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Chapter 1

Introduction

A streamline is a curve in space at a given time, whose tangent at a point is
equal to the velocity at that point. Streamlines can thus be used to visualize
the “directional” information in a velocity field at a given time.

The computation of streamlines is dependent on a precise description
of the velocity field. When the velocity field is calculated numerically, it
will be given at certain points or the flux of it is determined over certain
faces, and interpolation is needed to give a complete field. The streamlines
traced from such a velocity field will contain errors from both the numerical
solution and from the interpolation method.

Within reservoir simulation, streamline tracing is an important element
in the streamline method [5, 30, 15]. Streamline simulation has become in-
creasingly popular in the recent years, because it allows for a fast evaluation
of reservoir performance [30]. Accurate resolution of the streamlines permits
large timesteps to be taken when solving the pressure equation.

An effective method for streamline tracing, developed by Pollock [22],
involves the use of a piece-wise linear approximation of velocity with respect
to each gridblock. The method gives as a by-product the time-of-flight [9].
The time-of-flight (TOF) is the time required to travel a given distance along
a streamline based on the velocity field along the streamline, and it is used
to define a coordinate system for the streamline method. It can also be used
for reservoir performance prediction [15].

Pollock tracing, used in most 3D streamline simulators, was until re-
cently restricted to grids with orthogonal Cartesian gridblocks. This has
been a limitation of the method, since modeling of complex features such as
faults or deviated wells generally require the use of structured or unstruc-
tured curvilinear grids. An extension of the method to such grids has been
developed by, e.g., Prévost et al. [24]. In this thesis we will denote this
method of tracing by the Prévost-method.

For a 2D grid, edgefluxes for each gridcell is transformed to a reference
space consisting of unit square cells. Then fluxes are extended to the entire
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CHAPTER 1. INTRODUCTION 2

cell by interpolation in the lowest order Raviart-Thomas space. Pollock
tracing is then performed on a unit square cell in the reference space, and
the streamline is at last mapped back to the physical space using a bilinear
transformation.

In this thesis we will investigate the Prévost-method for the case of a
2D, logically, Cartesian grid in conjunction with the MPFA-method [1] for
calculating fluxes or by imposing some known velocity fields on the grids.
We will examine how sensitive the shape of the streamlines is with respect
to perturbations of the grid in physical space.

The Prévost-method uses a flux mapping from physical space to the
reference space that is based on a simple scaling of the fluxes by the Jacobi
determinant of the midpoint of the cell. We will show that this method of
flux mapping can give incorrect time-of-flight.

By introducing the Piola transformation, we also show that the method
reproduces uniform flow . The Piola transformation is a vector transfor-
mation between the physical space and the reference space that preserves
fluxes. Using a result in given in [19] for the Piola tranformation we can
show that a the shape of the streamlines for a uniform flow field is exactly
reproduced.

Additionally, we will see that streamlines can be used to evaluate the
quality of a numerical velocity field. The velocity field will be computed
using an MPFA-algorithm [1] for a simple flow problem. It is known that for
very distorted grids, even the MPFA-method has difficulties calculating the
correct fluxes. In this thesis we will investigate such effects using streamlines.

In Chapter 2 we we give a brief introduction to the concepts of reservoir
simulation. In Chapter 3 we introduce the flow equations for streamline
simulation. Chapter 4 discusses the concept of a streamline. Chapter 5
defines the grids to be used in this work. In Chapter 6 we introduce the
bilinear transformation and in Chapter 7 we define the time-of-flight. Chap-
ter 8 describes the tracing algorithm, while Chapter 9 introduces the Piola
transformation and we show that uniform flow streamlines are reproduced.
Chapter 10 tests the tracing algorithm, and presents the results. In Chapter
11 we give a summary and conclusions based on the work presented.

In the appendices we have collected more detailed calculations and some
topics are discussed in more depth.



Chapter 2

Basic concepts

2.1 Flow through porous media

Although streamline tracing can be done for any problem giving a velocity
field, the usage in this thesis will be for flow in porous media.

Flow through porous media, [7], is a topic encountered in many branches
of engineering and science, e.g., ground water hydrology, reservoir engineer-
ing, soil science, soil mechanics and chemical engineering.

In the most general sense, a porous material is a solid containing holes.
The portion of the rock not occupied by solid matter is the void space (pore
space). Only the connected pores are of interest for flow through porous
media.

An example of a porous media is the aquifer. The aquifer is a geologic
formation, that contains water, and permits significant amounts of water to
move through it under ordinary field conditions. Ground water is a term
used to denote all waters found beneath the ground surface.

An other example of porous media is the oil or gas reservoir. This is
a porous geologic formation that contains in its pore space, in addition to
water, at least one hydrocarbon (oil or gas) in a liquid or gaseous phase.

2.2 Reservoir simulation

Reservoir simulation is the process of inferring the behavior of a petroleum
reservoir from the performance of a model [21], in order to optimize the
recovery of hydrocarbon.

There are five major stages to the modelling process for computational
science, and in particlular to reservoir simulation:

• First, a physical model is developed

• Then a mathematical model of the physical model is obtained

3



CHAPTER 2. BASIC CONCEPTS 4

• Next, a numerical scheme for solution of the mathematical model is
formed

• Then a computer program is sought to implement the numerical model.

• And at last: Examination and validation of the first three steps based
on the results from the computer model.



Chapter 3

Flow and transport equations

3.1 The IMPES Equations

Streamline tracing is an important component of the streamline method
for reservoir simulation. A summary of the streamline method is given in
Appendix A. Here we will derive the pressure and saturation equations for
multiphase flow in the form used by the streamline method. In this thesis
we will focus on one phase flow problems and the derivation will include
such problems as a special case.

The streamline method is based on solving first for the pressure field
and then for the saturation distribution [6]. This is an IMplicit in Pressure,
Explicit in Saturation method (IMPES). One advantage of a conventional
IMPES formulation over the fully-implicit formulation is that numerical
diffusion due to discretization error is reduced. The trade-off is that smaller
time step sizes must be taken due to stability considerations.

The governing equation for flow of a component i with np phases flowing
in porous medium is defined by Lake [16] as,

np
∑

j=1

{

∂

∂t
(φωijρjSj) + ∇ · (ωijρjuj − φρjSjD̃ij · ∇ωij)

}

=

np
∑

j=1

qsρjωij

(3.1)
where qs represents a source or sink volume flow rate, D̃ij characterizes the
component dispersivity, ωij is the mass fraction of component i in phase j,
and uj is the phase velocity given by Darcy’s law,

uj = −K̃krj
µj

· (∇Pj − ρjg) (3.2)

The phase pressure is Pj , g is the gravitational vector, which is assumed
constant and directed toward the earth’s center. To simplify (3.1) it is
assumed that the fluids are incompressible (ρj = constant) and there is no
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CHAPTER 3. FLOW AND TRANSPORT EQUATIONS 6

dispersivity (D̃ij = 0) giving,

np
∑

j=1

{

∂

∂t
(φωijSj) + ∇ · ωijuj

}

=

np
∑

j=1

qsωij (3.3)

Next, summing Equation (3.3) over all the components and using the fact
that

∑np

i=1 ωij = 1 gives,
∇ · ut = qs (3.4)

the governing volume balance equation for incompressible flow. The total
velocity ut can be defined by summing Equation (3.2) over np phases to
give,

ut = −K̃ · (λt∇P − λgg) (3.5)

Capillary pressure has been neglected such that P = Pj . The total mobility
(λt) and the total gravity mobility are defined as,

λt =

np
∑

j=1

krj
µj
, λg =

np
∑

j=1

krjρj
µj

(3.6)

Finally, combining Equation (3.4) and Equation (3.5) leads to the governing
pressure equation for multiphase incompressible flow in porous media,

∇ · K̃ · (λt∇P − λgg) = −qs (3.7)

Equation (3.7) is elliptic and is known as a Poisson equation where the
unknown is P . It is coupled to the saturation equation, (3.13), through λt
and λg. Once P is defined, ut can be determined by using Equation (3.5).

The governing saturation equation for the IMPES method can be derived
from Equation (3.3). To simplify the problem, it is assumed that the phases
are immiscible such that ωij = 0 for i 6= j and ωij = 1 for i = j giving,

φ
∂Sj
∂t

+ ∇ · uj = qsfj,s (3.8)

where φ is assumed constant and fj,s is the fraction contributed by phase
j to qs. Substituting Darcy’s Law, Equation (3.2), into Equation (3.8) and
eliminating ∇P by using Equation (3.5) the above equation becomes,

φ
∂Sj
∂t

+∇·
(

krj/µj
λt

ut − K̃ · gkrj/µj
λt

np
∑

m=1

krm/µm(ρm − ρj)

)

= qsfj,s (3.9)

Defining the standard Buckley-Leverett fractional flow term as,

fj =
krj/µj
λt

(3.10)
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and a gravity fractional flow term given by,

G̃j = −K̃ · gkrj/µj
λt

np
∑

m=1

krm/µm(ρm − ρj) (3.11)

Equation (3.8) can be rewritten as

φ
∂Sj
∂t

+ ∇ · fjut + ∇ · G̃j = qsfj,s (3.12)

Given that ∇ · ut = 0 for incompressible flow, the governing saturation
Equation of an individual phase becomes

φ
∂Sj
∂t

+ ut · ∇fj + ∇ · G̃j = qsfj,s (3.13)

The saturation equation is hyperbolic.

3.2 Numerical solution: MPFA

For some of the testcases we will study single-phase incompressible horizon-
tal flow in 2D. Then the continuity Equation (3.3) reduces to

∇ · u = qs (3.14)

where u is the volumetric flux density given by Darcy’s law (3.2),

u = −K̃

µ
∇P (3.15)

Taking the divergence of (3.15) and substituting (3.14) gives

∇ · (K̃
µ
∇P ) = −qs (3.16)

Since all the variables in (3.16) are assumed to be invariant with time,
we will have steady-state flow, and streamlines are constant in time.

Techniques for analytical solution of such problems exists [14, 18], and
this can be used to check both the numerical solution of (3.16) as well as
the streamline tracing algorithm.

For the numerical solution of (3.16) we will use a MPFA-method as de-
scribed in [1]. We discretize the solution domain using an irregular quadri-
lateral grid. The method then constructs a linear system

Ãu = q (3.17)

where u is a vector of the unknown cellcentre pressures and q is a vector
contain source terms. The system can be solved by standard methods to
give the cellcentre pressures. Then the fluxes over celledges can be calculated
from Darcy’s law. These fluxes are then used to compute streamlines.



Chapter 4

Streamlines

The central point of this chapter is to define the pathline and the streamline.
We will also give an introduction to the stream function in two dimensions.
Although we will not use the stream function in this thesis, it shows that
for certain ideal cases the streamlines might be found analytically.

4.1 Eulerian and Lagrangian representations of fluid

motion

Fluid motion is determined completely if its velocity v, pressure p, density
ρ, temperature and other possible parameters are specified as functions of
coordinates and time. This is the Eulerian way of representing fluid motion,
where we fix our attention to a point in space and follow the time variation
of v, p, etc., at this point. Alternatively, if we fix time we can determine
the spatial variation of the same parameters. However there is no direct
information about the motion of a given fluid particle in this representation.

In a Lagrangian representation, on the other hand, all parameters in-
cluding the coordinates of the fluid’s particles xi(i = 1, 2, 3) are specified
in terms of time t and som vector (ξ1, ξ2, ξ3) which identifies a given parti-
cle of the fluid: xi = xi(ξk, t), p = p(ξk, t), ρ = ρ(ξk, t), etc. The variables
(ξ1, ξ2, ξ3) are usually assumed to be the coordinates of a fluid particle at
some time t0 (initial coordinates), i.e. ξi = xi(ξk, t0). Therefore, in a La-
grangian representation, our attention is fixed on a chosen fluid particle.

A more thouroughly description of fluid particle and velocity is given in
Appendix L.

4.2 Pathlines and Streamlines

Instead of observing pressure variations in an experiment and relating the
flux to them, one may start by observing streamlines in an experiment of
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CHAPTER 4. STREAMLINES 9

steady flow through a porous medium domain, and then relate the flux to
these observations, [7]. The streamline, as well as the pathline, is to be
understood as an average concept.

In practical terms, it is impossible to label a single fluid particle (say in
an experiment of flow through a porous medium) and observe its motion.
Instead we label a group of particles occupying a small neighbourhood, or we
continuously inject a tracer into a point in a steadily moving fluid. In laminar
flow, in spite of hydrodynamic dispersion, and in the case of continuous
injection, in spite of the lateral dispersion, it is possible to define the average
path of the particles and use it in describing the flow [7].

A pathline of a fluid particle is the locus of its position in space as time
passes. It is thus the trajectory of a particle of fixed identity. The pathline
is described by the solutions of three parametric equations:

dx

Vx(x, y, z, t)
=

dy

Vy(x, y, z, t)
=

dz

Vz(x, y, z, t)
= dt (4.1)

In flow through porous media, V = (Vx, Vy, Vz) are the average velocity
vector, with V = 1

φ
u, where u is the Darcy velocity, defined in (3.2), for a

given phase.
At any instant of time, there is at every point in a flow domain a velocity

vector, q, with a definite direction. The instantaneous curves that are at
every point tangent to the direction of the velocity at that point are called
streamlines of the flow. The mathematical expression defining a streamline
is therefore q × dr = 0, or:

dx

qx(x, y, z, t0)
=

dy

qy(x, y, z, t0)
=

dz

qz(x, y, z, t0)
(4.2)

Here t0 indicates a certain time, and dr is an element of arc along a stream-
line. For flow through porous media the streamlines are the same if use
q = V or q = u (see Section 8.3). Equation (4.2) is valid for both isotropic
and anisotropic media. Consider flow described by (3.15)

u =
K̃

µ
∇P (4.3)

If x, y, z are the principal directions of permeability, equation (4.2) then
becomes:

µdx

Kx∂P/∂x
=

µdy

Ky∂P/∂y
=

µdz

Kz∂P/∂z
(4.4)

For an isotropic medium, Kx = Ky = Kz = K in (4.4).
Had we started from postulating the presence of an equipotential surface

P = const, we would consider an elementary displacement ds in the direction
normal to this surface. Then:

∇P × ds = 0;
dx

∂P/∂x
=

dy

∂P/∂y
=

dz

∂P/∂z
(4.5)
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which define curves in space normal to the equipotential surfaces. These are
the streamlines. Multiplying (4.4), written for an isotropic medium, byK/µ,
we obtain (4.5). Thus, in an isotropic medium, streamlines are perpendicular
to the equipotential surfaces. These two independent approaches to the
definition of streamlines are possible; both are based on observations of field
phenomena.

In steady flow, i.e., one in which flow characteristics remain invariant
with time, streamlines and pathlines coincide. In unsteady flow they may
be distinct. In unsteady flow we can speak only of an instantaneous picture
of the streamlines, as the picture varies continuously.

Equation (4.2) can be written

qydx− qxdy = 0 (4.6a)

qxdz − qzdx = 0 (4.6b)

qzdy − qydz = 0 (4.6c)

Let q 6= 0 and assume qx 6= 0, then regarding y and z as functions of x, we
get

dy

dx
=
qy
qx

(4.7a)

dz

dx
=
qz
qx

(4.7b)

This is a system of ordinary differential equations where t is a parameter.
We can find the streamline passing through (x0, y0, z0) at t, by solving (4.7)
for the given starting condition. Then if q 6= 0 there can only pass one
streamline through a point at a given time. If q = 0 we have a stationary
point, through which there may pass several streamlines [10].

4.3 The stream function

Assume that we have two-dimensional flow of an incompressible fluid, and
that the motion is the same in all planes parallell to the xy-plane.

Then a stream function may be derived by assuming the existence of
pathlines and streamlines. The flux may be expressed in terms of this stream
function [7].

Assuming no sources, the continuity eqution, (3.3) becomes

∇ · q = 0 (4.8)

Which is satisfied if we write

q = ∇× ψ(x, y, t)k =
∂ψ

∂y
i − ∂ψ

∂x
j (4.9)
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where ψ(x, y, t) is the stream function. The streamlines for this case is given
by (4.6a),

qxdy − qydx = 0 (4.10)

From (4.9) we have that qx = ∂ψ
∂y

and qy = −∂ψ
∂x

. Using this in (4.10), we
get

∂ψ

∂x
dx+

∂ψ

∂y
dy = dψ = 0 (4.11)

This can be integrated to give

ψ(x, y, t) = constant (4.12)

along a streamline.
Now assume in addition irrotational flow,

∇× q = 0 (4.13)

Taking the curl of (4.9) and using (4.13), we find that

∇2ψ = 0 (4.14)

For certain boundary conditions this equation can be solved analytically.
Equation (4.13) implies that the velocity can be written as the gradient

of a potential,

q = ∇φ =
∂φ

∂x
i +

∂φ

∂y
j (4.15)

Then comparing the two expressions for the velocity (4.9) and (4.15), we
get

∂φ

∂x
=
∂ψ

∂y
(4.16)

∂φ

∂y
= −∂ψ

∂x
(4.17)

This is the Cauchy-Riemann equations which implies

∇φ · ∇ψ = 0 (4.18)

so streamlines and equipotential lines are orthogonal in two-dimesional in-
compressible, irrotational flow.



Chapter 5

Irregular Grids

A reservoir simulator predicts reservoir performance by solving flow equa-
tions on a discrete grid chosen to represent the reservoir. Flow simulations
of reservoirs with complex geometries and geological features generally re-
quire the use of flexible structured and unstructured grids in order to resolve
important features such as faults and deviated wells [4, 31]. Corner-point
geometry [23] (or nonorthogonal grids) are widely used in reservoir simula-
tion.

These grids are structured (logically Cartesian) and are comprised of
quadrilateral cells. Unstructured grids are generally comprised of triangular
and/or quadrilateral cells (in 2D) and are generally based on a more complex
data structure than the standard logically Cartesian grid indices.

5.1 Structured logically Cartesian grids

We will use a structured logically Cartesian grid for the tests in this thesis.
Note that the Prévost-method has been extended to unstructured grids [24].
Before we can define the grid structure we have to make some definitions.

Consider a quadrilateral Q. See Figure 5.1. We denote the corners of
Q by x1, x2, x3 and x4. Q is not uniquely determined by its four corners
alone. See Figure 5.2. We have to specify an ordering of the points to get a
unique quadrilateral.

Definition 5.1 (Quadrilateral) With a quadrilateral Q = Q(x1,x2,x3,x4)
we will mean the quadrilateral with corners x1,x2, x3, and x4 such that if
starting at the corner x1 and walking around the border of Q we will meet
the other corners in the sequence x1, x2, x3, and x4 or in the sequence x1,
x4, x3, and x2 depending on the direction chosen.

Definition 5.2 (Convex quadrilateral) In a convex quadrilateral all in-
ternal angles are less than 180◦.

12
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Figure 5.1: A quadrilateral.
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Figure 5.2: There are two ways of interpreting the four points x1, x2, x3,
x4.
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Definition 5.3 (Irregular convex quadrilateral) By an irregular con-
vex quadrilateral, Q, we shall mean a convex quadrilateral that is not a
square or a rectangle.

Definition 5.4 (Edges of a quadrilateral) The boundary of Q(x1,x2,x3,x4)
consists of four edges. Let Eij be the edge that contains xi and xj. We shall
also use A = E1 = E14, B = E2 = E23, C = E3 = E12 and D = E4 = E34.

Walking around the boundary of Q, starting at an A-edge we should en-
counter the edges of Q in the sequence A, C, B, D or A, D, B, C.

The grid consists of pxpy gridpoints numbered from 0 to pxpy − 1, such
that for a given gridpoint number p that satisfies

p < px(py − 1) − 1 ∧ (p+ 1) mod px 6= 0 (5.1)

the gridpoints numbered p, p + 1, p + px + 1 and p + px makes a convex
quadrilateral Q(x1,x2,x3,x4). Where x1 corresponds to gridpoint p, x2 to
p+ 1, x3 to p+ px + 1 and x4 to p+ px. See Figure 5.3 for an example.

PSfrag replacements

x1

x2

x3
x4

Q

A-edge

B-edge

C-edge
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Figure 5.3: Sample grid with gridpoints marked with ’*’

With Q there is associated a gridcell number, c. Let p be the lowest
gridpoint number in Q, then

c = (px − 1)floor(p/px) + p mod px (5.2)

where floor(x) rounds x down to the nearest integer. See Figure 5.4.
Another example is presented in Figure 5.5. We see that we also must

require that the gridpoints are such that no quadrilaterals overlap another.
The grid in Figure 5.5 is allowed. But note that there is no connection over
the A-edge of gridcell 0 or the B-edge of gridcell 10.
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Chapter 6

The Bilinear Transformation

6.1 The transformation

An important component of the streamline methods to be described in the
following chapters is the isoparametric mapping [8] of the streamlines from
a reference space to the physical space. In 2D the mapping can be viewed
as a bilinear mapping of quadrilaterals. See Figure 6.1.

PSfrag replacements
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x̂

ŷ

x̂ = x̂(x, y)

x = x(x̂, ŷ)

Physical space

Reference space

x1

x2

x3

x4

1

1

0

x̂1 x̂2

x̂3x̂4
Q

Q̂

Figure 6.1: Quadrilaterals are mapped to a unit square through a bilinear
transformation.

We denote the the simulation grid containing the irregular quadrilater-
als by the physical space, P, and the reference space by R. The quadri-
lateral in P corresponding to x1, x2, x3 and x4 will be referred to as
Q = Q(x1,x2,x3,x4) (see definition 5.1), and the corresponding unit square
in R will be Q̂. Variables in R will usually be denoted by a ’ˆ’, e.g. Q̂.

16
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The transformation from R to P is given by

x(x̂) =

[

x(x̂, ŷ)
y(x̂, ŷ)

]

=

x1(1 − x̂)(1 − ŷ) + x2x̂(1 − ŷ) + x3x̂ŷ + x4(1 − x̂)ŷ =
[

x1

y1

]

(1 − x̂)(1 − ŷ) +

[

x2

y2

]

x̂(1 − ŷ)+

[

x3

y3

]

x̂ŷ +

[

x4

y4

]

(1 − x̂)ŷ (6.1)

where (x̂, ŷ) are the local reference space coordinates such that 0 ≤ x̂ ≤ 1
and 0 ≤ ŷ ≤ 1.

6.2 Properties

6.2.1 Mapping of straight lines

Curves in R corresponding to a constant value of x̂ or ŷ, x̂-curves or ŷ-curves
respectively, will be mapped to straight lines in P by the transformation.
See Figure 6.2. To see this, note that the transformation (6.1) for a constant
value of ŷ can be written

x(x̂) =

[

x
y

]

=

[

ax̂+ b
cx̂+ d

]

(6.2)

for some constants a, b, c, d. From this we get that x̂ = (x− b)/a, and then
y = c(x − b)/a + d which is a straight line in P. The same argument holds
for a constant value of ŷ.
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Figure 6.2: Mapping of x̂-curves and ŷ-curves.
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For R we define x̂1 = (0, 0), x̂2 = (1, 0), x̂3 = (1, 1) and x̂4 = (0, 1),
and,

Â-edge: {The edge containing x̂4 and x̂1.} (6.3)

Ĉ-edge: {The edge containing x̂1 and x̂2.} (6.4)

B̂-edge: {The edge containing x̂2 and x̂3.} (6.5)

D̂-edge: {The edge containing x̂3 and x̂4.} (6.6)

It is easy to see that x̂i gets mapped to xi, i = 1, 2, 3, 4. Then since
straight lines get mapped to straight lines and by Definition 5.4, we must
have that an i-edge gets mapped to an î-edge, i = A,B,C,D.

6.2.2 The midpoint

We refer to x̂m = (x̂m, ŷm) = (1/2, 1/2) as the midpoint of Q̂. If we substi-
tute x̂m in (6.1) we get

xm ≡ x =
1

4
(x1 + x2 + x3 + x4), ym ≡ y =

1

4
(y1 + y2 + y3 + y4) (6.7)

We will refer to xm = (xm, ym) as the midpoint of Q.

6.2.3 The Jacobi matrix and the Jacobi determinant

The Jacobi matrix of the transformation, (6.1), is given by

D̃(x̂) =
dx

dx̂
=

[

∂x
∂x̂

∂x
∂ŷ

∂y
∂x̂

∂y
∂ŷ

]

=

[

(x2 − x1)(1 − ŷ) + (x3 − x4)ŷ (x4 − x1)(1 − x̂) + (x3 − x2)x̂
(y2 − y1)(1 − ŷ) + (y3 − y4)ŷ (y4 − y1)(1 − x̂) + (y3 − y2)x̂

]

(6.8)

Then the Jacobi determinant is given by

J(x̂) = det D̃(x̂) =
∂x

∂x̂

∂y

∂ŷ
− ∂x

∂ŷ

∂y

∂x̂
=

(y1x3 − x1y3 + x2y3 − y2x3 + x1y4 − y1x4 + y2x4 − x2y4)x̂

+ (y1x2 − x1y2 + x1y3 − y1x3 + y2x4 − x2y4 + x3y4 − y3x4)ŷ

+ x1y2 − y1x2 + x2y4 − y2x4 + y1x4 − x1y4 (6.9)

Observe that

Jm ≡ J(x̂m) =
1

2
(x1y2−y1x2+x2y3−y2x3+y1x4−x1y4+x3y4−y3x4) (6.10)

Comparing this with Equation (M.20) we see that we must have that

|Jm| = {Area of Q} (6.11)
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The inverse of the Jacobimatrix is given by

D̃−1 =
dx̂

dx
=

1

J

[

∂y
∂ŷ

−∂x
∂ŷ

−∂y
∂x̂

∂x
∂x̂

]

(6.12)

provided J 6= 0.

6.3 The inverse transformation

It is possible to calculate the inverse transformation, x̂ = x̂(x), (see Ap-
pendix E), but since the four parameters of the transformation, namely the
points x1, x2, x3 and x4 may represent a single point, a line, a triangle, two
triangles, a non-convex quadrialteral, the inverse is not straight forward. If
the four points represent a convex quadrialteral, the inverse will always exist,
since a sufficient and neccessary condition is that the Jacobi determinant,
J , satisfies J 6= 0 [2]. Since J is the ratio between two infintesimal area
elements in R and P under the bilinear transformation, this ratio cannot be
zero for a convex Q.

6.4 Flux calculation

In this section we will derive an expression for the flux across an x̂-curve or an
ŷ-curve in P. This will be used later to show that the Piola transformation
conserves fluxes.

First we write the Jacobian, (6.1), as

D̃(x̂) =
dx

dx̂
=

[

∂x
∂x̂

∂x
∂ŷ

∂y
∂x̂

∂y
∂ŷ

]

=
[

∂x

∂x̂
∂x

∂ŷ

]

(6.13)

and the inverse as

D̃−1 =
1

J

[

∂y
∂ŷ

−∂x
∂ŷ

−∂y
∂x̂

∂x
∂x̂

]

=
1

J

[

νT1
νT2

]

(6.14)

Since the vectors ∂x

∂x̂
, ∂x

∂ŷ
are tangent vectors to the ŷ-curves and x̂-curves,

respectively, it follows that the vectors ν1 and ν2 are normal vectors to the
same curves since

ν1 ·
∂x

∂ŷ
= 0, ν2 ·

∂x

∂x̂
= 0 (6.15)

see Figure 6.3.
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Figure 6.3: The bilinear transformation

From (6.14) and (6.13) we have that

‖ν1‖ =

√

(

∂y

∂ŷ

)2

+

(

−∂x
∂ŷ

)2

=

√

(

∂x

∂ŷ

)2

+

(

∂y

∂ŷ

)2

= ‖∂x

∂ŷ
‖ (6.16)

‖ν2‖ =

√

(

−∂y
∂x̂

)2

+

(

∂x

∂x̂

)2

=

√

(

∂x

∂x̂

)2

+

(

∂y

∂x̂

)2

= ‖∂x

∂x̂
‖ (6.17)

Now the flux of a vector field q across a curve C(Ĉ) = x(r̂(θ)) in P that is
the image of a curve Ĉ = r̂(θ) in R is given by

∫

C(Ĉ)
(q · N )(x)ds =

∫ b

a

(q · N )(x(r̂(θ)))‖dx
dθ

‖dθ (6.18)

where N is the unit normal to the curve C, and, by the chain rule,

‖dx
dθ

‖ = ‖dx
dr̂

dr̂

dθ
‖ (6.19)

Now consider a x̂-curve in reference space given by

r̂(θ) = âî + θĵ, 0 ≤ θ ≤ 1 (6.20)

where â is a constant such that 0 ≤ â ≤ 1, then

‖dx
dθ

‖ = ‖dx
dr̂

dr̂

dθ
‖ =

∥

∥

∥

∥

[

∂x

∂x̂
∂x

∂ŷ

]

[

0
1

]∥

∥

∥

∥

= ‖∂x

∂ŷ
‖ (6.21)

From (6.15) and (6.16) it follows that

N =
ν1

‖ν1‖
=

ν1

‖∂x

∂ŷ
‖

(6.22)
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So by (6.18), the flux, fx̂, over a x̂-curve then becomes

fx̂ =

∫ 1

0
(q · ν1

‖∂x

∂ŷ
‖
)(x(r̂(θ)))‖∂x

∂ŷ
‖dθ =

∫ 1

0
(q · ν1)(x(r̂(θ)))dθ (6.23)

A similar computation shows that the flux, fŷ, over a ŷ-curve is given by

fŷ =

∫ 1

0
(q · ν2)(x(ŝ(θ)))dθ (6.24)

where ŝ(θ) is a representation for an ŷ-curve.



Chapter 7

The Time-of-Flight

7.1 Time-of-Flight

The time-of-flight (TOF) [15] is the time required to reach a distance, s,
along a streamline based on the velocity field along the streamline. For the
streamline method (Appendix A) it is defined as

τ(s) =

∫ s

0

φ(ζ)

|ut(ζ)|
dζ (7.1)

where ut is the total Darcy velocity given in (3.5) and φ is the porosity.
For the testcases we will assume 2D, one phase flow, and either use

φ(x, y) = 1 and u = ut, or we consider velocity fields, u, that are not
associated with a flow problem in porous medium. We then define the TOF
along a streamline, or piece of a streamline, C, as the line integral

τ =

∫

C

1

|u(x, y, t0)|
ds (7.2)

The above intergrals can be evaluated analytically using Pollock tracing
described in Section 8.2.

22



Chapter 8

Streamline Tracing

In this chapter, we first briefly review different tracing methods for orthogo-
nal Cartesian gridblocks. Then Pollock tracing is described in detail. Next,
we consider tracing on irregular grids and how to define a consistent tracing
velocity in R. At last we sum up the Prévost-method for tracing on irregular
grids.

8.1 Streamline Tracing

As shown in Section 4.2, in steady state flow tracing streamlines is equivalent
to particle tracking. The majority of published work on streamlines has
been in the groundwater literature [22, 27, 11, 17, 29, 26]. The methods use
particle tracking ideas to define a streamline.

The particle’s position for horizontal flow is given by (4.1) as

∫

dx

Vx
=

∫

dt (8.1a)
∫

dy

Vy
=

∫

dt (8.1b)

where Vx = Vx(x, y) and Vy = Vy(x, y) for steady flow.
The first step in a particle tracking procedure is to solve the flow equa-

tions, which gives velocities at celledges of the simulation grid.
Now, the integration of (8.1) can be accomplished by one of three ap-

proaches: analytical, numerical, or semianalytical. The analytical approach
produces exact solutions, but only for a limited number of ideal cases of
steady flow, homogeneous media, and simple geometry. In practice, analyt-
ical solutions are mainly used to validate approximate methods.

Numerical techniques for integration include the explicit single-step method,
the first-order Euler [17], and the fourth-order Runge-Kutta [29, 3, 13].
These schemes are not limited by transient velocities or complexity in the
velocity fields. The single-step explicit method is computationally simple,

23



CHAPTER 8. STREAMLINE TRACING 24

but of limited accuracy. The other two methods can attain a high degree of
accuracy, but may require a large number of steps (and therefore computa-
tion time) to do so.

The semianalytical technique combines aspects of analytical and numer-
ical methods. It makes use of an analytical solution to the integral within
an individual spatial cell under the assumption of a lowest order Raviart-
Thomas [25] velocity field: within each spatial cell, the x-component is conti-
nous piecewise-linear in the x-direction and discontinous piecewise-constant
in the y-direction, and the y-component is the reverse.

Tracking is then conducted through one cell at a time. This idea was
first presented by Pollock [22] for steady-state flow conditions.

For particle tracking, the semi-analytical method has been extended to
nonsteady-state conditions [26], for streamline tracing the original method
of Pollock is sufficient.

Pollock’s equations are derived assuming orthogonal grid blocks, but
very few real reservoirs model use such a strict Cartesian framework any-
more. Prévost et al. [24] has extended Pollock’s method to structured and
unstructured irregular grids. The method uses a transformation of cellface
fluxes in the physical space to corresponding fluxes on unit cubes in a ref-
erence space. Then Pollock’s method is applied in the reference space, and
using an isoparametric transformation, the streamline is transformed back
to the physical space.

For streamline tracing in 2D we use the bilinear transformation (6.1) as
the isoparametric transformation from reference space to the physical space,
in 3D we use a trilinear transformation.

8.2 Pollock Tracing in 2D

We will give a short description of Pollock tracing in 2D for a unit square cell.
See Appendix B for a more complete description. Consider Figure 8.1 where
the velocities uA, uB , vC and vD are known, e.g. by a mapping (Section
8.7) from P to R. For steady-state flow these velocities are constants. The
position of the particle within the cell is given by

r(t) = x(t)i + y(t)j, r(0) = P0 (8.2)

and for steady flow the velocity of the particle is

v(x, y) =
dr

dt
=
dx

dt
i +

dy

dt
j = u(x, y)i + v(x, y)j, v(P0) = v0 (8.3)

Next we assume a lowest order Raviart-Thomas velocity field within the cell

u(x, y) = u(x) = Gxx+ uA (8.4a)

v(x, y) = v(y) = Gyy + vC (8.4b)
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Figure 8.1: A unit cell in the reference space. A particle enters the cell at
P0. Using Pollock’s method, we can find the trajectory of the particle and
its exit coordinate, P .

where Gx = uB − uA and Gy = vD − vC .
Now (8.4a) gives that

dx

dt
= Gxx+ uA (8.5)

assuming Gx 6= 0 we can integrate this to give

t =
1

Gx
ln

(

Gxx(t) + uA
u(0)

)

(8.6)

and this can be solved for x(t) to give

x(t) =
1

Gx
(u(0)eGxt − uA) (8.7)

Similarly, from (8.4b) we get that

t =
1

Gy
ln

(

Gyy(t) + vC
v(0)

)

(8.8)

and then

y(t) =
1

Gy
(v(0)eGyt − vC) (8.9)
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Equation (8.7) and (8.9) represents the trajectory of the particle within the
cell, where by (8.4), u(0) = Gxx(0) + uA and v(0) = Gyy(0) + vC . The last
step is then to find the exit point, P , or equivalently the travel time, T , used
to traverse the cell.

Inserting x(t) = 1 in (8.6) we find the time, Tx, needed for the particle
to reach the line x = 1, similarly, inserting y(t) = 1 in (8.8), we find the
time, Ty, the particle uses to reach the line y = 1. Now the minimum, of Tx
and Ty will give T , and then the exit coordinate is given by (1, ye) if T = Tx
or (xe, 1) if T = Ty. Here xe = x(Ty) and ye = y(Tx) as given by (8.6) and
(8.8) respectively.

Note that the travel time, T , is the time-of-flight contribution, Ti, from
the given cell. Thus the TOF for a given streamline can be calculated
according to

τ =
∑

i

Ti (8.10)

where i runs over all cells traversed by the given streamline.

8.3 Invariance of streamlines w.r.t. a scale of ve-

locities

When tracing streamlines, we will keep two things in mind. First the shape
of the streamlines depends only on the direction of the velocity field. Sec-
ondly the time-of-flight depends on the absolute value of the velocity field
(and implicitly on the direction, since it must be calculated along a given
streamline). The result in this section will be used later when we discuss
how to improve the TOF for the Prévost-method.

Consider a velocity field in 2D at a certain time t0, v(x, y, t0). At every
point, v(x, y, t0) is tangent to a given streamline. A scaling of v(x, y, t0),
say k(x, y, t0)v(x, y, t0), where k(x, y, t0) 6= 0 is a scalar function, will not
change the direction of these tangent vectors. See figure 8.2. Of course, such
a scaling will give different travel times, but the shape of the streamline is
the same.

Consider now the streamline tracing method described in the previous
section. From (8.3) and (8.4) we have that the velocity in the unit cell is
given by

v(x, y) = u(x)i + v(y)j = (Gxx+ uA)i + (Gyy + vC)j =

((uB − uA)x+ uA)i + ((vD − vC)y + vC)j (8.11)

and take a uniform scaling of v, i.e., k(x, y)v = kv, where k is a constant.
Such a scaling can be done by setting ũA = kuA, ũB = kuB , ṽC = kvC and



CHAPTER 8. STREAMLINE TRACING 27

PSfrag replacements

x

y

Streamline

(a) Original velocities

PSfrag replacements

x

y

Streamline

(b) Scaled velocity field
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ṽD = kvD, because then,

ṽ = ((ũB − ũA)x+ ũA)i + ((ṽD − ṽC)y + ṽC)j =

((kuB − kuA)x+ kuA)i + ((kvD − kvC)y + kvC)j = kv (8.12)

where ṽ is the scaled velocity.
This means that the shape of the streamline is invariant with respect to

a uniform scaling of the cell-edge velocities.

8.4 Flux mappings

In this section we will consider a mapping of fluxes from P to R, and we
establish some preliminary results.

Consider two adjacent quadrilaterals Q1 and Q2 of the grid. See Figure
8.3. We will define unit normals nAi, nBi, nCi and nDi to the A-,B-,C
and D-edges respectively, of a quadrilateral Qi of the simulation grid. See
Section 5.1 for notation.

Definition 8.1 (Normal vectors) Given a quadrilateral, Q, in P. For
an A-edge or an C-edge we define the direction of the unit normal to be
inwards relative to Q. For an B-edge or an D-edge we define the direction
of the unit normal to be outwards relative to Q.

We will also use the notation n1 = nA, n2 = nB , n3 = nC and n4 = nD
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Definition 8.2 (Fluxes) Given a velocity field q on the edges of Q, we
define the fluxes,

fA = f1 =

∫

A

q · nAds (8.13)

fB = f2 =

∫

B

q · nBds (8.14)

fC = f3 =

∫

C

q · nCds (8.15)

fD = f4 =

∫

D

q · nDds (8.16)

Observe that for Figure 8.3, fB1 = fA2. Next consider an inverse bilinear
map E of a quadrilateral Q in the physical space to a unit square Q̂ in
a reference space. See Figure 8.4. By Section 6.2.1 the A-edge of Q gets
mapped to an Â-edge of Q̂.

Later in this chapter we will consider different flux mappings from P to
R. Consider a mapping f̂A = kfA where k is positive constant, where the
flux on the A-edge of Q gets mapped to a corresponding flux on Â-edge of
Q̂.

Then if fA is positive, this must correspond to a flow into Q since nA

point into Q. But a flow into Q̂ over the edge Â must correspond to a
positive x̂-component, uA, of a corresponding velocity field q̂ in R, since the
Â-edge lies to left of the B̂-edge on the x̂-line.
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Figure 8.4: Inverse map of Q

This argument shows that we can define edge velocities in the reference
space corresponding this kind of transformed fluxes f̂i as,

q̂1 = uAî = f̂Aî (8.17a)

q̂2 = uB î = f̂B î (8.17b)

q̂3 = vC ĵ = f̂C ĵ (8.17c)

q̂4 = vDĵ = f̂Dĵ (8.17d)

since then

f̂i =

∫

Êi

q̂i · n̂ids (8.18)

See Figure 8.4.

8.5 Velocity mappings

In this section we will describe a direct method of mapping celledge velocities
from P to R. This method is still under investigation, and will only be used
for comparison to the derivation given by Prévost in [24] in the next section.

We will denote the velocity in P by V and the velocity in R by V̂ such
that

V =
dx(x̂)

dt
=
dx(x̂)

dt
i +

dy(x̂)

dt
j (8.19)

V̂ =
dx̂(x)

dt
=
dx̂(x)

dt
î +

dŷ(x)

dt
ĵ (8.20)

where î = i and ĵ = j.
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The relation between the velocity V in P and the velocity V̂ in R is
then by the chain rule and (6.14),

V̂ =
dx̂

dt
=
dx̂

dx

dx

dt
= D−1V =

1

J

[

νT1
νT2

]

V = V̂ x̂î + V̂ ŷĵ (8.21)

where

V̂ x̂ = (
1

J
ν1 · V )î (8.22a)

V̂ ŷ = (
1

J
ν2 · V )ĵ (8.22b)

Since ν1 = (∂y
∂ŷ
,−∂x

∂ŷ
) it follows that ν1 is a constant vector along a x̂-curve.

Similarly ν2 is a constant vector along a ŷ-curve.
Note that the length of the edge A in P is given by (see (6.21))
∫ 1

0
‖dx
dθ

‖dθ =

∫ 1

0
‖dx(0, ŷ)

dŷ
‖dθ =

∫ 1

0
‖ν1(0, ŷ)‖dθ = ‖νA‖ (8.23)

since ν1 is a constant vector along a x̂-curve. Here νA is ν1 evaluated at
the edge A.

When we only know the flux, fA, of V along the edge A, we define the
vector

V A =
fA

‖νA‖
νA

‖νA‖
(8.24)

that corresponds to the flux fA, since
∫

A

V A · nAds =

∫

A

fA
‖νA‖

νA

‖νA‖
· νA

‖νA‖
ds =

∫

A

fA
‖νA‖

ds = fA (8.25)

because the length of edge A is ‖νA‖.
Next transform the vector V A to R using (8.22),

V̂ x̂ =
1

J
νA · fA

‖νA‖
νA

‖νA‖
î =

fA
J

î (8.26a)

V̂ ŷ =
1

J
νB · fA

‖νA‖
νA

‖νA‖
ĵ (8.26b)

The ŷ-component, V̂ ŷ, in (8.26b) of the transformed velocity is generally not
zero. We will use another expression for this component below, so for the
moment, consider only the x̂-component in (8.26a). Observe that this vector
is not constant along the edge Â in R because J varies along this edge. We
will approximate J by JA, where JA is J evaluated at the midpoint of A,
and we denote the resulting x̂-component of the transformed V A, by V̂

Â
.

We do similar transformations for the other edges to obtain the transformed
edge velocities,

V̂
Â

=
fB
JA

î V̂
B̂

=
fB
JB

î V̂
Ĉ

=
fC
JC

ĵ V̂
D̂

=
fD
JD

ĵ (8.27)
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if we again approximate the Jacobi determinants, JA, JB , JC , and JD by J̃m,
where Jm is the midpoint Jacobi determinant, this will give the approximate
celledge velocities

Ṽ
Â

=
fB
Jm

î Ṽ
B̂

=
fB
Jm

î Ṽ
Ĉ

=
fC
Jm

ĵ Ṽ
D̂

=
fD
Jm

ĵ (8.28)

We now define an approximate cell velocity in Q̂,

Ṽ = (Ṽ
B̂
− Ṽ

Â
)x̂+ Ṽ

Â
+ (Ṽ

D̂
− Ṽ

Ĉ
)ŷ + Ṽ

Ĉ
=

Ṽ =
1

Jm

(

((fB − fA)x̂+ fA)î + ((fD − fC)ŷ + fC)ĵ
)

(8.29)

Thus we have approximated (8.26a) by fA

Jm
î and (8.26b) by (fD−fC)ŷ+fC

Jm
ĵ.

8.6 A consistent tracing velocity

In this section we will derive a consistent tracing velocity in R for one phase
incompressible flow. The derivation has been done for two phase horizontal
flow in two dimensions in [24].

Consider incompressible single phase flow in 2D. Then ignoring diffusion
and dispersion the conservation equation of a miscible solvent away from
sources is given by

∂C

∂t
+ ∇ · (CV ) = 0 (8.30)

where C = C(x, y, t) is the solvent concentration and V is the total velocity.
Gravitational effects are accomodated in the total velocity.

For incompressible flow we have

∇ · V = 0 (8.31)

This gives
∇ · (CV ) = C∇ · V + V · ∇C = V · ∇C (8.32)

so Equation (8.30) can be written

∂C

∂t
+ V · ∇C = 0 (8.33)

8.6.1 The Prévost derivation.

We will use the same dervation as in [24], the only difference is that Prévost
considered two phase flow.

For a quadrilateral Q in P we have using (8.31),

∫

Q

∇·V dV =

∫

∂Q

V ·ndS =
4
∑

j=1

∫

Ej

V ·njdS = −f1+f2−f3+f4 = 0 (8.34)
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since by Definition 8.1, n1 and n3 points into Q, whereas n2 and n4 points
out of Q.

Equation (8.33) can be written

∂C

∂t
+ V · ∇C =

∂C

∂t
+ uCx + vCy = 0 (8.35)

where we use V = (u, v). Then streamline tracing is performed with

dx

dt
= u (8.36)

dy

dt
= v (8.37)

Now integrating Equation (8.30) over a quadrilateral Q in physical space
and using the divergence theorem, we get

∫

Q

∂C

∂t
dV +

∫

∂Q

CV · ndS =

∫

Q

∂C

∂t
dV +

4
∑

j=1

∫

Ej

CV · njdS = 0 (8.38)

We know change variables using the bilinear transformation (6.1), x = x(x̂).
Then

∫

Q

∂C

∂t
dV =

∫

Q̂

∂C

∂t
JdV̂ (8.39)

where we assume that J is positive In Section 6.4 we showed that
∫

E1

CV · n1dS =

∫

Ê1

CV · ν1dŷ =

∫

Q̂

∂

∂x̂
((CV · ν1))dx̂dŷ (8.40)

Similarly,
∫

E2

CV · n2dS =

∫

Q̂

∂

∂x̂
(CV · ν1)dx̂dŷ (8.41)

∫

E3

CV · n3dS =

∫

Q̂

∂

∂ŷ
(CV · ν2)dx̂dŷ (8.42)

∫

E4

CV · n4dS =

∫

Q̂

∂

∂ŷ
(CV · ν2)dx̂dŷ (8.43)

So (8.38) can be written

∫

Q̂

{

∂C

∂t
J + [CF̃ ]x̂ + [CG̃]ŷ

}

dx̂dŷ = 0 (8.44)

where F̃ = V · ν1 and G̃ = V · ν2. Now

[CF̃ ]x̂ + [CG̃]ŷ = [F̃Cx̂ + G̃Cŷ + C(F̃x̂ + G̃ŷ)] (8.45)
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So the integrand of (8.44) can be put into the form

[

∂C

∂t
+ ûCx̂ + v̂Cŷ

]

J (8.46)

where

û =
F̃

J
, v̂ =

G̃

J
(8.47)

provided C(F̃x̂ + G̃ŷ) is zero. Now

F̃x̂ =
∂

∂x̂
(V · ν1) =

∂

∂x̂

(

u
∂y

∂ŷ
− v

∂x

∂ŷ

)

=

∂u

∂x

∂x

∂x̂

∂y

∂ŷ
+ u

∂2y

∂x̂∂ŷ
− ∂v

∂y

∂y

∂x̂

∂x

∂ŷ
− v

∂2x

∂x̂∂ŷ
(8.48)

and

G̃ŷ =
∂

∂ŷ
(V · ν2) =

∂

∂ŷ

(

−u∂y
∂x̂

+ v
∂x

∂x̂

)

=

− ∂u

∂x

∂x

∂ŷ

∂y

∂x̂
− u

∂2y

∂ŷ∂x̂
+
∂v

∂y

∂y

∂ŷ

∂x

∂x̂
+ v

∂2x

∂ŷ∂x̂
(8.49)

Thus by (8.48), (8.49) and (8.31)

F̃x̂ + G̃ŷ = J(
∂u

∂x
+
∂v

∂y
) = J(∇ · V ) = 0 (8.50)

so (8.46) is valid, and (8.47) defines the “exact” tracing velocity for incom-
pressible flow. Observe that (8.47) gives the same velocity as the direct
method (8.22).

The discrete tracing velocity can now be deduced. From (8.50) we have

∫ 1

0

∫ 1

0
(F̃x̂ + G̃ŷ)dx̂dŷ =

∫ 1

0
F̄x̂dx̂+

∫ 1

0
Ḡŷdŷ = 0 (8.51)

where

F̄ =

∫ 1

0
F̃ dŷ, Ḡ =

∫ 1

0
G̃dx̂ (8.52)

are the mean values of F̃ and G̃, which we can approximate by

F (x̂) = f1(1 − x̂) + f2x̂ (8.53)

G(ŷ) = f3(1 − ŷ) + f4ŷ (8.54)

since by (8.34)

Fx̂ +Gŷ = −f1 + f2 − f3 + f4 = 0 (8.55)
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and thus (8.51) is satisfied. Then by (8.47) we can define a descrete tracing
velocity as

û =
F (x̂)

J
, v̂ =

G(ŷ)

J
(8.56)

Comparing the last expression to (8.29), we see that the result is exactly
the same if we use Jm = J in (8.29).

8.7 The Prévost method

Now Prévost suggests the following tracing quality criteria:

a) The velocity satisfies the mass conservation equation over the cell, and
the discrete integral of divergence is zero for incompressible flow.

b) The normal component of flux is continuous when crossing any face of
the cell.

c) The normal component of velocity is consistent with the flux computed
by the numerical scheme.

In the previous section we showed that tracing in R using (8.56) results in a
divergence free velocity. The derivation of the tracing velocity started from
Equation (8.30), so the given tracing velocity satisfies the mass conservation
equation over the cell.

Then in order to be able to integrate (8.56) analytically Prévost suggests
to replace J by Jm.

The Prévost-method thus maps fluxes from P to R according to

f̂i = fi/Jm, i = A,B,C,D (8.57)

where Jm is the jacobi determinant of the midpoint of the cell in P and
is assumed to be psoitive, and A,B,C,D refers to corresponding edges un-
der the transformation. Then streamline tracing is performed using (8.56),
which is seen to be equivalent to Pollock tracing in R.

Note that, by Section 8.3, the shape of the streamlines will be the same,
for any constant approximation of J in (8.56), and we will show later that
approximating J by Jm can give incorrect time-of-flight. Thus we can ap-
proximate J by J̃ , where J̃ is an approximation of J that will give better
time-of-flight values, and still the shape of the streamlines will be the same.
We will refer to this method as the modified Prévost-method.

8.8 Direct transformation of the flow equation

We are currently working on more direct method to give a consistent tracing
velocity. This work has not yet been completed, but we will show the results
found so far.
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We want to transform Equation (8.33) from P to R in terms of the
inverse transform of (6.1). So assume we can find the inverse transform

x̂(x) =

[

x̂(x, y)
ŷ(x, y)

]

(8.58)

Let

C = C(x(x̂), t) = Ĉ(x̂(x), t) (8.59)

V =
dx(x̂)

dt
=
dx(x̂)

dt
i +

dy(x̂)

dt
j (8.60)

V̂ =
dx̂(x)

dt
=
dx̂(x)

dt
î +

dŷ(x)

dt
ĵ (8.61)

where î = i and ĵ = j. Then

∂C

∂t
→ ∂Ĉ

∂t
(8.62)

because the time is the same in the two spaces (the arrow means the trans-
formation from P to R).

By (6.8),

V =
dx

dt
=
dx

dx̂

dx̂

dt
= DV̂ (8.63)

where D is the jacobi matrix of the transformation, and

(∇C)T =
∂C

∂x
=
∂Ĉ

∂x
=
∂Ĉ

∂x̂

dx̂

dx
= (∇̂Ĉ)TD−1 (8.64)

This means that
∇C = D−T ∇̂Ĉ (8.65)

So Equation (8.33) in R is

∂Ĉ

∂t
+ (DV̂ ) · (D−T ∇̂Ĉ) =

∂Ĉ

∂t
+ V̂

T
DTD−T ∇̂Ĉ =

∂Ĉ

∂t
+ V̂ · ∇̂Ĉ = 0 (8.66)

So we get exactly the same equation in R. If we can show that ∇̂·V̂ = 0,
then it is believed that this is good starting point for deriving a consistent
tracing velocity.

8.9 Tracing on irregular grids

We have now described the principals behind the Prévost-method. How this
method is used in parctice is described in Appendix C.
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The Piola Transformation

In order to show that the Prévost method reproduces streamlines of uniform
flow, we will use a result from Russell in [19]. In this paper it is shown
that the Piola transformation of a given lowest order Raviart-Thomas [25]
velocity reproduces uniform flow.

The Piola transformation is a vector transformation from R to P that
conserves fluxes over any x̂-curve or ŷ-curve (see Section 9.2). The transfor-
mation is given by

v(x(x̂)) =
D(x̂)

J(x̂)
v̂(x̂) (9.1)

Here v(x(x̂)) is the vector in P, v̂(x̂) is the vector in R, x(x̂) is the bilinear
transformation, (6.1), D(x̂) is the jacobi matrix, (6.8), and J(x̂) is the jacobi
determinant given in (6.9).

9.1 The inverse transformation

Assuming that the transformation x(x̂) is invertible we can solve (9.1) for
v̂(x̂), to give

v̂(x̂(x)) = J(x)D−1(x)v(x) (9.2)

9.2 Flux conservation

In Section 6.4, we showed that the flux of a vector field q in P over an
x̂-curve is given by

fx̂ =

∫ 1

0
(q · ν1)(x(r̂(θ)))dθ (9.3)

where ν1 is a normal vector to the x̂-curve, r̂(θ) is a representation for the
x̂-curve in R and x(·) is the bilinear transformation.

By transforming the vector q to a vector q̂ in reference space, we want
the corresponding flux in the two spaces to be equal. The corresponding

36
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flux in reference space is given by

∫

Ĉ

(q̂ · N̂ )(r̂(θ))‖dr̂
dθ

‖dθ (9.4)

where N̂ is the unit normal to the curve Ĉ. For the x̂-curve given in (6.20),
N̂ = [1, 0] and ‖ dr̂

dθ
‖ = 1. So (9.4) becomes

∫ 1

0
(q̂ · [1, 0])(r̂(θ))dθ =

∫ 1

0
q̂1(r̂(θ))dθ (9.5)

Comparing (9.3) and (9.5) we want

∫ 1

0
(q · ν1)(x(r̂(θ)))dθ =

∫ 1

0
q̂1(r̂(θ))dθ (9.6)

We can achive this by setting

q̂1(r̂(θ)) = (q · ν1)(x(r̂(θ))) (9.7)

Observe that q̂2(·) can be chosen without constraint in this case.
Similarly, for an ŷ-curve, we can achive flux conservation by setting

q̂2(ŝ(θ)) = (q · ν2)(x(ŝ(θ))) (9.8)

where ŝ(θ) is a representation for a ŷ-curve. We see that there is no con-
straint on q̂1(·) for this case. Thus by (6.14) if we take

q̂ =

[

νT1
νT2

]

q = JD̃−1q (9.9)

we achive flux conservation for both x̂- and ŷ-curves. Comparing the last
expression to (9.2), we see that q̂ is then the inverse Piola transform of q.

9.3 Reproduction of uniform flow

Consider the transformation (8.21) of velocity from P to R

V̂ =
dx̂

dt
=
dx̂

dx

dx

dt
= D−1V (9.10)

and compare it with the inverse Piola transformation

V̂ = JD−1V (9.11)

Thus the Piola transformation does not preserve the velocity if we use the
same time coordinate in P and R.
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Since the Piola transform conserves fluxes the inverse Piola tranform can
be seen as a flux mapping (Section 8.4) from P to R on the form

f̂i = fi, i = A,B,C,D (9.12)

The standard basis functions in R associated with the edgefluxes, fi, are
the lowest-order Raviart-Thomas (RT0) functions [19, 25].

An RT0 function in R is a linear combination of the velocity fields uA,
uB,vC ,vD, given by

uA = (1 − x̂, 0) (9.13)

uB = (x̂, 0) (9.14)

vC = (0, 1 − ŷ) (9.15)

vD = (0, ŷ) (9.16)

It follows that the velocity field used in the Prévost-method is an RT0

function.
In [19] it is shown that a uniform velocity field, q, in P, is the exact

Piola transform of an RT0 function.
Comparing (9.12) with the Prévost-method (Section 8.7) we see that the

only difference is a different scaling of the fluxes in R, thus by the discussion
in 8.3, the shape of the streamlines of either method will be the same, and
by the above argument, reproduce a uniform flow field. That is, the method
will reproduce the shape of the streamlines for a uniform flow field, the TOF
is not reproduced.



Chapter 10

Results

In this chapter we will look at some flow fields where the analytical solution
is known and compare it with the results from the method. We will be
interested in both the shape of the streamlines and the time-of-flight. First
we will see that a uniform flow field is preserved, then we look at a circular
velocity field. The next section tests a flow field with a divergence different
from zero. We then examine the sensitivity with respect to perturbations of
the grid. Then the problem with time-of-flight is considered, and at last we
use streamlines to validate the results of the MPFA-method.

10.1 Uniform velocity field

For a uniform velocity field q = (qx, qy), where qx and qy are constants,
we know the analytical solution: The streamlines should be straight lines
with slope qy/qx. For such a velocity field we can calculate the edge fluxes
analytically (Appendix G.1), and this can be used as input to the tracing
algorithm. The streamlines of the method can then be compared to the
exact solution.

So assume the fluxes of each edge is given by (G.3), we then trace the
streamlines in R using the Prévost-method and map the solution back to P
using the bilinear transformation. Since the edge fluxes are given analyti-
cally, the other steps can also be done analytically (see Appendix G.2).

In the Appendix we showed that if q = (1, 0) the streamlines are repro-
duced exactly. We could not show this generally using this direct method,
so we will rely on the result in Section 9.3.

The test will be performed on the 19x19 gridcell grid, G, shown in Figure
10.1. The grid is constructed as described in (Appendix K) with rx =
ry = 0.6. We will use 8 different flow fields, qi, 1 ≤ i ≤ 8. Such that
qi = (1, tan((i ∗ 10/180) ∗ π)), see Figure 10.2.

For each flow field we calculate the fluxes of G analytically. We then gen-
erate one streamline for each flow field. Confer Appendix C, for a description

39
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Figure 10.1: Grid that will be used to test a uniform flow.
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Figure 10.2: The vector q = (1, qy) = (1, tan(α)).
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of the tracing algorithm.

10.1.1 Shape of streamlines

The result is shown in Figure 10.3. The circles are starting points for the
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Figure 10.3: Each streamline correspond to a different uniform flow field.
The circles are starting points for the streamlines.

different streamlines, and they all lie on a circle of radius 10 with center
in (0, 0). It seems that the streamline method reproduces uniform flow
streamlines exactly. This is also expected from the result in Section 9.3.

10.1.2 Time-of-flight

We also want to check the Time-of-flight calculations for the numerical
method. The numerical TOF is calculated according to (8.10), the true
TOF calculations is given in Appendix G.3.

The results are shown in Figure 10.4. We observe that for α = 30◦ the

α 10 20 30 40 50 60 70 80

True TOF 19 19 19 19 15.9429 10.9697 6.9154 3.3502
Numerical TOF 19.0331 19.0078 19.6992 19.1104 15.9598 11.0094 6.8082 3.3685

Figure 10.4: TOF calculations for the uniform velocity field.

TOF is almost 4% in error.
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10.2 Circular velocity field

Next we will test the tracing algorithm for a circular steady velocity field
q(x, y). We know that the true streamlines should be circles. Using numer-
ical integration we can define fluxes on each edge of the grid corresponding
to q. We then apply the tracing algorithm for theses fluxes to see if it can
match the true solution.

Given an origin O = (x0, y0) and a point P = (x, y), we can define a
radius vector pointing from O to P as r(x, y) = [x − x0, y − y0]. Consider
a circle drawn with center in O and with radius |r|. See Figure 10.5. Then

PSfrag replacements

x

y

O

P
r

q(P )

Figure 10.5: Definition of a circular velocity field

we define q(x, y) to be the unit tangent vector, at P , to the circle, pointing
in the counter clockwise direction. Set r(x, y) = [r1(x, y), r2(x, y)], then we
have that

q(x, y) =
1

‖r‖ [−r2(x, y), r1(x, y)] =

1
√

(x− x0)2 + (y − y0)2
[y0 − y, x− x0] (10.1)

since q · r = 0 and ‖q‖ = (1/‖r‖)‖r‖ = 1. The vector q points in counter
clockwise direction since it can be thought of as a 90◦ counter clockwise
rotation of r. Such a rotation can be written as a linear trasformation with
matrix

A =

[

0 −1
1 0

]

(10.2)

Then we see that Ar = [−r2, r1].
We will use the grid, G, shown in Figure 10.6. The grid is constructed
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Figure 10.6: Grid to be used in the test case. The point marked with an
asterix will be the origin for the circluar velocity field.

as described in (Appendix K) with rx = ry = 0.4, and is a a “random”
perturbation of a 14x14 gridcell square grid.

We calculate the fluxes numerically (Appendix H.1) for the velocity field
described above.

10.2.1 Shape of streamlines

We select seven different starting points for streamlines within the grid. The
result is shown in Figure 10.7. Note that for the four innermost circles, if
we trace the streamlines forward from the circle point the streamline will
end up at same point (or almost the same point) after passing through a
given number of cells. This means that we have to give a stopping creteria
to avoid an infinite loop. For this testcase we have chosen to stop tracing
when the streamline has passed more than 80 gridcells.

Consider the innermost circle. One orbit for this circle contains 8 grid-
cells; this means that the circle is traced 10 times. It is surprising that from
the figure, we cannot seperate the ten circles. This shows a kind of stability
of the method.

We note that the innermost circle is clearly deformed, so the shape of a
circle is not preserved. This error can come from the computation of fluxes,
or from the streamline method. We believe this error come from the tracing
method, and shows that when the curvature of streamlines is big the error
in the shape of the streamlines will grow. This point is to be investigated
further.
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Figure 10.7: Grid with streamlines. The circles are startingpoints for a given
streamline.

10.2.2 Time-of-flight

We will investigate the time-of-flight for the four innermost circles. See
Figure 10.8. From (7.2), the TOF for a particle tracing one orbit of a circle,
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Figure 10.8: The four innermost circles.

is given by

τ =

∫

C

1

|q|ds =

∫

C

ds = {Circumference of circle} (10.3)

since |q| = 1.
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For circle 1, we will consider 2 orbits, and the analytical TOF should
then be τ1 = 2 ∗ 2πr ≈ 4π ∗ 5.071 ≈ 63.72, whereas the numerical method
gives τ̃1 = 63.51.

For circle 2, the true TOF for 2 orbits is τ2 = 46.17, and the numerical
result is τ̃2 = 46.08. For circle 3, the TOF’s for 4 orbits is τ3 = 57.78 and
τ̃3 = 58.62. For circle 4, with 10 orbits, we get, τ4 = 65.04 and τ̃4 = 78.78.

Thus there is a big error in TOF for the innermost circle. This is clearly
something that should be investigated closer.

10.3 An y-dependent velocity field

We will test streamline tracing for a steady velocity field given by

q(y) = i + yj (10.4)

Note that ∇ · q = 1. In Section 8.6, we derived a consistent tracing
velocity assuming ∇ · q = 0. Thus we don’t know if the tracing velocity is
consistent, for this case.

According to (4.7a) the streamlines are given by

dy

dx
=
qy
qx

= y, y(0) = y0 (10.5)

We integrate this to obtain
y(x) = y0e

x (10.6)

We will use a 19x19 gridcell random convex grid, G, (Appendix K). Some
analytical streamlines for this grid are shown in Figure 10.9.

The numerical streamlines are shown in Figure Figure 10.10(b) shows
that the numerical method gives very good results for this test case.

10.4 Sensitivity to perturbation of gridcells

In this section we will investigate how the shape of a streamline is affected
with respect to perturbations of the grid. We will use a 20x20 gridcell grid.
The flow problem will be single-phase incompressible horizontal flow in 2D
for a homogeneous medium with no flow boundaries. There will be a source
in lower right corner and a sink in the upper right corner, both of unit
strength. The edgefluxes for the gridcells will be computed by the method
described in Section 3.2.

We will use ten differently shaped grids, all 20x20 cells. The first grid
is shown in Figure 10.11(a). Grid number two is obtained from the first
by a small perturbation of all the cells in the first grid except for the cells
containing the source and the sink (cell number 0 and cell number 399). The
perturbation is done both uniformly and randomly.
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(a) The grid used in the test.
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(b) Some analytical streamlines for the grid.

Figure 10.9: Streamlines for q = (1, y).
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(a) Numerical streamlines.
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(b) Analytical and numerical in the same plot.

Figure 10.10: Streamlines for q = (1, y).
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(a) The first grid.
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(b) The last grid (i.e. Grid num-
ber 10).
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(c) All the 10 grids plotted on top of each
other.

Figure 10.11: The grids used in the test.
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Figure 10.12: The dashed quadrilateral is obtained by a pertubation of the
corners of the square quadrilateral.

For a cell not on the boundary of the soultion domain, each gridpoint of
the cell is given a perturbation like the one shown in figure 10.12. The per-
turbation of x1 = (x1, y1) is done by subtracting a random number between
0 and 0.05 from x1, then adding a new random number between 0 and 0.05
to y1. Similar perturbations goes for the other corners.

The cells on the bottom and top boundary of the domain are not per-
turbed in the y-direction for the corners lying on the boundary, whereas the
cells on the left and right boundary of the domain are not perturbed in the
x-direction for the boundary cornerpoints. In this way the solution domain
is kept fixed, and the same goes for the source and sink cells of the grids.

The other grids, grid number 3 to 10 is obtained from its previous grid
in a similar fashion. Then the grids will be sequence of more and more
“irregular” grids. See Figure 10.11. The reason for doing a random per-
turbation was to avoid cancellation effects when perturbing the grid by the
same amount for each gridpoint.

We trace one streamline for each grid. Each streamline will be initiated
from the point (x, y) = (1.5, 0.5). We will assume that the MPFA-method
gives correct fluxes for each grid. Then, in theory, all the streamlines should
be identical, but due to errors introduced by the tracing algorithm there will
be differences.

In Figure 10.13 we have plotted all the 10 streamlines in the first grid.
We note that the method seems to be stable for this kind of perturbations.

This test is to be extended to a case where we can calculate the fluxes
analytically. We then don’t have to rely on a numerical method to compute
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the fluxes.
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(a) Streamline for the first grid.
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(b) Streamline for the last grid.
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(c) All the 10 streamlines plotted on top
of each other in the first grid.

Figure 10.13: Streamlines for the testcase.

10.5 Time-of-flight

In this section we will show that the Prévost-method (Section 8.7) of flux
mapping from P to R can give incorrect time-of-flight.

10.5.1 The single cell

We will first consider a simple testcase that will demonstrate the problem.
See Figure 10.14(a). Assume a uniform velocity field, q = (1, 0) in P. See
Figure 10.14(b). Then a particle starting at P1 should use t = 1 second
to reach P2. But if we use the Prévost-method we will get t = 1 + β. See
Appendix J for calculations. This is because the method uses the midpoint
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Figure 10.14: The problem to be investigated in the testcase.

Jacobi determinant, Jm, as a scaling factor for the fluxes (see Section 8.7).
The midpoint Jacobian cannot represent the “streching” of the spatial co-
ordinates on this particular trajectory.

For Q we have
J = 2ŷ(1 − β) + 2β (10.7)

Thus we see that Jm = J(0.5, 0.5) = 1+β, whereas the Jacobi determinant,
Js, on the midpoint of the streamline is Js = J(0.5, 1) = 2. If we use Js in
the tracing algorithm, we get t = 1 as we should.

10.5.2 Accumulation error in a skew grid

We next consider how this problem can accumulate for certain grids. See
Figure 10.15. Each row of the grid contains trapezoids of equal area. See
Appendix J for calculations. The particle pi, i = 1, 2, 3, 4 starts at the point
Pi at t = 0. The velocity field is uniform given by q = (1, 0), and the tracing
is done by the Prévost-method.

Due to inncorrect computations of the Jacobi-determinant, as described
in the previous section, the particles will reach the vertical line, l, at x = 20
at different times. Let Ti be the time particle pi arrives at l. First assume
that p1 and p2 belongs to the first row of the grid (p2 could also belong to
the second row, since its trajectory lies on the interface between cells in the
first row and the second row). Assume also that p3 and p4 belongs to the
top row of the grid.

Then T1 = 19.75, T2 = 20.25, T3 = 19.48 and T4 = 20.5, whereas the
correct time should be T = 20.

As shown in Appendix J, the time-of-flight is also discontinous along the
trajectories of p2 and p3.



CHAPTER 10. RESULTS 52

0 5 10 15 20 25 30 35 40

0

2

4

6

8

10

12

14

16

18

20

PSfrag replacements

P4

P3

P2

P1

q = (1, 0)

Figure 10.15: Consider four particles starting at P1, P2, P3 and P4, respec-
tively in a uniform flow field q = (1, 0). Which particle will reach the line
x = 20 first?

10.6 Parallelograms and the MPFA-method

In this section we will use streamlines to investigate monotonicity for the
MPFA-method. The MPFA-method [1] is a method for solving the pressure
equation (3.7). For skewed parallelograms this method can give incorrect
edgefluxes [20]. Using streamlines, we will try to visualize the problems, and
determine when they arise.

We will still use a simple 20x20 gridcell grid. The flow problem will be
single-phase incompressible horizontal flow in 2D for a homogeneous medium
with no flow boundaries. There will be a source in lower right corner and a
sink in the upper right corner, both of unit strength. The edgefluxes for the
gridcells will be computed by the MPFA-method.

The grids will consist of mostly parallelograms of the type shown in
Figure 10.16. The x-coordinates of the corners of the parallelograms are
fixed such that we always have x2 − x1 = 1 and x3 − x4 = 1 (here as usual
xi = (xi, yi).

A grid of parallelograms, squares and trapezoids is then constructed, as
shown in Figure 10.17. The grid in figure 10.17(a) has som large trapezoidal
cells in second row from below. We would like to avoid having such cells in
the grid, but in order to keep the boundary of the solution domain fixed for
each testcase we had to use these cells. Still, we hope that these cells will
not affect the solution in the middle of the domain, which is of the interest
for this case.

The reason for the row of squares at the bottom and at the top of the
grids, is too keep the source cell and the sink cell fixed, so the streamlines
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Figure 10.16: The angle α will be measure of the skewness of the parallelo-
gram Q. The x-coordinates of the corners of Q is fixed.
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(b) Grid with α = 80◦.

Figure 10.17: The type of grids that will be used in the testcase.
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will end up and start at the same place for each grid. Both grids consists of
same number of cells, and the boundary is the same.

The results are shown in Figure 10.18. For both figures the circle points
are fixed locations in the domain, and each circle is the starting point for
a streamline. Streamline tracing is done by starting the streamlines in the
circle points and then tracing forward and backward until a source or a sink
is reached.

In Figure 10.19 the streamlines are plotted in the same grid for compari-
son. We observe that the streamlines are identical in a small neighbourhood
of the circles, then the streamlines for α = 80◦ starts to behave odd.

We now zoom in the picture between 8.3 < x < 9.3 and 9 < y < 14. See
Figure 10.20. The dotted lines in the figure corresponds to the grid with
α = 70◦, whereas the dashed lines corresponds to the grid with α = 80◦.
Observe that the starting point of the streamline lies in different cells in the
two grids.

If we will claim that the shape of the streamlines for α = 80◦ is due to
MPFA we have to know the analytical or true solution. For this problem we
can find an analytical solution, and this will be investigated further in the
future.
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(a) Streamlines for grid with α = 70◦.
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(b) Streamlines for grid with α = 80◦.

Figure 10.18: Streamlines for the grids.
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Figure 10.19: Streamlines for both grids plotted in the grid with α = 80◦.
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Figure 10.20: The streamlines for both grids zoomed in. Both grids are
plotted. Dashed lines correspond to grid 2 and dotted lines correspond to
grid 1. Wee see that the streamlines for grid 2 have cusps.



Chapter 11

Summary and Conclusions

11.1 Conclusion

In this thesis we have investigated the Prévost-method for streamline trac-
ing. The method appears to be stable and accurate with respect to the shape
of the streamlines, at least when the curvature of the streamlines is small.
We have showed analytically that the method should preserve uniform flow,
and this was also confirmed in the test cases.

Next we studied a circular velocity field. This example showed that the
shape of the streamlines can be deformed when the direction of the velocity
field is rapidly varying, as for the innermost circles in that example.

Introducing a velocity with divergence did not affect the quality of the
streamlines, although we had no results to rely on for this case.

We then tested if the method was sensitve to perturbation of the grid.
The result showed that the method was stable for the chosen testcase.

In the next section we verified that the Prévost method can give in-
ncorrect time-of-flight, and at last we studied the MPFA-algorithm using
streamlines. This last example showed that streamlines can be used in
certain cases to validate a flux or velocity distribution supplied by e.g. a
numerical method.

We have shown that the modified Prévost-method and the Prévost-
method give the same shape of the streamlines. Using a modified Prévost-
method we can approximate the Jacobi determinant differently to obtain a
better time-of-flight.

The erros in the shape of streamlines are due to (i) Inexact evaluation
of fluxes on celledges. This is an error in the input to the method, and
cannot be reduced by the method itself. It is commonly a numerical error in
the solution of the flow equations. (ii) Interpolation of the velocity field in
reference space. Different interpolation schemes can result in significantly
different velocities, streamlines, and time-of-flight, as noted in [11].

The errors in the interpolation in the Prévost-method are due to the
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flux-mapping from P to R and the linear interpolation within the cell in R.
There is no error associated with the bilinear transformation.

11.2 Further work

The results in this thesis shows that streamline tracing on irregular grids can
be performed successfully. Developing a rigorous methodology for streamline
tracing on irregular grids would be important step in estimating the accuracy
of the soultions calculated by the streamline method. Investigating the
errors introduced by the tracing method for 3D irregular grids will be one
field of research.

Correct computation of time-of-flight is important both for particle track-
ing schemes and for the streamline method. A possible approach to improve
TOF could be to approximate the Jacobi-determinant by the midpoint of
the streamline within the cell.

Furthermore, the tracing algorithm should be implemented for two or
three phases within the framework of the streamline method.

For the 2D tracing described in this thesis, there are a lot to investigate
further, as noted in the results section. First we would like to try out a
modified Prévost-method that evaluate J at the midpoint of a streamline,
and compare the TOF calculations with the original method and with given
analytical solutions.

We will investigate further how the method behaves on rapidly varying
velocity fields. An error estimate relative to the velocity field would be of
great help.

The derivation of a consistent tracing velocity using a direct transfor-
mation as described in Section 8.8, needs to be be investigated further and
extended to multiphase flow.

In the solution process the MPFA-method constructs interaction regions
whithin each cell of the grid. In 2D there are four such subcells within each
cell. At some of the edges of these subcells the flux is known. A possible
strategy for improving the quality of the streamline when using the MPFA-
method is to take advantage of this extra information.

Additionally, there is lot of numerical issues that has to be further in-
vestigated for the C++ implementation of the tracing algorithm.



Appendix A

Streamline Simulation

The streamline method used in streamline simulation involves two compo-
nents; (i) tracing the streamline paths, and (ii) mapping 1D solutions along
the streamlines.

A.1 The Governing IMPES Equations

The governing equations was derived in Section 3.1.
Equations (3.7) and (3.13) form the governing set of nonlinear equations

for the IMPES method to be used in a streamline simulator. They are
nonlinear since coefficients in each equation are dependent on the unknown
variables (P or Sj). Although the equations are closely coupled together,
they are different in mathematical behavior and as such can be solved differ-
ently. This is the underlying idea of the streamline IMPES method. Unlike
a conventional finite-difference IMPES method, the use of streamlines allows
one to transform Equation (3.13) into a pseudo 1D equation.

A.2 Coordinate Transformation Along Strreamlines

In a conventional IMPES finite-difference simulator (3.13) is solved in its
full three-dimensional form. With the streamline method (3.13) is decou-
pled into multiple 1D equations that are solved along streamlines. Solving
multiple 1D equations along streamlines is much faster and more accurate
than solving the full 3D problem.

To use the method (7.2) is first rewritten as

∂τ

∂s
=

φ

|ut|
(A.1)

which can be further rewritten as

|ut|
∂

∂s
≡ ut · ∇ = φ

∂

∂τ
(A.2)

59



APPENDIX A. STREAMLINE SIMULATION 60

Substituting (A.2) in (3.13) gives

∂Sj
∂t

+
∂fj
∂τ

+
1

φ
∇ · G̃j =

qsfj,s
φ

(A.3)

This is the governing pseudo 1D phase material balance equation trans-
formed along a streamline coordinate. It is pseudo 1D since the gravity
term is typically not aligned along the direction of a streamline.



Appendix B

Pollock tracing in 2D

In this Appendix we will give a more detailed exposition of Pollock tracing.
The description here will be sufficient and neccessary for an implementation
in a streamline tracer for irregular grids. See Appendix C for an example.

Consider the case of streamline tracing for a unit square cell. See Figure
B.1. It is sufficient to discuss this case only in order to trace streamlines
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Figure B.1: Unit 2D cell with boundary velocities.

on any convex quadrilateral in 2D [24]. Assuming a steady velocity field,
the edge velocities uA, uB , vC , vD will not change with time, and streamline
tracing is equivalent to particle tracking. For a given particle starting at
P0 = (x(0), y(0)) at t = 0 within the cell in Figure B.1, we define the
position to be given by

r(t) = x(t)i + y(t)j (B.1)

Following Pollock [22], we assume a Raviart-Thomas [25] velocity field:
within each spatial cell, the x-component is continous piecewise-linear in
the x-direction and discontinous piecewise-constant in the y-direction, and
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the y-component is the reverse. Thus we define the particle velocity within
the cell by

v(t) =
dr

dt
=
dx

dt
i +

dy

dt
j

= u(x(t), y(t))i + v(x(t), y(t))j = u(x(t))i + v(y(t))j (B.2)

Consider now the case in Figure B.2: we want to trace the path of the
particle backwards in time, i.e., we want to calculate the particle’s entry
point when we are given the current position of the particle within the cell
together with the velocities at the cell boundary.
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Figure B.2: Unit 2D cell with boundary velocities. We want to calculate
the particle’s entry point given it’s current position.

Discussing this case will be sufficient to trace any streamline from a given
point forward and backward in time. Suppose we want to trace a streamline
forward in time from a given point. Then this is equivalent to trace the
same streamline backwards in time with the cell edge velocities reversed.
This can be seen from the following argument: The velocity vector (B.2) is
everywhere tangent to the streamline, when reversing the cell edge velocities
this vector will also be reversed, i.e., vr(x, y) = −v(x, y). Here vr(x, y) is the
reversed velocity vector. Hence the two streamlines have the same tangent
vectors everywhere. Since they pass through the same point they must be
the same. Note also that |v|=|vr| so the speed is the same at any point.
Then the travel time must also be the same.

B.1 Find the travel time and the entry edge

Consider first x(t), the x-coordinate of the particle’s position. Using linear
interpolation of u(t), we must have

dx

dt
= u(t) = Gxx(t) + uA (B.3)
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whereGx = uB−uA is the velocity gradient. By the steady-state assumption
Gx, uA and uB is constant.

This gives us an ordinary differential equation for x(t),











dx
Gxx+uA

= dt, Gx 6= 0
dx
uA

= dt, Gx = 0, uA 6= 0
dx
dt

= 0, Gx = 0, uA = 0

(B.4)

(B.5)

(B.6)

We are given a point, P , within the cell, which we will denote by (x(T ), y(T )),
where T is the time used for a particle starting at a point P0 on a cell edge
or from a source within the cell to reach P . Note that T itself is not known
yet. This notation might be a bit confusing as usually the known point is
denoted by P0. We will still refer to P0 as the starting point, but keep in
mind that it is not known yet. We refer to P as the end point, and T will
be the travel time.

Next we want to integrate the previous equation from t = 0 to t = T .
Note that Equation (B.4) can only be integrated if the denominator of the
integrand is not zero over the integration interval. This happens if the
integrand evaluated at the left limit of the integration interval has oppsite
sign of the integrand evaluated at the right limit of the integration interval.
Physically this cooresponds to that a particle moving in one dimension in
a stationary velocity field can never advance from a point with a positive
velocity to a point with a negative velocity or vice versa in a finite time.
Note from (B.3) that u(T ) = Gxx(T ) + uA and u(0) = Gxx(0) + uA. Now
integration yields

T =



































Undefined, Gx 6= 0, u(0) = 0

Undefined, Gx 6= 0, u(T )/u(0) ≤ 0
1
Gx

ln
∣

∣

∣

Gxx(T )+uA

Gxx(0)+uA

∣

∣

∣
= 1

Gx
ln u(T )

u(0) , Gx 6= 0, u(T )/u(0) > 0
x(T )−x(0)

uA
, Gx = 0, uA 6= 0

T, x(T ) = x(0), Gx = 0, uA = 0

(B.7)

Next we want to exclude negative times. We do this by setting T = ∞ if
T < 0. We also set T = ∞ if T is undefined according to the previous
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discussion. Let’s first summarize the conditions giving T = ∞,

Cx1: Gx 6= 0, u(0) = 0 (B.8)

Cx2: Gx 6= 0,
u(T )

u(0)
≤ 0 (B.9)

Cx3: Gx 6= 0,
u(T )

u(0)
> 0,

1

Gx
ln
u(T )

u(0)
< 0 (B.10)

Cx4: Gx = 0, uA 6= 0,
x(T ) − x(0)

uA
< 0 (B.11)

Cx5: Gx = 0, uA = 0 (B.12)

See Figure B.3 for some examples of these.
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Figure B.3: Negative times. We have set x(0) = 0 and x(T ) = 1. These
cases are not physically possible, so we indicate that by setting T = ∞.

Set
Cx = Cx1 or Cx2 or Cx3 or Cx4 or Cx5 (B.13)
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Then we have

T =











∞, If Cx
1
Gx

ln u(T )
u(0) , Gx 6= 0, 1

Gx
ln u(T )

u(0) ≥ 0
x(T )−x(0)

uA
, Gx = 0, uA 6= 0, x(T )−x(0)

uA
≥ 0

(B.14)

For the y-direction we assume that the velocity varies linearly with the y-
coordinate:

dy

dt
= v(t) = Gyy(t) + vC (B.15)

where Gy = vD − vC is the velocity gradient in the y-direction. A similar
calculation as above for the y-direction gives

T =











∞, If Cy
1
Gy

ln v(T )
v(0) , Gy 6= 0, 1

Gy
ln v(T )

v(0) ≥ 0
y(T )−y(0)

vC
, Gy = 0, vC 6= 0, y(T )−y(0)

vC
≥ 0

(B.16)

Now the particle can enter the cell through the faces A, B, C, D or the
particle never enters the cell (see Figure B.4 for an example).PSfrag replacements
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Figure B.4: Unit 2D cell with boundary velocities. A special case where the
particle never enters the cell rather it starts at a point inside the cell due to
a source in the cell.

We can find the correct entry face (if the particle enters the cell) by
the following procedure. Consider first the time,TA, for the particle to
reach the point P starting from the line x=0 (this line contains edge A)
at t=0. Then setting x(0)=0 implies by (B.3) that u(0)=uA. Inserting
this in Equation (B.14) we can find TA, but consider first the special case
x(T ) = 0. In this case u(T )=u(0) and u(T )/u(0)=1, and from (B.14) we
get TA = (1/Gx) ln 1 = 0. If uA > 0 this is correct because in this case
the end point and starting point will be the same. If uA ≤ 0 then we set
TA = ∞ because in this case we will not consider face A as en entry face, as
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Figure B.5: The special case for x(0) = x(T ) = 0.

the particle certainly will enter the cell through an other face (if uA 6= 0).
See Figure B.5.

Accordingly we define the additional condition

CxA6: x(0) = 0, x(T ) = 0, uA ≤ 0 (B.17)

We define CxA1, CxA2, CxA3, CxA4 and CxA5 by setting

T = TA, u(0) = uA, x(0) = 0 (B.18)

in (B.8), (B.9), (B.10), (B.11) and (B.12). And define

CxA = CxA1 or CxA2 or CxA3 or CxA4 or CxA5 or CxA6 (B.19)

Then

TA =











∞, If CxA
1
Gx

ln u(TA)
uA

, Gx 6= 0, 1
Gx

ln u(TA)
uA

> 0
x(TA)
uA

, Gx = 0, x(TA)
uA

> 0

(B.20)

Next calculate the time for the particle to reach P starting from the line
x = 1, containing edge B. Setting T = TB , u(0) = uB and x(0) = 1 in
(B.14) gives us

TB =











∞, If CxB
1
Gx

ln u(TB)
uB

, Gx 6= 0, 1
Gx

ln u(TB)
uB

> 0
x(TB)−1

uA
, Gx = 0, x(TB)−1

uA
> 0

(B.21)

where CxB is defined similar to CxA and handles the special case x(T ) = 1.

TC =











∞, If CyC
1
Gy

ln v(TC )
vC

, Gy 6= 0, 1
Gy

ln v(TC )
vC

> 0
y(TC)
vC

, Gy = 0, y(TC)
vC

> 0

(B.22)
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corresponding to the line y = 0, and

TD =











∞, If CyD
1
Gy

ln v(TD)
vD

, Gy 6= 0, 1
Gy

ln v(TD)
vD

> 0
y(TD)−1

vC
, Gy = 0, y(TD)−1

vC
> 0

(B.23)

for the line y = 1.
Now the minimum of TA,TB ,TC and TD will give the particle’s travel

time, T ,
T = min(TA, TB , TC , TD) (B.24)

This is the time for the particle to reach its current position starting from
a point on the cell boundary (if the particle enters the cell).

B.2 Find the entry point and the trajectory

Consider first the case T < ∞. We will now calculate the particle’s en-
try point as it is needed in the equation for the trajectory. The parti-
cle’s entry point (x(0), y(0)) is given by (B.14) and (B.16) by substituting
u(0) = Gxx(0) + uA and v(0) = Gyy(0) + vC we get

T =

{

1
Gx

ln
[

u(T )
Gxx(0)+uA

]

, Gx 6= 0
x(T )−x(0)

uA
, Gx = 0

(B.25)

T =

{

1
Gy

ln
[

v(T )
Gyy(0)+vC

]

, Gy 6= 0
y(T )−y(0)

vC
, Gy = 0

(B.26)

solving these equations for x(0) and y(0) we get

x(0) =

{

1
Gx

(

e−GxTu(T ) − uA
)

, Gx 6= 0

x(T ) − uAT, Gx = 0
(B.27)

y(0) =

{

1
Gy

(

e−GyT v(T ) − vC
)

, Gy 6= 0

y(T ) − vCT, Gy = 0
(B.28)

The particle’s trajectory within the cell is now given by (B.14) and
(B.16). Setting T = t in those equations we get

x(t) =

{

1
Gx

(

(Gxx(0) + uA)eGxt − uA
)

, Gx 6= 0, 0 ≤ t ≤ T

uAt+ x(0), Gx = 0, 0 ≤ t ≤ T
(B.29)

y(t) =

{

1
Gy

(

(Gyy(0) + vC)eGyt − vC
)

, Gy 6= 0, 0 ≤ t ≤ T

vC t+ y(0), Gy = 0, 0 ≤ t ≤ T
(B.30)
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B.3 Forward tracing

Consider for a moment tracing a streamline forward from a given point P0

within the cell. See Figure B.6(a). As described in the beginning of this
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Figure B.6: Tracing forward.

section this introduces no major problem. We will only comment on some
notational issues here. The forward tracing is done by reversing the celledge
velocities and then carrying out backward tracing. See figure B.6(b). For
the reversed problem we will have that P̄ = P0 and P̄0 = P as in the figure
(barred variables will refer to the reversed problem). This is consistent
with the backward tracing algorithm described earlier in this section, which
requires P to be the known point. Then this algoritm will find P̄0. The
last step should then be to set P = P̄0 to get the end point for the forward
tracing algorithm.

The trajectory when T <∞ is still given by (B.29) and (B.30).

B.4 The special case of a source or a sink

If T < ∞ the particle will reach the current point starting from a point at
the boundary in a finite time and it cannot come from a source within the
cell (since then it would be another particle). The further movement of the
particle is yet unknown. The particle could end up in sink or not. If we
know that the current point is also on the boundary, then there is no sink
inside the cell.

We will consider another viewpoint, and assume that T = ∞. What
can we then say about the particle’s trajectory? When T = ∞ we must
have from (B.24) that all of TA, TB , TC and TD is infinite. We could then
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investigate when it is possible that all of CxA, CxB, CxC, CxD, could occur
at the same time, to give some condition for an infinite travel time. We will
instead use a simpler argument. One trivial condition for an infinte travel
time is that uA = uB = vC = vD = 0. Then there is no movement at all
inside the cell. And we will not say that there is a source or sink in the cell.
Assume that this isn’t the case. Let’s define

u0-line: {x = x0, 0 ≤ y ≤ 1 : u(x0) = 0} (B.31)

v0-line: {y = y0, 0 ≤ x ≤ 1 : v(y0) = 0} (B.32)

If T = ∞ there must exist both an u0-line and a v0-line within the cell.
Because, suppose there is no u0-line then the particle will at any point within
the cell have an everywhere positive or everywhere negative x-component of
velocity. So the particle has to reach the current point within a finite time.
The same argument goes for the y-direction.

Suppose then there is both an u0-line and a v0-line within the cell. If the
velocity of the particle at the current point is not zero, it must come from a
source within the cell. On the other hand, if the velocity is currently zero,
then this is a sink.

To sum up the above discussion we have for the x-direction, if T = ∞,
either of the following

1. uA = uB = vC = vD = 0
In this case we have that

x(0) = x(T ) = x(t), t ≥ 0 (B.33)

y(0) = y(T ) = y(t), t ≥ 0 (B.34)

This case is not very interesting.

2. uA ∗ uB ≤ 0 and vC = vD = 0:
Then x(0) is the stagnation point that gives zero velocity. That is x(0)
satisfies Gxx(0) + uA = 0. This gives

x(0) = −uA
Gx

(B.35)

y(0) = y(T ) = y(t), t ≥ 0 (B.36)

3. vC ∗ vD ≤ 0 and uA = uB = 0:
Then y(0) is the stagnation point that gives zero velocity. So y(0)
satisfies Gyy(0) + vC = 0. This gives

x(0) = x(T ) = x(t), t ≥ 0 (B.37)

y(0) = − vC
Gy

(B.38)
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4. uA ∗ uB ≤ 0 and vC ∗ vD ≤ 0
We then have

x(0) = −uA
Gx

(B.39)

y(0) = − vC
Gy

(B.40)

The last step is to calculate the trajectory when the travel time is infinite
for case 2,3 and 4 above. Consider first forward tracing. We must have a
sink within the cell (at least for case 4). See Figure B.7(a). We reverse
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Figure B.7: A sink within the cell.

the velocities and trace backwards. See Figure B.7(b). We then find for
case 2 and 4, by (B.35) and (B.39), that x̄(0) = − ūA

Ḡx
= −uA

Gx
. We then

set x(T ) = x̄(0). Now consider using equations (B.29) and (B.30) for the
trajectory. For the case of a sink within the cell we must have

Gx < 0, Gy < 0 (B.41)

see Figure B.7(a). Then using (B.29), we have

lim
t→∞

x(t) = lim
t→∞

1

Gx

(

(Gxx(0) + uA)eGxt − uA
)

= −uA
Gx

(B.42)

since Gx < 0. For the y-direction in case 3 and 4, we also have using (B.30)

lim
t→∞

y(t) = − vC
Gy

(B.43)

This shows that we could use (B.29) and (B.30) for the trajectory in this
case. Since for times greater then a certain value, say t = 1000 the points
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will lie so close to P that they can’t be separated from P by eye. So for
the case of plotting the streamline we only have to consider the interval
t ∈ [0, Tmax] where Tmax is “not too big”.

Next consider tracing backwards for cases 2,3 and 4 above, then there
must be a source within the cell (at least for case 4). See Figure B.8.
Now, since P0 lies at the source point we have that Gxx(0) + uA = 0, and
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Figure B.8: A source within the cell.

Gyy(0) + vC = 0. Equations (B.29) and (B.30) then gives for case 4,

x(t) = −uA
Gx

, 0 < t <∞ (B.44)

y(t) = − vC
Gy

, 0 < t <∞ (B.45)

So all points on the trajectory cluster at P0 for all finite times. This represen-
tation cannot be used to plot the streamline. But we can fix the problem by
reversing the celledge velocities and tracing the streamline forward instead.
Setting P̄0 = P , and writing (B.29) and (B.30) as

x̄(t) =
1

Ḡx

(

(Ḡxx̄(0) + ūA)eḠxt − ūA

)

(B.46)

ȳ(t) =
1

Ḡy

(

(Ḡy ȳ(0) + v̄C)eḠyt − v̄C

)

(B.47)

where the barred variables refers to the reversed trajectory. We must have

Ḡx = −Gx, Ḡy = −Gy (B.48)

ūA = −uA, v̄C = −vC (B.49)

x̄(0) = x(T ), ȳ(0) = y(T ) (B.50)
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inserting i (B.48), (B.49) and (B.50) in (B.46) and (B.47) we get

x̄(t) =
1

Gx

(

(Gxx̄(0) + uA)e−Gxt − uA
)

(B.51)

ȳ(t) =
1

Gy

(

(Gy ȳ(0) + vC)e−Gyt − vC
)

(B.52)

Since Gx > 0 and Gy > 0 for a source cell this equation is of the same form
as the equations for the sink cell above, and the same analysis applies.



Appendix C

Tracing on irregular grids

We will illustrate the method of streamline tracing for irregular grids for
the case single-phase incompressible horizontal flow in 2D for a homoge-
neous medium. The solution domain will be 20x20 square aligned with the
coordinate-axes with no flow boundaries. We discretize the domain with
an irregular quadrilateral grid, and introduce a source and a sink of unit
strength, see Figure C.1(a).PSfrag replacements
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Figure C.1: Grid and edge fluxes

1. Solve the flow equations
The first step is to solve the flow equations for the given grid as dis-
cussed in section 3.2. This will give us celledge fluxes as shown in
Figure C.1(b). The arrows on the Figure should not be confused with
velocities, they are drawn to visualize the size of the edgefluxes.

2. Find the gridcell containing the point
Assume a starting point P = (x, y) within the solution domain is given,

73
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and we want to trace the streamline passing through that point. We
must then find the cell, C, in the grid containing the point. This
can be done using the algorithm described in Appendix D. We search
through the grid cell by cell and use the algorithm on each cell.

3. Inverse map of point
The next step is to map the starting point within the cell C to R using
the inverse bilinear map as described in Appendix E. See Figure C.2.
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Figure C.2: The inverse map

4. Map of fluxes
Then we map the edge fluxes in P to edge fluxes in R. We will use
the Prévost-method (section 8.7) and transform the fluxes according
to (8.57) and (8.17). See Figure C.3.
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Figure C.3: Map of fluxes

5. Trace backwards
We want to trace the streamline starting at a point P̂0 on the celledge
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to the known point P̂ within the cell. We first find the correct entry
face. Set

P̂ = (x̂(T ), ŷ(T )) = (0.67, 0.5) (C.1)

Gx = uB − uA = −0.00696 (C.2)

Gy = vD − vC = 0.00696 (C.3)

u(T ) = Gxx̂(T ) + uA = 0.0241 (C.4)

v(T ) = Gy ŷ(T ) + vC = 0.0190 (C.5)

then from (B.20) we have

TA = 25.6 (C.6)

From (B.21) and CxB3 in that equation we have that

TB = ∞ (C.7)

From (B.22) we have
TC = 29.3 (C.8)

and from (B.23) and CyD3 we have

TD = ∞ (C.9)

Then since
min(TA, TB , TC , TD) = TA (C.10)

the particle will exit face A, and consequently we know that x̂(0) = 0.
Set T = TA. Then from (C.5) and (B.28) we find that

ŷ(0) =
1

Gy

(

e−GyT v(T ) − vC
)

= 0.061 (C.11)

and the trajectory is given by (B.29) and (B.30),

x̂(t) =
1

Gx

(

(Gxx̂(0) + uA)eGxt − uA
)

, 0 < t < T = 25.6 (C.12)

ŷ(t) =
1

Gy

(

(Gy ŷ(0) + vC)eGyt − vC
)

, 0 < t < T = 25.6 (C.13)

See Figure C.4(a). We can now map this streamline back to the phys-
ical space using (6.1). See Figure C.4(b).

6. Trace forwards
Next, we trace the streamline forwards in the same cell, to obtain a
complete trajectory within the first cell. As pointed out in Appendix
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Figure C.4: Backward tracing
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B, tracing forwards is the same as tracing backwards with the celledge
velocities reversed. So we set

ūA = −uA, ūB = −uB, v̄C = −vC , v̄D = −vD (C.14)

As in Appendix B.3, barred variables will refer to the reversed problem.

See Figure C.5. We should then trace backwards from ˆ̄P = (0.67, 0.5),

but it will be easier to use ˆ̄P = P̂0, where P̂0 was found in step 5.
Although we traces the same curve twice it will be no difference in
computation time since we are not plotting anything currently. We
then use the same method as in step 5. We now have

ˆ̄P = (ˆ̄x(T̄ ), ˆ̄y(T̄ )) = (0, 0.061) (C.15)

Ḡx = ūB − ūA = 0.00696 (C.16)

Ḡy = v̄D − v̄C = −0.00696 (C.17)

ū(T̄ ) = Ḡx ˆ̄x(T̄ ) + ūA = ūA = −0.0288 (C.18)

v̄(T̄ ) = Ḡy ˆ̄y(T̄ ) + v̄C = −0.0159 (C.19)

We then have by (B.20) and CxA6 that

T̄A = ∞ (C.20)

From (B.21) we have
T̄B = 39.4 (C.21)

(B.22) and CyC3 gives
T̄C = ∞ (C.22)

and from (B.23) we have

T̄D = 49.43 (C.23)

so
min(T̄A, T̄B , T̄C , T̄D) = T̄B (C.24)

The particle will then enter face B, and consequently we know that
ˆ̄x(0) = 1. Set T̄ = T̄B , then from (C.19) and (B.28) we find that

ˆ̄y(0) =
1

Ḡy

(

e−ḠyT̄ v̄(T̄ ) − v̄C

)

= 0.780 (C.25)

We then set P̂ = ˆ̄P0 and T = T̄ . The trajectory is then found in
a similar fashion as for step 5. See Appendix B.3. The results are
plotted in Figure C.6.
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Figure C.6: Forward tracing

7. Make CellData object
Actually we don’t plot any streamlines at the current stage, rather we
save the information neccessary to reconstruct it at a later time. Ob-
serve that the streamline is completely deteremined by the parameters

uA, uB , vC , vD, P0, P, T,x1,x2,x3,x4 (C.26)

The parameter P will be needed for plotting streamlines in cells con-
taining sources as described in Appendix B.4. Given these paramteres
the trajectory in the reference space is given by (B.29) and (B.30), and
the points on this trajectory can be mapped using (6.1) to obtain a
streamline in the physical space within the current cell. To implement
this in a C++ program, we save the parameters (C.26) in a CellData
object, that will be included in a SLine object which is a STL List
containing all the CellData objects for a complete streamline.

8. Find the previous cell on the streamline
In order to find the previous cell in the grid. We must know how the
grid is structured. In this work we will be using the grid described in
Section 5.1. So define

n = Current gridcell number (C.27)

nx = Number of gridcells in the x-direction (C.28)

ny = Number of gridcells in the y-direction (C.29)

For this sample case we have that n=12, nx=8, ny=6. See figure C.7.

A travel time of T = ∞ in the backward tracing part of the algorithm
means that this cell is a source. So in that case this cell is the starting
cell of a streamline, and there will be no previous cell.
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Now, assume that T < ∞, and that a point P̂0 = (x̂(0), ŷ(0)) on the
cell boundary in the reference space is given corresponding to a point
P0 in the physical space. We must here assure that if the point P̂0 lies
for instance on the left boundary, then x̂(0) should be exactly equal
to zero, not approximately due to round off errors. This will be easy
to accomplish, since by (B.24) we know that if, e.g., T = TA then x̂(0)
should be exactly equal to zero, and we do not use Equation (B.27),
which probably would give an approximate value.

So consider first the case x̂(0) = 0 and the case that the physical cell
is one of the left boundary cells of the solution domain. This is true if
n%nx = 0, where % denotes the modulus operator. If this is the case,
then the streamline ends with this cell. This could not happen in this
sample case, since we have no-flow boundaries, but it might happen
in other cases.

So assume we are not on the left boundary. Then the previous physical
cell can be one of n-1, n-nx-1, n+nx-1, depending on the value of ŷ(0).
We will not inspect the value of ŷ(0) at this point though, instead we
introduce a varible ∆x, and set ∆x = −1.

Now, suppose x̂(0) = 1, then if the physical cell is not a right boundary
cell of the solution domain, ((n+ 1)%nx 6= 0), we set ∆x = 1.

Similarly, if ŷ(0) = 0, and the physical cell is not a lower boundary
cell (n ≥ nx), we set ∆y = −1. And if ŷ(0) = 1, and the physical cell
is not a upper boundary, (n < nx ∗ (ny − 1)), then we set ∆y = 1.
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Now the previous cell number, np will be given by

np = n+ ∆y ∗ nx + ∆x (C.30)

For this case we will have that x̂(0) = 0, ŷ(0) = 0.061, n = 11. So we
find that ∆y = 0 and ∆x = −1. Consequently np = 11+0∗8−1 = 10.

9. Inverse map of end point We are now back to step 3 above, and want
to do an inverse map of the point P in the physical space in cell np = 10
corresponding to the starting point of the streamline in cell n = 11. It
is possible to avoid the inverse mapping in this case. We will discuss
this for two general quadrilaterals, Q1 and Q2. See Figure C.8. For
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Figure C.8: Inverse map of point

the reference space R1 we have from (6.1), the bilinear transformation
to Q1,

xQ1(x̂R1) = x1(1 − x̂1)(1 − ŷ1) + x2x̂1(1 − ŷ1)+

x3x̂1ŷ1 + x4(1 − x̂1)ŷ1 (C.31)

Similarly for R2 to Q2 we have

xQ2(x̂R2) = x2(1 − x̂2)(1 − ŷ2) + x5x̂2(1 − ŷ2)+

x6x̂2ŷ2 + x3(1 − x̂2)ŷ2 (C.32)

In the physical space, the edge of P can be given as,

r(t) = (1 − t)x2 + tx3, 0 ≤ t ≤ 1 (C.33)

Now consider the lines x̂1 = 1 and x̂2 = 0 in R1 and R2 respectively.
Then by (C.31) and (C.32), we have

xQ1(1, ŷ1) = (1 − ŷ1)x2 + ŷ1x3, 0 ≤ ŷ1 ≤ 1 (C.34)

xQ2(0, ŷ2) = (1 − ŷ2)x2 + ŷ2x3, 0 ≤ ŷ2 ≤ 1 (C.35)
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So both lines gets mapped to the edge of P . Set P̂1 = (p̂1x, p̂1y) and
P̂2 = (p̂2x, p̂2y). If P̂1 and P̂2 are to be mapped to P then we must
have that p̂1x = 1 and p̂2x = 0. Assuming p̂1y 6= p̂2y, we must also
have that

xQ1(1, p̂1y) 6= xQ2(0, p̂2y) (C.36)

since by (C.31) and (C.32), xQ1(1, ŷ) and xQ2(0, ŷ) are one-to-one
functions from R1 and R2 to the physical space such that xQ1(1, ŷ) ≡
xQ2(0, ŷ) for any value of ŷ. But since both P̂1 and P̂2 are to be
mapped to P we have contradiction. Consequently p̂1y = p̂2y.

Generally, if we have two neighbouring quadrilaterals Q1 and Q2 and
a point P lying on a common edge of Q1 and Q2, the inverse bilinear
transformation, P̂1, of P corresponding to Q1 does not have to be
explicitly calculated when we already know the inverse transform, P̂2,
of P relative to Q2.

10. Backward tracing in cell 10 Using the argument of step 9, we must
have that P̂10 = (1, 0.061). We can now return to step 5, and trace
backward in cell 10. The only difference from cell 11 is that the known
point P̂ now lies on the the boundary of the cell instead of inside
the cell. So we don’t have to apply forward tracing afterwards to
get a complete streamline in cell 10. See Figure C.9. We find that
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Figure C.9: Backward tracing in cell 10

P̂0 = (0, 0.3158) for cell 10, and save the streamline in cell 10 in a
CellData object that we adds to the SLine object.
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11. Trace backward in cell 9 We return to step 8 to obtain the previous
cell, and find that np = 9. We do the inverse map of step 9, for this
cell, to discover that P̂9 = (1, 0.3158). We then return to step 5 for
backward tracing in cell 9. We will discuss this case in detail since cell
9 is a source cell. For this cell we have (see Figure C.10),

P̂ = (x̂(T ), ŷ(T )) = (1, 0.3158) (C.37)

uA = −0.0127 (C.38)

uB = 0.0490 (C.39)

vC = −0.0123 (C.40)

vD = 0.0371 (C.41)

Gx = uB − uA = 0.0617 (C.42)

Gy = vD − vC = 0.0494 (C.43)

u(T ) = uB = 0.0490 (C.44)

v(T ) = Gy ŷ(T ) + vC = 0.0033 (C.45)

Now from (B.20) and CxA2 we have that TA = ∞. From (B.21) and
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Figure C.10: Backward tracing in cell 9

CxB6 we have that TB = ∞. From (B.22) and CyC2 we have that
TC = ∞, and from (B.23) and CyD3 we have that TD = ∞.

Then from (B.39) and (B.40) we have that P̂0 = (−uA

Gx
,− vC

Gy
) =

(0.2055, 0.2497). Then using (B.44) and (B.45) to plot the stream-
line would only give the point P0, so we use (B.51) and (B.52), with
ˆ̄P0 = P̂ . In Figure C.11 we have plotted the trajectory for 0 ≤ t ≤ 40.
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For times greater than t = 40 the points on the trajectory will lie so
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Figure C.11: Backward tracing in cell 9

close to the source that they can’t be separated from each other.

12. Find the previous cell.
We now return to step 8 to find the previous streamline, but as T = ∞
there will be no previous cell for this streamline.

13. Forward tracing
We then return to the original point in cell 11, and start forward
tracing from that point. But in step 6 we have already traced the
streamline forward in cell 11. So we just have to find the next cell on
the streamline. This is done in similar fashion to step 8, and we find
the next cell to be number 12. The procedure should by now be clear.
We continue tracing forward cell by cell until we reach the boundary of
the domain or a sink. The whole streamline is plotted in figure C.12.
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Appendix D

Determining if a point is

inside a quadrilateral

When given a point inside the solution domain of a flow problem one often
has to find the gridcell the point belongs to. In this thesis the point will
be a starting point for a streamline and it will be neccessary for the tracing
algorithm to find the gridcell of the point.

Thus we will consider the problem of determining if a point, P , lies inside
or outside an irregular quadrilateral, Q, in 2D. We will assume that Q is
given as described in Definition 5.1, see Figure D.1. Next we define the term
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Figure D.1: Point inside quadrilateral?

inside more precisely,

Definition D.1 (Inside) Given a point P and a quadrilateral Q, we say
that P is inside Q if P lies on the boundary of Q or in the region enclosed
by Q.

We also need the following Definition

Definition D.2 (Interior of an edge) The interior of an edge E with
endpoints xa and xb are the points of E except xa and xb.
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We will need to consider the location of the corners of Q relative to each
other.

Definition D.3 (Classifying corners) Consider a given corner xi = (xi, yi)
of Q, and its two neighbouring corners xi+1 and xi−1, i = 1, 2, 3, 4. (We
have here used x0 ≡ x4 and x5 ≡ x1.) We then say that xi is a corner of

Type-A: if {yi−1 < yi < yi+1} ∨ {yi+1 < yi < yi−1}
Type-B: if {{yi > yi−1} ∧ {yi > yi+1}} ∨ {{yi < yi−1} ∧ {yi < yi+1}}
Type-C: if {yi = yi−1} ∨ {yi = yi+1}

See Figure D.2. Next, draw a horizontal ray, r, from P extending leftwards
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Figure D.2: Classifying points

to x = −∞. See Figure D.3.
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Figure D.3: Point inside quadrilateral?

Definition D.4 (Intersections) We say that the ray r has an intersection
with the boundary of Q if it crosses the interior of an edge of Q or passes
through a type-A corner of Q.
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Now we can find out if P lies inside Q. If P is not on the boundary of Q then
we count the number of intersections, i, that r makes with the boundary of
Q. We then have the following result

Theorem D.1 If P is not on the boundary of a convex quadrilateral, Q,
and if i = 1, then P is inside Q, otherwise P is outside Q.

Proof If i = 0 the point cannot be inside. Assume that i = 1 and assume
that the intersection with the boundary of Q, I, is not a type-A point. Then
the ray r will intersect the interior of an edge E of Q. We shall show that
P is inside Q.

Let lij be the line containing xi and xj, and let αi be the internal angle
of Q corresponding to the corner xi. Define also liP as the line containing
xi and P . Given a point P = (x̃, ỹ), and a straight line, l, not horizontal or
vertical, y = ax+ b. We say that P lies above l if ỹ > ax̃+ b, and P lies to
the left of l if x̃ < (ỹ− b)/a. We use similar definitions for below and to the
right.

Without loss of generality, assume that E = E12 (see Section 5.1 for
terminology). We know that E12 is not horizontal, thus assume, still without
loss of generality, that x1 lies above r and x2 lies below r. See Figure D.4.
We will now consider possible locations for the point x3.
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Figure D.4: The case of i = 1.

First, x3 cannot lie to the left of l12. Because then either E23 crosses r,
and then i > 1 or else x4 has to be to the right of l1P to avoid that E41

intersects r. See Figure D.5. But then α2 > 180◦ and Q is not convex.
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Figure D.5: The case of i = 1.

Thus we can assume that x3 lies to the right of l12. But then x3 has to
lie to the right of l2P to avoid intersection with r, and then it is not possible
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to choose x4 such that E41 does not cross r and P is outside Q at the same
time. Thus P must be inside Q.

Now assume i = 1 and that I is of type-A. See Figure D.6. We can
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Figure D.6: The case of i = 1 and x2 is of type-A

assume witout loss of generality that x1, x2 and x3 is located as in Figure
D.6. Then x4 has to be to the right of l1P to avoid that E41 intersects r.
But then E41 will enclose P inside Q.

Next assume i = 2. And denote the intersection points by I1 and I2. If
at least one of I1 and I2 are of type-A. Then we have the situation in Figure
D.7(a) or D.7(b). Then certainly P does not lie inside Q. So assume that

PSfrag replacements

x1

x2

x3

x4 Pr

x

y

I1 I2

(a) The case of i = 2 and both
I1 and I2 are type-A

PSfrag replacements

x1

x2

x3

x4

Pr

x

y

I1 I2

(b) The case of i = 2 and I1 is
type-A

Figure D.7: The case i = 2.

i = 2 and that neither I1 nor I2 is of type-A, and that I1 is contained in E12

then if the edge containing I2 is not connected to E12 it must be the edge
E34, and we have the situation on Figure D.8. In this case P will not lie
inside Q. If on the other hand the edge of I2 is joined in x2 to E12 we have
the situation in Figure D.9. Then x4 has to lie in the region, R, (see Figure
D.9) enclosed by l12, l23 and l13. Otherwise Q will not be convex. Thus P
is not inside Q. This means that for a convex Q we can have at most i = 2.

We will now use the theorem to solve the problem. At first, we should
check if P = (X,Y ) lies on the boundary of Q. We start by checking if P
lies on one of the cornerpoints of Q. Then we check if it is contained in the
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interior of an edge E, not horizontal, of Q. We can then at the same time
start checking for interior intersections. See Figure D.10. The slope of thePSfrag replacements
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Figure D.10: We want to find out if the ray r intersect the edge E.

edge is given by

m =
yb − ya
xb − xa

(D.1)

and the equation for the edge is

y = m(x− xa) + yb (D.2)
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Let P = (X,Y ). Then the intersection point is I = (x̃, Y ) where x̃ is given
by (D.2) by inserting y = Y ,

x̃ =
Y − ya
m

+ xa (D.3)

Then if X = x̃ P lies on the boundary of Q otherwise if X > x̃ the ray will
intersect E provided ya < Y < yb or yb < Y < ya.

If E = Eij is horizontal then P is contained in E if xi < X < xj or
xj < X < xi. Now assume P is not on the boundary, it remains to check
for type-A intersections. If a cornerpoint xi = (xi, yi) of Q is type-A, then
we will have type-A intersection if Y = yi and X > xi.

A complete C++ algorithm is given in Appendix N.1.1.



Appendix E

The inverse bilinear

transformation

In this section we will consider the inverse transform, of (6.1), x̂(x). That
is, we want to find the point in the reference space, R, cooresponding to
a given point in the physical space, P. We denote the quadrilateral in P
corresponding to x1, x2, x3 and x4 by Q(x1,x2,x3,x4), and let Q̂ denote
the correponding unit square in R.

In P we shall only consider points within Q, whereas in R we shall only
consider points within Q̂. We now rewrite (6.1) as

axx̂ŷ = bxx̂+ cxŷ + dx (E.1a)

ayx̂ŷ = byx̂+ cyŷ + dy (E.1b)

where

ax = x1 − x2 + x3 − x4 (E.2a)

bx = x1 − x2 (E.2b)

cx = x1 − x4 (E.2c)

dx = x− x1 (E.2d)

ay = y1 − y2 + y3 − y4 (E.2e)

by = y1 − y2 (E.2f)

cy = y1 − y4 (E.2g)

dy = y − y1 (E.2h)
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We also set

ex = x3 − x4 (E.3a)

ey = y3 − y4 (E.3b)

r = cxay − cyax (E.3c)

s = bxay − byax = bxey − byex (E.3d)

t = dxay − dyax (E.3e)

E.1 Case 1

Assuming
ax 6= 0 (E.4)

we can solve for equation (E.1a) for x̂ŷ,

x̂ŷ =
dx + bxx̂+ cxŷ

ax
(E.5)

Inserting this in equation (E.1b) and collecting x̂ terms, we get

sx̂ = −rŷ − t (E.6)

Assume
s 6= 0 (E.7)

then we can solve equation (E.6) for x̂,

x̂ = −rŷ
s

− t

s
(E.8)

Inserting this back in equation (E.1a) and collecting ŷ-terms, we get

−raxŷ2 + (rbx − tax − cxs)ŷ + tbx − dxs = 0 (E.9)

If r 6= 0, equation (E.9) is on the form

Aŷ2 +Bŷ + C = 0 (E.10)

where A 6= 0. The solutions are

ŷ1 =
−B +

√
B2 − 4AC

2A
(E.11)

ŷ2 =
−B −

√
B2 − 4AC

2A
(E.12)

(We will not consider the case B2 − 4AC < 0. For convex Q this should not
happen.) Then we choose the solution of equation (E.10) which satisfies

0 ≤ ŷ ≤ 1 (E.13)

Now x̂ is found from equation (E.8).
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E.2 Case 2

Still using asumptions (E.4) and (E.7) from Case 1, and furthermore assum-
ing r = 0 in (E.8) then

x̂ = − t

s
(E.14)

and from (E.9) we have

ŷ = − tbx − dxs

tax + cxs
(E.15)

If tax + cxs = 0 then it follows from equation (E.9) that tbx − dxs = 0,
and then equation (E.15) gives that ŷ is undefined. This should not happen
when x1,x2,x3 and x4 represents a quadrilateral and x is a point inside
the quadrilateral.

E.3 Case 3

Starting from equation (E.6) in Case 1 and assuming s = 0, we note from the
same equation that r should not be zero in this case, unless t = 0. Assuming
r 6= 0, we get

ŷ = − t

r
(E.16)

and then x̂ can be found from (E.5) as

x̂ =
cxt− rdx
bxr + axt

(E.17)

If bxr+axt = 0 then also cxt− rdx = 0, and then equation (E.17) gives that
x̂ is undefined. This should not happen as noted in Case 2.

E.4 Case 4

If ax = 0 in equation (E.1a) we can write that equation as

cxŷ = −bxx̂− dx (E.18)

and if cx 6= 0 we can solve for ŷ,

ŷ =
−bxx̂− dx

cx
(E.19)

So substituting equation (E.19) in (E.1b) gives

−aybxx̂2 + (cybx − bycx − aydx)x̂+ cydx − dycx = 0 (E.20)

Now, if either ay = 0 or bx = 0, we get

x̂ =
dycx − cydx

cybx − bycx − aydx
(E.21)
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Note that cybx−bycx−aydx should not be zero, because than x̂ is undefined
(see case 2). When x̂ is given by equation (E.21), ŷ is given by equation
(E.19).

Assuming ay 6= 0 and bx 6= 0 equation (E.20) is on the form

Ax̂2 +Bx̂+ C = 0 (E.22)

where A 6= 0. The solutions are

x̂1 =
−B +

√
B2 − 4AC

2A
(E.23)

x̂2 =
−B −

√
B2 − 4AC

2A
(E.24)

We will choose the solution of equation (E.22) which satisfies

0 ≤ x̂ ≤ 1 (E.25)

Now ŷ is found from equation (E.19).

E.5 Case 5

If cx = 0 in equation (E.18) we get from that equation,

bxx̂ = −dx (E.26)

Note that bx cannot be zero at same time as cx is zero because then x1 =
x2 = x4 and we have a triangle and not a quadrilateral.

Consequently,

x̂ = −dx
bx

(E.27)

Substituting this in equation (E.1b) we get

(aydx + cybx)ŷ = bydx − dybx (E.28)

If aydx + cybx = 0 then ŷ is undefined (see Case 2), otherwise

ŷ =
bydx − dybx
aydx + cybx

(E.29)



Appendix F

The flux over an edge of a

quadrilateral

In this appendix we will derive an expression for the flux for a velocity field,
q, over an edge of a quadrilateral. We will assume that the endpoints of the
edge is a = (a1, a2) and b = (b1, b2). The flux over the edge, E, is given by

fE =

∫

E

q · nEds (F.1)

see Figure F.
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Figure F.1: Calculation of flux across the edge E.

A vector parallell to E is given by

tE = b − a = (b1 − a1, b2 − a2) (F.2)

A unit normal vector to the edge E is therefore given by

nE · tE = 0 ∧ ‖nE‖ = 1 (F.3)
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This gives that

nE = ± 1

‖tE‖
(a2 − b2, b1 − a1) (F.4)

The edge E is given by

r(t) = (1 − t)a + tb, 0 ≤ t ≤ 1 (F.5)

From (F.1) we now have

fE =

∫

E

q · nEds = ±
∫ 1

0

(

q(r(t)) · 1

‖tE‖
(a2 − b2, b1 − a1)

)

‖dr
dt

‖dt (F.6)

Since ‖dr
dt
‖ = ‖tE‖ this reduces to

fE = ±
∫ 1

0
(q(r(t))) · (a2 − b2, b1 − a1)dt (F.7)



Appendix G

The uniform velocity field,

additional computations

G.1 Flux computations

In this Appendix, we will calculate edge fluxes for a given quadrilateral, Q,
when we are given a uniform velocity field q = (qx, qy), where qx and qy are
constants.

From Appendix F we have that the flux of q over an edge E with end-
points a = (a1, a2) and b = (b1, b2), of Q is given by

fE = ±
∫ 1

0
(q · (a2 − b2, b1 − a1))dt = ±q · (a2 − b2, b1 − a1) = q ·nE (G.1)

since q is constant.
Remember from Section 8.4, that in order to calculate the correct flux

for a given edge a certain direction of the normal had to be chosen depending
on the edge. For an A-edge the normal should be directed inwards relative
to Q. See Figure G.1. So how do we choose the correct sign of nE? We will
not answer this question for a general grid, but assume that

nA = (y4 − y1, x1 − x4) (G.2a)

nB = (y3 − y2, x2 − x3) (G.2b)

nC = (y1 − y2, x2 − x1) (G.2c)

nD = (y4 − y3, x3 − x4) (G.2d)

where x1 = (x1, y1), x2 = (x2, y2), x3 = (x3, y3), and x4 = (x4, y4). This
assumption holds on a “normal” grid, e.g. Figure G.2.
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Using (G.2) in (G.1), we now have

fA = q · (y4 − y1, x1 − x4) = qx(y4 − y1) + qy(x1 − x4) (G.3a)

fB = q · (y3 − y2, x2 − x3) = qx(y3 − y2) + qy(x2 − x3) (G.3b)

fC = q · (y1 − y2, x2 − x1) = qx(y1 − y2) + qy(x2 − x1) (G.3c)

fD = q · (y4 − y3, x3 − x4) = qx(y4 − y3) + qy(x3 − x4) (G.3d)

G.2 Analytical tracing

In this section we will use the analytically computed fluxes in the previous
section to trace streamlines in R and then map these streamlines back to
P to see if they correspond to the known solution, i.e. straight lines. See
Figure G.3 for notation. Let the starting point be x̂0 = (x̂0, ŷ0), and assume
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Figure G.3: Map of fluxes to the reference space.

the travel time T has been found, then from section B.2, we find that the
trajectory is given by

x̂(t) =

{

1
Gx

(

(Gxx̂0 + uA)eGxt − uA
)

, Gx 6= 0, 0 ≤ t ≤ T

uAt+ x̂0, Gx = 0, 0 ≤ t ≤ T
(G.4)

ŷ(t) =

{

1
Gy

(

(Gy ŷ0 + vC)eGyt − vC
)

, Gy 6= 0, 0 ≤ t ≤ T

vCt+ ŷ0, Gy = 0, 0 ≤ t ≤ T
(G.5)

Due to the uniform velocity field there are no sources or sinks within the
cell. Mass conservation then implies

fA − fB + fC − fD = 0 (G.6)
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Now the cell face velocities uA, uB , vC , vD in reference space is given by

uA = fA/J, uB = fB/J, vC = fC/J, vD = fD/J (G.7)

where J is the area of the physical cell. From (G.6) we have

fB/J − fA/J = fC/J − fD/J (G.8)

⇒uB − uA = −(uD − uC) (G.9)

⇒Gx = −Gy (G.10)

Assume Gx 6= 0 and solve Equation (G.4) for t:

t =
1

Gx
ln

(

Gxx̂+ uA
Gxx̂0 + uA

)

(G.11)

Assume that Gy 6= 0 and substitute (G.11) in (G.5),

ŷ(x̂) =
1

Gy

{

e

[

Gy
Gx

ln
(

Gxx̂+uA
Gxx̂0+uA

)]

(Gy ŷ0 + vC) − vC

}

(G.12)

(by (G.10)) =
1

−Gx

{

e

[

− ln
(

Gxx̂+uA
Gxx̂0+uA

)]

(−Gxŷ0 + vC) − vC

}

(G.13)

=
Gxx̂0ŷ0 − x̂0vC + ŷ0uA + x̂vC

x̂Gx + uA
(G.14)

We now use the relations in (G.3) to get

uA =
fA
J

=
1

J
(qx(y4 − y1) + qy(x1 − x4)) (G.15)

uB =
fA
J

=
1

J
(qx(y3 − y2) + qy(x2 − x3)) (G.16)

vC =
fC
J

=
1

J
(qx(y1 − y2) + qy(x2 − x1)) (G.17)

Gx =
1

J
(qx(y1 + y3 − y2 − y4) + qy(x2 + x4 − x1 − x3)) (G.18)

We would now like to insert these relations in (G.14). But it turns out the
the computations become quite involved, so it was given up. Let’s instead
assume that qx = 1 and qy = 0. Then insert (G.15), (G.16), (G.17) and
(G.18) in (G.14) and simplify the result to get

ŷ(x̂) =
x̂0ŷ0(y1 + y3 − y2 − y4) + x̂0(y2 − y1) + ŷ0(y4 − y1) + x̂(y1 − y2)

x̂(y1 + y3 − y2 − y4) + y4 − y1

(G.19)
Now we want to transform this curve in reference space back to physical
space using the transform (6.1). It turns out that we need only y-component
of the transformation

y(x̂, ŷ) = y1(1 − x̂)(1 − ŷ) + y2x̂(1 − ŷ) + y3x̂ŷ + y4(1 − x̂)ŷ (G.20)
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Substituting (G.19) in (G.20) we get after simplifying

y(x) = x̂0ŷ0(y1 + y3 − y2 − y4) + x̂0(y2 − y1) + ŷ0(y4 − y1) + y1 (G.21)

so y(x) is constant, i.e: a horizontal line, and streamlines should be straight
horizontal lines.

G.3 Analytical TOF

For a straight streamline of length s and a constant velocity field, q =
(1, tan(α)), the TOF, τ , is given by

τ =
s

|q| =
s

√

1 + tan2(α)
(G.22)

see Figure G.4.

PSfrag replacements

x

y

s

sx

q α

Figure G.4: Calculation of TOF for the streamline s.

For q1,q2, q3 and q4 (see Section 10.1) corresponding to α = 10◦, α =
20◦, α = 30◦ and α = 40◦ respectively, we know that sx = 19, see Figure
G.4. Thus s = sx/ cos(α), and inserting this in (G.22), we find that τi = 19,
i = 1, 2, 3, 4.

For q5, q6, q7 and q8 corresponding to α = 50◦, α = 60◦, α = 70◦ and
α = 80◦ respectively, we find that s = 19/ sin(α), and substituting this in
(G.22), we find that τ5 = 15.9429, τ6 = 10.9697, τ7 = 6.9154, τ8 = 3.3502.



Appendix H

The circular velocity field,

additional computations

H.1 Computation of fluxes

In this Appendix we will calculate the flux of the velocity q given in (10.1),
over an edge E of a quadrilateral Q in the simulation grid. See Figure H.1.
The flux over the edge E is by (H.1)

PSfrag replacements

x

y

O

x1

x2

nE

Q

Edge E

Figure H.1: Calculating the flux over the edge E.

fE = ±
∫ 1

0
(q(r(t))) · (a2 − b2, b1 − a1)dt =

∫ 1

0
(q(r(t))) · nE (H.1)
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where the endpoints of the edge E is a = (a1, a2) and b = (b1, b2). E can
be represented as

r(t) = (1 − t)a + tb =

[(1 − t)a1 + tb1, (1 − t)a2 + tb2], 0 ≤ t ≤ 1 (H.2)

We will not discuss how to find the correct normal, nE . The the problem
has been discussed in other sections.

Substituting (10.1) for q(x, y), (I.3) can be written as

fE =

∫ 1

0

n1(y0 − (1 − t)y1 − ty2) + n2((1 − t)x1 + tx2 − x0)
√

((1 − t)x1 + tx2 − x0)2 + ((1 − t)y1 + ty2 − y0)2
dt (H.3)

This integral is complicated to evaluate analytically, so we will use numerical
integration. The integral can be written

∫ 1

0
f(t)dt (H.4)

where f(t) is given by

f(t) =
n1(y0 − (1 − t)y1 − ty2) + n2((1 − t)x1 + tx2 − x0)
√

((1 − t)x1 + tx2 − x0)2 + ((1 − t)y1 + ty2 − y0)2
(H.5)

Observe that f(t) is singular at the origin, O. We will assume that the origin
is not placed on an edge of the grid or in the vicinity of an edge. Then f(t)
is well behaved, i.e., |f ′′(t)| ≤ K for some constant K “not too big”. In this
case a simple midpoint rule can be used for numerical integration.

The method is based on a partition of [0, 1] into n equal subintervals and
then forming a Riemann sum of the areas of rectangles whose heights are
taken at the midpoints of the n subintervals. See figure H.2. If h = 1/n, let
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mj = (j − 1
2)h for 1 ≤ j ≤ n. An approximation to (H.4) is then given by

Mn = h

n
∑

j=1

f(mj) (H.6)

An error estimate for this approximation is given by

∣

∣

∣

∣

∫ 1

0
f(t)dt−Mn

∣

∣

∣

∣

≤ K

24n2
(H.7)

where
K = max

0≤t≤1
(|f ′′(t)|) (H.8)



Appendix I

The y-dependent velocity

field

In this Appendix we will calculate the flux of the velocity field q = (1, y)
over an edge, E, of a quadrilateral, Q. From (H.1) the flux is given by

fE = ±
∫ 1

0
(q(r(t))) · (a2 − b2, b1 − a1)dt =

∫ 1

0
(q(r(t))) · nEdt (I.1)

where nE = (n1, n2), r(t) is a parametric representation for the edge E,
with endpoints a = (a1, a2) and b = (b1, b2).

r(t) is given by

r(t) = (1 − t)a + tb = ((1 − t)a1 + tb1, (1 − t)a2 + tb2) (I.2)

Then

fE =

∫ 1

0
(1, (1 − t)a2 + tb2) · (n1, n2)dt =

n2(a2 + b2)

2
+ n1 (I.3)
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Appendix J

Calculation of time-of-flight

J.1 The single cell

Consider the quadrilateral, Q, given in figure J.1, where x1 = (x1, y1),
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Figure J.1: The quadrilateral used in the test.

x2 = (x2, y2), x3 = (x3, y3), x4 = (x4, y4).
According to (G.3) the fluxes are given by

fA = y4 − y1 = 2 (J.1)

fB = y3 − y2 = 2 (J.2)

fC = y1 − y2 = 0 (J.3)

fD = y4 − y3 = 0 (J.4)

Now tracing is done in R. See Figure J.2, where according to (8.57),
uA = uB = 2/Jm. The velocity in R is given by

dx

dt
= uA (J.5)
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since uA = uB . Then t = x/uA and the travel time, T , for a particle starting
at x̂ = 0 is T = 1/uA = Jm/2.

The bilinear transformation, (6.1), from R to P is for this case,

x = βx̂(1 − ŷ) + x̂ŷ (J.6)

y = 2x̂ŷ + 2(1 − x̂)ŷ = 2ŷ (J.7)

So

D =

[

(1 − β)ŷ + β (1 − β)x̂
0 2

]

(J.8)

and
J = 2ŷ(1 − β) + 2β (J.9)

J.2 The skew grid

We calculate the travel time for the particles p1, p2, p3 and p4 as defined in
Section 10.5.2. First consider the first or bottom row of the grid. See Figure
J.3. The trapezoids Qi, i = 1, . . . , 10 all have two parallell sides of length
d1 and d2 respectively. Consequently they all have the same area and thus
by (6.11), the same midpoint Jacobi determinant, Jm. In this grid, d1 = 2
and d2 = 1.95 thus Jm = (d1 + d2)/2 = 1.975. A similar calculation as in
the section above shows then that the travel time for any particle starting
on the left boundary of Qi will use T = Jm seconds to exit the cell at right
boundary.

Now particle p1 has to pass all the cells Qi to enter the line at x = 20,
consequently it will use T = T1 = 10 ∗ Jm = 19.75 seconds to reach the line.

The particle p2 will also pass all the ten cells, and in addition it will travel
the distance d3 in cell 11, given by d3 = 20 − 10d2 = 0.5. Consequently it
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Figure J.3: The first ten quadrilaterals of the first row of the grid.

will travel a distance d̂3 in R for cell 11, where d̂3 = d3/d2 ≈ 0.264, and the
time used in cell 11 is then ∆t2 = d̂3Jm ≈ 0.5. Then T2 = T1 +∆t2 = 20.25.

For the top row of the grid, we have that d1 = 1.05, d2 = 1, Jm =
(d1 + d2)/2 = 1.025. We see that particle p4 has to pass twenty cells to
reach l, so T4 = 20Jm = 20.5. Particle p3 passes 19 cells, and in addition
a distance d3 in the rightmost cell, given by d3 = 20 − 19d2 = 0.05. Thus
d̂3 = d3/d2 ≈ 0.048, and ∆t3 = d̂3Jm ≈ 0.05, and T3 = 19Jm +∆t3 = 19.48.

Now assume that trajectory of p2 will lie in the cells in second row of the
grid instead of the first row. Then d1 = 1.95, d2 = 1.9, Jm = (d1 + d2)/2 =
1.925. In this case p2 will pass the first 10 cells in row two, and in addition a
distance d3 in 11th cell of row two, where d3 = 20−10d1 = 0.5. As above we
find that d̂3 = d3/d1 ≈ 0.256, and the time used in this cell is ∆t2 ≈ 0.0494.
Thus T̃2 = 10Jm + ∆t2 = 19.3. Comparing this to T2 above, we see that
the time-of-flight is discontinous along the trajectory of p2. This is also true
for the other particles, since they all have trajectories on interfaces between
cells of the grid with different midpoint Jacobi determinant.



Appendix K

Generation of a random

convex grid.

In this Appendix we will describe how to generate a random convex grid.
Such a grid can be used to test the streamline method.

We will generate the grid such that the boundary of the grid is rectangle.
See Figure K.1. The grid will be generated as a random perturbation of a
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Figure K.1: An example of the type of grid we will generate.

nx×ny gridcell square grid. For a gridpoint in the interior, xi = (xi, yi), we
generate a perturbed gridpoint x̃i = (xi + Rx, yi + Ry), where Rx and Ry
satisfies −rx/2 < Rx < rx/2, −ry/2 < Ry < ry/2 and rx and ry are a given
a set of pertubation coefficients.

After all point in the grid have been perturbed, we check if any gridcell
has become non-convex. For g, all cells is convex, as they should be.
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Appendix L

Fluid particle

In this Appendix we give a more detailed description of the concept of a
fluid particle and its velocity.

Before we discuss the fluid particle, we must define the representative
elementary volume [7].

L.1 Representative Elementary Volume

The porosity of a porous material is the fraction of the bulk volum of the
material occupied by voids. We define the Representative Elementary Vol-
ume (REV) through the concept of porosity. Let P be a mathematical point
inside the domain occupied by the porous medium. Consider a volume ∆Ui
much larger than a single pore, for which P is the centroid. For this volume
we determine the ration:

φi ≡ φi(∆Ui) = (∆Uv)i/∆Ui (L.1)

where (∆Uv)i is the volume of void space within ∆Ui. Repeating the same
procedure, a sequence of values φi(∆Ui), i = 1, 2, 3, . . . is obtained by grad-
ually shrinking the size of ∆Ui around P as a centroid: ∆U1 > ∆U2 >
∆U3 · · · . For large values of ∆Ui, the ratio φi may undergo gradual changes
as ∆Ui is reduced, especially when the considered domain is inhomogeneous.
Below a certain value of ∆Ui, depending on the distance of P from bound-
aries of inhomogeneity, these changes tend to decay, leaving only small-
amplitude fluctuations that are due to the random distribution of pore sizes
in the neighbourhood of P. However below a certain value ∆U0 we suddenly
observe large fluctuations in the ratio φi. This happens as the dimensions
of ∆Ui approach those of a single pore. Finally, as ∆Ui → 0, converging on
the mathematical point P, φi will become either one or zero, depending on
wether P is inside a pore or inside the solid matrix of the medium.

The medium’s volumetric porosity φ(P ) at the point P is defined as the
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limit of the ratio φi as ∆Ui → ∆U0:

φ(P ) = lim
∆Ui→∆U0

φi {∆Ui(P )} = lim
∆Ui→∆U0

(∆Uv)i(P )

∆Ui
(L.2)

For values of ∆Ui < ∆U0, we must consider the actual presence of pores
and solid particles; in this range there is no single value that can represent
the porosity at P. The volume ∆U0 is therefore the representative elementary
volume (REV).

Assuming that both ∆U0 and ∆Uv vary smoothly in the vicinity of P,
we have

φ(P ) = lim
P ′→P

φ(P ′) (L.3)

which means that φ is a continous function of the position of P within the
porous medium.

Thus by introducing the concept of porosity and the definition of REV,
we have replaced the medium by a fictious continuum in which we may
assign values of any property to any mathematical point in it.

L.2 Fluid particle and velocity

We will assume that both the fluid and the porous matrix are considered as
continua filling the entire space. A fluid particle is defined as an ensemble
of molecules included in a certain volume. This volume is associated with
the REV of a fluid continuum.

The velocity of the fluid particle is the statistical average of the velocities
of the individual molecules in the fluid particle.



Appendix M

Area of quadrilateral in 2D

The Prévost-method uses flux mapping from P to R that is based on a
simple scaling of the fluxes by the Jacobi-determinant, Jm, of the midpoint
of the cell.

In this Appendix we will calculate the area, A, of an irregular quadrilat-
eral, Q. This will show that A = Jm.

Let Q(x1,x2,x3,x4) be given as in Definition 5.1. We begin by splitting
Q up into two triangles, T1 and T2 by joining x1 and x3 with a line. See
Figure M.1. Let the corners of Q be x1 = (x1, y1), x2 = (x2, y2), x3 =
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Figure M.1: Subtriangles T1 and T2.

(x2, y3) and x4 = (x4, y4). Define

l1 = {Line joining x1 and x2} (M.1)

l2 = {Line joining x1 and x3} (M.2)

l3 = {Line joining x1 and x4} (M.3)

θi = {Angle between li and positive x-axes, i = 1, 2, 3.} (M.4)

ri = {Length of li, i = 1, 2, 3.} (M.5)

Let the point x1 be fixed then, for a convex Q, we have one of to cases,
according to Definition 5.1. See Figure M.2.
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Figure M.2: Two possible ordering of the cornerpoints when x1 is fixed.

Define

K1 =
1

2
r2r3 sin(θ3 − θ2) (M.6)

K2 =
1

2
r1r2 sin(θ2 − θ1) (M.7)

Now consider the problem of calculating the areas A1 and A2 of the triangles
T1 and T2 in case 1 in Figure M.2(a).From basic trigonometry we know that
the areas are given by

A1 =
1

2
r2r3 sin(θ3 − θ2) = K1 (M.8)

A2 =
1

2
r1r2 sin(θ2 − θ1) = K2 (M.9)

For case 2 in Figure M.2(b) we get

A1 =
1

2
r1r2 sin(θ1 − θ2) = −1

2
r1r2 sin(θ2 − θ1) = −K2 (M.10)

A2 =
1

2
r2r3 sin(θ2 − θ3) = −1

2
r2r3 sin(θ3 − θ2) = −K1 (M.11)

So the area of Q is in either case given by

A = |K1 +K2| (M.12)

By expanding sin(θ3 − θ2) and sin(θ2 − θ1) this can be written

A =
1

2
|r2 cos(θ2)r3 sin(θ3) − r2 sin(θ2)r3 cos(θ3)+

r1 cos(θ1)r2 sin(θ2) − r1 sin(θ1)r2 cos(θ2)| (M.13)
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We want to express the area in terms of the coordinates of the corners of Q.
To this we have

x2 − x1 = r1 cos(θ1) (M.14)

y2 − y1 = r1 sin(θ1) (M.15)

x3 − x1 = r2 cos(θ2) (M.16)

y3 − y1 = r2 sin(θ2) (M.17)

x4 − x1 = r3 cos(θ3) (M.18)

y4 − y1 = r3 sin(θ3) (M.19)

Inserting this in (M.13) we have

A =
1

2
|(x3 − x1)(y4 − y1) − (y3 − y1)(x4 − x1)+

(x2 − x1)(y3 − y1) − (y2 − y1)(x3 − x1)| =

1

2
|x1y2 − y1x2 + x2y3 − y2x3 + y1x4 − x1y4 + x3y4 − y3x4| (M.20)

We will not considered non-convex quadrilaterals in this work, but (M.20)
is still valid for such Q.



Appendix N

C++ Implementation

C++ is an enhanced version of the C language. C++ includes everything
that is part of C and adds support for object-oriented programming [28].

Object-oriented programming is a powerful way to approach the task of
programming.

The elimination of spaghetti code became feasible with the invention of
structured programming languages in the 1960s. These languages include
Algol and Pascal. In loose terms, C is a structured language. Structured
programming relies on well-defined control structures, code blocks, the ab-
sence of the GOTO, and stand-alone subroutines that support recursion and
local variables. The essence of structured programming is the reduction of
a program into its constituent elements. Using structured programming the
average programmer can create and maintain programs that are up to 50,000
lines long.

Although structured programming has yielded excellent results when
applied to moderately complex programs, even it fails at some point, after
a program reaches a certain size. To allow more complex programs to be
written, a new approach to the job of programming was needed. Towards
this end, object-oriented programming was invented. OOP takes the best
of the ideas embodied in structured programming and combines them with
new concepts that allow you to organize your programs more effectively.
Object-oriented programming encourages you to decompose a problem into
its constituent parts. Each component becomes a self-contained object that
contains its own instructions and data that relate to that object. In this way,
complexity is reduced and the programmer can manage larger programs.

All OOP languages, including C++, share three common defining traits:
encapsulation, polymorphism, and inheritance.
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N.1 Source

N.1.1 Point inside quadrilateral

The source code for the point-inside-quadrilateral problem is given in Figure
N.1.
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bool i n s i d e (double xi , double yi , double x1 , double x2 , double x3 , double x4 ,
double y1 , double y2 , double y3 , double y4 ) {

int l ;

i f ( checkpoint ( xi , yi , x1 , y4 , y1 , y2 , y3 ,& l ) ) return true ;
i f ( f=checkpoint ( xi , yi , x2 , y1 , y2 , y3 , y4 ,& l ) ) return true ;
i f ( f=checkpoint ( xi , yi , x3 , y2 , y3 , y4 , y1 ,& l ) ) return true ;
i f ( f=checkpoint ( xi , yi , x4 , y3 , y4 , y1 , y2 ,& l ) ) return true ;
i f ( f=checkedge ( xi , yi , x1 , y1 , x2 , y2 ,& l ) ) return true ;
i f ( f=checkedge ( xi , yi , x2 , y2 , x3 , y3 ,& l ) ) return true ;
i f ( f=checkedge ( xi , yi , x3 , y3 , x4 , y4 ,& l ) ) return true ;
i f ( f=checkedge ( xi , yi , x4 , y4 , x1 , y1 ,& l ) ) return true ;
i f ( l ==1 | | l ==3) return true ;
return fa lse ;

}

bool checkpoint (double x , double y , double x2 , double y1 ,
double y2 , double y3 , double y4 , int ∗ l ) {

i f ( y==y2 ) {
i f ( x==x2 ) return true ;
else i f ( x>x2 ) {

i f ( y==y1 ) {
i f ( y>y4 && y<y3 ) ∗ l=∗ l +1;
else i f ( y<y4 && y>y3 ) ∗ l=∗ l +1;

}
else i f ( y==y3 ) {

i f ( y>y1 && y<y4 ) ∗ l=∗ l +1;
else i f ( y<y1 && y>y4 ) ∗ l=∗ l +1;

}
else i f ( y>y1 && y<y3 ) ∗ l=∗ l +1;
else i f ( y<y1 && y>y3 ) ∗ l=∗ l +1;

}
}
return fa lse ;

}

bool checkedge (double x , double y , double x1 , double y1 , double x2 ,
double y2 , int ∗ l ) {

i f ( y==y1 && y1==y2 ) {
i f ( ( x>x1 && x<x2 ) | | ( x>x2 && x<x1 ) ) return true ;

}
else i f ( ( y>y1 && y<y2 ) | | ( y>y2 && y<y1 ) ) {

i f ( x1==x2 ) {
i f ( x > x1 ) ∗ l=∗ l +1;
else i f ( x==x1 ) return true ;

}
else {

double a=(y2−y1 )/( x2−x1 ) ;
double xp=(y−y1 )/ a+x1 ;
i f ( x>xp ) ∗ l=∗ l +1;
else i f ( x==xp ) return true ;

}
}
return fa lse ;

}

Figure N.1: C++ source



Appendix O

Matlab visualization

MATLAB is a high-performance language for technical computing. It inte-
grates computation, visualization, and programming in an easy-to-use evi-
ronment where problems and solutions are expressed in a familiar mathe-
matical notation [12].

MATLAB is an interactive system whose basic data element is an array
that does not require dimensioning. This allows you to solve many technical
computing problems, especially those with matrix and vector formulations,
in a fraction of the time it would take to write a program in a scalar non-
interactive language such as C or FORTRAN.

O.1 Cell arrays

Cell arrays can be used to represent streamlines in MATLAB. Cell arrays are
MATLAB arrays whose elements are cells. Each cell in a cell array can hold
any MATLAB data type, including numeric arrays, text, symbolic objects,
cell arrays and structures. For example, one cell of a cell array might contain
a numeric array, another an array of text strings, and another a vector of
complex values.

O.2 Plotting streamlines

A simplified version of the streamline plotting routine is given in Figure O.1.
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function A=plotSL ( gf , s f )
A=readData ( s f ) ;
c l f ;
p l o t g r i d ( g f ) ;
figure ( gcf ) ;
hold on ;
numLines=length (A) ;
for j =1:numLines

x1=A{ j } ( 1 , : ) ;
x2=A{ j } ( 2 , : ) ;
x3=A{ j } ( 3 , : ) ;
x4=A{ j } ( 4 , : ) ;
y1=A{ j } ( 5 , : ) ;
y2=A{ j } ( 6 , : ) ;
y3=A{ j } ( 7 , : ) ;
y4=A{ j } ( 8 , : ) ;
u1=A{ j } ( 9 , : ) ;
u2=A{ j } ( 1 0 , : ) ;
v1=A{ j } ( 1 1 , : ) ;
v2=A{ j } ( 1 2 , : ) ;
Ax=A{ j } ( 1 3 , : ) ;
Ay=A{ j } ( 1 4 , : ) ;
xs=A{ j } ( 1 5 , : ) ;
ys=A{ j } ( 1 6 , : ) ;
xe=A{ j } ( 1 7 , : ) ;
ye=A{ j } ( 1 8 , : ) ;
t e=A{ j } ( 1 9 , : ) ;
N=length ( t e ) ;
MAX T=1000; % upper l im i t

for i =1:N
i f t e ( i )>MAX T, te ( i )=MAX T; end ;
t=linspace (0 , t e ( i ) , 1 0 0 ) ;
i f (Ax( i )==0)

x i=u1 ( i )∗ t+xs ( i ) ;
else

i f u1 ( i )˜=0
x i =(1/Ax( i ) ) ∗ ( (Ax( i )∗ xs ( i )+u1 ( i ) )∗exp (Ax( i )∗ t)−u1 ( i ) ) ;

else

x i ( length ( t ):−1:1)= xe ( i )∗exp(−u2 ( i )∗ t ) ;
end

end

i f (Ay( i )==0)
eta=v1 ( i )∗ t+ys ( i ) ;

else

i f v1 ( i )˜=0
eta =(1/Ay( i ) ) ∗ ( (Ay( i )∗ ys ( i )+v1 ( i ) )∗exp (Ay( i )∗ t)−v1 ( i ) ) ;

else

eta ( length ( t ):−1:1)= ye ( i )∗exp(−v2 ( i )∗ t ) ;
end

end ;
[ x , y]= i s o ( xi , eta , x1 ( i ) , y1 ( i ) , x2 ( i ) , y2 ( i ) , x3 ( i ) , y3 ( i ) , x4 ( i ) , y4 ( i ) ) ;
plot (x , y ) ;

end ;
end ;
figure ( gcf ) ;

return ;

Figure O.1: Plotting routine
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