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Abstract. We describe the Bayesian user-friendly model
for palaeo-environmental reconstruction (BUMPER), a
Bayesian transfer function for inferring past climate and
other environmental variables from microfossil assemblages.
BUMPER is fully self-calibrating, straightforward to apply,
and computationally fast, requiring ∼ 2 s to build a 100-
taxon model from a 100-site training set on a standard per-
sonal computer. We apply the model’s probabilistic frame-
work to generate thousands of artificial training sets under
ideal assumptions. We then use these to demonstrate the sen-
sitivity of reconstructions to the characteristics of the train-
ing set, considering assemblage richness, taxon tolerances,
and the number of training sites. We find that a useful guide-
line for the size of a training set is to provide, on average,
at least 10 samples of each taxon. We demonstrate general
applicability to real data, considering three different organ-
ism types (chironomids, diatoms, pollen) and different recon-
structed variables. An identically configured model is used
in each application, the only change being the input files that
provide the training-set environment and taxon-count data.
The performance of BUMPER is shown to be comparable
with weighted average partial least squares (WAPLS) in each
case. Additional artificial datasets are constructed with sim-
ilar characteristics to the real data, and these are used to ex-
plore the reasons for the differing performances of the differ-
ent training sets.

1 Introduction

Transfer functions are numerical tools that are widely used
to infer past environment from species (taxon1) assemblages
of microfossils preserved in lake or ocean sediments (Im-
brie and Kipp, 1971; Birks and Seppä, 2004; Birks et al.,
2010). These taxon assemblages can provide a strong indi-
cator of the environmental characteristics of the habitat in
which the microfossils were found. Numerical relationships
can be developed between present-day taxon distributions
and the environment, and by applying the principle of uni-
formitarianism (Rymer, 1978), these relationships can esti-
mate palaeo-environments by examining the presence and
abundance of palaeo-taxa. Here we take a Bayesian approach
and develop a transfer-function model that is tested on three
different organism types (chironomids, diatoms, pollen). Al-
though Bayesian transfer functions have a moderately long
history (Vasko et al., 2000; Korhola et al., 2002; Haslett et
al., 2006) they are still not routinely employed by palaeo-
ecologists, who generally apply frequentist approaches, such
as weighted averaging (Birks et al., 1990). The advantages
of frequentist approaches are that they are relatively straight-
forward to understand and apply, and that they are computa-
tionally fast. In contrast, Bayesian approaches tend to involve

1A taxon is a biological entity of any taxonomic rank (e.g. fam-
ily, genus, species or group of morphologically similar species)
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more complex mathematics and can be computationally de-
manding. The advantages of Bayesian approaches, however,
are numerous and include the use of prior information (van
Woesik, 2013).

The field of Bayesian palaeo-environmental statistics is
rapidly developing. Recent work includes the development
of a pollen-based multinomial regression model that assumes
a Gaussian species response, with joint inference across core
time slices (Ilvonen et al., 2016) and a foraminifera-based
multinomial non-parametric response model that allows for
multi-modal and non-Gaussian taxon response curves (Cahill
et al., 2016). Parnell et al. (2016) have published an open-
source R package Bclim (Parnell et al., 2015) that uses pollen
response surfaces to generate a series of equally probable
joint multivariate climate trajectories.

The principal motivation for a Bayesian approach is that
the palaeo-environment is treated probabilistically, and can
be updated as additional data become available. Bayesian ap-
proaches therefore provide a reconstruction-specific quantifi-
cation of the uncertainty in the data and in the model parame-
ters. Bayesian models are in principle ideally suited to multi-
proxy reconstructions because the posteriors that are derived
from independent proxies can be combined. However, to our
knowledge, no Bayesian approach has yet been applied to
a multi-proxy reconstruction, at least in part because of the
aforementioned difficulties with application, though we note
that Cahill et al. (2016) incorporate a second proxy (δ13C)
through a prior, assuming a normal likelihood ∼N (µi, τ )
with constant precision τ .

Here we describe the “Bayesian user-friendly model
for palaeo-environmental reconstruction” (BUMPER) and
demonstrate its general validity and ease of use through ap-
plications to both artificial and real datasets. The model can
be regarded as a Bayesian analogue to weighted-averaging-
type approaches (Birks et al., 1990) because it assumes a uni-
modal response of each taxon to the reconstructed environ-
mental variable of interest. It therefore shares many of the
weaknesses of weighted-averaging-type approaches (Hunt-
ley, 2012; Juggins, 2013), most notably by assuming that
the responses to different environmental variables are inde-
pendent. It is the task of the ecologist, assisted by multi-
variate techniques such as ordination (Hill and Gauch, 1980;
Juggins and Birks, 2012; Juggins, 2013), to ascertain which
environmental variable is the dominant driver of change in
the assemblage through time. When strong interactions are
suspected, approaches that concurrently reconstruct the in-
teracting variables may be more appropriate (Huntley, 1993,
2012).

The mathematics of BUMPER was developed and applied
to the Surface Water Acidification Programme (SWAP) di-
atom training set (Stevenson et al., 1991) in Holden et al.
(2008). The mathematics is unchanged here. Instead the pri-
mary motivation of the present study is to document the de-
velopments to the model needed to make it user-friendly.
Two important steps were to, first, develop an approach to

generalise and automate the priors for the model parameters
(we do not assume that the user has the necessary expertise
to make these decisions) and, second, demonstrate that the
model can be applied to other organism types and environ-
mental variables. We apply the model to both artificial and
real data, considering a range of different organism types to
demonstrate the model’s general applicability.

2 The model

The mathematics of BUMPER has been described in detail
(Holden et al., 2008). In this section we summarize the under-
lying philosophy. The principal assumption underlying the
model is that a biological taxon exhibits a unimodal response
to an environmental variable, so that both the probability of
presence and the expected abundance of a given taxon are
maximized at the environmental optimum favoured by that
taxon. Moreover, the taxon optima are fixed, so that the re-
sponse to the environmental variable of interest is assumed
to be independent of other environmental variables.

2.1 Parameter estimation

A species (or taxon) response curve (SRC) defines the prob-
ability of an observed count of a species, or taxon, as a func-
tion of the environmental variable of interest. An SRC is
defined by five (initially unknown) parameters. These pa-
rameters specify the environmental optimum and tolerance
of each taxon, together with the probability of its presence,
and its expected abundance under optimal conditions (see
Sect. 2.3 for details).

BUMPER considers 2560 possible SRCs for each taxon2

and applies Bayesian parameter estimation to quantify how
well each of the SRCs fit the observations of the training set.
Bayes equation states that the probability that a model (each
of the SRCs) is correct, in light of observational data, is pro-
portional to the probability that the data would be observed
if the model were correct. Expressed more formally, for each
of the j = 1, 2560 SRCs considered for each taxon k, prob-
ability weights are derived from the observed environmental
variable xi and the taxon count yik in each training-set site i:

prob
(
SRCjk|Yk,X

)
∝ prob

(
SRCjk

)
×

∏
i

prob
(
yik|SRCjk,xi

)
. (1)

The first term on the right hand side is the prior, the probabil-
ity that the model is correct before we consider the data. The
proportionality constant means that we have to normalise the
calculated probabilities. This is achieved from the assumed

2The model of Holden et al. (2008) considered 8000 SRCs. We
here reduce the SRC resolution from (20, 4, 5, 5, 4) to (10, 4, 4, 4,
4) in order to benefit from the ∼ 3-fold increase in computational
speed.
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constraint that for each taxon k, the following applies:∑
j

prob
(
SRCjk|Yk,X

)
= 1. (2)

From now on prob
(
SRCjk

)
is the posterior probability, the

probability of the SRC given the training data Y and X.

2.2 Environmental reconstruction

To reconstruct the environment from an observed fossil
count yk0 of each taxon k within the fossil assemblage,
the probability-weighted SRCs are used to derive likelihood
functions for each taxon of the reconstructed variable x. Here
we again use the Bayes relationship, this time stating that the
probability that a reconstructed value is correct in the light
of an observed taxon count is proportional to the probability
that the taxon count would be observed in that environment.
Considering for now a single observed taxon, Bayes’ equa-
tion can be written as follows:

prob(x|yk0)∝ prob(yk0|x) × prob(x). (3)

We derive a normalized likelihood function for the taxon,
considering only the first term on the right hand side of
Eq. (3). This allows us to treat the function as a probabil-
ity distribution of the environmental variable, given no prior
knowledge and a count of this single taxon in isolation. As
we do not know the true SRC of the taxon with certainty (in
general, the calibration will have resulted in many SRCs with
non-zero probability), the likelihood function is derived from
all significant SRCs, combined using the probability weights
calculated in Sect. 2.1, applying the law of total probability:

Ly (x|yk0)∝ prob(yk0|x)=
∑

j
prob

(
yk0,SRCjk|x

)
=

∑
j

{
prob

(
SRCjk

)
× prob

(
yk0|SRCjk,x

)}
. (4)

This expression is evaluated at 100 evenly spaced points
across a range that comfortably spans the training-set en-
vironmental range (see Sect. 2.4), and is normalized to 1.
(We note that this normalization step is required to build the
blended likelihood function in Eq. 6.)

An alternative and less-constrained presence–absence
likelihood function can be derived (and normalized as Eq. 4):

Lp (x|yk0)∝ prob(yk0 > 0|x)=
∑

j

{
prob

(
SRCjk

)
×prob

(
yk0 > 0|SRCjk,x

)}
. (5)

BUMPER derives a linear combination of these two func-
tions, as follows:

L(x|yk0)= (1− η)Ly (x|yk0)+ ηLp (x|yk0) . (6)

The motivation for this blended likelihood function is thatLy
provides a tighter constraint on the posterior, but the wide
tails contributed by Lp reduce the possibility of the correct

solution being ruled out by an outlying taxon, for instance
resulting from misidentification or unusual taphonomic pro-
cesses. We assume η = 0.5, except when building a purely
binary, presence–absence model, when η = 1.0. Hereafter,
we refer to L simply as the likelihood function of a taxon.

The posterior probability distribution for the reconstructed
variable prob(x) is derived by combining any prior knowl-
edge prob

(
x′
)

with the product of likelihood functions of all
considered taxa in the assemblage, as follows:

prob(x)∝ prob
(
x′
)
×

∏
k

L(x|yk0) . (7)

The reconstruction is evaluated at the same 100 points as the
likelihood function, and the probabilities are normalized to
1.

A point estimate for the reconstructed variable is derived
as follows:

x̂ =

∫
x prob(x) dx. (8)

A simple uncertainty metric for the reconstruction is derived
as follows:

1=

√∫ (
x− x̂

)2 prob(x) dx. (9)

2.3 Probability distribution

To apply Bayes’ equation we require an expression for the
probability of observing some count y as a function of the
environmental variable x. The assumption of a unimodal re-
sponse leads us to assume that the expected abundance (given
presence) Nik of taxon k in site i can be fitted by a Gaussian
response curve (ter Braak and Barendregt, 1986) about some
optimum value uk of the environmental variable xi , written
as follows:

Nik =Nke
−(xi−uk)

2/ 2t2k . (10)

Here Nk is the expected abundance (given presence) at the
taxon optimum, and the tolerance tk is a measure of how
rapidly the expected abundance falls off away from this opti-
mum.

The probability of presence (e.g. used to calculate the Lp
likelihood function, Eq. 5) is also assumed to follow a Gaus-
sian distribution about the same optimum, though not neces-
sarily of the same tolerance, and can be written in terms of
the expected abundance, as follows:

pik = pk
(
Nik

/
Nk
)Pk . (11)

where Pk is needed because we do not require the same tol-
erance for Nk and pk , although we can achieve this with
Pk = 1. We illustrate the role of Pk through example; Pk � 1
describes a taxon that is found at high abundance only in an
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environment that is relatively close to its environmental opti-
mum, but may also be present (albeit only at low abundance)
far away from this optimum.

Taxon-count distributions are represented with a hurdle
model (a zero-inflated distribution with truncation at zero of
the distribution of percentage counts). The probability of a
non-zero count yik (used to calculate the Ly likelihood func-
tion, Eq. 4) is assumed to follow an exponential decay, with
the decay constant defined by the expected count = 1

/
Nik ,

normalized so that the total probability of all (non-zero) per-
centage counts equals the probability of presence pik , and
is expressed as a continuous distribution, truncated at 0 and
100:

prob(yik|xi)=

(
pik

/
Nik

)
exp

(
−yik

/
Nik

)
1− exp

(
−100

/
Nik

) . (12)

The denominator normalizes the integral over the range 0<
yik ≤ 100. We note that the denominator is missing from the
description of Holden et al. (2008), although it was correctly
implemented in the model itself. The probability of absence
(yik = 0) is given by 1−pik .

2.4 Species response curve (SRC) priors

The SRCs are defined by five parameters: species or taxon
optimum uk , tolerance tk , tolerance scaling Pk , probability
of presence at environment optimum pk , and expected abun-
dance (given presence) at environmental optimum Nk . In
general we have little a priori knowledge of appropriate SRC
values, and require their priors to be uninformative. However,
for computational tractability, we need to eliminate implau-
sible parameter values.

Previous applications (Holden et al., 2008; Matthews-Bird
et al., 2016) used uniform priors for the SRC parameters
over ranges that were chosen largely on the basis of subjec-
tive judgement (and ascribing a probability of zero outside
of those ranges). However, requiring subjective judgement is
not desirable given our aim to maximize the user-friendliness
of the model, and it can be rather time consuming. To pre-
vent subjectivity, BUMPER introduces a simple automated
process, based upon an indicative taxon tolerance t ′ that is a
characteristic of the training set:

t ′ =
1
m

∑
k

√
1
nk

∑
i

(
xi − u

WA
k

)2
. (13)

For each taxon k we consider the environmental variable xi at
each site where the taxon is present, and derive a root mean
square (RMS) distance from the weighted-average optima,
uWA
k . We average across the m taxa that have at least two

training-set observations (nk ≥ 2). The weighted-average op-
tima are defined in the usual way:

uWA
k =

∑
i

yikxi

/∑
i

yik. (14)

This metric t ′ is used to automate the definition of plausible
ranges for taxon optima and tolerance. The approach we take
is analogous to precalibrating the parameters of a physical
model (Edwards et al., 2011). We only attempt to rule out im-
plausible parameter values and we ascribe equal probabilities
to all plausible parameter combinations. The precalibration
only seeks to eliminate SRCs with a probability close to zero,
and is thereby designed to avoid the trap of over-constraining
the posterior by using the training-set data twice.

We consider 10 possible values for the taxon optima, and
4 possible values for each of the 4 other parameters, giving a
total of 2560 SRC combinations. The priors for the five SRC
parameters are uniform within specified ranges:

1. Optima uk are allowed to take values in the range(
xmin− t

′
)

to
(
xmax+ t

′
)
, where xmax and xmin are the

extremes of the training-set environments. We allow op-
tima beyond the sampled environment range, but op-
tima beyond this extended range are considered un-
likely. These ranges are approximately consistent with
the subjective priors used in Holden et al. (2008), be-
ing training set ±0.5 pH units (t ′ = 0.63 pH units), and
Matthews-Bird et al. (2016), being training set ±5 ◦C
(t ′ = 3.0 ◦C).

2. Tolerances tk are allowed to take values in the range
2t ′
/

3 to 3t ′. Tolerances at the upper limit are presum-
ably unlikely, and in any event would only weakly con-
strain the reconstruction. Although tolerances below the
lower limit may be reasonable, this choice represents a
conservative constraint that, for instance, prevents un-
realistically narrow tolerances when a taxon is poorly
sampled within a training set. These ranges are consis-
tent with the subjective choices in Holden et al. (2008)
of 0.4 to 1.7 pH units, equivalent to 0.63t ′ to 2.7t ′, and
Matthews-Bird et al. (2016) of 2 to 10 ◦C, equivalent to
0.67t ′ to 3.3t ′.

3. The probability of presence at the environmental opti-
mum pk is allowed to take values in the range p′k to
2.5p′k , where p′k is the percentage of sites in which the
taxon is present. A value below p′k is clearly unlikely
as the probability of presence at the optimum must be
at least as high as the probability of presence across the
training set. The upper limit is less straightforward to
define; this choice is discussed further below.

4. The expected abundance (given presence) at the envi-
ronmental optimum Nk is allowed to take values in the
range N ′k to 2.5N ′k , where N ′k is the average count of all
non-zero observations across the training set. A value
below N ′k is clearly unlikely as the expected abundance
at the optimum must be at least as high as the average
abundance across the training set. Again, the choice of
upper limit is discussed below.
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5. The tolerance scaling Pk (Eq. 11) is allowed to take
values in the range 0.2 to 1.0. Low values (Pk � 1)
are required to represent taxa that need near-optimum
conditions to flourish at high abundance, but can sur-
vive even when conditions are far removed from this
optimum. Values Pk > 1 can be ruled out because this
would (nonsensically) describe a taxon that can flourish
at high abundance away from its optimum, but cannot
survive there. In Holden et al. (2008), Pk was allowed
to take values in the range 0.4 to 1.0. Here we reduce
the lower limit to 0.2, for reasons discussed below.

While aspects of the motivation for ranges 3–5 are dis-
cussed above, other aspects are not clearly defined by logical
considerations, these being the upper limits for pk and Nk ,
and the lower limit for Pk . These ranges were selected empir-
ically on the basis of application of the model to three train-
ing sets, being chironomid-based temperature (Matthews-
Bird et al., 2016), diatom-based pH (Stevenson et al., 1991)
and pollen-based temperature (Bush et al., 2017). We de-
fine the posterior value for a parameter to be the probability-
weighted value of that parameter across the 2560 SRCs of
the respective taxon. The posterior values of pk , Nk , and Pk
for each taxon were sorted from smallest to largest and are
plotted sequentially in Fig. 1, for each of the three train-
ing sets. The horizontal grid lines represent the four val-
ues that each parameter is allowed to take. (Note that al-
though the SRC parameters can only take one of four dis-
crete values, the probability-weighted average can take any
value within the prior range). It is apparent that the full range
of allowed values is required to describe the responses of all
taxa in all three training sets (i.e. because the extremes of the
probability-weighted averages approach the extremes of the
allowed parameter range). Furthermore it is apparent that a
wider range is not required, although there is some sugges-
tion that a slightly higher upper limit for pk could have been
allowed for the SWAP data (evidenced by the fact that 7 of
the 225 species take precisely the upper limit pk = 2.5pk′).

We note that the indicative tolerance is also used to de-
fine the environmental range considered in the reconstruc-
tion (Sect. 2.2), from

(
xmin− 6t ′

)
to
(
xmax+ 6t ′

)
. Signifi-

cant probabilities beyond this range are unlikely given the
constraints imposed upon the optima and tolerances. In any
event, as with any transfer function, the model should not
be applied under suspected extrapolation far beyond the
training-set environment.

3 Artificial training-set data

The probabilistic framework of BUMPER is well suited to
the generation of artificial training sets. In part, our motiva-
tion for artificial training sets is to investigate how the char-
acteristics of the assemblage affect the performance of the
transfer function. Additionally, an important motivation is to
apply BUMPER to a selection of training sets with differ-

Figure 1. Probability-weighted SRC parameters Nk (left-hand
axis), pk (left-hand axis) and Pk (right-hand axis) are plotted for
all taxa. Three training sets are considered: chironomid-based tem-
perature (Matthews-Bird et al., 2016), diatom-based pH (Stevenson
et al., 1991), and pollen-based temperature (Bush et al., 2017). The
x axes represent the distinct taxa in the training sets (59 chirono-
mid taxa, 225 diatom taxa, and 553 pollen taxa). For each of the
three SRC parameters, probability-weighted values are derived for
each taxon. These are ordered by increasing value and are plotted
sequentially. Horizontal grid lines represent the discrete values al-
lowed within individual SRCs.

ent characteristics to demonstrate that the model can be ap-
plied to an arbitrary training set without tuning or user mod-
ification. In all of the analyses that follow (in both Sects. 3
and 4) the identical model is applied (although we consider
the sensitivity of the model to two important assumptions).
This model internally generates precalibrated priors from the
characteristic tolerance t ′ and the environmental gradient as
described in Sect. 2.4.

The artificial data are generated from the BUMPER prob-
abilistic framework. As a result of the generation procedure,
the data are idealized and are expected to over-state perfor-
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mance relative to a training set of real data with otherwise
similar characteristics. Consider for instance that by apply-
ing the probabilistic framework to generate the training set,
taxon responses are forcibly defined to be unimodal and with
optima that are independent of other environmental variables.
Furthermore, there are no misidentifications, nor any possi-
bility of taphonomic error. However, it is worth noting that
the artificial training-sites are statistically independent; this
eliminates potentially over-optimistic performance statistics
that can arise from pseudo-replication in real spatial data that
have similar assemblage composition because of geography
proximity, and not necessarily because they experience the
same environment (Telford and Birks, 2005).

3.1 Generating artificial training sets

We generate an artificial training set for an arbitrary environ-
mental variable, under the following assumptions.

i. The training-set sites have an observed environment that
is randomly sampled from a uniform distribution over
some rangeEL toEH. This choice is arbitrary; we select
EL = 100, EH = 200. The SRC parameters and perfor-
mance statistics that follow are expressed as a percent-
age of the environmental gradient EH−EL = 100.

ii. The taxa have optima uk that are randomly sampled
from a uniform distribution in the range uL to uH. Al-
though BUMPER allows optima beyond the sampled
gradient, we here simply assume the range of taxon op-
tima is equal to the environmental gradient (uL = EL,
uH = EH).

iii. The taxa have tolerances tk that are randomly sampled
from a uniform distribution in the range tL to tH. The
characteristic tolerance of a training set is likely to im-
pact greatly upon the performance of the transfer func-
tion because it drives the taxon-turnover rate across the
environmental gradient.

iv. The taxa have probabilities-of-presence-at-optimum pk
that are randomly sampled from a modified exponential
with scale parameter βp, defined for 0≤ p ≤ 1.

f
(
p,βp

)
=

(
1
/
βp
)

exp
(
−p

/
βp
)

1− exp
(
−1

/
βp
) (15)

The denominator adjusts the exponential so that the cu-
mulative probability is 1 at p = 1. The scale parameter
βp is used to tune the assemblage for taxon richness.

v. The taxa’s tolerance scaling Pk (Eq. 11) are randomly
sampled from a uniform distribution in the range 0.2 to
1.0.

The values of the abundance parameterNk are drawn from
a modified exponential distribution (cf. Eq. 15) with scale pa-
rameter βN . The value of βN is not an input because an arbi-
trary choice will lead to an expected total number of counts

(i.e. the sum of all taxon counts within a site) that differs
from 100 %. An appropriate value of βN is derived from a
Monte Carlo approach; the expected total count is derived
from an exploratory 10 000-site training set with βN = 10 %
and then βN is scaled appropriately and the scaled value ap-
plied to generate the actual training set. BUMPER does not
model a multinomial probability distribution so that percent-
age counts generated under this approach are not constrained
to sum precisely to 100 %, even when the appropriate value
of βN is chosen. A pragmatic approach is taken to address
this issue by randomly drawing assemblages, accepting only
those with a total count of between 90 and 110 % until the re-
quired number of sites has been generated. In accepted sites
the counts are scaled to total 100 %.

3.2 Generating transfer functions from the artificial
data

In this section, we cross-validate transfer functions derived
from artificial training sets with different characteristics to
investigate how these characteristics affect the reconstruc-
tion performance. The characteristics we consider are assem-
blage richness and assemblage tolerance. We define the char-
acteristic assemblage richness as the average number of taxa
found in the training-set sites. This is varied in the artificial
ensemble through the exponential scale parameter βp. A low
value of βp ascribes low probabilities of presence, even under
optimal conditions, and leads to taxon-poor assemblages. We
define the characteristic assemblage tolerance to be the in-
dicative tolerance t ′ (Sect. 2.4). This is adjusted through the
prior range for tolerance, tL to tH. For each assemblage type
considered, training sets are generated from 25, 100, 250,
and 1000 sites, and are comprised of the same 100 randomly
generated artificial taxa.

We consider three assemblage types.

1. Low richness, high tolerance; βp = 10 %, tL = 15 %,
tH = 25 %, (solved βN = 40 %). The assemblage rich-
ness that results from these assumptions is 5.7, i.e. the
training-set sites contain on average 5.7 taxa. Tolerances
are typically 20 % of the environmental gradient.

2. High richness, high tolerance; βp = 50 %, tL = 15 %,
tH = 25 %, (solved βN = 9 %). The prior for tolerance
is unchanged from Eq. (1), but the expected probability
of presence at the taxon optima is increased, generating
taxon-rich assemblages of average richness 18.3.

3. Low richness, low tolerance; βp = 20 %, tL = 5 %, tH =
15 %, (solved βN = 30 %). The tolerance is halved rel-
ative to 1 and the expected probability of presence at
the taxon optima is approximately doubled. These two
changes together result in a taxon richness of 6.4, sim-
ilar to that of Eq. (1), but now the assemblage is com-
prised of taxa that are more sensitive environmental in-
dicators.
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3.2.1 WAPLS performance: characterising the
assemblages

Our first objective is to investigate how the characteristics of
a training set affect transfer function performance. To achieve
this objective we apply the computationally fast weighted av-
erage partial least squares (WAPLS) (ter Braak and Juggins,
1993) to large ensembles of training sets. An ensemble ap-
proach is necessary because random variability can lead to
significantly different transfer function performance, espe-
cially for small training sets. For simplicity of interpretation
we consider only the first PLS component, equivalent to stan-
dard two-way WA regression and calibration with an inverse
deshrinking (Birks et al., 1990, 2010). The WAPLS1 ensem-
ble results are plotted as the circles (with associated error
bars) in Fig. 2. These points are cross-validated (leave-one-
out) RMSEP as a function of the sampling density, defined
as the average number of training-set observations per taxon.
Each plotted circle in Fig. 2 is derived from 10 000 training-
set sites. The sites are randomly generated and assigned to a
collection of training sets of the desired size. For instance, to
generate an ensemble of 25-site training sets, the 10 000 sites
are divided into 400 training sets. This enables us to produce
robust statistics for each data point, being the mean and stan-
dard deviation of the RMSEP, derived across an ensemble of
many training sets with similar characteristics.

Unsurprisingly the low richness, high tolerance training
sets (assemblage type 1, Sect. 3.2) perform least well. As re-
constructions are derived from an average of only six taxa,
they are not well constrained and are sensitive to statisti-
cal outliers. As the taxa are typically characterized by broad
tolerance, they are relatively insensitive environmental indi-
cators. In this assemblage type the cross-validated RMSEP
decreases from 16.8± 3.3 to 10.0± 0.2 as the training-set
size increases from 25 to 1000 sites (sampling density in-
creases from 1.4 to 57). The improvement in performance
with training-set size is expected as the WA optima become
more accurately defined. However, there is only a modest im-
provement in performance as the training-set size increases
from 250 to 1000 (sampling density increasing from 14 to
57). These diminishing returns are seen across all three of the
assemblage types, and together suggest that a requirement for
an average of at least 10 observations per taxon is a useful in-
dicator for a well-characterized training set, although we note
that idealized data are presumably easier to characterise than
real (noisier) data.

An increase in assemblage richness (by a factor of approx-
imately 3, assemblage type 2) or a decrease in assemblage
tolerance (by a factor of 2, assemblage type 3), both approx-
imately halve the WAPLS1 prediction error (RMSEP reduc-
tions of between 37 and 52 %). We note that while these im-
provements cannot in general be controlled (they are char-
acteristic of the assemblage), low-richness assemblages are
likely to benefit especially from high sample counts (high

Figure 2. Application to artificial data. Reconstruction performance
plotted against the sampling density (the average number of obser-
vations per species in the training set). Colour indicates assemblage
type: low richness and high tolerance (red), high richness and high
tolerance (blue) or low richness and low tolerance (green). Circles
with error bars are the mean and standard deviation of the WAPLS1
leave-one-out RMSEP calculated across an ensemble of artificial
training sets. From each artificial ensemble, a member is selected
that has a WAPLS1 error equal to the ensemble mean. BUMPER is
applied to this training set; crosses are the BUMPER leave-one-out
RMSEP, solid lines are the BUMPER uncertainty. In summary (see
Sect. 3.2), this plot demonstrates the following: (1) reconstruction
errors of WAPLS1 (circles) and BUMPER (crosses) are similar for
all assemblages. (2) Increasing the sampling density of a training set
reduces both the reconstruction errors (circles and crosses) and the
BUMPER reconstruction uncertainty (solid lines). However, contin-
ued benefits beyond a sampling density of ∼ 10 are modest. (3) Re-
constructions from assemblages that benefit neither from high rich-
ness nor from low tolerances (high taxon turnover), plotted in red,
are associated with significantly greater error and reconstruction un-
certainty. We note that the overstatement of BUMPER uncertainty
relative to the reconstruction error (solid lines compared to crosses)
is expected for this application to idealized data (see Sect. 3.2.3).

number of counts per training-set site), which tends to in-
crease the observed species richness.

3.2.2 BUMPER performance and CPU demand

We now consider the performance of BUMPER. The previ-
ous applications of BUMPER (to real ecological data) made
two pragmatic assumptions. First, η = 0.5 (Eq. 6), blend-
ing the abundance likelihood function Ly (Eq. 4) with the
presence–absence likelihood function Lp (Eq. 5) so that the
wide tails contributed byLp allow for the possibility of outly-
ing taxon counts. Second, only including taxa that have abun-
dances > 2 % when performing a reconstruction; while very
low counts do contribute information, they are generally less
informative than high counts, they increase computational
load, and they are likely to be less robust. Neither of these
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conservative assumptions is necessary for application to the
idealized data considered here. However, we choose to retain
them for this analysis in order to avoid the risk of overstating
the performance statistics (relative to WAPLS) that are likely
to be possible in practice.

The crosses in Fig. 2 plot the leave-one-out RMSEP of
BUMPER. For each of the 12 scenarios we select 1 train-
ing set, being the first of the randomly generated ensem-
ble members that exhibits a WAPLS1 RMSEP within 0.1 of
the ensemble mean, and we use this training set to build a
BUMPER model. The performance of this BUMPER model
is generally also similar to the ensemble mean WAPLS1
performance. Similar BUMPER and WAPLS performance
statistics were previously found with the SWAP diatom-pH
training set (Holden et al., 2008) and tropical-Andean chi-
ronomids (Matthews-Bird et al., 2016). We note that individ-
ual reconstructions (as distinct from the summary statistics
of a training set) can differ significantly between the two ap-
proaches (Matthews-Bird et al., 2016), in particular because
of the increased sensitivity of the reconstruction to “low-
count” taxa (that are only ever observed in low abundance).

The CPU demands of BUMPER are dominated by the cal-
culation of the SRC probabilities (i.e. applying Eq. 1 across
all training-set sites for each taxon). This takes 0.022 s per
taxon on a standard personal computer (2.5 GHz Intel Core
i5 processor, 4 GB 1600 MHz DDR3 memory) for a 100-site
training set. The CPU demand scales approximately linearly
with number of sites. To illustrate, deriving the leave-one-out
cross-validated performance of a training set of 500 sites with
an average taxon richness of 10, would require on average
∼ 4.99×10×0.022= 1.1 s per site (i.e. to derive leave-one-
out SRC probabilities for 10 taxa from 499 training-set sites),
thereby taking ∼ 9 min to cross-validate the entire training
set.

3.2.3 BUMPER uncertainty

The solid lines in Fig. 2 plot the BUMPER uncertainty metric
1 (Eq. 9) from the reconstructions described in Sect. 3.2.2.
Although the uncertainties broadly reflect the trends in the
reconstruction error, uncertainty is significantly overstated,
being 151± 21 % of the RMSEP across the 12 training sets.
This overstatement is expected for idealized data because of
the blended presence–absence likelihood function (η = 0.5,
Eq. 6). This intentionally broadens the likelihood functions
to prevent an outlier, such as a taxon misidentification, from
ruling out the correct solution. While this assumption has
proved useful for real data, it is unnecessarily conservative
for idealized data and is therefore expected to overstate un-
certainty. Additional BUMPER models (not illustrated) were
built for each training set with η = 0.0 and including all
taxa present. These models exhibited improved RMSEP rel-
ative to the default, reduced by typically 10 %. Moreover,
these models produced posteriors that better reflect the re-
construction error, with an average uncertainty of 112± 17 %

Table 1. Training-set characteristics.

Chironomids Diatoms Pollen

Environmental gradient 25.0 ◦C 2.92 pH units 24.9 ◦C
Number of sites 59 167 682
Number of taxa 59 225 553
Average richness 7.0 50 27
Indicative tolerance 3.2 ◦C/13 % 0.63/22 % 3.0 ◦C/12 %
Sampling density 7.0 37 33

RMSEP, demonstrating that the uncertainty is meaningfully
quantified when the likelihood function is not artificially
broadened. (Nevertheless, we retain the broadened likelihood
functions for applications to real ecological data.)

4 Applications to real data

We consider three training sets of real data, using three dif-
ferent biological proxies and having different assemblage
characteristics, summarized in Table 1. The tropical chirono-
mid (mean annual temperature) dataset of Matthews-Bird
et al. (2016) is a 59-site taxon-poor training set comprised
largely of taxa with narrow environmental tolerances (ex-
pressed as a percentage of the training-set environmental
gradient). The SWAP diatom (pH) dataset (Stevenson et al.,
1991) is a 167-site taxon-rich training set, significantly larger
than the Matthews-Bird dataset, but with broader character-
istic tolerances. The NIMBIOS tropical pollen (mean an-
nual temperature) dataset (Bush et al., 2017) is a 682-site
species-rich training set that is currently under development
and characterized by narrow tolerances. These pollen data
are not (in their current state) expected to have the high qual-
ity of SWAP, because some taxa are identified to family level
whereas other taxa are identified to genus level.

We consider four alternative BUMPER models. First,
we test the requirement for a 2 % abundance threshold
(Sect. 3.2.2) by generating reconstructions with and without
this constraint. Removing this constraint is expected to de-
crease the uncertainty of the reconstruction (all taxa present
are included, thereby narrowing the posterior). We wish to
test whether this decreased uncertainty is associated with a
reduction in reconstruction error when applied to real data.
Second, we consider sensitivity to the form of the likeli-
hood function. The default model applies η = 0.5 (Sect. 2.2).
However, in Holden et al. (2008), RMSEP was found to be
only weakly dependent upon this parameter so that presence–
absence data alone (η = 1.0) contain sufficient information
to derive a useful predictive model. Compared with the full
model, the presence–absence model is expected to increase
robustness at the expense of increased uncertainty, with a
broader posterior. There may be situations where this con-
servative approach is preferable, for instance when SRCs are
poorly constrained in small training sets, or when misclassi-
fication is a concern as the presence–absence model is less
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Table 2. Four BUMPER models. For each of the three training sets (Matthews-Bird et al., 2016; Stevenson et al., 1991; Bush et al., 2017)
four models are considered. We use either the standard model (η = 0.5) or the presence–absence model (η = 1.0) and reconstruct with either
all taxa (yk > 0 %), or only including taxa with more than 2 % abundance (yk > 2 %).

(1) yk > 0 %, η = 0.5 Chironomids Diatoms Pollen

RMSEP 2.46 ◦C/9.8 % 0.321 pH/11.0 % 2.51 ◦C/10.1 %
Posterior width 2.74 ◦C/11.0 % 0.183 pH/6.2 % 1.64 ◦C/6.6 %

(2) yk > 0 %, η = 1.0 Chironomids Diatoms Pollen

RMSEP 2.40 ◦C/9.6 % 0.357 pH/12.2 % 2.73 ◦C/11.0 %
Posterior width 2.95 ◦C/11.8 % 0.204 pH/7.0 % 1.73 ◦C/6.9 %

(3) yk > 2 %, η = 0.5 Chironomids Diatoms Pollen

RMSEP 2.41 ◦C/9.7 % 0.369 pH/12.6 % 2.88 ◦C/11.6 %
Posterior width 3.01 ◦C/12.0 % 0.330 pH/11.3 % 2.79 ◦C/11.2 %

(4) yk > 2 %, η = 1.0 Chironomids Diatoms Pollen

RMSEP 2.27 ◦C/9.1 % 0.377 pH/12.9 % 3.04 ◦C/12.2 %
Posterior width 3.33 ◦C/13.3 % 0.473 pH/16.1 % 3.77 ◦C/15.1 %

sensitive to outliers. The cross-validated performances of the
four models (yk > 2 or 0 %, η = 0.5 or 1.0) are summarized
for each of the three training sets in Table 2, and are plot-
ted for two models (η = 0.5 or 1.0, yk > 2 %) in Fig. 3. Im-
portantly, Fig. 3 illustrates the reconstruction-specific uncer-
tainty 1 (±21 is plotted), which in general differs signifi-
cantly from the training-set RMSEP that is usually assumed
to describe the uncertainty of WAPLS approaches.

4.1 Chironomids (Matthews-Bird et al., 2016)

The chironomid training set of Matthews-Bird et al. (2016)
comprises 59 lakes across tropical South America. The pre-
diction uncertainty associated with this dataset (WAPLS
RMSEP 2.4 ◦C) is approximately twice the uncertainty that
has been achieved for European chironomid transfer func-
tions, which typically approach ∼ 1 ◦C (e.g. Brooks et al.,
2012). It has been postulated that this reduced performance
is caused by the small size of the training set and uneven
sampling across the environmental gradient (Matthews-Bird
et al., 2016).

The default model (yk > 2 %, η = 0.5) exhibits an RMSEP
of 2.41 ◦C (Fig. 3a), and 97 % of cross-validated reconstruc-
tions lie within ±21 of the observed temperature. However,
the best model (RMSEP 2.27 ◦C) is the presence–absence
model that requires 2 % abundance to include a species in
a reconstruction (Fig. 3b). This model version is the most
conservative and might therefore be expected to be the least
well performing. However, the training set is small, so the
SRCs are not expected to be well defined, and furthermore
the number of counts per site is relatively low. These data
may therefore favour a more conservative model that does
not over-constrain the reconstructions.

When all taxa are included, the reconstruction uncertainty
is reduced as expected, from 12.0 to 11.0 % in the default
model and from 13.3 to 11.8 % in the presence–absence
model. However, this is not accompanied by a reduction in
RMSEP. The RMSEP increases slightly from 9.7 to 9.8 %
in the default model and from 9.1 to 9.6 % in the presence–
absence model. These data support our choice to retain the
2 % abundance threshold in the default model. Including very
low abundance counts increases the computational demand,
does not in general improve model performance, and is likely
to understate the uncertainty associated with the reconstruc-
tion. We note for completeness that the default BUMPER
model was also applied in Matthews-Bird et al. (2016) and
has a RMSEP of 2.37 ◦C. The slight difference in perfor-
mance here results from the different SRC priors used (see
Sect. 2.4).

The Matthews-Bird training set can be broadly classified
as being low taxon richness (7.0), narrow tolerance (12 %),
and relatively poorly sampled (sampling density 7.0). We
generated an ensemble of artificial datasets with approxi-
mately those characteristics (59 lakes, 59 taxa, βp = 40 %,
tL = 8 %, tH = 18 %, yielding an ensemble-averaged species
richness of 6.7). The WAPLS1 transfer functions built from
these data exhibits a mean RMSEP of 6.3± 0.6 % of the en-
vironmental gradient. Although a direct comparison is diffi-
cult, given that an improvement in performance is expected
under idealized assumptions, these statistics are broadly con-
sistent with those of the real transfer functions (ranging from
9.1 to 9.8 %).

We consider the training-set characteristics in order to in-
vestigate whether they might explain the larger uncertain-
ties of the Matthews-Bird transfer function when compared
with European chironomid transfer functions. First, we in-
crease the idealized-analogue training-set size from 59 lakes
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Figure 3. Cross-validated reconstructions (Eq. 8) together with associated uncertainty ±21 (Eq. 9) are plotted against observed training-set
environments for each of the three training sets (Matthews-Bird et al., 2016; Stevenson et al., 1991; Bush et al., 2017). We plot the default
model (η = 0.5) and the presence–absence model (p/a) (η = 1.0). All analyses impose the constraint that 2 % abundance is required for
inclusion.

to 118 lakes, thereby better defining the taxon characteristics.
This improves the WAPLS1 RMSEP from 6.3± 0.6 % to
5.9± 0.4 %. Second, we increase the taxon richness from 6.7
to 13.5 by doubling the number of species to 118. This im-
proves the WAPLS1 performance to 5.1± 0.5 %. Although
both factors are likely to contribute to explaining the reduced
uncertainty of the European transfer functions, in isolation
they do not appear sufficient. We consider a specific exam-
ple. The Norwegian-chironomid training set of Brooks et
al. (2012) comprises 140 taxa sampled from 157 lakes, and
was used to construct a WAPLS2 transfer function for July
temperature with RMSEP of 1.06 ◦C when four outliers are
deleted (Brooks et al., 2012). We note that the Matthews-Bird
training set reconstructs the mean annual temperature, not the
July temperature. The Brooks and Birks training set has an
average richness of 24 and an indicative tolerance of 16 %.
An idealized dataset was built with these characteristics (159
lakes, 140 taxa, βp = 55 %, tL = 11 %, tH = 21 %, yielding
an ensemble-averaged taxon richness of 22) and was found
to exhibit a WAPLS1 RMSEP of 5.1± 0.3 % (= 0.64 ◦C).
When expressed as a percentage of the environmental gradi-
ent, modest improvements in performance are apparent, con-
sistent with that expected from increased training-set size and
species richness. However, most of the improvement in pre-

dictive power is due to tolerance, but expressed in absolute
terms. The Matthews-Bird indicative tolerance is 3.2 ◦C. The
Brooks and Birks indicative tolerance is 2.1 ◦C. These factors
together (increased training-set size, increased taxon rich-
ness and, most significantly, narrower absolute tolerances)
appear sufficient to explain the improved performances of
the Brooks and Birks transfer function over the Matthews-
Bird transfer function.

4.2 SWAP (Stevenson et al., 1991)

The SWAP training set (Stevenson et al., 1991) was devel-
oped as part of a substantial scientific effort directed at un-
derstanding the impacts of acid rain. Taxonomic workshops
resolved problems of nomenclature, splitting and amalga-
mation of species, and identification criteria (Munro et al.,
1990). Approximately 500 counts per sample were made.
The training set was statistically pruned (Birks et al., 1990) to
leave a high-quality dataset of 267 taxa in 167 sites. The best
WAPLS component has RMSEP of 0.310 pH units (Holden
et al., 2008).

The best-performing BUMPER model for SWAP is the
model that includes all taxa, with no threshold abundance.
This model has an RMSEP= 0.321 pH units. The im-
provement in performance relative to the default BUMPER
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(yk > 2 %) threshold (RMSEP= 0.369 pH units, Fig. 3c)
may reflect the high quality of the SWAP training set, so that
even very low counts are unlikely to be erroneous, and there-
fore add value to the reconstruction. However, a weakness
of the yk > 0 % model is that the posterior widths substan-
tially understate the uncertainty; the low-count taxa narrow
the posterior widths by more than is justified, given the mod-
est improvement in performance. Using the default model
(yk > 2 %, η = 0.5), 92 % of cross-validated reconstructions
lie within ±21 of the measured pH. We note that the perfor-
mance of the subjectively tuned model in Holden et al. (2008)
was RMSEP = 0.328 pH units.

The SWAP training set can be broadly classified as having
high taxon richness (50) and broad tolerance (22 %) and be-
ing well sampled (sampling density 37). It is interesting that
the RMSEP of this training set is similar to the Matthews-
Bird set, both exhibiting an RMSEP of approximately 10 %
of the environmental gradient. The improvements due to the
high quality, taxon richness, and sampling density of SWAP
are offset by the loss of precision that is achievable due to
broader tolerances.

We generate an artificial training set to mimic the char-
acteristics of SWAP (167 lakes, 225 taxa, βp = 40 %, tL =
17 %, tH = 27 %, yielding a characteristic taxon richness of
48). The performance statistics of a model derived from these
data 5.1± 0.3 % are again broadly consistent with, though
significantly better than, the model derived from the real data
(11.0 to 12.9 %). The difference between real and artificial
data is greater than in the chironomid comparison. Diatoms
have been applied as indicators of a wide range of environ-
mental variables including pH, climate, water chemistry, and
eutrophication (Smol and Stoermer, 2015), and it may be that
the assumption of a single environmental driver of diatom-
assemblage variability is less well satisfied than it is with
chironomids.

4.3 NIMBIOS (Bush et al., 2017)

The NIMBIOS dataset (Bush et al., 2017) comprises 682
samples that range from soil samples to mud–water inter-
face samples from lakes. The dataset is of variable quality
as it represents a ∼ 30-year data acquisition effort, in which
time there have been substantial improvements in the ability
to accurately identify pollen because new pollen keys and de-
scriptions have become available (e.g. Roubik and Moreno,
1991; Bush and Weng, 2007).

The best BUMPER model for NIMBIOS is the full model
including all taxa (η = 0.5, yk > 0 %), exhibiting an RMSEP
= 2.51 ◦C. This represents a significant improvement to the
best WAPLS model (2.92 ◦C, WAPLS component 2). As with
SWAP, however, a weakness of this model is that the pos-
teriors substantially understate the uncertainty. The default
model also performs well (RMSEP= 2.88 ◦C) and exhibits
posteriors that accurately reflect the uncertainty (Fig. 3e),

with 93 % of cross-validated reconstructions lying within
±21 of the observed temperature.

The NIMBIOS training set can be classified as having
high taxon richness (27) and low tolerance (12 %) and being
well sampled (sampling density 33). The training set benefits
from optimal characteristics in all three respects. We generate
an artificial analogue of NIMBIOS (682 samples, 553 taxa,
βp = 15 %, tL = 7 %, tH = 17 %, yielding a taxon richness of
30). The BUMPER model built from this analogue exhibits
an RMSEP of 3.8± 0.1 %. This is significantly better than
the artificial analogues of the SWAP and Matthews-Bird sets,
as would be expected given the optimal characteristics of the
training set. However, the performance statistics in this case
are substantially better than those of the model built from the
real data (RMSEP= 10.1 to 12.2 %); the transfer function
built from real data does not demonstrate the high perfor-
mance that might be expected. The discrepancy between the
idealized and real data appears to suggest that the quality of
the NIMBIOS data is poorer than the other training sets. A
major reason for the apparent inaccuracy may be that, unlike
the other datasets, pollen is often not recognized to species
level3 and so a pollen type could contain numerous species
that have different environment preferences, and hence may
well have a multi-modal distribution rather than the unimodal
distribution assumed by BUMPER.

5 Summary and conclusions

We have developed BUMPER, a user-friendly implementa-
tion of a Bayesian transfer function for palaeo-environmental
reconstruction. BUMPER is fully self-tuning, applying a pre-
calibration approach to eliminate implausible values for five
model parameters before performing the full probabilistic
calibration. The model is straightforward to use, and the only
requirement for application to a new training set is to con-
struct the input data files (as described in Appendix A).

We have applied BUMPER to generate transfer func-
tions for chironomid-based temperature (Matthews-Bird et
al., 2016), diatom-based pH (Stevenson et al., 1991), and
pollen-based temperature (Bush et al., 2017). In each case,
cross-validated performance statistics are comparable to the
best WAPLS component. The motivation for the model is that
it generates a reconstruction-specific uncertainty that, for in-
stance, renders it well suited to multi-proxy reconstructions.

Although the model calibration is performed using all ob-
servations, including taxon absences, for reconstruction pur-
poses we only consider taxa found at abundances greater
than 2 %. When taxa with very low counts are included in
a reconstruction, the additional narrowing of the posterior is
found to exceed the reduction in reconstruction error (with
the Matthews-Bird training set it even leads to slightly in-
creased error), suggesting that the information provided by

3We note that chironomids are identified to species morphotype
level, or genus in some cases.
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very low counts is less reliable. We retain the 2 % threshold
as we regard the reliable quantification of uncertainty to be
more important than the modest improvements in prediction
accuracy than can be achieved from including very low taxon
counts.

The performance statistics of the three datasets are quite
similar, with each displaying a cross-validated error of pre-
diction that is approximately 10 % of the environmental gra-
dient. However, artificial training sets with similar character-
istics to the real data revealed that this similarity is largely
coincidental and arises for different reasons. The chironomid
data are hampered by taxon-poor assemblages, but benefit
from narrow-tolerance taxa. Conversely, the diatom data are
composed of species with broader tolerances (expressed as
percentage of environmental gradient) but the assemblages
are substantially richer and taxa are well characterized by
the large dataset. The pollen data are large, taxon-rich, and
characterized by narrow tolerances. The pollen data were
expected to significantly outperform the other training sets;
however, this is not found to be the case. The likely expla-
nation is that pollen, unlike the other organism types con-
sidered, can be difficult to identify to a low taxonomic (e.g.
species) level.

6 Code availability

The source code BUMPER1p0.F90, example input data
files (Matthews-Bird et al., 2016), and an output visualizer
BUMPERpp.R are all provided in the Supplement. Instruc-
tions are provided in the Appendices.
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Appendix A: USER MANUAL

The authors are happy to provide whatever assistance may be
needed to run BUMPER. The model is written in FORTRAN
90, included in the Supplement as BUMPER1P0.F90. The
open-source GNU Fortran compiler is freely available for
MacOS, Linux, and Windows platforms. Once a compiler
has been installed, the model is compiled to create an
executable BUMPER with the following (linux) command.

$ gfortran BUMPER1P0.f90 –o BUMPER

Before running BUMPER, four input data files must
be produced and saved in the same directory as the exe-
cutable file. These files are NAME.lakes, NAME.species,
NAME.ts.counts and NAME.core.counts, where “NAME”
should be set to a string that identifies the dataset. The
Matthews-Bird data have been uploaded to Supplement as
an example “MB16”.

MB16.lakes: the first line of this file is the number of
training-set lakes and is followed by a list of site names to-
gether with the environmental variable. All string inputs are
limited to 20 characters. Do not include spaces (use an under-
score) in character strings. Avoid characters with function-
ality in R, such as “/”, as these will upset the BUMPERpp
plotting software (Appendix B).

MB16.species: the first line is the number of species in the
training set, and this is followed by a list of species names.

MB16.ts.counts: a file providing the percentage counts of
all species in all training-set sites. The file consists of a row
for each lake, each row containing a list of the species counts.
It is very important that the rows are ordered identically as
they are listed in NAME.lakes and the columns are ordered
identically as they are in NAME.species.

MB16.core.counts has the same format as
MB16.ts.counts, except the first line is the number of
core samples and the first column of the subsequent data is
the name of the sample (e.g. depth or age).

The model, can now be run, using the following command.

$ ./BUMPER

The first things that the model will ask for is the name
of the training set, in our example MB16. You will then be
asked a series of questions:

1. whether to calculate the apparent RMSE (i.e. the fitted
model error);

2. whether to calculate the jackknifed (leave-one-out) RM-
SEP;

3. whether to reconstruct the core;

4. whether to build a presence–absence model
(0==NO=preferred default);

5. whether to apply the 2 % abundance threshold
(1==YES=preferred default).

During the input phase, the model will provide the sampling
density, mean richness, and indicative tolerance as outputs to
the screen. After the input phase, the requested calculations
will be performed and various summary outputs will be pro-
vided to the screen as the calculations progress. Output files
will be created, depending upon the options chosen. These
comprise the following:

1. output.data: summary performance statistics, together
with individual site reconstructed values and uncertain-
ties;

2. ts_likelihood_app.data: likelihood functions for all
species and all training-set sites from the fitted model;

3. ts_likelihood_core.data: jackknifed likelihood func-
tions for all species and all training-set sites (i.e. cross-
validated likelihood functions);

4. core_likelihood.data: likelihood functions for all
species and all core samples;

5. reconstruct_ts_app.data: the posteriors of the fitted
model;

6. reconstruct_ts_jack.data: the (cross-validated) posteri-
ors of the jack-knifed models;

7. reconstruct_core.data: the core sample posteriors.
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Appendix B: Data visualization with BUMPERpp

The self-documented tool BUMPERpp.R is a post-
processing graphical tool written in R, included in the
Supplement. The code reads the likelihood data files and
generates plots of the reconstructions.

Load the model in R with the following command.

> source(“BUMPERpp.R”)

Generate a plot with the following (illustrative) command.

> BUMPERpp(“ts_likelihood_ jack.data”,1)

This specifies the input file and sample number to be plotted.
Figure B1 provides an illustrative plot.

Figure B1. Illustrative output of BUMPERpp.R reconstruction vi-
sualization software.

Geosci. Model Dev., 10, 483–498, 2017 www.geosci-model-dev.net/10/483/2017/



P. B. Holden et al.: BUMPER v1.0 497

The Supplement related to this article is available online
at doi:10.5194/gmd-10-483-2017-supplement.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. We are grateful for the careful reviews of
Cajo ter Braak and Andrew Parnell, which greatly helped to clarify
the mathematical description of the model. Philip B. Holden was
funded through the EPSRC project “Research on Changes of Vari-
ability and Environmental Risk” (ReCoVER), award RFFER003.
Mark B. Bush, Grace M. Hwang, Bryan G. Valencia, and Robert
van Woesik were funded through the Climate Proxies Working
Group at the National Institute for Mathematical and Biological
Synthesis, sponsored by the National Science Foundation through
NSF Award no. DBI-1300426, with additional support from the
University of Tennessee, Knoxville. Frazer Matthews-Bird was
funded by the National Aeronautics and Space Administration
(NASA) NNX14AD31G. H. John B. Birks was supported by the
Research Council of Norway (projects NoAClim and IGNEX).

Edited by: C. Sierra
Reviewed by: A. Parnell, C. ter Braak, and one anonymous referee

References

Birks, H. J. B. and Seppä, H.: Pollen-based reconstructions of late-
Quaternary climate in Europe – progress, problems and pitfalls,
Acta Palaeobot., 44, 317–334, 2004.

Birks, H. J. B., Line, J. M., Juggins, S., Stevenson, A. C., and ter
Braak, C. J. F.: Diatoms and pH reconstruction, Philos. T. Roy.
Soc. B, 327, 263–278, 1990.

Birks, H. J. B., Heiri, O., Seppä, H., and Bjune, A. E.: Strengths and
weaknesses of quantitative climate reconstructions based on late-
Quaternary biological proxies, Open Ecol. J., 3, 68–110, 2010.

Brooks, S. J., Matthews, I. P., Birks, H. H., and Birks, H. J. B.:
High resolution Lateglacial and early-Holocene summer air tem-
perature records from Scotland inferred from chironomid assem-
blages, Quaternary Sci. Rev., 41, 67–82, 2012.

Bush, M. B. and Weng, C.: Introducing a new (freeware) tool for
palynology, J. Biogeogr., 34, 377–380, 2007.

Bush, M. B., et al.: in preparation, 2017.
Cahill, N., Kemp, A. C., Horton, B. P., and Parnell, A. C.: A

Bayesian hierarchical model for reconstructing relative sea level:
from raw data to rates of change, Clim. Past, 12, 525–542,
doi:10.5194/cp-12-525-2016, 2016.

Edwards, N. R., Cameron, D., and Rougier, J.: Precalibrating an in-
termediate complexity climate model, Clim. Dynam., 37, 1469–
1482, doi:10.1007/s00382-010-0921-0, 2011.

Haslett, J., Whiley, M., Bhattacharya, S., Salter-Townshend, M.,
Wilson, S. P., Allen, J. R. M., Huntley, B., and Mitchell, F. J.
G.: Bayesian paleoclimate reconstruction, J. Roy. Stat. Soc. A,
169, 395–438, 2006.

Heiri, O. and Lotter, A. F.: Effect of low count sums on quantita-
tive environmental reconstructions: an example using subfossil
chironomids, J. Paleolimnol., 26, 343–350, 2001.

Hill, M. O. and Gauch, H. G.: Detrended correspondence analysis:
an improved ordination technique, Vegetatio, 42, 47–58, 1980.

Holden P. B., Mackay A. W., and Simpson, G. L.: A Bayesian pale-
oenvironmental transfer function model for acidified lakes, J. Pa-
leolimnol., 39, 551–566, doi:10.1007/s10933-007-9129-7, 2008.

Huntley, B.: The use of climate response surfaces to reconstruct
paleoclimate from quaternary pollen and plan macrofossil data,
Philos. T. R.oy Soc. B, 341, 215–223, 1993.

Huntley, B.: Reconstructing palaeoclimates from biological prox-
ies: Some often overlooked sources of uncertainty, Quaternary
Sci. Rev., 31, 1–16, 2012.

Ilvonen, L., Holmström, L., Seppä, H., and Veski, S.: A Bayesian
multinomial regression model for palaeoclimate reconstruc-
tion with time uncertainty, Environometrics, 27, 409–422,
doi:10.1002/env.2393, 2016.

Imbrie, J. and Kipp, N. G.: A new micropaleontological method for
quantitative paleoclimatology: application to a Late Pleistocene
Caribbean core, in: The Late Cenozoic Glacial Ages, edited by:
Turekian, K. K., Yale University Press, New Haven, 77–181,
1971.

Juggins, S.: Quantitative reconstructions in palaeolimnology: new
paradigm or sick science?, Quaternary Sci. Rev., 64, 20–32,
doi:10.1016/j.quascirev.2012.12.014, 2013.

Juggins, S. and Birks, H. J. B.: Quantitative environmental re-
constructions from biological data, in: Tracking Environmental
Change Using Lake Sediments, Volume 5: Data Handling and
Numerical Techniques, edited by: Birks, H. J. B., Lotter, A. F.,
Juggins, S., and Smol, J. P., Springer, Dordrecht, 431–494, 2012.

Korhola, A., Vasko, K., Toivonen, H. T. T., and Olander, H.:
Holocene temperature changes in northern Fennoscandia recon-
structed from chironomids using Bayesian modeling, Quaternary
Sci. Rev., 21, 1841–1860, 2002.

Matthews-Bird, F., Brooks, S. J., Holden, P. B., Montoya, E.,
and Gosling, W. D.: Inferring late-Holocene climate in the
Ecuadorian Andes using a chironomid-based temperature in-
ference model, Clim. Past, 12, 1263–1280, doi:10.5194/cp-12-
1263-2016, 2016.

Munro, M. A. R., Kreiser, A. M., Battarbee, R. W., Juggins, S.,
Stevenson, A. C., Anderson, D. S., Anderson, N. J., Berge, F.,
Birks, H. J. B., Davis, R. B., Flower, R. J., Fritz, S. C., Haworth,
E. Y., Jones, V. J., Kingston, J. C., and Renberg, I.: Diatom qual-
ity control and data handling, Philos. T. Roy. Soc. B, 327, 257–
261, 1990.

Parnell, A. C., Sweeney, J., Doan, T. K., Salter-Townshend, M.,
Allen, J. R. M., Huntley, B., and Haslett, J.: Bayesian inference
for palaeoclimate with time uncertainty and stochastic volatility,
J. Roy. Stat. Soc. C-App., 64, 115–138, 2015.

Parnell, A. C., Haslett, J., Sweeney, J., Doan, T. K., Allen, J. R. M.,
and Huntley, B.: Joint palaeoclimate reconstruction from pollen
data via forward models and climate histories, Quaternary Sci.
Rev., 151, 111–126, doi:10.1016/j.quascirev.2016.09.007, 2016.

Roubik, D. W. and Moreno, P. J. E.: Pollen and spores of Barro Col-
orado Island, Monographs in Systematic Botany from the Mis-
souri Botanical Garden, St. Louis, Missouri, 1991.

Rymer, L.: The use of uniformitariansim and analogy in palaeoe-
cology, particularly pollen analysis, in: Biology and Quaternary

www.geosci-model-dev.net/10/483/2017/ Geosci. Model Dev., 10, 483–498, 2017

http://dx.doi.org/10.5194/gmd-10-483-2017-supplement
http://dx.doi.org/10.5194/cp-12-525-2016
http://dx.doi.org/10.1007/s00382-010-0921-0
http://dx.doi.org/10.1007/s10933-007-9129-7
http://dx.doi.org/10.1002/env.2393
http://dx.doi.org/10.1016/j.quascirev.2012.12.014
http://dx.doi.org/10.5194/cp-12-1263-2016
http://dx.doi.org/10.5194/cp-12-1263-2016
http://dx.doi.org/10.1016/j.quascirev.2016.09.007


498 P. B. Holden et al.: BUMPER v1.0

environments, edited by: Walker, D. and Guppy, J. C., Australian
Academy of Sciences, Canberra, 245–258, 1978.

Smol, J. P. and Stoermer, E. F.: The diatoms: applications for the
environmental and Earth sciences, Cambridge University Press,
686 pp., 2015.

Stevenson, A. C., Juggins, S., Birks, H. J. B., Anderson, D. S., An-
derson, N. J., Battarbee, R. W., Berge, F., Davis, R. B., Flower,
R. J., Haworth, E. Y., Jones, V. J., Kingston, V. J., Kreiser, A. M.,
Line, J. M., Munro, M. A. R., and Renberg, I.: The Surface Wa-
ters Acidification Project Palaeolimnology Programme: modern
diatom/lake-water chemistry set, ENSIS, London, 86 pp., 1991.

Telford, R. J. and Birks, H. J. B.: The secret assumption of trans-
fer functions: problems with spatial autocorrelation in evaluat-
ing model performance, Quaternary Sci. Rev., 24, 2173–2179,
doi:10.1016/j.quascirev.2005.05.001, 2005.

ter Braak, C. J. F. and Barendregt, L. G.: Weighted averaging of
species indicator values: its efficiency in environmental calibra-
tion, Math. Biosci., 78, 57–72, 1986.

ter Braak, C. J. F. and Juggins, S.: Weighted averaging partial least
squares regression (WA-PLS): an improved method for recon-
structing environmental variables from species assemblages, Hy-
drobiologia, 269/270, 485–502, 1993.

van Woesik, R.: Quantifying uncertainty and resilience on coral
reefs using a Bayesian approach, Environ. Res. Lett., 8, 044051,
doi:10.1088/1748-9326/8/4/044051, 2013.

Vasko, K., Toivonen, H. T. T., and Korhola, A.: A Bayesian multi-
nomial response model for organism-based environmental recon-
struction, J. Paleolimnol., 24, 243–250, 2000.

Geosci. Model Dev., 10, 483–498, 2017 www.geosci-model-dev.net/10/483/2017/

http://dx.doi.org/10.1016/j.quascirev.2005.05.001
http://dx.doi.org/10.1088/1748-9326/8/4/044051

	Abstract
	Introduction
	The model
	Parameter estimation
	Environmental reconstruction
	Probability distribution
	Species response curve (SRC) priors

	Artificial training-set data
	Generating artificial training sets
	Generating transfer functions from the artificial data
	WAPLS performance: characterising the assemblages
	BUMPER performance and CPU demand
	BUMPER uncertainty


	Applications to real data
	Chironomids (Matthews-Bird et al., 2016)
	SWAP (Stevenson et al., 1991)
	NIMBIOS (Bush et al., 2017)

	Summary and conclusions
	Code availability
	Appendix A: USER MANUAL
	Appendix B: Data visualization with BUMPERpp
	Competing interests
	Acknowledgements
	References

