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This thesis concerns the reconstruction of N = 1 supersymmetry, starting with the
Standard Model. Next, we partially construct an N = 2 superfield theory. The differen-
tial representation of the N = 2 supercharges is found. Issues regarding the necessity
of mixing left and right chirality in extended supersymmetry is discussed, and possible
ways to circumvent this problem.
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Chapter 1

Introduction

The Standard model in particle physics has been extremely successful in predicting the
existence of particles and the fundamental forces that govern their behavior. The Stan-
dard Model is built on the basic assumption of symmetries in nature. A symmetry is
an invariance of a physical law under some transformation of coordinates, which can
be either internal or external. With an external symmetry we refer to transformations
in space-time. Through Noether’s theorem we know that every symmetry brings about
a conserved quantity. Examples from classical physics involve the homogeneity and
isotropy of space and the homogeneity of time. Because space is homogeneous, the
laws of physics must be the same regardless of where an experiment takes place. This
is a symmetry that leads to the conservation of momentum. Since the laws of physics
are the same in any chosen direction (space is isotropic), then angular momentum is
conserved. The homogeneity of time will lead to the conservation of energy.

In Quantum Field Theory, a free field has no interactions associated with it. This could
be the free fermion field, not interacting with itself or with any electromagnetic field.
This field possesses an internal symmetry related to a change in phase of the fields.
This change of phase will not alter the equations of motion for the field, and thus the
physics of the field is not altered. The phase change just mentioned must however be
global in order to preserve the symmetry. This means that we cannot choose a different
phase shift for each point in space. This does not seem appropriate for a field theory,
which should be local in nature. If we require this symmetry of the phase change to be
local, such that we may pick a different phase at each point in space and still preserve
the symmetry, we require an extra field. The field that appears is the electromagnetic
field. Thus, a requirement that an existing global symmetry be local leads to the neces-
sary existence of the force field interacting with the matter field for which we required
the symmetry to be local. In the Standard Model all the known forces of nature are
constructed in this way.

Since symmetries have been so successful, modern physics strives to find other sym-
metries of nature. The Standard Model is not believed to be the end of the story. It is
believed that it will break down at some energy level. A candidate for physics beyond
the Standard Model is supersymmetry.

A supersymmetric theory will leave physics unchanged under a transformation relat-
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ing fermionic degrees of freedom with bosonic degrees of freedom. All known matter
particles are of fermionic nature. The yet undiscovered Higgs particle is of bosonic na-
ture. Requiring supersymmetry in particle physics leads to the necessary existence of
bosonic paticles for all existing fermions and vice versa.

In supersymmetry there exists a basic algebra that defines the supersymmetric group
transformations. It turns out that this is not the most general algebra for supersymme-
try. The basic algebra leads to what is called N = 1 supersymmetry. An extension of
this algebra leads to what is called extended supersymmetry and the specific extensions
are called N = 2, N = 3 etc.

N = 1 supersymmetry is believed to be the most promising for phenomenological rea-
sons. It is however important to investigate the implications of N > 1 supersymmetry,
since we as of yet do not have any experimental evidence for either model.

We will in this thesis reconstruct N = 1 supersymmetry, starting with the reconstruction
of the Standard Model. Once we have seen how N = 1 supersymmetry is constructed
we will move on to extended supersymmetry and find the implications of using an
N = 2 algebra. We will also begin the construction of an N = 2 superfield theory.



Chapter 2

Background

2.1 Group theory in physics

Group theory is an important subject within physics. It is used to further analyze the
symmetries found in nature. We will here go through a short summary of group theory
which is based on information found in [9].

2.1.1 Groups

A mathematical group consists of a set of operations that have a common property. This
property could for example be that all elements in the group must have determinant 1,
or for example each element must be a transformation that under a unitary transform
preserves some quantity or even both properties. It is however not certain that elements
just having such a property will form a group. An operator having such a property,
must also, when operating on another member of the group, give a new element in the
group. The operators must also obey associativity and there must exist a unit element
as well as an inverse within the group. We can state this as follows:

Let G = {g1, · · · ,gn} be a set of operators and let ◦ define the group operation. Then if
the following is satisfied

• Closure: if gi ∈ G and g j ∈ G then gi ◦g j ∈ G

• Associativity: for ∀gi,g j,gk ∈ G we have (gi ◦g j)◦gk = gi ◦ (g j ◦gk)

• Identity: there ∃I ∈ G such that gi ◦ I = I ◦gi = gi

• Inverse: there ∃g−1
i ∈ G for ∀gi ∈ G such that g−1

i ◦gi = gi ◦g−1
i = I

A group can be either discrete, in which case there are a finite number of elements in
the group, or it can be continuous. In a continuous group there are an infinite number
of elements and each group operation can lead to an infinite number of possible ele-
ments, still in the group.

Although the group elements are in themselves abstract elements, where a group mul-
tiplication has been assigned, these elements can have a specific representation. This is
done by assigning to each element in the group a map to a set of matrices having the
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same group properties. This map need not map to a set that describes the group com-
pletely. A representation of the croup could be the set of matrices only containing the
identity element. This is still a valid map from the group elements to a set of matrices
having the group properties, but it is not a faithful representation. In a faithful represen-
tation, the matrix elements will fully describe the properties and elements of the group
they are mapped from.

2.1.2 Lie Groups

A Lie Group is a continuous group where an additional geometrical structure is devel-
oped on top of the group properties mentioned in section 2.1.1. For the elements in a
continuous group we can select an appropriately sized matrix for the representation and
assigning to each cell in the matrix, a free variable. By then imposing the constraints
that must be present to preserve all the group properties (including the defining prop-
erties of the group), some of the degrees of freedom will be removed (i.e. some of the
matrix cells are given by the variables in the rest of the matrix cells). This can be de-
scribed as follows:

Let M(x1, · · · ,xn×n) be a prospective representation of a group G. We must require
that M(x1, · · · ,xn×n) has the defining group properties (e.g. det M = 1). This will put a
constraint on the matrix elements such that

M = M(x1, · · · ,xm, f1(x1, · · · ,xm), · · · , fn×n−m(x1, · · · ,xm))

This shows that every element in the group represented by M can be identified by a
point x = (x1, · · · ,xm) on the manifold generated by f .

Once the group manifold has been identified it is also possible to identify the inverse
and identity group elements as coordinates x on the manifold. A map φ(x,y) can be
found, that represents group multiplication. This is done by solving the equations

M(x, f (x))M(y, f (y)) = M(z,φ(x,y))

We can now Taylor expand each of the elements of the representation of the Lie Group
around the element M = I where I is the identity. By only keeping terms up to the first
order in the expansion coefficients we have

M ≈ I + x1T1 + · · ·+ xmTm

where T1 to Tm are the resulting matrix coefficients in the Taylor expansion. T1 to Tm are
called the generators of the group G. The generators enable access to group elements
close to the identity, but they also contain all the information needed to gain access to
any other group element on the manifold. This can be seen as follows.

Let ε be an infinitesimal real number and let T = ∑
m
i=1 aiTi be a linear combination

of the generators, then I + εT is still a group element infinitesimally close to the iden-
tity and belonging to the group G. By making repeated infinitesimal group operations
we have

lim
N→∞

(I + εT )N = lim
N→∞

(
I +

θ

N
T
)N

= eθT
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which shows that exp(θT ) is a group element, in the representation of the group, far
away from the identity. Thus, the generators contain the information needed to recon-
struct the group.

The commutator of two group elements g1,g2 ∈ G is defined as

g1 ◦g2 ◦ (g2 ◦g1)−1 = g1 ◦g2 ◦g−1
1 ◦g−1

2

Now, let M1 and M2 be the elements in the representation of G corresponding to g1 and
g2, where we now take g1 and g2 to be elements close to the identity. Further, let εX
and δY be linear combinations of the generators of the group, that correspond to the
elements M1 and M2, respectively. ε and δ are infinitesimal numbers. The commutator
to the lowest order expansion in linear combinations of the generators is then

M1M2M−1
1 M−1

2 = eεXeδY e−εXe−δY ≈ (I + εX)(I +δY )(I− εX)(I−δY )

= I−[δY ]2−εδY X +εδ
2Y XY−[εX ]2+ε

2
δXXY +εδXY−εδ

2XYY−ε
2
δXY X +[εδXY ]2

Terms of second order in ε or δ will vanish, such that

M1M2M−1
1 M−1

2 ≈ I− εδY X + εδXY = I + εδ [X ,Y ]

Since also, M1M2M−1
1 M−1

2 ≈ I +κZ where Z is a linear combination of the generators
of the group and κ is an infinitesimal real number, then we have an algebraic closure
under the commutator [X ,Y ] of any linear combinations X and Y of the generators. The
algebra is called a Lie Algebra. This also implies that the generators Ti must satisfy the
relation

[Ti,Tj] = ∑
k

Ck
i jTk

where Ck
i j are called structure constants and completely determine the structure of the

Lie Algebra.

2.1.3 Lie Group SO(n)

The group O(n) is the group consisting of all orthogonal n× n matrices A that satisfy
the relation AAT = I. As an example we let n = 2 and let

A =
(

a b
c d

)
By requiring orthogonality we get three equations

a2 +b2 = 1 c2 +d2 = 1 ac+bd = 0

The solutions to this set of equations give

A =
(
∓d ±c
c d

)
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Now by using that d =±
√

1− c2 we get that

A =
(
∓
√

1− c2 ±c
c

√
1− c2

)
or A =

(
±
√

1− c2 ±c
c −

√
1− c2

)
In this particular example we choose to look at the following solution of A

A =
(√

1− c2 −c
c

√
1− c2

)
We Taylor expand to first order in c to get A≈ I + εM where

M =
(

0 1
−1 0

)
Here M is the generator of O(2).

2.1.4 Lie Group U(1)

The unitary group U(n) is the group consisting of all n× n matrices A that satisfy the
relation A†A = I. In the standard model, the transformation

T (x) = eiqξ (x)

is applied to fields in the theory. Here ξ (x) is a complex valued function. T is a 1×1
matrix, and satisfies T †(x)T (x) = 1, as well as the axioms for a group. Thus T is an
element in U(1).

2.1.5 Lie Group SU(n)

The special unitary group SU(n) is the group consisting of all n× n matrices A that
satisfy A†A = I as well as detA = 1. In the standard model, the transformation

T (x) = eqλm(x)Bm

is applied to multiplets of fields. λm are real parameters and summation over m is
implied. q ∈ R represents a charge. If Bm is 2× 2, T acts on vectors containing two
fields. If Bm is 3×3, T acts on vectors containing three fields. Since

T †(x) =
[
eqλm(x)Bm

]†
=

∞

∑
k=0

[
(qλm(x)Bm)k

k!

]†

=
∞

∑
k=0

(qλm(x)(Bm)†)k

k!
= eqλm(x)(Bm)†

then T †(x)T (x) = I, assuming B† = −B. With these requirements, T is an element of
U(n). If Bm would be traceless, then

log[detT (x)] = Tr[logT (x)] = Tr
[
logeqλm(x)Bm

]
= Tr [qλm(x)Bm] = qλm(x)Tr [Bm] = 0

⇔ detT (x) = e0 = 1

Now, since detT (x) = 1, then T is an element in SU(n). We see that Bm constitute the
generators of the group.
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Generation Leptons Quarks
1 e− e+ ν̄e νe u d
2 µ− µ+ ν̄µ νµ s c
3 τ− τ+ ν̄τ ντ b t

Table 2.1: The three families of quarks and leptons.

2.2 The Standard Model

The Standard Model is a description of all the known forces in physics, except grav-
ity. In the following we will give a brief overview of the Standard Model based on
information found in [5, 11, 13, 15, 16].

2.2.1 Introduction

The Standard Model fermions are listed in table 2.1. There are three families of leptons
and three families of quarks. The electrons (e) in the first family are paired with their
corresponding neutrinos (ν) in the same family. The three families of leptons are the
electron family (e), the muon family (µ) and the tau family (τ). The six quarks are up
(u), down (d), strange (s), charm (c), bottom (b) and top (t). Each quark carries electric
charge, hypercharge, isospin and color charge. The color charge is represented by one
of the colors red, green or blue. All the leptons are spin-1/2 fermions.

The forces between particles are mediated by the gauge bosons (i.e. integer spin parti-
cles). The electromagnetic force is mediated by the massless photon (γ), the weak force
by the massive W± and Z0 particles, and the strong force is mediated by the massless
gluons (g). The Higgs mechanism gives particles their mass, and it carries its own par-
ticle, called the Higgs particle.

The Standard Model is built upon the principle of quantum fields and their symme-
tries. One can start with a massless Lagrangian density. By requiring an existing global
symmetry to be local, then additional gauge fields must be added to the Lagrangian den-
sity to satisfy local gauge invariance, as opposed to a global invariance. In choosing the
correct symmetries to make global, then the corresponding gauge field will correspond
to the force mediators between the particles in the Lagrangian density. The correspond-
ing theories are called gauge theories. In the case of QED, the massless photon field
emerges as a consequence of making the existing global U(1) symmetry local. For the
weak interactions, massless gauge fields appear by requiring local SU(2) invariance
of the doublet containing the left chiral parts of a fermion and its associated neutrino.
These gauge fields should according to experiment have mass. By realizing that the
minima of the Lagrangian leads to a broken symmetry, one finds that these mediators
have masses hidden by the broken symmetry. These are the W± and Z0 bosons. For the
quarks, one can arrange the three colors of the quarks into a multiplet of 3 quarks (red,
green and blue), and insist on SU(3) local gauge symmetry. This will lead to the gluon
fields coupling to the Lagrangian. In short, the Standard Model is generated by requir-
ing local gauge invariance under the combined group U(1)× SU(2)L× SU(3). The L
stands for left, and refers to the fact that only the left chiral fermions are subject to the
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local gauge condition.

2.2.2 The QED sector

We start with a free Lagrangian L, modeling a lepton l ∈ {e,µ,τ} with mass m

L = ∑
l

ψ̄l(x)
(
iγµ

∂µ −m
)

ψl(x) (2.1)

where ψl is a 4-component Dirac spinor. L is invariant under the global U(1) transfor-
mation ψ(x)→ ψ

′
(x) = ψ(x)e−iqξ , where ξ ∈ R is a constant. These transformations

represent rotations of the components of ψ in the complex plane (note that each com-
ponent ψa ∈ C where a denotes the spinor index). If the invariance only holds when ξ

is independent of x, then the field is not invariant separately at each space-time position
x. It is then natural to believe that the invariance of L should hold for the local trans-
formation e−iqξ (x). Since ξ commutes with every object in the Lagrangian, this leads
to an Abelian theory. Inserting the transformation into L gives

L = ∑
l

{
ψ̄l(x)[iγµ

∂µ −m]ψl(x)+qψ̄l(x)γµ
ψl(x)∂µξ (x)

}
where the derivative ∂µ generated the additional term. By introducing the covariant
derivative ∂µ → Dµ , satisfying

D
′
µψ

′
l (x) = e−iqξ (x)Dµψl(x) (2.2)

then L will exhibit U(1) symmetry. Note that

∂µ(e−iqξ (x)
ψl(x)) = [∂µ − iq∂µξ (x)]e−iqξ (x)

ψl(x) (2.3)

To construct the covariant derivative Dµ we need to start with the partial derivative ∂µ ,
and then add a vectorial quantity Aµ(x) that transforms in such a way as to cancel the
extra term emerging in equation (2.3). We then see that by defining Dµ ≡ [∂µ + iqAµ ],
we have that

D
′
µψ

′
l (x) = D

′
µ [e−iqξ (x)

ψl(x)] = [∂µ + iqA
′
µ(x)− iq∂µξ (x)]ψl(x)e−iqξ (x)

By requiring the introduced field to transform as A
′
µ(x) = Aµ(x)+ ∂µξ (x), then equa-

tion (2.2) is satisfied. To make equation (2.1) invariant under the local U(1) symmetry
we make the substitution ∂µ → Dµ , leading to

L = ∑
l

{
ψ̄l(x)

(
iγµ

∂µ −m
)

ψl(x)−qψ̄l(x)γµ
ψl(x)Aµ(x)

}
This is not a complete Lagrangian, since it includes the field Aµ(x) with no kinetic
term. A term that is invariant under the U(1) symmetry and consisting of Aµ and its
derivatives is needed. The Ricci identity

[Dµ ,Dν ] = iq(∂µAν −∂νAν) = iqFµν
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shows that, since [Dµ ,Dν ] is manifestly invariant under U(1) transformations, then Fµν

must retain U(1) invariance. Restricting to a renormalizable theory, it is necessary to
only include terms up to m4, which leave two options

FµνFµν ε
αβ µνFαβ Fµν

where the second option breaks parity and time reversal symmetry. Using the familiar
normalization from electrodynamics, we get the QED Lagrangian

LQED = ∑
l

{
ψ̄l(x)

(
iγµ

∂µ −m
)

ψl(x)−qψ̄l(x)γµ
ψl(x)Aµ(x)

}
− 1

4
FµνFµν

where ψl describes the leptons {e+,e−,µ+,µ−,τ+,τ−} and the gauge field Aµ de-
scribes the photon, which couples to the conserved current Jµ = qψ̄l(x)γµψl(x).

2.2.3 The electro-weak sector

There are three types of weak interactions. These are the purely leptonic, semi lep-
tonic and purely hadronic interactions. An example of a semi leptonic process is
n→ p + e−+ ν̄e, and a pure hadronic processes is Λ→ p + π−. To start with, only
purely leptonic processes such as τ−→ e−+ ν̄e +ντ are considered.

We start with a system of three free massive Dirac fields for the fermions and three
free massive Dirac fields for their corresponding neutrinos (we will in this section omit
explicit x dependencies to simplify notation).

L = ∑
l

{
ψ̄l(iγµ

∂µ −ml)ψl + ψ̄νl(iγ
µ

∂µ −mνl)ψνl

}
where l ∈ e,µ,τ represents the three families of particles. Next we project the leptons
into their left and right components using ψL = 1

2(1− γ5)ψ and ψR = 1
2(1 + γ5)ψ .

Then ψ = ψL +ψR and we get that

L = ∑
l

{
ψ̄

L
l (iγµ

∂µ −ml)ψL
l + ψ̄

R
l (iγµ

∂µ −ml)ψR
l
}

+∑
l

{
ψ̄

L
νl
(iγµ

∂µ −mνl)ψ
L
νl

+ ψ̄
R
νl
(iγµ

∂µ −mνl)ψ
R
νl

}
+∑

l

{
ψ̄

L
l (iγµ

∂µ −ml)ψR
l + ψ̄

R
l (iγµ

∂µ −ml)ψL
l
}

+∑
l

{
ψ̄

L
νl
(iγµ

∂µ −mνl)ψ
R
νl

+ ψ̄
R
νl
(iγµ

∂µ −mνl)ψ
L
νl

}
L has U(1) global symmetry. Experiments show interactions between left handed lep-
tons and their left handed neutrinos. Therefore we want to impose a gauge symmetry
on the lepton - neutrino left doublets and leave the right handed components unchanged
under the corresponding transformations. Since right and left parts of the spinors cou-
ple, L does not posses such a symmetry. We decouple the right and left handed spinors
by setting ml = mνl = 0 (this will be fixed by the Higgs mechanism). We introduce the
doublet

Ψl ≡
(

ψL
νl

ψL
l

)
Ψ̄l =

(
ψ̄L

νl
ψ̄L

l
)
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Then L can be written as

L = ∑
l

{
Ψ̄l(iγµ

∂µ)Ψl + ψ̄
R
l (iγµ

∂µ)ψR
l + ψ̄

R
νl
(iγµ

∂µ)ψR
νl

}
We now see that L still has a global symmetry under the U(1) symmetry transformation

ψ
L
l → ψ

′L
l = ψ

L
l e−ig

′
Y ξ

ψ
L
νl
→ ψ

′L
νl

= ψ
L
νl

e−ig
′
Y ξ

ψ
R
l → ψ

′R
l = ψ

R
l e−ig′Y ξ

ψ
R
νl
→ ψ

′R
νl

= ψ
R
νl

e−ig′Y ξ

where g
′
,Y,ξ ∈R. In addition, L now has a global SU(2) symmetry through the trans-

formation
Ψl →Ψ

′
l = e

i
2 gβnσn

Ψl

where βn ∈ R. We sum over n = 1,2,3 where σn are the Pauli matrices. We then have
a combined global U(1)×SU(2) symmetry described by

Ψl →Ψ
′
l = e

i
2 gβnσn

Ψle−ig′Y ξ

ψ
R
l → ψ

′R
l = ψ

R
l e−ig′Y ξ

ψ
R
νl
→ ψ

′R
νl

= ψ
R
νl

e−ig′Y ξ

The Pauli matrices satisfy the algebra

[σm,σn] = 2iεmnkσ
k (2.4)

while Y is the weak hypercharge, which is related to the electric charge through
Y = Q/e− IW

3 . IW
3 is the weak isocharge associated to the corresponding weak hy-

percharge current. Y is −1
2 when associated with Ψl , −1 when associated with ψR

l
and 0 when associated with ψR

νl
. The transformations will hold locally by replacing the

derivatives of L with the covariant derivatives Dµ . These transformations are then el-
ements in the product group U(1)× SU(2)L. Going from global to local invariance,
ξ → ξ (x) and λn→ λn(x). There will be three variations of Dµ , depending on which
field they act on (Ψl , ψR

l or ψR
νl

).

We start with the covariant derivative acting on Ψl . We require that

D
′
µΨ

′
l = e

i
2 gλnσn

(DµΨl)e−ig′Y ξ

Since the transformations e
i
2 gλnσn

constitute group elements in a Lie group on a smooth
manifold, then it suffices to treat the transformations for λn infinitesimal. Thus

D
′
µΨ

′
l = [1+

i
2

gλnσ
n](DµΨl)e−ig′Y ξ (2.5)
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There are four degrees of freedom in the transformation (three in λn and one in ξ ). We
may choose an ansatz for Dµ , using three gauge fields Wn,µ and one gauge field Bµ ,

Dµ = ∂µ + ig′Y Bµ +
i
2

gWn,µσ
n (2.6)

Inserting the ansatz of D
′
µ into equation (2.5), we get

D
′
µΨ

′L
l = [1+

i
2

gλnσ
n]
{

[∂µ + ig′Y B
′′
µ +

i
2

gW
′′
n,µσ

n]ΨL
l

}
e−ig′Y ξ

− [1+
i
2

gλnσn]ig′Y (∂µξ )ΨL
l e−ig′Y ξ +

i
2

gσ
n(∂µλn)ΨL

l e−ig′Y ξ (2.7)

− i
4

g2
λnW

′′
n,µ [σm,σn]ΨL

l e−ig′Y ξ

Requiring B
′′
µ = Bµ + ∂µξ , will make the second term in equation (2.7) cancel, while

B
′′
µ → Bµ in the first term. A further requirement of W

′′
n,µ = W

′
n,µ −∂µλn gives

D
′
µΨ

′L
l = [1+

i
2

gλnσ
n]
{

[∂µ + ig′Y Bµ +
i
2

gW
′
n,µσ

n]ΨL
l

}
e−ig′Y ξ

− i
2

g2
λnW

′
n,µεmnkσ

k
Ψ

L
l e−ig′Y ξ

where O(λ 2
n ) terms are left out and the algebra of equation (2.4) has been used to write

the result in terms of the structure constants. Finally we may cancel the last term,
by requiring the transformation W

′
n,µ = Wn,µ − gλnWk,µεnkm and disregarding O(λ 2

n )
terms. We have then found that equation (2.6) satisfies the requirements of the covariant
derivative with the gauge field transformations being

Bµ → Bµ +∂µξ

and
Wn,µ →Wn,µ −∂µλn−gλnWk,µεnkm

Using the same calculations we find that

D
′
µψ

′R
l = (Dµψ

R
l )e−ig′Y ξ

leaves L invariant, where Dµ = ∂µ + ig′Y Bµ , and is satisfied if the gauge field trans-
forms as Bµ → Bµ +∂µξ . Inserting the values of the hypercharges we have

DµΨl = [∂µ −
i
2

g′Bµ +
i
2

gWn,µσ
n]Ψl

Dµψ
R
l = [∂µ − ig′Bµ ]ψR

νl

Dµψ
R
νl

= ∂µψ
R
νl

Bµ → Bµ +∂µξ
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Wn,µ →Wn,µ −∂µλn−gλnWk,µεnkm

By making the replacement ∂µ → Dµ in L we get

L = ∑
l

{
Ψ̄l(iγµ

∂µ)Ψl + ψ̄
R
l (iγµ

∂µ)ψR
l + ψ̄

R
νl
(iγµ

∂µ)ψR
νl

}
+∑

l

{
−g
[

1
2

Ψ̄lγ
µ

σ
n
Ψl

]
Wn,µ −g′

[
−1

2
Ψ̄lγ

µ
Ψl− ψ̄

R
l γ

µ
ψ

R
l

]
Bµ

}
There are no free fields for the four gauge fields Wn,µ and Bµ in this Lagrangian. In
analogy with QED, the U(1)× SU(2)L invariant free field for Bµ will be −1

4BµνBµν

with Bµν ≡ ∂ νBµ − ∂ µBν (where Bµ is defined to be SU(2)L invariant). As in sec-
tion 2.2.2 we may use the covariant derivative to find a U(1)× SU(2)L invariant term
consisting of Wn,µ and its derivatives. We have that

[Dµ ,Dν ]Ψl =
i
2
[g′Bµν −gWn,µνσ

n−g2Wn,µWm,νεnmkσ
k]Ψl

where Wn,µν ≡ ∂νWn,µ−∂µWn,ν . Since Bµν is U(1) invariant and by definition SU(2)L
invariant and Wn,µ by definition is U(1) invariant, then

Gn,µν ≡Wn,µν −gWk,µWm,νεkmn

must be a U(1)×SU(2)L invariant. With the normalization conditions we employ, we
get the following massless electro-weak Lagrangian LEW

LEW =∑
l

{
Ψ̄l(iγµ

∂µ)Ψl + ψ̄
R
l (iγµ

∂µ)ψR
l + ψ̄

R
νl
(iγµ

∂µ)ψR
νl

}
− 1

4
BµνBµν−

1
4

Gn,µνGn,µν

+∑
l

{
−g
[

1
2

Ψ̄lγ
µ

σ
n
Ψl

]
Wn,µ −g′

[
−1

2
Ψ̄lγ

µ
Ψl− ψ̄

R
l γ

µ
ψ

R
l

]
Bµ

}

Next, we need to attach two Higgs fields to LEW and require symmetry breaking to
regain the lepton masses and to acquire masses for the Wn,µ gauge fields. The Higgs
field that will generate masses for the Wn,µ gauge fields is a scalar doublet, with a de-
generate ground state. The corresponding Lagrangian density has global U(1)×SU(2)
symmetry.

LHW = [∂ µ
Φ]†[∂µΦ]−µ

2
Φ

†
Φ−λ [Φ†

Φ]2

where Φ =
(

φ1
φ2

)
. The Hamiltonian density is H = ∑i πiφi−LHW . By stating this in

terms of |φ1|2 = φ
†
1 φ1 and |φ2|2 = φ

†
2 φ2 we get

H = |φ̇1|2−∂
K

φ
†
1 ∂Kφ1 + |φ̇2|2−∂

K
φ

†
2 ∂Kφ2 + µ

2|φ1|2 + µ
2|φ2|2 +λ [|φ1|2 + |φ2|2]2

where we define the Higgs potential

V (|φ1|, |φ2|)≡ µ
2|φ1|2 + µ

2|φ2|2 +λ [|φ1|2 + |φ2|2]2
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Figure 2.1: Higgs potential V (|φ1|, |φ2|) illustrated with µ2 =−1 and λ = 0.6.

From figure 2.1 we see that with µ2 < 0 and λ > 0, the classical ground state of H as
well as the potential V are negative. This degeneracy of the ground state will break the
U(1)×SU(2) symmetry upon a choice of ground state. When demanding that

∂H

∂ |φ1|
= 0 and

∂H

∂ |φ2|
= 0

we find the minimum of the classical fields to be given by

|φ1|2 + |φ2|2 =
−µ2

2λ
≡ v2

2
(2.8)

where we are free to choose a ground state in the |φ1|, |φ2| plane, that satisfy this
relation. We make the U(1)× SU(2) symmetry local in the same manner as for the
spinors, using the covariant derivative used for Ψl (this is also a doublet). Then, by
making the substitution ∂µ → Dµ in LEW , setting the hypercharge Y = +1

2 in equation
(2.6), we have that

LHW = [∂ µ
Φ

†][∂µΦ]+
i
2

g′Bµ [∂ µ
Φ

†]Φ+
i
2

gWn,µ [∂ µ
Φ

†]σn
Φ

− i
2

g′Bµ†
Φ

†
∂µΦ+

1
4
(g′)2Bµ†BµΦ

†
Φ+

1
4

g′gWn,µBµ†
Φ

†
σ

n
Φ

− i
2

gW †
m,µΦ

†(σm)†
∂µΦ+

1
4

gg′W µ†
m BµΦ

†(σm)†
Φ+

1
4

g2W µ†
m Wn,µΦ

†(σm)†
σ

n
Φ

−µ
2
Φ

†
Φ−λ [Φ†

Φ]2

From equation (2.8) we see that we are free to choose

Φ0 =
1√
2

(
0
v

)
as the ground state of the system. By doing this, the SU(2) symmetry is broken. We
may now vary the fields around Φ0 by defining the field variable as

Φ = Φ0 +
1√
2

(
a(x)+ ib(x)
β (x)+ ic(x)

)
(2.9)



14 Background

where a, b, c and β are real fields. We are allowed to choose the unitary gauge, a =
b = c = 0 (we will see that the gauge fields that are now mass-less will acquire masses,
which leads to three additional degrees of freedom used to choose a gauge for a, b and
c). We may now insert equation (2.9) into LHW while applying the unitary gauge. We
will then be able to identify the following terms

L1 =
1
2

∂µβ∂
µ

β − 1
2
(
µ

2 +3λv2)
β

2

L2 =
3

∑
n=1

1
2

1
4

g2v2W µ†
n Wn,µ

L3 =
1
2

1
4
(g′)2v2Bµ†Bµ

L4 =−1
4

gg′v2Bµ†W3,µ

Here, L1 is the free real scalar Higgs field with mass m2
H = (µ2 + 3λv2) = −2µ2. L2

represents the mass terms for the three Wn,µ bosons with mass m2
W = 1

4v2g2. We notice
from L3 that the U(1) gauge field Bµ also acquires a mass term. L4 consists of those
additional terms that contain only Bµ and W3,µ . The remaining terms can be identified
as interaction terms. By substituting into L2 +L3 +L4,

W3,µ = cosθW Zµ + sinθW Aµ

Bµ =−sinθW Zµ + cosθW Aµ

where θW is the weak mixing angle and demanding that gsinθW = g′ cosθW , we will
be left with no terms quadratic in Aµ . Then, the field Aµ has no mass and is taken to be
the photon field. Isolating terms quadratic in Zµ , we find

LZM =
1
2

1
4

g2v2 1
cos2 θW

Zµ†Zµ

where we find the mass of the Z boson,

m2
Z =

g2v2

4cos2 θW
=

m2
W

cos2 θW

.

Next, we introduce masses for the leptons, by coupling to the Higgs field through the
Yukawa interaction term,

LY =−gl[Ψ̄lψ
R
l Φ+Φ

†
ψ̄

R
l Ψl]−gνl [Ψ̄lψ

R
νl

Φ̃+ Φ̃
†
ψ̄

R
νl

Ψl]

where gl and gνl are the Yukawa coupling constants and Φ̃ =−i[Φ†σ2]T . LY is invari-
ant under U(1)×SU(2) transformations. We now substitute Φ with equation (2.9) and
employ the unitary gauge. We can then identify the following terms

L5 =− 1√
2

glvψ̄
L
l ψ

R
l −

1√
2

glvψ̄
R
ψ

L
l
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L6 =− 1√
2

gνl vψ̄
L
νl

ψ
R
νl
− 1√

2
gνl vψ̄

R
νl

ψ
L
νl

These are the mass terms of the leptons, with masses ml = 1√
2
glv and mνl =

1√
2
gνl v. The

remaining terms are interaction terms between leptons and the Higgs field β . Putting
together all the terms from LEW , the Higgs term and the Yukawa interaction terms, we
arrive at the full massive electro-weak Lagrangian, unifying the electromagnetic and
the weak interactions. To include quarks in this model it is possible to consider left
quark U(1)× SU(2) doublets, eg. (uc,dc)L and uc

R, dc
R, where c is the color of the

quarks. This would enable, not only purely leptonic processes, but also hadronic and
semi-leptonic processes.

2.2.4 The QCD sector

The development of QCD, as a gauge theory, is very similar to the electro-weak gauge
theory described in section 2.2.3. We start out with a free, massive quark color triplet
field of leptons.

L = Ψ̄(iγµ
∂µ −m)Ψ

where Ψ represents a color triplet for one specific family of quarks, and is defined by

Ψ≡

ψr
ψg
ψb


where r, g and b denotes red, green and blue, respectively. The triplet is invariant under
U(1)×SU(3) global transformations

e−iqξ eiq′tnMn

where q is the photon coupling constant and q′ is the gluon coupling constant. tn ∈ R
while n = 1, ...,8. Mn are the generators and, since the above transformations form a
group, they satisfy the algebra1

[Mn,Mm] = CnmkMk

where Cmnk are the structure constants. We require L to be invariant under the corre-
sponding local U(1)×SU(3) transformations. The covariant derivative is

Dµ = ∂µ + iqAµ + iq′Kn,µMn

with the corresponding transformations of the 9 gauge fields Aµ , Kn,µ

Aµ → Aµ +∂µξ

Km,µ → Km,µ −∂µtm− iq′tnKk,µCknm

where summations over k and n are implied. Making the replacement ∂µ → Dµ in L

yields
L = Ψ̄(iγµ

∂µ −m)Ψ−qΨ̄γ
µAµΨ−q′Ψ̄γ

µMn
ΨKn,µ

1Some authors pull out an i from Cnmk as convention
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We now need free fields for the gauge fields. For Aµ this is FµνFµν . For Kn,µ we
can use the commutator of the covariant derivatives, only leaving terms involving Kn,µ .
Then we get

[Dµ ,Dν ] = iq′Mk[∂µKk,ν −∂νKk,µ ]− (q′)2CnmkMkKn,µKm,ν

We may now define the SU(3) invariant quantity

Kk,µν ≡ ∂µKk,ν −∂νKk,µ − (q′)2CnmkKn,µKm,ν

Using the standard normalization constants, we arrive at the QCD Lagrangian

LQCD = Ψ̄(iγµ
∂µ −m)Ψ− 1

4
FµνFµν −

1
4

Kn,µνKn,µν −qΨ̄γ
µAµΨ−q′Ψ̄γ

µMn
ΨKn,µ

Aµ is the photon field, while Kn,µ are the 8 gluon fields binding the quarks.

2.3 Dirac spinors

Four-component Dirac spinors are used throughout the standard model. They are de-
fined through its transformation properties, as are contravariant and covariant vectors.
In the following we derive the transformation properties of the Dirac spinor based on
the presentation found in [2, 8, 13].

2.3.1 Transformations in general

The difference between a type of spinor and a vector is how they transform under
Lorentz transformations. As an introduction we look at how the components of a vec-
tor and the components of a covector transform. For a vector we have the following
(see [8])):

Let x′µ = x′µ(x) be a map between a primed and an unprimed coordinate system, and
let x = x(t), where t ∈ R is an arbitrary parameter and x′,x ∈ Rn, then

dx′µ

dt
=

∂x′µ

∂xν

dxν

dt

v′µ =
∂x′µ

∂xν
vν (2.10)

Since dx′µ
dt ≡ v′µ and dxν

dt ≡ vµ are any vectors in the primed and unprimed systems
respectively, then the transformation (2.10) is an intrinsic property of vectors. Any
function failing (2.10) is therefore, by definition, not a vector.

There exist other objects that do not transform as a vector. To show this, we let
σ µ : T M → R be a linear map, from a linear space T M of vectors v to R. Let {êν}
be a basis for T M, such that σ µ(êν) = δ

µ

ν . Then, because of linearity of σ we have

σ
µ(v) = σ

µ(vν êν) = vν
σ

µ(êν) = vν
δ

µ

ν = vµ
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Next, create a linear functional α : T M→ R using σ as basis. Then α = aµσ µ . Now,
interpret aµ as the components of an n-tuple, similar to how vµ are the components of
the n-tuple which transforms as a vector. Since v transforms as a vector and σ µ(v) = vµ ,
then σ also transforms as a vector. Using (2.10) on σ we find

α = aµσ
µ = aµ

∂x′µ

∂xν
σ

ν = a′νσ
ν

where the transformation property of a emerges as

a′ν =
∂x′µ

∂xν
aµ ⇒ a′µ =

∂x′ν

∂xµ
aν (2.11)

Comparing equations (2.10) and (2.11) it is evident that the summation indices have
been exchanged and thus a is not a vector. It is in fact a covariant vector (distinguished
from a vector which is often refered to as a contravariant vector). The familiar connec-
tion between the two is seen by Riesz Representation Theorem [3], which says that any
linear functional α can be represented by an inner product 〈v,w〉. Then

α(êν) = aµσ
µ(êν) = aµδ

µ

ν = aν = 〈êν ,v〉= 〈êν ,vµ êµ〉= vµ〈êν , êµ〉= vµgµν

where gµν is the familiar metric and aν ≡ vν .

Let x′µ = Λµ
νxν be a Lorentz transformation from a non-primed to a primed system.

Then
∂x′µ

∂xν
= Λ

µ
ν

and, according to (2.10), any xν transforming according to the above Lorentz transfor-
mation is a contravariant vector. Now, multiply both sides of x′µ = Λµ

νxν with gαµ ,
then x′α = Λανxν = Λανgνβ xβ = Λα

β xβ . xβ does not transform according to (2.10) be-
cause of the exchange of summation indices. xβ transforms according to (2.11), which
confirms that xβ is a covariant vector as the notation suggests.

A two-component spinor χ is defined by its transformation property [7]

χ → e−
i
2 θ ·σ

χ

where σ are the Pauli matrices, and θ , denotes the free parameter of the transformation.
This transformation forms the group SU(2), as seen in section 2.1. We can also mention
that the group SO(5) has a four dimensional spinor representation [9].

2.3.2 Definition of a Dirac spinor

The Dirac equation is (iγµ∂µ−m)ψ(x) = 0. Lorentz covariance requires that this equa-
tion of motion has the same form in any inertial system. The matrix γµ is equivalent up
to a unitary transform and no distintions need to be made on γµ between different iner-
tial systems [2]. Since x transforms as x′ν = Λν

µxµ , then ψ must also transform. The
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transformation will enter in the following way (see [2]):

Let S(Λ) be a linear transformation such that

ψ
′(x′) = S(Λ)ψ(x) (2.12)

We find a relation between S(Λ) and γµ by inserting S−1(Λ)S(Λ) = 1 and left multi-
plying with S(Λ) on the equation of motion, and then assume Lorentz covariance:

S(Λ)(iγµ
∂µ −m)S−1(Λ)S(Λ)ψ(x) = 0

(iS(Λ)γµS−1(Λ)∂µ −m)(Λ)ψ ′(x′) = 0

Since

∂µψ
′(x′) =

∂ψ ′(x′)
∂xµ

=
∂ψ ′(x′)

∂x′ν
∂x′ν

∂xµ
=

∂ψ ′(x′)
∂x′ν

Λ
ν

µ = Λ
ν

µ∂
′
νψ
′(x′)

we have the replacement ∂µ → Λν
µ∂ ′ν and

(iS(Λ)γµS−1(Λ)Λν
µ∂
′
ν −m)(Λ)ψ ′(x′) = 0

Lorentz covariance requires

γ
ν ≡ S(Λ)γµS−1(Λ)Λν

µ (2.13)

such that (iγν∂ ′ν −m)(Λ)ψ ′(x′) = 0 in the primed inertial system. Equation (2.13) can
be solved and has the solution

S(Λ) = e−
i
4 ωσµν Iµν

(2.14)

where

σµν =
i
2
[γµ ,γν ] (2.15)

Iµν together with ω specifies the transformation. A 4-component Dirac spinor is de-
fined by its transformation (2.12) together with (2.14).

2.4 Weyl spinors

In supersymmetric theories we wish to relate bosonic to fermionic degrees of freedom.
It is then convenient to have a spinorial object like the Dirac spinor, but with two de-
grees of freedom. The Weyl spinor is such an object. In the following we look at the
transformation properties of these objects including the dotted index notation (van der
Waerden notation) used to construct invariants out of the Weyl spinors. The presenta-
tion below is based on [1] and [12].
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2.4.1 Definition of Weyl spinors

It is possible to separate the Dirac equation into two equations coupled by the mass, m,
each represented by using 2-component spinors ψ and χ . The two resulting equations
are Lorentz covariant, provided the spinors ψ and χ transform in the correct manner.
These transformations lead to the definition of 2-component Weyl spinors. The calcu-
lations are shown below (see [1]).

Let Ψ be a 4-component Dirac spinor and represent the components in this spinor as

Ψ =
(

ψ

χ

)
where ψ and χ each have two components. Next, use the following representation of
the Dirac equation:

γ0 =
(

0 1
1 0

)
γ =

(
0 −σ

σ 0

)
→ γ0 · γ = α =

(
σ 0
0 −σ

)
By using Ψ and the above representation we get

(iγµ
∂µ −m)Ψ = iγ0

∂0Ψ+ iγK
∂KΨ−mΨ = 0

Multiply from left with γ0

i∂0Ψ+ iγ0
γ

K
∂KΨ− γ

0mΨ = 0

to get

E
(

ψ

χ

)
−
(

σ 0
0 −σ

)(
ψ

χ

)
· p−m

(
0 1
1 0

)(
ψ

χ

)
= 0

which leads to the following form of the Dirac equation

(E +σ · p)χ = mψ (2.16)

(E−σ · p)ψ = mχ (2.17)

where σ = (σ1,σ2,σ3) and σK is the K’th Pauli matrix. We see that a nonzero mass
term will cause a mixing between the two spinors ψ and χ . Next, perform a Lorentz
transformation on equations (2.16) and (2.17) insisting on Lorentz covariance. The
energy and momentum transform as

E ′ = E−η · p

p′ = p−ηE− ε× p

Here ε is an infinitesimal rotation and η is an infinitesimal boost. Lorentz covariance
then gives a transformation on ψ and χ

ψ
′(x′) =

(
1+ i

1
2

ε ·σ − 1
2

η ·σ
)

ψ(x) = V (Λ)ψ(x) (2.18)
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χ
′(x′) =

(
1+ i

1
2

ε ·σ +
1
2

η ·σ
)

χ(x) = V †−1
(Λ)χ(x) (2.19)

which are the transformations defining 2-component Weyl spinors.

ψ is called a right-chiral spinor while χ is called a left-chiral spinor. The purpose of
the 2-component spinors is to reduce the number of degrees of freedom that are present
in the 4-component spinors to two. This further poses a requirement of representing a
4-component spinor using only χ (or alternatively ψ). There must then be a way of re-
trieving ψ from χ (or vice versa). Lorentz-invariant constructions using 2-component
spinors are of great importance. These constructions will consist of products of ψ and
χ . Since we require using only χ in our constructions, then a ψ construction that trans-
forms like χ must be found. Converting between spinor types and creating objects that
transform as χ from ψ can be done as follows (see [1])

Let σ µ = (1,σ) and σ̄ µ = (1,−σ), then

σ
µ pµψ = mχ

σ̄
µ pµ χ = mψ

which shows that from the two components of χ it is possible to find the components of
ψ and vice-versa. Now, let σ2 be the second Pauli matrix, then from equations (2.18)
and (2.19)

σ2χ
′∗ = V (Λ)σ2χ

∗

which shows that σ2χ∗ transforms as ψ through V (Λ). Denote

ψχ ≡ iσ2χ
∗

Similarly, χψ ≡−iσ2ψ∗ is a ψ construction transforming like χ .

2.4.2 Dotted index notation

We wish to have a notational tool to help constructing Lorentz invariants. Specifically it
will be a useful tool in constructing invariants only containing left-chiral spinors. From
a 4-component Dirac spinor we can construct the Lorentz invariants

Ψ̄Ψ = Ψ
†
γ

0
Ψ = ψ

†
χ + χ

†
ψ

It turns out that, through the transformations V and V †−1 for the right-chiral and left-
chiral spinors respectively, ψ†χ and χ†ψ are separately Lorentz invariant. We now
define

χa ≡ The components of χ

and
ψ

a ≡ The components of ψ
†

where we always will denote with a lower index, quantities that transform as left-chiral
spinors. Then we may write

ψ
†
χ = ψ

a
χa
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where a is summed over. It is important to have the summation indices from top left to
bottom right. Having the indices from bottom left to top right will give a sign reversal
since the quantities ψa and χa are Grassmanian:

ψ
a
χa = ψ

1
χ1 +ψ

2
χ2 =−χ1ψ

1−χ2ψ
2 =−χaψ

a

We may further look at the second invariant quantity χ†ψ . To describe this invariant,
we define

ψ̄
ȧ ≡ The components of ψ

and
χ̄ȧ ≡ The components of χ

†

such that
χ

†
ψ = χ̄ȧψ̄

ȧ

We have then made sure that components transforming as right chiral spinors have an
upper index. Notice that the dotted indices must be summed from the bottom left to
the top right to get the correct value. Also notice the bar that always accompanies
the dotted index. This allows us, in some instances, to drop the indices and use a dot
product notation instead. We have seen that −iσ2ψ∗ transforms as a left chiral spinor.
We would like to use a lower un-dotted index for such a component.

ψa ≡ The components of − iσ2
ψ∗

We are then left with iσ2χ∗ that transforms as a right chiral quantity. We may define

χ̄
ȧ ≡ The components of iσ2

χ∗

From the above definitions we see that

(χa)† = χ̄ȧ

and
(ψ ȧ)† = ψ

a

such that, taking the hermitian conjugate will switch between a dotted and un-dotted
index. We may write χ∗= (χ†)T where T denotes the transpose. iσ2(χ†)T transforms
as a right chiral quantity and is denoted χ̄ ȧ and χ† transforms as a left chiral quantity
denoted χ̄ḃ, thus

χ̄
ȧ = i[σ2]ȧḃ

χ̄ḃ ≡ ε
ȧḃ

χ̄ḃ

Similarly we get that
ψa =−i[σ2]abψ

b ≡ εabψ
b

χ̄ȧ =−i[σ2]ȧḃχ̄
ḃ ≡ εȧḃχ̄

ḃ

ψ̄
ȧ = i[σ2]ȧḃ

ψ̄ḃ ≡ ε
ȧḃ

ψ̄ḃ

We see that the σ2 Pauli matrix is used to raise and lower Weyl spinor indices. Here,
εab is the totally antisymmetric tensor which has the property that εabεbc = δ c

a [1].

We have now got a notation where invariants are made by combining either dotted
or un-dotted quantities (i.e. in a summation dotted and un-dotted indices are treated as
different indices even though they have the same letter).
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Chapter 3

N = 1 Supersymmetry

In the following, an overview of N = 1 SUSY will be provided, based on information
found in [1, 6, 10, 12–14, 16].

3.1 Introduction

There are unwanted infinities in the Standard Model when trying to calculate the vac-
uum expectation values of bosonic and fermionic fields. This can be seen as follows.

The Lagrangian LB for a bosonic complex scalar field and the Lagrangian LF for a
fermionic field and their corresponding field mode expansions are [13]

LB = ∂µφ
†
∂

µ
φ −m2

φ
†
φ

φ(x) = ∑
k

1√
2V ωk

[a(k)e−ikx +b†(k)eikx]

and
LF = ψ̄[iγµ

∂µ −m]ψ

ψ(x) = ∑
p,s

√
m

2V Ep
[c(s, p)us(p)e−ipx +d†(s, p)vs(p)eipx]

where the Einstein summing convention is employed. The Hamiltonian densities of the
two Lagrangians are calculated as HB = πφ̇ +π†φ̇ †−LB and HF = pψ̇ + p†φ̇ †−LF ,
where π and p are the respective conjugate momenta. To calculate the energy of the
vacuum we ignore all normal ordering. Then we get that

〈0|HB|0〉= 〈0|
∫

d3xHB|0〉= 〈0|∑
k

ωk[a†(k)a(k)+b†(k)b(k)+1]|0〉= 2∑
k

1
2

ωk

and

〈0|HF |0〉= 〈0|
∫

d3xHF |0〉= 〈0|∑
p

Ep

2
[c†(s, p)c(s, p)+d†(s, p)d(s, p)−1]|0〉=−2∑

p

1
2

Ep

where the relations

u†
s,α(p)uα

s′(p) =
Ep

m
δss′ = v†

s,α(p)vα

s′(p)



24 N = 1 Supersymmetry

and
u†

s,α(p)vα

s′(−p) = 0

have been employed. Both energies of the vacuum are infinite, but for the fermion
field, the energy is negative. Thus, by combining fermionic and bosonic degrees of
freedom we may extend the theory such that these vacuum energies cancel each other.
This is the case in a supersymmetric theory where each fermionic degree of freedom is
partnered with a bosonic degree of freedom and vice versa, through an invariance un-
der transformations between the fermionic and bosonic fields. Then, when calculating
the vacuum expectation value of a bosonic field, this will automatically entail a corre-
sponding negative expectation value of the partnered fermionic field. Note, however,
that because of SUSY breaking, the vacuum expectation value will still be non-zero.

In a similar manner, supersymmetry will cancel quantum corrections that occur when
any field f couples to the higgs field H [14]

∆m2
H =−

|λ f |2

8π2 Λ
2
UV + · · ·

where ΛUV is the cutoff and λ f is the coupling constant between f and H. The fact that
this correction is very large is referred to as the Hierarchy problem in particle physics.
Being able to fix the Hierarchy problem makes supersymmetry an attractive extension
to the Standard Model. The resulting extension is called the Minimal Supersymmetric
Standard Model (MSSM).

Bosonic string theory is described through the Polyakov action [10]

Sp =−T
2

∫
d2

σ
√
−hhαβ

∂αX µ
∂β Xν

ηµν

where hαβ is the world sheet metric, h = dethαβ and ηµν is the D-dimensional
Minkowski metric. This action must experience Poincaré symmetry which leads to
conserved currents that in turn should satisfy the Poincaré algebra. This is only satisfied
in 26 dimensions. By pairing the bosonic hαβ and X µ with fermionic, anticommuting
partners, the same requirements will lead to 11 dimensions. Supersymmetric particles
will automatically emerge from this partnering of bosonic and fermionic degrees of
freedom. The theory emerging from the action Sp gives rise to tachyon particles in the
theory. The tachyons are removed from the theory by making it supersymmetric. This
leads to superstring theory. We will in the following not focus on supersymmetry in
string theory, but supersymmetry in particle physics.

3.2 SUSY transformations

In section 2.2, global symmetries such as invariance under φ → φe−iqξ , were encoun-
tered. This is an invariance on rotation of the phase in the complex plane and is there-
fore an internal symmetry. An invariance on rotations and boosts in Minkowski space
constitutes a space-time symmetry. A SUSY transformation is an invariance under a
change of the bosonic degrees of freedom due to a small change in the fermionic de-
grees of freedom and vice versa.
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Let L f be a free fermion field, and let Ψ =
(

ψ

χ

)
. We then have that

L f = iΨ̄γ
µ

∂µΨ = χ
†iσ̄ µ

∂µ χ +ψ
†iσ µ

∂µψ

where χ represents the left-chiral fermion. We only wish to consider SUSY trans-
formations related to the left-chiral part of the lagrangian density. We want to have
a lagrangian consisting of both fermionic and bosonic degrees of freedom and corre-
sponding transformations between these degrees of freedom that leave it invariant up
to a surface term. We may consider

L = χ
†iσ̄ µ

∂µ χ +∂µφ
†
∂

µ
φ

where φ is a complex scalar field. Let ξ be a left-chiral spinor. Then the transformations

δξ χ =−iσ µ
ξ̄ ∂µφ (3.1)

δξ χ̄ =−i∂µφ
†
σ̄

µ
ξ (3.2)

δξ φ = ξ ·χ (3.3)

δξ φ
† = ξ̄ · χ̄ (3.4)

leave the lagrangian L invariant up to a surface term. These transformations can be
found by requiring that the left and right-hand sides transform in the same manner un-
der Lorentz transformations, the dimensions on the left and right hand sides match,
Lorentz contractions must be consistent from one side of the equation to the other, and
that the degrees of freedom match on both sides. Note that ξ is a left-chiral Weyl
spinor since we want ξ ·χ to form an invariant. We see that the transformations on the
fermionic degrees of freedom of χ are due to changes in the bosonic degrees of free-
dom of φ and vice versa.

If these transformations constitute a group, then we should have an associated algebra.
We will now try to find the associated algebra. Let Uα be the SUSY transformation
on the complex scalar field φ , due to the infinitesimal real parameters αi, where i runs
from 1 to n. Let Uα be some member of a group, then

Uα = eiαiGi
= eiα·G = 1+α ·G+O(α2)

where i is the sum over group generators G1, ...,Gn. We have collected αi and Gi into

α =

α1
...

αn

 G =

G1
...

Gn


We start by calculating [1, 12]

δαδβ φ = U†
αU†

β
φUβUα
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where βi are real quantities analogous to αi. By only keeping terms of O(α) and O(β ),
we get that

(δαδβ −δβ δα)φ = [[β ·G,α ·G],φ ] (3.5)

By promoting α and β = ᾱ to left-chiral spinors, we may then form the spinors

Q =
(

Q1
Q2

)
≡
(

G1
G2

)
and

Q† =
(

Q†
1

Q†
2

)
≡
(

G3
G4

)
We then have the invariant quantities, α ·Q, β ·Q, ᾱ · Q̄, β̄ · Q̄, which can be inserted
into equation (3.5), to get

(δαδβ −δβ δα)φ = [[β ·Q,α ·Q]+ [β ·Q, ᾱ · Q̄]+ [β̄ · Q̄,α ·Q]+ [β̄ · Q̄, ᾱ · Q̄],φ ]

By utilizing the fact that α and β are Grassmann numbers, and that Q and Q† are
Grassmann operators, we can move α and β outside the commutators. We then get that

[β ·Q,α ·Q] = σ
2,ac

σ
2,bd

βcαd{Qa,Qb}
[β ·Q, ᾱ · Q̄] =−σ

2,ac
σ

2,bd
βcα

∗
d{Qa,Q

†
b}

[β̄ · Q̄,α ·Q] =−σ
2,ac

σ
2,bd

β
∗
c αd{Q†

a,Qb}
[β̄ · Q̄, ᾱ · Q̄] = σ

2,ac
σ

2,bd
β
∗
c α
∗
d{Q†

a,Q
†
b}

From this we see that
(δαδβ −δβ δα)φ =

σ
2,ac

σ
2,bd[βcαd{Qa,Qb}−βcα

∗
d{Qa,Q

†
b}−β

∗
c αd{Q†

a,Qb}+β
∗
c α
∗
d{Q†

a,Q
†
b},φ ] (3.6)

We now calculate the differential (δαδβ − δβ δα)φ using a different approach, such
that a comparison of results leads to an algebra. In this approach we use equations
(3.1) and (3.3) to calculate the differential. We get that

δαδβ φ = δα(β a
χa) = β

a
δα χa =−iβb[σ̄ µT ]bd

α
∗
d ∂µφ (3.7)

where we in the last step inserted equation (3.1) and used the equality

σ̄
µT =−σ

2
σ

µ
σ

2 (3.8)

Using equation (3.7) we find that

(δαδβ −δβ δα)φ = σ
2,ac

σ
2,bd[β ∗c αdσ

µ

ba +βcα
∗
d σ

µ

ab]∂µφ (3.9)

Further we have that symmetries under translation lead to the conserved momentum Pµ .
Such a translation is described by δφ = εµ∂µφ . The generator of the corresponding
group is Pµ such that

T = exp(iεµPµ) = 1+ iεµPµ +O(ε2)
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We may perform a unitary transformation, using the expansion of the transformation to
get

φ
′
= T φT † = φ +δφ +O(δφ

2) = φ + iεµ [Pµ ,φ ]+O(ε2)

ε is an infinitesimal parameter and we need only keep terms to order O(ε). Having an
expression for δφ , we obtain

∂µφ = i[Pµ ,φ ]

Inserting this into equation (3.9) we ge

(δαδβ −δβ δα)φ = σ
2,ac

σ
2,bd[−β

∗
c αdσ

µ

baPµ −βcα
∗
d σ

µ

abPµ ,φ ] (3.10)

By comparing equation (3.10) with equation (3.6), we find the following algebras

{Qa,Qb}= {Q†
a,Q

†
b}= 0 (3.11)

{Qa,Q
†
b}= σ

µ

abPµ (3.12)

This should also hold for (δαδβ − δβ δα)χ in the case that these were true algebras
associated with the transformations (3.1) to (3.4). This is not the case. This means that
in order for these transformations to form a closed group, the transformations must be
altered. This can be done by adding the term FF† to L, where F is referred to as an
auxiliary field. The SUSY transformations, still satisfying the above algebra, will then
become

δξ χ =−iσ µ
ξ̄ ∂µφ +ξ F (3.13)

δξ χ̄ =−i∂µφ
†
σ̄

µ
ξ +F†

ξ̄ (3.14)

δξ φ = ξ ·χ (3.15)

δξ φ
† = ξ̄ · χ̄ (3.16)

δξ F =−iξ †
σ̄

µ
∂µ χ (3.17)

δξ F† = i∂µ χ
†
σ̄

µ
ξ (3.18)

All N = 1 SUSY transformations are characterized by the algebras in equations (3.11)
and (3.12) and it is possible to find other lagrangian densities that satisfy these. All
such lagrangians are said to possess supersymmetry.

3.3 Supermultiplets

In section 3.2 we found the N = 1 SUSY algebra, described in equations (3.11) and
(3.12). The charges, Qa and Q†

a, represent infinitesimal SUSY transformations on the
fields that are contained in the action which is invariant under these. The algebra tells
us that the SUSY transformations contained in the group generated by the algebra,
does not generally commute. We are interested in finding eigenstates that can be used
to describe an irreducible representation of the fields. We may therefore not use the
SUSY charges directly. We will need operators that commute with all the generators
of the group generated by the SUSY algebra (Casimir operators). The Casimir oper-
ators for the SUSY algebra are PµPµ and W µWµ (W µ is the Pauli-Lubanski operator,
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and is given below). Since these commute with all of the generators, then they will be
independent of which SUSY transformations have been applied to the fields, and can
therefore be used to classify the irreducible representations.

The Lorentz transformations of a space-time independent left-chiral spinor χ is given
by

χ → χ
′
= e

i
2 ωµν σµν χ

which is analogous to the 4-component transformation S(Λ) of equation (2.14). We
also have an algebra similar to equation (2.15), which is given by

σµν =
i
4
[σµ , σ̄ν ]

where now the 2× 2 matrices σ µ and σ̄ µ replace the 4× 4 gamma matrices. For an
infinitesimal Lorentz transformation we have that xµ ′ = xµ + ωµνxν , such that for a
space-time dependent spinor χ(xµ) we have that

χ(xµ)→ χ
′
(xµ ′) = e

i
2 ωαβ σαβ χ(xµ +ω

µνxν)

= e
i
2 ωαβ σαβ [χ(xµ)+ xβ ω

αβ
∂α χ(xµ)+O(ω2)]

=
[

1+
i
2

ω
αβ

σαβ

]
[χ(xµ)+ xβ ω

αβ
∂α χ(xµ)+O(ω2)]

= χ(xµ)+
1
2

ω
αβ [iσαβ + xβ ∂α − xα∂β ]χ(xµ)+O(ω2)

We may however also describe the Lorentz transformation above as

χ(xµ)→ χ
′
(xµ ′) = e

i
2 ωαβ Mαβ χ(xµ)

= χ(xµ)+
i
2

ω
αβ Mαβ χ(xµ)+O(ω2)

By comparing, we see that the generators of Lorentz transformations for space-time
dependent spinors are

Mµν = xµPν − xνPµ +σµν

The Pauli-Lubanski operator is now defined as

W µ ≡ 1
2

ε
µνρσ Mρσ Pν

We already know that Pµ has the momentum pµ as its eigenstate. Then this is one of
the parameters characterizing the irreducible representations. We still need to know
what the eigenvalues of W µ are and what they represent. In the Standard Model as well
as for the MSSM (Minimal Supersymetric Standard Model), all masses are generated
by symmetry breaking. We are therefore entitled to only consider massless states. We
may choose a frame where the four-momentum is pµ = (p0,0,0, p3) = (E,0,0,E), and
label this state as |p〉0. We then get that

W µPµ |p〉0 = W µPν
ηµν |p〉0 = (W 0P0−W 3P3)|p〉0 = E(W 0−W 3)|p〉0
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and, since εµνρσ is antisymmetric while PµPν is symmetric under µ ↔ ν , we have

W µPµ |p〉0 =
1
2

ε
µνρσ Mρσ PνPµ |p〉0 = 0

such that W 0 = W 3. Further we can use

W µ |p〉0 =
1
2

ε
µνρσ Mρσ Pν |p〉0

=
1
2

ε
µ0ρσ Mρσ p0|p〉0 +

1
2

ε
µ3ρσ Mρσ p3|p〉0

to calculate W 3 = W 0:

W 3|p〉0 =
1
2
(−ε

0123M12 p0− ε
0213M21 p0)|p〉0

=
1
2
(M21−M12)E|p〉0

=
1
2
(x2P1− x1P2 +σ21− x1P2 + x2P1−σ12)E|p〉0

=
[
(x2P1− x1P2)+

1
2
(σ21−σ12)

]
E|p〉0

=
[
L3 +S3]E|p〉0

where L3 is the angular momentum and S3 is the spin. We will assume that the angular
momentum for the massless particle is zero. Thus

W 0|p〉0 = W 3|p〉0 = szE|p〉0 = s · p̂E|p〉0
where h = s · p̂ is the helicity of the massless particle. We also see that

0 = W µWµ |p〉0 = (W 0W 0−W 1W 1−W 2W 2−W 3W 3)|p〉0
=−(W 1W 1 +W 2W 2)|p〉0

which means that W 1|p〉0 = 0 and W 2|p〉0 = 0.

We now know that the momentum operator Pµ gives momentum eigenstates while the
Pauli-Lubanski opertator W µ gives helicity eigenstates h combined with the particle en-
ergy E. From the corresponding Casimir operators PµPµ and W µWµ we then know that
the irreducible representations for the massless particles must be classified through the
helicity h and the energy E (E represents the four momentum p), and we will denote
the corresponding states as |p,h〉. To look at how the supercharges affect the momen-
tum and helicity part of the state, we must know how the momentum operator Pµ and
the Pauli-Lubanski operator W µ commute with the supercharges Qa and Q†

a. Since we
may write

Qa ∼
∫

d4xJ0
a

for some conserved current Jµ , related to the symmetry through Noether’s theorem,
then Qa has no x dependence. Also, Pµ = i∂µ and we see that

[Qa,Pµ ] = 0
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[Q†
a,P

µ ] = 0

Using that [12]
[Qa,Mµν ] = (σµν)a

bQb (3.19)

and
[Q†

a,Mµν ] =−Q†
b(σ̄µν)b

a (3.20)

we have for W 0 that

[Qa,W 0]|p〉0 =
1
2

ε
0νρσ [Qa,Mρσ ]Pν |p〉0

=
1
2

ε
03ρσ [Qa,Mρσ ]P0|p〉0

=
1
2

ε
0ρσ3(σρσ ))a

bQbP3|p〉0

=−1
2
(σ3)a

bQbP3|p〉0

and similarly

[Q†
a,W

0]|p〉0 =
1
2

Q†
b(σ3)b

aP3|p〉0

More specifically we get that

[Q1,W 0] =−1
2

Q1E

[Q†
1,W

0] =
1
2

Q†
1E

[Q2,W 0] =
1
2

Q2E

[Q†
2,W

0] =−1
2

Q†
2E

We may now calculate the effect of the supercharges Qa and Q†
a on the states |p,h〉.

First we look at how the supercharges affect the momentum state:

Pµ(Qa|p,h〉) = QaPµ |p,h〉= pµ(Qa|p,h〉) (3.21)

Pµ(Q†
a|p,h〉) = Q†

aPµ |p,h〉= pµ(Q†
a|p,h〉) (3.22)

We see that Qa and Q†
a do not affect the momentum state p. For the helicity we get

W 0(Q1|p,h〉) =
[

Q1W 0 +
1
2

Q1E
]
|p,h〉

=
[

Q1hE +
1
2

Q1E
]
|p,h〉

=
[

h+
1
2

]
E(Q1|p,h〉)
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and similarly

W 0(Q†
1|p,h〉) =

[
h− 1

2

]
E(Q†

1|p,h〉)

From this we conclude that Q1 raises the helicity by 1/2, Q†
1 lowers the helicity by 1/2,

Q2 lowers the helicity by 1/2 and Q†
2 raises the helicity by 1/2. Mathematically we

have that
Q1|p,h〉= |p,h+

1
2
〉

Q†
1|p,h〉= |p,h− 1

2
〉

Q†
2|p,h〉= |p,h+

1
2
〉

Q2|p,h〉= |p,h− 1
2
〉

With these relations we are able to calculate how many states are in an N = 1 super-
multiplet. Also note that every state within any given supermultiplet must transform in
the same manner. If this was not the case, then the state that did not transform equiv-
alently, would not be in the group that forms the supermultiplet and thus not in the
supermultiplet itself. From equations (3.21) and (3.22) we see that every member of
the supermultiplet will have the same momentum. We may assume a lowest helicity
state and denote it |p,− j〉. Then we have by definition that

Q†
1|p,− j〉= Q2|p,− j〉= 0

We may now try to raise the helicity by using either Q1 or Q†
2. Starting with Q1 we

have from the SUSY algebra in equation (3.12) that

{Q1,Q
†
1}|p,− j〉= (σ µ)11Pν

ηµν |p,− j〉
= [(σ0)11P0− (σ3)11P3]|p,− j〉
= [E−E]|p,− j〉= 0

Then we also have that

〈p,− j|Q†
1Q1|p,− j〉=−〈p,− j|Q1Q†

1|p,− j〉= 0

Therefore, although Q1 is a raising operator on the helicity state, it is not equipped to
raise the helicity from its minimum. For Q†

2 the result differs

{Q2,Q
†
2}|p,− j〉= (σ µ)22Pν

ηµν |p,− j〉
= [(σ0)22P0− (σ3)22P3]|p,− j〉
= [E +E]|p,− j〉= 2E|p,− j〉

Thus, we may only use Q†
2 to raise the helicity state from the minimum − j. We then

get another state in the supermultiplet in addition to the existing state |p,− j〉:

Q†
2|p,− j〉= |p,

1
2
− j〉
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Since Q†
2 anticommutes with itself (it is Grassmannian) then (Q†

2)
2 = 0 and it cannot

raise the helicity any further. Also, {Q1,Q
†
2}= 0, such that Q1Q†

2|p,− j〉= 0. Thus Q1
will not raise the helicity any further. We then have only two possible states in the ir-
reducible representation of the N = 1 SUSY algebra. These are |p,− j〉 and |p, 1

2 − j〉
where − j is the lowest helicity value. Also note that due to demanding TCP invari-
ance, we must insist on the existence of a an anti-particle version of the irreducible
representation, with opposite signs on the helicities.

3.4 Superfield formalism

The superfield formalism is used to systematically build supersymmetric Lagrangians.
The idea is to write the SUSY generators Qa and Q†

a as differential operators, work-
ing on superspace. Superspace is a space spanned by the space-time coordinate x and
the two spinor parameters θ and θ̄ . We will first find how the superspace coordinates
(x,θ , θ̄) change under a SUSY transformation.

Let Φ(x,θ , θ̄) be a superfield and let U(a,ξ , ξ̄ ) be a unitary SUSY transformation
generated by the charges Qa and Q†

a. Here, a is a space-time transformation, and ξ , ξ̄

are SUSY variations. Then

U(a,ξ , ξ̄ ) = eia·P+iξ ·Q+iξ̄ ·Q̄ (3.23)

We may use this transformation to represent Φ(0)→Φ(x,θ , θ̄) by

Φ(x,θ , θ̄) = U(x,θ , θ̄)Φ(0)U†(x,θ , θ̄)

The transformation Φ(x,θ , θ̄)→ Φ(x′,θ ′, θ̄ ′), where x′ = x + a, θ ′ = θ + ξ and θ̄ ′ =
θ̄ + ξ̄ is represented by

Φ(x′,θ ′, θ̄ ′) = U(a,ξ , ξ̄ )U(x,θ , θ̄)Φ(0)U†(x,θ , θ̄)U†(a,ξ , ξ̄ )

Here a, ξ and ξ̄ are infinitesimal transformations. We may also write

U(x′,θ ′, θ̄ ′)Φ(0)U†(x′,θ ′, θ̄ ′) = U(a,ξ , ξ̄ )U(x,θ , θ̄)Φ(0)U†(x,θ , θ̄)U†(a,ξ , ξ̄ )

such that
U(x′,θ ′, θ̄ ′) = U(a,ξ , ξ̄ )U(x,θ , θ̄)

By using equation (3.23), we get that

eix′µ Pµ+iθ ′aQa+iθ̄ ′ȧQ̄ȧ
= eiaµ Pµ+iξ aQa+iξ̄ȧQ̄ȧ

eixµ Pµ+iθ aQa+iθ̄ȧQ̄ȧ
(3.24)

We may use the BCH (Baker-Campbell-Hausdorff) identity

eAeB = e(A+B+ 1
2 [A,B]+···)

to calculate the right hand side of (3.24). Note that xµ is not an operator, in the same
way as aµ is not an operator. Therefore, since Pµ commutes with the SUSY generators,
every commutator with Pµ in the BCH expansion will vanish. Since the components of
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ξ and θ are Grassmannian, we are left with only one non-vanishing commutator in the
BCH expansion. The right hand side of (3.24) now becomes

ei(aµ+xµ )Pµ+i(ξ a+θ a)Qa+i(ξ̄ȧ+θ̄ȧ)Q̄ȧ+ 1
2{[iξ

aQa,iθ bQb]+[iξ aQa,iθ̄ḃQ̄ḃ]+[iξ̄ȧQ̄ȧ,iθ bQb]+[iξ̄ȧQ̄ȧ,iθ̄ḃQ̄ḃ]}

For the commutators in the exponent we have

[iξ aQa, iθ bQb] =−[ξ aQa,θ
bQb] =

=−ξ
aQaθ

bQb +θ
bQbξ

aQa = ξ
a
θ

bQaQb +ξ
a
θ

bQbQa

= ξ
a
θ

b{Qa,Qb}= 0

where the sign changes are due to ξ and θ being Grassmann variables. Further we have

[iξ aQa, iθ̄ḃQ̄ḃ] = ξ
a
θ̄ḃ{Qa, Q̄ḃ}= ξ

a
θ̄ḃ{Qa,(iσ2)ḃċQ̄ċ}

= ξ
a
θ̄ḃ(iσ

2)ḃċ{Qa, Q̄ċ}=−ξ
a(iσ2)ċḃ

θ̄ḃ[σ
µ ]aċPµ

=−ξ
a[σ µ ]aċθ̄

ċPµ =−ξ σ
µ

θ̄Pµ

[iξ̄ȧQ̄ȧ, iθ bQb] =−[iθ bQb, iξ̄ȧQ̄ȧ] = θ
a[σ µ ]aċξ̄

ċPµ = θσ
µ

ξ̄ Pµ

[iξ̄ȧQ̄ȧ, iθ̄ḃQ̄ḃ] =−θ̄ḃξ̄ȧ{Q̄ȧ, Q̄ḃ}= 0

The right-hand side of equation (3.24) becomes

ei(aµ+xµ )Pµ+i(ξ a+θ a)Qa+i(ξ̄ȧ+θ̄ȧ)Q̄ȧ+ 1
2{−ξ a[σ µ ]aċθ̄ ċPµ+θ a[σ µ ]aċξ̄ ċPµ}

=e(iaµ+ixµ− 1
2 ξ a[σ µ ]aċθ̄ ċ+ 1

2 θ a[σ µ ]aċξ̄ ċ)Pµ+i(ξ a+θ a)Qa+i(ξ̄ȧ+θ̄ȧ)Q̄ȧ

Comparing this result with the left hand side of equation (3.24) we read off the super-
space coordinate transformations

x′µ = xµ +aµ +
i
2

ξ
a[σ µ ]aċθ̄

ċ− i
2

θ
a[σ µ ]aċξ̄

ċ (3.25)

θ
′a = θ

a +ξ
a (3.26)

θ̄ ′ȧ = θ̄ȧ + ξ̄ȧ (3.27)

Next we will find the SUSY generators as differential operators by first expanding the
SUSY transformation U(a,ξ , ξ̄ ) in terms of the charges and comparing with the ex-
pansion of Φ(x′,θ ′, θ̄ ′) in terms of a, ξ and ξ̄ in the transformations (3.25), (3.26) and
(3.27).

Expansion in terms of the charges gives

Φ(x′,θ ′, θ̄ ′) = (1− iaµPµ − iξ aQa− iξ̄ȧQ̄ȧ)Φ(x,θ , θ̄) (3.28)



34 N = 1 Supersymmetry

while a Taylor expansion in terms of a, ξ and ξ̄ used in the transformations on the
superspace coordinates gives

Φ
′ = Φ(xµ +aµ +

i
2

ξ
a[σ µ ]aḃθ̄

ḃ− i
2

θ
a[σ µ ]aḃ(iσ

2)ḃḋ
ξ̄ḋ,θ

a +ξ
a, θ̄ȧ + ξ̄ȧ)

= Φ+δ
µ

ν aν [∂µΦ]+
i
2

ξ
c[σ µ ]cḃθ̄

ḃ[∂µΦ]

+δ
a
c ξ

c[∂aΦ]+
i
2

θ
a[σ µ ]aḃ(iσ

2)ḃċ
ξ̄ċ[∂µΦ]+δ

ċ
ȧ ξ̄ċ[∂̄ ȧ

Φ]

The fourth term in the Taylor expansion was calculated by

∂

∂ξ c (θ a +ξ
a)ξ

c ∂

∂ (θ a +ξ a)
Φ(. . . ,θ a +ξ

a, . . .)
∣∣∣∣
aµ ,ξ ,ξ̄=0

where we needed to be careful to put the expansion variable ξ c at the correct place (to
avoid sign changes, due to the Grassmann nature of ξ c). The sixth term in the Taylor
expansion is calculated in a similar way. We will continue by reorganizing the terms to
a more suggestive form:

Φ
′ =
{

1+aµ
∂µ +

i
2

ξ
a[σ µ ]aḃθ̄

ḃ
∂µ +ξ

a
∂a +

i
2

θ
a[σ µ ]aḃ(iσ

2)ḃċ
ξ̄ċ∂µ + ξ̄ċ∂̄

ċ
}

Φ

=
{

1+aµ
∂µ +ξ

a
(

∂a +
i
2

θ̄
ḃ[σ µ ]aḃ∂µ

)
+ ξ̄ċ

(
∂̄

ċ− i
2
(iσ2)ad

θd[σ µ ]aḃ(iσ
2)ḃċ

∂µ

)}
Φ

=
{

1+aµ
∂µ +ξ

a
(

∂a +
i
2

θ̄
ḃ[σ µ ]aḃ∂µ

)
+ ξ̄ċ

(
∂̄

ċ +
i
2
(iσ2)da

θd[σ µ ]aḃ(iσ
2)ḃċ

∂µ

)}
Φ

=
{

1+aµ
∂µ +ξ

a
(

∂a +
i
2

θ̄
ḃ[σ µ ]aḃ∂µ

)
+ ξ̄ċ

(
∂̄

ċ− i
2

θd(σ2)da[σ µ ]aḃ(σ
2)ḃċ

∂µ

)}
Φ

=
{

1+aµ
∂µ +ξ

a
(

∂a +
i
2
[σ µ ]aḃθ̄

ḃ
∂µ

)
+ ξ̄ċ

(
∂̄

ċ +
i
2

θd[σ̄ µ ]dċ
∂µ

)}
Φ (3.29)

where we have used the notations ∂ a ≡ ∂

∂θa
, ∂̄ȧ ≡ ∂

∂ θ̄ ȧ , Φ ≡ Φ(x,θ , θ̄) and Φ′ ≡
Φ(x′,θ ′, θ̄ ′). In the last step we also applied equation (3.8). Comparing the result
in (3.29) with equation (3.28), we can read off the differential representation of the
SUSY generators

Pµ = i∂µ (3.30)

Qa = i∂a−
1
2
[σ µ ]aḃθ̄

ḃ
∂µ (3.31)

Q̄ȧ = i∂̄ ȧ− 1
2
[σ̄ µ ]bȧ

θb∂µ (3.32)

Next we need to impose a constraint on the superfield Φ. This is because the most
general, Lorentz invariant, expansion of Φ

Φ(x,θ , θ̄) = A(x)+θ ·α(x)+ θ̄ · β̄ (x)+(θ ·θ)B(x)+(θ̄ · θ̄)H(x)
+θσ

µ
θ̄Vµ(x)+(θ ·θ)θ̄ · γ̄(x)+(θ̄ · θ̄)θ ·η(x)+(θ ·θ)(θ̄ · θ̄)P(x)

(3.33)
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where A, B, H, P are scalar fields, α , β , γ , η are left chiral fermion fields and Vµ

is a vector field, contains too many fields to match the Wess-Zumino Lagrangian (see
[12]), which is based on symmetry arguments alone, and not superfields. We only wish
to keep terms containing A, α and B. This can be done by making Φ holomorphic in
θ̄ , i.e. ∂̄ȧΦ = 0. Removing the unwanted terms, would not pose this as a covariant
condition under SUSY transformations, since a SUSY transformation would reinstate
the unwanted terms. This is also seen from equations (3.31) and (3.32). We will need
to find a covariant derivative D̄ȧ such that

D̄ȧΦ
′ = D̄ȧ(1− iaµPµ − iξ aQa− iξ̄ȧQ̄ȧ)Φ = 0

We have by definition that D̄ȧΦ = 0. Therefore, we can find D̄ȧ by requiring that it
commutes with 1, aµPµ , ξ aQa and ξ̄ȧQ̄ȧ. It will commute trivially with 1. We require
that an ansatz will not contain any x dependencies such that a commutation with aµPµ is
also trivial. We require D̄ȧ to contain the derivative ∂̄ȧ, and therefore D̄ȧ is a Grassmann
derivative. Based on this we may try the ansatz

D̄ȧ = ∂̄ȧ +Cȧbθ
b

The remaining conditions are

[D̄ȧ, iξ bQb] = iD̄ȧξ
bQb− iξ bQbD̄ȧ =−iξ b{D̄ȧ,Qb}= 0 (3.34)

[D̄ȧ, iξ̄ḃQ̄ḃ] = iD̄ȧξ̄ḃQ̄ḃ− iξ̄ḃQ̄ḃD̄ȧ = iξ̄ḃ{D̄ȧ, Q̄ḃ}= 0 (3.35)

Note that

{∂̄ȧ, Q̄ḃ}= i{∂̄ȧ, ∂̄
ḃ}− 1

2
[σ̄ µ ]cḃ{∂̄ȧ,θc∂µ}

= i(∂̄ȧ∂̄
ḃ + ∂̄

ḃ
∂̄ȧ)−

1
2
[σ̄ µ ]cḃ(∂̄ȧθc∂µ +θc∂µ ∂̄ȧ)

= i(∂̄ȧ∂̄
ḃ− ∂̄ȧ∂̄

ḃ)− 1
2
[σ̄ µ ]cḃ(−θc∂µ ∂̄ȧ +θc∂µ ∂̄ȧ) = 0

We may now insert the ansatz into equation (3.35)

{D̄ȧ, Q̄ḃ}= {∂̄ȧ +Cȧcθ
c, Q̄ḃ}= {∂̄ȧ, Q̄ḃ}+Cȧc{θ c, Q̄ḃ}

= Cȧc{θ c, i∂̄ ḃ− 1
2
[σ̄ µ ]dḃ

θd∂µ}

= Cȧci(θ c
∂̄

ḃ + ∂̄
ḃ
θ

c)− 1
2
[σ̄ µ ]dḃ(θ c

θd∂µ +θd∂µθ
c)

= Cȧci(θ c
∂̄

ḃ−θ
c
∂̄

ḃ)− 1
2
[σ̄ µ ]dḃ(θ c

θd∂µ −θ
c
θd∂µ) = 0
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Thus, equation (3.35) is satisfied for all Cȧb. We now insert the ansatz into equation
(3.34), to get

{D̄ȧ,Qb}= {∂̄ȧ +Cȧcθ
c, i∂b−

1
2
[σ µ ]bḋθ̄

ḋ
∂µ}

= i{∂̄ȧ,∂b}−
1
2
[σ µ ]bḋ{∂̄ȧ, θ̄

ḋ
∂µ}+ iCȧc{θ c,∂b}−

1
2

Cȧc[σ µ ]bḋ{θ
c, θ̄ ḋ

∂µ}

=−1
2
[σ µ ]bḋ{∂̄ȧ, θ̄

ḋ
∂µ}+ iCȧc{θ c,∂b}

=−1
2
[σ µ ]bḋ(∂̄ȧθ̄

ḋ
∂µ + θ̄

ḋ
∂µ ∂̄ȧ)+ iCȧc(θ c

∂b +∂bθ
c)

=−1
2
[σ µ ]bḋ([∂̄ȧθ̄

ḋ]∂µ − θ̄
ḋ
∂̄ȧ∂µ + θ̄

ḋ
∂̄ȧ∂µ)+ iCȧc(θ c

∂b +[∂bθ
c]−θ

c
∂b)

=−1
2
[σ µ ]bḋ([∂̄ȧθ̄

ḋ]∂µ)+ iCȧc([∂bθ
c]) =−1

2
[σ µ ]bȧ∂µ + iCȧb

For the above expression to be zero, we need Cȧb to be

Cȧb =− i
2
[σ µ ]bȧ∂µ =−1

2
[σ µ ]bȧPµ

Thus, the covariant derivative is

D̄ȧ = ∂̄ȧ−
i
2

θ
b[σ µ ]bȧ∂µ

All superfields that have the property

D̄ȧΦ(x,θ , θ̄) = 0

are called left-chiral superfields. All fields that have the property

DaΦ(x,θ , θ̄) = 0

are called right-chiral superfields [12].

3.5 Left chiral superfields

We will next try to find the most general left chiral superfield. This field might still have
a dependence on θ̄ . To satisfy this possibility, let y(x, θ̄) be the most general function
of both x and θ̄ , that satisfies

D̄ȧy = 0

then we automatically have that (note that ∂µ ≡ ∂

∂xµ )

D̄ȧΦ(y,θ) =
(

∂̄ȧ−
i
2

θ
b[σ µ ]bȧ∂µ

)
Φ(y,θ)

=
∂Φ

∂yν

∂yν

∂ θ̄ ȧ −
i
2

θ
b[σ µ ]bȧ

∂Φ

∂yν

∂yν

∂xµ

=
∂Φ

∂yν

(
∂̄ȧ−

i
2

θ
b[σ µ ]bȧ∂µ

)
yν =

∂Φ

∂yν
D̄ȧyν = 0
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regardless of the contents of Φ. We make an ansatz for y

yν = xν + θ̄
ȧKν

ȧ

where K is independent of x and θ̄ . We then get that

0 = D̄ḃyν =
(

∂̄ḃ−
i
2

θ
c[σ µ ]cḃ∂µ

)(
xν + θ̄

ȧKν
ȧ
)

= ∂̄ḃxν + ∂̄ḃθ̄
ȧKν

ȧ −
i
2

θ
c[σ µ ]cḃ∂µxν − i

2
θ

c[σ µ ]cḃ∂µ θ̄
ȧKν

ȧ

= [δ ȧ
ḃ ]Kν

ȧ −
i
2

θ
c[σ µ ]cḃδ

ν
µ

= Kν

ḃ −
i
2

θ
c[σν ]cḃ

such that
Kν

ȧ =
i
2

θ
c[σν ]cȧ

Inserting this into the original ansatz we get that

yν = xν − i
2

θ
c[σν ]cȧθ̄

ȧ

We may now make a Lorentz invariant expansion based on the new variable y, and θ ,
to retrieve the most general left-chiral superfield.

Φ(y,θ) = φ(y)+θ ·χ(y)+
1
2

θ ·θF(y)

We now proceed by Taylor expanding each component field in terms of gµ ≡ i
2θσ µ θ̄

around gµ = 0 (note that by the previous definition, yµ = xµ −gµ).

Φ(yµ ,θ) = φ(xµ −gµ)+θ ·χ(xµ −gµ)+θ ·θF(xµ −gµ)

= φ(xµ)+
∂φ

∂yα

∂yα

∂gβ
gβ +

1
2

∂

∂gγ

(
∂φ

∂yα

∂yα

∂gβ

)
gβ gγ + · · ·

+θ ·χ(xµ)+θ · ∂ χ

∂yα

∂yα

∂gβ
gβ +θ · 1

2
∂

∂gγ

(
∂ χ

∂yα

∂yα

∂gβ

)
gβ gγ + · · ·

+
1
2

θ ·θF(xµ)+
1
2

θ ·θ ∂F
∂yα

∂yα

∂gβ
gβ +θ ·θ 1

4
∂

∂gγ

(
∂F
∂yα

∂yα

∂gβ

)
gβ gγ + · · ·

Next we may calculate

∂

∂gγ

(
∂φ

∂yα

∂yα

∂gβ

)
=

∂ 2φ

∂gγ∂yα

∂yα

∂gβ
+

∂φ

∂yα

∂ 2yα

∂gγ∂gβ
=

∂ 2φ

∂gγ∂yα

∂yα

∂gβ

=
(

∂

∂yα

∂φ

∂gγ

)
(−δ

α

β
) =

(
∂

∂yα

∂φ

∂yρ

∂yρ

∂gγ

)
(−δ

α

β
)

=
(

∂

∂yα

∂φ

∂yρ

)
(−δ

ρ

γ )(−δ
α

β
)

= ∂β ∂γφ(x)
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By using this result and only considering terms that do not vanish due to the Grassmann
nature of the variables we get the left chiral superfield

Φ(yµ ,θ) = φ(xµ)−gβ
∂β φ(xµ)+

1
2

gβ gγ
∂β ∂γφ(xµ)

+θ ·χ(xµ)−gβ
θ ·∂β χ(xµ)+

1
2

θ ·θF(xµ)

= φ(xµ)− i
2

θσ
β

θ̄ ∂β φ(xµ)− 1
8

θσ
β

θ̄θσ
γ
θ̄ ∂β ∂γφ(xµ)

+θ ·χ(xµ)− i
2

θσ
β

θ̄θ ·∂β χ(xµ)+
1
2

θ ·θF(xµ) (3.36)

The transformation properties of the component fields φ , χ and F are in accordance
with the transformations in equations (3.13) to (3.18) [12]. This can be seen by first
realizing that Φ′ is calculated by replacing all component fields by their primed (i.e.
transformed) quantities φ ′, χ ′ and F ′. On the other hand, it is possible to find Φ′ in
terms of the infinitesimal changes a, ξ and ξ̄ by using the explicit differential represen-
tations of the SUSY charges.

Note that in equations (3.13) to (3.18), the only two that transform, by themselves,
as a total derivative of the space-time coordinates are the F and F† field transforma-
tions. The other transformations must be combined to transform as a total derivative
(i.e. the Lagrangian that is built out of the free left-chiral fermion field χ , the free com-
plex scalar field φ and the auxiliary field F is of course an invariant under SUSY up to a
total derivative). If we combine several left chiral-superfields Ψi, we get the following
result

D̄ȧ[ΦiΦ j] =
[

∂̄ȧ−
i
2

θ
b[σ µ ]bȧ∂µ

]
[ΦiΦ j] = [D̄ȧΦi]Φ j +Φi[D̄ȧΦ j] = 0

We have then reached two important facts

1. Any generic left-chiral superfield Φ contains an F-term. The F-term, i.e. the
coefficient of 1

2θ ·θ , transforms as a total derivative under SUSY.

2. Any combination Φi . . .Φ j of left-chiral superfields is also a superfield.

This implies that, by projecting out the F-term of any combination of left-chiral su-
perfields one obtains a surface term under SUSY transformations. We may use this
fact to construct SUSY invariant Lagrangians. In general we have, for a potential,
W(Φ1, . . . ,Φn), of left chiral superfields Φi that the SUSY invariant Lagrangian is

∼W(Φ1, . . . ,Φn)
∣∣∣∣
F

=
∫

dθ1dθ2W(Φi, . . . ,Φk)

where F denotes the F-term and the indices on dθ1 and dθ2 are spinor indices.
W(Φi, . . . ,Φk) is called the superpotential. The constant in this expression can be found
by dimensional analysis. We will look at the constant of W = ΦiΦ j. Notice, that since∫

dθ1dθ2θ ·θ = 2
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and [θ ] = −1/2, we must have that [dθ1] = 1/2 and [dθ2] = 1/2, where the brackets
denote the dimension of the object that they enclose. The first part of the expansion of
the superfield ΦiΦ j is the complex scalar field combination φi(x)φ j(x), as shown earlier.
Since [φ ] = 1, then [ΦiΦ j] = 2. Therefore, the F-term of ΦiΦ j has dimension 3. Since
a renormalizable Lagrangian needs dimension 4 we must multiply with constants of
dimension 1. The only choices are the masses mi j. mi j is taken to be symmetric, since
ΦiΦ j is symmetric. Therefore, we also need a factor of 1/2! in front. The SUSY
invariant term appropriate for a Lagrangian is then

1
2

mi j
ΦiΦ j

∣∣∣∣
F

=
1
2

mi j
∫

d2
θΦiΦ j

where d2θ ≡ dθ1dθ2. We see that ∫
d2

θΦiΦ jΦk

has dimension 4, and thus requires dimensionless constants yi jk. In addition, we may
choose yi jk to be symmetric under interchange of indices, which gives a pre-factor of
1/3! = 1/6. With the combination of three left-chiral superfields, and dimension 4 of
the F-term, we have reached a limit for what is allowed in a renormalizable Lagrangian.

We will see later, that the F-terms contain interactions between the component fields
(no gauge fields are included yet). The free parts of the Lagrangians can not be ex-
tracted from the F-terms. This can be seen by realizing that the free parts of a La-
grangian contain hermitian conjugates of the component fields. These are not present
in the left-chiral superfields. We must then make the combination Φ†Φ, in the hope
of extracting the SUSY invariant free fields. This combination does not constitute a
left-chiral superfield, since D̄ȧ[Φ†Φ] 6= 0.

Looking at the component fields that are available for any superfield we see that the
component field with largest dimension is the one connected to the most factors of θ

and least factors of ∂µ . This is because the dimension of θ is negative ([θ ] =−1/2) and
the dimension of ∂µ is positive ([∂µ ] = +1). Any SUSY transformation of this compo-
nent field C(x) must be constructed from a left chiral variation ξ , which has dimension
[ξ ] =−1/2, and the available component fields (that all have a lower dimension).

δC ∼ ξ × other component fields

A SUSY transformation will by definition, not multiply more than one field to ξ (i.e.
we want to transform between bosonic and fermionic degrees of freedom and vice
versa). We must therefore only pick one field to multiply for each term contained in
δC.

For a left-chiral superfield, the component field with the largest dimension is F , with
dimension [F ] = 2 linked to (1/2)θ ·θ . Since F is a complex scalar field we need to
combine ξ with a left chiral field. The only one at our disposal is χ . We then have the
following dimensional relations

2 = [δF ] = [ξ ]+ [χ]+ [u] =−1
2

+
3
2

+[u] = 1+[u]
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We see that [u] = 1. The only available structure (except for a scalar field) that can be
used is the derivative ∂µ which has dimension 1. Therefore, the transformation of the
F-term has the structure of a total derivative and will vanish under a space-time inte-
gration. This is why the largest-dimension component field F is a SUSY invariant.

We repeat this analysis for Φ†Φ which is not a left chiral superfield, but a general su-
perfield. In a general superfield, the component field with largest dimension is the one
linked to the terms with (θ ·θ)(θ̄ · θ̄), as shown in equation (3.33). Also here, we are
forced to include a derivative, to increase the dimension from the lower-dimensional
field. Therefore, this component field must also transform as a total derivative. The
term with (θ ·θ)(θ̄ · θ̄) is referred to as the D-term. The projection of the D-term is

Φ
†
Φ

∣∣∣∣
D
∼
∫

d2
θd2

θ̄Φ
†
Φ

The D-terms contain free fields that can be used in the construction of SUSY invariant
Lagrangians because of the adjoint component fields that mix with non-adjoint fields.

3.6 Gauge interactions

In order to include electromagnetic, weak and strong interactions and find the corre-
sponding superpartners of the photon, gluon, W± and the Z0, we need to implement
U(1), SU(2) and SU(3) gauge invariance into the superfield formalism. Starting with
U(1), we require an invariance of the superpotential W(Φi, · · ·Φ j) under

Φ
′ = e2iqkΛ

Φk

where Λ must be a left-chiral superfield (such that Φ′ is still a left-chiral superfield).
The only requirement that needs to be imposed on the transformations working on the
superpotential W is that the charges qk of all the transformations add to zero (Λ does
not impose any differentiation on Φ). Λ is a left-chiral superfield, and has an expansion
according to equation (3.36)

Λ = φΛ(xµ)− i
2

θσ
β

θ̄ ∂β φΛ(xµ)− 1
8

θσ
β

θ̄θσ
γ
θ̄ ∂β ∂γφΛ(xµ)

+θ ·χΛ(xµ)− i
2

θσ
β

θ̄θ ·∂β χΛ(xµ)+
1
2

θ ·θFΛ(xµ) (3.37)

In contrast to the left superfields Φ which have dimension 1, Λ is dimensionless, and
we get that

[φΛ] = 0

[χΛ] =−[θ ] =
1
2

[FΛ] =−2[θ ] = 1

The above requirement on the sum of all the charges qk is not sufficient to make sure
that the transformation

Φ
′†

Φ
′ = Φ

†e−2iqΛ†
e2iqΛ

Φ
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is gauge invariant. This is because Λ 6= Λ†. To make this gauge invariant, we need to
introduce a gauge field V, such that

Φ
′†e2qV′

Φ
′ = Φ

†e−2iqΛ†
e2qV′ei2qΛ

Φ = Φ
†e2qV

Φ

by imposing an appropriate transformation on V. We then have that

V′ = V− i(Λ−Λ
†) (3.38)

Notice that the real components of Λ and Λ† are the same. Therefore Λ−Λ† is purely
imaginary. By multiplying with i, this becomes real, which implies that V is a real
quantity, i.e.

V† = V

From equation (3.38) we see that V must also be a superfield, but not a left-chiral
superfield. The most general expansion of a superfield consists of nine terms and is
given by equation (3.33):

V = A+θ ·α + θ̄ · β̄ +(θ ·θ)B+(θ̄ · θ̄)H
+θσ

µ
θ̄Vµ +(θ ·θ)θ̄ · γ̄ +(θ̄ · θ̄)θ ·η +(θ ·θ)(θ̄ · θ̄)P (3.39)

where we have that V is dimensionless, as opposed to Φ which has dimension 1. In
the expansion of V, the component fields therefore have the same dimensions as in the
expansion of Λ and

[A] = 0

[α] = [β ] =
1
2

[B] = [H] = [Vµ ] = 1

[γ] = [η ] =
3
2

[P] = 2

We have that

V† = A† + θ̄ · ᾱ +θ ·β +(θ̄ · θ̄)B† +(θ ·θ)H†

+θσ
µ

θ̄V †
µ +(θ̄ · θ̄)θ · γ +(θ ·θ)θ̄ · η̄ +(θ ·θ)(θ̄ · θ̄)P†

from which it follows, by comparison to V, that

A = A†
α = β

B = H† Vµ = V †
µ

η = γ P = P†

We may then re-state the expansion of V as

V = A+θ ·α + θ̄ · ᾱ +(θ ·θ)B+(θ̄ · θ̄)B†

+θσ
µ

θ̄Vµ +(θ ·θ)θ̄ · γ̄ +(θ̄ · θ̄)θ · γ +(θ ·θ)(θ̄ · θ̄)P
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in addition to noticing the hermiticity conditions on A, P and Vµ . We may now look at
how the individual component fields of V transform (keep in mind that even though the
notation is similar, these component fields are not the same as in the expansion of Φ,
but they are of the same type as in the expansion of Λ, due to their dimensions). Before
doing that, we will for later convenience restate V in a different representation [12]:

V = C +
i√
2

θ ·ρ− i√
2

θ̄ · ρ̄ +
i
4

θ ·θ(M + iN)− i
4

θ̄ · θ̄(M†− iN†)

+
1
2

θσ
µ

θ̄Aµ +
1

2
√

2
θ ·θ

(
θ̄ · λ̄ +

1
2

θ̄σ
µ

∂µρ

)
+

1
2
√

2
θ̄ · θ̄

(
θ ·λ − 1

2
θσ

µ
∂µ ρ̄

)
− 1

8
θ ·θθ̄ · θ̄

(
D+

1
2

η
µν

∂ν∂µC
)

where ηµν denotes the Minkowski metric. We have divided α into its real and imag-
inary parts in addition to pulling out a factor of i/4. The field B is divided into to
fields λ and ρ and the field P is divided into C and D. The pre-factors that are pulled
out are adjusted such that the fields D and λ transform into themselves under a gauge
transformation. Using this representation we may calculate V′ from (3.38) and (3.37)

V′ = C +
i√
2

θ ·ρ− i√
2

θ̄ · ρ̄ +
i
4

θ ·θ(M + iN)− i
4

θ̄ · θ̄(M†− iN†)

+
1
2

θσ
µ

θ̄Aµ +
1

2
√

2
θ ·θ

(
θ̄ · λ̄ +

1
2

θ̄σ
µ

∂µρ

)
+

1
2
√

2
θ̄ · θ̄

(
θ ·λ − 1

2
θσ

µ
∂µ ρ̄

)
−θ ·θθ̄ · θ̄

(
D+

1
2

η
µν

∂ν∂µC
)

− iφΛ−
1
2

θσ
µ

θ̄ ∂µφΛ +
i
8

θσ
µ

θ̄θσ
ν
θ̄ ∂µ∂νφΛ− iθ ·χΛ−

1
2

θσ
µ

θ̄θ ·∂µ χΛ−
i
2

θ ·θFΛ

+ iφ †
Λ
− 1

2
θσ

µ
θ̄ ∂µφ

†
Λ
− i

8
θσ

µ
θ̄θσ

ν
θ̄ ∂µ∂νφ

†
Λ

+ iθ̄ · χ̄Λ−
1
2

θσ
µ

θ̄ θ̄ ·∂µ χ̄Λ +
i
2

θ̄ · θ̄F†
Λ

We will use the identity [12]

(λσ
µ

χ̄)(λσ
ν

χ̄) =
1
2

η
µν

λ ·λ χ̄ · χ̄

on terms number 12 and 18, and the identity [12]

θσ
µ

λ̄ θ ·∂µ χ =−1
2

θ ·θ(∂µ χ)σ µ
λ̄

on term number 14. By taking the adjoint of the last identity we get

λσ
µ

θ̄ ∂µ χ̄ · θ̄ =−1
2

θ̄ · θ̄λσ
µ(∂µ χ̄)
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which will be used on term number 20. We then get that

V′ = C− i(φΛ−φ
†
Λ
)+

i√
2

θ · [ρ−
√

2χΛ]− i√
2

θ̄ · [ρ̄−
√

2χ̄Λ]

+
i
4

θ ·θ [M + iN−2FΛ]− i
4

θ̄ · θ̄ [M†− iN†−2F†
Λ
]+

1
2

θσ
µ

θ̄ [Aµ −∂µ(φΛ +φ
†
Λ
)]

+
1

2
√

2
θ ·θ

[
θ̄ · λ̄ +

1√
2
(∂µ χΛ)σ µ

θ̄ +
1
2

θ̄σ
µ

∂µρ

]
+

1
2
√

2
θ̄ · θ̄

[
θ ·λ +

1√
2

θσ
µ(∂µ χ̄Λ)− 1

2
θσ

µ
∂µ ρ̄

]
− 1

8
θ ·θθ̄ · θ̄

[
D+

1
2

η
µν

∂µ∂ν{C− i(φΛ−φ
†
Λ
)}
]

By comparing this result with V we see that the following field transformation have
taken place

C→C− i(φΛ−φ
†
Λ
)

ρ → ρ−
√

2χΛ

M + iN→M + iN−2FΛ

Aµ → Aµ −∂µ(φΛ +φ
†
Λ
)

D→ D

The transformation of λ can be seen by first explicitly using the transformation property
of ρ

θ ·λ ′− 1
2

θσ
µ

∂µ ρ̄ ′ = θ ·λ ′− 1
2

θσ
µ

∂µ ρ̄ +
1√
2

θσ
µ

∂µ χ̄Λ

and then noticing that the calculation of V′ gives the transformation

θ ·λ − 1
2

θσ
µ

∂µ ρ̄ → θ ·λ +
1√
2

θσ
µ(∂µ χ̄Λ)− 1

2
θσ

µ
∂µ ρ̄

which implies that
λ → λ

By using appropriate gauge conditions on φΛ, χΛ and FΛ we are entitled to set ρ , M, N
and C to zero [12]. This is the Wess-Zumino gauge, and leads to

V =
1
2

θσ
µ

θ̄Aµ +
1

2
√

2
θ ·θθ̄ · λ̄ +

1
2
√

2
θ̄ · θ̄θ ·λ − 1

8
θ ·θθ̄ · θ̄D (3.40)

Since Φ†e2qVΦ is a superfield, it is still the component field with the highest dimen-
sion that will transform as a total derivative in space-time. Therefore, we can use the
D-term of this expression as a SUSY term in a Lagrangian density

Φ
†e2qV

Φ

∣∣∣∣
D

=
∫

d2
θd2

θ̄Φ
†e2qV

Φ
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where we must make sure that we have the correct pre-factor such that the Lagrangian
density has dimension 4. This term will now contain the gauge interaction terms in
addition to the free fields. The potential W, consisting only of combinations of left-
chiral superfields will not be altered by the gauge transformation, and thus the F-term
will still contain the particle-particle interaction terms as before. The extension to non-
abelian gauge superfield theory entails Vi and Λi, where i runs over all the generators
of the transformation.

3.7 MSSM interactions and R-parity

We now want to retrieve possible SUSY interactions using the superfield approach.
We first define the superfields corresponding to the Standard Model particles and thus
defining their superpartners. We will only specify the first generation of particles. Ex-
tending to the second and third families will be trivial.

In order to keep the contents of the MSSM to be left-chiral states, the right-chiral
states of the fermions are replaced by the left-chiral antiparticle states. This is possible
since the operation of charge conjugation of a Weyl spinor is iσ2ψ†T . But this is also
how we find the left-chiral component of a left-chiral spinor ψ [1]. We will therefore
need to have a superfield that contains the left-chiral anti-particle states of the positron
(which is the same as the right-chiral state of the electron). The positron superfield is
denoted by E1, where 1 denotes the first generation of particles, and must contain a
spin-1/2 left-chiral particle. We note that in any combination of left-chiral superfields
W(Φi, . . . ,Φ j) the terms in the superfield expansion (3.36) containing

θσ
µ

θ̄ ∂µ

θσ
µ

θ̄θσ
ν
θ̄ ∂µ∂ν

and
θσ

µ
θ̄θ ·∂µ

can never combine with any other term to create an F-term. We therefore only need
to keep the other terms of the expansion of the superfield. The exact expansion of the
superfield E1 is then

E1 = φ̃ē +θ ·χē +
1
2

θ ·θFē (3.41)

where the tilde denotes the superpartner of the particle and ē denotes the positron (e is
the electron). Thus, the positron field is represented by χē while the spositron field is
represented by φ̃ē. This constitutes the doublet left-chiral supermultiplet containing the
right-chiral electron state and its superpartner.

We will also need to have a superfield containing the left-chiral doublets of the elec-
tron and the neutrino. We denote this by L1 (which stands for leptons). This superfield
must contain two left-chiral spin-1/2 particles that represent the electron and the neu-
trino. The corresponding SUSY partners in the supermultiplet must then be a spin-0
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selectron and a spin-0 sneutrino. We then have

L1 =
(

φ̃νe

φ̃e

)
+θ ·

(
χνe
χe

)
+

1
2

θ ·θ
(

Fνe
Fe

)
(3.42)

The gauge fields corresponding to the weak interactions are the U(1)Y gauge field of
the hypercharge and the SU(2)L gauge fields of the W± particles. The field Bµ , related
to the hypercharge, is a spin-1 vector gauge field and should be related to the dimension
1 field Aµ of V in section 3.6. Thus, the U(1)Y superfield is represented by equation
(3.40), and we will denote it by B

B =
1
2

θσ
µ

θ̄Bµ +
1

2
√

2
θ ·θθ̄ · λ̄Y +

1
2
√

2
θ̄ · θ̄θ ·λY −

1
8

θ ·θθ̄ · θ̄DY

where λY is the spin-3/2 superpartner of Bµ . The gauge superfield linked to E1 is
represented in a similar way, and we denote it with A. It is

A =
1
2

θσ
µ

θ̄Aµ +
1

2
√

2
θ ·θθ̄ · λ̄γ +

1
2
√

2
θ̄ · θ̄θ ·λγ −

1
8

θ ·θθ̄ · θ̄Dγ

The superfield representing the SU(2)L gauge fields is denoted Wi where i refers to the
particular generator that the superfield is connected to:

Wi =
1
2

θσ
µ

θ̄W i
µ +

1
2
√

2
θ ·θθ̄ · λ̄ i

L +
1

2
√

2
θ̄ · θ̄θ ·λ i

L−
1
8

θ ·θθ̄ · θ̄Di
L (3.43)

We have covered the U(1)Y and the SU(2)L sector. We now need to define the su-
perfields that represent the SU(3)c sector. First we want to have a superfield that con-
tains the spin-1/2 right-chiral quarks of the Standard Model. Again, we will rather
use the left-chiral antiquarks. We denote the anti-up-quark superfield by U1, where
again 1 refers to the generation of quarks. The anti-down-quark superfield is denoted
D1. Similarly, the anti-strange-quark superfield would be denoted by U2 and the anti-
charm-quark superfield by D2. We then have, in analogy with (3.41)

U1 = φ̃ū +θ ·χū +
1
2

θ ·θFū

D1 = φ̃d̄ +θ ·χd̄ +
1
2

θ ·θFd̄

where χū and χd̄ are the spin-1/2 anti-up and down-quark fields. Here, φ̃ū and φ̃d̄ are
the corresponding spin-0 superpartners. The SU(2)L left-chiral quarks are represented
by Q1 where 1 refers to the generation of quarks. We then have, in analogy with (3.42)

Q1 =
(

φ̃u
φ̃d

)
+θ ·

(
χu
χd

)
+

1
2

θ ·θ
(

Fu
Fd

)
The gluon gauge field is a spin-1 gauge field. We denote it by Ga where a takes eight
values, depending on which of the generators the superfield couples to. We have, in
analogy with (3.43)

Ga =
1
2

θσ
µ

θ̄Ga
cµ +

1
2
√

2
θ ·θθ̄ · λ̄ a

c +
1

2
√

2
θ̄ · θ̄θ ·λ a

c −
1
8

θ ·θθ̄ · θ̄Da
c
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where c denotes the color.

Finally we need to add a Higgs superfield. The Higgs field in the standard model is a
spin-0 scalar field. We will therefore have a spin-1/2 left-chiral spinor field represent-
ing the superpartner of the Higgs particle. We denote the Higgs superfield generating
the mass of the up quark by Hu and the Higgs superfield generating the down quark
mass, by Hd [12]. We have

Hu =
(

H+
u

H0
u

)
+θ ·

(
χ̃+

u
χ̃0

u

)
+

1
2

θ ·θ
(

F+
u

F0
u

)
and

Hd =
(

H0
d

H−d

)
+θ ·

(
χ̃0

d
χ̃
−
d

)
+

1
2

θ ·θ
(

F0
d

F−d

)
where +, − and 0 refer to the charges of the particles. H are the Higgs fields and χ̃ are
the corresponding Higgsinos.

We are now going to find which allowed combinations the above superfields Ei, Li,
Ui, Di, Qi, Hu and Hd can make, in such a way that the charges add up to zero and that
the combination Φ†e2iVΦ is gauge invariant. We have that

Φ ∈ {Ei,Li,Ui,Di,Qi,Hu,Hd}

and
V ∈ {B,Wi,Ga}

To make the correct combinations we need to know the U(1)Y hypercharge, SU(2)L
and SU(3)c quantum numbers of the fields we want to combine. These are shown in
table 3.1 [12]. Note that 1 assigned to SU(2)L means that the field with this quantum
number does not transform at all under SU(2)L. We saw an example of this in section
2.2, where the right-chiral leptons do not transform under the SU(2)L symmetry, and
thus must have the quantum number 1. The left-chiral doublet of the electron and the
neutrino will however transform under the SU(2)L symmetry and will therefore have
the quantum number 2 assigned to it. A similar argumentation holds for SU(3)c sym-
metries. For SU(3)c both the left and right-chiral components transform. The different
ways in which the left and the right components transform, is denoted with a bar over
the quantum number. Two superfields, one with quantum number 3 and another with
quantum number 3̄, will combined have the quantum number 1. Such a combination of
superfields will therefore be gauge invariant.

Note that it is possible to combine two SU(2)L doublets, with quantum number 2, in
a gauge invariant way without having access to fields of quantum numbers 2̄. Let ΦA
and ΦB be two left-chiral SU(2)L superfields. These then both consist of two left-chiral
superfields each. By making the combination

Φ
†
A(iσ2)ΦB ≡ΦA ◦ΦB

we create a SUSY gauge invariant out of superfields with SU(2)L quantum numbers 2
[1, 12]. Note also that we must make sure that the dimension of the combined super-
fields will not exceed 3, such that we still have a renormalizable theory when picking
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Superfield SU(3)c SU(2)L U(1)Y
Ei 1 1 1
Li 1 2 -1/2
Ui 3̄ 1 -2/3
Di 3̄ 1 1/3
Qi 3 2 1/6
Hu 1 2 1/2
Hd 1 2 -1/2

Table 3.1: Quantum numbers connected to the superfields (Note that we will follow the con-
vention in section 2.2, which uses half of the hypercharge listed in [12]).

out the F-term (which adds 1 to the dimension).

We start by trying to find the possible combinations of Ei with other superfields. We
start looking at the hypercharge. We will need to combine two superfields with hyper-
charge −1/2 to cancel the hypercharge from Ei (Ei has hypercharge 1). We start with
Li, which is an SU(2)L superfield, that necessarily must be combined with another
SU(2)L superfield with quantum numbers {1,2,−1/2}. We find the possibilities

EiLi ◦Li EiLi ◦Hd EiHd ◦Hd

However, if we look at EiHd ◦Hd , it has the form

AT iσ2A =
(
a b

)( 0 1
−1 0

)(
a
b

)
= 0

such that it will vanish identically.

Next we will look at gauge invariant superfield combinations containing Li. Li has
the quantum numbers {1,2,−1/2} and can only be combined with an SU(2)L super-
field with the associated SU(2)L quantum number 2. In addition the hypercharge and
SU(3)c quantum numbers must add to 0 and 1 respectively. The only possible options
are (not counting Ei treated previously)

Li ◦Hu Li ◦QiDi

We move on to find expressions involving Ui. This superfield has quantum numbers
{3̄,1,−2/3}, and we must therefore combine this with a superfield having the SU(3)c
quantum number 3. Only Qi offers such a possibility. The combination UiQi has quan-
tum numbers {1,2,−1/2}. There is only one possibility to cancel these quantum num-
bers. We thus have the gauge invariant combination

UiQi ◦Hu

There is also a way to combine three quantum numbers 3̄ into a gauge invariant quantity
[12]. This leads to the following invariant

f abc
c Ua

i D
b
i ◦Dc

i



48 N = 1 Supersymmetry

where f abc
c are the structure constants of QCD.

The superfield Di has quantum numbers {3̄,1,1/3}. Of the remaining fields not cov-
ered previously, this must be combined with a field containing the SU(3)c quantum
number 3. The only possibility is Qi. The quantum number of this combination is
{1,2,1/2}. We therefore have only one option to cancel the quantum numbers

DiQi ◦Hd

Qi has quantum numbers {3,2,1/6} and must, from the superfields not already previ-
ously covered, be combined with a superfield containing the SU(3)c quantum number
3̄. There are no such options.

Hu has quantum numbers {1,2,1/2}. The only field left that has not been covered
already is Hd , which gives the gauge-invariant combination

Hu ◦Hd

We may project out the F-term of any of the above combinations to retain a gauge and
SUSY invariant Lagrangian density which is also Lorentz invariant and renormalizable.

We also want to determine the possible gauge interactions we can have. We then have to
make combinations of the form Φ†e2iVΦ and project out the D-term. We first consider
Ei. The quantum numbers in table 3.1 show that Ei only has a non-trivial U(1)Y quan-
tum number. Thus, the gauge invariance is only linked to the field A and the possible
gauge interactions are retrieved from the D-term of

E
†
i e2gAEi

Li has both a U(1)Y quantum number and an SU(2)L quantum number. Therefore, both
B and W| must be associated with the gauge invariance. We may pick out the possible
gauge interactions from the D-term of

L
†
i e−2· 12 g′B+gW jσ jLi

Similarly we get for the other superfields

U
†
i e−2· 23 gB−gsG

aλaEi

D
†
i e2· 13 gB−gsG

aλaEi

Q
†
i e2· 16 gB+gsG

aλa+gW jσ jEi

H†
ue2· 12 g′B+gW jσ jLi

H
†
de−2· 12 g′B+gW jσ jLi

where g, g′ and gs are coupling constants, and λa are the Gell-Mann matrices.
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As shown above, we have in total eight gauge invariant left-chiral superfield combina-
tions. The F-terms of these will give possible interaction vertices between the particles.
Looking at the following left-chiral combinations

Li ◦Hu Li ◦QiDi EiLi ◦Li

we see that they all consist of an uneven number of lepton and anti-lepton fields. This
results in vertices which violate lepton-number conservation. In a similar manner the
left-chiral superfield

f abc
c Ua

i D
b
i ◦Dc

i

will contain terms which violate baryon number conservation [12]. This can lead to
non-phenemenological events such as the rapid decay of the proton. The way to remove
the unwanted terms is to insist on a global symmetry of the Grassmann variables θ , of
the following form [12] (

θ

θ̄

)
→ eiγ5α

(
θ

θ̄

)
This is called R-symmetry. Setting α = π it is called R-parity. The R-parity of compo-
nent fields can be calculated by

R = (−1)3B+L+2s

where B is the baryon number, L the lepton number and s the spin of the component
field.
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Chapter 4

N > 1 Supersymmetry

In the following we discuss some aspects of N > 1 SUSY. The calculations are based
on the N > 1 SUSY algebra found in [12] and N > 1 SUSY results from [1, 6].

4.1 Supermultiplets

N > 1 SUSY (also called Extended SUSY) is a generalization of the algebra in equa-
tions (3.11) and (3.12)

{QI
a,Q

J
b}= (−iσ2)abZIJ (4.1)

{QI
a,Q

J†
b }= (σ µ)abδ

IJPµ (4.2)

{QI†
a ,QJ†

b }= (−iσ2)ab(ZIJ)∗ (4.3)

where ZIJ is antisymmetric in its indices I and J and I,J = 1, ...,N. We may try to find
the supermultiplet associated with this kind of algebra by going through an identical
set of calculations as in section 3.3. The SUSY charges were not used in finding the
Casimir operators or the irreducible representation related to massless states. Therefore
we must still categorize the states by the helicity and energy through |p,h〉. QI

a and QI†
a

are not dependent on the space-time coordinates. As before we get that

[QI
a,P

µ ] = 0

[QI†
a ,Pµ ] = 0

Equations (3.19) and (3.20) can be derived by using equation (3.5) to find that

(δωδβ −δβ δω)φ =−1
2
[[β ·Q,ωµνMµν ],φ ]

The left-hand side is calculated by inserting the appropriate infinitesimal SUSY trans-
formations δξ φ and δξ χ . A comparison will then show the results of equations (3.19)
and (3.20). Since ZIJ is antisymmetric, then ZKK = 0, and equations (4.1) and (4.3)
will read

{QK
a ,QK

b }= 0

and
{QK†

a ,QK†
b }= 0
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This means that each charge pair QK
a ,QK

b separately will satisfy the N = 1 algebra. It
is only for I 6= J that the extended algebra differs. This implies that the infinitesimal
SUSY transformations δξ φ and δξ χ are of the same form. Thus, the derivation of
equations (3.19) and (3.20) are identical in the N > 1 case, which in turn gives a trivial
extension to these equations, which for N > 1 SUSY become

[QI
a,Mµν ] = (σµν)a

bQI
b

and
[QI†

a ,Mµν ] =−QI†
b (σ̄µν)b

a

It now follows that the momentum p in |p,h〉, as in the N = 1 case, will not be affected
by any of the charges QI

a or QI†
a . By applying the Pauli-Lubanski operator W µ to

QI
a|p,h〉 and QI†

a |p,h〉 in order to calculate the helicity eigenvalue of a state, as for the
N = 1 case, we find that

QI†
2 |p,h〉= QI

1|p,h〉= |p,h+
1
2
〉

and
QI

2|p,h〉= QI†
1 |p,h〉= |p,h− 1

2
〉

The difference between the N = 1 and N > 1 theories becomes apparent when we next
try to find all the particles belonging to one supermultiplet. We will start with N = 2.
As before, we start with the lowest helicity state, which we label |p,− j〉. We have that

QK
2 |p,− j〉= 0

We may apply any of the two operators QI†
2 . We may choose to start with I = 1 (al-

though I = 2 will provide a separate state with same helicity), such that

Q1†
2 |p,− j〉= |p,

1
2
− j〉

Since Q1†
2 does not anti-commute with Q2†

2 , then using Q2†
2 to the above result gives

Q2†
2 Q1†

2 |p,− j〉= Q2†
2 |p,

1
2
− j〉= |p,1− j〉

Any other attempt to use Q1†
2 or Q2†

2 will give zero because of their Grassmanian nature.
Therefore, for N = 2 SUSY we will have four states in one supermultiplet, as opposed
to N = 1 where we have two. The supermultiplet for N = 2 SUSY with j = 1

2 then
consists of |p,−1/2〉, two |p,0〉 states and |p,1/2〉. We recognize the h = −1/2 state
as a left-chiral spinor state and the h = 0 states as bosonic states, while the h = 1/2
state represents a right-chiral spinor. In N = 1 SUSY, the right chiral spinor was not
part of the supermultiplet. Since all these states are in the same group they must also
transform in the same manner. From section 2.2 we saw that the weak sector utilized
an U(1)×SU(2) gauge transformation on the left-chiral part of the Dirac spinor, while
only a U(1) gauge transformation was utilized on the right-chiral part. The only viable
SUSY theory for the weak interactions would be one containing a left-chiral spinor and
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its SUSY partner. Since N > 1 SUSY theories also must contain the corresponding
right-chiral spinor in the supermultiplet, that must transform the same way as the left-
chiral spinor, they are considered not phenomenologically viable. It is however possible
to make a hybrid N = 1 / N = 2 model by only considering N = 2 in the QCD sector,
in order to avoid the chirality problem [4].
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Chapter 5

N = 2 Superfields

5.1 The superfield coordinates

In this section we will use the methods of section 3.4 and section 4.1, to start building
a superfield formalism for N = 2 SUSY. This formalism can then be used to pick out
the possible N = 2 SUSY interaction vertices in a consistent manner.

In the N = 2 case the algebra of equations (4.1), (4.2) and (4.3) can have the values
(I,J) ∈ {(u,u),(u,v),(v,u),(v,v)}. The transformations are naturaly extended to

U(a,ξ u, ξ̄ u,ξ v, ξ̄ v)

where the indices refer to the specific charge, Qu
a or Qv

a, that the infinitesimal parameters
are associated with (not to be confused with spinor indices). However, there are other
operators, ZIJ, associated with the algebra of N = 2 SUSY, as equations (4.1), (4.2) and
(4.3) shows. This additional operator will need to be transformed under a SUSY trans-
formation. The SUSY charges in N = 1 have the associated variable θ , that it operates
on, and the infinitesimal parameter ξ representing the change under a transformation.
The momentum operator Pµ has an associated variable xµ , and an infinitesimal change
aµ . We need to assign similar variables to to the operators ZIJ. Before we do this we
need to make some assumptions on ZIJ. We already know from the definition of the
algebra that ZIJ is antisymmetric in its indices I and J. We will assume that

[ZIJ,ZKL] = 0 [ZIJ,(ZKL)∗] = 0 (5.1)

We will also assume, as for Pµ , that ZIJ commutes with Qu
a, Qv

a, Q̄u
a and Q̄v

a. We still
want Pµ to commute with all the generators, thus we will assume that it commutes with
ZIJ and (ZIJ)∗.

Because of equations (5.1) we see that ZIJ is not of a Grassmann nature. Therefore,
the associated variable and infinitesimal displacements should not be of a Grassmann
nature. We assign the variables AIJ and A∗IJ to denote the current positions in super-
space of ZIJ and (ZIJ)∗ respectively. For the infinitesimal displacements in superspace
we assign the variables αIJ and α∗IJ to ZIJ and (ZIJ)∗ respectively.
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Note that since ZIJ is antisymmetric, then the symmetric part sIJ of AIJ will lead to

∑
IJ

sIJZIJ =−∑
IJ

sIJZIJ

such that we must have
∑
IJ

sIJZIJ = 0

Since we have to include this sum in the transformation U , we may ignore the symmet-
ric part of AIJ and rather take it to be antisymmetric. The same reasoning holds for αIJ.
Therefore we also take αIJ to be antisymmetric in its indices. Since any antisymmetric
matrix must have zero diagonal, we see that Auu = Avv = 0. We also have that

AuvZuv +AvuZvu = 2AuvZuv

We now make the following definition for the N = 2 superspace coordinate:

Cs ≡ (xµ ,θ u
a ,θ v

a , θ̄ u,ȧ, θ̄ vȧ,Auv,Avu,A∗uv,A
∗
vu)

We also define the infinitesimal superspace displacement to be

cs ≡ (aµ ,ξ u
a ,ξ v

a , ξ̄ u,ȧ, ξ̄ vȧ,αuv,αvu,α
∗
uv,α

∗
vu)

As was done in section 3.4, we use the relation

U(C′s) = U(cs)U(Cs) (5.2)

to find the transformation of the superspace coordinates.

The transformation U(cs) is now defined as

U(cs) = eiaµ Pµ+iξ u,aQu
a+iξ v,aQv

a+iξ̄ u
ȧ Q̄u,ȧ+iξ̄ v

ȧ Q̄v,ȧ+2iαuvZuv+2iα∗uv(Z
uv)∗

and U(Cs) as

U(Cs) = eixµ Pµ+iθ u,aQu
a+iθ v,aQv

a+iθ̄ u
ȧ Q̄u,ȧ+iθ̄ v

ȧ Q̄v,ȧ+2iAuvZuv+2iA∗uv(Z
uv)∗

By using the BCH (Baker-Campbell-Hausdorff) identity

eAeB = eA+B+ 1
2 [A,B]+···

for non-commutative quantities, we can calculate the resulting exponent of the right-
hand side in equation (5.2):

iaµPµ + iξ u,aQu
a + iξ v,aQv

a + iξ̄ u
ȧ Q̄u,ȧ + iξ̄ v

ȧ Q̄v,ȧ +2iαuvZuv +2iα∗uv(Z
uv)∗

+ixµPµ + iθ u,aQu
a + iθ v,aQv

a + iθ̄ u
ȧ Q̄u,ȧ + iθ̄ v

ȧ Q̄v,ȧ +2iAuvZuv +2iA∗uv(Z
uv)∗

+
1
2
[
iaµPµ + iξ u,aQu

a + iξ v,aQv
a + iξ̄ u

ȧ Q̄u,ȧ + iξ̄ v
ȧ Q̄v,ȧ +2iαuvZuv +2iα∗uv(Z

uv)∗,

ixνPν + iθ u,bQu
b + iθ v,bQv

b + iθ̄ u
ḃ Q̄u,ḃ + iθ̄ v

ḃ Q̄v,ḃ +2iAuvZuv +2iA∗uv(Z
uv)∗
]

(5.3)
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Since Pµ , ZIJ and (ZIJ)∗ commute with all generators, all commutators containing Pµ ,
ZIJ or (ZIJ)∗ will vanish. Because of this and the nature of the Grassmann variables,
the remaining commutators in the BCH identity will vanish. We now calculate the
commutators in equation (5.3) that do not contain Pµ , ZIJ or (ZIJ)∗. The first one is

[iξ u,aQu
a, iθ

u,bQu
b] =−ξ

u,aQu
aθ

u,bQu
b +θ

u,bQu
bξ

u,aQu
a

= ξ
u,a

θ
u,bQu

aQu
b +ξ

u,a
θ

u,bQu
bQu

a = ξ
u,a

θ
u,b{Qu

a,Q
u
b}

= ξ
u,a

θ
u,b(−iσ2)abZuu = 0

where we used the anti-commutation between the Grassmann variables. In the last
steps we replaced the anti-commutator, using the N = 2 algebra. Then we could use
the anti-symmetry of ZIJ to get zero.

We continue evaluating the commutators resulting from equation (5.3):

[iξ u,aQu
a, iθ

v,bQv
b] = ξ

u,a
θ

v,b{Qu
a,Q

v
b}= ξ

u,a
θ

v,b(−iσ2)abZuv = ξ
u,a

θ
v
a Zuv

[iξ u,aQu
a, iθ̄

u
ḃ Q̄u,ḃ] = ξ

u,a
θ̄

u
ḃ {Q

u
a, Q̄

u,ḃ}= ξ
u,a

θ̄
u
ḃ [σ µ ]a

ḃPµ

[iξ u,aQu
a, iθ̄

v
ḃ Q̄v,ḃ] = ξ

u,a
θ̄

v
ḃ{Q

u
a, Q̄

v,ḃ}= ξ
u,a

θ̄
v
ḃ [σ µ ]a

ḃ
δ

uvPµ = 0

[iξ v,aQv
a, iθ

u,bQu
b] = ξ

v,a
θ

u,b{Qv
a,Q

u
b}= ξ

v,a
θ

u,b(−iσ2)abZvu = ξ
v,a

θ
u
a Zvu

[iξ v,aQv
a, iθ

v,bQv
b] = ξ

v,a
θ

v,b{Qv
a,Q

v
b}= ξ

v,a
θ

v,b(−iσ2)abZvv = 0

[iξ v,aQv
a, iθ̄

u
ḃ Q̄u,ḃ] = ξ

v,a
θ̄

u
ḃ {Q

v
a, Q̄

u,ḃ}= ξ
v,a

θ̄
u
ḃ [σ µ ]a

ḃ
δ

vuPµ = 0

[iξ v,aQv
a, iθ̄

v
ḃ Q̄v,ḃ] = ξ

v,a
θ̄

v
ḃ{Q

v
a, Q̄

v,ḃ}= ξ
v,a

θ̄
v
ḃ [σ µ ]a

ḃPµ

[iξ̄ u
ȧ Q̄u,ȧ, iθ u,bQu

b] = ξ̄
u
ȧ θ

u,b{Q̄u,ȧ,Qu
b}= ξ̄

u
ȧ θ

u,b[σ µ ]b
ȧPµ

[iξ̄ u
ȧ Q̄u,ȧ, iθ v,bQv

b] = ξ̄
u
ȧ θ

v,b{Q̄u,ȧ,Qv
b}= ξ̄

u
ȧ θ

v,b[σ µ ]b
ȧ
δ

uvPµ = 0

[iξ̄ u
ȧ Q̄u,ȧ, iθ̄ u

ḃ Q̄u,ḃ] = ξ̄
u
ȧ θ̄

u
ḃ {Q̄

u,ȧ, Q̄u,ḃ}= ξ̄
u
ȧ θ̄

u
ḃ (−iσ2)ȧḃ(Zuu)∗ = 0

[iξ̄ u
ȧ Q̄u,ȧ, iθ̄ v

ḃ Q̄v,ḃ] = ξ̄
u
ȧ θ̄

v
ḃ{Q̄

u,ȧ, Q̄v,ḃ}= ξ̄
u
ȧ θ̄

v
ḃ(−iσ2)ȧḃ(Zuv)∗ =−ξ̄

u
ȧ θ̄

v,ȧ(Zuv)∗

[iξ̄ v
ȧ Q̄v,ȧ, iθ u,bQu

b] = ξ̄
v
ȧ θ

u,b{Q̄v,ȧ,Qu
b}= ξ̄

v
ȧ θ

u,b[σ µ ]b
ȧ
δ

vuPµ = 0
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[iξ̄ v
ȧ Q̄v,ȧ, iθ v,bQv

b] = ξ̄
v
ȧ θ

v,b{Q̄v,ȧ,Qv
b}= ξ̄

v
ȧ θ

v,b[σ µ ]b
ȧPµ

[iξ̄ v
ȧ Q̄v,ȧ, iθ̄ u

ḃ Q̄u,ḃ] = ξ̄
v
ȧ θ̄

u
ḃ {Q̄

v,ȧ, Q̄u,ḃ}= ξ̄
v
ȧ θ̄

u
ḃ (−iσ2)ȧḃ(Zvu)∗ =−ξ̄

v
ȧ θ̄

u,ȧ(Zvu)∗

[iξ̄ v
ȧ Q̄v,ȧ, iθ̄ v

ḃ Q̄v,ḃ] = ξ̄
v
ȧ θ̄

v
ḃ{Q̄

v,ȧ, Q̄v,ḃ}= ξ̄
v
ȧ θ̄

v
ḃ(−iσ2)ȧḃ(Zvv)∗ = 0

We insert the results of the commutators into equation (5.3) and collect terms linear in
the generators to get

i(xµ +aµ)Pµ + i(θ u,a +ξ
u,a)Qu

a + i(θ v,a +ξ
v,a)Qv

a + i(θ̄ u
ȧ + ξ̄

u
ȧ )Q̄u,ȧ + i(θ̄ v

ȧ + ξ̄
v
ȧ )Q̄v,ȧ

+2i(Auv +αuv)Zuv +2i(A∗uv +α
∗
uv)(Z

uv)∗

+
1
2

ξ
u,a

θ̄
u
ḃ [σ µ ]a

ḃPµ +
1
2

ξ
v,a

θ̄
v
ḃ [σ µ ]a

ḃPµ +
1
2

ξ̄
u
ȧ θ

u,b[σ µ ]b
ȧPµ +

1
2

ξ̄
v
ȧ θ

v,b[σ µ ]b
ȧPµ

+
1
2

ξ
u,a

θ
v
a Zuv− 1

2
ξ

v,a
θ

u
a Zuv +

1
2

ξ̄
v
ȧ θ̄

u,ȧ(Zuv)∗− 1
2

ξ̄
u
ȧ θ̄

v,ȧ(Zuv)∗

We can again collect terms linear in the generators to get the following exponent of the
right-hand side of equation (5.2)

i(xµ +aµ − i
2

ξ
u,a

θ̄
u
ḃ [σ µ ]a

ḃ− i
2

ξ
v,a

θ̄
v
ḃ [σ µ ]a

ḃ− i
2

ξ̄
u
ȧ θ

u,b[σ µ ]b
ȧ− i

2
ξ̄

v
ȧ θ

v,b[σ µ ]b
ȧ)Pµ

+i(θ u,a +ξ
u,a)Qu

a + i(θ v,a +ξ
v,a)Qv

a + i(θ̄ u
ȧ + ξ̄

u
ȧ )Q̄u,ȧ + i(θ̄ v

ȧ + ξ̄
v
ȧ )Q̄v,ȧ

+2i(Auv +αuv−
i
4

ξ
u,a

θ
v
a +

i
4

ξ
v,a

θ
u
a )Zuv +2i(A∗uv +α

∗
uv−

i
4

ξ̄
v
ȧ θ̄

u,ȧ +
i
4

ξ̄
u
ȧ θ̄

v,ȧ)(Zuv)∗

=i(xµ +aµ +
i
2

ξ
u,a[σ µ ]aḃθ̄

u,ḃ +
i
2

ξ
v,a[σ µ ]aḃθ̄

v,ḃ− i
2

θ
u,b[σ µ ]bȧξ̄

u,ȧ− i
2

θ
v,b[σ µ ]bȧξ̄

v,ȧ)Pµ

+i(θ u,a +ξ
u,a)Qu

a + i(θ v,a +ξ
v,a)Qv

a + i(θ̄ u
ȧ + ξ̄

u
ȧ )Q̄u,ȧ + i(θ̄ v

ȧ + ξ̄
v
ȧ )Q̄v,ȧ

+2i(Auv +αuv−
i
4

ξ
u,a

θ
v
a +

i
4

ξ
v,a

θ
u
a )Zuv +2i(A∗uv +α

∗
uv−

i
4

ξ̄
v
ȧ θ̄

u,ȧ +
i
4

ξ̄
u
ȧ θ̄

v,ȧ)(Zuv)∗

(5.4)

The left hand exponent of equation (5.2) is

ix′µPµ + iθ ′u,aQu
a + iθ ′v,aQv

a + iθ̄ ′uȧQ̄u,ȧ + iθ̄ ′vȧQ̄v,ȧ +2iA′uvZuv +2iA′∗uv(Z
uv)∗ (5.5)

A comparison of (5.4) and (5.5) shows that the superspace coordinates in N = 2 SUSY
transform as

xµ→ xµ +aµ +
i
2

ξ
u,a[σ µ ]aḃθ̄

u,ḃ+
i
2

ξ
v,a[σ µ ]aḃθ̄

v,ḃ− i
2

θ
u,b[σ µ ]bȧξ̄

u,ȧ− i
2

θ
v,b[σ µ ]bȧξ̄

v,ȧ

θ
u,a→ θ

u,a +ξ
u,a

θ
v,a→ θ

v,a +ξ
v,a

θ̄
u
ȧ → θ̄

u
ȧ + ξ̄

u
ȧ

θ̄
v
ȧ → θ̄

v
ȧ + ξ̄

v
ȧ

Auv→ Auv +αuv−
i
4

ξ
u,a

θ
v
a +

i
4

ξ
v,a

θ
u
a

A∗uv→ A∗uv +α
∗
uv−

i
4

ξ̄
v
ȧ θ̄

u,ȧ +
i
4

ξ̄
u
ȧ θ̄

v,ȧ
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5.2 Differential representation of charges

We will now expand the N = 2 SUSY charges in two different ways. First we will
expand the transformation U(cs), where cs was defined in section 5.1, in terms of the
charges. Next we will Taylor expand Φ(C′s) to obtain the necessary differentials. By
comparing these expansions we will get the N = 2 generators in the differential repre-
sentation.

We will start with the expansion of U(cs). Note that we use U†(cs) in the expan-
sion to follow the conventions used in [12]. Using U(cs) directly will give a sign shift
on all the charges which will cancel in any commutation or anti-commutation relation
containing the charges. The resulting algebra will therefore be the same, regardless of
the convention used. We have

Φ(C′s) = [1− iaµPµ − iξ u,aQu
a− iξ v,aQv

a

− iξ̄ u
ȧ Q̄u,ȧ− iξ̄ v

ȧ Q̄v,ȧ−2iαuvZuv−2iα∗uv(Z
uv)∗]Φ(Cs) (5.6)

The Taylor expansion of Φ(C′s) is calculated from

Φ(C′s) = Φ
(
xµ +aµ +

i
2

ξ
u,a[σ µ ]aḃθ̄

u,ḃ +
i
2

ξ
v,a[σ µ ]aḃθ̄

v,ḃ− i
2

θ
u,b[σ µ ]bȧξ̄

u,ȧ− i
2

θ
v,b[σ µ ]bȧξ̄

v,ȧ,

θ
u,a +ξ

u,a,θ v,a +ξ
v,a,

θ̄
u
ȧ + ξ̄

u
ȧ , θ̄ v

ȧ + ξ̄
v
ȧ ,

Auv +αuv−
i
4

ξ
u,a

θ
v
a +

i
4

ξ
v,a

θ
u
a ,A∗uv +α

∗
uv−

i
4

ξ̄
v
ȧ θ̄

u,ȧ +
i
4

ξ̄
u
ȧ θ̄

v,ȧ)
We define

Φ≡Φ|cs=0 = Φ(xµ)

Note that the expansion terminates to the first order due to the Grassmann nature of the
expansion variables. We also define

∂
u
a ≡

∂

∂θ u,a

and

∂̄
u,ȧ ≡ ∂

∂ θ̄ u
ȧ

We introduce the notation C′k, which means, C′0 = x′µ , C′1 = θ ′ua , C′5 = A′uv and C′6 =
A′∗uv. And the notation c′k, which means, c′0 = a′µ , C′1 = ξ ′ua , c′5 = α ′uv and c′6 = α ′∗uv. It
is also important to keep the original position of the Grassmann variables in the Taylor
expansion (i.e. one must not place the Grassmann variables outside to the right in
the expansion terms, as is usual in a Taylor expansion, without performing the correct
sign alterations). In the Taylor expansion sums occurring below, we will place the
expansion variables outside the sum, keeping in mind that these must be placed at the
proper position when the sums are expanded. To be able to differentiate upper index
Weyl spinors with respect to lower index Weyl spinors, and vice versa, we use (iσ2) to
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raise and lower indices. We now perform the Taylor expansion:

Φ
′ =Φ+

6

∑
k=0

[(
∂

∂ck
s
Φ

)
∂

∂aν
C′ks |cs=0

]
aν +

6

∑
k=0

[(
∂

∂ck
s
Φ

)
∂

∂ξ u,aC′ks |cs=0

]
ξ

u,a

+ · · ·+
6

∑
k=0

[(
∂

∂ck
s
Φ

)
∂

∂A∗uv
C′ks |cs=0

]
A∗uv

=Φ+δ
µ

ν ∂µΦaν +
i
2

ξ
u,a[σ µ ]aḃθ̄

u,ḃ
∂µΦ+δ

a
c ξ

u,c
∂

u
a Φ

− i
4

ξ
u,a

θ
v
a

∂

∂Auv
Φ+

i
2

θ
u,a[σ µ ]aḃ(iσ

2)ḃċ
ξ̄

u
ċ ∂µΦ+δ

ċ
ȧ ξ̄

u
ċ ∂̄

u,ȧ
Φ+

i
4

ξ̄
u
ȧ θ̄

v,ȧ ∂

∂A∗uv
Φ

+
i
2

ξ
v,a[σ µ ]aḃθ̄

v,ḃ
∂µΦ+δ

a
c ξ

v,c
∂

v
a Φ+

i
4

ξ
v,a

θ
u
a

∂

∂Auv
Φ+

i
2

θ
v,a[σ µ ]aḃ(iσ

2)ḃċ
ξ̄

v
ċ ∂µΦ

+δ
ċ
ȧ ξ̄

v
ċ ∂̄

v,ȧ
Φ− i

4
ξ̄

v
ȧ θ̄

u,ȧ ∂

∂A∗uv
Φ+αuv

∂

∂Auv
Φ+α

∗
uv

∂

∂A∗uv
Φ (5.7)

Rewriting equation (5.7) we have

Φ(C′s) =
{

1+aµ
∂µ +ξ

u,a
(

∂
u
a +

i
2
[σ µ ]aḃθ̄

u,ḃ
∂µ −

i
4

θ
v
a

∂

∂Auv

)
+
(
−∂̄

u,ċ +
i
2

θ
u,a[σ µ ]aḃ(iσ

2)ḃċ
∂µ −

i
4

θ̄
v,ċ ∂

∂A∗uv

)
ξ̄

u
ċ

+ξ
v,a
(

∂
v
a +

i
2
[σ µ ]aḃθ̄

v,ḃ
∂µ +

i
4

θ
u
a

∂

∂Auv

)
+
(
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By comparing (5.6) with (5.8) we see that the differential representation of the N = 2
SUSY charges are

Pµ = i∂µ
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a = i∂ u
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1
2
[σ µ ]aḃθ̄

u,ḃ
∂µ +

1
4

θ
v
a

∂

∂Auv
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2
[σ µ ]aḃθ̄
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1
4

θ
u
a

∂

∂Auv
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2
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5.3 Chirality

In N = 1 superfield theory, we want the superfields to have the same component fields as
the fields in the Wess-Zumino Lagrangian. To accomplish this a covariant derivative D̄ȧ
is constructed. To remove unwanted terms in the superfield the constraint D̄ȧΦ = 0 is
required on the superfield Φ. The superfield Φ is then said to be a left-chiral superfield,
since it only contains the left-chiral fermions of the original superfield. In the N = 2
case we have more non-vanishing terms in the superfield than in the N = 1 case. This
is because terms might contain combinations of θ u and θ v that does not vanish when
coupled. We could try to impose two constraints

D̄u
ȧΦ(x,θ u,θ v, θ̄ u, θ̄ v,Auv,A∗uv) = 0

D̄v
ȧΦ(x,θ u,θ v, θ̄ u, θ̄ v,Auv,A∗uv) = 0

where u and v refers to the explicit charges QI for I ∈ {u,v} of the N = 2 algebra.
However, the purpose would then be to impose a similar condition as for N = 1 in
order to reduce the number of terms in the expansion of Φ, not to retrieve the Wess-
Zumino Lagrangian. The phenomenological reasons for doing this is unclear, but it
would still be an N = 2 model. Since we have combinations of θ u and θ v and not only
θ as in N = 1 SUSY, we will still have a combination of left-chiral and right-chiral
component fields in the N = 2 superfields after applying the above constraints. This is
due to the fact that [θ u] = [θ v] = [θ ].This is in accordance with what was discovered
using the N = 2 algebra to find possible helicity states of an N = 2 supermultiplet.



62 N = 2 Superfields



Chapter 6

N = 2 Decay chains

6.1 Quantum numbers

As seen in section 3.7, we may exclude many of the possible interaction vertices by
considering Lorentz invariance and the conservation of quantum numbers. We also saw
how to build SUSY invariant combinations in section 2.4. Table 6.1 lists the quantum
numbers of the N = 1 particles available in the MSSM, and table 6.2 shows the MSSM
gauge fields and their quantum numbers [1]. R-parity will also prevent some important
decays such as the rapid decay of the proton, but it will also prevent the decay of the
neutralino. The baryon number is calculated through

B =
1
3
(nq−nq̄)

where nq is the number of quarks and nq̄ is the number of anti-quarks. The baryon
number must also be conserved in a decay.

6.2 Interaction terms

We saw in section 4, that for any N = 2 supermultiplet containing a fermion (with he-
licity −1/2), we will need to include two particles of helicity 0 and one particle with
helicity 1/2. This is in contrast to the N = 1 case where we only need the helicities
−1/2 and 0. The electro-weak sector is left-chiral by nature and we cannot extend this
sector to N = 2 supersymmetry. We will therefore look at a hybrid model, where we
only allow the QCD sector to be extended to N = 2 supersymmetry. Therefore, we will
in the electro-weak sector only have vertices containing left-chiral particles. We will
allow for both left and right-chiral particles in the vertices of QCD.

We will now look at how the topology changes when N = 2 SUSY is allowed in the
QCD-sector. The act of multiplying a left-chiral quantity with (iσ2) and taking the
transpose is equivalent to both charge conjugation, and to changing the transformation
properties to right-chiral. We no longer have SU(2)L singlets in the QCD sector since
we have right-chiral fermions in the supermultiplet. Therefore we must collect the anti-
up-quark, anti-down-quark, anti-up-squark and the anti-down-squark into two SU(2)R
doublets, and no longer allow these as singlets under SU(2). We then have the addi-
tional particle fields shown in table 6.3. One could possibly imagine an N = 2 decay
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Particle Name Spin Lepton # SU(3)c SU(2)L U(1)Y

Q =
(

χu
χd

)
quark 1/2 +1 3 2 1/6

Q̃ =
(

φ̃u
φ̃d

)
squark 0 0 3 2 1/6

χū anti-up-quark 1/2 -1 3̄ 1 -2/3
χd̄ anti-down-quark 1/2 -1 3̄ 1 1/3
φ̃ū anti-up-squark 0 0 3̄ 1 -2/3
φ̃d̄ anti-down-squark 0 0 3̄ 1 1/3

L =
(

χe
χνe

)
electron / neutrino 1/2 +1 1 2 -1/2

L̃ =
(

φ̃e
φ̃νe

)
selectron / sneutrino 0 0 1 2 -1/2

χē Positron 1/2 -1 1 1 1
φ̃ē Spositron 0 0 1 1 1

Hu =
(

H+
u

H0
u

)
Higgs 0 0 1 2 1/2

H̃u =
(

H̃+
u

H̃0
u

)
Higgsino 1/2 +1 1 2 1/2

Hd =
(

H0
d

H−d

)
Higgs 0 0 1 2 -1/2

H̃d =
(

H̃0
d

H̃−d

)
Higgsino 1/2 +1 1 2 -1/2

Table 6.1: Quantum numbers connected to the MSSM particles [1] (Note that we will follow
the convention in section 2.2, which uses half of the hypercharge listed in [1]).

Particle Name Spin Lepton # SU(3)c SU(2)L U(1)Y
Ga

cµ (g) Gluon 1 0 8 1 0
λ a

c (g̃) Gluino 1/2 0 8 1 0
W i

µ (W±, W 0) W boson 1 0 1 3 0
λ i

L (W̃±, W̃ 0) Wino 1/2 0 1 3 0
Bµ (B) B boson 1 0 1 1 0
λY (B̃) Bino 1/2 0 1 1 0

Table 6.2: Quantum numbers connected to the MSSM gauge fields [1] (Note that we will
follow the convention in section 2.2, which uses half of the hypercharge listed in [1]).

Particle Name Spin Lepton # SU(3)c SU(2)R U(1)Y

QR =
(

χū
χd̄

)
quark -1/2 -1 3̄ 2 -1/6

Q̃R =
(

φ̃ū
φ̃d̄

)
squark 0 0 3̄ 2 -1/6

Table 6.3: Quantum numbers connected to the extended SUSY particles (Note that we will
follow the convention in section 2.2, which uses half of the hypercharge listed in [1]).
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where an N = 2 spin-1/2 particle may decay via generalized R-parity violation (i.e.
going from N = 2 to N = 1) to quark(s) and gluon(s).

6.3 The Neutralino

The neutralino is a candidate for dark matter, and can only be detected by particle accel-
erators through missing energy, due to its lack of interactions with the electromagnetic
forces. It consists of a mixture of B̃ (bino), W̃ 0 (neutral wino) and H̃0

u / H̃0
d (neutral

Higgsinos) [1]. The neutralino cannot decay any further due to the assumed R-parity.
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Chapter 7

Conclusion

We have been through the construction of the Standard Model and N = 1 supersym-
metry using the superfield formalism. From the construction of the N = 1 superfield
formalism we found a way to construct the N = 2 supercharges in a differential repre-
sentation. We found that in order to construct N = 2 superfield theory it is not enough
to extend the existing superspace by the trivial extension of the superspace coordinates
by the number of added charges. We must also add coordinates for the new operators
that appear in the extended supersymmetry algebra.

The N = 1 general superfield, not restricted to left chirality, has more component fields
than are phenomenologically sound. This is of course also true for the general un-
restricted N = 2 superfield. It is, however, not so clear which guidelines to use for
the restriction of these superfields. We could try two constraints similar to the condi-
tion of left chirality in N = 1 SUSY, but it would not lead to a reconstruction of the
Wess-Zumino Lagrangian as was the purpose in N = 1. We also note that even with the
analogous restriction to N = 1 SUSY, the N = 2 superfield will not be left-chiral.

We found that in N = 1 supersymmetry, chiral fermions occur naturally as a conse-
quence of the the N = 1 supersymmetry algebra. Chiral fermions are a necessity in
the Standard Model, and must be possible as a viable extension of it. Using the N > 1
supersymmetry algebra we were able to calculate all the helicity states that must be
present in one supermultiplet. It is evident that for any supermultiplet, we must couple
a right-chiral field to a left-chiral field. This implies that a full N > 1 supersymmet-
ric model will not be possible in an extension of the Standard Model. The chirality
problem is however only present in the electro-weak sector of the Standard Model. A
hybrid N = 1/N > 1 model could be an alternative. Here, only the QCD sector would
be implemented using N > 1 supersymmetry,
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