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Abstract

Fractures have a great impact on the quality of a porous media. The understanding of the
fractures is important to describe the challenges linked to flow of geothermal heat, the transport
of groundwater or transport of hydrocarbons in a porous media. The understanding of fracture
can help to increase the energy production, or the extraction of clean drinkable groundwater. In
this study we will investigate the effects of fractures in a porous medium by incorporate fractures
as a lower dimensional geometric objects embedded in the porous matrix. Our approach here
is to consider the fracture permeability as a diagonal tensor with the permeabilities scaled
as an exponent of the width of the fracture. This thesis provides a rigorous approach towards
derivation of upscaled model in a fracture. The quality of upscaling is further illustrated through
extensive numerical examples that have been studied.
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Chapter 1

Introduction and Motivation

1.1 Introduction

Porous media research has been one of the most active areas of research for the past century.
This is not surprising considering that most of the material that we deal with is hardly imperme-
able. Porous media applications are ubiquitous in nature ranging from the fuel cell, petroleum
related, water purification to biological applications such as brains, bones, and tissues. In par-
ticular, the energy and environment applications concern themselves with the porous media.
The petroleum related applications such as extraction of hydrocarbons is essentially a study
of the flow and transport processes in porous media. The water contamination in the ground
water and the spreading of these contaminants are again the problems of similar porous media.
In addition to these traditional applications, the big questions of climate science, the sea ice
melting, the permafrost behaviour are all applications of porous media.

In the last century, there has been a tremendous research in the flow processes in porous
media. The need for research in a porous medium is natural because of the inherent complexities
involved. A porous medium consists of a solid skeleton surrounded by a void space such as soil.
The void allows the flow to take place through this medium however the solid skeleton leads
to obstruction in a freely flowing behaviour. There are inherent complexities in modelling
the flow and transport behaviour in a porous medium. The geometry is quite complex with
the pore space having a complex pattern. The properties of a typical porous medium are
quite heterogeneous with the medium consisting of several constituents. With advent in the
computational techniques, it has been possible to simulate the processes occurring inside such
a complex medium. However, to have good results, we need to have appropriate models.

This thesis concerns with the effects of fractures in a porous medium. For accurate sim-
ulations it is important that the model describes the physical challenges in the best way as
possible. Structures such as fractures needs to be taken into consideration, and they need to be
described appropriately. This thesis derives appropriate models that incorporate the fractures
in a porous medium.

1.2 Background of the problem

A fracture is a thin but long domain embedded in a porous matrix and characterise the hetero-
geneities in a porous medium. The flow and transport properties such as permeabilities may
be drastically different from the porous matrix. At the same time, small width to length ratio
makes it difficult that these properties are resolved explicitly through numerical methods. For
these reasons, how to incorporate the fractures for flow computations in a porous medium re-
mains a problem of outstanding interest. The influence of these fractures on the flow behaviour
is quite strong. For instance, if there is a fracture network, the entire flow may simply take
place through the fractures only. Incorporating fractures in a porous medium however raises

1



several interesting mathematical and engineering questions. In the next chapter, we provide a
brief overview of this otherwise rich field of study.

The fractures appear in a porous medium in several sizes and shapes. There are three
possibilities regarding incorporating them in the flow model. First, to resolve them fully by
considering them as equidimensional domain as the porous medium. This would take into
account the small width of the fracture. Secondly, we can consider the fractures to be a lower
dimensional geometric object embedded in the porous matrix. This will imply that the model
equations are defined in heterogenous domains with partial differential equations defined on both
porous matrix as well as on the surface of the fracture. Thirdly, we can simplify the impact
of the fracture by incorporating their effect only through their impact on the permeability of
the grid cells. In the next chapter, we provide a brief overview of these approaches, and their
extensions.

This thesis is concerned with the second approach: to incorporate fractures as
a lower dimensional geometric objects embedded in the porous matrix.

Incorporating the fractures as lower dimensional geometric objects achieves two things: one,
we do not need to resolve the fractures through a fine meshing. And secondly, we explicitly
include the effect of the fractures. Resolving the fractures explicitly as a equidimensional geo-
metric object implies unacceptably high computational costs. The typical fracture width is in
order of 10−3 m whereas a typical porous medium could be in orders of 100s of meters. Having
a grid size that resolves the fractures completely immediately becomes an extremely expensive
computational task. Moreover, we are not interested in the details of the pressure behaviour in
the thin width of the fractures. Resolving therefore the fractures with a small grid cell does not
provide any additional benefits as long as the overall flow pattern is concerned. On the other
hand, including the effects of fractures through suitably altering the permeability of a grid cell
is definitely the simplest and the cheapest approach. But this is bound to lead to unacceptable
loss of accuracy in cases when the fractures are larger in length to be covered by one grid cell. In
the cases when the fractures are long and covered by several grid cells, changing the permeability
alters the property of all these grid cells and the flow behaviour would be significantly different
from the reference solution. Our approach therefore covers a middle ground: considering the
fractures as a lower dimensional object (hence, a 2D surface in a 3D porous medium geometry)
with a partial differential equation on the surface coupled to the 3D geometry.

We assume that the fracture crosses the entire domain which simplifies the technical analysis.
We consider a 2D rectangular geometry with the fracture in the middle. The flow model to
be used on a fracture surface depends on the permeability of the fracture! An
intuitive argument for the importance of the fracture permeability in deciding the type of flow
model that should be used on the fracture surface is easy to follow. If the fracture permeability
is extremely low then the fracture acts as a barrier and essentially leads to a breakdown in any
communication of pressure between the two sides. In this case, the fracture therefore simply
decouples the two subdomains. On the other hand, for the case when the fracture has high
permeability, there would be no pressure difference along the vertical direction of the fracture.
Thus, it would be natural a define a flow model on the fracture surface that is coupled to the
porous matrix.

Our approach here is to consider the fracture permeability as a diagonal tensor
with the permeabilities scaled as an exponent of the width. The permeability tensor
inside the fracture is taken as:

Kf =

[
εα 0
0 εβ

]
. (1.1)

Considering the permeability tensor based on the width of the fracture seems strange at the first
instance. There is no reason why the fracture permeability is dependent on the fracture width.
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However, this should be interpreted as follows: let us say, we are given the permeability of the
fracture. The question is what should be the average model that we should use for the fracture.
The answer to this question depends on the scale of the permeability compared to the width
of the fracture. We can therefore determine the scale α and β for the fracture permeability.
Once, α and β are known, we can then determine the appropriate flow model to be used for the
fracture surface.

Our approach is therefore to consider upscaled models for different scalings given
by α and β. The upscaled models are obtained by taking the limit ε tending to zero. This is a
mathematical limit and in practice this ε always remain a positive number. However, the idea
is that the upscaled model is the mathematical limit obtained by this procedure of ε tending to
zero.

Our approach borrows heavily from the work in (Chen, Pond, & Wang, 2012) where the au-
thors have obtained equivalent boundary conditions for a heat insulation problem. However, for
the fractures, such approaches have not been used before. The closest to our work in this thesis
is the PhD thesis of Xavier Tunc (TUNC, 2012) where they have tackled the same problems.
However, our approach is different from the approach they have used. We have performed the
numerical computations for the upscaled models for different values of the parameter α, β and
compared the quality of upscaling. Such sensitivity studies are not performed there. Also, we
borrow ideas in the use of homogenisation techniques for deriving upscaled models including
for thin layers as described in (Neuss-Radu & Jäger, 2007; Kumar, Neuss-Radu, & Pop, 2016;
Kumar, Van Noorden, & Pop, 2011; Kumar, van Noorden, & Pop, 2014).

An exhaustive survey of literature dealing with fractures is quite ambitious and we refer
to excellent textbooks (Bear, 1988; Helmig et al., 1997; Adler, Thovert, & Mourzenko, 2012)
for some of the discussions. The fracture flow models treating the fractures as surfaces have
been used in several papers including (Bastian et al., 2000; Singh et al., 2014; Girault, Kumar,
& Wheeler, 2016; Reichenberger, Jakobs, Bastian, & Helmig, 2006; Fumagalli & Scotti, 2013;
Formaggia, Fumagalli, Scotti, & Ruffo, 2014; Bukac, Yotov, & Zunino, 2016; Bukač, Yotov, &
Zunino, 2015).

1.3 Contributions from this thesis

This thesis provides a rigorous approach towards derivation of upscaled model in a fracture.
The quality of upscaling is further illustrated through extensive numerical examples that have
been studied. The particular contributions in this thesis are enlisted below.

1. The derivation of the upscaled model through dimensional reduction in both 1D and 2D
using a weak formulation and a dual problem to estimate the flux is a novelty. It outlines
a new approach for deriving upscaled models for a fractured medium.

2. In 2D geometry, outlining the role of boundary conditions in deriving the upscaled model
and the study of the quality of upscaling are also new. In particular, our numerical
computations reveal that in the absence of periodic boundary conditions, the flow profile
inside the fracture may become quite complex and develop boundary layers. Discussion
on the continuity of the upscaled models with respect to the parameters α, β is also new.

3. Extensive numerical computations for the upscaled model and resolving the full ε model
have been performed. This has provided the validity regimes of particular upscaled models.

In practice, it is quite common to consider a flow equation for the fracture surface with
jump of the fluxes as the right hand side. This is a heuristic model that is obtained by the
vertical averaging of the pressure equations inside the fracture so that the jump in the fluxes at
the interfaces appear as a right hand side. However, this approach provides erroneous solutions
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in the cases when α, β exceed certain values. To motivate this, we plot the error profile in
Figure 1.1 for a 2D problem for different values of α, β. It is clearly shown in this plot that
the error becomes large when α.β exceed 1.However, for α, β < 0, the error remains low and
this averaged model is an excellent approximation. This thesis performs computations backed
by mathematical arguments to further provide insights into the ranges for α, β for which the
different upscaled models approximate the reference solution with sufficiently high accuracy.

Figure 1.1: The relative domain error for different values of α and β for the average model.
The error is computed with respect to the reference solution which is obtained by resolving
explicitly the fracture geometry by taking finer mesh of the fracture geometry. The upscaled
model is obtained by simple averaging along the vertical direction and assuming sufficiently
small variation of the pressures in the vertical direction inside the fracture. This model is what
is most often used in practice.

1.4 Outline

The thesis is structured as follows.

Chapter 2 - Introduction to fractured porous media

In this chapter we go through the basic concepts of rock and fluid properties and introduce the
mathematical laws used to calculate flow through porous and fractured media. This chapter
discusses the existing approaches for treating fractures.

Chapter 3 -Solution of a One-Dimensional case

Here we derive an analytical and a weak solution for the continuity equation in a simplified
one-dimensional domain with a fracture of size 2ε and the permeability of k = εβ.
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Chapter 4 -Solution of a Two-Dimensional case

The derivation in the previous chapter of the one-dimensional problem is extended to apply for
a two-dimensional case. Weak solutions are defined in the two dimensional case and a rigorous
upscaling is being performed by defining a dual problem. The dual problem is defined in a
fixed domain with the coefficients depending upon ε. The derivation of the upscaled model
depends on estimating the flux on the boundaries of this fixed domain. This approach is novel
for deriving upscaled model for a fractured medium.

Chapter 5 -Numerical methods

This chapter discusses the numerical implementation of the upscaled models derived in the
previous chapter for the 2D. Depending upon the exponent of the permeability scaling on the
width of the fracture, there are different upscaled models that are derived. We discuss the
numerical implementation for all the models that derived.

Chapter 6 -Simulations results

This chapter presents the numerical computations for different permeability ranges in the frac-
ture corresponding to the results of the models described in Chapter 5. The computations are
performed for the different scaling of permeabilities in the x- and y-direction. The reference
solution is taken as the full model where the fractures are resolved by a finer discretization.
The errors of the upscaled models are computed with respect to the references solution and
are plotted. The impact of boundary conditions are discussed. We show how the boundary
conditions and the different scaling for permeability interact with each other. We discuss the
appropriate upscaled model that capture this behaviour.

Chapter 7 -Conclusion

The findings in this thesis is presented, and further extensions of this work is mentioned.
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Chapter 2

Theory of Fractured Porous Media

2.1 Rock and Fluid Properties

2.1.1 Permeability

Permeability is a porous medium’s capability to transmit fluids through its network of inter-
connected pores. This property is given as a tensor to describe the flow potential in different
directions. The permeability can only be considered constant when there is only one fluid
present. This is the absolute permeability. The permeability will change drastically if there are
more than one component or one phase present, this is because of the interactions between the
two components or phases. The flow potential of the two fluids is usually not the same. The
fluid with the lowest flow potential may get trapped in the pores or even be able to block the
path for the faster flowing fluid. A new concept is introduced, relative permeability. Relative
permeability is the ratio between the effective permeability for one fluid in the rock and the
absolute permeability for the rock (Zolotukhin & Ursin, 2000; Lien, 2004). In this thesis there
will only be considered one fluid at a time, and the permeability is absolute permeability. The
permeability matrix has to be a symmetric and positive definite according to Onsager’s principle
(Onsager, 1931). If the permeability is a scalar then the spatial direction does not play a role,
and it is referred to as isotropic. Permeability is measured by Darcy and have the dimensions
of a square length (m2). Permeability is commonly denoted with K or k.

2.1.2 Porosity

Porosity is the measurement of the void space in a material. It is given as the fraction of the
void volume with respect to the whole domain. The formula becomes

φ =
VV
VT

, (2.1)

where φ is the porosity, VV is the void space and VT is the total volume of the porous medium.
The porosity is a ratio number between 0 and 1. The porosity is important in any industry
working with porous media as it gives the potential for a rock or reservoir to store fluids like,
oil, water or CO2 (Zolotukhin & Ursin, 2000).

2.1.3 Representative Elementary Volume (REV) in Porous Media

A porous medium is not a homogeneous medium, and factors like the permeability and porosity
can be hard to measure for the whole domain. These parameters are usually found using a
sample from the reservoir. It is important that the sample is representative for the domain.
If the sample where these parameters are measured is small, the results may get affected by
microscopic effects. This can be due to a large void space, or a compact crystal that gives wrong
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average values for the permeability and porosity. If the sample size is to large, it gets affected
by macroscopic effects such as a huge fracture, or a layer of an other type of medium like for
instance a different rock type. The sample size must be big enough to neglect microscopic
effects, but still small enough to exclude macroscopic effects. A sample of this size is called a
Representative Elementary Volume (REV) (Zolotukhin & Ursin, 2000). The REV is described
in Figure 2.1

Figure 2.1: This figure shows how a representative elementary volume is picked (Dietrich et al.,
2005)

2.1.4 Viscosity

Viscosity is defined as the fluids inner resistance to flow. Viscosity is usually given i centipoise
(cp) where 1cp = 1mPa× s. Different types of fluids have different viscosity and different flow
potential. Ketchup is said to be highly viscous while water is low viscous (Zolotukhin & Ursin,
2000).

2.2 Mathematical Laws for Flow in Porous Media

2.2.1 Darcy’s Law

The formula for flux through a porous media was given by Henry Darcy in 1856. In his ex-
periments he found that the flux through a rock was dependent on the the pressure difference
on the sides of the rock, the permeability of the rock and the viscosity of the fluid that went
through the rock (Nield & Bejan, 2006). Today the law is usually denoted as

u = −K’∇h (2.2)

where u is the volumetric flux vector, K’ is the hydraulic conductivity tensor and h the hydraulic
head. The conductivity K’ is dependent on the properties of the rock and fluid such as rock
permeability K, fluid viscosity µ and fluid density ρ. The hydraulic head is given as h = p

ρg + z
where p is the pressure relative to some datum, g is the gravity constant and z is the elevation
above the same datum (Nordbotten & Celia, 2012). For the cases in this thesis the gravitational
constant is ignored, and the fluid is assumed to be incompressible. The Darcy’s law is reduced
to
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u = −K∇p (2.3)

It is important to include that Darcy’s law is an empirical law which means that it is found by
results from experiments. One of the most important assumptions of this law is that the flow
has to flow relatively slow. The flow has to be laminar, and this occur if the Reynolds number
is less than 1 (Nordbotten & Celia, 2012).

2.2.2 Conservation Equation

The conservation equation for mass is based on the concept that the change in mass within any
given volume over any given time interval equals the flow of mass across the volume boundaries
during that same time. In other words the function states that mass can not disappear or be
created out of nothing. At a volume and time interval close to zero, the conservation equation
becomes the continuity equation:

∂(ρφ)

∂t
+∇ · (uρ) = q (2.4)

where ρ is the density, φ is porosity, u is the volumetric fluid flow rate per unit of porous medium
and q is some source term. The divergence operator ∇· is applied to the mass flux vector uρ.
The first term to the left of the equation is known as the accumulation term. This term will be
zero in this thesis as we will deal with a steady state problem. If the fluids are assumed to be
incompressible as well then equation 2.4 is reduced to

∇ · (u) = q (2.5)

By combining equation 2.3 and equation 2.5 this equation is obtained

∇ · (−K∇p) = q (2.6)

Thus the simulation of a simple isotherm single phase system only require the pressure variable
(Kundu, Cohen, & Dowling, 2012).

2.2.3 Dimensionless Parameters

Knowledge of the relevant dimensionless parameters frequently aids the solution process, es-
pecially when assumptions and approximations are necessary to reach a solution. The dimen-
sionless parameters obtained from the equation of fluid flow motion set the condition under
which scale model testing with small models will prove useful for predicting the performance of
larger devices. In particular, two flow fields are considered to be dynamically similar when their
dimensionless parameters match, and their geometry are scale similar; that is, any length scale
in the first flow field may be mapped to its counterpart in the second flow field by multiplication
with a single scale ratio. When two flow fields are dynamically similar, analysis, simulations,
or measurements from one flow field are directly applicable to the other when the scale ratio
is accounted for. Moreover, use of standard dimensionless parameters typically reduces the
parameters that must be varied in an experiment or calculation, and greatly facilitates the
comparison of measured or computed results with prior work conducted under potentially dif-
ferent conditions (Kundu et al., 2012). Darcy’s law can be made dimensionless by referring the
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pressure to a maximal pressure on the upstream boundary, or the highest boundary pressure.
There must be set a characteristic length, a reference permeability and a reference viscosity.
Darcy’s law becomes

u∗ = −K∗∇∗p∗ (2.7)

where u∗ is the dimensionless flux, K∗ the dimensionless conductivity, p∗ the dimensionless
pressure and ∇∗ = l∇ where l is a reference length. The gravity is still neglected, and the
viscosity is constant which means that the dimensionless viscosity becomes 1. The dimensionless
conservation equation ends up becoming

q∗ = ∇∗(−K∗∇∗p∗) (2.8)

where q∗ is a dimensionless source term (Tanaka, Ninokata, & Wada, 2002). In the rest of
the thesis we will be working with dimensionless variables, and we will from now denote all
dimensionless variables without the asteriks (*) symbol.

2.3 Fractures

The fractures in a porous media has a great impact on the mediums flow and transport abilities.
Typically a fracture is a thin and long formation lying between two other formations. The
fracture usually have different properties such as permeability and porosity from the rest of the
domain. It is common to divide fractures into two different groups. Fractures with permeability
higher than the surrounding and fractures with permeability lower than the surroundings. With
a high permeability in the fracture, the flow tends to go into the fracture. In cases where the
permeability is much higher, the flow can be assumed to only take place inside the fracture.
When the permeability in the fracture is lower than the surroundings, flow will have the tendency
not to enter the fracture and the fracture works as an aquitard or a sealing. The contact between
the two sides of the fracture are not communicating, and that is why the pressure do not have
to be continuous alongside the fracture interfaces. (Gudmundsson, Løtveit, & Gjesdal, 2002)

A fractured domain becomes a complexed domain to describe. The flow potential depends
greatly on the properties of the fractures. Numerical simulations of mathematical models in
these domains are challenging, takes a lot of time and needs a lot of computer capacity. The
models get better and more precise for every specific data that is included. For problems where
the fractures and the matrix are having almost equal properties, it can save some computer
time to just homogenize the model. This approach however is not possible if the fractures and
the matrix play significant roles for the flow. For these cases there will be better to calculate the
flow through structures separately (Hægland, Assteerawatt, Dahle, Eigestad, & Helmig, 2009).
For large open fractures, Darcy law may not be valid. The most common approach to solve
for this types of fracture is to use the ”cubic law”. It is solved by applying the incompressible
Navier-Stokes equations for a domain bounded by two parallel lines of length L, separated by a
gap, d. For simplicity gravity is ignored, and we end up with

ρ(
∂u

∂t
+ u · ∇pu) = ∇p+ µ∆u. (2.9)

By neglecting body forces, and assuring steady state conditions the equation becomes

∂ux
∂y

=
p2 − p1

µL
(2.10)

This equation can be integrated twice to find the velocity profile across the fracture, and the
velocity profile can be used to find the average velocity:

ux(y) =
1

2µ

p2 − p1

L
[8
d

2

2

− y], (2.11)
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ūx =
1

2µ

p2 − p1

L

1

d

∫ d
2

− d
2

[(
d

2
)2 − y2]dy =

d2

12µ

p2 − p1

L
. (2.12)

This is similar to the Darcy velocity because of the pressure gradient, and that a constant k∗

can defined as k∗ = a2

12 . k∗ can be thought of as a modified permeability. The total flux is the
average flux times the length of the gap which becomes

qv =
d3

12µ

p2 − p1

L
. (2.13)

The cubic law was investigated further and for some cases there is necessary to include a
frictional factor f , as well, like done by (Witherspoon, Wang, Iwai, & Gale, 1980). The cubic
law is then denoted as

qv =
1

f

d3

12µ

p2 − p1

L
. (2.14)

2.3.1 Fracture Models

There are a lot of ways to include fractures in a model for porous media. This section will include
a short description of some of the most common ways, including the discrete fracture model
which will be applied in the simulations later in this thesis. Figure 2.3 shows how different
types of porous media can be idealized. The idealized models are easier to describe with a
mathematical approach.

2.3.2 The Equivalent Continuum Model

This model is based on the same concept as the REV model. The flux is modelled by a single
continuum divided into small sub domains with uniform properties. These properties are found
by averaging over all the subdomains. The subdomains must be significantly large so that the
properties holds for the whole domain. This model has no explicit distinction between the
fracture and the matrix, but they are both included in the averaging of the domain (Berkowitz,
Bear, & Braester, 1988). An example of this method is described in (Samardzioska & Popov,
2005) where the porosity in the equivalent model is assumed to be

φequi = φm
Vm
Vt

+ φf
Vf
Vt

(2.15)

where φm and φf denotes the porosity in the matrix and fracture respectively, Vm is the volume
of the matrix, Vf the volume of the fracture and Vt the total volume of the REV domain. The
hydraulic conductivity is given by

Kequi = Km ·
Vm
Vt

+Kf ·
Vf
Vt

(2.16)

where Km and Kf are the hydraulic conductivities in the matrix and the fracture respectively.
The results obtained using the equivalent continuum model represents the average values over
the sufficiently large volumes of the domain, and it is therefore impossible to find the hydraulic
head or concentration at a specific point.

2.3.3 The Dual Porosity Model

The dual porosity model is a model that consider the porosity in the rock and the fracture
as two different porosity systems. The two porosity systems interact and exchange fluids with
each other with respect to the hydraulic conductivity and the hydraulic head. The effective
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hydraulic conductivity at the interface between fracture and the medium is described by Gerke
and van Genuchten as

Ka = 0.5[Kam +Kaf ]. (2.17)

where Kam and Kaf are the hydraulic conductivities in the matrix and the fracture respectively
with the distance a to the interface (Gerke & Genuchten, 1993). The flow between the two
systems by using Ka in some type of darcy law. The flow occuring in the matrix is neglected
when the flow potential of the domain is calculated because the flow potential is much higher in
the fractures. The fractures have a great influence of the flow potential in the different directions
in this model, and there is nessesary to include a directional permeability (Warren, Root, et al.,
1963). This model is best exploited when there is a high porosity in the matrix and a low flow
potential. The fractures however should have a high flow potential, but a low storage capacity
(Warren et al., 1963).

2.3.4 The Multiple Interacting Continua Model

The Multiple Interacting Continua Model(MINC) is based on the dual porosity model and
generalizes it by partitionate the grid cells into nests like shown in Figure 2.2. The grids are
built up like this because the impact of the fracture is changing with the distance to the fracture.
The impact of the fracture does not vary much in the direction parallel to the fracture, and
that is why the grid cells are trying to be oriented parallel to the nearest fracture.(Pruess et al.,
1985). This model is not strictly valid, but it can be a good approximation in many cases, it
is designed to simulate fluid and heat flow. This type of grid is ideal to simulate flow processes
such as imbibition and heat transfer, but it is not the best grid to capture flow with specific
directionality such as gravity flow (Gong, Karimi-Fard, Durlofsky, et al., 2008).

Figure 2.2: This figure shows how the grid cells in a MINC model is divided (Pruess et al.,
1985).

2.3.5 Dual Porosity Dual Permeability Model

This model is equal to the dual porosity model, but it is a more general model which allows
fluid flow in both the matrix and the fracture. In this way it requires more calculations, but
it includes the cases where the flow potential in the matrix can not be neglected. The dual
porosity, dual permeability consept has been used to model the flow of a single coponent in a
single phase whitin a reservoir since around the 1960 (Hill, Thomas, et al., 1985; Barenblatt,
Zheltov, & Kochina, 1960; Kazemi et al., 1969).
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2.3.6 Discrete Fracture Model (DFM)

In this model, the fractured medium is assumed to be nonhomogeneous, and each fracture is
calculated explicitly. For a complete reservoir there are usually a very large number of fractures,
and there is impossible to calculate all the fractures separately. The complexity of the fracture
makes it impractical to calculate every fracture separately and that is why this model is useful
for systems where some fractures have a significant influence on the fluid flow. These fractures
can be calculated explicit, while the rest of the fractures are neglected or calculated with using
another approach. For the DFM the fluxes over the fracture interfaces are usually solved using
a Darcy typed law like the one in section 2.3, or other versions of this law. The conservation
equation is valid for the flow in the porous matrix and in the fracture (Samardzioska & Popov,
2005). Some discrete fracture models will be presented later.

Figure 2.3: This figure shows how different classifications of domains can be separated into a
ideal model. (Dietrich et al., 2005).
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2.4 Context of this Thesis

The results of this thesis correspond to the framework of Discrete Fracture Model (DFM). The
fractures therefore are explicitly modelled, however as lower dimensional surface embedded in
a porous medium. Thus, in a 2D geometry of a rectangle, the fracture will be modelled as a 1D
curve (line). In this 2D geometry, we have the Darcy flow model coupled to the flow equations
on this fracture curve (line). The type of flow equation on the fracture depends on the fracture
permeability. We derive a variety of upscaled fracture model based on the fracture permeability.

Figure 2.4: Fractured porous medium with the fracture treated as a part of the domain (left).
On the right, the fracture is considered as a surface. In the fractured domain, the fracture
permeability is taken as a tensorial permeability depending upon the width of the fracture.
As the width decreases to zero, the limit mathematical model is represented pictorially on the
right.

The permeability in the fracture is considered to be a diagonal tensor defined by:

Kf =

[
εα 0
0 εβ

]
. (2.18)

The fracture is considered as a thin domain Ωf with small thickness ε shown in Figure2.4.
Our approach is to consider upscaled models for different scalings given by α and β. These
upscaled models are obtained by taking the limit ε tending to zero. The upscaled model is a
mathematical limit obtained by this procedure of ε tending to zero.

To put our work in the context of existing literature, we cite the work of (Martin, Jaffré,
& Roberts, 2005) dealing with the fractured flow. There is a formal derivation of the upscaled
model. The reference model is given by

−∇ · (Ki∇pεi) = qi,

−∇ · (Kf∇pεf ) = qf ,

coupled through the interface conditions between the fracture and porous matrix, pi = pf and
−νi ·Ki∇pi − νi ·Kf∇pf = 0 for i = 1, 2. Here νi is the normal at the fracture pointing from
porous matrix Ωi to the fracture domain Ωf . The interface conditions are basically the continuity
of pressure and the continuity of normal fluxes at the fracture-porous matrix interfaces. The
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upscaled model for this model as derived formally in (Martin et al., 2005) consists of the following
equations now defined in the domain Ω1 ∪ Ω2 ∪ Γf where Γf is the fracture surface.

−∇ · (Ki∇pi) = qi,

−∇ · (Kf ε∇Pf ) = qf + [Ki∇pi],
(1− ξ)(−K2∇p2) · ν2 + εβ−1(pi − pf ) = ξ(−K1∇p1) · ν1, for i = 1, 2.

Here, [Ki∇pi] = −ν1 · K1∇ · p1 + ν2 · K1∇ · p1 is the jump in the flux across the fracture
surface Γf with ν1 and ν2 being the normals on the interface between Ωi and fracture surface,
respectively. For the present discussion, the most important thing to note here is that ξ is a
fitting parameter between 0 and 1.

The derivation of the above upscaled model is based on two steps: the first step of integration
along the normal to the fracture yields the jump in the flux term. The second step is a heuristic
step where the pressure profile inside the fracture is assumed to satisfy a closure relationship
given by the last equation. This closure relationship has ξ as the fitting parameter and may be
used to fit the upscaled model as needed.

Our approach is different as we do not assume any profile of the fracture pressure. What we
set out is by assuming a scale dependence of the permeability inside the fracture on the width
ε and then use a rigorous approach for obtaining information regarding the profile of pressure
inside the fracture and the limit behaviour as ε tends to zero. At the risk of repetition, we
mention that considering the permeability tensor based on the width of the fracture should be
interpreted as follows: let us say, we are given the permeability of the fracture. The question
is what should be the average model that we should use for the fracture. The answer to this
question depends on the scale of the permeability compared to the width of the fracture. We
can therefore determine the scale α and β for the fracture permeability. Once, α and β are
known, we can then determine the appropriate flow model to be used for the fracture surface.
Contrary to the previous approach, our approach is rigorous and in fact even yields upscaled
models that do not fit the closure condition that is assumed here.
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Chapter 3

Analytical Solution and a Weak
Formulation of the One-Dimensional
Case

We begin with a one dimensional characterisation of the upscaled equations. A one dimensional
case is not the most realistic model for a fracture in a porous medium. However it is an
important case to study to see how different parameters influence the qualities of the reservoir,
and how simplified methods can be applied to describe the fractures of different types. The
one dimensional case that is studied in this chapter has a fracture of size 2ε and is described in
figure 3.1. The permeability of the fracture is given by εβ, in other words the size of the fracture
to the power of β., and the permeability outside the fracture is for mathematical purposes equal
to 1. In this chapter we will investigate the relation between the permeability and the size of
the fracture as the size of the fracture goes to zero.

Figure 3.1: The domains Ω1 and Ω2 are separated by a domain Ωf with permeability k = εβ

3.1 Derivation of the Analytical Case

In this section the one dimensional case for the fractured system will be solved analytically, and
the solutions will be plotted for different values of β.

Problem Formulation

The problem in Figure 3.1 is described as

−∆pε1 = 0 where y ∈ (0, 1− ε)
−∆pε2 = 0 where y ∈ (1 + ε, 2)
εβ∆pεf = 0 where y ∈ (1− ε, 1 + ε)

(3.1)

15



Interface and Boundary Conditions

The boundary conditions are
at y = 0, pε1 = 1,
at y = 2, pε2 = 0.

(3.2)

The interface conditions on Γ1, and Γ2 are the continuity of fluxes and the continuity of pres-
sures. The continuity of flux is given as,

∂pε1
∂y = εβ

∂pεf
∂y at Γ1,

∂pε2
∂y = εβ

∂pεf
∂y at Γ2.

(3.3)

On the interfaces Γ1 and Γ2 the pressures are equal on the two sides, which means that pε1 = pεf
on Γ1 and pε2 = pεf on Γ2.

pε1 = pεf at Γ1,

pε2 = pεf at Γ2.
(3.4)

The differential equation for the pressures imply us that the pressure in all three sub domains
Ω1, Ω2 and Ωf are linear and can be written as,

pεi = ciy + di, (3.5)

where i = 1, 2, f .
The coefficients depend on ε, however we suppress this dependence for notational
convenience.
The boundary condition for pε1 = 1 at y=0 gives d1 = 1. The boundary condition for pε2 implies
d2 = −2c2. To find the other coefficients for the fracture we use the interface conditions:

∂pε1
∂y = εβ

∂pεf
∂y at Γ1 yielding εβcf = c1,

∂pε2
∂y = εβ

∂pεf
∂y at Γ2 giving εβcf = c2.

(3.6)

Recall that the permeability in Ω1 and Ω2 is given as one. Using this gives εβcf = c1 = c2. The
constants cf and df can be determined employing the continuity of pressure at Γ1 and Γ2. The
interfaces Γ1 and Γ2 exists at y = 1− ε and y = 1 + ε respectively, which gives

c1y + d1 = cfy + df at y = 1− ε,
c2y + d2 = cfy + df at y = 1 + ε.

(3.7)

On the interfaces at y = 1± ε, and from equation (3.6), we have that c1 = εβcf = c2 and that
d1 = 1. For (3.7)1 this gives that

c1(1− ε) + 1 = c1ε
−β(1− ε) + df ,

df =c1(1− ε) + 1− c1ε
−β(1− ε),

df =c1(1− ε)(1− ε−β) + 1,
(3.8)

and from (3.7)2

c2(1 + ε)− 2c2 = c2ε
−β(1 + ε) + df ,

df =c2(1 + ε)(1− ε−β)− 2c2.
(3.9)

The information in (3.8) and (3.9) can be used to solve for the constants c1 and c2:

c1(1− ε)(1− ε−β) + 1 = c2(1 + ε)(1− ε−β)− 2c2

which gives that

c1 = c2 =
−1

2(ε−β+1 − ε+ 1)
, (3.10)
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and that
cf = −ε−β

2(ε−β+1−ε+1)
, (3.11)

The relation in (3.10), can be inserted into (3.8) and (3.9) to give the value of the last unknown
constant, df .

3.1.1 Different Cases for Different β Values

The calculations above involve different exponents of ε in the coefficients. This suggests five
different cases for different β values which need to be studied further to get an understanding
of how the flux behaves as ε→ 0 in all cases. We list all these cases,

case 1: β = 0
case 2: β < 0
case 3: 0 < β < 1
case 4: β = 1
case 5: β > 1

that will be considered below.

Case 1, β = 0

In the first case, the formulation for the slope c1 in (3.10) gives that

c1 =
−1

2(ε1 − ε+ 1)
,

which means that in the limit of ε tending to zero, c1 tends to −1
2 . The slope in the fracture,

cf , can be calculated using (3.11) which gives that

cf = ε0
−1

2(ε1 − ε+ 1)
.

The slope cf , thus, approaches −1
2 . Hence, in this case the slope is the same in all three domains,

and equation (3.8) gives that

df =
1

2
(1− ε)(1− ε−0) + 1⇒ df = 1.

The pressure is continuous and a plot of the pressure is shown in Figure 3.2.

Case 2, β < 0

In this case (3.10) and (3.11) gives that c1 → −1
2 , cf → 0 and

df = −1

2
(1− 0)(1− 0) + 1 =

1

2

Then

lim
ε→0

pεf =
1

2

The pressure is constant in Ωf and have a slope of −1
2 in Ω1 and Ω2. The pressure becomes

continuous as ε→ 0. This case is also shown in Figure 3.2
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Case 3, 0 < β < 1

In this case (3.11) gives that c1 goes to −1
2 as ε→ 0 but ε−β blows up. This means that

cf → −∞, df = c1(1− ε)(1− ε−β) + 1→∞,

that is, both cf and df blow up but in different directions. We need to estimate pεf at y = 1
using (3.5). Both the coefficients cf and df blow up, nevertheless, pεf may have a finite limit.
We readily check this by a straightforward computation.

lim
ε→0

pεf = cf + df . (3.12)

By inserting values for cf and df we get that

pεf = −ε−β
2(1−ε+ε−β)

+ c1(1− ε)(1− ε−β) + 1,

= 1 + −ε−β−(1−ε+ε−β+1−ε−β)
2(1−ε−β+1−ε) ,

→ 1
2 .

(3.13)

The pressure profile is linear for this case as well. The pressure in Ωf converge to 1
2 as the

size of Ωf shrinks to zero. The pressure is shown in Figure 3.2.

(a) Shows the behaviour of the pressure
for cases 1, 2, and 3 inside the three
domains

(b) Shows the pressure profile
in the whole domain.

Figure 3.2: The first three cases are all converging to the same linear solution with c = −1
2 as

the slope of the line. In all the three cases, essentially, the fracture is not playing any role and
in the limit behaves as if it is absent.

As expected, in all the three cases, for fixed β, the pressure profiles are different. In the
case when the permeability is blowing up (for the case when β < 0), the pressure profile inside
the fracture is flat connected to linear profiles to the end points of the whole domain in the two
sides of the fracture domain, respectively. Note that in the three cases, the permeability inside
the fracture is either 1 (for the case when β = 0) or blowing up (β < 0), or vanishes β > 0.
Interesting enough, all the cases for which β < 1 converge to the same solution as ε → 0, that
is, a linear profile. This shows that the case when β < 1 provides sufficient permeability for
the pressure to equilibrate and retain the continuity of the pressure inside the fracture. As the
size of this fracture shrinks, the pressures at the ends of the fractures become closer and in the
limit simply yield the same solution as if they are absent.
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Case 4, β = 1

Using (3.11) we get

c1 = c2 =
−1

2(1− ε+ ε0)
= −1

4
.

The expressions for pε1 and pε2 given by (3.5) becomes

pε1(y) = c1 + d1 = 1− 1

4
y (3.14)

and

pε2(y) = c2y + d2 = −1

4
y + (−2c2) =

1

2
− 1

4
y. (3.15)

The slope cf of the pressure in Ωε
f becomes −∞ as ε vanishes. At y = 1, (3.14) and (3.15)

provide
limε→0 p

ε
1(y = 1) = 3

4 limε→0 p
ε
2(y = 1) = 1

4 . (3.16)

Unlike in the previous three cases, in this case the two subdomain pressures at the interface
are discontinuous. However, the role of the fracture is not yet explored. In fact, what turns
out is that the fracture pressure will provide the coupling condition for the two discontinuous
pressures at the interface from the subdomain sides. We have from (3.8) that df

df = c1(1− ε)(1− ε−β) + 1. (3.17)

By inserting for c1, set β = 1, (3.17) can be reduced to

df =
1

2
+

1

4ε
. (3.18)

The formula for pεf becomes

pεf =
1

4ε
(1− y) +

1

2
. (3.19)

Since both (1− y) and ε go to zero as the size of fracture shrinks, we define a re-scaled variable

γ =
1− y
ε

. (3.20)

The usefulness of this definition becomes immediately clear by noticing that

1− y = 0 → γ = 0,
1− y = ε → γ = −1,
1 + y = ε → γ = 1.

(3.21)

This, the variable γ maps the fracture geometry to a fixed domain size of [−1, 1]. In terms of
this new variable γ, the expression for pεf can be written as

pεf (γ) = −γ
4

+
1

2
. (3.22)

Note that the pressures at the end points (interfaces) become

pεf (γ) = 3
4 on γ = −1 (3.23)

and
pεf (γ) = 1

4 on γ = +1. (3.24)

The continuity of the pressures at the interface is preserved since

p1(y = 1) = pf (γ = −1)
p2(y = 1) = pf (γ = 1).

(3.25)
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The pressure profile is plotted in Figure 3.3. This case is perhaps more interesting than the first
three cases described above. As we have seen in this case, the fracture is playing an important
role. Seen from the limit domain perspective, there is a discontinuity of pressure at the interface
at the point to which fracture domain has shrunk to. However, in this case, the fracture can
not be ignored in the limit, unlike in the previous three cases. In fact the upscaled model has a
“two-scale” behaviour where the fracture pressure profile connects the discontinuities. From the
point of view of whole domain, there is simply a discontinuity in the pressure profile, but at the
point of discontinuity, there is another scale that once zoomed-in provides a fracture pressure
profile justifying the “two-scale” behaviour.
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Figure 3.3: Pressure profile in the whole domain for the case β = 1. Note that there is a
discontinuity of pressure at the fracture interface. In this case, the fracture can not be ignored
in the limit, unlike in the previous three cases. In fact the upscaled model has a “two-scale”
behaviour where the fracture pressure profile connects the discontinuities. From the point of
view of whole domain, there is simply a discontinuity in the pressure profile, but at the point
of discontinuity, there is another scale that once zoomed-in provides a fracture pressure profile
justifying the “two-scale” behaviour.

This shows that the model for the fracture pressure in the case β = 1 can be written as

d2pεf
dγ2

= 0 (3.26)

with the interface conditions, the continuity of pressure

pf = p1(y = 1) at γ = −1 and pf = p2(y = 1) at γ = 1

together with the flux continuity

dpf
dγ

=
dp1

dy
(y = 1) at γ = −1 and

dpf
dγ

=
dp2

dy
(y = 1) at γ = 1.

Needless to say, we can solve the above equation analytically giving us a linear profile. However,
we prefer to put this in the form above to enable its comparison and extension in the 2D case.
This case will be investigated further in the two scaled model in Section 5.1.2.
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Case 5, β > 1

From (3.10), the slopes in Ω1 and Ω2 given by

c1 = c2

go to zero because ε−β = ∞ as ε → 0. we conclude using(3.5) that the pressures are constant
in Ω1 and Ω2. Hence the two models become decoupled. At this stage, the fracture pressure
becomes irrelevant as far as the upscaled models are concerned.
Nevertheless, we proceed to identify what happens in the fracture. The value of cεf becomes:

cεf = ε−βc1

and for df we get that:
df = c1(1− ε)(1− ε−β) + 1.

For pεf at y = 1 this gives

pεf = −ε−β
2(1−ε+ε−β)

+ c1(1− ε)(1− ε−β) + 1

= 1 + −ε−β−(1−ε+ε−β+1−ε−β)
2(1+ε−β+1−ε)

= 1
2 .

(3.27)

At the interfaces y = 1− ε and y = 1 + ε, we have that pεf = 1 and pεf = 0 respectively, and the
solution becomes

pε1 = dε1 = 1 in Ω1,
pε2 = dε2 = 0 in Ω2,
pεf = 1

εy + 1 in Ωf .
(3.28)
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Figure 3.4: Pressure in 1D with β > 1.

The figure shows that this case gives a constant pressure in Ωε
1 and Ωε

2. As stated before, the
two domains are decoupled and can be solved independently. Thus, in this case, the fracture
acts as a “barrier”. It is interesting to note that the fracture pressure is simply the average of
the two pressures at the interfaces from the subdomain sides.
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3.2 An Alternative Approach: using Dual Problem

Next, we describe a novel approach to obtain the upscaled model in a fractured porous medium.
This approach is based on (Chen et al., 2012) has certain advantages. In this reference, the
authors have used similar approach for finding the insulating effect of a thin coating around a
thermally conducting two dimensional body. The difference between the results in this reference
and our approach is that in our case, the fracture is a part of the domain and is sandwiched
between two subdomains. This is in contrast to the case considered in this reference where the
thin insulating layer in the limit shrinks to be a boundary and the limit problems provide the
boundary conditions. In the case of fractures, we obtain an interface condition that couples the
two subdomains. Even though the derivation here is presented for a 1D case it can be extended
to 2D case with suitable alterations, at least in certain cases. Secondly and perhaps more
importantly, this approach provides a rather general framework for other type of equations.

This alternative approach consists of three steps: 1. We define a weak formulation for the
model problem, 2. We define a dual boundary value problem in the fracture domain based on
the model equations, and finally 3. We estimate the fluxes at the boundaries of the fracture
domain. Note that the dual problem is defined only in the fracture domain with suitable
boundary conditions allowing us to decouple the fracture domain from the other subdomains.
This study of isolated fracture domain provides a partial differential equation with suitable
boundary values. Thus, the study of upscaled model is reduced to studying the dual boundary
value problem and estimating the fluxes at the boundaries.

We begin by defining a weak formulation for 1D problem. This alternative approach of a 1D
case uses a lot of the same principles as in the 2D case. We therefore provide the full details of
such an approach for the 1D weak case in this thesis, and later extend it to a two dimensional
case. Our primary reference for the approach of defining this dual problem is (Chen et al.,
2012).

Problem Formulation

∂2pε1
∂y2

= 0 where y ∈ (0, 1− ε)
∂2pε2
∂y2

= 0 where y ∈ (1 + ε, 2)

εβ
∂2pεf
∂y2

= 0 where y ∈ (1− ε, 1 + ε)

(3.29)

Boundary and Interface Conditions

pε1 = 1 at y = 0
pε2 = 0 at y = 2
pε1 = pεf at y = 1− ε
pε2 = pεf at y = 1 + ε

∂pε1
∂y = εβ

∂pεf
∂y at y = 1− ε

∂pε2
∂y = εβ

∂pεf
∂y at y = 1 + ε

(3.30)

3.2.1 Weak Formulation

The definition of a weak formulation is quite standard. First we consider the pressure pε1 that is
inside the domain Ω1, and introduce a test function ψ1 and multiply both sides of the pressure
equation (3.29). The test function ψ1 is chosen to be infinitely smooth, that is, ψ1 ∈ C∞(Ω1).
Later we will put restrictions on the boundary condition on ψ1 (that is, ψ1 = 0 at y = 0) in
sync with the Dirichlet boundary condition for pε1 at that point. Applying integration by parts
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gives, for all smooth test functions ψ1,∫ 1−ε

0

∂pε1
∂y

∂ψ1

∂y
+
∂pε1
∂y

ψ1(y = 1− ε)− ∂pε1
∂y

ψ1(y = 0) = 0. (3.31)

Now choosing the test function, ψ1(y = 0) = 0 allows us to get rid of the boundary term at
y = 0 and (3.31) becomes ∫ 1−ε

0

∂pε1
∂y

∂ψ1

∂y
+
∂pε1
∂y

ψ1(y = 1− ε) = 0 (3.32)

for all smooth test functions ψ1. Similar steps for the equation defined in Ωε
2 = (1 + ε, 2),

followed by choosing ψ2(y = 2) = 0 we get∫ 2

1+ε

∂pε2
∂y

∂ψ2

∂y
− ∂pε2

∂y
ψ2(y = 1 + ε) = 0, (3.33)

for all smooth test functions ψ2. For Ωε
f = (1− ε, 1 + ε) the equation becomes∫ 1+ε

1−ε
εβ
∂pεf
∂y

∂ψf
∂y

+ εβ
∂pεf
∂y

ψf (y = 1− ε)− εβ ∂p
ε
1

∂y
ψf (y = 0) = 0 (3.34)

for all smooth test functions ψf . Let us denote the term containing integrals in (3.32), (3.33)
and (3.34) (first term in each of these equations) by Iε1, Iε2, and Iεf , respectively. Let the test
functions satisfy the continuity conditions, ψ1 = ψf at y = 1 − ε and ψ2 = ψf at y = 1 + ε.
Using flux continuity at the interfaces, by summing the three equations, we obtain

Iε1 + Iε2 + Iεf = 0
(3.35)

The above variational form provides us with the following bounds by testing with ψ1 =
pε1, ψ2 = pε2, ψf = pεf .

lemma 1. There exists a C > 0 such that pε1, p
ε
2, p

ε
f satisfy the following estimates,

‖∇pε1‖2 + ‖∇pε2‖2 + ‖εβ∇pεf‖2 ≤ C.

The above boundedness result readily provides us with the following convergence result.

lemma 2. There exists p1, p2 such that, up to a subsequence, as ε goes to zero, pε1, p
ε
2 converge

to p1, p2 weakly in H1 and thus, strongly in L2 in their respective domains of definition.

As stated before, we will now define a dual problem. This problem is defined by considering
Iεf , and using integration by part we get,

Iεf =
∫ 1+ε

1−ε p
ε
f
d
dy (εβ

dψf
dy ) + pεf ε

β dψf
dy (1 + ε)− pεf εβ

dψf
dy (1− ε). (3.36)

The basic idea is now to let ψf satisfy an equation so that the integral term vanishes. This
easily motivates the following definition of the dual problem.

3.2.2 Dual problem

Definition 1. The dual problem consists of finding ξ satisfying d
dy (εβ dξdy ) = 0 in Ωε

f , along with
the boundary conditions ξ = ψ1 at y = 1− ε and ξ = ψ2 at y = 1 + ε.
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It is clear that for any smooth ψ1, ψ2, there exists a unique and smooth ξ satisfying the
above equation. A natural question is if the set of such ξ’s form a dense subset of smooth test
functions. This is easily confirmed once we notice that for any smooth ψf , there exists a unique
decomposition ψf = ξ+η with η solving a poisson equation with ψf as the right hand side with
zero Dirichlet boundary conditions. Thus, for any ψf there is a unique correspondence with ξ
with ξ being also smooth.

For ψf solving the dual problem defined above, Iεf reduces to

If = pεf ε
β dψf
dy

(1 + ε)− pεf εβ
dψf
dy

(1− ε) (3.37)

Note that the above terms are nothing but the fluxes at the fracture/subdomain interfaces. The
dual problem can be solved to give ψf satisfying

d
dy (εβ

dψf
dy ) = 0,

⇒ εβ
dψf
dy = cf

⇒ ψf =
cf
εβ
y + df

(3.38)

for some constants cf , df . They will be determined by the boundary conditions. At the left
intersections Γ1 we have the following boundary condition

ψf (y = 1− ε) =
cf
εβ

(1− ε) + df

and at Γ2

ψf (y = 1 + ε) =
cf
εβ

(1 + ε+df .

Let us denote
g1 := ψf (y = 1− ε), g2 := ψf (y = 1 + ε).

The above two conditions lead to two linear equations involving two unknowns cf , df . Solv-
ing for them, we get

cf = −ε
β−1

2
(g1 − g2), (3.39)

df =
1

2
(g1 + g2) +

1

2ε
(g1 − g2). (3.40)

The function, ψf , can be found by inserting (3.39) and (3.40) into (3.38), and is given by

ψf =
cf
εβ
y + df =

g1 − g2

2ε
(1− y) +

1

2
(g1 + g2). (3.41)

From (3.38) and (3.39) it is given that cf satisfies,

εβ
dψf
dy

= cf = −ε
β−1

2
(g1 − g2). (3.42)

By replacing εβ
dψf
dy with − εβ−1

2 (g1 − g2) in (3.37), Iεf is given by

Iεf = −1

2
εβ−1(g1 − g2)[pε2(y = 1 + ε)− pε1(y = 1− ε)], (3.43)

which can be inserted into (3.35) to obtain the following relation

Iε1 + Iε2 =
1

2
εβ−1(g1 − g2)[pε2(y = 1 + ε)− pε1(y = 1− ε)] (3.44)

This problem can be separated into three different cases, based on the exponent involved in the
above expression, β > 1, β < 1 and β = 1. For the discussions below, recall the existence of
limits p1, p2, pf obtained as the limit of pε1, p

ε
2, p

ε
f as ε vanishes.
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Case 1, β > 1

The first case when β > 1 gives from (3.44) that Iε1 + Iε2 → 0 as ε → 0 (since Iεf vanishes as ε
tends to zero). This gives that

lim
ε→0

∫
dpε1
dy

dψ1

dy
+ lim
ε→0

∫
dpε2
dy

dψ

dy
= 0, (3.45)

which gives us

lim
ε→0

(−d
2pε1
dy2

, ψ1)Ωε1
+ lim
ε→0

dpε1
dy

ψ1(y = 1)− lim
ε→0

(
d2pε2
dy2

, ψ2)Ωε2
− lim
ε→0

dpε2
dy

ψ2(y = 1) = 0. (3.46)

The test function ψ1 is chosen such that ψ1 = 0 on ∂Ω1 and further choose ψ2 ≡ 0. This
implies in the limit case when Ωε

1 becomes Ω1,∫
Ω1

−d
2p1

dy2
ψ1 = 0, (3.47)

or in strong form in the limit case,

−d
2p1

dy2
= 0 in Ω2 (3.48)

retrieving the original equation in the limit case in the subdomain.
Next, as in the previous case, the test function ψ2 is chosen such that ψ2 = 0 on ∂Ω2 and

ψ1 ≡ 0 leading to, for all smooth test functions ψ2∫
Ω2

−d
2p2

dy2
ψ2 = 0, (3.49)

or in strong form in the limit case,

−d
2p2

dy2
= 0 in Ω2. (3.50)

The only thing left in (3.46) is

(
∂p1

∂y
)ψ1(y = 1− ε)− (

∂p2

∂y
)ψ2(y = 1 + ε) = 0 (3.51)

for arbitrary smooth test functions ψ1, ψ2. This can only mean, ∂p1
∂y = 0 on Γ1 and ∂p2

∂y = 0 on
Γ2.

This case shows that the pressure equations become decoupled in the two subdomains with
the fracture being replaced by a no flow boundary condition. This is intuitively consistent
with the argument that when the fracture permeability becomes sufficiently small, it acts as a
barrier causing breakdown of any communication between the two adjacent subdomains. This
is also consistent with the derivation using the analytical approach in first part of this chapter.
However, here it is being derived via the dual problem and estimating the flux at the boundaries
of the domain in the dual problem.

Case 2, β < 1

In the first glance, (3.44) seems to pose difficulties since εβ−1 blows up as ε vanishes. However,
recall that the energy estimates imply that Iε1 and Iε2 remain bounded. This implies that the
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blowing up of the flux term will be balanced by pε2(y = 1 + ε)− pε1(y = 1− ε) which will vanish
as ε→ 0. In other words pε2 − pε1 is of order ε1−β. The first condition is therefore,

p2 = p1 at Γ1.

Furthermore, from (3.46) we conclude,

(
∂p1

∂y
)ψ1(y = 1− ε)− (

∂p2

∂y
)ψ2(y = 1 + ε) = c(ψ1(y = 1− ε)− ψ2(y = 1 + ε)) (3.52)

leading to the second condition, i.e., the continuity of fluxes at the subdomain interface Γ1,

∂p1

∂y
=
∂p2

∂y
(3.53)

Thus, in this case, the fracture does not play any role. The two subdomains are coupled through
the interface conditions that include the continuity of pressure and the continuity of fluxes at
the interface. This in turn, means that the pressure is continuous. This is once again consistent
with the earlier observation using the closed form solution that we had obtained before.

Case 3, β = 1

Again we will use (3.35) to derive the upscaled model. Let us, as in the previous approach,
define

γ =
y − 1

ε
. (3.54)

Introducing this gives us that Iεf can be rewritten as

εβ
∂pεf
∂y

= εβ
∂pεf
∂γ

∂γ

∂y
= εβ−1

∂pεf
∂γ

. (3.55)

In terms of this new variable γ the domain Ωε
f = (1− ε, 1 + ε) gets mapped to Ωγ = (−1, 1). In

terms of γ,Ωγ , (3.35) gives

(
dpε1
dy ,

dψ1

dy )Ωε1
+ (

dpε2
dy ,

dψ2

dy )Ωε2
+ (

dpεf
dγ ,

dψf
dγ )Ωγ = 0. (3.56)

As in the previous cases, choosing the test functions ψ1 and ψ2 with compact support we

conclude, for the limit of ε vanishing, that −∂2p1
∂y2

= 0 in Ω1 and ∂2p2
∂y2

= 0 in Ω2. Similarly as we
did earlier ψf is chosen with compact support in Ωγ , to conclude

−
∂2pεf
∂γ2

= 0 in Ωγ . (3.57)

Using this after applying partial integration in all the three terms in (3.56), we obtain

∂pε1
∂y

ψ1|y=1 −
∂pε2
∂y

ψ2|y=1 + εβ−1
∂pεf
∂γ

ψf |γ=1 − εβ−1∂pf
∂γ

ψf |γ=−1 = 0 (3.58)

for arbitrary smooth functions ψ1, ψ2, ψf . This allows us to conclude, in the limit of ε vanishing,

∂p1
∂y (y = 1) =

∂pf
∂γ at γ = −1

∂p2
∂y (y = 1) =

∂pf
∂γ at γ = 1

(3.59)

implying the continuity of fluxes. Furthermore, the continuity of pressures is retained in the
limit from the ε problem leading to

p1(y = 1) = pf at γ = −1 (3.60)
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and
p2(y = 1) = pf at γ = 1. (3.61)

The upscaled model in this case is identical to the one obtained by closed form solution obtained
before. As stated previously, this is a “two scale” model where the fracture domain needs to
be scaled to provide the coupling conditions for the subdomains. Thus, what appears as an
interface for the two subdomains needs to scaled to an ε independent fixed domain in order that
the coupling conditions are obtained.

3.3 Summary of the Upscaled Models

For the three cases, β < 1, β = 1, and β > 1, we summarise the three upscaled models that we
derived above.

1. Case 1: β < 1 Average Model

d2p1

dy2
= 0 in Ω1 (3.62)

d2p2

dy2
= 0 in Ω2 (3.63)

coupled through the interface conditions,

p1 = p2 at Γ1, (3.64)

dp1

dy
=
dp2

dy
at Γ1. (3.65)

2. Case 2: β = 1 Two-scale Model
Define, Ωγ = (−1, 1). The two-scale model is given by

d2p1

dy2
= 0 in Ω1, (3.66)

d2p2

dy2
= 0 in Ω2, (3.67)

d2pf
dγ2

= 0 in Ωγ , (3.68)

coupled through the interface conditions,

∂p1
∂y (y = 1) =

∂pf
∂γ at γ = −1

∂p2
∂y (y = 1) =

∂pf
∂γ at γ = 1

(3.69)

and
p1(y = 1) = pf at γ = −1 (3.70)

and
p2(y = 1) = pf at γ = 1. (3.71)

3. Case 3: β > 1 Decoupled Model

d2p1

dy2
= 0 in Ω1 (3.72)

d2p2

dy2
= 0 in Ω2 (3.73)
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and decoupled at the interface by no flow boundary conditions,

dp1

dy
=
dp1

dy
= 0 at Γ1. (3.74)

In all these cases, the boundary conditions at y = 0 and at y = 2 are retained and remain
unchanged.
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Chapter 4

The Two-Dimensional Case

In this chapter, we consider a two-dimensional problem extending the ideas from the one-
dimensional case treated in previous Chapter 3. The idea is again to follow the three steps as
in the one-dimensional case. The first step is to define a weak formulation which is standard.
This is followed by defining a dual problem that is defined in the fracture domain. The dual
problem is a boundary value problem defined in the fracture domain with Dirichlet boundary
conditions. This problem isolates the fracture pressure profiles from the subdomains. For this
problem, we estimate the fluxes at the fracture/subdomain interfaces. In the final step, we use
the estimated fluxes to obtain the limit models that we define as our upscaled model.

As in the one-dimensional case, we have three cases to consider. The fact that we consider
only these three cases are not exhaustive. In fact, we apply a periodic boundary conditions on
the lateral surfaces (perpendicular to the fracture length). This simplifies the derivation as the
integral boundary terms arising due to these surfaces get cancelled. A full discussion including
these effects at the fracture vertical boundaries will be a subject of forthcoming paper. Note
that in the numerical simulations, we do consider the case when the boundary conditions on
the vertical surfaces to the fracture length are Dirichlet and non-periodic.

4.1 The Model Problem

To describe the fracture problem a domain Ωε like the one in Figure 4.1 is studied. The domain
Ωε is divided into three sub domains. Two larger subdomains, Ωε

1 and Ωε
2, and one smaller

domain Ωε
f which separates Ωε

1 and Ωε
2. The domain Ωε

f is representing the fracture here
denoted having the same dimensions but with thickness 2ε (Alboin, Jaffré, Roberts, & Serres,
2002). The flow in Ωε is considered to follow the conservation equation and the Darcy’s law
relating the gradient of the pressure pε to the Darcy velocity uε:

∇ · uε = q in Ωε

uε = −K∇pε in Ωε

pε = p̄ on ∂Ωε.

(4.1)
The superscript ε for the unknown variables and the domain emphasises the dependence of
them on ε. Here pε is the pressure, K is the permeability tensor, q is a source term and p̄ is the
pressure on the boundary ∂Ωε. We suppose that K is diagonal. In the two dimensional domain
Ωε, the permeability K can be given as

K =

(
k11 0
0 k22

)
(4.2)
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Figure 4.1: The two domains Ω1 and Ω1 are separated by the interface Γ with thickness 2ε.

where k11 and k22 are the permeability in horizontal and vertical direction respectively. For
simplicity, the permeability in Ωε

1 and Ωε
2 is k11 = k22 = 1. The permeability inside the fracture

is taken as k11 = εα and k22 = εβ. The extension to other positive definite permeability tensor
in the subdomains is straightforward. For the fracture, this remains open as we are strongly
using the diagonal structure of this matrix in the fracture.

Let the problem in (4.1) is defined respectively to the domains Ωε
i where i = 1, 2, f , it can

be written as

∇ · uεi = qi in Ωε
i i = 1, 2, f

uεi = Ki∇pεi in Ωε
i i = 1, 2, f

pεi = p̄i on ∂Ωε
i

⋂
∂Ωε i = 1, 2

pεi = pf on Γεi i = 1, 2
uεi · ni = uεf · n on Γi i = 1, 2

(4.3)
where n is the normal vector to the fracture, Γεi = ∂Ωε

i

⋂
∂Ωε

f

⋂
Ωε. We assume periodic

boundaries on the fracture boundaries at ∂Ωε
f

⋂
∂Ωε, and will denote these boundaries as Γε3

at x = 0 and Γε4 at x = 2. The first equation of (4.3) is written out with respect for the three
domains and gives us these three equations for the different domains and choose the source
terms qi to be zero.

∂2pε1
∂x2

+
∂2pε1
∂y2

= 0 in Ωε
1,

∂2pε2
∂x2

+
∂2pε2
∂y2

= 0 in Ωε
2,

εα
∂2pεf
∂x2

+ εβ
∂2pεf
∂y2

= 0 in Ωε
f .

(4.4)
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with the outer boundary conditions

p̄1 = 0,
p̄2 = 1,
p̄3 = 0,
p̄4 = 1,

(4.5)

and the boundaries at the fracture is given as

pε1 = pεf at Γ1

pε2 = pεf at Γ2

∂pε1
∂x +

∂pε1
∂y = εα

∂pεf
∂x + εβ

∂pεf
∂y at Γ1

∂pε2
∂x +

∂pε2
∂y = εα

∂pεf
∂x + εβ

∂pεf
∂y at Γ2

(4.6)

Choosing source term to be zero again simplifies the presentation. Extension to non-zero but
independent of ε source terms again follows the same arguments.

4.2 A Weak Formulation

A weak formulation for the above model is obtained as in the one-dimensional case. Tak-
ing smooth test functions ψf defined in Ωε

f and ψ1, ψ2 that have zero boundary values on all
the boundaries except the fracture/subdomain interfaces and multiplying the equation in each
domain respectively and summing it up gives,

−
∫

Ωε1

∆pε1ψ1 −
∫

Ωε2

∆pε2ψ2 −
∫

Ωεf

∇ · (Kε
f∇pεf )ψf = 0 (4.7)

for all smooth test functions ψ1, ψ2, ψf . Applying partial integration gives∫
Ωε1

∇pε1∇ψ1 +

∫
Ωε2

∇pε2∇ψ2 +

∫
Ωεf

Kε
f∇pεf∇ψf

−
∫
∂Ωε1

(∇pε1 · n)ψ1 −
∫
∂Ωε2

(∇pε2 · n)ψ2 −
∫
∂Ωεf

(Kε
f∇pεf · n)ψf = 0 (4.8)

for all smooth test functions ψ1, ψ2, ψf . On the boundaries ∂Ωi
⋂
∂Ω for i = 1, 2 we have chosen

ψ1 = ψ2 = 0, and we have from (4.6) that

∇pε1 · n = −Kε
f∇pεf · n (4.9)

on the boundary Γ1 and that
∇pε2 · n = −Kε

f∇pεf · n (4.10)

on Γ2 which means that the boundary conditions at the interfaces Γ1 and Γ2 will cancel each
other. For the last boundary conditions Γ3 and Γ4 for x = 0 and x = 2 respectively, we have
that ∫

Γ3

(Kε
f∇pεf · n)ψf +

∫
Γ4

(Kε
f∇pεf · n)ψf = −

∫
Γ3

εα(
∂pf
∂x

)ψf +

∫
Γ4

εα(
∂pf
∂x

)ψf . (4.11)

The periodic boundary conditions on Γ3 and Γ4 gives that the boundary conditions on Γ3 and
Γ4 cancel each other. All the boundary terms in (4.8) are cancelled and the equation is reduced
to ∫

Ωε1

∇pε1∇ψ1 +

∫
Ωε2

∇pε2∇ψ2 +

∫
Ωεf

Kε
f∇pεf∇ψf = 0 (4.12)
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for all smooth test functions ψ1, ψ2, ψf . Now let us define

Iεf =

∫
Ωεf

Kε
f∇pεf∇ψf (4.13)

and further consider this term by applying partial integration once again to get

Iεf = −
∫

Ωεf

pεf∇ · (Kε
f∇ψf ) +

∫
Ωεf

(Kε
f∇ψf · n)pεf (4.14)

for all smooth test functions ψf . Next, we consider the boundary terms∫
Ωεf

(Kε
f∇ψf ·n)pεf =

∫
Γε1

εβ(
∂ψf
∂y

)pεf −
∫

Γε2

εβ(
∂ψf
∂y

)pεf −
∫

Γε3

εα(
∂ψf
∂x

)pεf +

∫
Γε4

εα(
∂ψf
∂x

)pεf . (4.15)

For a case with periodic boundary conditions at Γε3 and Γε4 we have that pεf (x = 0, y) = pεf (x =
2, y) where y ∈ (1− ε, 1 + ε) and that

∂ψf (x = 0, y)

∂x
=
∂ψf (x = 1, y)

∂x
. (4.16)

This means that the last two boundary terms in (4.15) cancel each other. This motivates the
definition of a dual problem. Before the defining this dual problem, as in one-dimensional
case, we mention the following results that are immediately obtained by standard techniques
of testing with solutions. The above variational form provides us with the following bounds by
testing with ψ1 = pε1, ψ2 = pε2, ψf = pεf .

lemma 3. There exists a C > 0 such that pε1, p
ε
2, p

ε
f satisfy the following estimates,

‖∇pε1‖2 + ‖∇pε2‖2 + ‖εα∂xpεf‖2 + ‖εβ∂ypεf‖2 ≤ C.

The above boundedness result readily provides us with the following convergence result.

lemma 4. There exists p1, p2 such that, up to a subsequence, as ε goes to zero, pε1, p
ε
2 converge

to p1, p2 weakly in H1 and thus, strongly in L2 in their respective domains of definition.

4.2.1 Dual Problem

Definition 2. Dual problem consists of solving for ξf such that

∇ · (Kε
f∇ξf ) = 0 in Ωε

f (4.17)

together with the boundary conditions ξf = ψ1 and ξf = ψ2 on y = 1 + ε and y = 1 − ε,
respectively and periodic on Γε3 and Γε4.

As argued before, for every smooth ψf there exists a unique and smooth ξ satisfying the above
definition of dual problem. In what follows, we will therefore use ψf also to denote the solution
of dual problem to reduce the burden of additional unknowns. We can rewrite (4.17) as

∂

∂x
(εα

∂ψf
∂x

) +
∂

∂y
(εβ

∂ψf
∂y

) = 0 (4.18)

which becomes

εα
∂2ψf
∂x2

+ εβ
∂2ψf
∂y2

= 0 (4.19)
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Next, we resort to a heuristic argument to conclude that the flux satisfies,

‖εβ
∂ψf
∂y
‖∞ ≤ Cεβ−1. (4.20)

The heuristic argument is quite straightforward to follow. The test functions ψ1, ψ2 are the
boundary conditions and are of order O(1). The fracture width is of order ε and therefore, the
gradient has the scale ε−1 and multiplying with the factor εβ to make it a flux, we get the above
estimate. This argument can be made rigorous using maximum principle for the derivative of
the above equation with respect to y. This remains outside the scope of this thesis and will be
treated in a forthcoming paper based on the results in this thesis.

We can now try to derive an upscaled model and use what we have found so far∫
Ωε1

∇pε1∇ψ1 +

∫
Ωε2

∇pε2∇ψ2 = −Iεf = −
∫

Ωεf

(Kε
f∇ψf · n)pεf (4.21)

We assume ψ1 and ψ2 to have compact support in Ωε
1 and Ωε

2 which gives that

−∇ · ∇p1 = 0 in Ω1 and −∇ · ∇p2 = 0 in Ω2. (4.22)

We rewrite the first and the second term in(4.12) as

Iε1 =

∫
Ωε1

∇pε1∇ψ1 =

∫
Ωε1

−∆pε1ψ1 +

∫
∂Ωε1

(∇pε1 · n)∇ψ1 (4.23)

and

Iε2 =

∫
Ωε2

∇pε2∇ψ2 =

∫
Ωε2

−∆pε2ψ2 +

∫
∂Ωε2

(∇pε2 · n)∇ψ2 (4.24)

which gives that
Iε1 + Iε2 =

∫
∂Ωε1

(∇pε1 · n)∇ψ1 +
∫
∂Ωε2

(∇pε2 · n)∇ψ2

= −
∫

Γε1
(
∂pε1
∂y )ψ1 −

∫
Γε2

(
∂pε2
∂y )ψ2

= −
∫

Γε1
εβ(

∂ψf
∂y )pεf +

∫
Γε2
εβ(

∂ψf
∂y )pεf

(4.25)

4.2.2 Case 1, β > 1

We use the heuristic estimate on the flux term εβ
∂ψf
∂y in the last line of (4.34) and obtain that

Iε1 + Iε2 = −
∫

Γε1

Cεβ−1pεf +

∫
Γε2

εβ−1pεf → 0 (4.26)

as ε tends to zero. This gives that

= −
∫

Γε1

(
∂pε1
∂y

)ψ1 −
∫

Γε2

(
∂pε2
∂y

)ψ2 = 0 (4.27)

for arbitrary ψ1 and ψ2, yielding ∂yp1 = 0 and ∂yp2 = 0 at the boundaries Γ1 and Γ2. This, the
problem becomes decoupled.

4.2.3 Case 2, β = 1

This case follows closely the derivation in 1D case. We write down the final result directly.
Define, Ωξ,η = (0, 1)× (−1, 1). The two-scale model is given by
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∆p1 = 0 in Ω1, (4.28)

∆p2 = 0 in Ω2, (4.29)

∆ξ,ηpf = 0 = 0 in Ωγ , (4.30)

coupled through the interface conditions,

∂p1
∂y (y = 1) =

∂pf
∂η at η = −1

∂p2
∂y (y = 1) =

∂pf
∂η at η = 1

(4.31)

and
p1(y = 1) = pf at η = 1 (4.32)

and
p2(y = 1) = pf at η = −1. (4.33)

4.2.4 Case 3, β < 1

This case gives rise to the average model currently used a lot in practice. The derivation follows
the following arguments, Recall

Iε1 + Iε2 =
∫
∂Ωε1

(∇pε1 · n)∇ψ1 +
∫
∂Ωε2

(∇pε2 · n)∇ψ2

= −
∫

Γε1
(
∂pε1
∂y )ψ1 −

∫
Γε2

(
∂pε2
∂y )ψ2

= −
∫

Γε1
εβ(

∂ψf
∂y )pεf +

∫
Γε2
εβ(

∂ψf
∂y )pεf

(4.34)

Now the estimate on the flux εβ(
∂ψf
∂y )pεf being O(εβ−1 blows up for this case as ε vanishes.

At the same time, the energy estimates imply that the integrals Iεi , i = 1, 2 remain bounded.
To counterbalance this blowing up, the pressure pεf at y = 1 ± ε must vanish. This gives the
continuity of the pressure.

To obtain condition on the flux, we simply write down the original variational formulation
and obtain the strong form providing the relationship between the jump in fluxes and the
equation on the fracture line.

Thus, the upscaled model in this case consists of the following problem.

−∆p1 = 0 in Ω1, (4.35)

−∆p2 = 0 in Ω2, (4.36)

(4.37)

coupled through the interface conditions,

p1 = p2 = pf at Γ1, (4.38)

∂p1

∂y
− ∂p2

∂y
=
d2pf
dξ2

at y = 1. (4.39)

4.3 Summary of the Upscaled Models

For the three cases, β < 1, β = 1, and β > 1, we summarise the three upscaled models that we
derived above.
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1. Case 1: β > 1 Decoupled Model

∆p1 = 0 in Ω1, (4.40)

∆p2 = 0 in Ω2, (4.41)

(4.42)

and decoupled at the interface by no flow boundary conditions,

∂p1

∂y
=
∂p1

∂y
= 0 at y = 1. (4.43)

2. Case 2: β = 1 Two-scale Model
Define, Ωξ,η = (0, 1)× (−1, 1). The two-scale model is given by

∆p1 = 0 in Ω1, (4.44)

∆p2 = 0 in Ω2, (4.45)

∆ξ,ηpf = 0 = 0 in Ωγ , (4.46)

coupled through the interface conditions,

∂p1
∂y (y = 1) =

∂pf
∂η at η = −1

∂p2
∂y (y = 1) =

∂pf
∂η at η = 1

(4.47)

and
p1(y = 1) = pf at η = 1 (4.48)

and
p2(y = 1) = pf at η = −1. (4.49)

3. Case 3: β < 1 Average Model

∆p1 = 0 in Ω1, (4.50)

∆p2 = 0 in Ω2, (4.51)

(4.52)

coupled through the interface conditions,

p1 = p2 = pf at Γ1, (4.53)

∂p1

∂y
− ∂p2

∂y
=
d2pf
dξ2

at y = 1. (4.54)

In all these cases, the boundary conditions at the outer boundaries of Ω are retained and
remain unchanged.
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Chapter 5

Numerical Methods

To solve the problem described in the two previous chapters we have used MATLAB Reservoir
Simulation Toolbox (MRST), which is an open source code developed by SINTEF (Lie et
al., 2012). This MATLAB based toolbox is used to calculate the pressure distribution in the
domain Ω. The two-dimensional domain Ω is discretized, which means that the domain is
split up into a finite number of non-overlapping subdomains Ωij (Anderson & Wendt, 1995).
Each subdomain or grid cell is associated with with a certain number of variables, which is
determined when the system is solved. For a simple one-dimensional problem this can easily
be done by analytical solutions, as in (Nordbotten & Celia, 2012) but already for 2D, closed
form solutions are out of reach and with increase in the complexity of the problem we resort
to computer based tools and numerical approximations. For the two-dimensional case, the
flux and pressure distribution are solved for each domain Ω1, Ω2 and Ωf separately applying
a two point flux model which is described in 5.0.1. This is again done using MRST. The
software contains several toolboxes for performing computations using a variety of meshes and
equations applicable to the reservoir modelling and simulations. The software contains a wide
range of data structures and computational methods that can be used to make custom made
modelling tools. We use standard cell centred finite volume method, that is, we use two point
flux approximation with cell centred unknowns for the pressure with the fluxes being defined
at the edges. The standard mixed method with RT0 elements yields identical approach for
the rectangular mesh that we have considered. We take rectangular grid cells to mesh a 2D
rectangular domain and the MRST calculates the pressure in every cell and the flux through
every cell interface. in accordance with the different cases derived in Chapter 3 and Chapter 4
we have imposed different boundary conditions on the fracture interface.

5.0.1 The Two Point Flux Approximation

The two point flux approximation is used on the the pressure equation (5.1) to find the flux
over each cell interface.

∇ · (−K∇p) = q. (5.1)

As described in the theory, this is the pressure equation for a isotherm single phase system with
constant density where the gravity forces are neglected. To find the pressure, (5.1) is integrated
over every single cell Ωij and then the divergence theorem is used to obtain∫

∂Ωii

K∇p · ndS =

∫
Ωii

q dΩ, (5.2)

where n is the outward unit normal vector. Equation (5.2) is known as the conservation law.
By using (5.2), the flux over each cell interface can be approximated by the pressure in each
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neighbouring cell.

qΓik

∫
∂Γik

K∇p · ndS ≈
∑v

j=1 Tjpj , Γik = Ωi
⋂

Ωk, (5.3)

where Tj is the contribution from cell j, and v is the number of nearby cells. The pressure at

Figure 5.1: A two point flux discretization for grid cells Ωi and Ωk

xi,k is assumed to be the average of the pressure in xi and xk, and the flux from Ωi to Ωk can
be found by

qik = −
∫
∂Γik

−→nik · (Ki∇p) dS ≈ aik(pi − pik), (5.4)

where

aik =
Ai,k
−→ni,k ·Ki

di,k · di,k
. (5.5)

Here Ai,k is the area over the shared surface, di,k the distance from the center of the cell to the
interface and Ki the permeability in the cell Ωi. The expression for the flux from Ωk to Ωi is
given by

qki = −
∫
∂Γki

−→nki · (Kk∇p) dS ≈ aki(pk − pki). (5.6)

From (5.4) and (5.6) we have that

a−1
ik qik = pi − pik and a−1

ki qki = pk − pki. (5.7)

The pressure at the interface between two cells is defined such that pki = pik. This will give
from (5.7) that

a−1
ik qik − a

−1
ki qki = pi − pk. (5.8)

The fluxes qik and qki are on the same interface, which means that they have to be equal but
with different signs,

qik = −qki. (5.9)

Taking this into account we can rewrite (5.8) such that

[a−1
ik + a−1

ki ]qik = pi − pk, (5.10)

and then obtain the flux over one interface by rearranging the equation into

qik = [a−1
ik + a−1

ki ]−1(pi − pk), (5.11)

This flux term can be inserted into the pressure equation (5.1) which then give∑ni
k=1 qik = [a−1

ik + a−1
ki ]−1(pi − pk) = q all Ωi ⊂ Ω i = 1, ..., n. (5.12)

where ni is the face number for the cell Ωi and n is the total number of cells (Lie, 2015). This
equation can easily be solved and used to plot a pressure for a simple domain. In a fractured
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medium there may not be an easy way to find the flux at every interface. The fracture size
or the sudden change of permeability may give an unconformity of the flux, and this has to
be taken into account when solving the problem. For the simulations in this model we will
calculate the jump in flux over a fracture with three different models. The models represent the
three different cases found in Chapter 3.

5.1 Numerical Models

There are three different models in Chapter 3 and Chapter 4 that are studied. The quality
of each model is considered with respect to the values of α and β, similar to the derivation
using the weak solutions. One model where we have a linear profile, one where there is a
discontinuity of the pressure at the fracture interfaces but the fracture pressure profile connects
the discontinuities and one where the fracture can be treated as a no flow boundary condition.
The three models are all tested against an epsilon model which serves as the reference solution.
In the Epsilon model, we resolve the fracture explicitly.

5.1.1 The Average Model

This model is working for β < 1 and we call it the average model because the fracture pressure
basically is the average of the surrounding pressures. The interfaces Γ1 and Γ is given Dirichlet
boundary conditions calculated in the fracture. The fracture is considered as a thin domain

(a) The domain considered in the
epsilon model. (b) The interface between a single grid block of

Ω1, Ωε and Ω2.

Figure 5.2: The separation of the domain which is done to solve for the average model.

Ωf with thickness of one grid cell like shown in Figure5.2a. In Figure 5.2b one grid block Ωε

is considered. The pressure in the middle of the grid is set to be the average of the pressures
in xi and xk. The pressures conditions on the interfaces xi,ε and xε,k will become equal to the
pressure in Ωε.

5.1.2 The Two Scaled Model

In this model the fracture is considered as a separate domain, Ωf , as shown in Figure 5.3. The
domains Ω1 and Ω2 are first solved separately using the pressure conditions imposed on the
sides of the domains, then the flux calculated to leave Ω1 and Ω2 through the interfaces Γ1 and
Γ2 is used as the Neumann boundary conditions on the top and bottom interfaces of Ωf . This
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Figure 5.3: The domains Ω1 and Ω2 are separated by a layer γ, which is called γ1 or γ2 depending
of the side of the interface. In the numerical models the interface conditions are calculated using
the domain Ωf

domain represents the fracture and is described like the domain derived in Chapter 3 for case
4, and the flux and pressure problem can be described like

∂2pεf
∂x2

+
∂2pεf
∂γ2

= 0, (5.13)

for a one-dimensional case, and like

kxx
∂2pεf
∂x2

+
∂2pεf
∂γ2

= 0 (5.14)

for a two-dimensional case. Here γ = 1−y
ε like in Chapter 3 for the cases where β = 1, and kxx

is the permeability in the x-direction. This problem is solved a few times and the boundary
conditions are updated for each iteration. This is a standard domain decomposition approach
for solving this model.

5.1.3 The Decoupled Model

This is a model for fractures where the permeability in the y-direction is characterised by β > 1.
The two layers at each side of the fracture is treated as two decoupled domains separated by
an aquitard or barrier. The domains Ω1 and Ω2 are solved separately with a no flow boundary
condition at the fracture interface and Dirichlet condition at the other sides of the domains.

5.1.4 The Epsilon Model

The epsilon model is given the name because the fracture thickness is represented by the size
ε. The domain considered in this model is of size Ω1 + Ωf + Ω2, where the permeability is
specified in each grid cell of the domain. The grid cells on the location of the fracture is given
the permeability if the fracture. The model is solved applying the TPFA solver included in
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MRST. The results from the epsilon model gives a basic idea of how the medium would look
like if it was a homogeneous domain where the only change was the permeability. This model
is used as the reference model for the other cases.

5.1.5 Error Estimates

There are two types of error that are calculated in the results. The first one is the pressure error
which is used to find the error for a certain x-value, usually for x = 1 in the one-dimensional
case. The error is plotted with respect to y. This is done by taking the absolute pressure
difference between the specific fracture model and the reference model (epsilon model).

Error =
|pi − pref |

.
(5.15)

To find the relative domain error in the domain for different values of α and β we have applied
the Euclidean norm (Kincaid & Cheney, 2002). The square of the pressure difference between
the two models are summed together for all grid blocks in the domain, divided by the sum of
the pressure in the reference model and then taken the square root of.

Domain error =

√√√√∑N
n=1(pi − pref )2∑N

n=1 p
2
ref

(5.16)

This error is plotted for different values of α and β to show where the different models are good
approximations or not.
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Chapter 6

Simulation Results

In this chapter, we present the numerical simulation of both the reference problem and the
different upscaled models obtained in Chapters 3 and 4. The problem that we solve numerically
remains the same as the one analysed before in these chapters. That is, we consider a single
phase flow in a 2D geometry without including the effects of gravity. At the risk of repetition,
we recall once again the model problem, (see also 4)

div u = 0 in Ω
u = −K∇p in Ω

(6.1)

where the domain is the same as in Figure 4.1. For the boundary conditions, we will use the
Dirichlet boundary conditions for all the boundaries. Note that this is in contrast with the
theoretical discussions in Chapter 4, Section 4 where we assumed periodic boundary conditions
for the fracture lateral surfaces. The width of the fracture in all our simulations is given as
ε = 2

500 unless it is otherwise specified. In accordance with the theoretical discussions, we begin
with the one-dimensional case.

6.1 One-Dimensional Case

We retain the 2D geometry for also studying the 1D problem and simply adapt the boundary
conditions in such a way that the problem becomes pseudo 1D. Specifically, we take no flow
boundary conditions on the sides of the domain parallel to the y-axis. The boundary conditions
at the top of the domain is p1 = 0, and at the bottom p2 = 1. For the sides there are no flow
boundary conditions. The problem is solved with the models described in the previous chapter
for different values of β and compared to the reference solution.

For all the three upscaled models, we study the accuracy of this model for differ-
ent values of β. In particular, we also study the validity of approximation outside
the validity range of this model. We then show the error behaviour corresponding
to different values of β. we refer to Section 4.3 for the summary of these upscaled models
obtained for different values of β. Just to recall, we once again present the upscaled models
here.

For the three cases, β < 1, β = 1, and β > 1, we summarise the three upscaled models
that we derived above. Recall that for the boundary conditions taken above, this pseudo 1D
problem has solutions p1, p2, pf only depending upon y and are independent of x. This justifies
the ordinary derivatives below. As we will see later, in 2D case, we will retain the partial
derivatives replacing the ordinary derivatives. Interestingly, the 2D upscaled model also has the
same structure.
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1. Case 1: β < 1 Average Model

d2p1

dy2
= 0 in Ω1, (6.2)

d2p2

dy2
= 0 in Ω2 (6.3)

coupled through the interface conditions,

p1 = p2 at Γ1, (6.4)

dp1

dy
=
dp2

dy
at Γ1. (6.5)

2. Case 2: β = 1 Two-scale Model
Define, Ωγ = (−1, 1). The two-scale model is given by

d2p1

dy2
= 0 in Ω1, (6.6)

d2p2

dy2
= 0 in Ω2, (6.7)

d2pf
dγ2

= 0 in Ωγ , (6.8)

coupled through the interface conditions,

∂p1
∂y (y = 1) =

∂pf
∂γ at γ = −1

∂p2
∂y (y = 1) =

∂pf
∂γ at γ = 1

(6.9)

and
p1(y = 1) = pf at γ = −1 (6.10)

and
p2(y = 1) = pf at γ = 1. (6.11)

3. Case 3: β > 1 Decoupled Model

d2p1

dy2
= 0 in Ω1 (6.12)

d2p2

dy2
= 0 in Ω2 (6.13)

and decoupled at the interface by no flow boundary conditions,

dp1

dy
=
dp1

dy
= 0 at Γ1. (6.14)

In all these cases, the boundary conditions at y = 0 and at y = 2 are retained and remain
unchanged.
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6.1.1 The Average Model

We consider the following cases:

1. We take β = −0.5 and compute the pressure profile using the Average Model. We obtain
the expected linear profile for pressure. See Figure 6.1.

2. We choose β = 0.5 and solve both the full model, that is, the reference Epsilon model and
the upscaled model. We compare the accuracy of the solution and behaviour of the error.
(See Figure 6.2)

3. For β = 1.1, we again compute both the reference solution and the Average model solution.
We compare the error for this case. Note that this value of β is outside the validity range
of the upscaled model. (See Figure 6.2)

4. Finally, we choose a range of β values and show the behaviour of the error with respect
to the reference Epsilon model (See Figure 6.3).

First, the problem is solved with the average model for β = −0.5 and the pressure is plotted
in Figure 6.1a. The pressure change is linear from y = 0 to y = 2, and the pressure remains
independent of x. This is shown in Figure 6.1b where the pressure is plotted for p(0.4, y), p(1, y)
and p(1.6, y). In Figure 6.2, the pressure calculated with the Average model is compared with
the Epsilon model for different values of β to study the pressure difference calculated using the
two models.

(a) Pressure profile of the domain Ω with
β = −0.5.

(b) Pressure cange with respect to y at x=0.4,
1 and 1.6.

Figure 6.1: The two plots show the pressure distribution for the whole domain (a) and for
different values of x. The pressures for x = 0.4, 1 and 1.6 is shown in (b). The plots at different
locations for x confirm that the pressure remains independent of x-values.

The plots in In Figure 6.2a and Figure 6.2c, where the pressure is plotted against the y-value for
both the average model and the epsilon model, shows that there is a little error in the pressure
when β < 1, showing a good agreement between the upscaled model and the reference model.
The pressure difference in the two models increases as the value of β becomes larger. This is as
expected considering the calculations in Chapter 3. The plots in Figure 6.2e and Figure 6.2f,
gives the pressure and error for a case where we do not expect the model to work. This is when
β is larger than 1. A different model should be considered as the average model no longer suits
as a good approximation. The relative domain error is calculated in Figure 6.6

From the above plots, we make the following conclusions.
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6.1.2 Conclusions

1. For the case β = −0.5 the Average model shows the expected linear profile for pressure
as shown in Figure 6.1. This case is within the validity range of β < 1 for which the
Averaged model is derived.

2. For β = 0.5, the reference Epsilon model and the upscaled model show a good agreement.
Also, the error shows that it is maximum at the fracture location and gradually reduces
as we move away from the fracture interface. Within the subdomains, the errors are likely
to be less if the regions near the fracture interfaces are discounted. These results are
shown in the Figures 6.2. Furthermore, we also see that the approximation improves for
β = −0.5. Thus, the Averaged model provides an improved approximation as we take
lower values of β.

3. For β = 1.1 lies outside the validity range of this model. For this case, we see that the
matching between the reference solution and Average model is quite poor suggesting that
this is no longer a useful approximation for the reference model. This further strengthens
the argument that the upscaled models have a definite range of validity outside which
they perform quite poorly. These results are shown in Figure 6.2.

4. Finally, we choose a range of β values and show the behaviour of the error with respect
to the reference Epsilon model (See Figure 6.3). We observe that as β increases, the
approximation quality of this model reduces drastically. Especially, outside the range of
validity, the approximation quality is already unacceptable. At the same time, within the
validity range, this provides a good agreement with the quality of upscaling improving as
we reduce the value of β.
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(a) Pressure for β = 0.5. The pressure is
plotted for both the average model and
the epsilon model.

(b) This figure shows the difference in pres-
sure between the average model and the epsilon
model for β = 0.5.

(c) Pressure for β = −0.5. The pressure is
plotted for both the average model and
the epsilon model.

(d) This figure shows the difference in pres-
sure between the average model and the epsilon
model for β = −0.5.

(e) Pressure for β = 1.1. The pressure is
plotted for both the average model
and the epsilon model.

(f) Difference in pressure between
the average model and the epsilon model
for β = 1.1.

Figure 6.2: Pressure plots for two different values of β.
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Figure 6.3: The domain error for the average model using the euclidean norm given for different
values of β. The error is computed with respect to the reference solution
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6.1.3 The Two Scale Model

We consider the following cases

1. We take β = 1 and compute the pressure profile using the Two Scaled Model and the
reference Epsilon model. We compare the accuracy of the solution and behaviour of the
error. (See Figure 6.5)

2. We chose β = 1.5 and again solve the full model, which is both the Two Scaled Model
and the reference Epsilon Model. We compare the error for this case. Note that β is to
large, and that we are outside the validity range of the upscaled model. (See Figure 6.5)

3. We chose β = 0.5 and again solve the full model. We compare the error for this case. In
this case β is to small, and we are again outside the validity range of the upscaled model.
(See Figure 6.5)

4. Finally, we choose a range of β values and show the behaviour of the error with respect
to the reference Epsilon model (see Figure 6.6).

The two scaled model is assumed to be a good approximation for β = 1. The model is tested
for β = 1 and the pressure in plotted in Figure 6.4. The plot shows that most if the pressure
change happens in the fracture, but some of it occurs in Ω1 and Ω2.

Figure 6.4: The pressure is plotted with respect to x and y for β = 1.

We have from 6.5a and 6.5b that the model can be used as an approximation for β = 1 and
from the other plots in Figure 6.5 that it is not a good model for β = 1.5 or β = 0.5. The
domain error for the model is plotted with respect to β in Figure 6.6 using the Euclidean norm.
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(a) Pressure for β = 1. (b) Pressure difference for β = 1.

(c) Pressure for β = 1.5. (d) Pressure difference for β = 1.5.

(e) Pressure for β = 0.5. (f) Pressure difference for β = 0.5.

Figure 6.5: The pressure given by the two scaled model is plotted and compared with the
pressure given by the epsilon model.
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Figure 6.6: The domain error for different values of β, for the two scaled model. The error is
calculated using the euclidean norm and with respect to the reference solution.

6.1.4 Conclusion

1. For the case β = 1 the Two Scaled Model shows that there is a pressure change inside
and outside of the fracture as expected. This case is inside the validity of the upscaled
model (See Figure 6.5).

2. For β = 1.5 we see that the Two Scaled Model and the reference Epsilon Model matches
poorly. The model in no good as an approximation in this case. (See Figure 6.5)

3. For the case β = 0.5 we are again outside the validity range of the upscaled model. This
shows that the validity range of this model is limited. (See Figure 6.5)

4. Finally, we choose a range of β values and show the behaviour of the error with respect to
the reference Epsilon model (see Figure 6.6). We observe that the approximation quality
of this model increases as the value of β approaches 1. Within validity range however,
this model can provide as an good upscaled model.
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6.1.5 The Decoupled Model

We consider the following cases

1. We take β = 2 and compute the pressure profile using the Decoupled Model and the
reference Epsilon model. We compare the accuracy of the solution and behaviour of the
error, and see that we obtain an expected decoupled pressure profile (See Figure 6.7).

2. We do again chose β = 2, and this time we reduce the size of the fracture 100 times. We
solve for both the Decoupled Model and the reference Epsilon model, and plot the error
(see Figure 6.8).

3. We compare the errors obtained for β = 2 for different sizes of epsilon and plots the
difference in Figure 6.9b.

4. Finally, we choose a range of β values and show the behaviour of the error with respect
to the reference Epsilon model (see Figure 6.10).

The calculations in Chapter 3 showed that the fracture acts as an barrier β > 1. There is
no information going trough the fracture, and the domain becomes decoupled. In Figure 6.7,
the pressure is solved with the decoupled model for β = 2 and plotted with respect to x and
y.The top half takes the boundary pressure from the top and distributes this to the domain,
and the bottom half takes the pressure from the bottom boundary pressure which is given to
the bottom half of the domain.

The plots in Figure 6.8 shows that there is a small difference in the pressure between the
decoupled model and the epsilon model for β = 2. The way of decoupling the domains can be
justified. The plots in Figure 6.8c and Figure 6.8d shows that the error of the model decreases
when the grids cells becomes smaller. By decreasing the grid size by a hundred times the
pressure difference becomes a hundred times smaller. By reducing the grid size, the fracture
becomes thinner, while the permeability in the fracture decreases, and the reference model gives
a more decoupled pressure profile. The error difference shown in Figure 6.9 is calculated using
this formula

E(y) =
∆p100(y)

∆p(y)
(6.15)

where p is the pressure in the first calculation, and p100 is the pressure when the grid size is
hundred times smaller. The relative domain error for the decoupled model is plotted in Figure
6.10. This shows that the model can be used for β > 1 as long as ε→ 0

6.1.6 Conclusion

1. For the case β = 2 the Decoupled Model shows that decoupled pressure profile is a valid
approximation for this case (See Figure 6.7).

2. By reducing the size of the fracture 100 times we see that the error is reduced 100 times.
The grid size does have a larg effect on the errors that we approximate (see Figure 6.9b).

3. Finally, we choose a range of β values and show the behaviour of the error with respect
to the reference Epsilon model (see Figure 6.10). We observe that the model is a good
approximation, and that it has validity when β > 1
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Figure 6.7: The figure shows the pressure distribution in Ω for a decoupled problem like we
have when β = 2.
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(a) The pressure in the domain for a
decoupled problem for β = 2.

(b) The pressure difference between the decou-
pled problem and the reference problem.

(c) The pressure in the domain for a
decoupled problem with β = 2 with grid
size a 100 times smaller than in 6.8a.

(d) The difference between the decoupled prob-
lem and the reference problem with grid size a
100 times smaller than in 6.8b.

Figure 6.8: The figures show the pressure in Ω using the decoupled method, and the difference
between the decoupled method and the epsilon method. The figures does also show the affect
the grid size has on the difference between the average and the epsilon model.
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(a) The change in pressure when the grid size
becomes 10 times smaller.

(b) The change in pressure when the grid size
becomes 100 times smaller.

Figure 6.9: The two figures show how the pressure difference in the decupled model and the
epsilon model becomes smaller when the grid size is reduced.

Figure 6.10: The domain error for different values of β for the decoupled model
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6.2 Two-Dimensional Case

For the two-dimensional case we retain the same 2D geometry as used to study the one-
dimensional case where we do no longer have no flow boundary conditions on the sides. The
boundary conditions at the top of the domain is p1 = 0, and at the bottom p2 = 1. For the
sides, the boundary conditions to the left is p3 = 0 and to the right p4 = 1. The problem is
solved with the models described in the previous chapter for different values of α and β and
compared to the reference solution.

For all the three upscaled models, we study the accuracy of this model for dif-
ferent values of α and β. In particular, we also study the validity of approximation
outside the validity range of this model. We then show the error behaviour corre-
sponding to different values of α and β. We refer to Section 4.3 for the summary of the
upscaled models obtained for different values of α and β. Just to recall, we once again present
the upscaled models here.

For the three cases, β < 1, β = 1, and β > 1, we summarise the three upscaled models that
we derived above. Interestingly, the 2D upscaled model also has the same structure. as the
one-dimensional upscaled models.

1. Case 1: β < 1 Average Model

∂2p1

∂x2
+
∂2p1

∂y2
= 0 in Ω1, (6.16)

∂2p2

∂x2
+
∂2p2

∂y2
= 0 in Ω2 (6.17)

coupled through the interface conditions,

p1 = p2 at Γ1, (6.18)

∂p1

∂y
=
∂p2

∂y
at Γ1. (6.19)

2. Case 2: β = 1 Two-scale Model
Define, Ωγ = (−1, 1). The two-scale model is given by

∂2p1

∂x2
+
∂2p1

∂y2
= 0 in Ω1, (6.20)

∂2p2

∂x2
+
∂2p2

∂y2
= 0 in Ω2, (6.21)

∂2pf
∂x2

+
∂2pf
∂γ2

= 0 in Ωγ , (6.22)

coupled through the interface conditions,

∂p1
∂y (y = 1) =

∂pf
∂γ at γ = −1

∂p2
∂y (y = 1) =

∂pf
∂γ at γ = 1

(6.23)

and
p1(y = 1) = pf at γ = −1 (6.24)

and
p2(y = 1) = pf at γ = 1. (6.25)
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3. Case 3: β > 1 Decoupled Model

∂2p1

∂x2
+
∂2p1

∂y2
= 0 in Ω1, (6.26)

∂2p2

∂x2
+
∂2p2

∂y2
= 0 in Ω2 (6.27)

coupled through the interface conditions,

p1 = p2 at Γ1, (6.28)

∂p1

∂y
=
∂p2

∂y
at Γ1. (6.29)

and decoupled at the interface by no flow boundary conditions,

∂p1

∂y
=
∂p1

∂y
= 0 at Γ1. (6.30)

In all these cases, we have used Dirichlet boundary conditions for pressure at (0, y) = 0, at
(2, y) = 1, at (x, 0) = 0 and at (x, 2) = 1. These pressure boundary conditions are retained and
remain unchanged for all the upscaled models.

6.2.1 The Average Model

1. We start with taking β = 1 and α = 1 and compute the pressure profile using the Average
Model, and the error with respect to the reference Epsilon model. We do no longer obtain
a linear profile for pressure. See Figure 6.11.

2. We choose β = 0 and α = 0 and solve both the full model, that is, the reference Epsilon
model and the upscaled model. We compare the accuracy of the solution and behaviour
of the error, and we then choose α = 2 and β = 0 to see the effects of the vertical
permeability (See Figure 6.2).

3. We choose a range of α and β values and show the behaviour of the error with respect to
the reference Epsilon model (See Figure 6.12).

4. We finally locates the position of the error in Figure 6.13. Here α = 0 and β = 0

Like in the one-dimensional case we expect this model to be working when there is an easy
flow of information through the fracture in the y-direction. This happens when β < 1. This is
tested in Figure 6.12 where the relative domain error is plotted for different values of α and β,
and the figure shows that this model works as long as β < 1. From all the plots in Figure 6.11
and in from Figure 6.13 it becomes clear that the errors in this model is at its largest close to
the fracture.

6.2.2 Conclusion

1. For the case where β = 1 and α = 1 the pressure profile and the error with respect to
the reference Epsilon model shows that the Average Model is no good approximation for
this case. Note that the value of β and α is outside the validity range for this model. See
Figure 6.11.
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(a) Pressure for α = β = 1. (b) Pressure difference between the average
model and the reference model for α = β = 1.

(c) Pressure for α = 0 and β = 0.
(d) Pressure difference between the average
model and the reference model for α = 0 and
β = 0.

(e) Pressure for α = 2 and β = 0.
(f) Pressure difference between the average
model and the reference model for α = 2 and
β = 0.

Figure 6.11: These figures shows the pressure plots at fixed x equal to 0.4, 1 and 1.8for different
α and β values and the error in the different cases.
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Figure 6.12: The relative domain error for different values of α and β for the average model in
a two-dimensional domain.

Figure 6.13: The error is plotted with respect to x and y to locate where the error occurs.
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2. For β = 0 and variations in α we see that there is a good match between the reference
Epsilon model and the upscaled model, and that the variation in α-value does not have
an effect on the error for this particular case for β = 0. (See Figure 6.12).

3. We choose a range of α and β values and show the behaviour of the error with respect
to the reference Epsilon model (See Figure 6.12). We observe that the Average model is
validated for β < 1 and that the value of α does not play a significant role to validity of
the Average Model

4. We finally locates the position of the error in Figure 6.13, and see that the error becomes
larger closer to the fracture.
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6.2.3 The Two Scale Model

1. We start with taking β = 1 and α = 1 and solve the problem using the Two Scaled Model
and the Epsilon Model. We find the error with respect to the reference Epsilon model
(See Figure 6.14).

2. We choose β = 1 and α = −1 and solve both the full model, that is, the reference Epsilon
model and the upscaled model. We compare the accuracy of the solution and behaviour
of the error (See Figure 6.14).

3. We choose β = 1 and α = 1.5 and solve both the reference Epsilon model and the upscaled
model. We compare the accuracy of the solution and behaviour of the error (See Figure
6.14).

4. We choose a range of α and β values and show the behaviour of the error with respect to
the reference Epsilon model (See Figure 6.15).

5. We finally locates the position of the error in Figure 6.16. Here α = 1 and β = 1

For a one-dimensional domain we have shown that this model works when the permeability
in the y-direction is ε1, which is when β = 1, but that does not necessary mean that the two
scaled model will be a good approximation for a two-dimensional case. The permeability in the
x-direction may play a significant role on the pressure distribution. In Figure 6.14a and Figure
6.14c the pressure is plotted for β = 1, but for different values of α. This does not seem to
affect the epsilon model, but it has a great influence on the Two Scaled Model as shown in the
errors plotted in Figure 6.14b and Figure 6.14d. The model does have some limitations with
respect to α

6.2.4 Conclusion

1. For β = 1 and α = 1 we find that the difference in the Two Scaled Model and the Epsilon
Model is low. (See Figure 6.14).

2. For β = 1 and α = −1 the reference Epsilon model and the upscaled model gives two
different pressure profiles. There is a jump in the pressure for the Two Scaled Model while
the Epsilon is almost continuous (See Figure 6.14).

3. For β = 1 and α = 1.5 the difference in the two models is small. By changing α from −1
to 1.5 we reduce the difference between the Two Scaled Model and the Epsilon Model.
The validity is dependent on α (See Figure 6.14).

4. We choose a range of α and β values and show the behaviour of the error with respect
to the reference Epsilon model (See Figure 6.15). It becomes clear that the model is
dependent on the α value as well as the β value.

5. The error location plotted in Figure 6.16 gives that the error occur close to the fracture.
Here α = 1 and β = 1

59



(a) Pressure for α = β = 1. (b) Pressure difference between the two scaled
model and the reference model for α = β = 1.

(c) Pressure for α = −1 and β = 1.
(d) Pressure difference between the two scaled
model and the reference model for α = −1 and
β = 1.

(e) Pressure when α = 1.5 and β = 1.
(f) Pressure difference between the two scaled
model and the reference model for α = 1.5 and
β = 1.

Figure 6.14: The figures show the pressure profile at x = 0.4, 1 and 1.8 with respect to y for
different values of α and β, and the pressure difference between the two scaled model and the
reference model in the different cases.
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Figure 6.15: The domain error in the two scaled model for different values of α and β. The
error is calculated with respect to the epsilon model using the euclidean norm.

Figure 6.16: This plot shows the location of the error with respect to x and y. In this plot
α = β = 1.
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6.2.5 The Decoupled Model

We consider the following cases:

1. We take α = β = 0 and solve the model using the Decoupled Model and the Epsilon model.
The decoupled profile is harder to see now that there are dirichlet boundary conditions
on the sides of the domain. See Figure 6.1. For this case we are outside of the validity
range of this model

2. We choose α = 1 and β = 1 and solve both the full model, that is, the reference Epsilon
model and the upscaled model. We compare the accuracy of the solution and behaviour
of the error. (See Figure 6.17)

3. For α = β = 2, we again compute both the reference solution and the Average model
solution. We compare the error for this case. This value of β is inside the validity range
of the upscaled model. (See Figure 6.2)

4. We choose a range of α and β values and show the behaviour of the error with respect to
the reference Epsilon model (See Figure 6.18).

5. Finally we plot the pressure difference between the Decoupled model and the Epsilon
model with respect to x and y to show the location of the error. This is done for α = β = 2

This model is, like in the one-dimensional case, expected to be a good approximation when
the permeability is greater than ε1 in the y-direction. The relative domain error plotted in
Figure 6.18 tells us that the Decoupled model is valid when β > 1, and it shows us that the
α-value has little or no impact of the validity of this model.

6.2.6 Conclusion

1. For α = β = 0 there is a gap between the Decoupled Model and the Epsilon model. This
is as expected as this case is outside the validity range of β > 1 (See Figure 6.1).

2. For α = 1 and β = 1 the Decoupled Model is a good approximation to the problem. The
difference from the reference Epsilon model is small even though we expected this model
to have validity for β > 1 (See Figure 6.17).

3. For α = β = 2, we see that the Decoupled Model can be used as an good approximation
to the problem. This value of β is inside the validity range of the upscaled model. (See
Figure 6.2)

4. We choose a range of α and β values and show the behaviour of the error with respect to the
reference Epsilon model (See Figure 6.18). We observe that the approximation quality of
this model increases as the value of β increases. The error increases fast especially outside
the validity range. This provides a good agreement with the quality of the upscaling
improving as we increase β

5. The plot of the pressure difference between the Decoupled model and the Epsilon gives
us that the error is located close to the fracture.
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(a) Pressure profile for α = β = 0. (b) Pressure difference between the decoupled
model and the reference model for α = β = 0.

(c) Pressure profile for α = 1 and β = 1. (d) Pressure difference between the decoupled
model and the reference model for α = 1 and
β = 1.

(e) Pressure profile for α = 2 and β = 2.
(f) Pressure difference between the decoupled
model and the reference model for α = 2 and
β = 2.

Figure 6.17: The pressure profiles and the pressure differences for the decoupled model are
ploted for x = 0.4, 1, and 1.8 for different values of α and β.
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Figure 6.18: The domain error in the decoupled model. The error is calculated with respect to
the epsilon model for different values of α and β using the euclidean norm

Figure 6.19: This figure shows where the error is located with respect to x and y for α = β = 2
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Chapter 7

Conclusion

Throughout this thesis we have rigorously derived upscaled models for fractured flow as the size
of the fracture ε→ 0. This has been studied by scaling the permeability as an exponent of the
width of the fracture, and we have studied the quality of the models for different exponential
values α and β. We have derived a weak formulation and an analytical solution of a dual problem
in one-dimension to estimate the flux in a fracture, and investigated numerical computations for
the upscaled model. Our numerical computations in two-dimension reveal that in the absence
of periodic boundary conditions, the flow profile inside the fracture may become quite complex.

Detailed observations concerning the quality of upscaling have been discussed in Chapter
6. We point out some of the general observations here. We observe that the upscaled models
approximate the reference solution quite well within the validity range of α, β, the parameters
that characterise the permeability of the fracture. Moreover, we see that the approximation is
quite poor when the parameter values are outside the validity range. This underlines the central
point of this thesis that the upscaled models need to be derived corresponding to the parameter
range we have in a particular problem. Finally, we note that the boundary conditions on the
lateral sides of the fracture influence the upscaling quality. We also see that both α and β
influence the error behaviour for any particular choice of upscaled model.

7.1 Further work

The thesis considers the simplest model available for studying the upscaling of fracture flow.
Several extensions of this study can profitably use the techniques and insights developed in
this thesis. In particular, we point out the following extensions of this work that need to be
considered and left for future studies.

1. The 2D problem has not yet been completed in full detail. Whereas we have pointed
out certain structure of the upscaled model and performed numerical computations, a
complete study of this model remains unaccomplished. In particular, for the cases when
α and β influence the upscaled model in the case when the boundary conditions are not
periodic in the lateral direction. Also, the Dual problem approach that we have developed
here remains incomplete in the case when β < 1. For this case, the energy methods
work whereas we have not been able to complete the arguments using the Dual problem
approach. Moreover, certain arguments for 2D case are still heuristic though they can be
made rigorous by employing abstract mathematical ideas that are outside the scope of
this thesis.

2. In terms of the models, we have only considered the simplest model. Several extensions
are due. To begin with, we can extend the results to the parabolic case. A linear heat
equation, for example, can be dealt with the results derived in this work without much
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difficulty. However, what remains incomplete is any extension to non-linearity or including
further models. For instance, these results should be extended to the case of a reactive
transport such as described by (Pop, Bogers, & Kumar, 2016; Kumar, Pop, & Radu, 2014,
2013).

3. In terms of geometry, we have again considered the simplest geometrical shape. These
results should be extended to the case when the fracture surface is non-planar. This would
require defining the surface derivatives and concepts from differential geometry. Moreover,
extending the problem to work for a three-dimensional problem for a planar fracture can
be performed using the arguments here for certain cases. However, a full 3D problem even
in the case of planar fracture remains unresolved.

4. As previously mentioned, the extension to more complex models such as multiphase flow
and numerical methods to solve them (see e.g., (F. A. Radu, Nordbotten, Pop, & Kumar,
2015; F. Radu, Pop, & Knabner, 2004; Pop, Radu, & Knabner, 2004; F. A. Radu, Pop, &
Knabner, 2008; F. A. Radu, Pop, & Attinger, 2010)) will require more advanced techniques
than the ones in this thesis.
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