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ABSTRACT

The North Atlantic thermohaline circulation (THC) carries heat and salt towards the Arctic. This circulation is

partly sustained by buoyancy loss and is generally believed to be inhibited by northern freshwater input as

indicated by the ‘box-model’ of Stommel (1961). The inferred freshwater-sensitivity of the THC, however,

varies considerably between studies, both quantitatively and qualitatively. The northernmost branch of the

Atlantic THC, which forms a double estuarine circulation in the Arctic Mediterranean, is one example where

both buoyancy loss and buoyancy gain facilitate circulation. We have built on Stommel’s original concept to

examine the freshwater-sensitivity of a double estuarine circulation. The net inflow into the double estuary is

found to be more sensitive to a change in the distribution of freshwater than to a change in the total freshwater

input. A double estuarine circulation is more stable than a single overturning, requiring a larger amount and

more localised freshwater input into regions of buoyancy loss to induce a thermohaline ‘collapse’. For the

Arctic Mediterranean, these findings imply that the Atlantic inflow may be relatively insensitive to increased

freshwater input. Complementing Stommel’s thermal and haline flow regimes, the double estuarine circulation

allows for a third: the throughflow regime. In this regime, a THC with warm poleward surface flow can be

sustained without production of dense water; a decrease in high-latitude dense water formation does therefore

not necessarily affect regional surface conditions as strongly as generally thought.
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1. Introduction

The Atlantic thermohaline circulation (THC) redistributes

vast amounts of heat and salt (e.g. Kuhlbrodt et al., 2007).

Heating of the ocean at low latitudes and cooling at high

latitudes prescribes a poleward heat transport which is partly

sustained by deep water formation in the North Atlantic

Ocean and Nordic Seas, and upwelling in the south. The

meridional gradient in surface heat fluxes induces a fresh-

water cycle with net evaporation from the warm waters and

net precipitation and river runoff into the cold waters.

This northern freshwater input is generally believed to

inhibit the Atlantic THC as indicated by the box-model of

Stommel (1961). We will argue, using an extension of this

model, that this is not necessarily the case.

Stommel’s box-model illustrates the influence of fresh-

water input on THC. The model consists of two well-mixed

basins of water, onewarm and one cold, which are connected

along the surface and bottom to allow for an overturning

circulation. The hydrostatic pressure difference at the bot-

tom forces the deep cold water into the warm basin and

induces a circulation; to compensate, warm water flows into

the cold basin along the surface. In Section 2.3, we discuss to

what extent this model can be projected on large-scale ocean

circulation. Freshwater input into the model’s cold basin

inhibits this circulation and, when strong enough, induces a

positive feedback between the volume transport and salt

advection which leads to a reversal of the circulation. Hence,

Stommel’s model exhibits two stable circulation regimes.

Despite its idealised nature, or perhaps because of it,

Stommel’s model has provided much insight into the

behaviour of THC. Although Stommel himself called it a

‘toy-model’ for the flow between two interconnected reser-

voirs, many analogies have been made with the Atlantic

Meridional Overturning Circulation (AMOC). Bryan (1986)

was the first to simulate multiple stable regimes of a THC in

an ocean general circulation model (GCM), and Manabe

and Stouffer (1988) found two stable regimes in a coupled

ocean-atmosphere GCM. The analogy between Stommel’s

box-model and the Atlantic THC was further considered by

Rahmstorf et al. (2005) who used the model to diagnose
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an AMOC ‘collapse’ in intermediate complexity GCMs in

so-called freshwater hosing experiments. Such a collapse is

often paralleled to a transition to a haline circulation regime,

that is, a reversal. RecentGCMstudies on the response of the

AMOC to increased northern freshwater input over the 21st

century, however, project a gradual weakening rather than

a reversal, shutdown or even an abrupt reduction (Weaver

et al., 2012).

The effect of salt advection on THC, as described by

Stommel, is a direct result of the tendency of temperature to

equilibrate faster than salt due to direct heat loss to the

atmosphere. Another implication of this asymmetry be-

tween temperature and salinity is that combined heat loss

and freshwater input can lead to initial buoyancy loss

and subsequent buoyancy gain (Wåhlin et al., 2009). It is

generally known that buoyancy gain can facilitate THC as

well as buoyancy loss. In riverine outlets, freshwater input

induces estuarine circulations due to entrainment of rela-

tively saline surrounding water. Stigebrandt (1981) showed

that also the upper circulation in the Arctic Ocean can be

described as an estuarine circulation and it is the northern

freshwater input that sustains this branch of THC. If we are

to assess the influence of freshwater input on THC in

general, it appears one needs to take into account both

processes of buoyancy loss and buoyancy gain.

One example where both processes of buoyancy loss and

buoyancy gain affect the circulation is the northernmost

branch of the Atlantic THC. The Arctic Mediterranean

forms an approximate semi-enclosed basin with the

Greenland-Scotland Ridge (GSR) as its main gateway. The

basin is subject to both heat loss and freshwater input

which transforms an inflow of Atlantic water in two stages.

First heat loss and freshwater input combine to induce net

buoyancy loss, predominantly in the Nordic Seas and

Barents Sea. Part of the produced dense water returns

towards the Atlantic as overflow water (Isachsen et al.,

2007): an overturning branch. The residual of the densified

inflow is subject to net freshening and consequent buo-

yancy gain in the Arctic and eventually exits the Arctic

Mediterranean as cold, fresh polar water through the East

Greenland Current (Rudels, 1989): an estuarine branch. The

combination of these overturning and estuarine branches

comprises a double estuarine circulation (Stigebrandt, 1985;

Rudels, 2010). Extending the classical model of Knudsen

(1900) to a double estuary for the Arctic Mediterranean,

Eldevik and Nilsen (2013) concluded that the present

Atlantic inflow is more sensitive to changes in heat than

freshwater fluxes.

Several authors have expanded Stommel’s box-model to

allow for more features of THC (Rooth, 1982; Welander,

1986; Thual and Mcwilliams, 1992; Rahmstorf, 1996). We

will here construct a box-model which allows for THC

associated with subsequent buoyancy loss and buoyancy

gain.We do not aim for a fully realistic description of double

estuarine circulation with all its processes and energetics.

Rather, we aim to contrast the stability and freshwater-

sensitivity of a double estuarine circulation to a single

overturning circulation in an equivalent framework. In

Section 2, we present two separatemodels for an overturning

(Stommel, 1961) and an estuarine circulation (equivalent to

Rooth, 1982); in Section 3, we construct a model for the

double estuary and describe its qualitative behaviour. As a

quantitative example, we will in Section 4 project the model

onto the Arctic Mediterranean. Using this model, we show

that a double estuarine circulation is more stable than a

single overturning circulation. We further illustrate how a

shutdown of dense water formation does not necessarily

alter surface conditions qualitatively.

2. Overturning and estuarine circulation

Double estuarine circulation is the circulation of volume,

heat and salt induced by two stages of watermass transfor-

mation due to surface buoyancy fluxes. A double estuary is

the semi-enclosed basin in which the watermass transforma-

tion occurs. We will construct a minimal box-model for a

double estuary subject to net heat loss and freshwater input

which is in contact with an external reservoir of relatively

warm, saline water (Fig. 1c). The three basins represent

well-mixed reservoirs of the three associated watermasses,

connected to allow two branches of circulation: an over-

turning and an estuarine branch.

For the construction of his two-box model, Stommel

(1961) argued that heat diffuses faster than salt. We will

expand on this idea by allowing for watermass transforma-

tion to occur in two stages. In the first stage, both cooling

and freshening occur on different time scales; in addition, a

second stage allows for freshening without further cooling.

This distinction allows for an inflow to initially lose

buoyancy during the first stage and gain buoyancy during

the second. Outflow of water produced in the first stage

(basin 2) completes an overturning branch, whereas outflow

of water produced in the second stage (basin 3) completes an

estuarine branch.

In this section, we decompose the model into two separate

circulations by allowing either of these outflows (Fig. 1a

and b). These separated circulations are defined as an

overturning and an estuarine circulation, respectively. The

review of these models is in line with the overview of

Marotzke (2000) and generally uses his nomenclature and

dimensionalisations. We aim to understand how equili-

brium volume transports and their stability depend on the

freshwater input into the (double) estuary. For this, we

apply linear stability analysis, described in Appendix A and

identify different bifurcations (e.g. Kuznetsov, 2013) that

characterise the qualitative stability of circulation.
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2.1. Overturning circulation: Stommel (1961)

Overturning circulation only allows for outflow of the

watermass produced in the first stage of transformation:

cooling and freshening. For this circulation (Fig. 1a), we

adopt Stommel’s (1961) original box-model. This model

consists of two well-mixed basins of water, connected by

tubes of negligible volume. Conservation of salt in each of

the basins can be written as

V1

dS1

dt
¼ �jWOjDS12 þ F2; (1)

V2

dS2

dt
¼ jWOjDS12 � F2; (2)

where Vi is the volume of each basin; CO is the volume

transport of the overturning, defined positive with surface

flow from basin 1 to basin 2 (cf. Fig. 1a);DSij � Si � Sj is the

salinity contrast between two basins; and F2 is the fresh-

water input into basin 2, parametrised as a virtual salinity

flux. An equal freshwater flux out of basin 1 closes the total

freshwater budget. We will constrain F2 to positive values.

Stommel closed the set of equations by assuming a linear

relation between the volume transport and the hydrostatic

pressure difference at the bottom of the basins. In order

to contrast the double estuarine circulation to this well-

established model for an overturning circulation, we gene-

rally assume the same linear relation introduced by Stommel.

Further assuming a linear equation of state, we get a relation

between the volume transport and the contrast in temperature

and salinity between the basins:

WO ¼ kO

q2 � q1

qref

¼ kOðaDT � bDS12Þ; (3)

where ri is the density in each basin; rref is a reference

density; a and b are the thermal and haline expansion

coefficients; DT is the temperature difference between the

warm basin 1 and the cold basins 2 and 3; and kO is a

hydraulic constant, relating the overturning transport to the

density contrast induced by the watermass transformation.

We assume temperatures to be constant, with DT�0.

This assumption is equivalent to applying a restoring con-

dition for temperature with immediate relaxation to an

ambient value (Marotzke, 2000).

We non-dimensionalise the system by introducing:

s ¼ kOaDT

V2

t; (4)

fi ¼
b

kOa2DT2
Fi; (5)

sij ¼
b

aDT
DSij; (6)

(a) Overturning circulation (b) Estuarine circulation

(c)
Double estuarine circulation
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Fi Freshwater input

Estuarine transport

Overturning transport

Inflow transport
F2 F3

1
warm

1
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1
warm

2
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2
cold

3
cold

3
cold

2
cold

Fig. 1. Three-box model configurations. (a) Overturning (negative estuarine) circulation with volume transport CO, identical to the

configuration of Stommel (1961), (Section 2.1); F2 indicates the freshwater input into basin 2. (b) Estuarine circulation with volume

transport CE, identical to the configuration of Rooth (1982), (Section 2.2). F2 and F3 indicate the freshwater input into the double estuary

(basins 2 and 3). (c) Double estuarine circulation combining an overturning and estuarine branch (Section 3). The inflow transport CI into

the double estuary is the sum of the overturning and estuarine transports. Arrows depict positive transports by convention.
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which implies a scaling for the volume transport:

W ¼ 1

kOaDT
W: (7)

This scaling applies to all volume transports through-

out this study. Inserting eq. (3) into eq. (1) and (2) gives a

single non-dimensional dynamical equation for the salinity

contrast between the basins:

ds12

ds
¼ ð1þ V2

V1

Þð�j1� s12js12 þ f2Þ; (8)

where the non-dimensional volume transport is:

WO ¼ 1� s12: (9)

The equilibrium solutions, denoted throughout the paper

with an asterisk *, of eq. (8) are:

s�12 ¼
1
2
�

ffiffiffiffiffiffiffiffiffiffiffi

1
4
� f2

q

if s12 � 1;

1
2
þ

ffiffiffiffiffiffiffiffiffiffiffi

1
4
þ f2

q

if s12 > 1:

8

<

:

(10)

Note that these solutions are independent of the basin

volumes. This is generally the case for all models presented

in this study.

Combining eqns. (9) and (10) gives an equilibrium over-

turning transportW�O as a function of the freshwater input into

basin 2 (Fig. 2a). Each of the solutions in eq. (10) applies to a

separate circulation regime. The first applies to the thermal

regime (red curves in Fig. 2a), in which the surface transport is

directed from basin 1 to basin 2 (cf. Fig. 1a). The negative root

is stable and the positive root is unstable (cf. Appendix A.1).

The second solution in eq. (10) applies to the haline regime

(blue curve) inwhich the overturning is reversedwith respect to

the thermal regime.

Both stable thermal and haline equilibria are valid for a

limited range of f2. The thresholds that limit these

equilibria are characterised by saddle-node bifurcations as

indicated by the X’s in Fig. 2a and are given by

f X
2 jth ¼

1

4
; (11)

f X
2 jha ¼ 0; (12)

where subscripts Nth and Nha refer to the thermal and

haline equilibria, respectively. Between these thresholds, a

bistability region exists wherein both equilibria have a

stable solution for the same amount of freshwater input.

The saddle-node bifurcations are a reflection of the salt-

advection feedback in the system. Suppose that the system

resides in its thermal equilibrium and f2�0. A slow increase in

f2 will induce a salinity contrast and weaken the transport.

Advection of salt by the inflow into basin 2 sustains the

overturning circulation in its thermal regime. For values

of f2 > f X
2 jth, the weakening of the transport suppresses the

salt advection sufficiently for the system to enter a positive

feedback loop which deems the thermal equilibrium unstable.

This leads to an abrupt transition to the haline regime, wherein

the circulation is reversed (COB0). To retrieve a thermal

circulation, f2 must be decreased below f X
2 jha, where the haline

equilibrium is invalid. Note that this would require negative f2
implying net evaporation from basin 2.

Fig. 2. Bifurcation diagrams for Stommel and Rooth’s models. (a) Equilibrium overturning transport as a function of freshwater input

into basin 2. Red and blue curves indicate thermal and haline regimes, respectively. X’s indicate saddle-node bifurcations [cf. eqns. (11) and

(12)]. (b) Equilibrium estuarine transport as a function of freshwater input into basin 3. O indicates a Hopf bifurcation [cf. eqns. (22)].

In both panels, solid (dashed) lines indicate stable (unstable) equilibria.
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Stommel’s model thus illustrates how a thermally driven

overturning circulation can be inhibited by freshwater

input, and can reverse to a stable haline circulation when

a certain threshold is crossed. In a double estuary, however,

this is only one effect of freshwater input, since the second

circulation branch is an estuarine branch, facilitated by

freshwater input.

2.2. Estuarine circulation: Rooth (1982)

Equivalently to the overturning, we can extract the estuarine

branch from the double estuarine circulation by allowing

only outflow of the watermass produced in the second stage

of watermass transformation (Fig. 1b). This model for an

estuarine circulation consists of three basins, representing

the three watermasses involved in the circulation. Warm,

saline water from basin 1 is cooled and freshened as it flows

into basin 2. Rather than a direct return flow as in the

overturning circulation, this water undergoes subsequent

freshening (buoyancy gain) as it flows into basin 3. The cold

and fresh water from basin 3 then constitutes the outflow

from the double estuary into basin 1. Closer inspection of

this model reveals that the configuration is identical to the

box-model of Rooth (1982), in his case representing a more

global version of Stommel’s model with one equatorial and

two high-latitude basins. We will however restrict the

application of this model to an estuarine circulation.

The second stage of watermass transformation induces

a density difference between basins 2 and 3. We assume a

linear relation between this density difference and the

estuarine transport, equivalent to eq. (3). Further using the

same formulation of salt conservation as for the overturning,

we write the model equations as:

V1

dS1

dt
¼ �WEðDS12 þ DS23Þ þ F2 þ F3; (13)

V2

dS2

dt
¼ WEDS12 � F2; (14)

V3

dS3

dt
¼ WEDS23 � F3; (15)

with volume transport CE:

WE ¼ kE

q2 � q3

qref

¼ kEbDS23: (16)

Here, kE is the hydraulic constant for the estuarine

circulation. Two parameters now describe the freshwater

forcing of the estuarine circulation. In eqns. (13�15), F2

represents the freshwater input during the first stage of

watermass transformation, also associated with heat loss.

F3 represents the subsequent freshwater input after all

heat from the warm inflow is lost. These same parameters,

F2 and F3, will force the double estuarine circulation

presented in the next section.

It should be noted that eqns. (13�15) apply only to a

counter-clockwise estuarine circulation (cf. Fig. 1b). Be-

cause the model is symmetrical, equations for the clockwise

circulation can be found by simply interchanging basins

2 and 3. As we will show in the next section, a counter-

clockwise circulation of the estuarine branch can always

be sustained with positive freshwater input into basin 3

(F3�0) and we will therefore only consider CE�0.

By combining eqns. (13�15) and (16), and scaling the

system according to eqns. (4�7), we derive:

ds12

ds
¼ �ð1þ V2

V1

Þjs12s23 �
V2

V1

js2
23 þ ð1þ

V2

V1

Þf2 þ
V2

V1

f3 (17)

ds23

ds
¼ js12s23 �

V2

V3

js2
23 þ

V2

V3

f3 � f2: (18)

Here, j � kE

kO
is a non-dimensional parameter that sets the

linear scaling of the estuarine circulation to density con-

trasts relative to that of the overturning circulation. For the

estuarine circulation described in this section, this para-

meter is redundant, but it will become important for the

double estuarine circulation. The non-dimensional volume

transport of the estuarine circulation is:

WE ¼ js23: (19)

The equilibrium solutions for eqns. (17) and (18) are:

s�12 ¼
f2
ffiffiffiffiffiffiffi

jf3

p ; (20)

s�23 ¼

ffiffiffiffi

f3

j

s

: (21)

The equilibrium transport W�E is only dependent on the

freshwater input into basin 3 (Scott et al., 1999). This

relation can be recognised directly by inserting eq. (16) into

eq. (15).

Although the equilibrium transport is independent on f2,

this freshwater input does constrain the stability of the

equilibrium. As shown in Appendix A.2, a Hopf bifurcation

(O in Fig. 2b) appears when f3 drops below a certain value,

dependent on f2. Since Hopf bifurcations are dependent on

the transient response to a perturbation, and model time-

scales depend on basin volumes [eq. (4)], the location of the

bifurcation is also dependent on the size of the basins:

f O
3 ¼

f2

1þ V2=V1 þ 2V2=V3

: (22)

This value divides the equilibrium solution into a stable

and an unstable region (Fig. 2b). For sufficient freshwater

input into basin 3 ðf3 > f O
3 Þ, the estuarine circulation is

stable, increases with f3 and is independent on f2. For

f3Bf O
3 , the positive circulation is unstable and the assumed

positive estuarine circulation (CE�0) cannot be sustained.

HOW FRESHWATER INPUT CAN STABILISE THC 5



This instability is related to a positive feedback associated

with the salt advection from basin 1 into basin 2 as discussed

by Scott et al. (1999).

2.3. On model assumptions

The models for an overturning and estuarine circulation

described above are essentially two configurations of the

same model. Both configurations, as well as other varieties

derived from Stommel’s original concept, are by construc-

tion idealisations. This makes them analytically tractable

and conceptually appealing. When constructing our double

estuary model in Section 3, we will retain the model physics

of Stommel (and Rooth). We can accordingly benefit from

existing understanding and established concepts of THC

(e.g. the salt-advection feedback) associated with these

models, but we are at the same time adopting the assump-

tions and caveats of the model physics.

The main assumptions at the heart of the models

presented in this study include: 1) constant temperatures;

2) a closed freshwater cycle; 3) well-mixed basins; and 4)

volume transports scaling linearly with density differences

between basins. The latter constitutes the model’s dynami-

cal closure that completes the mathematical formulation at

the level of salt conservation. The schematic of ‘boxes and

pipes’ (e.g. Fig. 1) is thus a visualisation of the salt budget

and not concerned with the details of ocean circulation and

ocean basins beyond salt conservation.

Temperature is generally understood to equilibrate faster

than salinity. In the case of constant temperatures (equiva-

lent to Marotzke, 2000), this equilibration takes place

instantaneously compared to the time scale of the chang-

ing salt budget. In our specific application to the Arctic

Mediterranean (Section 4), this time scale is equal to 40 yr

when considering the typical temperature contrast between

the North Atlantic and the Arctic Ocean (about 10 K, see

Table 1). The simplest relaxation is to a constant tempera-

ture contrast. Although this is generally unrealistic, we may

expect variations in temperature contrast between low and

high latitudes on these temporal and spatial scales to be on

the order of degrees, moderate compared to its mean.

In order to construct anymodel for THCwhich allows for

non-transient equilibria, one requires a closed freshwater

cycle or relaxation of salinity. The models presented here

assume a closed freshwater cycle, where net evaporation

instantaneously balances net freshwater input. This assump-

tion appears less applicable in a regional setting, because salt

is only conserved on a global scale. However, the sensitivity

of salinity of each individual basin to the applied freshwater

fluxes scales with the basin volumes. One can, for example,

consider the limit of an arbitrarily large evaporating basin.

In this limit, the evaporating basin retains a constant salinity

and resembles a sponge layer, commonly applied in regional

numerical simulations with GCMs. Freshwater parameters

can then be interpreted as pure parameters of freshwater

input. It is important to note here that equilibrium solutions

of these models are generally independent on the choice of

basin volumes.

The assumption of well-mixed basins invites for inter-

pretation of these basins as reservoirs of certain water

masses, by definition relatively homogeneous, rather than

ocean basins. Advection of volume and salt between basins

then requires transport through isopycnals dividing the

associated water masses. By retaining volume in each basin,

in other words restricting movement of these isopycnals, the

models imply diapycnal mixing which is unspecified and

excessive (e.g. Nilsson and Walin, 2001).

Also the assumption of linear scaling of volume trans-

port with density differences is associated with excessive

mixing. Guan and Huang (2008) showed that accounting

for limited mixing energy can be expressed in a non-linear

scaling in Stommel’s model. This scaling reduces the

sensitivity of circulation to changes in surface buoyancy

fluxes, which should be taken into account when interpret-

ing the quantitative analysis in Section 4.

The linear scaling of volume transport with density

difference as introduced by Stommel has been a common

and valid critique when applying the model to large-scale

THC. The relation cannot be straightforwardly deduced

from first principles (Marotzke, 2000). The simulated

AMOC of many GCMs do however scale linearly with

Table 1. Model parameters

Parameter Symbol Value

Present state observations

Salinity contrast Atlantic inflow and

overflows

DS12 0.3 psu

Salinity contrast overflows and polar water DS23 0.9 psu

Temperature contrast Atlantic inflow and

outflows

DT 8 K

Volume transport Atlantic inflow CI 8.5 Sv

Volume transport overflows CO 6 Sv

Parameters

Thermal expansion coefficient a 10�4 K�1

Haline contraction coefficient b 8�10�4

psu�1

Hydraulic constant overturning branch kO 104 Sv

Hydraulic constant estuarine branch kE 3�103 Sv

Volume basin 2 V2 1016 m3

Scaling terms

Time t 40 yr

Freshwater input (relative to 35 psu) Fi 230 mSv

Salinity contrast DSij 1 psu

Volume transport C 8 Sv

Thermohaline contrasts are from Eldevik and Nilsen (2013);

volume transports from Hansen and Østerhus (2000).
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the meridional density or hydrostatic pressure gradient (e.g.

Griesel and Maqueda, 2006). Whether this consistency also

reflects causality is admittedly a matter of much debate

(Toggweiler and Samuels, 1995; Kuhlbrodt et al., 2007; de

Boer et al., 2010).

In the case of the estuarine circulation, and particularly

that associated with the Arctic, a linear scaling has been

proposed byWerenskiold (1935). This argument, later adop-

ted by Rudels (2010), is based on thermal wind balance

between a fresh western boundary current (the outflow of

the estuarine circulation) and relatively saline surrounding

water. To what extent this holds and, more generally, how

large-scale (Arctic) estuarine circulation is forced are also

matters of debate (e.g. Rudels, 2012).

3. Double estuary model

The double estuarine circulation (Fig. 1c) allows for out-

flow of both watermasses produced during the first (basin 2)

and second (basin 3) stages of transformation. The total

circulation thus constitutes two branches: an overturning

and estuarine branch. These two branches connect through

the surface flow between basin 1 and 2 which is the inflow

into the double estuary, defined as CI.

3.1. Model configuration

The volume transports of the separate branches, CO and

CE, scale to density differences as in Stommel’s and Rooth’s

models [eqns. (3) and (16)]. Conservation of volume implies:

WI ¼ WO þWE: (23)

Scaled according to eq. (7), this can be written as:

WI ¼ WO þWE ¼ 1� s12 þ js23: (24)

Here, we see that k introduces a relative weight of the two

stages of watermass transformation.

As discussed in Section 2.2, we will only consider CE�k

s23�0. Equation (24) then reveals three possible circulation

regimes for the double estuarine circulation: the thermal,

haline and throughflow regimes (Fig. 3a�c). The first two

are qualitatively equivalent to the thermal and haline

regimes of Stommel’s overturning. The throughflow does

not contain an overturning, neither thermal nor haline;

rather, a flow is directed from basin 1 to basin 2 both at the

surface and at depth.

The equations for conservation of salt, applying to all

three circulation regimes, can be written as:

V1

dS1

dt
¼ � 1

2
ðWE þ jWOj þ jWIjÞDS12 �WEDS23 þ F2 þ F3;

(25)

V2

dS2

dt
¼ 1

2
ðWE þ jWOj þ jWIjÞDS12 � F2; (26)

V3

dS3

dt
¼ WEDS23 � F3: (27)

This is a generalisation of the equations for each separate

regime, given explicitly in Appendix B. In terms of non-

thermal haline throughflow

Atl.

GSR

Arctic Med.Atl.

GSR

Arctic Med. Atl.

cooling cooling cooling fresheningfresheningfreshening

GSR

Arctic Med.

(a) (b) (c)

(ΨΙ > 0, ΨΟ < 0)(ΨΙ < 0, ΨΟ < 0)(ΨΙ > 0, ΨΟ > 0)

(d) (e) (f)

1 2 3 1 2 3 1 2 3

Fig. 3. Three flow regimes of the double estuary. (a�c) Qualitative flow directions which define the different regimes. (d�f) An interpretation

of the corresponding regimes in an Arctic Mediterranean setting. The present state of the Arctic Mediterranean can be characterised as a

thermal circulation (panel d).
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dimensional salinity contrasts, combining eqns. (24) and

(25�27), we derive:

ds12

ds
¼ � 1

2
ð1þ V2

V1

Þðjs23 þ j1� s12j þ j1þ js23 � s12jÞs12

� V2

V1

js2
23 þ ð1þ

V2

V1

Þf2 þ
V2

V3

f3;

(28)

ds23

ds
¼ 1

2
ðjs23 þ j1� s12j þ j1þ js23 � s12jÞs12 �

V2

V3

js2
23

þ V2

V3

f3 � f2: (29)

3.2. Three stable regimes of flow

Both overturning and estuarine circulations showed that

stability of circulation regimes can be constrained by

certain values of freshwater input (cf. Section 2), and we

may expect similar constraints to apply to the three regimes

of the double estuarine circulation. We now pose the ques-

tion for what range of freshwater parameters f2 and f3 the

three circulation regimes have stable solutions. To answer

this question, we again solve for the equilibrium solutions

in terms of salinity contrasts s12 and s23, and determine the

different bifurcations that limit the stability of the three

regimes.

In eq. (27), we recognise the salt balance in basin 3 from

Rooth’s model [eq. (15)]. This reveals that we again have

one equilibrium solution for s23,

s�23 ¼

ffiffiffiffi

f3

j

s

; (30)

and consequently, the equilibrium transport of the estua-

rine branch, W�E, is unaffected by the overturning branch [cf.

eq. (19)]; it is still determined only by the freshwater input

into basin 3. Hence, if there is no freshwater input into basin

3, there is no estuarine branch and the system is identical to

Stommel’s single overturning. This can be seen directly from

eq. (28) with f3�0 and s23�0.

With Stommel’s solution for a single overturning

appearing as the limiting solution for f3�0, the question

remains what solutions are possible with non-zero flow

through the estuarine branch. The equilibrium solutions for

s12 from eqns. (28) and (29) are:

s�12 ¼

1
2
ð1þ

ffiffiffiffiffiffiffi

jf3

p

Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
4
ð1þ

ffiffiffiffiffiffiffi

jf3

p

Þ2 � f2

q

if s12 � 1;

1
2
þ

ffiffiffiffiffiffiffiffiffiffiffi

1
4
þ f2

q

if s12 > 1þ js23;

f2
ffiffiffiffiffi

jf3

p if 1Bs12 � 1þ js23:

8

>

>

>

>

<

>

>

>

>

:

(31)

These three solutions apply to the thermal, haline and

throughflow regimes, respectively (cf. Fig. 3a�c; with f3�0

being the equilibria of Stommel, eq. (10).

The stable regions for the three circulation regimes,

derived from eqns. (30) and (31), are shown in a phase-

space diagram as a function of f2 and f3 (Fig. 4). Some of the

limits of these stable regions are determined by saddle-node

bifurcations (solid lines in Fig. 4). Each equilibrium solution

in eq. (31) has one saddle-node bifurcation; for the thermal

regime, this forms an upper limit for the freshwater input f2
for which the circulation is stable; for the throughflow and

haline regimes, it forms a lower limit. These saddle-node

bifurcations can be expressed analytically as a function of f3
(see also Appendix A):

f X
2 jth ¼

1

4
ð1þ

ffiffiffiffiffiffiffi

jf3

p

Þ2; (32)

f X
2 jha ¼ jf3 þ

ffiffiffiffiffiffiffi

jf3

p

; (33)

f X
2 jtf ¼

ffiffiffiffiffiffiffi

jf3

p

: (34)

Note that both equilibrium solutions and saddle-node

bifurcations are independent on the basin volumes.

The only impact of basin volumes on the stability

analysis of the double estuarine circulation comes from a

Hopf bifurcation (dashed line in Fig. 4). This bifurcation

Fig. 4. Phase-space diagram for the double estuarine circulation.

Colour shading indicates which circulation regime(s) can be stable

as a function of both freshwater parameters f2 and f3. So-called

bistability occurs where two regimes overlap. Solid lines indicate

saddle-node bifurcations [cf. eqns. (32�34)]; the dashed line indi-

cates a Hopf bifurcation [eq. (22)]. The diagram is drawn for the

symmetrical case k�1 and V1�V2�V3.

8 E. LAMBERT ET AL.



limits the stability of the throughflow regime by the same

constraint as for the estuarine circulation [eq. (22)]. Cross-

ing these bifurcations leads to an abrupt transition from

one circulation regime to another. Continuous transitions

between neighbouring regimes, however, are also possible.

We observe that the throughflow and haline regimes do not

share a common bistability region and as a result transi-

tions between these two regimes are always continuous.

The (in)stability of the thermal circulation in the double

estuary is governed by the same salt-advection feedback as

was present in Stommel’s two-box model. The point where

this feedback deems the circulation unstable is determined

by f X
2 jth [eq. (32)], which shifts to larger values of f2 when f3

increases (cf. red line in Fig. 4). For larger values of f3,

more freshwater is available to facilitate the estuarine

branch. This branch provides additional salt from basin 1

into basin 2 and damps the salt-advection feedback. This

delays a possible abrupt transition and allows for a thermal

circulation to be sustained for larger values of freshwater

input into basin 2 compared to the single overturning. The

estuarine branch thus stabilises the thermal circulation.

4. Application to the Arctic Mediterranean

The Arctic Mediterranean � the Nordic Seas and Arctic

Ocean combined � is perhaps the best known example of a

large-scale double estuary. The exchanges across its main

gateway, the GSR, are carried by three watermasses

reflecting a double watermass transformation due to cool-

ing and freshening. The initial transformation of Atlantic

water induces buoyancy loss and production of dense water

returning to the Atlantic as overflow water (Isachsen et al.,

2007). The secondary transformation, occurring in the

Arctic, is one of net buoyancy gain, producing low salinity

water returning to the Atlantic as polar water (Rudels,

1989). The former loop is relatively dominant today,

carrying about two-third of the circulation (cf. Table 1).

The net water mass exchange at the GSR is thus associated

with a relative dominance of heat loss and consequent

buoyancy loss, and can therefore be characterised as a

double estuarine circulation residing in its thermal regime.

An illustration of thermal, haline and throughflow regimes

in an Arctic Mediterranean setting is given in Fig. 3d�f.
Freshwater input into the Arctic Mediterranean is

projected to increase over the 21st century (Rawlins et al.,

2010), which makes this a region of interest with respect to

changed surface buoyancy forcing. The qualitative analysis

of our double estuary model in Section 3 revealed that an

estuary branch can stabilise a thermally direct overturning.

Using the Arctic Mediterranean as a specific example,

we will illustrate the possible quantitative effect of this

stabilisation.

We first interpret the model variables and parameters in

the context of the Arctic Mediterranean and use observa-

tions to dimensionalise the model. We then place the present

state of the circulation in the phase-space diagram (Fig. 4),

and accordingly estimate the quantitative freshwater-

sensitivity of a double estuarine circulation as illustrated by

three hypothetical scenarios for increased freshwater input.

4.1. Interpretation of the model

The three basins of the box-model (Fig. 1c) are interpreted

as reservoirs of the associated watermasses, as discussed in

Section 2.3. Basin 1 then represents the above-thermocline

North Atlantic, constituting warm, saline water; basin

2 represents the dense waters in the Nordic Seas; and basin

3 represents the reservoir of light polar water in the above-

halocline Arctic Ocean and East Greenland Current.

For the volume exchange in and out of the Arctic

Mediterranean, we neglect any volume fluxes associated

with the Pacific inflow through the Bering Strait and with

precipitation and river runoff. Both can be parametrised as

contributions to freshwater input. Consequently, the only

inflow of volume into the double estuary is that of warm

saline Atlantic water, which will be interpreted as CI. The

fraction of dense water produced in the Nordic Seas and

Barents Sea that returns to the Atlantic as overflow water

will be interpreted as CO. The residual densified inflow

entrains into the polar water in the Arctic Ocean and

ultimately exits through the East Greenland Current and

Canadian Arctic Archipelago. The combined volume trans-

port of this buoyant return flow to the Atlantic will be

interpreted as CE. In order to redraw Fig. 4 for the double

estuary of the Arctic Mediterranean, we need to estimate the

relative basin volumes as well as k.

The relative basin volumes determine the location of the

Hopf bifurcation, limiting stability of the throughflow

regime [eq. (22)]. Because the Arctic Mediterranean is a

regional setting, we take V1�V2,3, where the evapora-

ting basin is arbitrarily large with respect to the Arctic

Mediterranean. As discussed in Section 2.3, this limit makes

the salinity of the Atlantic inflow independent on the

freshwater input into the Arctic Mediterranean. Because

Arctic polar water is confined by the halocline, whereas

dense waters in the Nordic Seas extend to full depth through

deep convection, we further take V2�V3. In these limits,

f O
3 ¼ 0, indicating that the throughflow regime is unrest-

ricted by the Hopf bifurcation.

Parameter k determines the locations of the saddle-node

bifurcations [eqns. (32�34)]. Inserting observed density

contrasts and volume transports (Tab. 1; Hansen and

Østerhus, 2000; Eldevik and Nilsen, 2013) into eqns. (3)

and (16), we find k�0.32. The scaling of the estuarine

transport to density differences is thus a factor three smaller
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than that of the overturning transport. If these transports

are related to the hydrostatic pressure difference across

isopycnals dividing the associated watermasses, kO should

scale with the depth of the thermocline above the GSR

(about 600m), and kE should scale with the depth of the

Arctic halocline (about 200m). We see that this difference in

isopycnal depth can largely account for the value of k,

deduced from observations.

4.2. A relatively insensitive Atlantic inflow

Scaling the complete system by these observations accord-

ing to eqns. (4�6), we redraw the phase-space diagram for

the double estuary of the Arctic Mediterranean (Fig. 5a).

This diagram maps out the qualitative regions where the

three circulation regimes have stable solutions. Using this

diagram, we will determine the position of the ‘present

state’ of the Arctic Mediterranean and quantify the re-

quired freshwater perturbation to induce an abrupt transition.

The present state of the double estuarine circulation is

defined as the unique point in phase space where both W�O
and W�E are equal to observed transports (cf. Fig. 5b).

Equivalently, the present state in Stommel’s model is

defined where W�O is equal to observed transport and W�E
is zero. The latter is naturally aligned with zero polar

freshwater input.

Starting with the present state forcing (cf. Fig. 5c), we

assess the following hypothetical scenarios for increased

freshwater input into the double estuary:

A: only Nordic freshwater input increases.

B: all freshwater input increases proportionally.

C: only polar freshwater input increases.

Each of these scenarios is projected as dashed lines in

Fig. 5c. Along each line, we determine the value of W�I as

a function of the varying freshwater input and draw a

bifurcation diagram for the Atlantic inflow (Fig. 6).

In Scenario A (Fig. 6a), the increase in freshwater input

always weakens the Atlantic inflow since all additional

freshwater enters in the stage of buoyancy loss, limiting

the transport of the overturning branch while leaving the

estuarine branch constant. An increase in Nordic freshwater

input of 37mSv destabilises the thermal circulation and

induces an abrupt transition to the haline regime (see also

Fig. 5c). Neglecting the estuarine branch and collapsing the

system to a single overturning circulation (Stommel’s

model), an increase in Nordic freshwater input of 14mSv

is sufficient to induce a transition to the haline regime. In the

double estuary model, the estuary branch advects additional

salt to the regions of dense water formation, delaying a

possible abrupt transition.

In Scenario B (Fig. 6b), increased freshwater input partly

weakens the overturning branch and partly strengthens

the estuarine branch. Because the weakening of the over-

turning appears dominant in this scenario, an increase in

the total freshwater input inhibits the net Atlantic inflow

and can destabilise the thermal circulation. Compared to

Scenario A, this requires a larger increase in the total fresh-

water input (123mSv) because of the stabilising salt advec-

tion through the estuarine branch. If an abrupt transition

occurs under Scenario B, the circulation transits into the

throughflow regime (see also Fig. 5c). During such a

transition a warm Atlantic inflow persists and the surface

conditions of the Arctic Mediterranean remain qualita-

tively the same (compare Fig. 3d and f).

Fig. 5. Phase-space diagram for the Arctic Mediterranean. (a) As in Fig. 4, scaled as described in Section 4. (b) Stable region of the

thermal regime. Contours, interval 1 Sv, indicate constant overturning (black) and estuarine transport (grey). Thick lines correspond to

observed transports (cf. Table 1). Markers indicate the ‘present state’ in the double estuary model and in Stommel’s model. (c) From the

‘present state’, three dashed lines indicate scenarios for increased freshwater input in the double estuary model. Arrows indicate the

required freshwater increase along each scenario to induce an abrupt transition into either the throughflow or haline regime. An additional

scenario is indicated for Stommel’s model for increased Nordic freshwater input.
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Finally in Scenario C (Fig. 6c), increased polar fresh-

water input merely strengthens the estuarine branch. The

associated salt transport from the Atlantic even facilitates

dense water formation and increases the transport of the

overturning branch slightly (not shown). Together, this

leads to a strengthening of the Atlantic inflow and no

abrupt transitions can occur.

Scenario B illustrates a possible transition from a ther-

mal to a throughflow regime (cf. Fig. 3d and f). In the latter

regime, the Atlantic inflow which carries salt towards the

Arctic Mediterranean to balance net freshwater input is

both along the surface and at depth. A necessary condition

for this circulation to be realisable is that this inflow

originates from warmer waters. Although this is likely be-

cause of its origin in lower latitudes, the quantitative tem-

perature contrast beyond a transition to the throughflow

regime cannot be estimated from thismodel. Rather, it needs

to be determined a priori and for the illustration of Fig. 6, the

temperature contrast is kept equal for all circulation regimes.

With these three scenarios, we illustrate a wide variety

of possibilities for how freshwater input can affect THC.

The most important factor in determining the circulation’s

response is the distribution of additional freshwater input.

Estimates of projected increase in freshwater input in the

Arctic Mediterranean primarily point to the increase in

river runoff into the Arctic Ocean (Rawlins et al., 2010).

We may therefore imagine a scenario between B and C as

most appropriate for discussing quantitative change of the

Arctic Mediterranean’s THC.

In between these scenarios, Atlantic inflow is relatively

insensitive to increased freshwater input. Estimates of long-

term trends in Arctic sea ice melt are on the order of 10mSv

(500 km3/yr; Laxon et al., 2013). Whereas Stommel’s model

is very sensitive to a freshwater perturbation of this mag-

nitude, it only impacts the double estuarine circulation

significantly if all additional freshwater were to reach the

Nordic Seas (cf. Fig. 6a). Rather than a significant change

in the Atlantic inflow, the double estuary model shows a

shift towards a more estuarine-dominated circulation where

increased freshwater input weakens the overturning branch

and strengthens the estuarine branch. A predominant role

for freshwater in the branching of the circulation, rather

than in restricting its total strength � the inflow � is also

inferred from the diagnostics of Eldevik and Nilsen (2013).

5. Concluding remarks

GCMs used to quantify freshwater-induced changes in

Atlantic THC in the framework of Stommel’s box-model

appear very sensitive to changes in northern freshwater

input. Rahmstorf (1996) predicted a shutdown of the cir-

culation when northern freshwater input is increased by

70mSv. This value is comparable to the estimated increase

in freshwater input into the Arctic and sub-Arctic seas over

the 21st century, based on observations and model experi-

ments (Rawlins et al., 2010).

Coupled atmosphere�ocean GCMs, projecting CO2-

induced changes in climate over this same period, however

do not show a consistent sensitivity of the Atlantic THC

to freshwater as opposed to heat (Gregory et al., 2005;

Weaver et al., 2012). Specifically the northernmost branch

of the THC in the Arctic Mediterranean appears less

sensitive to freshwater than heat (Eldevik and Nilsen,

2013). By adding freshwater input in the order of 1.0 Sv

into the North Atlantic in coupled GCMs, Stouffer et al.

(2006) showed that deliberate water-hosing experiments are

required to completely shut down the Atlantic overturning

circulation. Our extension of Stommel’s model into a double

estuary illustrates how THC can be inherently more stable

than a single overturning circulation.

Fig. 6. Bifurcation diagram for three scenarios of increased freshwater input into the Arctic Mediterranean. Equilibrium solutions for CI
*

are shown along the trajectories A, B and C indicated in Fig. 5c. As a reference, the bifurcation diagram of the overturning (Stommel, Fig. 2a)

is shown in the left panel. ‘Present state’ (triangle and square) is defined in Fig. 5b. Arrows are equivalent to those in Fig. 5b, indicating the

required freshwater increase to destabilise the thermal circulation and induce an abrupt transition. The three Scenarios A, B and C are

described in detail in the text.
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The freshwater-sensitivity of a double estuarine cir-

culation is qualitatively associated with the northern dis-

tribution of freshwater input. This distribution largely

determines how additional total freshwater input may affect

THC. In a limiting, most sensitive case where all freshwater

feeds into the domain of dense water formation, the model is

identical to that of Stommel (1961, Fig. 1a). The distribu-

tion of freshwater is directly linked to the pathways out of

the double estuary, for example, in the case of the Arctic

Mediterranean where much freshwater is exported via the

East Greenland Current. Representation of the different

watermass transformations and advective pathways addi-

tional to that of a single overturning circulation therefore

appears essential for the freshwater-sensitivity of THC.

Our model for a double estuary accounts for a circulation

branch that is sustained by buoyancy gain due to northern

freshwater input: an estuarine branch, much like the Arctic

estuarine circulation (Stigebrandt, 1981). This additional

circulation branch damps Stommel’s positive salt-advection

feedback by providing a background salt import into the

domain of dense water formation and hereby stabilises the

overturning branch. A similar stabilisation was found when

adding diffusion to Stommel’s model to parametrise a wind-

driven gyre (Longworth et al., 2005), and also Guan and

Huang (2008); Nilsson and Walin (2001) concluded that

THC is less sensitive to freshwater perturbations than

Stommel’s model when accounting for limited diapycnal

mixing. These studies, including our study of a double

estuary, all point in the same direction of a relatively weak

freshwater-sensitivity of THC compared to that inferred

from Stommel’s model.

In the double estuary model, a proportional increase in

northern freshwater input of 123mSv is required to des-

tabilise the overturning when an estuarine branch is

accounted for (Fig. 6b). This value is an order of magnitude

larger than the additional freshwater input required to

destabilise the single overturning circulation of Stommel’s

model when scaled to the Arctic Mediterranean (Fig. 6a).

Overall, a larger amount of freshwater feeding the estuarine

branch allows the circulation to retain its qualitative state

under larger increase in freshwater into the domain of

dense water formation. For a certain range of distributions,

additional northern freshwater input can even strengthen

the THC (Fig. 6c). Because the overturning branch of the

Arctic Mediterranean, including entrainment of Atlantic

water into the overflows south of the GSR, is estimated to

account for approximately 2/3 of the total AMOC (Dick-

son and Brown, 1994; Medhaug et al., 2012), stability of

this northernmost branch of the Atlantic THC is important

for sustaining a stable global overturning circulation (e.g.

Jungclaus et al., 2006).

Abrupt reduction in THC is commonly associated with a

cessation in open ocean convection (e.g.Dokken and Jansen,

1999). However, it is now understood that poleward heat

transport and consequent northern heat loss are more

directly related to ocean advection than convective mixing

(Mauritzen, 1996; Fanning and Weaver, 1997; Pickart and

Spall, 2007). Ourmodel for the double estuary accommodates

a third stable circulation regime, complementing the thermal

and haline regimes introduced by Stommel. In this throughflow

regime, the estuarine circulation dominates to the extent that

net Atlantic inflow persists even in the case of absent or

reversed overflow. This implies, at least in our model, that

inflow can be sustained without dense water formation. More

generally, we propose that an estuarine circulation extends the

stability of poleward heat transport with respect to freshwater

perturbations beyond the thermal regime.
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7. Appendix

A. Linear stability analysis

In order to determine whether a circulation can reside in

a certain equilibrium state, we perform linear stability

analysis on each equilibrium solution. This theory is based

on linearisation of the model equations around a certain

equilibrium and determining the growth rate of a pertur-

bation. If this growth rate is negative, perturbations are

damped and the equilibrium solution is stable; if the

growth rate is positive, perturbations are amplified and

the equilibrium is unstable.

Linearisation around an equilibrium is done by deter-

mining the Jacobian J. If the model consists of a single

dynamical equation [as Stommel’s model, cf. eq. (8)], this

Jacobian is defined as:

J ¼ @

@s12

ds12

ds

�

�

�

�

s�
12

; (A1)

and the equilibrium s�12 is stable if JB0. At the boundary

between a stable and an unstable equilibrium, where J�0,

a saddle-node bifurcation exists.
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If the model consists of a system of two dynamical

equations [as is the case for Rooth’s model and our double

estuary model, cf. eqns. (17), (18), (28) and (29)], the

Jacobian is defined as:

J ¼
@
@s12

ds12

ds
@
@s23

ds12

ds
@
@s12

ds23

ds
@
@s23

ds23

ds

 !
�

�

�

�

�

s�
12
;s�

23

: (A2)

In this case, two conditions determine a stable solution:

det(J)�0 and trace(J)B0. The boundary det(J)�0 deter-

mines the location of a saddle-node bifurcation; trace(J)�0

determines the location of a Hopf bifurcation. Since we are

merely interested in the stability of an equilibrium, we do

not distinguish between stable nodes and foci.

A.1. Overturning circulation (Section 2.1)

Inserting eq. (8) into eq. (A1), we find for Stommel’s

overturning circulation:

J ¼
�ð1þ V2

V1
Þð1� 2s�12Þ if s12 � 1;

þð1þ V2

V1
Þð1� 2s�12Þ if s12 > 1:

(

(A3)

As shown by Stommel (1961), for the thermal over-

turning (s1251), the negative root of eq. (10) is always

stable and the positive root is unstable. The haline over-

turning (s12�1) is always stable. The points where

stable and unstable equilibria meet are characterised by

saddle-node bifurcations [eqns. (11) and (12)] as indicated

in Fig. 2a.

A.2. Estuarine circulation (Section 2.2)

Inserting eqns. (17) and (18) into eq. (A2), we find for

Rooth’s estuarine circulation:

J ¼
�ð1þ V2

V1
Þ
ffiffiffiffiffiffiffi

jf3

p

�ð1þ V2

V1
Þ jf2
ffiffiffiffiffi

jf3

p � 2 V2

V1

ffiffiffiffiffiffiffi

jf3

p

ffiffiffiffiffiffiffi

jf3

p jf2
ffiffiffiffiffi

jf3

p � 2 V2

V3

ffiffiffiffiffiffiffi

jf3

p

0

@

1

A;

(A4)

with

detðJÞ ¼ 2ðV2

V3

þ V 2
2

V1V3

þ V2

V1

Þjf3; (A5)

traceðJÞ ¼ jf2
ffiffiffiffiffiffiffi

jf3

p � ð1þ V2

V1

þ 2
V2

V3

Þ
ffiffiffiffiffiffiffiffi

jf3Þ
p

: (A6)

Since det(J)�0 for all f3�0, no saddle-node bifurcations

limit the stability of the estuarine circulation. However, a

Hopf bifurcation appears at trace(J)�0, introducing a

stability condition (cf. Scott et al., 1999),

f3 >
f2

1þ V2=V1 þ 2V2=V3

; (A7)

which divides between a stable and an unstable equilibrium

[eq. (22)] as indicated in Fig. 2b.

A.3. Double estuarine circulation (Section 3)

For the double estuary model, it is most convenient to

perform linear stability analysis on each circulation regime

separately.

A.3.1. Thermal regime (s1251)

For the thermal regime, the Jacobian is:

J¼
�ð1þ V2

V1
Þð1þ

ffiffiffiffiffiffiffi

jf3

p

� 2s�12Þ �ð1þ
V2

V1
Þjs�12 � 2 V2

V1

ffiffiffiffiffiffiffi

jf3

p

ð1þ
ffiffiffiffiffiffiffi

jf3

p

� 2s�12Þ js�12 � 2 V2

V3

ffiffiffiffiffiffiffi

jf3

p

;

 !

(A8)

with

detðJÞ ¼ 2
V2

V1

ð1þ
ffiffiffiffiffiffiffi

jf3

p

� 2s�12Þð2þ
V2

V1

Þ
ffiffiffiffiffiffiffi

jf3

p

; (A9)

traceðJÞ ¼ �ð1þ V2

V1

Þð1þ
ffiffiffiffiffiffiffi

jf3

p

� 2s�12Þ � 2
V2

V3

ffiffiffiffiffiffiffi

jf3

p

þ js�12:

(A10)

As for the single overturning, a saddle-node bifurcation

(det(J)�0) appears, deeming the negative root of eq. (31)

stable and the positive root unstable. This saddle-node

bifurcation is expressed in terms of f2 in eq. (11).

A Hopf bifurcation appears if trace(J)�0 and det(J)�0.

This is possible if

V2

V3

B
1

4

jð1þ
ffiffiffiffiffiffiffi

jf3

p

Þ
ffiffiffiffiffiffiffi

jf3

p : (A11)

If f2 increases, this Hopf bifurcation destabilises the

thermal regime before the saddle-node bifurcation can be

reached.

In the symmetrical case of k�1 and V1�V2�V3 (cf.

Fig. 4), a Hopf bifurcation appears if f3B
1
9
. It can be shown

that the maximum distance from the saddle-node bifurca-

tion f X
2 jth is 0.01 (in the case of f3�0). This means that the

thermal regime becomes unstable at f2�0.24, rather than

0.25 as deduced from the saddle-node bifurcation. This

effect is marginal, and no Hopf bifurcation can appear

in the case of the Arctic Mediterranean where we take

V2�V3. We therefore do not pursue this possible instability

further.

A.3.2. Haline regime (s12�1�ks23)

For the haline regime, the Jacobian is:

J ¼
ð1þ V2

V1
Þð1� 2s�12Þ �2 V2

V1

ffiffiffiffiffiffiffi

jf3

p

�ð1� 2s�12Þ �2 V2

V3

ffiffiffiffiffiffiffi

jf3

p

;

 !

(A12)
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with

detðJÞ ¼ �2ðV2

V1

þ V 2
2

V1V3

þ V2

V3

Þ
ffiffiffiffiffiffiffi

jf3

p

ð1� 2s�12Þ; (A13)

traceðJÞ ¼ ð1þ V2

V1

Þð1� 2s�12Þ � 2
V2

V3

ffiffiffiffiffiffiffi

jf3

p

: (A14)

Inserting eq. (31), we find that det(J)�0, trace(J)B0

for all values of f2, f3�0 and consequently the haline

equilibrium always stable.

At the boundary between the haline and throughflow

regimes, at s12�1�ks23, a saddle-node bifurcation appears

if the throughflow equilibrium is unstable, as expressed in

eq. (29). If the throughflow equilibrium is stable, there is no

saddle-node bifurcation for the haline regime and transi-

tions between the haline and throughflow regimes are

smooth.

A.3.3. Throughflow regime (1Bs1251�ks23)

For the throughflow regime, the Jacobian is:

J ¼
�ð1þ V2

V1
Þ
ffiffiffiffiffiffiffi

jf3

p

�ð1þ V2

V1
Þjs�12 � 2 V2

V1

ffiffiffiffiffiffiffi

jf3

p

ffiffiffiffiffiffiffi

jf3

p

js�12 � 2 V2

V3

ffiffiffiffiffiffiffi

jf3

p

;

 !

(A15)

with

detðJÞ ¼ 2ðV2

V1

þ V 2
2

V1V3

þ V2

V3

Þ
ffiffiffiffiffiffiffi

jf3

p

; (A16)

traceðJÞ ¼ js�12 � ð1þ
V2

V1

þ 2
V2

V3

Þ
ffiffiffiffiffiffiffi

jf3

p

: (A17)

det(J) always positive, so a saddle-node bifurcation

occurs where the throughflow regime meets the unstable

branch of the thermal equilibrium at s12�1, as expressed in

eq. (34).

Because the dynamics and consequently the equilibrium

solutions of the throughflow regime are identical to those

of the estuarine circulation of Rooth, a Hopf bifurcation

appears at the same point: trace(J)�0 if f3 ¼
f2

1þV2=V1þ2V2=V3
,

dividing a stable and an unstable throughflow circulation.

B. Salt conservation

Salt conservation in the double estuary model is expressed

in single equations for each basin, general for each circu-

lation regime [eqns. (25�27)]. Here, we provide the equa-

tions applied to each separate regime, dependent on the

transport signs as indicated in Fig. 3a�c.

B.1. Thermal regime (CI�0, CO�0)

V1

dS1

dt
¼ �WIDS12 �WEDS23 þ F2 þ F3; (B1)

V2

dS2

dt
¼ WIDS12 � F2; (B2)

V3

dS3

dt
¼ WEDS23 � F3: (B3)

B.2. Haline regime (CIB0, COB0)

V1

dS1

dt
¼ WODS12 �WEDS23 þ F2 þ F3; (B4)

V2

dS2

dt
¼ �WODS12 � F2; (B5)

V3

dS3

dt
¼ WEDS23 � F3: (B6)

B.3. Throughflow regime (CI�0, COB0)

V1

dS1

dt
¼ �WEDS12 �WEDS23 þ F2 þ F3; (B7)

V2

dS2

dt
¼ WEDS12 � F2; (B8)

V3

dS3

dt
¼ WEDS23 � F3: (B9)
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