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Abstract Patients suffering from nerve injury with sensory
disturbances or orofacial pain have greatly reduced quality
of life, and it is a big cost for the society. Abnormal sensations
caused by trigeminal nerve injury often become chronic, se-
verely debilitating, and extremely difficult to treat. In general,
non-invasive treatment such as drug treatment has been insuf-
ficient, and there are currently few available effective treat-
ments. Surgical interventions such as end-to-end connection
or nerve grafting have disadvantages such as donor site mor-
bidity or formation of neuroma. There is need for optimizing
the technique for nerve repair, especially for the trigeminal
nerve system, which has so far not yet been well explored.
Recently, tissue engineering using biodegradable synthetic
material and cell-based therapies represents a promising ap-
proach to nerve repair and it has been reported that mesenchy-
mal stem cell (MSC) has an anti-inflammatory effect and

seems to play an important role in nerve healing and
regeneration.
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Introduction

Background

Dysfunction of the trigeminal nerve due to trauma, diseases, or
unknown causes is for the patients distressing. The sensory dis-
turbances and/or pain are unpleasant conditions. It can involve
the function of the mandible, the muscles, the skin of chin and
lips, the intra orally mucosa, and the tongue and give rise to
several problems such as pain, inability to move the jaw,
tongue-lip or cheek biting, inability to maintain food and liquid
competence, burning sensation with provocative stimuli, change
in speech pattern, and change in taste perception [1]. Studies of
patients that are affected by temporomandibular disorders
(TMD), which may present a longstanding pain condition where
muscles and/or joint are involved, have revealed that psycholog-
ical factors dominate as a consequence of living with pain [2]. In
a study where TMD patients were investigated with a multidis-
ciplinary approach, most of the patients had a long history of
pain, significant high levels of catastrophizing, and high occur-
rence of anxiety and/or depression [3]. Injury to the somatosen-
sory pathways may either increase the nerve transmission like in
allodynia and hyperalgesia or decrease the transmission such as
in hypoesthesia or anesthesia [4, 5]. An important sequel of nerve
injury and other nervous system diseases is neural degeneration.

This article is part of the Topical Collection on Orodental Regenerative
Medicine

* Annika Rosén
annika.rosen@uib.no

Arezo Tardast
Arezo.Tardast@vgregion.se

Tie-Jun Shi
tiejun.shi@uib.no

1 Division of Oral and Maxillofacial Surgery, University of Bergen,
Årstadveien 19, 5020 Bergen, Norway

2 Department of Clinical Dentistry, University of Bergen, Årstadveien
19, 5020 Bergen, Norway

3 Department of Oral and Maxillofacial Surgery, Södra Älvsborg
Hospital, 501 82 Borås, Sweden

4 Department of Biomedicine, University of Bergen, Bergen, Norway

Curr Oral Health Rep (2016) 3:309–313
DOI 10.1007/s40496-016-0115-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s40496-016-0115-x&domain=pdf


Abnormal sensation induced by peripheral nerve injury has been
considered as a progressive neurodegenerative disease [6].

Traumatic nerve injury of the trigeminal nerve is a
major clinical challenge. The frequently most affected tri-
geminal branch is the inferior alveolar nerve (IAN)
followed by the lingual nerve (LN) and finally the
infraorbital nerve (ION) [7, 8] (Fig. 1). It has earlier been
reported that spontaneous recovery of injured IAN after
6–9 months will leave some degree of long-term perma-
nent disability [9]. Alteration of sensation in the damaged
nerve results from either direct or indirect damage due to
compression, stretching, or laceration. The degree of al-
teration depends on the severity of injury [10].

When the nerve is damage, an inflammation process will
start which releases a cascade of prostaglandins to the sur-
rounding tissue which will spread to sensory neurons. The
inflammation response will maintain the painful symptoms
which in turn can develop to both peripheral and central sen-
sitization [11]. During the inflammation process, interactions
of macrophages andmonocytes from peripheral bloodmigrate
towards the damage site in the peripheral nerve which is con-
nected via cell bodies in the dorsal spinal cord and the trigem-
inal ganglion and further to central parts of the brain. They
will consequently activate microglia, which are surrounded by
satellite glia cells (SGCs), and underlie peripheral

sensitization which in turn maintain allodynia and
hyperalgesia [12]. This finding has been demonstrated in an
animal study where injections of capsaicin to the temporal
joint capsule showed that SGCs were activated [13]. Further,
activation of sensory neurons in the mandible has shown re-
sultant spreading of neuronal activity not only in the third
trigeminal branches but also to the first and second branches
(Fig. 1). A cross-excitation to extraterritorial sites outside the
injured dermatome was the interpretation of the results [14].
Recent evidence in animal studies indicates that deficits of
trigeminal nerve system may lead to impairments in learning
and memory and neuronal loss in the hippocampus [15].

Orofacial pain induced by trigeminal nerve injury is often a
symptom complex rather than a single condition, and it is
thought to be caused by multiple factors. However, these fac-
tors are poorly understood. A major obstacle in exploring
mechanisms and treatments of neuropathic pain is that our
conventional understanding of pain physiology and pharma-
cology has been built primarily on studies of nociceptive pain
whereas persistent or neuropathic pain in many aspects differs
from, and even is contrary to, nociceptive pain [16]. Clinical
research on this problem is difficult as these are not common
disorders, and thus, homogenous patient samples for impor-
tant variables are difficult to obtain. Furthermore, invasive
methods often have to be used to address the underlying
mechanisms and novel unproven treatments tested.

Available Treatments

Treatment of abnormal sensation of sensory nerves such as
pain is usually, as a first choice, pharmacological. Acute pain
can be treated successfully with paracetamol, non-steroidal
anti-inflammatory drugs (NSAID), and/or morphine. When
the postoperative pain develops into persistent neuropathic
pain, medication with antiepileptic drugs such as gabapentin
or carbamazepine is used with different outcomes [12]. The
side effects of this type of medication can be a problem for the
patient, which include drowsiness, dry mouth, and negative
mood changes that affect their quality of life.

Searching for new targets in the pharmacological field to
treat neuropathic pain is important. Transient receptor poten-
tial (TRP) channels are present in sensory neurons and are
involved in the development of pain. Neuropathic injury in
humans has been shown to increase the expression of TRPA1
[17], and studies on tooth injury have specific shown to in-
crease the expression of the TRPA1 channels [18]. TRP chan-
nel antagonists could be promising as novel analgesic agents
[19]. There are several antagonists that have been shown to
block the TRPA1-induced neuropeptide release in dental pulp.
Recently, we have shown that a novel TRPA1 antagonist in-
hibits TRPA1 agonist-stimulated release of neuropeptides
from dental pulp biopsies in an in vivo model [20].

Fig. 1 Trigeminal nerve’s sensory distribution in the orofacial area
(Illustration Stina Branting)
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Serotonin (5-HT) is a neuromodulator and plays an important
role as a mediator of pain both centrally and peripherally [21]. It
has been suggested that 5-HT3 receptors are activated in humans
with muscle pain [22]. Recently, it was shown from our group
that 5-HT3 receptors were highly expressed in masseter muscles
of womenwith TMD compare to controls [23]. It was concluded
that inmyofacial TMDup-regulated 5-HT3 receptors could serve
as a biomarker. In the search for 5-HT3 receptor antagonists as a
target for blocking orofacial pain, only one study was found in
animals. Painful Injection of formalin to the masseter muscle in
rats attenuated nociceptive behavior by both local and systemic
administration of a 5-HT3 receptor antagonist [24].

Non-invasive treatment modalities such as local anesthesia
have been used as neural therapy which approach for long-
term relief of pain after nerve injury. Neural therapy should be
repeated several times with increasing time intervals. The ef-
fect of Local anesthetic has been speculated to provide pro-
tection against sprouting in sympathetic nerves [25] and give a
pro-inflammatory effect [26]. Recently, a review by
Weinschenk raised the question whether or not local anes-
thetics can interrupt the liberation of pro-inflammatory sub-
stances at the terminal plate in neurogenic inflammation. [27].

Another non-invasive type of treatment is low-level laser
therapy (LLLT), which has shown good results in subjects
with nerve injuries that are identified immediately [28]. For
longstanding injuries, there has been registered some im-
provement with LLLT [29, 30]. In a study, LLLT showed
some efficacy for long term of sensory disturbances following
third molar surgery [31]. For TMD or temporomandibular
joint derangement (TMJD), two systematic reviews have con-
cluded that LLLT is probably more effective for the treatment
of TMJD and less effective for TMD [32, 33].

Treatments available for nerve injury have shown some
functional recovery in humans, i.e., more sensation and/or less
pain, but evidence lacks for nerve regeneration. Surgical pro-
cedures for reconstruction of peripheral nerves are available
such as microsurgical approaches with direct end-to-end con-
nection. The gold standard for nerve grafting is autologous
substrates, sural nerve, or auricular nerve to be used for the
trigeminal branches [34]. Disadvantage of this method is do-
nor site morbidity, limited length of available grafts, and po-
tential formation of neuroma [35–37]. Complete recovery is
uncommon in all kinds of available treatments today [30]. The
limitations of auto-grafting have led to exploration of alterna-
tive forms for nerve reconstruction.

New and Interest Findings

Recently, cell-based therapies have been studied for their po-
tential to enhance peripheral nerve repair. In vivo studies have
shown that bone marrow-derived mesenchymal stem cells
(BM-MSCs) and adipose-derived stem cells (ADSCs) can
physically engraft and myelinate regenerating axons and are

comparable to each other [38, 39]. In humans, it is, however,
easier to isolate large amount of ADSCs with liposuction than
overcoming the discomfort and tissue morbidity associated
with bone marrow harvesting [40].

Animal and clinical studies have shown that ADSCs are
capable of repairing damaged skeletal tissue [41]. These prop-
erties in combination with the large quantity of cells that can
be obtained from fat suggest that cells from adipose tissue will
be a useful tool in biotechnology and regenerative medicine.
ADSCs are commonly characterized by the same methods
used for characterizing BM-MSCs: their immunophenotype
in the undifferentiated state and their differentiation potential
towards the adipogenic, osteogenic, and chondrogenic line-
ages using specific induction factors. BM-MSCs and
ADSCs show very similar expression patterns for surface
markers with minor differences. Due to limited publications
and the variations in the protocols used, it is very difficult to
define the optimal harvesting and isolation techniques.
Therefore, the stem cells’ quality must be thoroughly exam-
ined prior to the use in clinical applications.

Using biodegradable synthetic material to nerve guidance
channels (NGCs) shows promising results [42]. It is important
with permeability, swelling, and degradation behavior for the
NGCs. Growth-permissive substrate for NGC may include
intrinsic scaffolds, which have to be filaments that mimic the
fascicular pattern of a nerve.

Neurostimulatory extracellular matrix proteins such as col-
lagen can enhance regeneration. Neurotrophic factors promote
neuronal regrowth, sprouting, and new connections between
the injured ends of the axons. Growth factors can be fibroblast
growth factors (FGF), nerve growth factors (NGF), or
neurotrophins (NT 3, 4, 5). Carriers for the growth factors
are nanoparticles, microparticles, or hydrogels. The addition
of supportive cells in the NGC enhances the regeneration of
the nerve axon. Examples of supportive cells are MSCs or
neural stem cells. A large number of animal studies have been
carried out, mostly in rats and mice. The critical size of the gap
between the axons is 10 mm. The choice of analyzing
methods for measurement of nerve regeneration employs an-
atomic and histological methods but a functional evaluation is
also necessary. There is still need for optimizing the NGC,
especially for the trigeminal nerve, which has so far not yet
been well explored. Nanomaterials mimic the properties for
natural tissues and may resolve the numerous problems asso-
ciated with today’s limitations.

Use of mesenchymal stem cells as a new treatment is of
interest due to the core properties of these cells. It has been
reported that MSCs have an anti-inflammatory effect and they
seem to play an important role in nerve healing and regener-
ation [43]. In animal studies, promising results have been pre-
sented where neuropathic trigeminal pain has been reduced
following MSC treatment [44••]. Recently, a preliminary re-
ported the outcomes following injection of autologous stem
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cells into the pain fields in female patients with different di-
agnosis of neuropathic pain including trigeminal neuralgia,
PDAP, and BMS. It was found that the pain intensity scores
and use of anti-neuropathic medication were strongly reduced
for 6 months after administration of the cells [45••]. It has also
been shown that multiple or high doses prolong the therapeu-
tic effect much longer than for a single dose [46•].

Significant Trends or Developments

To our knowledge, published data on MSC treatment for pa-
tient with neuropathic pain are very sparse. In one case study,
Ichim et al. (2010) reported a positive result for suppressing
neuropathic pain from expanded umbilical cord by intrathecal
injection of MSCs [47]. More recently, in a study involving
ten patients, Vickers and colleagues (2014) demonstrated a
significant effect of MSC treatment on neuropathic trigeminal
pain [45••]. They reported that approximately 56% of patients
(5 of 9), who suffered from chronic pain for 4 months to more
than 6 years, showed a reduction of pain intensity scores.
Moreover, during the investigation, all patients were given
anti-neuropathic medication, amitriptyline, and gabapentin.
The change in daily dosage requirements of medication
showed a near significant reduction in gabapentin and minor
reduction in amitriptyline, which indicated a possible biolog-
ical priority of stem cells in recovery myelinated fibers over
unmyelinated fibers. Interestingly, the same group investiga-
tors also found that one of the most responders was an eighty-
year-old patient. They concluded that MSCs can produce
many factors to achieve the therapeutic effect and the secre-
tion profile of the stem cells remains unaffected by age, which
is consistent with other observations [48–50]. To a significant
extent, the study clarified a positive outcome from neuropath-
ic pain patients in response to a single dose of MSCs, suggest-
ing that a possible enhanced therapeutic effect could be
achieved with multiple dosage strategies.

Conclusion

Patients suffering from nerve injury-induced sensory distur-
bances and/or pain have greatly reduced quality of life, and it
is a big cost for the society. The vast majority of the work on
sensory disturbances/pain mechanisms has been carried out in
spinal nerve systems. These studies have provided great in-
sight into mechanisms regarding pain of the spinal area.
However, it is clear that the pathophysiology of the trigeminal
nerve is in many ways different to that found in spinal nerves.
Treatments that are available today are not enough to cure the
patient, recover the nerve sensibility, and/or reduce pain. Stem
cells therapy could be a future solution to solve the situation
for the patients.
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