombe and Gray, 

2008) with the northern tip of the shear zone system separating the Florianópolis Batholith 

from the foreland units (the Sierra Ballena-Dorsal Canguçu-Major Gercino shear zone 

system; e.g. Basei et al., 2000) in the northern Dom Feliciano Belt (Fig. 1). However, the 

spatial reconstruction presented in Fig. 1 shows that these shear zones cannot be linked 

together due to their large lateral offset. The position within the tectonic zoning of the Kaoko-

Dom Feliciano-Gariep orogenic system suggests that the Sierra Ballena-Dorsal Canguçu-

Major Gercino shear zone bounds the central part of the orogen with respect to the western 

foreland in southern Brazil and Uruguay, whereas the Village and Three Palm shear zone 

system bounds it towards the eastern foreland in northern Namibia.  

 

5. Conclusions 
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The crystallization ages and Sr–Nd isotopic signatures of the older AFMC suite 

correlate with those known from the early syn-kinematic granitoids of the Florianópolis 

Batholith. The identical position of the AFMC and the Granite Belt of the Dom Feliciano Belt 

west of the granulitic Coastal and Punta del Este terranes, respectively, further supports the 

interpretation that the AFMC represents a continuation of the Granite Belt on the African side 

of the Atlantic Ocean. This suggests that the AFMC and the Florianópolis Batholith represent 

suitable localities for the spatial reconstruction of the Gondwana supercontinent in the area of 

the South Atlantic Ocean, where robust pre-rifting matching points are scarce.  
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Appendix A. – Analytical methods 

LA–ICP–MS zircon U–Pb dating 

The samples (ca. 3 kg each) were crushed and sieved, and zircon was separated using 

the Wilfley shaking table and heavy liquids in the laboratories of the Bergen University, 

Norway. Zircon grains were mounted in epoxy-filled blocks and polished for subsequent 

cathodoluminescence (CL) imaging. A Nu AttoM high resolution ICP-MS coupled to a 193 
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nm ArF excimer laser (Resonetics RESOlution M-50 LR) at Bergen University, Norway, was 

used to measure the Pb/U and Pb isotopic ratios in zircons. The laser was fired at a repetition 

rate of 5 Hz and energy of 80 mJ with 19 microns spot size. Typical acquisitions consisted of 

15 second measurement of blank followed by measurement of U and Pb signals from the 

ablated zircon for another 30 seconds. The data were acquired in time resolved – peak 

jumping – pulse counting mode with 1 point measured per peak for masses 
204

Pb + Hg, 
206

Pb, 

207
Pb, 

208
Pb, 

232
Th, 

235
U, and 

238
U. Due to a non-linear transition between the counting and 

attenuated (= analog) acquisition modes of the ICP instruments, the raw data were pre-

processed using a purpose-made Excel macro. As a result, the intensities of 
238

U are left 

unchanged if measured in a counting mode and recalculated from 
235

U intensities if the 
238

U 

was acquired in an attenuated mode. Data reduction was then carried out off-line using the 

Iolite data reduction package version 3.0 with VizualAge utility (Petrus and Kamber, 2012). 

Full details of the data reduction methodology can be found in Paton et al. (2010). The data 

reduction included correction for gas blank, laser-induced elemental fractionation of Pb and U 

and instrument mass bias. For the data presented here, blank intensities and instrumental bias 

were interpolated using an automatic spline function while down-hole inter-element 

fractionation was corrected using an exponential function. No common Pb correction was 

applied to the data but the low concentrations of common Pb was controlled by observing 

206
Pb/

204
Pb ratio during measurements. Residual elemental fractionation and instrumental 

mass bias were corrected by normalization to the natural zircon reference material GJ-1 

(Jackson et al., 2004). The excess variance (Paton et al., 2010) of GJ-1 was automatically 

calculated in the Isoplot program (Ludwig, 2012; version 4.15) and quadratically added to the 

measurement uncertainties of all unknowns including validation zircon reference materials 

Plešovice (Sláma et al., 2008) and 91500 (Wiedenbeck et al., 1995). These two were 

periodically analysed during the measurement for quality control and the obtained mean 
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values of 335.2 ± 2.2 (2) Ma and 1073.8 ± 5.8 (2) Ma are ca 0.75% accurate within the 

published reference values (337 Ma, Sláma et al., 2008; 1065 Ma, Wiedenbeck et al., 1995, 

respectively). The zircon U–Pb ages are presented as concordia diagrams generated with 

Isoplot. Concordia ages of individual samples are pooled data with quadratic addition of the 

excess variance of the primary zircon reference material GJ-1. This error propagation should 

account for the artificial reduction of the age uncertainty during calculation of Concordia age 

in Isoplot. 

 

SIMS zircon U–Pb dating 

Prior to the SIMS analysis, the samples were coated with c. 30 nm of gold and 

analysed for isotopes of U, Pb and interfering molecules on a Cameca IMS 1280 ion probe at 

the Swedish Museum of Natural History in Stockholm (Nordsim facility). The instrument 

parameters, analytical method, calibration and correction procedures were similar to those 

described by Whitehouse et al. (1999) and Whitehouse and Kamber (2005). The instrument 

was operated in automated mode with 18 μm ion beam diameter. The measured Pb/U ratios 

were calibrated against the reference zircon 91500, which has an age of 1065.4 ± 0.3 Ma and 

U and Pb concentrations of 80 and 15 ppm, respectively (Wiedenbeck et al., 1995). Common 

lead corrections assumed a modern-day average terrestrial common Pb composition 

(Stacey and Kramers, 1975). 

 

LA–MC–ICP–MS zircon Hf isotopic analysis 

Hf isotopic measurements were carried out using a 193 nm ArF excimer laser 

(Resonetics RESOlution M-50 LR) attached to a NU Plasma 2 MC ICP–MS. The laser was 

fired at a repetition rate of 8 Hz and energy of 80 mJ with 47 or 64 microns spot size 

depending on the available area of analyzed zircon surface. The analyzed spots were placed 
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right next to the U–Pb laser pits to ensure that both analyses sampled the same part of the 

zircon. Data for gas blank were acquired for 20s followed by 40s of laser ablation. The 

faraday cup configuration was set to enable detection of all Hf isotopes as well as potentially 

interfering ions: 
171

Yb, 
173

Yb, 
174

Yb,  
175

Lu, 
176

Hf(+Lu+Yb), 
177

Hf, 
178

Hf, 
179

Hf, 
180

Hf. Data 

reduction was carried out off-line using the Iolite data reduction package version 2.5 . Full 

details of the data reduction methodology can be found in (Paton et al., 2011). Data were 

corrected for gas blank and isobaric interferences of Yb and Lu on 
176

Hf using 
176

Yb/
173

Yb = 

0.79618 (Chu et al., 2002) and 
176

Lu/
175

Lu = 0.02655 (Vervoort et al., 2004). A value for 

179
Hf/

177
Hf = 0.7325 (Patchett and Tatsumoto, 1980) and the exponential law were used for 

mass bias correction of interfering Yb and Lu isotopes and isotopes of Hf. The zircon 

reference material Plešovice (Sláma et al., 2008) was used for normalization of the resulting 

176
Hf/

177
Hf ratios. During the sequence, the zircon reference material 91500 (Wiedenbeck et 

al., 1995) was periodically measured for quality control purpose and the average value of 

176
Hf/

177
Hf = 0.282311 ± 0.000013 (2) is in good  agreement with the published value of 

0.282303 ± 21 (Wu et al., 2006). Hf is defined as parts per 10 000 deviation from the 

chondritic composition. CHUR: 
176

Lu/
177

Hf = 0.0332, 
176

Hf/
177

Hf = 0.282772 (Blichert-Toft 

and Albarède, 1997); 
176

Lu decay constant = 1.8648*10
-11

 (Scherer et al., 2001).  

 

Whole rock Sr–Nd isotopic analysis 

For the radiogenic isotope determinations, samples were dissolved using a combined 

HF–HCl–HNO3 acid attack. The isotopes were isolated by exchange chromatography 

techniques following standard chemical separation described by Le Roex and Lanyon (1998). 

Rb–Sr and Sm–Nd Isotopic analyses were performed on a Finnigan MAT 262 thermal 

ionization mass spectrometer housed at the University of Bergen in dynamic (
143

Nd/
144

Nd and 

87
Sr/

86
Sr) and static (

84
Sr/

86
Sr, 

87
Rb/

85
Rb, 

148
Nd/

144
Nd and 

149
Sm/

152
Sm) mode using a double 
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Re filament assembly. In the case of Sr, a minor amount of H3PO4 was added to suppress 

ionisation to achieve stable signals. Concentrations of Sr, Rb, Nd and Sm were quantified by 

isotopic dilution with in-house 
84

Sr-
87

Rb and 
148

Nd-
149

Sm mixed spikes. The 
143

Nd/
144

Nd 

ratios were corrected for mass fractionation to 
146

Nd/
144

Nd = 0.7219 (Wasserburg et al., 

1981). External reproducibility was estimated from repeat analyses of the La Jolla 

(
143

Nd/
144

Nd = 0.511850 ± 0.000006, 2) and NIST SRM 987 (
87

Sr/
86

Sr = 0.71024 ± 0.00002, 

2) isotopic standards. Decay constants for 
87

Rb and 
147

Sm of 1.42 x 10
-11

 and 6.54 x 10
-12

, 

respectively, were used (Steiger and Jaeger, 1977; Lugmair and Marti, 1978). Calculation of 

Nd model ages and Nd(i) values are based on 
143

Nd/
144

Nd = 0.512638 and 
147

Sm/
144

Nd = 

0.1967 for the chondritic uniform reservoir (CHUR, Jacobsen and Wasserburg, 1980) and 

143
Nd/

144
Nd = 0.513114 and 

147
Sm/

144
Nd = 0.222 for depleted mantle composition (Michard et 

al., 1985).  

 

Appendix B. (Electronic) – Supplementary data 

Tab–data_LA–ICP–MS_dating 

Tab–data_LA–MC–ICP–MS_Hf 
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FIGURE CAPTIONS 

 

Figure 1. Simplified geological map of the Dom Feliciano and Kaoko belts (modified after 

Gross et al., 2009 and Frimmel et al., 2011). The mutual position of Africa and South 

America is shown at 140 Ma (see inset), the dot-and-dash line shows the inferred position of 

the rift centre after Heine et al. (2013). AFMC–Angra Fria Magmatic Complex. 

(Meta)cratonic domains: 1–Congo; 2–Kalahari; 3–Rio de la Plata; 4–Luis Alves. A– Sierra 

Ballena-Dorsal Canguçu-Major Gercino shear zone; B–Village-Three Palm shear zone 
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system. MV–Montevideo; PA–Porto Alegre; FL–Florianópolis; LÜ–Lüderitz; SW–

Swakopmund.  

 

Figure 2. Detailed geological map of the Angra Fria Magmatic Complex in the area of the Old 

Cape Fria Radio Station with the location of the samples used for this study. 

 

Figure 3. Photographs of the AFMC rocks and their field relationships. a) Intrusive 

relationships between the older (dark), deformed magmatic suite and undeformed younger 

(pink) granitoids. b) Granitic orthogneiss sample NJ-57. c) Hornblende gabbro sample NJ-58. 

d) Dioritic dyke (sample NJ-05) intruding migmatitic gneisses of the Coastal Terrane. 

 

Figure 4. U–Pb concordia plots for samples dated by LA–ICP–MS with cathodoluminescence 

images of typical zircons. Error ellipses are plotted at 2 level. MSWD – mean square of 

weighted deviates. Grey ellipses show dates not involved in the age calculation. 

 

Figure 5. Comparison of initial (i) 
87

Sr/
86

Sr and Nd values for the Angra Fria Magmatic 

Complex granitoids with the data of Florisbal et al. (2012b),  Florisbal et al. (2012c) and 

Chemale et al. (2012) for the Florianópolis Batholith granitoids and granitoids intruding the 

foreland northwest of this batholith. 

 

Figure 6. U–Pb concordia plots for samples dated by SIMS with cathodoluminescence image 

of typical zircon in sample NK-42. Error ellipses are plotted at 2 level. MSWD – mean 

square of weighted deviates.  
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Figure 7. Summary of zircon protolith ages (whiskers show published errors) for the 

Florianópolis, Pelotas and Aiguá batholiths and intrusions into the neighboring foreland 

domain (Babinski et al., 1997; Leite et al., 1998; Remus et al., 1999; 2000; Koester et al., 

2001; da Silva et al., 1999; 2005; Hartmann et al., 2002; Gaucher et al., 2008; Oyhantçabal et 

al., 2009; Passarelli et al., 2010; Basei et al., 2011; Chemale et al., 2012; Florisbal et al., 

2012a; Martini et al., 2015), and for the intrusive rocks of the Costal Terrane in the Kaoko 

Belt (Seth et al., 1998; Kröner et al., 2004; Konopásek et al., 2008). Grey stripes show 

inferred time interval for the emplacement of the older and younger AFMC suite.   

 



Table 1: Analytical results of the whole rock Sr-Nd isotopic analysis.

Sample age (i) Rb Sr 87Rb 87Sr 87Sr 2s Sm

(Ma) (ppm) (ppm) 86Sr 86Sr
86Sr(i) (ppm)

NJ-57 626 121.3 270.8 1.2969 0.719309 0.707711 0.000009 2.6

NJ-59 620 74.7 473.5 0.4566 0.711879 0.707841 0.000009 6.7

NJ-58 622 35.6 112.5 0.9160 0.715108 0.706982 0.000009 9.7

NJ-62 574 243.9 65.2 10.9266 0.799878 0.710453 0.000008 5.7

NJ-05 584 50.9 351.1 0.4194 0.715243 0.711750 0.000009 7.0

NK-42 586 131.6 206.9 1.8437 0.728083 0.712677 0.000009 6.0

Table
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