Geochemistry of lava samples collected near the oceanic detachments at $13^{\circ} \mathrm{N}$ along the MidAtlantic Ridge

Master of Science Thesis

Randi Storeide

Abstract

The structure and composition of the oceanic lithosphere is mainly controled by the supply of magmatic melts to the ridge axis. At slow-spreading, mid-oceanic ridges are characterized by complex spreading styles, where large variations in the melt supply are resulting in intermittent volcanism. During periods of reduced magmatic activity, spreading is accomodated by displacement on low-angle extensional detachement faults, forming Oceanic Core Complexes (OCC). These deep-seated faults are ultimately exhuming lower crust and upper mantle material, exposing all types of eruptive and plutonic igneous rocks, as well as mantle-derived ultramafic rocks variably altered and deformed (MacLeod, J. Escartín et al. 2002, Escartín, Mével et al. 2003, Dick, Tivey et al. 2008). This composite geological setting is suggesting a complex history and interplay between tectonic deformation and magmatic supply around OCCs.The aim of this study is to characterize the spatiotemporal evolution of magmatic processes concomitant with the development of a detachment fault. The foundation of this geochemical work is a recent detailed study of the tectonic structure and evolution of detachment fault zones at $13^{\circ} 20^{\prime} \mathrm{N}$ and $13^{\circ} 30^{\prime} \mathrm{N}$ along the Mid-Atlantic Ridge (Escartín, Mével et al. 2017). Highresolution microbathymetry, coupled with samples collected by deepsea vehicles are allowing us to present a geochemical dataset integrated in a complex OCC geological landscape. New major, trace elements and Sr , Nd, Pb and Hf isotopes, together with previously published data (Wilson, Murton et al. 2013), are used to build a petrogenetic model. Geochemical variance comparable to that of the entire Mid-Atlantic Ridge suggest a heterogenous mantle source as well as complex melting- and postmelting modifications. Enriched melt signals is best explaned by includiong a fusible, recycled mantle component, whereas depleted signals require the presence of a anomalous residual mantle component. Off-axis volcanism through permeable fault zones is indicated by the presence of insitu, unevolved basalts in fault disrupted areas. Prolonged periods of melt starvation and enhanced crustal accretion by fault displacement is likely to reflect the combination of two different mechanisms: (1) reduced influen the recycled, fusible mantle component, and (2) diversionof melts away from the spreading axis fault zone conduits.

Acknowledgment

I firstly want to offer my most sincere gratitude to my amazing advisor, Assoc. Prof. Cédric Hamelin for sharing his ideas, and for believing in my project. His efforts and enthusiasm have been essential for my motivation and progress. During lab work and isotopic analysis (MC-ICPMS), he has included me in every step, giving me valuable, hands-on experience. The knowledge he has shared with me has been crucial for my thesis, and will be useful in my future career as a geologist. I could not have wished for a more committed, talented advisor. I would be proud to work with you again. I would also like to express a warm gratitude to, Prof. Javier Escartín (IPGP, France) for several productive discussions and for providing bathymetrical maps from the study area. His knowledge on oceanic core complexes has been both impressive and inspiring. My gratitude is further extended to Dr. Antoine Bezos and the University of Nantes for our collaboration. The staff at the Bergen Analytical Facility deserve a warm gratitude for their assistance. I want to thank Yuval Ronen for providing Sr -measurements (TIMS) and for preparing samples for trace element measurements. I also want to thank Siv Hjorth Dundaas for performing trace element analyses (ICP-MS). I thank Vilde Nesbø Bakke, Karoline Brunborg, Solveig Lie Onstad and Lars Ottemo Gärtner for proofreading my thesis and for providing valuable feedback. Acknowledgements are also offered to the faculty at the University if Bergen for educating me, and to my fellow students for making the past 5 years memorable. Lastly, I would like to thank my incredibly patient friends and family for their endless support and patience through it all.

Table of Contents

Master of Science Thesis i

1. Introduction 1
2. Background 2
2.1 Mid-Oceanic Ridge physical processes 2
2.1.1 Spreading rate and ridge classification 2
2.1.2 Spreading mode and ridge morphology 4
2.1.3 History of Oceanic Core Complexes 6
2.1.4 Nature of Oceanic Core Complexes 7
2.1.5 Prevalence and significance of Oceanic Core Complexes 9
2.2 Mid-Oceanic Ridge basalt geochemistry 11
2.2.1 Basalt as a mantle source proxy 11
2.2.2 Magmatic processes 13
2.2.3 Mantle heterogeneities 15
3. Geological setting 19
3.1 The Mid-Atlantic Ridge 19
$3.2 \quad 13^{\circ} 20^{\prime} \mathrm{N}$ and $13^{\circ} 30^{\prime} \mathrm{N}$ detachment faults 20
4. Methodology 24
4.1 Sampling 24
4.2 Sample preparation 27
4.3.1 Physical preparation 27
4.3.2 Chemical procedure 27
4.3 Mass spectrometry and data reduction. 29
4.3.1 Trace element measurements 30
4.3.2 $\mathrm{Pb}, \mathrm{Nd}-$, and Hf -isotopic measurements 30
4.3.3 Sr isotopic measurement 30
4.3.4 Mass fractionation correction. 31
5. Results 34
5.1 Major elements 34
5.2 Trace elements 38
5.3 Isotopes 44
6. Discussion 47
6.1 Petrogenetic model 47
6.1.1 Fractional crystallization 47
6.1.2 Primary MORB melts? 48
6.1.3 Eu and Sr positive anomalies in high MgO basalts 50
6.1.4 Melting and melt extraction 53
6.2 Mantle structure and heterogeneity 57
6.2.1 Mantle signal 57
6.2.2 ReLish component 58
6.2.3 Geochemical modelling 61
6.3 Geochemical mapping 65
6.4 Geodynamic model 71
7. Conclusion 74
8. References 75

1. Introduction

Some of the most striking morphological features associated with slow-spreading ridges are kilometer scale, domed, and corrugated elevations in an otherwise chaotic and disrupted terrain (Cannat, Sauter et al. 2006). These dome shaped undulations have been interpreted as fault planes of particularly large-offset, low angle detachment faults, speculated to reflect long-term (1-2 Ma) strain localization on initially steep normal-faults (e.g. Cann, Blackman et al. (1997), Tucholke, Lin et al. (1998), MacLeod, J. Escartín et al. (2002), Cannat, Sauter et al. (2006)). In the past two decades, the nature and distribution of these features have been of growing interest. Topographic, lithological, and geophysical data has revealed that crustal accretion is often focused onto oceanic detachment faults when present. During the 2010 Chapman Conference on Detachment in Oceanic lithosphere, crustal accretion accommodated by oceanic detachment faults was accepted as a distinct mode of seafloor spreading (Escartín and Canales 2011).

The growing understanding of detachment faults have led to a consensus on the dynamic of these features. A link between emergence of detachment faults and protracted periods of magma starvation pinpoint magmatism as an essential control on their initiation and evolution (Tucholke, Lin et al. 1998, Escartin, Smith et al. 2008, MacLeod, Searle et al. 2009).

The causes for these occasional periods of magma starvation along parts of mid-oceanic ridges remain ambiguous. In a recent study of two detachment faults, located at $13^{\circ} 20^{\prime} \mathrm{N}$ and $13^{\circ} 30^{\prime} \mathrm{N}$ along the Mid-Atlantic Ridge (MAR), Wilson, Murton et al. (2013) argued for a direct link between mantle heterogeneities and the transition from magmatic to detachment fault spreading. This reasoning was based on petrogenetic analysis of dredged basalt samples. During the ODEMAR (Oceanic DEtachment faults at the Mid Atlantic Ridge) cruise in 2013, a comprehensive survey of these detachment faults and the surrounding area was carried out. This survey included microbathymetry data, video imagery, and rock sampling performed by a Remotely Operated Vehicle (ROV) (Escartín, Mével et al. 2017).

In this study, the theory proposed by Wilson, Murton et al. (2013) will be revisited in the light of a new, improved dataset acquired during the ODEMAR cruise. Based on the compiled dataset, a comprehensive petrogenetic model will be proposed. Unlike Wilson et al., (2013), our dataset is primarily based on detailed, in-situ sampling, as well as high-resolution maps. This allows for
combining morphological and geochemical observations. More specifically, this study seeks to further constrain the nature the $13^{\circ} 20^{\prime} \mathrm{N}$ and $13^{\circ} 30^{\prime} \mathrm{N}$ detachment faults, the melting conditions and melting mantle components during their initiation and evolution.

2. Background

2.1 Mid-Oceanic Ridge physical processes

2.1.1 Spreading rate and ridge classification

Observation of reversals on the seafloor reveal that the rate of seafloor spreading varies along mid-oceanic ridges (Müller, Sdrolias et al. 2008), with spreading rates from $10 \mathrm{~mm} / \mathrm{yr}$ to 100 $\mathrm{mm} / \mathrm{yr}$ (Forsyth and Langmuir 2007). Based on spreading rate, mid-oceanic ridges can be subdivided into three classes; fast- (> $70 \mathrm{~mm} / \mathrm{yr}$), intermediate- ($50-70 \mathrm{~mm} / \mathrm{yr}$), and slow-spreading ridges (<50 mm/yr) (Dick, Lin et al. 2003, Smith 2013).

Across-axis profiles of spreading ridges reveal some distinctive characteristics for the different classes. Fast-spreading ridges are associated with a gently elevated, symmetrical, dome shaped axial high (Dick, Lin et al. 2003, Sen 2014). Magmatic isostasy indicates that high temperatures and a robust magmatic crust prevail along these ridges (Klein 2003, Buck, Lavier et al. 2005). The structure of the oceanic crust is generally believed to correspond to the Penrose model (by Penrose Conference Participants in 1972). According to this model, the oceanic crust is composed of the following sequence of layers from base to top: mantle, dunite, gabbro, a "sheeted" dike complex, pillow lavas, and sediments. With reducing spreading rates, the axial relief abates. Intermediate ridges appear negatively relieved, with tectonically disturbed axial ridge valleys (figure 1a). Slow-spreading ridges are characterized by a thin oceanic crust, rugged topography, wide ($20-30 \mathrm{~km}$), and deep ($\sim 2 \mathrm{~km}$) rift valley, and complex tectonic structure (Buck, Lavier et al. 2005). Crustal accretion at slow-spreading ridges may be symmetric or asymmetric along spreading axes. Symmetric spreading similar in morphology as intermediate spreading. Asymmetric slow-spreading is induced by prolonged strain localization along deep seated detachment faults (Escartin, Smith et al. 2008). Corrugated, domed, serpentinized lower
crust and upper mantle are the surface expressions of these detachment faults (MacLeod, J. Escartín et al. 2002, Reston and Ranero 2011) (figure 1b). Recently, a fourth class, ultraslowspreading ridges with spreading rates < $20 \mathrm{~mm} / \mathrm{yr}$ has been proposed (Dick, Lin et al. 2003). Intermittent volcanism, smooth, mantle-derived seafloor, symmetric spreading and a lack of transform faults are characteristic features for ultraslow-spreading ridges (Dick, Lin et al. 2003) (figure 1c).

Figure 1: Cross-sections of spreading axes. (a) Fast- and intermediate-spreading mid-ocean ridges, with a narrow summit graben. Crustal accretion dominated by magmatism at the ridge axis. Seafloor spreading is symmetrical, and normal faults are small and short-lived. (b) Slow-spreading ridges with wide rift valleys and significant tectonic activity. Protracted extension along deep-seated detachment faults result in exhumation of corrugated oceanic core complexes (OCC). These are characteristic for asymmetric spreading ridges. (c) Ultra-slow-spreading ridge with very limited magmatism. Smooth detachment faults accommodate spreading on both sides of the ridge axis. As one detachment fault terminates, strain relocalizes on a new fault closer to the ridge axis. Figure from Smith (2013).

2.1.2 Spreading mode and ridge morphology

Decompression melting of the mantle beneath mid-oceanic ridges is the process responsible for oceanic crustal accretion on Earth (Klein 2003). According to this model, the upper mantle passively ascends towards Earth's surface because of plate divergence, thus compensating for plate convergence. Under spreading centres, the upper mantle follow vertical flow paths towards the surface until it no longer decompresses, and turns to a horizontal path along the oceanic lithosphere (figure 2) (Klein 2003). As hot mantle ascends towards the ridge axis, it reaches a threshold pressure (the mantle solidus depth), at which point partial melting will initiate (Forsyth and Langmuir 2007) (figure 2).

The amount of melt produced is a manifestation of the pressure-temperature conditions, which reflects the ongoing competition between heat transfer from Earth's interior by convection and heat lost by conduction to the surface (Forsyth and Langmuir 2007). As the onset of melting is deeper in hot mantle than in cold mantle, the melting column is larger, resulting in more robust melting budget and ultimately thicker oceanic crust (figure 2).

An inverse relationship exists between conductive cooling of the lithosphere and spreading rate (Dick, Lin et al. 2003, Michael, Langmuir et al. 2003). At slow spreading rates, the effect of conductive cooling is more profound than on fast spreading ridges. Truncated melting columns causes deeper melt termination and ultimately reduced melt production (Michael, Langmuir et al. 2003) (figure 2).

Figure 2: Diagram illustrating melting beneath mid-oceanic ridges. (a) Melting of cold mantle, resulting in a shallow melting column and a thin oceanic crust. (b) Melting of hot mantle, resulting in a deep melting column and a thick oceanic crust. (c) and (d) illustrate the temperature-pressure relationship between cold and hot mantle respectively. Flow lines (bended arrows) represent melting extents at different depths within the melting region. Corresponding values are illustrated in (c) and (d). (e) Melting beneath slow-spreading ridge. (f) Melting beneath ultraslow-spreading ridge. Reduced melting ascendance inhibits melting beneath slow- and ultra-slow-spreading ridges, resulting in truncated melting columns (i.e. trapezoids). Figure modified from Forsyth and Langmuir (2007).

As a compensation for reduced magmatism at slow- and ultra-slow-spreading ridges, crustal accretion may in part be accommodated by fault planes (Dick, Lin et al. 2003). Crustal accretion is a manifestation magmatism and/or slip on normal faults (Escartin, Smith et al. 2008, Smith, Escartín et al. 2008, MacLeod, Carlut et al. 2011). Ultimately, the bulk crustal accretion $A_{\text {tot }}$ along spreading ridges may be expressed as the sum of magmatic accretion, A_{m} and tectonic accretion, A_{t} (MacLeod, Carlut et al. 2011).

$$
A_{t o t}=A_{t}+A_{m}
$$

Observations suggest similar morphologies of ridges spreading at comparable rates, which in turn reflect the proportion of $A_{t}+A_{m}$ (e.g. Dick, Lin et al. (2003)). Volcanic ridges, lavahummocks, and smooth lava flows characterize fast-spreading, A_{m} dominated ridges (figure 1a). A significant reduction in A_{m} and corresponding increase in A_{t} along intermediate-spreading ridges is manifested by the appearance of steep normal faults and a rugged abyssal-hill morphology (figure 1b). Significant morphological diversity is seen at slow- and ultra-slowspreading ridges. Rounded, volcanic seamounts, abyssal-hills, and corrugated massifs are common features associated with these spreading centres.

2.1.3 History of Oceanic Core Complexes

The idea that normal faults could accommodate extensive strain along mid-oceanic ridges, eventually exhuming deep-seated mafic and ultramafic rocks has existed for decades (Karson 1983). In the late 1990's, corrugated, dome shaped structures termed "megamullions" were documented for the first time along a slow-spreading section ($30^{\circ} \mathrm{N}$) of the MAR (Cann, Blackman et al. 1997, Tucholke, Lin et al. 1998). Succeeding studies refer to these structures as 'oceanic core complexes' (OCC), and linked them to their continental analogues 'metamorphic core complexes' (Karson, White et al. 1999). These corrugated, domed features have been interpreted as fault planes of low angle detachment faults (Cann, Blackman et al. 1997, Tucholke, Lin et al. 1998, MacLeod, J. Escartín et al. 2002, Cannat, Sauter et al. 2006).

Comprehensive studies dealing with petrological aspects of megamullions supported this theory by identifying in-situ fault rocks on these massifs (MacLeod, J. Escartín et al. 2002, Escartín, Mével et al. 2003). The present-day consensus is that OCC are tilted, exhumed footwalls of large-offset oceanic detachment faults (figure 3) (Escartín, Mével et al. 2017).

2.1.4 Nature of Oceanic Core Complexes

The formation of oceanic detachment faults (figure 3) is believed to be controlled by the magma budget (Tucholke, Lin et al. 1998, Smith, Cann et al. 2006, MacLeod, Searle et al. 2009). However, the presence of gabbro within corrugated OCC suggest some influence of magmatism, even in the presence of active detachment faults (Escartín, Mével et al. 2003, Buck, Lavier et al. 2005, Ildefonse, D.K. Blackman et al. 2007). Based on numerical models and geological data, Tucholke, Behn et al. (2008) presented the "Goldilocks Hypothesis", which refers to an optimal A_{m} range (between 0.3 and 0.5) for generating corrugated OCC (Buck, Lavier et al. 2005). In this model, gabbro intrusions constitutes the A_{m} proportion, and the corrugated surface constitutes the A_{t} proportion of crustal accretion (Cannat, Sauter et al. 2009).

According to the Mohr-Coulomb fracture criterion, prolonged displacement along low-angled faults ($<30^{\circ}$) is unfavourable under most circumstances, and require considerable fault weakening to occur. If these conditions are met, strain will occur on existing faults rather than new ones, ultimately resulting in prolonged 'runaway displacement' (MacLeod, Searle et al. 2009). Mechanically weak faults may accommodate strain down to 20° (Reston and Ranero 2011).

The assembly of rocks consistently recovered from corrugated fault planes range from rigid basalt and diabase to serpentinite gabbro/peridotite or even talc schists (Escartín, Mével et al. 2003). Weak, hydrous, low-temperature ($<300^{\circ} \mathrm{C}$) metamorphosed minerals such as serpentine, chlorite, and talc require significant fluid-rock interactions. Such circumstances are facilitated by circulation of fluid in mantle derived ultramafic rocks (Escartín, Mével et al. 2003). Weakest among alteration minerals is talc (Boschi, Früh-Green et al. 2006). Formation of talc rather than serpentine requires excess silica, which in turn is believed to be derived from deep-seated interactions between fluid and core-complex gabbro (MacLeod, Searle et al. 2009). Seawater
interaction with such lower-crust and upper mantle rocks requires deep seated faults. Micro seismicity, indicating depth and position of brittle deformation has been reported to extend down to 8 km below certain OCC (Escartin, Smith et al. 2008).

As suggested by Cannat, Sauter et al. (2009), there is a difference in detachment fault morphology connected to the amount of magma injected into the footwall. Corrugations are implied to be surface expressions of uneven strain accommodation induced by irregularly spaced, rigid magma bodies along the fault root (Tucholke, Behn et al. 2008). Absence of such features at detachment faults located on ultra-slow-spreading ridges thus suggests paucity or even absence of gabbro intrusions in the peridotite dominated footwall (see "smooth surfaces" in figure 1c) (Cannat, Sauter et al. 2009).

Magmatism is also believed to regulate the evolution and termination of these faults (MacLeod, Searle et al. 2009). Reduced strain focusing indicated by nucleation of steep normal faults onto, or adjacent to OCC marks the termination of detachment faults (Tucholke, Fujioka et al. 2001, MacLeod, Searle et al. 2009). This change in deformation style may be associated with increased rheological strength of the crust, which in turn reflect renewed magmatism (Cannat, Sauter et al. 2009). According to MacLeod, Searle et al. (2009), the deep root of detachment faults migrates progressively closer to, and eventually across the magma chamber in accordance with fault rotation. Renewed tectonism and volcanism in the front area of detachment faults is argued to marks their termination (MacLeod, Searle et al. 2009).

Figure 3: Schematic illustration of a slow-spreading ridge segment with a wide rift valley and asymmetric, detachment fault spreading. Corrugated, low-angle OCC are seen on the left ridge flank. The volcanic ridge is inconsistent. Hydrothermal activity and earthquakes are associated with the detachment faults. On the right ridge flank, normal faults are high-angled and the oceanic crust is dominantly volcanic. Figure presented by Javier Escartín during the 2010 Chapman Conference on Detachment in Oceanic lithosphere (Escartín and Canales 2011).

2.1.5 Prevalence and significance of Oceanic Core Complexes

A growing understanding of the mechanics and dynamics related to detachment fault has led to questioning of their lateral extent and significance as a mode of crustal accretion. When initially described, OCC were thought to be unique features. As progressively more of these features were detected along slow- and ultra-slow-spreading ridges, they became acknowledged as prominent components of the oceanic crust.

Based on literature review, Ciazela, Koepke et al. (2015) estimated that a total of 172 ridgeproximal OCC can be accounted for. The most thoroughly examined ridge sections in terms of detachment faults is the Kane area of the MAR (e.g. Tucholke, Lin et al. (1998)), and the Atlantis Massif area of the East Pacific Rise (Cannat, Sauter et al. 2006). In the $13^{\circ}-15^{\circ} \mathrm{N}$ region of the MAR, 45 candidates for detachment faults have been identified (Smith, Cann et al. (2006), Smith, Escartín et al. (2008)).

To further constrain the prevalence of these structure, it is necessary to comprehend their surface expression. It became clear from the previous section that corrugated OCC are manifestations of detachment faults wherever present. According to MacLeod, Searle et al. (2009), detachment faults are restricted to these visible features. Escartin, Smith et al. (2008) distinguishes between symmetric ridges, where spreading takes place on both sides of the spreading axis, and asymmetric ridges, where extensive displacement ($>50 \%$ of the total plate separation) is focused onto a single fault. These authors further argue that detachment faults prevail even in the absence of visible OCC, and that the asymmetric geometry is the predominant testimony of detachment faults. A "blanket" of rider blocks covering the detachment fault footwall could justify observed asymmetry along slow-spreading ridges devoid of OCC (Escartin, Smith et al. 2008, Reston and Ranero 2011).

Evaluation of detachment faults and their role in oceanic crustal accretion ultimately suggests that these tectonic features may be more significant along slow-spreading ridges than initially assumed. Seismic- and bathymetric data between $15^{\circ} \mathrm{N}$ and $24^{\circ} \mathrm{N}$ of the MAR suggest that up to 35% of crustal accretion in this area is affected by detachment faults, and that $>15 \%$ is dominated by OCC (Smith, Cann et al. 2006). Based on prevalence of asymmetric ridge sections between $12^{\circ} 40^{\prime} \mathrm{N}$ to $35^{\circ} 15^{\prime} \mathrm{N}$ of the MAR, Escartin, Smith et al. (2008) concluded up to 50% of this ridge section is dominated by detachments (figure 4). During the 2010 Chapman Conference on Detachment in Oceanic lithosphere, displacement along oceanic detachment faults was accepted as a distinct mode of seafloor spreading, and can thus be considered the tectonic manifestation of crustal accretion where present (Escartín and Canales 2011).

Figure 4: Latitude versus depth for the MAR between $12^{\circ} \mathrm{N}$ and $35^{\circ} \mathrm{N}$, displaying up to 50% prevalence of asymmetric spreading, Hydrothermal fields and plumes are almost exclusively located on asymmetric ridge sections. Figure modified from Escartin, Smith et al. (2008)

2.2 Mid-Oceanic Ridge basalt geochemistry

2.2.1 Basalt as a mantle source proxy

Understanding the nature and evolution of lavas erupted in vicinity of OCC is crucial for the comprehension of these structures. As mid-oceanic ridge basalts (MORB) are generated in the mantle underlying the spreading axis, they are considered as proxies for the mantle source chemistry (Donnelly, Goldstein et al. 2004, Salters and Stracke 2004, Rubin, Sinton et al. 2009, Stracke and Bourdon 2009). Lavas erupted at the ridge axis reflect the sum of different processes, which independently influence the geochemical signal. The geochemical signals measured in basalts are believed to reflect (1) source chemistry, (2) melting related element fractionation, (3) transportation modification (i.e. melt mixing and melt-crust interaction), and (4) mineral fractionation.

Geochemical variance in MORB is based on the different behaviour of elements in the presence of two phases (i.e. melt and crystals). Substitution between trace elements and major elements in the structure of rock forming minerals occur readily in nature. The ability of an element to substitute for another element, incorporated in the lattice structure, depend on the compliance in
charge and atomic radii between these elements (Goldschmidt 1954). Quantification of elements in igneous processes follows the distribution law (Hanson and Langmuir 1978).

Common trace elements are (1) fluid mobile incompatible Large Ion Lithophile Elements, LILE ($\mathrm{Cs}, \mathrm{Rb}, \mathrm{K}, \mathrm{Ba}, \mathrm{Sr}, \mathrm{Pb}$), (2) fluid-immobile incompatible High Field Strength Elements HFSE ($\mathrm{Sc}, \mathrm{Y}, \mathrm{Th}, \mathrm{U}, \mathrm{Pb}, \mathrm{Zr}, \mathrm{Hf}, \mathrm{Ti}, \mathrm{Nb}, \mathrm{Ta}$) and (3) Rare Earth Elements $R E E(\mathrm{La}, \mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Eu}$, $\mathrm{Gd}, \mathrm{Tb}, \mathrm{Dy}, \mathrm{Ho}, \mathrm{Er}, \mathrm{Tm}, \mathrm{Yb}$, and Lu), and (4) Compatible elements ($\mathrm{Ni}, \mathrm{Cr}, \mathrm{Co}, \mathrm{V}$, and Sc). While compatible elements accumulate in rock-forming minerals, incompatible elements will be more concentrated in melts. It should be noted that several incompatible elements become compatible in the presence of certain minerals. This is true for Sr and Eu in the presence of plagioclase, $\mathrm{Yb}, \mathrm{Y}, \mathrm{Lu}$ in the presence of garnet, and Sc in the presence of in clinopyroxene (Hofmann 2007).

In geochemical studies, MORB samples are often categorized by their incompatible element abundance (Sun and McDonough 1989). Spider diagrams, plotting normalized (e.g. to chondrite) abundances of trace elements with decreased incompatibility from right to left provide a visual demonstration of the compositional variance in incompatible trace elements (Thompson, Morrison et al. 1984) (figure 5). REE are particularly useful, as these elements are analogous in all chemical and physical properties apart from atomic size, and consequently reflect a gradual decrease in incompatibility from Light Rare Earth Elements (LREE) to Heavy Rare Earth Elements (HREE). Spider diagrams may, however be cumbersome to interpret with an increasing number of samples. To resolve this issue, the trace element variance is broadly displayed as the ratio between elements with different partitioning coefficients. Normalized ratios between highly incompatible light rear earth elements (LREE) and moderately incompatible rear earth elements (MREE), for example $\mathrm{La} / \mathrm{Sm}_{\mathrm{N}}$, can be used to represent the slope of the REE abundance, and is a common proxy for MORB enrichment and depletion.

Figure 5: Abundance diagram for REE normalized to chondrite (Sun and McDonough 1989). Data for the average MORB from $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} N$ of the Mid-Atlantic Ridge is from this study and from Wilson, Murton et al. (2013) . Average Ocean Island Basalt (OIB), enriched MORB (E-MORB), and normal MORB (N-MORB) (see section 5.2 for definition of N-MORB and EMORB) from Sun and McDonough (1989). Eclogite xenolith composition from Jacob and Foley (1999). Average depleted MORB mantle (DMM) and ultra-depleted MORB mantle (UDMM) from Workman and Hart (2005).

2.2.2 Magmatic processes

Isolating geochemical signals attributed to melting- and post-melting processes is essential when evaluating mantle geochemistry. Owing to their variable behaviour in the presence of two phases, trace elements are readily used as petrogenetic indicators.

At the onset of melting, melts may be instantaneously removed (fractional melting) or they may remain in equilibrium with the residual rock (batch melting) (Plank and Langmuir 1992). The modal equilibrium melting equation (equation 1.2, Appendix 4) represent a simplistic model for mantle melting. It is, however unrealistic to assume that the bulk partition coefficient remains constant throughout the melting region, as proportion of mineral phases tend to change due to exhaustion of most fusible phases (e.g. clinopyroxene) or in accordance with pressure changes (e.g. garnet to spinel in peridotite). A polybaric melting model is therefore a more realistic illustration of melting beneath MOR (Klein 2003, Koornneef, Stracke et al. 2011). Rather than
representing melts equilibrated with the mantle at one specific pressure and composition, the bulk melt composition reflects the sum of compositions from a range of depths and concentrations.

Another fundamental control on trace element fractionation is the extent of melting, F (equation 1.2 and 1.3, Appendix 4). The smaller the melting extent, the more significant is the fractionation between elements with different bulk partition coefficients. At large extents of melting, the fractionation between elements with different compatibilities becomes progressively less significant, and trace element ratios virtually reflect those of the mantle source. Contrastingly, at the onset of melting, (i.e. at the highest pressures of the melting region), $F \sim 0 \%$. Melts produced here experience maximum element fractionation (Stracke and Bourdon 2009), and are thus expected to be extremely enriched in highly incompatible elements (Langmuir 1992, Forsyth and Langmuir 2007).

Certain trace elements behave unambiguously in specific mineral phases. For example, owing to large contrast in partitioning behaviour between MREE and HREE in garnet compared to spinel, the presence of garnet in a melting residue will cause significant MREE/HREE fractionation. At depths higher than 85 km , spinel becomes unstable in peridotite and is replaced by garnet (Robinson and Wood 1998). Hence, MREE - HREE fractionation provides valuable estimates of peridotite solidus depths. It is worth noting that garnet bearing eclogite/pyroxenite melts are expected to display similar HREE depletions (Hirschmann and Stolper 1996)

Extreme trace element and isotopic enrichment reported for melt inclusions relative to their host rock (Sobolev, Hofmann et al. 2000, Maclennan 2008) suggest significant averaging of final melts from primitive melts (Stracke and Bourdon 2009). The extent to which primitive melt compositions are preserved in basalts is strongly affected by the extent of melt mixing, and meltrock interaction. Complete mixing of melts throughout the melting region will average the trace element composition. Alternatively, incomplete mixing of polybaric melts and/or melts derived from a heterogenous mantle may produce a range of incompatible trace element signals (Stracke and Bourdon 2009, Koornneef, Stracke et al. 2011). Spreading rate, and thus also magma production and melt extraction rate is believed to be crucial for the magnitude of melt mixing (Rubin, Sinton et al. 2009). The degree of melt-rock reaction, and the rate of melt extraction
reflect size and permeability of the melting channels (Plank and Langmuir 1992, Kelemen, Hirth et al. 1997).

As melts ascend towards the surface and progressively cool, new minerals (olivine, plagioclase, and pyroxene) will crystallize. Elements are incorporated into minerals according to their bulk partition coefficients (equation 1.1, Appendix 4). This means that incompatible elements are largely retained in residual melts during differentiation. It follows that the effect of fractional crystallization is most obvious for ratios between incompatible and compatible trace elements, and negligible for ratios between elements of similar compatibility (Hofmann 1988, Klein 2003). Although influenced by source composition and melting processes, the variance in compatible major elements generally observed in MORB is mostly attributed to shallow level fractional crystallization (Klein 2003).

Major element variance associated with fractional crystallization is often displayed as MgO or $\mathrm{Mg} \#$ (molar $\mathrm{Mg} /\left(\mathrm{Mg}+\mathrm{Fe}^{2+}\right)$, and the corresponding variance in other oxides (e.g. $\mathrm{K} 2 \mathrm{O}, \mathrm{Al2O} 3$, FeO) is indicative of the phase being crystallized. The order of phase crystallization in mantle derived melts is: (1) olivine + spinel or garnet, (2) plagioclase, and (3) pyroxene (Klein 2003). A gradual change in melt composition with decreasing Mg contents from the parental melt is indicated by the "liquid line of descend" (LLD).

2.2.3 Mantle heterogeneities

A consensus theory is that Earth's mantle is geochemically and lithologically heterogenous at various scales, reflecting several episodes of crust-mantle fractionation (Hedge and Walthall 1963, Tatsumoto, Hedge et al. 1965). This theory is essentially founded on isotopic ratios systematics observed in oceanic basalt suits (figure 6). Such ratios are expected to display a timeintegrated differentiation rather than recent element fractionation (Hart 1986, Stracke 2012). Mixing trajectories observed in isotopic ratios suggest a heterogenous melt source at various scales.

The most depleted mantle component, so called Depleted MORB Mantle (DMM) (Andres, Blichert-Toft et al. 2004), is considered to be the result of mantle-crust differentiation. This process is believed to have left the DMM depleted in incompatible elements (Hart 1986). The
isotopic signature of the DMM is low ${ }^{206} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb},{ }^{207} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb},{ }^{206} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}$, and ${ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}$, and high ${ }^{143} \mathrm{Nd} /{ }^{144} \mathrm{Nd}$ and ${ }^{176} \mathrm{Hf} /{ }^{177} \mathrm{Hf}$. The DMM is, however not homogenously depleted. This is apparent from the range of radiogenic isotope ratios ($\mathrm{Pb}, \mathrm{Sr}, \mathrm{Nd}$, and Hf) in MORB isolated from plume interference. This range is believed to reflect large-scale ($10^{3} \mathrm{~km}$) geochemical domains in the depleted upper-mantle (Hamelin, Dosso et al. 2011). The theory has existed for decades (Dupre and Allegre 1983), and is attributed to long term isolation of different mantle domains (Hamelin, Dosso et al. 2011). Each mantle domain reflects different extent of upper-mantle depletion, different convective histories, and different involvement influence of recycled material (Hamelin, Dosso et al. 2011). An example of large-scale isotopic anomalies is the DUPAL anomaly in the southern hemisphere (Dupre and Allegre 1983, Hart 1984). Elevated $\Delta \mathrm{Sr}(\Delta \mathrm{Sr}=$ [${ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}-0.7030$] x 10^{4}) and deviation of ${ }^{207} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}$ and ${ }^{208} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}$ from the Northern Hemisphere Regression Line characterizes this province (Hart 1984).

It becomes clear from figure 6 that the variance in DMM fails to reproduce the global isotopic variance. The most extreme isotopic compositions are associated with mantle plumes (White 1985). Ocean Island Basalts (OIB) are more enriched in trace elements and isotopic ratios than MORB (figure 6). Because of this, the theory of mantle re-enrichment by recycled components has emerged. It is now generally accepted that Earth's mantle should be seen as a "marble cake" of enriched components enclosed by DMM (Wyllie 1970, Allegre and Turcotte 1986). Recycling- and reintroduction of enriched crustal material to the depleted mantle is a consensus theory (Stracke 2012, Kimura, Gill et al. 2016). According to this theory, oceanic crust, and lithosphere, as well as small amounts of continental material is incorporated into the mantle during subduction process. During high pressure subduction zone metamorphism, crustal material will be transformed to eclogite (Hofmann and White 1982, Hofmann 1997). Mantle convection is believed to produce a "stirred" upper mantle, consisting of eclogite veins enclosed by peridotite (Allegre and Turcotte 1986). Ultimately, the heterogenous mantle is a product of "convection-driven interaction between crust and mantle" (Stracke 2012).

Based on isotopic patterns, three universal end-members; the HIMU (High μ. i.e. high U/Pb ratio) and two distinctive, enriched mantle components (EMI and the EMII) have been recognized (Hart 1986, Sun and McDonough 1989). All components are believed to be old, isotopically evolved subducted material (Hofmann and White 1982). Different protolithic
compositions, subduction zone modifications, and recycling time are all factors expected to cause significant variance between recycled components (Kimura, Gill et al. 2016)

Several theories exist on the nature of the most common of enriched components, the EMI. Delaminated, subcontinental lithosphere, recycled oceanic crust, and subduction zone, metasomatized mantle wedge peridotite are likely candidates (Hauri and Hart 1993, Stracke 2012, Kimura, Gill et al. 2016). Influence of sediments is believed be most profound on the EMII component (Hofmann and White 1982, Hart 1988). A recent review of global variability in isotopic data has revealed a continuous transition from EMI and EMII (Stracke 2012). This is contradicting to the dichotomous EMI and EMII components suggested by Hart (1986). According to Stracke (2012), each EM basalt trend represent unique EM components rather than mixing between EMI and EMII. The more uncommon HIMU is characterized by abnormally high Pb isotopic composition. Selective removal of Pb relative to Th and U is believed to be the result of fluid-rock interaction. Although debated, a theory is that the HIMU component represent recycled oceanic crust which has been subjected to significand alteration and subduction zone dehydration (Hofmann and White 1982, Hauri and Hart 1993, Stracke, Bizimis et al. 2003, Stracke 2012, Kimura, Gill et al. 2016). An additional, less enriched component has been the subject of debate. This component appears to be the average of all enriched components. It was originally entitled "Prevalent Mantle" (PREMA) (Hart 1986), but has also been referred to as the "Focal Zone" (FOZO) (Hart, Hauri et al. 1992), and the "Common" (C) component (Hanan and Graham 1996). Several hypotheses regarding its origin have been proposed. Owing to the enriched isotopic composition of this component, it was originally suggested to represent the "primitive" lower mantle (Hart 1986). More recent studies argues that this component reflect a relatively uniform, solid-state mixture of different components (Stracke 2012).

Atlantic MORB	St. Helena	∇ Cape Verdes
Pacific MORB	- Kerguelen Heard	- Fernando de Noronha
Indian MORB	- Pitcairn	- Madeira
- Hawaii	- Walvis Ridge	- Canary Islands
\triangle Galapagos	- Tristan da Cunha	- Ascension
- Society Islands	\triangle Gough	- Iceland
\triangle Samoa	- Comores	- Austral Cook: HIMU
Δ Marquesas	- Azores	- Austral Cook: PREMA

Figure 6: Global variability in isotopic composition. (a) ${ }^{143} \mathrm{Nd} /{ }^{144} \mathrm{Nd}$ versus ${ }^{87} \mathrm{Sr}{ }^{\beta 66} \mathrm{Sr}$, (b) ${ }^{143} \mathrm{Nd} \mathrm{I}^{144} \mathrm{Nd}$ versus ${ }^{176} \mathrm{Hff}$) ${ }^{177} \mathrm{Hf}$, (c) ${ }^{206} \mathrm{~Pb} \boldsymbol{P}^{204} \mathrm{~Pb}$ versus ${ }^{207} \mathrm{~Pb}{ }^{204} \mathrm{~Pb}$, (d) ${ }^{206} \mathrm{~Pb}^{204} \mathrm{~Pb}$ versus ${ }^{208} \mathrm{~Pb}{ }^{204} \mathrm{~Pb}$. PREMA (FOZO or C) as defined by Stracke (2012). EMI and EMII have been generalized to EM. Plots from Stracke (2012).

3. Geological setting

3.1 The Mid-Atlantic Ridge

The Mid-Atlantic ridge, extending from the Gakkel Ridge in the north to the Bouvet Triple junction in the south, is among the longest volcanic chains on Earth, with a half spreading rate of $\sim 25 \mathrm{~mm} / \mathrm{yr}$ (Müller, Sdrolias et al. 2008). Major, deep ($1-1.4 \mathrm{~km}$) rift valleys bounded on each side by normal faults ($20-40 \mathrm{~km}$ apart) characterizes the spreading center of this slowspreading ridge (Smith 1998). The MAR is subdivided into segments (approximately 50 km along-axis), bound by transform faults (Sempéré, Lin et al. 1993).

The study area is located on the western flank of the MAR between $13^{\circ} 00^{\prime} \mathrm{N}$ and $13^{\circ} 36^{\prime} \mathrm{N}$ (figure 7), near the center of a segment bound to the north by the Fifteen-Twenty Fracture Zone (FTFZ) $\left(15^{\circ} 20^{\prime} \mathrm{N}\right)$ and to the south by the Marathon Fracture Zone (MFZ) $\left(12^{\circ} 40^{\prime} \mathrm{N}\right)$. It has been interpreted as particularly magma starved (Godard, Lagabrielle et al. 2008, Smith, Escartín et al. 2008). A complex tectonic history is assumed for this area, involving the evolution of the North American - South American - African triple junction (Smith, Escartín et al. 2008). Although situated far from any known mantle plume (Donnelly, Goldstein et al. 2004, Foulger 2010) this region, has been shown to present large geochemical variation (Donnelly, Goldstein et al. 2004, Hémond, Hofmann et al. 2006, Wilson, Murton et al. 2013).

The morphology along the ridge axis between the FTFZ and the MFZ alternates between faulted volcanic terrain and smooth, corrugated OCC (figure 7) (Smith, Cann et al. 2006, MacLeod, Searle et al. 2009). Similar patterns are observed away from the ridge axis (Smith, Escartín et al. 2008). Smith, Escartín et al. (2008) reported at least 24 OCC between $13^{\circ} \mathrm{N}$ and $14^{\circ} \mathrm{N}$ of the MAR, of which two were considered active. The presence of these large-scaled dome structures has led to a highly variable seafloor topography, ranging in depth from > 4000 meters to < 2000 . Hydroacustic records has revealed high seismic activity in certain areas of this segment (from the FTFZ to $\sim 14^{\circ} 35^{\prime} \mathrm{N}$ and from $\sim 13^{\circ} 50{ }^{\prime} \mathrm{N}$ to the MFZ), indicating robust tectonic activity (i.e. high A_{t}) (Smith, Cann et al. 2006). Escartin, Smith et al. (2008) reported a correlation between
hydrothermal sites, abundant seismicity, and asymmetric crust morphology (i.e. OCC), and attributed these characteristics to a distinctive mode of asymmetric, detachment fault accretion

Figure 7: Bathymetry map of the MAR between Fifteen Twenty and Marathon fracture zones, with the bold black lines indicating the spreading axis. (b) similar as (a) but with stars pinpointing positions of OCC, light, black lines indicating the transition between $A_{t}-$ And $A_{m^{-}}$dominated segments. The study area is indicated in red. Figure modified from Smith, Escartín et al. (2008)

$3.2 \quad 13^{\circ} 20^{\prime} \mathrm{N}$ and $13^{\circ} 30^{\prime} \mathrm{N}$ detachment faults

The focus of this study is on the detachment faults situated at $13^{\circ} 20^{\prime} \mathrm{N}$ and $13^{\circ} 30^{\prime} \mathrm{N}$, on the western MAR flank (figure 7). Based on recent, high-resolution mapping of the study area, detailed descriptions of both detachment faults and the surrounding seafloor is available in the literature (Escartín, Mével et al. 2017). From here on, the detachment faults located at $13^{\circ} 20^{\prime} \mathrm{N}$ and $13^{\circ} 30^{\prime} \mathrm{N}$ will be referred to as OCC20 and OCC30 respectively. Along axis, OCC20 is ~ 7 km wide and $\mathrm{OCC} 30 \sim 12 \mathrm{~km}$ wide. In the spreading direction OCC20 extend for $\sim 5.5 \mathrm{~km}$ and

OCC30 for $\sim 8 \mathrm{~km}$. Assuming half-spreading rates of $\sim 12 \mathrm{~mm} / \mathrm{yr}$, Escartín, Mével et al. (2017) estimated the ages of OCC20 and OCC 30 to be ~ 0.5 and ~ 0.7 Ma respectively. When initially described, both detachment faults were categorized as active tectonic features (Smith, Cann et al. 2006). In the most recent evaluation of these faults, the OCC30 is argued to be inactive or at the verge of termination (Escartín, Mével et al. 2017). This interpretation is based on high-angle normal faults truncating the OCC30 front area, indicating renewed strain distribution (MacLeod, Searle et al. 2009, Escartín, Mével et al. 2017).

In order to constrain the evolution of detachment faults, previous studies have subdivided OCC into morphologically similar domains (Smith, Cann et al. 2006, MacLeod, Searle et al. 2009, Wilson, Murton et al. 2013, Escartín, Mével et al. 2017). Based on micro bathymetry data, in-situ observations, and rock sampling, Escartín, Mével et al. (2017) divided the OCC20 and OCC30 into morphological domains; (1) the chaotic terrain, (2) the corrugated surface, and (3) the hanging-wall cutoff. The remaining seafloor has been identified as (4) axial valley floor, and (5) inter-OCC seafloor (figure 8). The axial valley floor constitutes the oceanic crust east of the transition to the neovolcanic zone, whereas the inter-OCC seafloor covers the area west of this transition (apart from the OCC) (figure 8). A thorough description of these different domains can be found in Escartín, Mével et al. (2017). The principle observations from these descriptions will be summarized here.

Figure 8: Bathymetry maps of the $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} N$ area outlining OCC20 and OCC30 (right). The chaotic terrains, corrugated surfaces, and hanging-wall cutoff is indicated in outlined 3D maps of the OCCs. Dotted, red line indicates the transition to the neovolcanic zone (east). Except for the OCC20 and OCC30, everything west of this transition falls within the inter-OCC domains. Figure modified from Escartín, Mével et al. (2017).

The chaotic terrain comprises the west-end of the detachment faults. It is bounded by linear ridges, which are interpreted as the high-angle normal faults. Small fault scarps, basaltic talus, hydrothermal deposits, and sometimes steeply dipping in-situ basalt characterize the chaotic terrain. This domain extends from the base of the linear ridges to the west-end of the corrugated surface (figure 8). The OCC20 and OCC30 chaotic terrains extends $\sim 3.5 \mathrm{~km}$ and $\sim 5 \mathrm{~km}$ in the spreading direction respectively. OCC20 appears more elevated than OCC30, with a continuous dip towards the ridge axis. MacLeod, Searle et al. (2009) argued that this morphologically diverse area was the result of tectonic disruption of the oldest part of the corrugated surface. Escartín, Mével et al. (2017) on the other hand suggested that this terrain represented extensive mass waste from previous fault scarps, which have been demolished from the east-facing ridge flank. This mass wasting from initially-steep slopes is effectively reducing the initial fault scarp angle.

The corrugated surfaces stand out as striking, relatively smooth domes in both OCC20 and OCC30. Corrugations or striations are observed at different scales. Large scale corrugations are reported with amplitudes of $\sim 100 \mathrm{~m}$. Strain localization is believed to be the dominating factor controlling the formation of these striations. The corrugated surfaces are elevated compared to the surrounding seafloor, indicating large rotation of low-rigidity footwalls (Smith, Cann et al. 2006, Ciazela, Koepke et al. 2015). Corrugations are believed to reflect uneven strain localization and interaction between the ductile footwall and the rigid hanging-wall as the latter slides along the former during footwall rotation (Smith, Cann et al. 2006, Escartín, Mével et al. 2017). As evident from figure 8, the OCC20 appears less affected by recent normal faulting. Furthermore, the transition between the chaotic terrain and the corrugated surface is gradual and sub-horizontal in OCC30 compared to the abrupt transition in OCC20. The corrugated surface of this detachment is covered by a near continuous layer of basaltic breccia and sediments and intervals of larger scale moats. These features are interpreted as slump deposits from the adjacent hanging-wall cutoff (Escartín, Mével et al. 2017). Fresh pillow basalt and diabase dykes have been reported at the termination of OCC30, indicating recent volcanism in this area (Escartín, Mével et al. 2017). Hydrothermal deposits are more abundant in the sediment blanket of the OCC30 corrugated surface. These deposits imply significant hydrothermal circulation (MacLeod, Searle et al. 2009, Escartín, Mével et al. 2017)

The hanging-wall cutoff or termination is the elevated area between the corrugated surface and the ridge axis (Ciazela, Koepke et al. 2015). This domain is regarded as a thin, wedge of unconsolidated matrix dominated by hanging-wall deposits (Escartín, Mével et al. 2017). In the OCC20 termination, the hanging-wall cutoff is distinctive, with a laterally continuous trench and a gently dipping slope. This contrasts with the OCC30 emergence zone, which is disrupted and irregular.

Volcanic seafloor prevails in front of both detachment faults (from the hanging-wall cutoff towards the ridge axis) (figure 8). The volcanic texture of this domain includes hummocks, volcanic cones, and modest normal faulting, and is interpreted to be more recent than the hanging-wall cutoff (Escartín, Mével et al. 2017). The age of this volcanic seafloor is inversely
proportional to the backscatter intensity of side-scan sonar images. High backscatter suggests recent volcanic emplacement. The axial valley floor situated immediately in front of the OCC20 apron displays significantly lower backscatter than that of the northern- and southern axial valley floor, indicating that this volcanic crust is more recent (MacLeod, Searle et al. 2009, Mallows and Searle 2012).

Linear ridges and deep basins characterize the remaining study area. These features are interpreted as crests of high-angle, normal faults, and are likely to be precursors for future detachment faults (Smith, Cann et al. 2006). A prominent linear ridge extending from the north end of OCC20 to the south end of OCC30 is reported to host a flat-topped seamount ($\sim 2 \mathrm{~km}$ in diameter and 350 m high) (Escartín, Mével et al. 2017). Escartín, Mével et al. (2017) argued that the discrepancy in rotational angle of the normal fault $\left(\sim 15^{\circ}\right)$, the horizontal top of the seamount, and the thin sediment layer covering it were all evidences that this volcanic feature was emplaced sometimes after the fault rotation.

4. Methodology

4.1 Sampling

This study includes 63 new major element analyses, 65 trace element analyses carried out at the University of Nantes, as well as 4 trace element analyses and 20 isotopic ratios measured at the University of Bergen is included to the dataset. Details on sample name-, location, and institute of analytical facilities are given in table A1b (appendix 1). Furthermore, this new dataset has been compiled with major-, trace element -, and isotopic analyses from Wilson, Murton et al. (2013).

Because the main objective of this study is to constrain the relationship between geological structures and chemical signals, lava samples from the area have been separated into groups according to the morphological domains defined by Escartín, Mével et al. (2017) (figure 8). Samples presented here have been given symbols according to the morphological domains described in section 3.2 (figure 9). From here on, the following abbrevations will be used when
referring to these morphological domains: $C T$ (Chaotic Terrain), $C S$ (Corrugated Surface), $H C$ (Hanging-wall Cutoff). Hence, abbreviations for the OCC20 sub-groups are OCC20-CT, $O C C 20-C S$, and $O C C 20-H C$, and OCC30-CT, OCC30-CS, and OCC30-HC for the OCC30 subgroups (figure 9). The remaining seafloor has been separated into the following morphological domains: $N F$ (Normal Fault, for the volcanic, fault disrupted, inter-OCC seafloor), $S M$ (SeaMount. Samples associated with a large, flat-topped, cone shaped structure situated in a normal fault graben in the inter-OCC terrain), $A V$ (Axial Valley samples). All samples presented are lavas. The majority of ODEMAR samples were collected by a ROV, and the remaining samples were collected by dredging (table A2, appendix 1). Dredged samples and samples collected from the detachment faults were loose rocks, whereas the remaining samples were insitu.

Figure 9:(a) Bathymetric map of the $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} N$ area, with different symbols representing different morphological domains. Closed symbols represent data presented in this study. Open symbols represent dredged samples form Wilson, Murton et al. (2013). (b) Micro-bathymetry map of the $13^{\circ} 30$ 'N OCC (OCC30). (c) Micro-bathymetry map of the $13^{\circ} 20^{\prime} \mathrm{N}$ OCC (OCC20).

4.2 Sample preparation

In this study, 20 basalt samples collected during the ODEMAR cruise have been analysed for Sr and Hf isotopic ratios, 19 for Pb -isotopic ratios, and 11 for Nd isotopic ratios. In addition, 4 samples have been analysed for trace elements. Preparation and analysis of these samples were conducted at Bergen Geoanalytical Facility (BGF), University of Bergen.

4.3.1 Physical preparation

For all samples analysed at the BGF, a diamond saw was used to remove altered material and obtain fresh rock samples. Each individual sample was then crushed. To avoid external contamination, the sample was sealed in robust plastic bags during this preparational step. After crushing, sample fragments were sieved to fractions ranging from 1 mm to 0.5 mm . Further, grains devoid of phenocrysts and cutting surfaces (from the diamond saw) were handpicked using a stereomicroscope. For samples containing glassy crust (table A1b, appendix1), fresh glass fragments were prioritized over whole-rock fragments. Approximately 1 g of material was obtained for each sample. Whole-rock samples were pulverized using an agate mill. Glassy samples were not pulverized. To prevent contamination, all instruments and tools were cleaned by compressed air, ethanol, and water between each sample preparation. The physical preparation steps have been summarized in figure 10.

4.3.2 Chemical procedure

All chemical preparations were carried out in a class 1000 air filtered clean laboratory to minimize the contamination. All dilutions were made using ultrapure ($18.2 \mathrm{M} \Omega \cdot \mathrm{cm}$) water, and all labware were acid-washed prior to chemical preparation. The chemical repreparation done for isotopic analyses is elaborated in the following. Pulverized, whole-rock samples (see table A1b, appendix 1) were then subjected to acid leaching. Compared to Hf and Nd, Pb and Sr isotopes are notably sensitive to nonmagmatic contamination (e.g. fluid-rock interaction, storage, and sample preparation) (Nobre Silva, Weis et al. 2010, Todd, Stracke et al. 2015). To obtain isotopic ratios that reflect igneous signals exclusively, it is necessary to remove the effects of
contamination and alteration by acid leaching. The acid used for leaching was $0.5 \mathrm{M} \mathrm{HCl}(1 \mathrm{ml}$ per pulverized sample). Leached powders were then cleaned in an ultrasonic bath for 10 minutes. The leachate solution was decanted from the settled powder immediately after the ultrasonic bath. The purpose of this step to was remove nonmagmatic particles (e.g. dust) and fluoride coating on the grains and hence ease the forthcoming breakdown of silicates (Todd, Stracke et al. 2015). Subsequently, the leached powders were dried on a hot plate over night at $\sim 100^{\circ} \mathrm{C}$. As the hand-picked glass fragments were considered unaltered, the leaching procedure described above was not performed on glassy samples. Instead, $47 \% \mathrm{HBr}$ was added to and decanted from these samples upon dissolution.

When dried, approximately one third rock powdered and glass chips ($\sim 0.3 \mathrm{~g}$) was transferred to individual screw-top Savillex moulded PFA vials (rounded interior). Whole-rock powders were dissolved in 28 M HF in a $3: 1$ volume mixture of $\mathrm{HF}-\mathrm{HBr}(47 \% \mathrm{HBr}$ and 28 M HF$)$. When digested, after being left on a hot plate with the temperature of $\sim 80^{\circ} \mathrm{C}$ for 48 hours, samples were evaporated to dryness at $\sim 135^{\circ}$, and re-dissolved in $0.5 \mathrm{M} \mathrm{HNO}_{3}$. This step was carried out three times.

Ion-exchange chromatography was used to isolate $\mathrm{Pb}-, \mathrm{Sr}$-, Nd -, and Hf-isotopes from the same solution. Single-element solutions are essential in isotopic ratio analysis, as interference from unwanted isotopes (i.e. isobaric interferences) may significantly bias the isotopic signal. The principle behind ion-exchange chromatography is to introduce the sample to two immiscible different phases; (1) a mobile phase, and (2) a stationary phase, to which the different components of the analytes have different affinities (Luqman (2012), p. 1). To isolate individual ions from their matrix, it is crucial to use an acid (i.e. mobile phase) to which the targeted ion and the matrix have contrasting affinities. This way, the targeted ion may be retained in, or released from the resin (stationary phase).

In this study, chemical separation of $\mathrm{Pb}, \mathrm{Sr}, \mathrm{Nd}$, and Hf was carried out in four different ion exchange columns. The steps for all ion exchange separations carried out here was are shown in figure 10. As Pb is believed to be highly susceptible to external contamination (Todd, Stracke et al. 2015), this element was separated first. The Pb extraction followed protocol from Manhes, Minster et al. (1978). The sample solution loaded on the Pb -exchange column in a 0.5 M HBr (10 drops) solution. Pb was eluted from a AG1-X8 anion resin with 6 M HCl (25 drops), and the
matrix was eluted with 0.5 M HBr . During this separation step, one sample (ODM-DR13-01-12) was lost.

After Pb -separation, the remaining elute, containing $\mathrm{Hf}, \mathrm{Sr}, \mathrm{REE}$, and the matrix was evaporated to dryness and redissolved in 6 M HCl three times. This material was re-dissolved in a 1 ml solution of 0.5 M HCl and 0.15 M HF and transferred to a new column. Following the procedure of Hamelin, Bezos et al. (2013), using the AG50W anion exchange resin, Hf and Ti were eluted with 0.5 M HCl and $0.15 \mathrm{M} \mathrm{HF}(1.5 \mathrm{ml})$. Sr was eluted with $2.5 \mathrm{M} \mathrm{HCl}(5 \mathrm{ml})$, and the REE were eluted with $6 \mathrm{M} \mathrm{HCl}(5 \mathrm{ml})$. These three elements were collected into three different vials for further purification.

Vials containing the Sr -fraction were evaporated to dryness, redissolved in $3 \mathrm{M} \mathrm{HNO}_{3}$ and loaded onto Sr -exchange columns containing Sr -Spec resin. Sr was eluted by water after all other products had been eluted by $3 \mathrm{M} \mathrm{HNO}_{3}$.

Hf-Ti separation followed the procedure described in Hamelin, Bezos et al. (2013), using the LN-spec resin. Vials containing the Hf-fraction were evaporated to dryness and redissolved in 6 M HCl. Samples were then loaded onto the Hf-exchange columns. Ti was eluted by a mixture of 6 M HCl and $10 \mu \mathrm{H}_{2} \mathrm{O}_{2}$, and Hf was collected after adding 2 M HF to the resin. This procedure was repeated to a second time to ensure complete separation of Hf from Ti. A portion of the Hfelute was lost during collection of sample ODM-ROC-V550-160.

The vials containing the Nd-fraction from the Hf-Sr-REE separation was evaporated to dryness and taken up in 0.3 ml of 0.25 M HCl . The Nd extraction followed instructions from Hamelin, Bezos et al. (2013),using LD-spec resin. Elution of Nd was carried out by adding 0.3 M HCl (2 ml) to the Nd-exchange columns.

4.3 Mass spectrometry and data reduction

Trace element-, and isotopic ratio were measured by means of mass spectrometry. The principle of mass spectrometry is to separate ions by their mass-to-charge ratios and measure the electric signal for in collectors. Four principal components constitute a mass spectrometer; (1) a sample introduction system, (2) the ion source (3) the analyser, where ions are separated according to mass-to-charge ratio, and (4) ion detectors (Stroobrant 2007). Although the same principles hold
for all mass spectrometers, the components and the configuration of components vary from one instrument to another. A summary of the different analyses performed in this study and their corresponding mass spectrometry techniques is given in table 1.

4.3.1 Trace element measurements

Trace elements were measured using a Thermo Scientific Element XR Inductively Coupled Plasma Mass Spectrometer (ICP-MS). This instrument is equipped with an inductively coupled plasma (ICP) ion source, a reverse Nier-Johnson configuration, and a single secondary electron multiplier (SEM)- ion counting systems.

4.3.2 Pb , Nd-, and Hf-isotopic measurements

$\mathrm{Pb}-$, Nd-, and Hf-isotopes were measured using the multi-collector inductively coupled mass spectrometer (MC-ICP-MS) Nu Instrument Plasma II. The Plasma II is equipped with an ICP ion source. This instrument is equipped with multiple detectors (18 fixed faraday cups) and operates with a normal Nier-Johnson configuration.

4.3.3 Sr isotopic measurement

Sr isotopes were measured using a Thermal Ionization Mass Spectrometry (TIMS), Finnigan MAT262. Unlike the Thermo Scientific Element XR and Nu Plasma II, the Finnigan MAT262 is equipped with a thermal ionization (TI) ion source. This instrument consists of a normal NierJohnson mass-spectrometer and multi-collecting detector (9 faraday collector and two SEM amplifiers).

Table 1: Analyses done at the BGA and corresponding mass spectrometers with details on the ion source and detector of these instruments.
$\left.\begin{array}{lllll}\hline \text { Instrument } & \text { Name } & \text { Ion } & \text { Detector } & \text { Analysis } \\ \text { source }\end{array}\right]$

4.3.4 Mass fractionation correction

Due to difference in bond strength, some isotopes are more prone to ionization than others. The extent to which an element is ionized is mass dependent, that is, heavier isotopes are less prone to ionization than lighter isotopes (Becker 2007). Some isotopic fractionation can thus be expected to occur during mass spectrometric analysis. A result of this is deviation of measured ratios from true ratios (Jakubowski, Prohaska et al. 2011). The extent of mass fractionation differs for different instruments as a function of their ionization potential. Owing to difference in ion sources and ionization efficiencies, the extent of mass fractionation is more significant in ICP-MS than in the TIMS.

To achieve accurate isotopic ratio when using mass spectrometry, it is essential to correct for instrumental mass fractionation. The rationale behind those corrections is to determine a correction factor, from which true isotopic ratios can be estimated. The correction factor is determined by using a pair of stable isotopes from each isotope system. Stable isotope pairs exist for $\mathrm{Sr}-, \mathrm{Nd}-$, and Hf isotopes, but for the Pb isotopic system the lack of a stable isotope pair calls
for a more complex approach. For Pb analyses, thallium $\left({ }^{203} \mathrm{Tl}\right.$ and $\left.{ }^{205} \mathrm{Tl}\right)$ is added to the solution as this isotopic system contains only one sable isotope $\left({ }^{204} \mathrm{~Pb}\right)$.

All isotopic ratio measured at the BGF were also corrected for mass fractionation, by repeated measurements of standard solutions. Measured isotopic ratios were normalized to corresponding international standard values. An in-house standard was used as internal standard for ${ }^{176} \mathrm{Hf} /{ }^{177} \mathrm{Hf}$ analyses. Details on mass fractionation correction parameters are given in table 2.

Table 2: Mass fractionation correction parameters.

Isotopic ratio analysis	Internal standard	Number of standard measurements	Internal standard values (average)	International standard values
Pb	NBS-981 (Tl-doped)	23	$\begin{aligned} & { }^{206} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}=16.931 \pm 0.003 \\ & (2 \sigma) \\ & { }^{207} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}=15.482 \pm 0.005 \\ & (2 \sigma) \\ & { }^{208} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}=36.669 \pm 0.015 \\ & (2 \sigma) \end{aligned}$	$\begin{aligned} & { }^{206} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}=16.9371 \\ & { }^{207} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}=15.49135 \\ & { }^{208} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}=36.72132 \end{aligned}$
Sr	SRM 987		${ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}=0.710233 \pm 8$	${ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}=0.710240$
Nd	JNdi	4	${ }^{143} \mathrm{Nd} /{ }^{144} \mathrm{Nd}=0.512058 \pm 1$	${ }^{143} \mathrm{Nd} /{ }^{144} \mathrm{Nd}=0.512115$
Hf	Hf-Norm	16	${ }^{176} \mathrm{Hf} /{ }^{177} \mathrm{Hf}=0.282125 \pm 5$	${ }^{176} \mathrm{Hf} /{ }^{177} \mathrm{Hf}=0.282127$ (corresponding to JMC475 $\left.{ }^{176} \mathrm{Hf} /{ }^{177} \mathrm{Hf}=0.282157\right)$

Figure 10: Schematic illustration of the main steps and sub-steps of work performed in this thesis, from physical preparation (left), through chemical preparation (middle) and finally isotopic ratio measurement (right).

5. Results

In the following sections, a description of the major- and trace element, and radiogenic isotopes $(\mathrm{Pb}, \mathrm{Nd}, \mathrm{Sr}$, and Hf$)$ systematic will be presented in terms of the morphological groups defined in chapter 3.2.

5.1 Major elements

As indicated in the TAS (Total Alkali Silica) diagram in figure 11, most samples from the $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ area form a continuous trend from low $\mathrm{SiO}_{2}\left(\sim 46 \mathrm{wt}\right.$. \%) low alkali $\left(\mathrm{Na}_{2} \mathrm{O}+\right.$ $\left.\mathrm{K}_{2} \mathrm{O} \sim 2 \mathrm{wt} . \%\right)$ basalts towards more basalt-andesitic $\left(\mathrm{SiO}_{2} \sim 54 \mathrm{wt} . \%\right.$ and $\mathrm{Na}_{2} \mathrm{O}+\mathrm{K}_{2} \mathrm{O} \sim 3 \mathrm{wt}$. \%). It appears, however that certain lavas deviate from this trend with elevated alkali contents for a given SiO_{2} concentration. From here on these different trends will be referred to as the tholeiitic and alkaline trends respectively. Furthermore, two outlier samples (ODM-ROC-V544055 and ODM-ROC-V546-097) have unusual compositions.

The morphological groups defined in the previous chapter largely overlap in major element variation. Nevertheless, some characteristics are common within each group. OCC20-CT lavas appear in both the tholeiitic and the alkaline trend. In the tholeiitic trend, they constitute the more andesitic end. Apart from one sample (D13-9), the OCC20-CS lavas all plot within the tholeiitic trend. OCC20-HC lavas are exclusively found in the tholeiitic trends. OCC20-CS- and HC lavas appear in the mid- to lower end of the tholeiitic trend. OCC30-CT appear similar as OCC20-CT, albeit with a subtle sample density. OCC30-CS samples are primarily found within more andesitic end of the tholeiitic trend. Exceptions are sample ODM-ROC-V546-097, which appears high in alkali (> $4 \mathrm{wt} . \%$) for a low SiO_{2} contents ($\sim 45 \mathrm{wt} . \%$), and ODM-ROC-V559374 , which is low in both alkali ($\sim 2 \mathrm{wt} . \%$) and SiO_{2}. OCC30-HC lavas display a similar pattern as OCC30-CS, with one outlier sample (ODM-ROC-V544-055). NF lavas appear similar to the OCC20-CS, OCC20-HC, OCC30-CS, and OCC30-HC lavas. The most SiO_{2} poor NF samples are associated with the inter-OCC seamount. AV lavas display a wide range, plotting in both alkaline and tholeiitic trend. AV samples plotting in the lower end of the tholeiitic trend (ODM-ROC-V557- [098-101]) appear almost homogenous. SM samples are restricted to the lower end of the tholeiitic trend and display small variance.

Figure 11: Total alkali versus silica (TAS) diagram for classifying volcanic whole-rocks, after Le Maitre, Streckeisen et al. (2002). Symbols are similar to figure 9. The dividing line distinguishes alkali basalt from tholeiitic basalt (from Sen (2014)). The overriding suite ranges from basalt to basaltic andesite, with SM and AV (sample 557- [098-101) constituting the lower end of the suite and OCC30-CS, NF and AV lavas constituting the higher end. Sample 559-374 (OCC30-CS) plots within the basaltic andesite field, whereas sample 544-055 (OCC30-HC) plots within the picro-basalt field. A selection of samples (OCC20-CT, OCC20-CS, OCC30-CT, OCC30-CS, and A) plots within the alkali basalt field. The most alkali sample is found in the OCC30CS domain (sample 546-097).

Most samples are relatively magnesian. Indeed, a selection of lavas display abnormally high MgO (> $10 \mathrm{wt} . \%$). Figure 12 is showing repartition of MgO (wt. \%) for approximately 7000 global basalts collected along ridges. A plot displaying the MgO versus frequency of sample for the bulk MORB suite reveals a good normal distribution, with mean $\mathrm{MgO} 7.46 \pm 0.9 \mathrm{wt} . \%$. The $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ lava suite is notably skewed compared to the global distribution, and incorporates a significant proportion of highly magnesian (between $10 \mathrm{wt} . \% \leq \mathrm{MgO} \leq 12 \mathrm{wt} . \%$) basalts (figure 12). Distribution curve at $10 \mathrm{wt} . \% \leq \mathrm{MgO} \leq 12 \mathrm{wt} . \%$ suggest extensive abundances of high-Mg lavas relative to global MORB. In the $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ area, more than 11% of the lava suite is highly magnesian. The most magnesian sample (ODM-ROC-V545-073) is found within the SM domain $(\mathrm{Mg} \#=70)$. These highly magnesian samples constitutes the low-end of the lava suit observed in TAS diagrams (figure 12).

Figure 12: MgO (wt.\%) versus sample frequency for MORB on a global scale (left axis) and from the $13^{\circ} 00{ }^{\prime} N-13^{\circ} 36^{\prime} N$ MAR (right scale). Global data was obtained from PetDB petrological database with the following criterions: glassy MORB, and is represented in this diagram by grey columns. Local data (from the $13^{\circ} 00^{\prime} N-13^{\circ} 36^{\prime} N$) includes data from this study and from Wilson, Murton et al. (2013), and is illustrated by a black curve.

Variation diagrams are convenient for examining the chemical evolution of melts. Most of the chemical variation in $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ lavas is consistent with rest of the MAR lavas (figure 13). Nevertheless, there are some notable deviations from this classic, low-pressure fractional crystallization trends.

The majority of lava samples display a wide range in SiO_{2} from 48 - 53 wt .\% (figures 13 a). The most Mg -rich samples, however appear relatively restricted in terms of SiO_{2} ($46-48 \mathrm{wt}$. \%). A similar pattern is seen in the $\mathrm{MgO}-\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{~K}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{O}, \mathrm{TiO}_{2}, \mathrm{FeO}_{\mathrm{T}}$ plots (figure 13). Furthermore, the deviation towards more alkaline compositions for some samples (see figure 11)
is apparent in figures 13 c and 13 d , as well as in the $\mathrm{MgO}-\mathrm{TiO}_{2}$ plot (figure 13). The same samples appear also to be low $\mathrm{Al}_{2} \mathrm{O}_{3}$ and CaO . As in the TAS diagram, samples ODM-ROC-V544-055 and ODM-ROC-V546-097 display unusual compositions in the variation diagrams in figure 13.

OCC20-CT lavas primarily plot within the MAR MORB field. Exceptions are samples with more alkaline compositions (figure 13). Except for sample D13-9 (more alkaline), OCC20-CSand OCC20-HC samples fall within the MAR MORB field. OCC30-CT and OCC-CS samples appear primarily within the MAR MORB field. However, each of these groups incorporate one alkaline sample. The ODM-ROC-V546-097 (OCC30-CS) outlier appears anomalously low in MgO in all variance plots (figure 13). OCC30-HC samples appear similar as OCC30-CS, albeit without any alkaline samples. The ODM-ROC-V544-055 outlier is highly magnesian, but deviate from the general MAR MORB trend in all variance diagrams (figure 13).

The $\mathrm{Al}_{2} \mathrm{O}_{3}$ - and CaO trends appear to increase as a function of decreasing MgO in the most Mg rich lavas, whereas the remaining dataset display a corresponding decline in these oxides. It should be noted that certain samples (the alkaline samples addressed in figure 11) deviate from the overriding trend. $\mathrm{Al}_{2} \mathrm{O}_{3}$. Sample ODM-ROC-V559-373 (OCC30-CS group) deviate significantly from the rest of the sample set for all the oxides considered here.

Figure 13: $\mathrm{SiO}_{2}(a), \mathrm{FeO}_{T}(b), \mathrm{TiO}_{2}(c), \mathrm{CaO}(d), \mathrm{Al}_{2} \mathrm{O}_{3}(e)$ and $\mathrm{Na}_{2} \mathrm{O}(f)$ versus MgO . Filled - and open symbols represent data from this study and from Wilson, Murton et al. (2013) respectively. Smaller, grey symbol indicate all basalt samples (glass and whole rock) collected at spreading centers along the Mid-Atlantic Ridge (PetDB petrological database).

5.2 Trace elements

It becomes clear from figure 14 and 15 that the study area incorporates a large geochemical range. Despite the limited spatial extent of our sampling area our data show a geochemical range in LREE/MREE $\left(\mathrm{La} / \mathrm{Sm}_{\mathrm{N}}\right)$ and MREE/HREE $\left(\mathrm{Gd} / \mathrm{Yb}_{\mathrm{N}}\right)$ that is of the same order of magnitude as reported for the entire MAR (figure 14 a and b). The ratio between $\mathrm{La} / \mathrm{Sm}_{\mathrm{N}}$ ranges from depleted (~ 0.7) to enriched (~ 2.9), and is most extreme at $\sim 13^{\circ} 20^{\prime} \mathrm{N}$ and $\sim 13^{\circ} 30^{\prime} \mathrm{N}$ (figure 14 d and b).

Figure 14: (a) La/Sm N_{N} versus latitude for MAR MORB, outlining the $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} N$ samples. (b) La/Sm versus latitude from $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} N$, with closed symbols representing samples from this study and open symbols representing samples from Wilson, Murton et al. (2013). (c) Gd/Yb versus latitude for MAR MORB, outlining the $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} N$ samples. (d) Gd/Ybm N versus latitude from $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} N$, with closed symbols representing samples from this study and open symbols representing samples from Wilson, Murton et al. (2013). MAR data represent MORB from the entire spreading ridge, and was obtained from the PetDB on 19.06.17.

Consistent with e.g. Gale, Escrig et al. (2011), the MORB suite has been subdivided into E $M O R B$ (enriched MORB), representing samples with $\mathrm{La} / \mathrm{Sm}_{\mathrm{N}}>2, N-M O R B$ (Normal MORB), including samples with $\mathrm{La} / \mathrm{Sm}_{\mathrm{N}}<1$, and $T-M O R B$ (transitional MORB) covering the compositional range between E-MORB and N-MORB (figure 15). In REE diagrams, enriched
and depleted MORB may be distinguished from each other by having positive (E-MORB), positive to flat (T-MORB) and negative (N-MORB LREE slopes respectively (figure A1, appendix 5).

The dataset investigated here incorporates all three subgroups of MORB defined above (fig. 14). Unlike the remaining, plume unaffected MAR MORB, most of our samples plot within the TMORB field (figure 15). An overall positive correlation is seen between $\mathrm{La} / \mathrm{Sm}_{\mathrm{N}}$ and $\mathrm{Gd} / \mathrm{Yb}_{\mathrm{N}}$. Most samples plot along one dominating mixing trend. However, a notable deviation from this trend is seen in some $\mathrm{N}-$, and T-MORB. These samples form a second, less Gd-Yb fractionated, and isolated trend. E-MORB samples appear more scattered than T-MORB and N-MORB samples, and are furthermore isolated from the dominating trend. Some E-MORB samples follow the same curvature as the dominating mixing trend, while others are more MREE-HREE $\left(\mathrm{Gd} / \mathrm{Yb}_{\mathrm{N}}\right)$ fractionated.

OCC20-CT samples are most abundant in the T-MORB field (figure 15). This domain incorporates both highly- and moderately Gd-Yb fractionated samples. OCC20-CS and OCC20HC samples constitute the intermediate- to lower end of the dominant trend, with most samples plotting in the T-MORB field. A deviation from the dominant mixing trend towards higher $\mathrm{Gd} / \mathrm{Yb}_{\mathrm{N}}$ values is seen in some transitional- and enriched samples. OCC30-CS is compositionally similar to OCC20-CT, albeit skewed towards higher $\mathrm{La} / \mathrm{Sm}_{\mathrm{N}}$ values. This domain incorporates the most depleted sample (ODM-ROC-V559-374), which appear to plot on the second (lower $\mathrm{Gd} / \mathrm{Yb}_{\mathrm{N}}$) mixing trend. SM lavas represent the more enriched end of this second trend. Relative to OCC lavas, SM lavas display only subtle variance. Except for one sample (ODM-ROC-V559-374), NF lavas plot within the dominant trend, and is restricted to the T-MORB field. AV samples vary from N-MORB to E-MORB. Furthermore, certain AV samples (e.g. ODM-ROC-V557- [098-101]) appear to follow the second, less Gd-Yb fractionated trend. The ODM-ROC-V557- [098-101] samples are also notably homogenous.

It is worth noting that the patterns seen in major element plots (figure 11 and 13) are reproduced in the $\mathrm{La} / \mathrm{Sm}_{\mathrm{N}}$ versus $\mathrm{Gd} / \mathrm{Yb}_{\mathrm{N}}$ plot (figure 15). That is, E-MORB samples and highly $\mathrm{Gd}-\mathrm{Yb}$ fractionated T-MORB samples correspond to the alkaline lavas, whereas N-MORB and TMORB samples constituting the second, less prominent trend corresponds to the highly magnesian samples.

Figure 15: Chondrite normalized (Sun and McDonough 1989) La/Sms versus Gd/Ybw with filled - and open symbols represent data from this study and from Wilson, Murton et al. (2013) respectively. The diagram has been subdivided into three sections: N MORB, T-MORB and E-MORB, separated from each other by dotted lines. An overall positive correlation is seen between $L a / \operatorname{Sm}_{N}$ and $G d / Y b_{N}$. In the $N-M O R B$ to T-MORB section, SM samples, certain AV samples and one OCC30-CS (ODM-ROC-V559-374) branch off the general trend towards a more Gd/Yb poor composition. E-MORB (primarily OCC20-CT, OCC20-CS, OCC30-CT, OCC30-CS, and A lavas display the most extreme Gd/Yb ratios. These samples also appear more scattered than the remaining lava suite.

Spider diagrams includes elements that are expected to be significantly influenced by fluid modifications (White 2015b). Hence, these diagrams provide a more comprehensive illustration of the incompatible trace element variance observed in $13^{\circ} 20^{\prime}-13^{\circ} 30^{\prime} \mathrm{N}$ lavas. The most common trace element pattern observed in $13^{\circ} 20^{\prime}-13^{\circ} 30^{\prime} \mathrm{N}$ lavas is relatively similar to that of the average N-MORB (Klein and Langmuir 1989), albeit with higher abundances of most incompatible elements. Hence, the dominating incompatible trace element composition is flat to slightly elevated in spider diagrams (figure 16), consistent with T-MORB. Depletion of highly incompatible elements ($\mathrm{Cs}, \mathrm{Rb}, \mathrm{Ba}, \mathrm{Th}, \mathrm{Nb}, \mathrm{Ta}$ and U) relative to REE, an enrichment of Nb and Ta relative to U , and a depletion of Pb and K relative to Nd are common features in most samples.

The highest incompatible trace element abundances are found within the OCC20-CT, OCC30CT, and OCC30-CS domains. These enriched samples display prominent depletion in HREE, and correspond to the E-MORB samples addressed in the previous paragraph. Sample ODM-ROC-V546-097, which was described as an outliner based on its major element composition, is seen in the OCC30-CS domain (figure 16) as enriched with $\mathrm{Rb}, \mathrm{U}, \mathrm{K}, \mathrm{Pb}, \mathrm{Sr}, \mathrm{Sm}$, and Ti depletions. OCC30-CT incorporates the sample with the lowest incompatible trace element abundance (ODM-ROC-V559-374). This sample is characterized by a slightly concave-down pattern and is enriched in Sr relative to Pb and Nd , as well as in Eu relative to Sm and Dy . OCC20-CS and OCC20-HC samples incorporate the most depleted samples in terms of highly incompatible elements. These samples furthermore display prominent negative Rb and K anomalies. Samples with similar Rb and K anomalies are observed in all domains (except the SM domain), but are most abundant in OCC20-CS. OCC30-HC samples are generally more concaveup, and homogenous than the remaining lavas. Furthermore, most of these samples display prominent, positive Pb anomalies. One exception is sample ODM-ROC-V559-374, which was denoted as an outlier in major element plots (figure 11 and 13). SM samples are less heterogeneous than OCC samples, and display a flat to concave-down incompatible trace element pattern. Similar to sample ODM-ROC-V559-374, SM samples display $\mathrm{Sr}-$, and $\mathrm{Eu}-$ peaks. Apart from sample ODM-ROC-V545-069 (which is analogues to the SM samples), NF samples display slightly enriched trace element patterns like the OCC samples. AV samples incorporate a range of incompatible trace element patterns. Samples ODM-ROC-V557- [098101], which are situated immediately in front of OCC20 resemble SM lavas. The most enriched AV lavas correspond to enriched OCC20-CT and appear isolated from the remaining AV lavas.

Figure 16: Primitive mantle-normalized (Sun and McDonough 1989) spider diagrams for the $13^{\circ} 20^{\prime}-13^{\circ} 30^{\prime} \mathrm{N}$ samples. Black line represents N-MORB from Sun and McDonough (1989). OCC30-CT (a), OCC30-CS (b), OCC30-HC (c), OCC20-CT (d), OCC20-CS (e), OCC20-HC (f), NF (g), AV (f), and SM (i) lavas. Closed symbols represent samples from this study and open symbols represent samples from Wilson, Murton et al. (2013).

5.3 Isotopes

Isotopic ratios are useful source proxies. As the mantle is thought to be heterogenous at different scales a comparison between local (km scale) and ridge scale isotopic ratios becomes essential when interpreting the $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ lavas. Similar as with the $\mathrm{La} / \mathrm{Sm}_{\mathrm{N}}$ and $\mathrm{Gd} / \mathrm{Yb}_{\mathrm{N}}$ ratios, the range in isotopic ratios $(\mathrm{Pb}, \mathrm{Sr}, \mathrm{Nd}$, and Hf isotopes) observed in our dataset is of the same magnitude as that reported for the entire MAR (figure 17). The isotopic variation reported here is in good agreement with previous data from this area Wilson, Murton et al. (2013). OCC incorporates the widest range in isotopic ratios (figure 17 b and d).

Figure 17: (a) ${ }^{176} \mathrm{Hffl}{ }^{177} \mathrm{Hf}$ versus latitude for MAR MORB, outlining the $13^{\circ} 000^{\prime}-13^{\circ} 36{ }^{\prime} \mathrm{N}$ samples. (b) ${ }^{176} \mathrm{Hffl}{ }^{177} \mathrm{Hf}$ versus latitude from $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$, with closed symbols representing samples from this study and open symbols representing samples from Wilson, Murton et al. (2013). (c $)^{206} \mathrm{~Pb}^{204} \mathrm{~Pb}$ versus latitude for MAR MORB, outlining the $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ samples. (d) ${ }^{206} \mathrm{~Pb} \boldsymbol{F}^{204} \mathrm{~Pb}$ versus latitude from $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$, with closed symbols representing samples from this study and open symbols representing samples from Wilson, Murton et al. (2013). MAR data represent MORB from the entire spreading ridge, and was obtained from the PetDB on 19.06.17.

In binary isotopic diagrams, $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ samples plot along a dominating mixing between a depleted component (low radiogenic Pb and Sr , and high radiogenic Nd and Hf) and an enriched component (high radiogenic Pb and Sr , and low radiogenic Nd and Hf). OCC20-CT, OCC20-CS and AV constitute the most enriched- and the most depleted end of the mixing curve in all isotopic dimensions. Furthermore, these groups are plotting along the entire mixing line. OCC30 samples appear less diverse than OCC20 and AV lavas (figure 17 and 18).

In all isotopic dimensions, samples ODM-ROC-V556-293 and ODM-ROC-V556-307 (OCC20CT) and ODM-ROC-V550-156 (OCC20-CS), as well as SM, sample ODM-ROC-V545-069 NF, and ODM-ROC-V557-100 (AV) deviate from the dominant trend. These samples appear to extend towards lower ${ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}$, higher ${ }^{176} \mathrm{Hf} /{ }^{177} \mathrm{Hf}$, and higher ${ }^{143} \mathrm{Nd} /{ }^{144} \mathrm{Nd}$ (figure 18). The deviation is most significant in the ${ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}$ dimension.

Relative to the global isotopic ratio systematics, $13^{\circ} 00-13^{\circ} 36^{\prime} \mathrm{N}$ lavas plot within the enriched part of the MORB field, with markedly elevated ${ }^{206} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}$ values (figure $18(\mathrm{a}, \mathrm{b}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{i})$). In the radiogenic Hf-Nd dimension, our data appear to cross-cut the mantle array (figure 18c). That is, the range in ${ }^{176} \mathrm{Hf} /{ }^{177} \mathrm{Hf}$ is significantly larger than the ${ }^{143} \mathrm{Nd} /{ }^{144} \mathrm{Nd}$ range in our data compared to the mantle array. A significant discrepancy between the most enriched samples is seen in the ${ }^{143} \mathrm{Nd} /{ }^{144} \mathrm{Nd}-{ }^{206} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}$ space, where some OCC20-CT samples appear markedly lower in ${ }^{143} \mathrm{Nd} /{ }^{144} \mathrm{Nd}$ than the remaining dataset for a given ${ }^{206} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}$ value.

Figure 18: radiogenic isotope-isotope plots, with $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ lavas compared to the global isotopic systematics (a-e) and $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} N$ lavas alone (f-j). Global isotopic ratio data is from Stracke (2012), and is represented by grey symbols. Data from $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} N$ is represented by colored symbols. Closed symbols indicate data from this study, whereas open symbols represent data from Wilson, Murton et al. (2013). (a) and (f); ${ }^{206} \mathrm{~Pb}{ }^{204} \mathrm{~Pb}$ versus ${ }^{87} \mathrm{Sr}{ }^{\beta 66} \mathrm{Sr}$, (b) and (g); ${ }^{206} \mathrm{~Pb}{ }^{204} \mathrm{~Pb}$ versus ${ }^{176} \mathrm{Hffl}{ }^{177} \mathrm{Hf}$, (c) and (h); ${ }^{143} \mathrm{Nd} /{ }^{144} \mathrm{Nd}$ versus ${ }^{176} \mathrm{Hf} /{ }^{177} \mathrm{Hf}$, (d) and (i); ${ }^{206} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}$ versus ${ }^{143} \mathrm{Nd} /{ }^{144} \mathrm{Nd}$, (e) and (j); ${ }^{206} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}$ versus ${ }^{208} \mathrm{~Pb}{ }^{204} \mathrm{~Pb}$.

6. Discussion

In this chapter, a conventional petrogenetic model will be presented. The influence of meltingand post-melting effects on the $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ lavas will be explored. Then, the geochemical heterogeneity in the source will be considered. Lastly, a comprehensive, geochemical- and geological model for these lavas will be discussed.

6.1 Petrogenetic model

6.1.1 Fractional crystallization

On their way up to the surface, primary melts are undergoing a complex magmatic history, modifying their chemical composition. Differentiation by fractional crystallization, melt mixing and assimilation is expected to modify primary melts to various degrees. The continuous tholeiitic fractionation trend observed for most samples in the TAS diagram (figure 11) suggests progressive crystal fractionation. At $50-100 \mathrm{MPa}$, olivine is saturated in melts, followed by plagioclase and clinopyroxene respectively (Klein 2003). It became clear from figure 13 that N MORB and T-MORB samples follow a trend from high MgO and low $\mathrm{TiO}_{2}, \mathrm{SiO}_{2}, \mathrm{FeO}_{\mathrm{T}}, \mathrm{Al}_{2} \mathrm{O}_{3}$, $\mathrm{K}_{2} \mathrm{O}$ and $\mathrm{Na}_{2} \mathrm{O}$ towards correspondingly low MgO and high $\mathrm{TiO}_{2}, \mathrm{SiO}_{2}, \mathrm{FeO}_{\mathrm{T}}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{~K}_{2} \mathrm{O}$ and $\mathrm{Na}_{2} \mathrm{O}$ values (figure 13). This chemical variation agrees with the progressive removal of Mg with low-pressure olivine fractionation and subsequent accumulation of the remaining oxides. The proportion of samples along this trend reflects the degree of fractional crystallization from the parental melt.

A slightly different trend is seen in the MgO versus $\mathrm{Al}_{2} \mathrm{O}_{3}$ and CaO (figure 13), featuring a "kink" in the fractionation trend at $\mathrm{MgO} \approx 9 \mathrm{wt} . \% . \mathrm{As}_{\mathrm{Al}_{2} \mathrm{O}_{3} \text { and } \mathrm{CaO} \text { are major constituents of }}$ plagioclase, this kink is interpreted to reflect the onset of plagioclase saturation (figure 13). Melts with $\mathrm{MgO}>9 \mathrm{wt} . \%$ may thus be interpreted as primary, with crystal fractionation limited to olivine. The nature of these high-Mg melts will be discussed later in this chapter. In addition to this LLD, composed primarily of N - and T-MORB samples, a second trend incorporating EMORB samples is seen variation diagrams (figure 13). These lavas are characterized by elevated
$\mathrm{TiO}_{2}, \mathrm{FeO}_{\mathrm{T}}, \mathrm{Na}_{2} \mathrm{O}$ and $\mathrm{K}_{2} \mathrm{O}$ for a similar MgO range as the major trend (figure 13). Existence of different trends in variation diagrams refute the theory of a straightforward evolution of $13^{\circ} 00^{\prime}$ $13^{\circ} 36^{\prime} \mathrm{N}$ lavas. Similar observations were drawn for other MAR segments (e.g. Menez Gwen, Lucky Strike) (Gale, Escrig et al. 2011). Along those segments such separation of major elements into more- and less alkaline groups have been attributed to multiple parental magmas (Gale, Escrig et al. 2011). Ultimately, it appears from the above discussion that the major element diversity reflects both different natures and evolutions of parental melts.

6.1.2 Primary MORB melts?

One of the most striking results of the studied area is the presence of unusual high MgO basalts (see fig 12). A compilation of nearly 7000 MORBs from PetDB (www.petdb.com) gives an average MgO value of $7.46 \pm 0.97(1 \sigma, \mathrm{n}=6937)$. High MgO samples from $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ have a concentration statistically higher than 99.9% of the MORB global population. The elevated Mg-contents are consistent with limited crystal fractionation from parental melts. Indeed, it raises the question of whether these basalts were in equilibrium with their corresponding mantle source. A useful proxy for melt evolution is the Mg\#. The highest Mg\#s are found associated with samples collected on the seamount between the two detachment faults, as well as in some axial valley (AV) samples (ODM-ROC-V547-[098-101]), and one OCC30-CS sample (ODM-ROC-V559-374). A positive, two-folded correlation between Ni and $\mathrm{Mg} \#$ is seen for the bulk lava suite.

Figure 19: Ni versus Mg\# for samples from this study, displaying two distinctive correlation curves. Vertical, dotted lines indicate Mg\# concentrations expected for melts in equilibrium with a typical mantle peridotite at $0.5 \mathrm{GPa}, 1.0 \mathrm{GPa}$, and 1.5 GPa from left to right, and horizontal line indicating Ni abundance (ppm) at 0.5 GPa . In terms of Mg\#, certain NF samples, as well as one SM sample and one OCC20-CF sample plot within the field of primary melt composition. Only one sample (ODM-ROC-V545-073), displays Ni contents sufficient to represent primary melts ($\mathrm{Ni}=263 \mathrm{ppm}$).

Several aspects should be considered when determining if melts were equilibrated with their sources. Given that olivine is the first phase to crystallize from primary melts, a reduction in olivine-compatible element concentrations (i.e. $\mathrm{Ni}, \mathrm{MgO}$) is expected to occur as a function of crystal fractionation. Since the composition and the partitioning coefficients of Fe and Mg in mantle peridotite at different depth are known, the Mg\# of primary melts can be calculated using simple equations (see appendix 4). Assuming a typical mantle peridotite with olivine composition > $\mathrm{Fo}_{88}, \mathrm{~K}_{\mathrm{d}}$ values for Mg between 0.3 to 0.35 , and pressure of melting between 0.5 GPa to 1.5 GPa , primary melts $\mathrm{Mg} \#$ are expected to range from 0.68 to 0.72 (Sen (2014), p. 111), with $\mathrm{Ni}>250 \mathrm{ppm}$ ((Gill 2010), p 319). According to the criterions given above, several lavas from $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ may be considered near-primary or even primary (see figure 19)

However, as it will be discussed in a later chapter, the $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ mantle source is not simply composed of peridotites, and is believed to contain various amount of eclogite or
pyroxenite. The high Mg contents in melts derived from this source may thus be influenced by these lithologies. Wilson, Murton et al. (2013) argued that the most primary melts observed in the $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ area were also among the most enriched samples. According to these authors, such elevated Mg concentrations may result from early saturation of Mg-rich clinopyroxene in melts derived from a recycled component (Wilson, Murton et al. 2013). Based on this assumption, Wilson, Murton et al. (2013) suggested that these lavas reflected melting of a high-Mg source rather than a primitive DMM melts. Our extended dataset reveals that high magnesium concentrations are not restricted to the most enriched samples. Transitional MORBs collected during the ODEMAR cruise are also showing this high MgO characteristic (figure 12, $13,14,22,23$, and 24), invalidating Wilson et al., (2013) conclusions. The origin of these melts is probably more complex than previously assumed and will be discussed further in section 6.3.

6.1.3 Eu and Sr positive anomalies in high MgO basalts

Another unusual characteristic of $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$, high MgO lavas is the existence of positive-Sr- and Eu- anomalies (figure 20). These anomalies may be constrained by comparing the chondrite normalized Eu and Sr concentrations to their interpolated values, Eu^{*} and Sr^{*} ($\mathrm{Eu} / \mathrm{Eu}$ *and $\mathrm{Sr} / \mathrm{Sr}^{*}$) (Weill and Drake 1973). $\mathrm{Eu} / \mathrm{Eu*}{ }^{*}>1$ and $\mathrm{Sr} / \mathrm{Sr}^{*}>1$ represent positive anomalies in spider diagrams, whereas negative anomalies yield $\mathrm{Eu} / \mathrm{Eu}^{*}<1$ and $\mathrm{Sr} / \mathrm{Sr}^{*}<1$.

While most samples in this dataset are slightly negative or $\approx 1 \mathrm{in} \mathrm{Eu} / \mathrm{Eu}$ * and $\mathrm{Sr} / \mathrm{Sr}^{*}$, SM samples and associated NF samples along with some AV samples (ODM-ROC-V547- [098-101]) show noticeable positive Eu - and Sr - anomalies (figure17). The most extreme positive anomalies are featured in the AV lavas and in one OCC30-CS sample (ODM-ROC-V559-379). It becomes clear from figure 19 d that these samples also display the highest MgO concentrations. Negative anomalies are restricted to the most evolved lavas, whereas positive anomalies dominate in primitive melts.

Figure 20: (a) $E u / E u^{*}=E u_{N} / \operatorname{sqrt}\left(\operatorname{Sm}_{N} x G d_{N}\right)$ versus $S r / S r^{*}=S r_{N} / \operatorname{sqrt}\left(\operatorname{Pr}_{N} x N d_{N}\right)$ displaying a moderately to good correlation for the bulk dataset. Most samples plot in the negative Sr - and Eu-field (Eu/Eu* < 1 and $S r / S r^{*}<1$), but $S M$ samples, certain OCC20-HC samples (ODM-ROC-V547-(099-101)) and one OCC30-CS) display various extents of positive anomalies (Eu/Eu* > $1 \mathrm{Sr} / \mathrm{Sr} r^{*}>1$). The dotted lines represent the transition from negative Eu-and Sr-anomalies and positive anomalies. (b) La/Sm m_{N} versus Eu/Eu*. Three distinctive trends are observed with varying Eu/Eu* for the same La/Sm ${ }_{N}$ range. (c) $\mathrm{Al}_{2} \mathrm{O}_{3}$ versus $\mathrm{Eu} / E u^{*}$ no apparent trend, but a distinctive separation between SM samples, certain OCC20-HC samples (ODM-ROC-V547-(099-101)) and one OCC30-CS and the remaining dataset. OCC20-CT and certain AV lavas also appear high in Al2O3 for a given $E u / E u^{*}$. (d) MgO versus $E u / E u^{*}$ displaying a slight, positive correlation, with the highest Eu-anomalies dominating in the primitive field (blue).

To constrain the nature of the positive and negative Sr - and Eu- anomalies, it becomes necessary to consider the influence of plagioclase on these melts. We have seen in section 4.1.1 that a change in the fractionation trend is observed in the $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ (figure 13). This change represents the onset of plagioclase saturation in the LLD. Under reducing conditions, Eu^{3+} becomes divalent (Schreiber 1986) and therefore may readily substitute for Ca^{2+} in plagioclase (Weill and Drake 1973). Fractionation of Eu from their neighboring REE (Sm and Gd) is thus expected to be proportional to plagioclase precipitation. In a similar manner, Sr^{2+} is compatible in plagioclase mineral lattice. The apparition of Sr - and Eu - negative anomalies with lower MgO
concentrations is coherent with fractional crystallization of plagioclase. If this observation is not a surprise in MORB, it is much more challenging to explain the positive anomalies observed in the $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ high MgO samples. Three possible scenarios can be considered:

- First, analytical techniques should be assessed. The presence of plagioclase phenocrysts in analyzed samples is expected to significantly bias the $\mathrm{Eu} / \mathrm{Eu}^{*}$ and $\mathrm{Sr} / \mathrm{Sr}^{*}$ signal. However, in the dataset investigated here, only very rare plagioclase micro-phenocrysts were observed. For example, the sample exhibiting the most noticeable Sr - and Euanomalies (ODM-ROC-V545-083) is completely aphyric. This first hypothesis seems therefore unlikely.
- A second hypothesis is to consider the assimilation of plagioclase cumulates from the lower oceanic crust by melts (Tang, McDonough et al. 2017). Indeed, a plagioclase under-saturated, MgO rich melt is expected to dissolve any plagioclase added to it during its path from source to surface (Tang, McDonough et al. 2017). In accordance with this theory, an increase in $\mathrm{Eu} / \mathrm{Eu}^{*}$ should be accompanied by increasing values of $\mathrm{Al}_{2} \mathrm{O}_{3}$. However, no apparent correlation is seen between $\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Eu} / \mathrm{Eu}{ }^{*}$ in this study (figure 20 c), suggesting a more complex nature of these positive anomalies.
- A third alternative hypothesis is that the positive Sr - and Eu- anomalies reflect the ancient influence of a plagioclase bearing, recycled component. If this theory holds, more enriched signals are expected to follow positive Eu- and Sr - anomalies. In Figure 20 b we observed a generally more elevated $\mathrm{La} / \mathrm{Sm}_{\mathrm{N}}$ for samples with $\mathrm{Eu} / \mathrm{Eu}^{*}>1$. This observation supports the theory that these positive anomalies are related to an enriched eclogite source. However, it is worth noting that the highest positive Eu-anomalies are seen in the most Mg-rich samples. This is not expected if these anomalies are attributed to an eclogite (i.e. less magnesian) source. According to Sobolev, Hofmann et al. (2000), eclogite signatures may be evident in trace element systematics (e.g. elevated $\mathrm{Eu} / \mathrm{Eu}{ }^{*}$) without the corresponding major element evidence (Sobolev, Hofmann et al. 2000). Regardless of how refractory the source is, it may ultimately display a certain "ghost plagioclase" signature, resulting from interaction between reactive melts and ambient mantle. If so, the less enriched lavas may still bear the mark of eclogite signatures.

Based on the above discussion, I propose that the positive Sr - and Eu- signatures are best explained by a pyroxenite source. That is, a refractory peridotite source which has been refertilized by eclogite melts. This theory will be further constrained in the following discussion.

6.1.4 Melting and melt extraction

As suggested by earlier studies (Wilson, Murton et al. 2013), the effect of fractional crystallization and assimilation fail to reproduce the large variation observed in the $13^{\circ} 00^{\prime}$ $13^{\circ} 36^{\prime} \mathrm{N}$ lava suite. These lavas are associated with detachment faults, whose initiation, evolution and termination are believed to be consistent with a varying melt supply (MacLeod, Searle et al. 2009). It is therefore crucial to constrain the geochemical variance related to melting.

Elements fractionate from each other as a function of incompatibility and melting extent. Hence, large variations in the most incompatible trace elements, accompanied by relatively constant moderately incompatible- and compatible elements patterns could suggest varying degree of melt related fractionation. Recall from section 5.1.1. that E-MORBs (i.e. specific OCC20-CT and CS, OCC30-CT, and CS, and AV lavas) display elevated $\mathrm{K}_{2} \mathrm{O}, \mathrm{TiO}_{2}$, and $\mathrm{Na}_{2} \mathrm{O}$ for a similar MgO range as N - and T-MORB (figure 13). This suggests a more enriched parental melt for E-MORB. E-MORBs also display enriched trace element patterns (figure 15 and 16), suggesting significant fractionation during melting of these lavas. Assuming this fractionation is exclusively attributed to recent mantle melting beneath the ridge axis, the most fractionated samples reflect also the lowest melting extents.

As the mantle beneath the $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ region of the MAR is interpreted to be compositionally heterogeneous (Wilson, Murton et al. 2013), this assumption is at best an oversimplification. A more likely scenario is that the trace element signal is influenced both by melting and source heterogeneity. To test this hypothesis, it is useful to compare source sensitive and melting sensitive parameters.

The ratio between LREE and HREE (e.g. $\mathrm{La} / \mathrm{Sm}_{\mathrm{N}}$) is influenced by both source signature and melting extent. To constrain the influence of melting extent on REE patterns, an estimate of REE concentrations at different melting extents (from $\mathrm{F}=2 \%$ to $\mathrm{F}=20 \%$) is provided in figure 21. From
this model, it appears clearly that the range in REE abundances in our data significantly exceed the variations estimated by melting a homogenous source at various melts fractions. This implies that the enriched REE patterns observed in $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ is significantly influenced by source heterogeneity.

Figure 19: REE diagram normalized to chondrite (Sun and McDonough 1989). The range in REE abundances in $13^{\circ} 00^{\prime}-$ $13^{\circ} 36 \mathrm{~N}$ lavas is indicated by the blue area. The yellow, graded area represent the calculated range between melts produced by 20% (light yellow), and at 2% (bright yellow) melting. DMM composition correspond to the average DMM estimated by Salters and Stracke (2004). Melt compositions were calculated using the non-modal equilibrium melting (equation 1.3, Appendix 4), using partition coefficients and melting modes from Salters and Stracke (2004).

Supporting this assumption is the relationship between trace element- and isotopic ratios. As isotopic ratios are not varying with recent melting degrees, they are useful proxies for estimating source heterogeneities. Comparison between melting sensitive trace element ratios $(\mathrm{Ba} / \mathrm{Hf}$, $\mathrm{La} / \mathrm{Sm}$, and $\mathrm{Sm} / \mathrm{Yb}$) and source controlled isotopic ratios (${ }^{206} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}$ and ${ }^{176} \mathrm{Hf} /{ }^{177} \mathrm{Hf}$) is provided in figure 22. These plots reveal a strong correlation between trace elements- and isotopic ratios in $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ lavas. It should be noted that certain samples are plotting away from the overall trend (see figure 19, caption), suggesting a more complex nature of these lavas (further elaborated in section 6.2). The correlation between trace element ratios and isotopic
ratios indicates a progressive increase in element fractionation and hence decrease in melting extent with increased isotopic enrichment.

Figure 20: melting sensitive trace element ratios versus isotopic ratios. Positive correlation between ${ }^{206} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}$ and $\mathrm{Ba} / \mathrm{Hf}(\mathrm{a})$ and La/Sm (b) and Sm/Yb (c), except for sample ODM-ROC-V550-160 (OCC20-CS), ODM-ROC-V546-097 (OCC30-CS) and SM samples and associated NF samples along with certain OCC20-HC samples (ODM-ROC-V547- [098-101]). Similarly, negative correlation between ${ }^{176} \mathrm{Hff}{ }^{177} \mathrm{Hf}$ and $\mathrm{Ba} / \mathrm{Hf}(\mathrm{d})$ and $\mathrm{La} / \mathrm{Sm}(e)$, and $\mathrm{Sm} / \mathrm{Yb}(f)$, with exception of OCC20-CS samples ODM-ROC-V550-160 $\left({ }^{17} 6 \mathrm{Hff}{ }^{177} \mathrm{Hf}>0.2833\right)$ and ODM-ROC-V550-156 $\left({ }^{176} \mathrm{Hff}{ }^{177} \mathrm{Hf}<0.2831\right)$, sample 546-097 and sample ODM-ROC-V542-038 (OCC30-CT). Note that sample ODM-ROC-V550-160 has a high error bar in the Hf-isotope space.

It becomes clear from the above discussion that source variance has a strong influence on the observed trace element variation. Constraining the effect of melting on trace element systematics is thus cumbersome. Moreover, it is unlikely that all melts where generated at similar pressures within the melting column (Stracke and Bourdon 2009). A more likely scenario is one where
melts were derived from a range of different depths at different melting extents, and further partially mixed during their path to the surface. Such a scenario is referred to in the literature as a polybaric melting (Stracke and Bourdon 2009). A general assumption is that the extent of melt mixing varies as a function of melting depth (Rubin, Sinton et al. 2009).

To constrain the melting depth, it can be useful to consider the mantle lithology within the melting column. The presence of garnet in melt sources provides a viable constraint on the melting depth, as this aluminous phase is stable in peridotite only at depths $>85 \mathrm{~km}$ (Robinson and Wood 1998). Owing to the strong affinity of HREE in garnet compared to other rock forming mineral phases, the presence of garnet in the source ultimately causes HREE to be detained in the residue (Hellebrand, Snow et al. 2002). Depending on the melting extent and the abundance of garnet, HREE consequently fractionate from the remaining REE, inducing elevated MREE/HREE (e.g. $\mathrm{Gd} / \mathrm{Yb}_{\mathrm{N}}$). In the samples investigated here, such "garner effect" appears restricted to groups OCC20-CT, OCC20-CS, OCC30-CT, OCC30-CS, and AV lavas (figure 15 and $16 \mathrm{a}, \mathrm{b}, \mathrm{d}, \mathrm{e}$, and h$)$. It is reasonable to assume that these melts were generated in the garnet stability field, i.e. at greater depths than the other groups.

A complicating aspect of this theory is the expected presence of garnet in the enriched (eclogite) domain, producing the same "garnet signature" (Hirschmann and Stolper 1996, Pertermann, Hirschmann et al. 2004, Wilson, Murton et al. 2013). To distinguish between these two scenarios, it is useful to compare HREE fractionation with source enrichment (e.g. $\mathrm{La} / \mathrm{Sm}_{\mathrm{N}}$). A positive correlation between $\mathrm{Gd} / \mathrm{Yb}_{\mathrm{N}}$ and $\mathrm{La} / \mathrm{Sm}_{\mathrm{N}}$ for the bulk dataset, as well as low $\mathrm{Al}_{2} \mathrm{O}_{3}$ contents of the most $\mathrm{Gd}-\mathrm{Yb}$ fractionated samples (figure 13) support the theory of lithologycontrolled garnet effect (figure 15). The observation that some transitional and enriched samples display more prominent $\mathrm{Gd}-\mathrm{Yb}$ fractionation for a given $\mathrm{La} / \mathrm{Sm}_{\mathrm{N}}$ (figure 15) suggests a more complex nature of these melts. This may be the result of (1) lower melting extents in the presence of garnet, or (2) different source lithology (i.e. higher concentrations of garnet in the source). The nature of the highly $\mathrm{Gd}-\mathrm{Yb}$ fractionated samples will be further elaborated in the next section.

6.2 Mantle structure and heterogeneity

6.2.1 Mantle signal

In the above discussion, the chemical effect of melting extent and depth range of melting on the trace element signal was investigated. It is clear that significant geochemical variance can be traced all the way from the mantle source.

The most solid proxy for mantle heterogeneity is the isotopic signal, as ratios between heavy isotopes do not fractionate during partial melting or fractional crystallization (Stracke 2012). Figure 18 reveals trends in isotopic systems, which suggest the existence of at least two isotopically distinct components in the mantle source. Compared to the remaining MAR MORB dataset, the $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ lavas appear as an enriched sharp spike (high $\left.{ }^{206} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb},{ }^{87} \mathrm{Sr}\right)^{86} \mathrm{Sr}$ and low ${ }^{143} \mathrm{Nd} /{ }^{144} \mathrm{Nd}$ and ${ }^{176} \mathrm{Hf} /{ }^{177} \mathrm{Hf}$) in an generally depleted region (figure 17 c). This spike is attributed to the most enriched OCC20-CT, OCC20-CS, OCC30-CT, OCC30-CS, and AV samples. Based on simple geochemical modelling, Wilson, Murton et al. (2013) concluded that the depleted end of the lava suite, was a ultra-depleted MORB (UDMM) mantle consistent with Workman and Hart (2005), with some HIMU influence. In their model, the enriched endmember was argued to be consistent with a HIMU source $\left({ }^{206} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}>19.6\right.$ and ${ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}$ $<0.7030,{ }^{143} \mathrm{Nd} /{ }^{144} \mathrm{Nd}<0.5129$). According to these authors, $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ lavas resemble the enriched lavas that prevail in equatorial MAR lavas (Hannigan, Basu et al. 2001). Furthermore, Wilson, Murton et al. (2013) argued that a second enriched, PREMA-like source component was necessary to account for the scattered appearance of the most enriched samples (see section 6.1.4). In this sub-section, the nature of the $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ lavas will be re-evaluated considering our new dataset.

As addressed in section 6.1.4, some transitional and enriched samples deviate significantly from the main mixing trend towards high $\mathrm{Gd} / \mathrm{Yb}_{\mathrm{N}}$ ratios. A reasonable approach to resolving the nature of these again to compare source sensitive- and melting sensitive parameters. It became clear from figure 18 that at least the E-MORB samples (OCC20-CT and OCC20-CS) deviated from the main trend also in isotope binary diagram. These samples are thus more likely to reflect heterogeneities internally in the enriched domain. This presumption agrees with the suggested
presence of two distinctive, enriched components (HIMU and PREMA) in the $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ source region (Wilson, Murton et al. 2013).

Our new data reveals a second, deviating trend of the moderately enriched Seamount (SM) samples and associated normal fault (NF) sample, as well as certain axial valley (AV) samples (ODM-ROC-V547-[098-101]) (figure 15), pointing to a fourth mantle component. This observation has not been accounted for by Wilson, Murton et al. (2013). Ultimately, it is suggested here that the $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ mantle source consist of a bimodal depleted source as well as a bimodal enriched source. These assumptions highlight the complexity of the source heterogeneity.

It became clear from section 6.1.1 that the observed major element variance is, in part, attributed to the parental melt. Elevated $\mathrm{TiO}_{2}, \mathrm{FeO}_{\mathrm{T}}$, and $\mathrm{Na}_{2} \mathrm{O}$, along with slightly lower values of SiO_{2} in E-MORBs (figure 13) are present in samples showing trace element coherent with a garnet signature (figure 15) and enriched isotopic signature (figure 18). Similar compositions have been interpreted to reflect a garnet bearing, silica-deficient eclogite or pyroxenite source (Stracke and Bourdon 2009). Supporting this theory is the branching of enriched melts into a second mixing trend in the $\mathrm{Ni}-\mathrm{MgO}$ plot (figure 2). Relative to the major $\mathrm{Ni}-\mathrm{MgO}$ trend, this second trend displays elevated Ni concentrations for a similar Mg\# range. Previous studies have attributed similar high-Ni systematics the influence of eclogite melts (Sobolev, Hofmann et al. 2005, Wang and Gaetani 2008). According to this theory, equilibration of eclogite melts with peridotite olivine increases the concentration of Ni in these melts.

6.2.2 ReLish component

A good correlation between ${ }^{176} \mathrm{Hf} /{ }^{177} \mathrm{Hf}$ and ${ }^{143} \mathrm{Nd} /{ }^{144} \mathrm{Nd}$ is expected since their corresponding parent-daughter $\left({ }^{173} \mathrm{Lu}-{ }^{176} \mathrm{Hf}\right.$ and $\left.{ }^{147} \mathrm{Sm}-{ }^{143} \mathrm{Nd}\right)$ behave in a similar manner during partial melting (Salters, Mallick et al. 2011). The correlation found in our dataset is in good agreement with this general statement. However, this correlation is exhibiting an unusual steep slope relative to the mantle array (figure 18 (c)). This imply a high ${ }^{176} \mathrm{Hf} /{ }^{177} \mathrm{Hf}$ value for a given ${ }^{143} \mathrm{Nd} /{ }^{144} \mathrm{Nd}$. To account for these anomalous ratios, significant decoupling of the Hf isotopes from the Nd isotopic system is required. This scenario requires the presence of garnet in the melting source
(Hamelin, Bezos et al. 2013) (Salters, Mallick et al. 2011). The partition coefficient in HREE significantly increases in the presence of garnet, making these elements compatible in its crystal lattice. Since Lu is a HREE and Sm is not, Lu will be retained in the melting residue compared to Sm when the source contains garnet. Consequently, ${ }^{173} \mathrm{Lu} /{ }^{176} \mathrm{Hf}$ (and time integrated ${ }^{176} \mathrm{Hf} /{ }^{177} \mathrm{Hf}$) will be larger than ${ }^{147} \mathrm{Sm} /{ }^{143} \mathrm{Nd}$ (and ${ }^{143} \mathrm{Nd} /{ }^{144} \mathrm{Nd}$) in the mantle residue. The magnitude of decoupling between $\mathrm{Lu}-\mathrm{Hf}$ from $\mathrm{Sm}-\mathrm{Nd}$ systems is proportional to the abundance of garnet in the source and the melt fraction (Salters, Mallick et al. 2011).

Among theories proposed as an explanation for anomalous ${ }^{176} \mathrm{Hf} /{ }^{177} \mathrm{Hf}$ composition is disequilibrium melting (Blichert-Toft, Agranier et al. 2005). This theory states that grain-scale variation in Hf exist in garnet-bearing sources, as garnet retains Lu more efficiently than Hf during melting. Melts derived from a source which is locally enriched in garnet may thus display extreme ${ }^{176} \mathrm{Hf} /{ }^{177} \mathrm{Hf}$ compositions (Blichert-Toft, Agranier et al. 2005). Hamelin, Bezos et al. (2013) argued that this explanation could not hold for the anomalous Hf variability observed in Lucky Strike basalts. Evidence against this theory was (1) lack of deviations of Hf from other isotopic systematics, (2) the absence of garnet signature in anomalous basalts displaying anomalous garnet signature, and (3) the short time-scale of grain-scale equilibration compared to the time scale for a build-up of radiogenic Hf anomalies. These authors attributed the anomalous Hf-signal to a real mantle component rather than melting induced fractionation.

The $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ data display similar ${ }^{176} \mathrm{Hf} /{ }^{177} \mathrm{Hf}$ systematics as the Lucky Strike basalts (figure 23). In similar manner as Lucky Strike samples, our dataset display negligible deviation from the MAR trend in other isotopic systems (e.g. ${ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr},{ }^{206} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb},{ }^{207} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}$, ${ }^{208} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}$, and ${ }^{144} \mathrm{Nd} /{ }^{143} \mathrm{Nd}$). Differing to what is expected from Blichert-Toft, Agranier et al. (2005), samples displaying radiogenic Hf values in this dataset are devoid of any garnet signature (figure 15 and 16). Furthermore, samples showing HREE depletion (see section 4.1.3) display the lowest radiogenic Hf-values. This is compelling evidences that the anomalously high radiogenic Hf composition observed reflects a unified source rather than grain scale variance.

The origin of such high ${ }^{176} \mathrm{Hf} /{ }^{177} \mathrm{Hf}$, depleted source remains enigmatic. Given that the decoupling of ${ }^{176} \mathrm{Hf} /{ }^{177} \mathrm{Hf}$ from other isotopic systems requires the presence of garnet, it is likely that this mantle component represent a residual mantle from melting in the garnet stability field (Salters, Mallick et al. 2011, Hamelin, Bezos et al. 2013, Frey, Nobre Silva et al. 2015). The
magnitude of decoupling is proportional to the garnet concentration and the time elapsed since the melting event, that is, the time duration of isolation of this mantle domain from melting events. Salters, Mallick et al. (2011) argued that such a high- ${ }^{176} \mathrm{Hf} /{ }^{177} \mathrm{Hf}$ component represented ancient residues from MORB melting, and named it ReLish (Residual Lithosphere). Frey, Nobre Silva et al. (2015) argued for ancient, a low melting extent in the garnet stability generate the ReLish component, and high melting extents of this component to produce the more recent ReLish melts. The anomalous Hf composition of Lucky Strike basalts (figure 23) has been attributed to (1) mixing between the ReLish component (20%), a local MORB component (70%), (2) reaction of this solid-state mixture with enriched, low-F Azores plume melts (10\%), and (3) melting of the resulting component beneath the ridge axis (Hamelin, Bezos et al. 2013).

Figure 21: MORB data from the MAR $\left(60^{\circ} S-60^{\circ} \mathrm{N}\right)$ obtained from PetDB on the 19.06 .17 along with LS data and data from this study. ${ }^{176} \mathrm{H} f{ }^{177} \mathrm{Hf}$ versus ${ }^{143} \mathrm{Nd} /{ }^{144} \mathrm{Nd}$, with anomalously high ${ }^{176} \mathrm{H} f^{177} \mathrm{Hf}$ for a given ${ }^{143} \mathrm{Nd} /{ }^{144} \mathrm{Nd}$ composition in all LS samples. Data from this study are crosscutting relative to the mantle array, approaching the anomalously depleted LS trend, likely to be similar to the ReLish component (Hamelin, Bezos et al., (2013)).

6.2.3 Geochemical modelling

To reproduce the geochemical and isotopic variance observed in the $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ area, and to further constrain the nature and significance of the ReLish component to these melts, a comprehensive melting and binary mixing model has been developed here. Details on parameters, calculations and results derived from this model are given in appendix 4 . In the following discussion, the enriched- and depleted components used to model the observed geochemical- and isotopic variance will be addressed. Additionally, two different mixing scenarios will be discussed.

In my model, the enriched end-member of the $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ lavas is most successfully reproduced by ancient, recycled oceanic crust that has been preserved from mantle convection mixing for $\sim 2 \mathrm{Ga}$. This calculated enriched component correspond to the HIMU component suggested by Wilson, Murton et al. (2013). Prominent depletions in fluid mobile elements (Pb , $\mathrm{Rb}, \mathrm{U}, \mathrm{K}, \mathrm{Th})$ and enrichment in immobile elements $(\mathrm{Ta}, \mathrm{Nb})$ in the data are coherent with metasomatism and slab modifications in the subduction zone for the enriched component. In terms of trace elements, the best match between the model values and data is seen for melting occurring in two stages beneath the ridge; (1) eclogite melting in the presence of garnet, and (2) melting of a peridotite source which has reacted with the eclogite melts. This model suggests reaction of early stage eclogite melts with olivine rich, ambient mantle to produce pyroxenite, which later re-melts to produce the enriched melts observed here. A similar scenario has been suggested for plume derived melts (Sobolev, Hofmann et al. 2005).

To obtain extreme ${ }^{176} \mathrm{Hf} /{ }^{177} \mathrm{Hf}$ values without strong depletions of other isotopic ratios (figure 18 and 23), the influence of a component analogous to the ReLish should be evaluated. This component is calculated in my model by partial melting in the presence of garnet, and has been unaffected by differentiation processes for $\sim 2 \mathrm{Ga}$. An interesting outcome of this model is that the source of this ancient melting must be a relatively enriched mantle component. As further elaborated in Appendix 4, this component is compositionally extreme, and requires some buffering by a normal depleted ambient component to reproduce the data. Based on the different nature of this buffering agent, two different models are suggested as explanation for the observed $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ systematics.

- Model 1 assumes solid-state mixing between a depleted DMM component (UDMM) similar to that suggested by Wilson, Murton et al. (2013), and the ReLish component constituted here. The UDMM - ReLish proportion is estimated to be 75:35, and the enriched component is a pyroxenite component resulting from introduction of low-F eclogite melts to the ambient mantle.
- Model 2 assumes a scenario where both the enriched and the depleted components are buffered by low-F eclogite melts, resulting in a less extreme ReLish component with ReLish - eclogite melt.

Details on the results of these models are provided in appendix 4. As shown in the trace element - isotopic ratio plots in figure 24 , some problems are still unresolved with both proposed models. However, a quick qualitative evaluation indicates a better match of model 2 with the data than model 1 . The remaining discrepancies are essentially attributed to the nature of the depleted endmembers, which appear to be too depleted in isotopic ratios (e.g. low ${ }^{206} \mathrm{~Pb}$ / ${ }^{204} \mathrm{~Pb}$ and high ${ }^{143} \mathrm{Nd} /{ }^{144} \mathrm{Nd}$) and insufficiently depleted in trace element ratios (e.g. $\mathrm{Ba} / \mathrm{La}$ and $\mathrm{La} / \mathrm{Sm}$) (figure 24). The lack of correlation between $\mathrm{Gd} / \mathrm{Yb}$ and ${ }^{206} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}$ also suggest that the garnet effect is probably overestimated in the depleted end-member (particularly in model 1).

Figure 22: Trace element ratios versus isotopic ratios with closed symbols representing samples from this study and open symbols representing samples from Wilson, Murton et al. (2013). Modeled, binary mixing curves are displayed in black (modell) and grey (model 2), with 100% indicating complete dominance of the pyroxenite component and 0% representing a mantle exclusively made of the depleted component. (a) ${ }^{206} \mathrm{~Pb}^{204} \mathrm{~Pb}$ versus $\mathrm{Gd} / \mathrm{Yb}$ with straight to concave-down mixing curves for model 2 and model 1 respectively, and a prominent concave up pattern seen in the data. Both models are excessively depleted in ${ }^{206} \mathrm{~Pb}^{204} \mathrm{~Pb}$, but model 2 exceeds model 1. (b) ${ }^{206} \mathrm{~Pb}{ }^{204} \mathrm{~Pb}$ versus Ba/La plotting displaying discrepancy between the observed data for both model 1 and 2 in terms of extreme ${ }^{206} \mathrm{~Pb}^{204} \mathrm{~Pb}$ depletion. The model 2 trend also overestimate the Ba/La of the depleted end-member. (c) ${ }^{143} \mathrm{Nd} /{ }^{144} \mathrm{Nd}$ versus La/Sm, displaying extreme ${ }^{143} \mathrm{Nd} /{ }^{144} \mathrm{Nd}$ ratios in the modeled depleted end-members. (d) ${ }^{206} \mathrm{~Pb}{ }^{204} \mathrm{~Pb}$ versus La/Sm, displaying similar, albeit less extreme discrepancy as in (b).

Figure 23: Isotopic ratios versus isotopic ratios with closed symbols representing samples from this study and open symbols representing samples from Wilson, Murton et al. (2013). Modeled, binary mixing curves are displayed in black (modell) and grey (model 2), (a) ${ }^{206} \mathrm{~Pb}^{204} \mathrm{~Pb}$ versus ${ }^{176} \mathrm{Hffl}{ }^{177} \mathrm{H}$. (b) ${ }^{176} \mathrm{Hffl}{ }^{177} \mathrm{Hf}$ versus ${ }^{143} \mathrm{Nd} /{ }^{144} \mathrm{Nd}$. (c) ${ }^{176} \mathrm{Hff} /{ }^{177} \mathrm{Hf}$ versus ${ }^{206} \mathrm{~Pb}{ }^{204} \mathrm{~Pb}$. (d) ${ }^{208} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}$ versus ${ }^{206} \mathrm{~Pb}{ }^{204} \mathrm{~Pb}$

Compared to the trace element systematics, the isotopic compositions estimated here largely match those observed in the data (figure 25). Of the two models presented here, the model 1 trend provides the best fit to the data in the ${ }^{176} \mathrm{Hf} /{ }^{177} \mathrm{Hf}$ dimension. However, as this model deviate slightly more than the model 2 trend in the remaining isotopic systems and significantly more in the trace element systematics, it is concluded here that some more work will be necessary to obtain a perfectly balanced petrogenetic model. The inadequate ${ }^{176} \mathrm{Hf} /{ }^{177} \mathrm{Hf}$ composition observed in both models may reflect (1) excessive melting of the garnet-bearing ReLish protolith, (2) underestimated isolation time of this residue from the bulk silicate earth reservoir, and (3) underestimated garnet concentrations in the ReLish protolith. It should be noted that the ReLish component constructed here is oversimplified. In agreement with previous theories proposed for this component (Hamelin, Bezos et al. 2013, Frey, Nobre Silva et al. 2015),
significant fluid - rock modifications attributed to pre-subduction alteration and subductionrelated metasomatism is expected. It became clear from the model presented here that these parameters strongly influence the isotopic composition of the enriched, recycled component, which is considered the initial source of ReLish. Despite the large number of unknown parameters, the models presented here are still bringing new, useful constraints on the nature and importance of the ReLish component on the $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ source region.

6.3 Geochemical mapping

To unravel the complex nature of the detachment faults studied here it is essential to evaluate the relationship between geochemical signals and morphological patterns. One approach to this challenge is to merge geochemical information with geological observations. In this section, "geochemical maps" are presented and interpreted. These maps have been developed by plotting geochemical parameters (e.g. $\mathrm{MgO}, \mathrm{La} / \mathrm{Sm}_{\mathrm{N}}$, and ${ }^{206} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}$) on top of bathymetrical maps. A limitation of these maps is the overlapping data points in areas with high sampling density. If samples are collected within a limited area, they will appear as an overlapping cluster on the geochemical maps. This is particularly true for dredges as these represent a range of different rock samples, which end up plotting in the same position on the map. In giving priority to one end of the geochemical scale (i.e. the lower end or the higher end), the remaining compositions may be partially or completely concealed. It is therefore noted that by carefully choosing the order in which overlapping samples are plotted, it is possible to highlight certain geochemical features. To fulfill the potential of these geochemical maps, it is essential that the exact position of each sample is known. This is the case for samples collected by a ROV. It is also necessary to consider if the sample was collected in-situ as a part of an outcrop or as a lose rock. The challenge associated with high density sampling may be overcome by plotting these data on micro-bathymetry maps, thereby increasing the relative distance between samples.

Figure 24: Geological maps displaying a large variation in MgO (wt. \%), with higher values superimposed on lower values when multiple samples are found in the same places. (a) Regional geochemical map of the $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ area displaying general decrease in MgO towards north. Inter-OCC lavas and axial valley lavas are more MgO -rich than OCC20- and OCC30 lavas. (b) High-resolution geochemical map of the OCC30 displaying a random distribution samples with different composition. (c) Highresolution geochemical map of OCC20, with equally random distribution of samples with different composition. The less-evolved samples associated with the detachment fault are constrained to a limited area in the chaotic terrain.

Figure 25: Geological maps displaying a large variation in La/Smn, with lower values superimposed on lower values when multiple samples are found in the same places. (a) Regional geochemical map of the $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} N$ area displaying general increase in La/Sm m_{N} towards north. Axial valley lavas appear more depleted than inter-OCC lavas. The most enriched samples are restricted to the west-end of the detachment fault (b) High-resolution geochemical map of the OCC30 displaying a random distribution samples with different composition. (c) High-resolution geochemical map of OCC20, showing relatively homogenous REE ratios with the exception of the chaotic terrain.

Figure 26: Geological maps displaying a large variation in ${ }^{206} \mathrm{~Pb}{ }^{204} \mathrm{~Pb}$, with higher values superimposed on lower values when multiple samples are found in the same places. (a) Regional geochemical map of the $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} N$ area displaying general increase in ${ }^{206} \mathrm{~Pb}{ }^{204} \mathrm{~Pb}$ towards south. The most enriched samples $\left({ }^{206} \mathrm{~Pb}{ }^{204} \mathrm{~Pb}>19.4\right)$ and the most depleted samples $\left.\left({ }^{206} \mathrm{~Pb}\right)^{204} \mathrm{~Pb}<18.6\right)$ are restricted to OCC20. Axial valley lavas and inter-OCC lavas are intermediate between the most enriched and most depleted samples of their detachment faults. (b) High-resolution geochemical map of the OCC30. (c) Highresolution geochemical map of OCC20.

It became clear from the previous chapter that the variance observed in $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ basalt samples can be traced to source heterogeneity. I also concluded that the influence of the enriched source was most pronounced in samples from the chaotic terrains and the upper corrugated surface in OCC20 and OCC30, and in some AV lavas. Escartin et al., (2017) argued that hanging-wall material is continuously emplaced onto the detachment fault as a function of fault rotation. This is defining the relative chronology of the lose lava debris collected along those OCCs. Wilson et al., (2013) concluded that older lavas, associated with the chaotic terrain, were enriched compared to more recent eruptions. According to this model, a gradual decrease in $\mathrm{La} / \mathrm{Sm}_{\mathrm{N}}$ is expected eastward along the detachment surface. This is not, however the observation made from the geochemical maps of the OCC20 and OCC30 (figure 26, 27, and 28). Rather, a more scattered distribution of samples is seen in both detachment faults. Depleted samples are observed in all domains of the detachment fault, and some of the most enriched and depleted samples are located within the same confined areas (e.g. samples ODM-ROC-V550-156 and ODM-ROC-V550-160 on OCC20). The lack of a gradual transition from enriched to depleted is particularly clear in the ${ }^{206} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}$ map (figure 28). These observations are consistent with a complex post-melting history. Escartín, Mével et al. (2017) argued that the distribution of rocks atop the detachment faults reflects a combination of (1) mass wasting from the fault scarp, and (2) mass wasting associated with the hanging-wall "pinch-off". According to this theory, pieces of the oceanic crust are transferred onto the detachment fault either from debris filled trench at the fault termination or from the adjacent hanging-wall (figure 29). The implication of this assumption is that rocks deposited onto the detachment at any given time may represent both hanging-wall and footwall material, in good agreement with the observed random distribution of geochemical variations, particularly along OCC30.

Another observation appearing from the geochemical maps is the relative geochemical coherence between in-situ samples collected within a restricted area. These characteristics are most prominent in the axial valley lavas near the OCC20 hanging-wall cutoff and the lavas collected along the seamount. A similarity between all compositionally consistent clusters of basalt is that they are mostly high MgO (i.e. primitive). To account for these observations, it is reasonable to consider a scenario where the described homogenous, primitive lavas were transported through crust without significant modification.

In the previous section AV lavas, SM lavas, and one OCC30-CS sample have been described to be similar in terms of major- and trace elements as well as isotopic ratios. One could assume that since the normal fault seamount is located at the same longitude as the OCC20 breakaway zone, these melts were erupted within a short time frame at the ridge axis. However, the new dataset presented here shows that SM lavas and lavas associated with the detachment faults are very different. Escartín, Mével et al. (2017) used the thickness of sediment cover and the geometry of the inter-OCC seamount as age constraints for these in-situ basalts. Owing to the thin sediment cover and flat-topped appearance of the seamount in an otherwise fault-rotated region, these authors attributed the seamount lavas to more recent, off-axis volcanism. Considering the similarity of SM- and some AV lavas (ODM-ROC-V557- [098-101]), (figure 11, 13, 15, 16, and 18), it is likely that these lavas are indeed related (i.e. source composition, melting extent, transport path and time of eruption).

The presence of axial lavas several kilometers off the ridge axis could be explained by assuming the existence of channelized melt flow through permeable conduits in the oceanic lithosphere. The seamount is situated in the half-graben of a large, high-angle normal fault. It is thus likely that the homogeneous high- Mg lavas migrated relatively rapidly from source to surface through the permeable fault zone. Melt transport has been suggested to occur along valley faults at ultra-slow-spreading settings, producing young off-axis volcanism (Standish and Sims 2010). Assuming this theory holds, the normal fault "hosting" this seamount must be rooted in the injection zone beneath the ridge axis (figure 29). Indeed, this fault has been suggested to be the precursor of an future detachment fault (Smith, Escartín et al. 2008). A similar scenario may account for the high-Mg, homogeneous enriched OCC20-CT lavas (figure 12 and 19), as fissures and fault scarps are common in the chaotic terrain of OCC20 (Escartín, Mével et al. 2017). OCC20-CT melts have most likely experienced similar migration through the crust as SM lavas. I suggest that the OCC20 area resembled the inter-OCC normal fault at the onset of detachment faulting.

It is important to consider the impact of such dispersed volcanism on the formation of detachment faults. If part of the melt escapes from the ridge axis to create off-axis seamounts like in our studied area, it might reduce the magma supply available for magmatic spreading along the axis. Ultimately, this unfocused magmatism might have an important role to trigger the
formation of an OCC. This hypothesis is opening a new field of research to study further these geological objects.

6.4 Geodynamic model

In their conceptual model for OCC development, Wilson, Murton et al. (2013) argued for reduced magmatism and thus also reduced crustal strength as a direct consequence of bimodal mantle melting. According to these authors, reduced magmatism is attributed to latent heat of fusion of the enriched component, followed by heat deficiency and magma starvation. The transition from a source significantly influenced by an enriched component to one devoid of this component has been argued the ultimate driving force for OCC formation. In the previous chapter, the importance of source heterogeneity, melting and melt focusing were evaluated in regards of the spatio-temporal chemical variation in the $13^{\circ} 00-13^{\circ} 36^{\prime} \mathrm{N}$ section of the MAR. It becomes clear from this discussion that the link between source composition and the formation of OCC is anything but straightforward. It follows that the existing geochemical model, suggesting a direct link between mantle heterogeneities and OCC formation (Wilson, Murton et al. 2013) should be re-evaluated.

The results from this study support the assumption that fluctuations in the source composition have a significant influence on the formation and evolution of the detachment faults. However physical transport and magma "leakage" to off-axis volcanism might also influence on-axis melt supply. To demonstrate this complex relationship and summarize the outcomes of this discussion, a comprehensive geodynamic model adapted from Escartin et al., (2017) is proposed (figure 29). In this model, the initiation, evolution, and termination of detachment faults in the $13^{\circ} 00^{\prime}-23^{\circ} 36^{\prime} \mathrm{N}$ area can be described by the following stages:
a. Melting in the presence of pyroxenite pockets, generating lava volumes sufficient for significant magmatic crustal accretion. Emplacement of both enriched and depleted lava within a limited time-frame, possibly accompanied by off-axis magmatism, generating the future chaotic terrain.
b. Reduced influence of pyroxenite and increased influence of a refractory, ReLish-like component in the melting column, intensifying the on-axis melt starvation. Strain focusing on single, existing faults, which eventually extend to the asthenosphere,
enabling fluid infiltration, and talc formation. Mass wasting from the fault scarp and progressive fault scarp retreat.
c. Enduring melt starvation and rotation of the fault scarp, resulting in exhumation of the lower oceanic crust and lithospheric mantle.
d. Continued fault rotation and emplacement of hanging-wall blocks onto the dome shaped fault plane along with other mass wasting material from the apron, forming an intermittent rubble cover. Reduced influence of ReLish and increased influence of DMM.
e. Reappearance of enriched mantle and enhanced melt production reduces the tectonic strain and causes new, high-angle faults break the surface of OCC30.

Figure 27: Geodynamic model of spatio-temporal evolution of the study area. Large-scale cross-section of the lithosphere and mantle (right). Small-scale cross-section of the lithosphere on the left ridge flank (left). Detailed description of the different steps is given in the text.

7. Conclusion

This study presents a model for local, spatio-temporal MORB variation in a ridge section dominated by two detachment faults. The data presented here suggest that the MORB variation in the $13^{\circ} 00^{\prime} \mathrm{N}-13^{\circ} 36^{\prime} \mathrm{N}$ region of the MAR are far from straightforward. The following factors are suggested to control the observed MORB variation:

- Varying extents of fractional crystallization
- Different melting depths and melting extents
- Different degrees of melt mixing
- Complex melt transport mechanisms
- Heterogeneities within the melting source

To reproduce the range in trace element composition and isotopic ratios, a multi-component source is needed. The enriched source is believed to be an ancient ($\sim 2 \mathrm{Ga}$) oceanic crust material. Enriched melts are suggested to reflect a two-stage melting scenario, involving:

- Melting of recycled oceanic crust (eclogite) and re-enrichment of the ambient refractory mantle by melt-rock interaction.
- Melting of the resulting pyroxenite to form E-MORBs.

The depleted source may be subdivided into two domains. The presence of a ReLish (Residual Lithosphere) component in the mantle successfully reproduces the anomalous ${ }^{176} \mathrm{Hf} /{ }^{177} \mathrm{Hf}$ on $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$. This component is believed to be a garnet bearing mantle residue, which has been isolated from convectional mixing for $\sim 2 \mathrm{Ga}$. The source of this ancient ReLish melting event is believed to be an enriched mantle component, similar to what is found under a hotspot. Whether or not this ReLish component is nowadays coexisting with a regular depleted MORB upper mantle remains unclear.

Geochemical maps reveal that near-primary melts occur in fault-disrupted areas, interpreted here to reflect fault driven melt transport. It is further inferred that off-axis, fault related volcanism has importance for the initiation of detachment faults. A transition from focused to unfocused melt transport along deep-seated normal faults is suggested here to enhance magma starvation at
the ridge axis. Unlike previous conclusions made for OCC20 and OCC30, this study proposes a combination of geochemical - and structural control on the formation of these faults.

Further research should include a higher sampling density in the axial valley. By expanding the dataset to the ridge axis, recent geochemical evolution of the study area could be evaluated. This is essential for a comprehensive understanding of the study area.

8. References

Allegre, C. J. and D. L. Turcotte (1986). "Implications of a two-component marble-cake mantle." Nature 323(6084): 123-127.
Andres, M., J. Blichert-Toft and J.-G. Schilling (2004). "Nature of the depleted upper mantle beneath the Atlantic: evidence from Hf isotopes in normal mid-ocean ridge basalts from $79^{\circ} \mathrm{N}$ to $55^{\circ} \mathrm{S}$." Earth and Planetary Science Letters 225(1-2): 89-103.
Becker, J. S. (2007). Introduction to Mass Spectrometry. Inorganic Mass Spectrometry, John Wiley \& Sons, Ltd: 1-6.
Blichert-Toft, J., A. Agranier, M. Andres, R. Kingsley, J.-G. Schilling and F. Albarède (2005). "Geochemical segmentation of the Mid-Atlantic Ridge north of Iceland and ridge-hot spot interaction in the North Atlantic." Geochemistry, Geophysics, Geosystems 6(1): n/a-n/a.
Boschi, C., G. L. Früh-Green, A. Delacour, J. A. Karson and D. S. Kelley (2006). "Mass transfer and fluid flow during detachment faulting and development of an oceanic core complex, Atlantis Massif (MAR $30^{\circ} \mathrm{N}$)." Geochemistry, Geophysics, Geosystems 7(1): n/a-n/a.
Buck, W. R., L. L. Lavier and A. N. B. Poliakov (2005). "Modes of faulting at mid-ocean ridges." Nature 434(7034): 719-723.
Cann, J. R., D. K. Blackman, D. K. Smith, E. McAllister, B. Janssen, S. Mello, E. Avgerinos, A. R. Pascoe and J. Escartin (1997). "Corrugated Slip Surfaces Formed at Ridge-Transform Intersections on the MidAtlantic Ridge." Nature 385(6614): 329-332.
Cannat, M., D. Sauter, J. Escartín, L. Lavier and S. Picazo (2009). "Oceanic corrugated surfaces and the strength of the axial lithosphere at slow spreading ridges." Earth and Planetary Science Letters 288(1-2): 174-183.
Cannat, M., D. Sauter, V. Mendel, E. Ruellan, K. Okino, J. Escartin, V. Combier and M. Baala (2006). "Modes of seafloor generation at a melt-poor ultraslow-spreading ridge." Geology 34(7): 605-608.
Ciazela, J., J. Koepke, J. B. Dick Henry and A. Muszynski (2015). Mantle rock exposures at oceanic core complexes along mid-ocean ridges. Geologos. 21: 207.
Dick, H. J. B., J. Lin and H. Schouten (2003). "An ultraslow-spreading class of ocean ridge." Nature 426(6965): 405-412.
Dick, H. J. B., M. A. Tivey and B. E. Tucholke (2008). "Plutonic foundation of a slow-spreading ridge segment: Oceanic core complex at Kane Megamullion, $23^{\circ} 30^{\prime} \mathrm{N}, 45^{\circ} 20^{\prime} \mathrm{W}$." Geochemistry, Geophysics, Geosystems 9 (5): n/a-n/a.

Donnelly, K. E., S. L. Goldstein, C. H. Langmuir and M. Spiegelman (2004). "Origin of enriched ocean ridge basalts and implications for mantle dynamics." Earth and Planetary Science Letters 226(3-4): 347366.

Dupre, B. and C. J. Allegre (1983). "Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena." Nature 303(5913): 142-146.
Escartín, J. and J. P. Canales (2011). "Detachments in Oceanic Lithosphere: Deformation, Magmatism, Fluid Flow, and Ecosystems." Eos, Transactions American Geophysical Union 92(4): 31-31.
Escartín, J., C. Mével, C. J. MacLeod and A. M. McCaig (2003). "Constraints on deformation conditions and the origin of oceanic detachments: The Mid-Atlantic Ridge core complex at $15^{\circ} 45^{\prime} \mathrm{N}$." Geochemistry, Geophysics, Geosystems 4(8): n/a-n/a.
Escartín, J., C. Mével, S. Petersen, D. Bonnemains, M. Cannat, M. Andreani, N. Augustin, A. Bezos, V. Chavagnac, Y. Choi, M. Godard, K. Haaga, C. Hamelin, B. Ildefonse, J. Jamieson, B. John, T. Leleu, C. J. MacLeod, M. Massot-Campos, P. Nomikou, J. A. Olive, M. Paquet, C. Rommevaux, M. Rothenbeck, A. Steinfuhrer, M. Tominaga, L. Triebe, R. Campos, N. Gracias and R. Garcia (2017). "Tectonic structure, evolution, and the nature of oceanic core complexes and their detachment fault zones ($13^{\circ} 20^{\prime} \mathrm{N}$ and $13^{\circ} 30^{\prime} \mathrm{N}$, Mid Atlantic Ridge)." Geochemistry, Geophysics, Geosystems 18(4): 1451-1482.
Escartin, J., D. K. Smith, J. Cann, H. Schouten, C. H. Langmuir and S. Escrig (2008). "Central role of detachment faults in accretion of slow-spreading oceanic lithosphere." Nature 455(7214): 790794.

Forsyth, D. W. and C. Langmuir (2007). "Mantle melting beneath mid-ocean ridges."
Frey, F. A., I. G. Nobre Silva, S. Huang, M. S. Pringle, P. R. Meleney and D. Weis (2015). "Depleted components in the source of hotspot magmas: Evidence from the Ninetyeast Ridge (Kerguelen)." Earth and Planetary Science Letters 426: 293-304.
Gale, A., S. Escrig, E. J. Gier, C. H. Langmuir and S. L. Goldstein (2011). "Enriched basalts at segment centers: The Lucky Strike ($37^{\circ} 17^{\prime} \mathrm{N}$) and Menez Gwen ($37^{\circ} 50^{\prime} \mathrm{N}$) segments of the Mid-Atlantic Ridge." Geochemistry, Geophysics, Geosystems 12(6): n/a-n/a.
Gill, R. (2010). Igneous Rocks and Processes: A Practical Guide.
Goldschmidt, V. (1954). "Geochemistry: Oxford University Press." Fair Lawn, NJ.
Hamelin, C., A. Bezos, L. Dosso, J. Escartin, M. Cannat and C. Mevel (2013). "Atypically depleted upper mantle component revealed by Hf isotopes at Lucky Strike segment." Chemical Geology 341: 128139.

Hamelin, C., L. Dosso, B. B. Hanan, M. Moreira, A. P. Kositsky and M. Y. Thomas (2011). "Geochemical portray of the Pacific Ridge: New isotopic data and statistical techniques." Earth and Planetary Science Letters 302(1-2): 154-162.
Hanan, B. B. and D. W. Graham (1996). "Lead and Helium Isotope Evidence from Oceanic Basalts for a Common Deep Source of Mantle Plumes." Science 272(5264): 991-995.
Hannigan, R. E., A. R. Basu and F. Teichmann (2001). "Mantle reservoir geochemistry from statistical analysis of ICP-MS trace element data of equatorial mid-Atlantic MORB glasses." Chemical Geology 175(3-4): 397-428.
Hanson, G. N. and C. H. Langmuir (1978). "Modelling of major elements in mantle-melt systems using trace element approaches." Geochimica et Cosmochimica Acta 42(6): 725-741.
Hart, A. Z. a. S. (1986). "Chemical Geodynamics." Annual Review of Earth and Planetary Sciences 14: 493571.

Hart, S. R. (1984). "A large-scale isotope anomaly in the Southern Hemisphere mantle." Nature 309(5971): 753-757.
Hart, S. R. (1988). "Heterogeneous mantle domains: signatures, genesis and mixing chronologies." Earth and Planetary Science Letters 90(3): 273-296.

Hart, S. R., E. H. Hauri, L. A. Oschmann and J. A. Whitehead (1992). "Mantle Plumes and Entrainment: Isotopic Evidence." Science 256(5056): 517-520.
Hauri, E. H. and S. R. Hart (1993). "ReOs isotope systematics of HIMU and EMII oceanic island basalts from the south Pacific Ocean." Earth and Planetary Science Letters 114(2): 353-371.
Hedge, C. E. and F. G. Walthall (1963). "Radiogenic Strontium-87 as an Index of Geologic Processes." Science 140(3572): 1214-1217.
Hellebrand, E., J. E. Snow, P. Hoppe and A. W. Hofmann (2002). "Garnet-field Melting and Late-stage Refertilization in 'Residual' Abyssal Peridotites from the Central Indian Ridge." Journal of Petrology 43(12): 2305-2338.
Hirschmann, M. M. and E. M. Stolper (1996). "A possible role for garnet pyroxenite in the origin of the "garnet signature" in MORB." Contributions to Mineralogy and Petrology 124(2): 185-208.
Hofmann, A. W. (1988). "Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust." Earth and Planetary Science Letters 90(3): 297-314.
Hofmann, A. W. (1997). "Mantle geochemistry: the message from oceanic volcanism." Nature 385(6613): 219-229.
Hofmann, A. W. (2007). 2.03 - Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements A2 - Holland, Heinrich D. Treatise on Geochemistry. K. K. Turekian. Oxford, Pergamon: 1-44.
Hofmann, A. W. and W. M. White (1982). "Mantle plumes from ancient oceanic crust." Earth and Planetary Science Letters 57(2): 421-436.
Ildefonse, B., B. E. D.K. Blackman, Y. John, D. J. M. Ohara and C.J. MacLeod (2007). "Oceanic core complexes and crustal accretion at slow-spreading ridges." 35(7): 623-626.
Jacob, D. E. and S. F. Foley (1999). "Evidence for Archean ocean crust with low high field strength element signature from diamondiferous eclogite xenoliths." Lithos 48(1-4): 317-336.
Jakubowski, N., T. Prohaska, L. Rottmann and F. Vanhaecke (2011). "Inductively coupled plasma- and glow discharge plasma-sector field mass spectrometry Part I. Tutorial: Fundamentals and instrumentation." Journal of Analytical Atomic Spectrometry 26(4): 693-726.
Karson, J. A., and Dick, H.J.B (1983). "Tectonics of a ridge- transform intersection at the Kane fracture zone." Marine Geophysical Researches 6: 51-98.
Karson, J. A., N. White, L. Curry, D. McKenzie, R. S. White, A. B. Watts, N. Kusznir, K. E. Louden and R. Buck (1999). "Geological Investigation of a Lineated Massif at the Kane Transform Fault: Implications for Oceanic Core Complexes [and Discussion]." Philosophical Transactions: Mathematical, Physical and Engineering Sciences 357(1753): 713-740.
Kelemen, P. B., G. Hirth, N. Shimizu, M. Spiegelman and H. J. B. Dick (1997). "A Review of Melt Migration Processes in the Adiabatically Upwelling Mantle beneath Oceanic Spreading Ridges." Philosophical Transactions: Mathematical, Physical and Engineering Sciences 355(1723): 283-318.
Kimura, J.-I., J. B. Gill, S. Skora, P. E. van Keken and H. Kawabata (2016). "Origin of geochemical mantle components: Role of subduction filter." Geochemistry, Geophysics, Geosystems 17(8): 3289-3325.
Klein, E. M. (2003). 3.13-Geochemistry of the Igneous Oceanic Crust A2 - Holland, Heinrich D. Treatise on Geochemistry. K. K. Turekian. Oxford, Pergamon: 433-463.
Klein, E. M. (2003). Geochemistry of the Igneous Oceanic Crust, Elsevier.
Klein, E. M. and C. H. Langmuir (1989). "Local versus global variations in ocean ridge basalt composition: A reply." Journal of Geophysical Research: Solid Earth 94(B4): 4241-4252.
Koornneef, J. M., A. Stracke, B. Bourdon, M. A. Meier, K. P. Jochum, B. Stoll and K. Grönvold (2011). "Melting of a Two-component Source beneath Iceland." Journal of Petrology 53(1): 127-157.
Langmuir, C. K., EM ; Plank, T (1992). "Mantle Flow and Melt Generation at Mid-Ocean Ridges." (71): 183-280.
Luqman, M., Inamuddin (2012). Ion Exchange Technology II: Applications, Springer Netherlands.

Maclennan, J. (2008). "Lead isotope variability in olivine-hosted melt inclusions from Iceland." Geochimica et Cosmochimica Acta 72(16): 4159-4176.
MacLeod, C. J., J. Carlut, J. Escartín, H. Horen and A. Morris (2011). "Quantitative constraint on footwall rotations at the $15^{\circ} 45^{\prime} \mathrm{N}$ oceanic core complex, Mid-Atlantic Ridge: Implications for oceanic detachment fault processes." Geochemistry, Geophysics, Geosystems 12(5): n/a-n/a.
MacLeod, C. J., J. Escartín, D. Banerji, G.J. Banks, M. Gleeson, D.H.B. Irving, R.M. Lilly, A.M. McCaig, Y. Niu, S. Allerton and D. K. Smith (2002). "Direct geological evidence for oceanic detachment faulting: The Mid-Atlantic Ridge, $15^{\circ} 45^{\prime}$ N." Geological Society of America Bulletin 30(10): 879-882.
MacLeod, C. J., R. C. Searle, B. J. Murton, J. F. Casey, C. Mallows, S. C. Unsworth, K. L. Achenbach and M. Harris (2009). "Life cycle of oceanic core complexes." Earth and Planetary Science Letters 287(34): 333-344.

Manhes, G., J. F. Minster and C. J. Allègre (1978). "Comparative uranium-thorium-lead and rubidiumstrontium study of the Saint Sèverin amphoterite: consequences for early solar system chronology." Earth and Planetary Science Letters 39(1): 14-24.
Michael, P. J., C. H. Langmuir, H. J. B. Dick, J. E. Snow, S. L. Goldstein, D. W. Graham, K. Lehnert, G. Kurras, W. Jokat, R. Muhe and H. N. Edmonds (2003). "Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean." Nature 423(6943): 956-961.
Müller, R. D., M. Sdrolias, C. Gaina and W. R. Roest (2008). "Age, spreading rates, and spreading asymmetry of the world's ocean crust." Geochemistry, Geophysics, Geosystems 9(4): n/a-n/a.
Nobre Silva, I. G., D. Weis and J. S. Scoates (2010). "Effects of acid leaching on the Sr-Nd-Hf isotopic compositions of ocean island basalts." Geochemistry, Geophysics, Geosystems 11(9): n/a-n/a.
Pertermann, M., M. M. Hirschmann, K. Hametner, D. Günther and M. W. Schmidt (2004). "Experimental determination of trace element partitioning between garnet and silica-rich liquid during anhydrous partial melting of MORB-like eclogite." Geochemistry, Geophysics, Geosystems 5(5): n/a-n/a.
Plank, T. and C. H. Langmuir (1992). "Effects of the melting regime on the composition of the oceanic crust." Journal of Geophysical Research: Solid Earth 97(B13): 19749-19770.
Reston, T. J. and C. R. Ranero (2011). "The 3-D geometry of detachment faulting at mid-ocean ridges." Geochemistry, Geophysics, Geosystems 12(7): n/a-n/a.
Robinson, J. A. C. and B. J. Wood (1998). "The depth of the spinel to garnet transition at the peridotite solidus." Earth and Planetary Science Letters 164(1-2): 277-284.
Rubin, K. H., J. M. Sinton, J. Maclennan and E. Hellebrand (2009). "Magmatic filtering of mantle compositions at mid-ocean-ridge volcanoes." Nature Geosci 2(5): 321-328.
Salters, V. J. M., S. Mallick, S. R. Hart, C. E. Langmuir and A. Stracke (2011). "Domains of depleted mantle: New evidence from hafnium and neodymium isotopes." Geochemistry, Geophysics, Geosystems 12(8): n/a-n/a.
Salters, V. J. M. and A. Stracke (2004). "Composition of the depleted mantle." Geochemistry, Geophysics, Geosystems 5(5): n/a-n/a.
Schreiber, H. D. (1986). "Redox processes in glass-forming melts." Journal of Non-Crystalline Solids 84(1): 129-141.
Sen, G. (2014). Petrology: Principles and Practice. New-Delhi, India, Springer-Verlag Berlin Heidelberg.
Smith, D. (2013). "Tectonics: Mantle spread across the sea floor." Nature Geosci 6(4): 247-248.
Smith, D. K., J. R. Cann and J. Escartin (2006). "Widespread active detachment faulting and core complex formation near 13 degrees N on the Mid-Atlantic Ridge." Nature 442(7101): 440-443.
Smith, D. K., J. R. Cann and J. Escartin (2006). "Widespread active detachment faulting and core complex formation near 13[deg][thinsp]N on the Mid-Atlantic Ridge." Nature 442(7101): 440-443.

Smith, D. K., J. Escartín, H. Schouten and J. R. Cann (2008). "Fault rotation and core complex formation: Significant processes in seafloor formation at slow-spreading mid-ocean ridges (Mid-Atlantic Ridge, $13^{\circ}-15^{\circ} \mathrm{N}$)." Geochemistry, Geophysics, Geosystems 9(3): n/a-n/a.
Sobolev, A. V., A. W. Hofmann and I. K. Nikogosian (2000). "Recycled oceanic crust observed in /'ghost plagioclase/' within the source of Mauna Loa lavas." Nature 404(6781): 986-990.
Sobolev, A. V., A. W. Hofmann, S. V. Sobolev and I. K. Nikogosian (2005). "An olivine-free mantle source of Hawaiian shield basalts." Nature 434(7033): 590-597.
Standish, J. J. and K. W. W. Sims (2010). "Young off-axis volcanism along the ultraslow-spreading Southwest Indian Ridge." Nature Geosci 3(4): 286-292.
Stracke, A. (2012). "Earth's heterogeneous mantle: A product of convection-driven interaction between crust and mantle." Chemical Geology 330-331: 274-299.
Stracke, A., M. Bizimis and V. J. M. Salters (2003). "Recycling oceanic crust: Quantitative constraints." Geochemistry, Geophysics, Geosystems 4(3): n/a-n/a.
Stracke, A. and B. Bourdon (2009). "The importance of melt extraction for tracing mantle heterogeneity." Geochimica et Cosmochimica Acta 73(1): 218-238.
Stroobrant, E. d. H. a. V. (2007). Mass Spectrometry - Principles and Applications, Third Edition. The Artiut, Southern Gatye, Chichester West Sussex PO198SQ, England, JohnWiley \& Sons, Ltd.
Sun, S.-s. and W. F. McDonough (1989). "Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes." Geological Society, London, Special Publications 42(1): 313-345.
Tang, M., W. F. McDonough and R. D. Ash (2017). "Europium and strontium anomalies in the MORB source mantle." Geochimica et Cosmochimica Acta 197: 132-141.
Tatsumoto, M., C. E. Hedge and A. E. J. Engel (1965). "Potassium, Rubidium, Strontium, Thorium, Uranium, and the Ratio of Strontium-87 to Strontium-86 in Oceanic Tholeiitic Basalt." Science 150(3698): 886-888.
Thompson, R. N., M. A. Morrison, G. L. Hendry, S. J. Parry, P. R. Simpson, R. Hutchison and M. J. O'Hara (1984). "An Assessment of the Relative Roles of Crust and Mantle in Magma Genesis: An Elemental Approach [and Discussion]." Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 310(1514): 549-590.
Todd, E., A. Stracke and E. E. Scherer (2015). "Effects of simple acid leaching of crushed and powdered geological materials on high-precision Pb isotope analyses." Geochemistry, Geophysics, Geosystems 16(7): 2276-2302.
Tucholke, B. E., M. D. Behn, W. R. Buck and J. Lin (2008). "Role of melt supply in oceanic detachment faulting and formation of megamullions." Geology 36(6): 455-458.
Tucholke, B. E., K. Fujioka, T. Ishihara, G. Hirth and M. Kinoshita (2001). "Submersible study of an oceanic megamullion in the central North Atlantic." Journal of Geophysical Research: Solid Earth 106(B8): 16145-16161.
Tucholke, B. E., J. Lin and M. C. Kleinrock (1998). "Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge." Journal of Geophysical Research: Solid Earth 103(B5): 9857-9866.
Wang, Z. and G. A. Gaetani (2008). "Partitioning of Ni between olivine and siliceous eclogite partial melt: experimental constraints on the mantle source of Hawaiian basalts." Contributions to Mineralogy and Petrology 156(5): 661-678.
Weill, D. F. and M. J. Drake (1973). "Europium Anomaly in Plagioclase Feldspar: Experimental Results and Semiquantitative Model." Science 180(4090): 1059-1060.
White, W. M. (1985). "Sources of oceanic basalts: Radiogenic isotopic evidence." Geology 13(2): 115118.

White, W. M. (2015b). "Probing the Earth's Deep Interior Through Geochemistry." Geochemical Perspectives 4(2): 95-251.
Wilson, S. C., B. J. Murton and R. N. Taylor (2013). "Mantle composition controls the development of an Oceanic Core Complex." Geochemistry, Geophysics, Geosystems 14(4): 979-995.
Workman, R. K. and S. R. Hart (2005). "Major and trace element composition of the depleted MORB mantle (DMM)." Earth and Planetary Science Letters 231(1-2): 53-72.
Wyllie, P. J. (1970). "Ultramafic rocks and the upper mantle."

Appendix 1: Sample description

Table A1-1: Description abbreviations

A	Aphyric
P	Phyric
B	Variolitic
Px	Pyroxalt
PI	Plagioclase
Ol	Olivine
mp	Microphenocrysts
B	Glass
D	Basalt with glassy rim
B-A	Altered basalt

Table A1-1: Samples with descriptions. The abbreviation "ROC" suggests that the sample was collected by a ROV. Abbreviations for rock type, texture and visible minerals (i.e. visible phenocrysts) are found in table A1-1. Abbreviations for institution of analysis is B (University of Bergen) and N (University of Nantes).

Table A1-2: Samples with descriptions. The abbreviation "DR" suggests that the sample was collected by a dredging. Abbreviations for rock type, texture and visible minerals (i.e. visible phenocrysts) are found in table A1-1. Abbreviations for institution of analysis is B (University of Bergen) and N (University of Nantes).

	On bottom		Off bottom		$\begin{aligned} & \text { Depth } \\ & \text { (m) } \\ & \hline \end{aligned}$	Domain	Rock types	Institute of analysis	
Samples	Latitude	Longitude	Latitude	Longitude				Isotopes	Trace element
ODM-DR01-01-03-g	13.579	-45.021	13.575	-45.029	2462	OCC30-CS	Pillow basalt	B	N
ODM-DR01-01-04-g	13.567	-45.011	13.576	-45.030	2462	occ30-CS	Pillow basalt	-	N
ODM-DR02-01-01g	13.496	-44.954	13.504	-44.945	2303	OCC30-CS	basalt	-	N
ODM-DR04-01-04g	13.488	-44.930	13.493	-44.930	2498	OCC30-CS	basalt	-	N
ODM-DR10-01-06	12.357	-44.957	13.349	-44.960	2546	OCC20-CT	basalt	B	N
ODM-DR11-1-07g	13.354	-44.941	13.352	-44.977	2529	OCC20-CT	basalt	-	N
ODM-DR12-01-06	12.245	-44.901	13.249	-44.910	3655	NF	basalt	B	N
ODM-DR13-01-12g	12.570	-44.930	13.562	-44.933	3002	OCC30-CS	basalt	B	N

Appendix 2: Data

Table A1: Major elements

6t＇66	28．86	$\angle 9^{\circ}$	LTO	て¢＊	$9 \varepsilon^{\prime}$＇	86＇01	65 ${ }^{\circ}$	$99^{\circ} 0$	ع0カ＇6	ャ9＇ャワ	ガโ	S ι° OS	960－9tS＾－JOY－W00
68．00T	Et＇96	97 ＇t	Ls＇0	66° I	$\varepsilon{ }^{\prime}$	9t＇0t	ع9＇8	St＇o	L80＇01	\＆\％＇ZI	εL^{\prime}＇	tS＇St	L60－97S＾－כOY－W00
	6ع＇86		カt＇0	IT＇0	$8 て ゙ て$	6L＇tI	T＇8	せでo	$\angle \angle \rightarrow$ 8	โع｀ऽโ	8 ${ }^{\text {T }}$	28＇67	
โ6．96	โ6．96		St＇o	60\％	$8 て ゙ て$	とでII	8	61．0	6868	9T｀SI	SI＇I	L9＇8b	ttて－t¢S＾－כO૫－W00
	S0＇66		で0	TS＊ 0	でて	6S＇II	86.9	LİO	$67 \varepsilon^{\prime} 6$	$86^{\circ} \downarrow \tau$	$6 \varepsilon^{\prime}$ I	てtios	Lヵて－ヤSS＾－כOY－W0O
	โ9＇86		でO	［00	19＇て	79＇0I	60＇8	LT＇0	દยโ＇6	$69^{\circ} \downarrow \tau$	$8 \varepsilon^{\prime}$ I	65＇0S	ع9Z－t¢S＾－כO૫－WCO
	00τ	$\varepsilon \varepsilon^{\prime} 0$	でO	So	ャع＇て	てL＇tI	$66^{\circ} 9$	91．0	しゃで6	$\varepsilon \cdot \varsigma I$	97＊	LO＇TS	－8SS＾－כOY－W00
	66	62＇0	6で0	90	くガて	T0＇tI	$86^{\circ} 9$	$\angle T \cdot 0$	109＇6	$\angle 8{ }^{\circ} \downarrow \tau$	S9＇โ	62＇0s	
	t0＇66		Lで0	$\angle S^{\circ} 0$	SS＇て	85＇01	でく	$\angle T \cdot 0$	088.6	\downarrow カ \dagger	โ9＇โ	Ss．OS	$\varepsilon L \varepsilon-6 ¢ S \wedge-כ O บ-W C O ~$
	6.26		＋0 0	St．0	S8．\downarrow	ऽย＇โI	LOT	カT＊O	SOt＇8	6891	970	L6＇9t	†Lع－6¢S＾－כOצ－W00
عL＇66	St＇96	$85^{\wedge} \varepsilon$	64\％	70 0	$\varepsilon \cdot \varepsilon$	โદ＇ε	ST＇t		69ぐてT	Lع＇91	カで「	8S＇ZS	6Lع－6S¢＾－כOצ－W00
ع＇66	66	$\varepsilon 0$	$\varepsilon 0$	LLOO	6ガて	T600	L＇9	$\angle T \cdot 0$	عโع＇6	$8 S^{\circ} \downarrow \tau$	$\angle L \cdot \tau$	20＇ts	L8ع－6¢S＾－כOצ－W00
L＇66	6て＇66	切0	ऽร＇0	8 $L^{\circ} 0$	$8{ }^{\prime}$	LS．6	$98^{\prime \prime} 9$	61．0	カ9ガしT	S6＇EL	SI＇Z	$\dagger^{\circ} \mathrm{OS}$	E0t－09¢＾－JOY－WCO
	とで66		6で0	18．0	$85^{\prime} 7$	T0＇tI	$6 \varepsilon^{\prime} 9$	9T＊0	ITS＊ 6	I＇SI	$\varepsilon L^{\prime} \tau$	9.05	tOt－09¢＾－כOY－WCO
	とで86		で0	87°	85^{\prime} 乙	とがOT	88.9	$85^{\circ} 0$	690＇01	โ0＇ヶธ	S9＇โ	28．0S	890－t－otyo－wao
	てで66		しで0	68．0	9ガて	SでしI	TL＇8	$99^{\circ} 0$	S¢8．8	$\angle 8{ }^{\circ} \downarrow \tau$	$\angle \varepsilon^{\prime} \tau$	L6＇6t	8LO－t－ttya－wao
	ع．86		Sto	てで0	しでて	\＆S＇0I	$\varepsilon \cdot 6$		ع $29^{\prime} 6$	$96^{\circ} \downarrow \tau$	6I＇โ	$\angle L \cdot 8\rangle$	890－t－ztya－wao
	8.66		S0＇0	L0＇0	6.1	9く＇tI	T0\％	9T＊0	とてで6	$90<1$	LSO	$88^{\prime} \angle t$	－860－L৮¢＾－כО४－WดO
	$\angle \square^{\circ} 00 \tau$		70 0	900	$76^{\circ} \mathrm{L}$	て6＊II	LOOT	$9{ }^{\circ} \mathrm{O}$	9 ${ }^{\text {ce＇6 }}$	$て ゙ く \tau$	SS＇0	LI．8t	8660－L৮S＾－כO४－WOO
	62\％00T		90＇0	90＇0	98＇โ	ع0＇てI	SOT	91．0	しゃで6	てでくし	95＊0	$9 c^{\circ} \angle t$	S00t－LtS＾－כOY－WCO
	68．00t		70 0	90\％	L8＇โ	とでてI	カOT	$\angle T \cdot 0$	L98＇6	8t $\angle 1$	SS．0	$\varepsilon S^{\prime} \angle t$	
6.66	$\angle t^{\prime} \angle 6$	Et＇て	Stio	9で0	カでて	でてI	$58^{\circ} \mathrm{L}$	St＇0	と0t＇6	90＇st	$9 て ゙ \downarrow$	$98^{\circ} \angle t$	LLI－TSS＾－כOy－wao
S．66	99＇86	¢8．0	8t\％	て¢＊	દと＇乙	St＇II	$\varepsilon 8^{\circ} \mathrm{L}$	91．0	9768	LO＇st	$\angle \varepsilon^{\prime}$ I	t0＇0s	L8て－¢SS＾－JOY－W00
96.66	［＇66	98°	しでO	カガ0	カて	66．01	9 $L^{\circ} \mathrm{L}$	$99^{\circ} 0$	89で6	$86^{\circ} \downarrow \tau$	\＆ऽ＇โ	દع＇0s	乙8て－ऽş＾－כ૦૫－W00
65＇66	9 $L^{\prime} 86$	ع8＊0	カT＊	$65^{\circ} 0$	sでて	て9＇しI	28.1	9T＊0	6ऽで6	โ8＇ャワ	しでし	LでOS	ع8て－s¢s＾－כOy－wao
86.66	26 26	90 て	$\angle T O$	\％ 0	くガて	โ9＇tI	てL＇L	St．0	6Lで8	T8．$¢$	દદ＇โ	9ع＇6t	ヤ৪て－¢¢¢＾－כOy－woo
$107+1 \mathrm{P} 701$	｜ełO］	\％IO7	${ }^{\text {s }}{ }^{\text {r }} \mathrm{d}$	OZ\}	oren	OPJ	08 W	ouw	${ }^{1} \mathrm{O}-1$	£O2｜	${ }^{2} \mathrm{O}!1$	${ }^{2} \mathrm{O}, 5$	әureu әidmes

ZT．00才	ع6：86	6I＇${ }^{\text {I }}$	$8 \mathrm{I}^{\prime} 0$	Sto	$\angle L^{\prime}$＇	T0＇てI	$99^{\circ} \mathrm{L}$	$\dagger t^{\prime} 0$	STE＊8	$\varepsilon 6^{\circ} \mathrm{S}$ L	$\varepsilon \varepsilon^{\prime} \tau$	てع＇6t	L8Z－şs＾－כOY－W00
$90 \cdot 66$	t0．86	て0＇โ	で0	$8 \varepsilon^{\prime} 0$	$9 L^{\prime}$＇	カでした	$\angle 9^{\circ} 9$	$97^{\circ} 0$	6 $20 \cdot 6$	60＇st	$\varepsilon \varsigma^{\prime} \tau$	20＇0s	68て－scs＾－כOy－wao
	$\begin{aligned} & y \\ & \text { 9.00t } \end{aligned}$		6T＇0	દદ＇0	でて	91＇LI	L9＊8	$\angle T 0$	829＇6	$9<゙ \downarrow \tau$	$9 t^{\prime \prime}$	6L＇0S	S06Z－scs＾－כOપ－WCO
てて＇00ヶ	88＇L6	$\downarrow \varepsilon^{\prime}$ Z	しで0	ャで0	68^{\prime} Z	$67^{\circ} 0 \tau$	$\angle 6.9$	St＇0	†¢0＇6	$\varsigma \underbrace{\prime} \downarrow \tau$	$9 L^{\prime} \tau$	6L＇0S	นLદ－9¢¢＾－כO¢－W00
して＊00ヶ	68.86	てદ＇亡	$\varepsilon \tau^{\prime} 0$	てて＇0	てでて	ع8＇t	9 ${ }^{\prime} 8$	St＇0	97T＊8	ZL＇SL	てI＇โ	IL＇6t	てTદ－9¢S＾－כ૦૫－W00
60＇66	LT＇86	86°	$\angle T^{\prime} 0$	$\downarrow \varepsilon^{\prime} 0$	$9 \checkmark^{\circ}$ て	て＇IT	$19^{\circ} \mathrm{L}$	$9 T^{\prime} 0$	\＆てで6	UL＇巾	$S t^{\prime} \tau$	$s L^{\prime} 6 t$	عโદ－9¢S＾－כOบ－WaO
しでてを	$\angle 6^{\circ} 0 \varepsilon$	カでし	てİ0	で0	sでて	$\angle て ゙ \varepsilon \tau$	$\square L \cdot L$	でっ0	દદऽ＇9	$\angle 6 \angle T$	16\％	カ＇6t	†tع－9¢S＾－כO¢－woo
$107+12+101$	｜ 2701	\％ 107	${ }^{\text {s }} \mathrm{O}^{\text {r }} \mathrm{d}$	OZヌ	Oren	OPJ	08 W	oun	${ }^{1024}$	\＆O＜\｜	${ }^{2} \mathrm{O}!1$	${ }^{2} \mathrm{O}$ ！	ameu әldmes

													$\begin{aligned} & \text { O} \\ & \substack{1 \\ \hline 0} \end{aligned}$	\circ $\stackrel{O}{1}$ in				$\begin{aligned} & \text { ồ } \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$			\％
	$\stackrel{\text { ® }}{\sim}$	$\stackrel{\sim}{i}$	－	$\stackrel{\sim}{\sim}$	N	${ }_{\infty}$	ci	$\stackrel{\bigcirc}{\sim}$	\cdots	N	－	N	in	$\stackrel{+}{\infty}$		\checkmark ソ			\cdots		＝
	寺 \sim_{∞}	Now	N 空	岕 著				$\stackrel{\sim}{\infty}$	～							N			苂		＜
	茴 0	N 克	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\sim}{\square} \stackrel{\sim}{\infty}$				$\stackrel{\sim}{\sim}$				－				O			\％\sim \％${ }_{\sim}^{\sim}$		$?$
	$\underset{\sim}{\sim} \stackrel{\rightharpoonup}{\omega}$	$\stackrel{\infty}{\sim} \stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim} \stackrel{\infty}{\sim}$	$\stackrel{\rightharpoonup}{\circ} \stackrel{\bullet}{\circ}$	$\stackrel{\sim}{\sim}$	↔	∞	\pm	－	∞	\checkmark	\bigcirc	岕	$\stackrel{\leftrightarrow}{\sim}$	ぶ	\bigcirc	宜		岕 芦 总		z
	$\pm{ }^{4}$	$\stackrel{\sim}{\sim}$	¢ ¢	N	N	9	∞	$\stackrel{\infty}{\circ}$	∞	シ	N	Ј $\stackrel{\infty}{\sim}$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{0}{0}$	$\stackrel{\infty}{\infty}$	¢	$\stackrel{\sim}{\bullet}$	ぶ	¢ $\stackrel{\infty}{\sim}$		N
	$\underset{\sim}{\omega}$	$\stackrel{\stackrel{\rightharpoonup}{\omega}}{\stackrel{\rightharpoonup}{\sim}}$	$\stackrel{\rightharpoonup}{v} \stackrel{\rightharpoonup}{\omega}$	$\stackrel{+}{\sim}$		\sim	\cdots	$\stackrel{\infty}{\sim}$	N	$\stackrel{\circ}{\infty}$	능	$\stackrel{\sim}{\sim}$	$\underset{\sim}{\sim}$		\cdots	u	$\hat{\sim}$	io			줃
	突 実	$\underset{\sim}{\sim}$	N	芯				${ }^{\circ}$	$\stackrel{\text { 宩 }}{ }$		∞	岕突			$\underset{\sim}{\sim}$	苵 耍	$\stackrel{\text { H }}{\text { S }}$		式 岗 屶		～
	$\stackrel{\stackrel{i}{y}}{\sim}$	$\underset{\underset{\omega}{\omega}}{\stackrel{\omega}{\omega}} \underset{\sim}{\omega} \underset{\substack{\infty \\ \hline}}{ }$	$\stackrel{\omega}{\oplus} \text { 岸 }$	$\begin{array}{cc} \stackrel{\leftrightarrow}{\omega} \\ \underset{\sim}{\omega} \\ i \end{array}$	$\underset{\omega}{\stackrel{\omega}{\omega}}$		～	$\underset{\dot{j}}{\omega}$	$\underset{\omega}{\infty}$	$\underset{i}{\sim}$	$\underset{\sim}{\sim}$	$\underset{\perp}{\stackrel{\omega}{\Delta}}$	N		$\underset{\infty}{\sim}$	$\underset{\infty}{\sim} \underset{\sim}{\sim}$	$\stackrel{\rightharpoonup}{0}$	$\underset{\sim}{\sim}$	$\begin{array}{ccc} \underset{-}{\sim} & \underset{\infty}{\sim} & \underset{\omega}{\underset{\omega}{\omega}} \end{array}$		＜
	セ き	荅 岁	献	N N			¢	$\stackrel{\square}{6}$	∞	$\stackrel{\sim}{\sim}$	∞	苂			命	才	↔	8	－敃 ${ }^{\circ}$		\checkmark
			$\begin{array}{ll} \tilde{y} \\ \underset{O}{\circ} & N \end{array}$	$\underset{\infty}{\tilde{\omega}} \underset{\sim}{\sim}$	$\stackrel{N}{i}$	$\stackrel{̣}{\dot{\omega}}$	ö	$\stackrel{\stackrel{\rightharpoonup}{i}}{\stackrel{1}{2}}$	$\underset{\sim}{i}$:	$\stackrel{\stackrel{\rightharpoonup}{\bullet}}{\stackrel{-}{2}}$	$\stackrel{\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\infty}}}{\stackrel{\rightharpoonup}{\infty}}$	N	g		i i io	会				장
	$\stackrel{\circ}{\stackrel{\circ}{\Phi}}$	$\begin{array}{ll} \stackrel{\circ}{\infty} & \stackrel{\circ}{Ð} \\ \underset{\sim}{v} \end{array}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\text { ® }} \stackrel{0}{心} \end{aligned}$	$\begin{array}{ll} \circ \\ \stackrel{\circ}{\sim} \\ \stackrel{0}{\sim} \end{array}$	$\stackrel{\stackrel{\rightharpoonup}{\omega}}{\omega}$	웅	O.	$\stackrel{\stackrel{\rightharpoonup}{0}}{\stackrel{\sim}{0}}$	む	$\dot{山}$	$\stackrel{\stackrel{H}{0}}{\stackrel{0}{0}}$	$\begin{array}{ll} \circ & \circ \\ \stackrel{\rightharpoonup}{\infty} & \stackrel{0}{4} \end{array}$		∞		O O	A		$\begin{array}{ll} \circ \stackrel{\circ}{0} \\ \stackrel{\circ}{\mathrm{j}} \\ \mathrm{u} \end{array}$		n
	\checkmark 各	岕 ${ }_{\circ}^{\circ}$	$\stackrel{\text { 辿 }}{\text { ¢ }}$	$\stackrel{\text { ¢ }}{ }$		$\stackrel{+}{\square}$	む	\cdots	${ }_{\sim}^{\omega}$	\checkmark	$\stackrel{\text { 각 }}{ }$	નુ兀				¢ 8	$\stackrel{\sim}{\circ}$	\bigcirc	$\stackrel{\infty}{\sim} \stackrel{\sim}{\infty} \stackrel{\sim}{\sim}$		＊
	$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\stackrel{\rightharpoonup}{\infty}}$	$\underset{\sim}{\stackrel{\rightharpoonup}{\sim}} \stackrel{\text { U }}{\substack{2}}$	$\stackrel{\stackrel{\rightharpoonup}{\perp}}{\stackrel{\rightharpoonup}{\oplus}}$	$\stackrel{\stackrel{\rightharpoonup}{+}}{\stackrel{\rightharpoonup}{+}}$			ベ	$\stackrel{\infty}{\stackrel{\infty}{\sigma}}$	if	in		y	∞_{∞}^{∞}	$\stackrel{+}{-}$	$\stackrel{\infty}{\stackrel{\circ}{\circ}}$	$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{\rightharpoonup}{i}$	$\stackrel{\otimes}{\circ}$	$\begin{array}{lll} \infty \\ \dot{y} & \infty \\ \dot{\theta} & \stackrel{+}{+} \end{array}$		\pm
		$\begin{array}{ll} \omega \\ \underset{\sim}{\omega} & \underset{\sim}{\sim} \\ \underset{\sim}{\sim} \end{array}$		$\underset{\sim}{\omega} \underset{\sim}{\omega}$	$\begin{aligned} & \omega \\ & \dot{\sigma} \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$	菏	$\stackrel{\leftrightarrow}{\omega}$	$\begin{array}{ll} \stackrel{\rightharpoonup}{\infty} & \stackrel{\rightharpoonup}{+} \\ \dot{\phi} & \stackrel{\rightharpoonup}{\phi} \end{array}$	$\begin{array}{ll} \stackrel{\rightharpoonup}{\infty} \\ \stackrel{\rightharpoonup}{\infty} \\ \stackrel{\infty}{\sim} \end{array}$	$\stackrel{o}{\infty}$	$\stackrel{\underset{\sim}{\underset{~}{~}}}{ }$		$\stackrel{\rightharpoonup}{v} \stackrel{\rightharpoonup}{i}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{+}{+} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\stackrel{~}{0}}}{\stackrel{i}{2}}$			－
	$\begin{array}{lc} \circ & \stackrel{\rightharpoonup}{\sim} \\ \stackrel{\rightharpoonup}{\infty} \end{array}$	$+\stackrel{+}{\circ}$	$\underset{i}{\dot{\sim}}$	i	i	$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\stackrel{\circ}{\sim}}$		$\underset{\sim}{N}$	$\stackrel{\rightharpoonup}{0}$	$\underset{\sim}{\sim}$			$\stackrel{\infty}{\stackrel{\infty}{\infty}}$	ug		$\underset{\sim}{\underset{\sim}{\sim}}$	$\stackrel{\rightharpoonup}{i n}$	$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\infty}$	$\stackrel{\sim}{\wedge} \stackrel{+}{\circ} \underset{\sim}{\circ}$		\bigcirc
	$\begin{array}{cc} \stackrel{\rightharpoonup}{i} \\ i \end{array}$	$\begin{gathered} \text { 会 } \\ \text { Non } \end{gathered}$	$\underset{\underset{y}{*}}{\stackrel{\omega}{\sim}}$	$\tilde{i}_{i} \quad \omega$	$\stackrel{\sim}{i}$	$\stackrel{\circ}{\oplus}$	$\stackrel{\stackrel{\rightharpoonup}{\omega}}{\stackrel{\rightharpoonup}{\omega}}$	$\stackrel{\stackrel{N}{\infty}}{\substack{2}}$	$\begin{aligned} & \infty \\ & \stackrel{8}{8} \end{aligned}$	$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\circ}}$	$\stackrel{\ominus}{\square} \stackrel{\stackrel{1}{\alpha}}{\circ}$	$\stackrel{\stackrel{\rightharpoonup}{i}}{\underset{i}{i}}$	$\stackrel{\sim}{\infty}$	$\stackrel{\sim}{\sim}$	$\stackrel{\rightharpoonup}{\omega}$		$\underset{\sim}{\sim}$	$\stackrel{\rightharpoonup}{\square}$	$\begin{array}{ccc} \stackrel{H}{\dot{O}} & \stackrel{\rightharpoonup}{\infty} & \stackrel{\infty}{\infty} \\ \underset{\sim}{u} \end{array}$		z

てદで0	LZL＇0	ع90＇โ	SL＇O	ε	カガ0	ヤ06 ${ }^{\circ}$	$60^{\circ} \varepsilon$	6ITJ	$\bigcirc \varepsilon^{\circ} \bigcirc$	S80	76 ${ }^{\circ}$	$8 \chi^{\prime} \tau$	عLE－6SS＾－כOy－WOO			
$\angle\left\llcorner 0^{\circ} 0\right.$	60＇0	I9T＇0	I＇0	$\angle S^{\circ} 0$	で0	$8\rangle$ 8＇τ	$\varepsilon \varepsilon^{\prime}$ L	$97^{\circ} 0$	SO＇Z	I6で0	$\nabla S^{\prime} \tau$	$8 \nabla^{\circ} 0$	૪LE－6SS＾－כOY－WOO			
$67^{\circ} 0$	T60＇ε	$\varepsilon \varepsilon \tau$	ऽ $\underbrace{\prime} \downarrow$	80＇乙	$69^{\circ} 0$	$686^{\circ} \mathrm{\nabla}$	T0．9	6 6でて	しでした	とてO＇て	SO＇$¢$	てて＇を	6LE－6SS＾－כOy－WOO			
$8 \angle カ ゙ 0$	Sてガโ	766．0	$\varepsilon カ ゙ \tau$	$L L^{\prime}$＇	Stio	こて6て	IT＇ε	9てİL	カ＇S	1880	$6 \varepsilon^{\circ} \mathrm{S}$	$6 \varepsilon^{\prime}$ T	L8ع－6SS＾－כOY－WOO			
カ67＊ 0	Z85＇	9 260	99° T	$6 L^{\prime} \dagger$	SS．0	899＇$ع$	$\varepsilon 8^{\circ} \varepsilon$	$8 \varepsilon^{\prime}$＇	［9＇9	S $\angle 0^{\circ} \tau$	TS＇9	$\nabla L^{\prime} \tau$	E0t－09S＾－כOy－W0O			
カナー	$\angle O \nabla^{\prime} \tau$	966．0	カガโ	$85^{\circ} \mathrm{E}$	Stio	$\dagger 06 \checkmark$	$60^{\circ} \varepsilon$	てL＇	$6 \varepsilon^{\circ} \mathrm{S}$	2680	$9 \nabla^{\circ} \mathrm{S}$	カガโ	七0t－09S＾－כOY－W0O			
680＇0	カカT．0	ヤてで0	St＇0	ZL＇0	とで0	$S \angle V^{\prime} \tau$	Stit	905＇0	でて	૬દદ＇0	8L＇	SS＊0	8860－LtS＾－כO¢－WOO			
†عO＊0	てZİ0	I6I＇0	$\varepsilon \tau \cdot 0$	99＊0	てで0	ててガ	てガT	S6tio	カでて	8TE＇0	$L \cdot \tau$	ZS．0	8660－LtS＾－כO4－WOO			
680＇0	عદt＇o	8t＇0	\downarrow T＇0	$69^{\circ} 0$	てで0	カてガ	てガT	S6tio	とでて	七て¢＇0	$\varepsilon L^{\prime} \tau$	TS．0	800L－LtS＾－כO¢－WOO			
乙ع0＇0	6170	ててで0	$\varepsilon \tau 0$	S9＊0	てで0	Z6と＇	$6 \varepsilon^{\prime} \tau$	ع8t＊ 0	$8 \chi^{\prime}$ 亿	8TE0	S9＇L	$\varepsilon \varsigma^{\prime} 0$	®itot－L৮S＾－כOy－WOO			
SLTO	て¢＇0	LTE＇0	$\varepsilon \varepsilon^{\prime} 0$	しでて	$\varepsilon \nabla^{\circ} 0$	カ6L＇て	ヤ8＇乙	800＇	$69^{\circ} \mathrm{\nabla}$	ETL＇0	$96^{\circ} \varepsilon$	EO＇T	LLI－TSS＾－כOY－WOO			
ع6દ＇0	6TL＇0	S¢S．0	$\nabla L^{\circ} 0$	$\angle \varepsilon^{\prime}$＇	－ 0	S9＇て	89 ${ }^{\circ}$	8S60		SOL＇0	$80^{\circ} \mathrm{t}$	60＇T	L8て－SSS＾－כOY－W0O			
てLでO	$6 E L{ }^{\prime} 0$	SS＇0	9 $L^{\circ} 0$	TL＇Z	$\varepsilon \dagger^{\circ} 0$	てع8＇て	S6＇Z	て90＇	$\angle 6^{\circ} \mathrm{t}$	S8L＇0	$99^{\circ} \downarrow$	しでし	Z8て－SSS＾－כOY－W0O			
切で0	$9 \angle \varepsilon^{\prime} 0$	I6ع＇0	$6 \varepsilon^{\prime} 0$	80＇乙	とガO	6LL＇Z	S8＇乙	ヤTO＇	$89{ }^{\circ} \mathrm{t}$	$60 L^{\circ} 0$	โ6＇غ	¢0 ${ }^{\circ}$	ع8て－SSS＾－כOY－WOO			
8LTO	E09 0	ヤOガO	85＇0	$\varepsilon \varepsilon^{\prime}$ て	$6 \varepsilon^{\circ} 0$	ャ9＇て	99° 乙	96．0	67 ＊	869 0	$66^{\circ} \varepsilon$	$\tau \cdot \tau$	ヤ8て－SSS＾－כOY－W0O			
6 6tio	ZLL＇0	SLE＇0	280	$\angle L^{\prime}$ Z	$\varepsilon \cdot 0$	TL6＇	しでて	8L＇0	$8^{\prime} \varepsilon$	6290	SL＇ \mathcal{L}	T＇τ	L8て－SSS＾－כOY－W0O			
โとで0	$689{ }^{\circ} 0$	†SS＊O	$L{ }^{\circ} 0$	εL^{\prime}＇	$9 \nabla^{\circ} 0$	$\varepsilon 00 \cdot \varepsilon$	IT＇${ }^{\text {c }}$	SOT＇T	てて＇S	IT80	$79^{\circ} \downarrow$	SでT	68て－SSS＾－כOY－WOO			
S610	Z99＊0	8てL＇0	$\angle 9^{\circ} 0$	S ＇ 2	てガ0	$\nabla T L {f4629fc03-0737-4cfd-8dc8-4de9ea465927} \varepsilon$	$9{ }^{\text {¢ }}$ S	Sて＇0	T9L＇T	て¢＇て	${ }^{6} 6^{\circ}$	$6 \chi^{\prime}$ S	LZO＇T	$\varepsilon ャ \square$	て¢＇て	L60－9tS＾－כOY－W00
LEt＇0	と9t＊	てカガ0	89t＊	દと＇乙	โ0ガ0	L9＇て	て6「	$66^{\circ} 0$	リぐけ	$\angle T \angle O$	น0＇ヵ	とโ｀	9St－0¢S＾－כOY－W00			
9で0	tt9 0	66t＇0	sz9＊0	$\angle 8^{\prime} \mathrm{Z}$	โ8が0	8T｀${ }^{\text {c }}$	カガと	9โ＇t	$9{ }^{\text {¢ }}$ S	ऽ८8＊0	¢9＇t	$6 て ゙ \tau$	09โ－0¢S＾－כOy－WaO			
LOZ＇O	Lzs．0	9zs．0	tS＊ 0	T6＇โ	S¢＇0	\＆8でて	ャ¢＇て	${ }^{\text {¢ }}$ \％ 8°	$56^{\circ} \mathrm{\varepsilon}$	7090	$\angle \downarrow$ ¢	$\angle 6^{\circ} 0$	てぃて－†SS＾－כOY－W00			
9てで0	てZs．0	\＆0t＇โ	SS＇0	${ }^{6} 6^{\prime}$	$\varepsilon \varepsilon^{\prime} 0$	18t＇て	$6 て ゙ て$	8180	T8＇$¢$	2T90	て૬＇	LO＇L	カ七て－†SS＾－כOY－W00			
LLで0	80	859 0	$6 L^{\circ} 0$	$9 か^{\text {a }}$	カ－0	$\downarrow \angle s^{\prime}$ て	IL＇Z	2860	$69^{\circ} \downarrow$	LZL＇0	$6 て ゙ \downarrow$	†＇T	L७て－†SS＾－כOY－W00			
$\varepsilon \tau \tau 0$	で9＊0	8\＆で0	98°	20＇z	$\varepsilon \varepsilon^{\prime} 0$	ย8t＇乙	ऽ ε^{\prime} 亿	9580	カI＇t	$\angle 99^{\circ} 0$	$66^{\circ} \mathrm{E}$	LO＇t	ع9Z－tSS＾－כOy－W00			
ยโع＇0	$\varepsilon \tau 6 \% 0$	L89 0	88°	Zs＇z	$6 \varepsilon^{\prime} 0$	S9s＇て	S9＇て	LS60	$\varepsilon S^{\prime} \downarrow$	9TL＇0	てでも	LI＇T	－8SS＾－כOY－WCO			
6てで0	9080	$\angle \tau \downarrow$ ¢	IL＇0	$6 I^{\prime}$＇	$\angle \varepsilon^{\prime} 0$	くIt゙て	でて	LS8．0	T6＇غ	59＊0	$\square S^{\prime} \varepsilon$	86\％	ภัธ¢－8ऽऽ＾－כОy－W00			
ก	41	9d	e_{\perp}	f H	n7	91	」	OH	10	q＋	P9	$\mathrm{n} \exists$	әmeu әldmes			

	ODM－ROC－V542－029			ODM-ROC-V542-039g		ODM－ROC－V544－063g	ODM-ROC-V544-063	
$\stackrel{+}{\infty}$	$\stackrel{\sim}{\sim}$	$\stackrel{\stackrel{\rightharpoonup}{\wedge}}{\substack{2}}$	$\begin{aligned} & \text { ir } \end{aligned}$	$\stackrel{\sim}{6}$	$\stackrel{\infty}{\infty}$	$\stackrel{\rightharpoonup}{6}$	${ }_{0}^{\sim}$	ᄃ．
$\stackrel{\sim}{\sim}$	$\underset{\sim}{\sim}$	～	$\stackrel{\bullet}{8}$	N	$\underset{\sim}{\infty}$	N	$\underset{\infty}{\underset{\infty}{\sim}}$	$<$
$\stackrel{\sim}{\circ}$	$\stackrel{\oplus}{\stackrel{ }{*}}$	$\underset{\sim}{\sim}$	$\stackrel{\text { ® }}{\ominus}$	$\underset{\perp}{\infty}$	$\stackrel{\stackrel{\rightharpoonup}{\sim}}{\sim}$	$\underset{\sim}{\sim}$	Nö	\bigcirc
$\stackrel{\text { N }}{\sim}$	$\stackrel{\text { 合 }}{ }$	$\stackrel{\infty}{\perp}$	$\stackrel{\leftrightarrow}{\sim}$	$\stackrel{\square}{\square}$	8	∞	${ }_{\circ}^{\infty}$	\underline{Z}
\searrow	8	N	∞	V	\sim	～	¢	N
$\stackrel{\infty}{\sim}$	$\stackrel{\stackrel{\rightharpoonup}{*}}{6}$	\cdots	\bigcirc	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{i}$	in	$\stackrel{\sim}{i}$	꿈
Һ̈	$\stackrel{\stackrel{\rightharpoonup}{\omega}}{\text { ¢ }}$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\sim}{*}$	$\stackrel{\stackrel{1}{0}}{ }$	$\stackrel{\rightharpoonup}{v}$	$\stackrel{\rightharpoonup}{G}$	$\stackrel{\rightharpoonup}{\mathrm{O}}$	\sim
$\begin{gathered} \underset{\sim}{\sim} \\ \underset{\infty}{2} \end{gathered}$	$\begin{gathered} \tilde{N} \\ i \end{gathered}$	$\begin{aligned} & \omega \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\stackrel{+}{\perp}}$	$\begin{aligned} & \text { N } \\ & \text { ir } \end{aligned}$	$\underset{\sim}{\tilde{\omega}}$	$\stackrel{\sim}{\mathrm{i}}$	$\underset{\sim}{\sim}$	$<$
∞	$\stackrel{\leftarrow}{6}$	占	$\stackrel{\ominus}{\bullet}$	$\stackrel{\square}{\omega}$	∞	－	$\stackrel{\square}{\square}$	N
$\begin{aligned} & \stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\circ}} \end{aligned}$	$\underset{\substack{\stackrel{\rightharpoonup}{\omega} \\ i \\ \infty}}{ }$	$\begin{aligned} & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$	$\begin{aligned} & \underset{\sim}{u} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\sim} \\ & \stackrel{y}{2} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{u}}{\stackrel{\rightharpoonup}{\omega}}$	$\underset{\substack{\text { un } \\ \underset{\sim}{n}}}{ }$		z
$\underset{\stackrel{\rightharpoonup}{\bullet}}{\stackrel{\rightharpoonup}{-}}$	$\stackrel{\stackrel{\circ}{\sim}}{\stackrel{\sim}{\bullet}}$	응	$\stackrel{\text { O}}{\underset{\sim}{\circ}}$	$\begin{aligned} & 0 \\ & \dot{\sim} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \text { in } \end{aligned}$	oi	$\begin{gathered} \circ \\ \stackrel{\circ}{\infty} \end{gathered}$	\bigcirc
$\stackrel{\square}{\square}$	$\stackrel{\sim}{\infty}$	N	∞	${ }_{\infty}^{\omega}$	$\stackrel{\infty}{\cup}$	$\stackrel{\bullet}{\circ}$	$\stackrel{\stackrel{1}{\sim}}{\sim}$	\％
$\begin{aligned} & \infty \\ & \dot{\infty} \\ & \stackrel{\circ}{2} \end{aligned}$	$\sim \stackrel{N}{6}$	$\stackrel{\infty}{\underset{\sim}{\sim}}$	iै	$\stackrel{\stackrel{i}{i}}{\underset{\infty}{2}}$	$\begin{aligned} \\ \\ \hline \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{\infty}} \stackrel{ }{\circ}$	o்	ぁ
$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \ddot{6} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\sigma} \\ & \stackrel{\omega}{\omega} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\omega}}{\stackrel{\omega}{\infty}}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\stackrel{\stackrel{\sim}{\sim}}{\stackrel{\sim}{\sim}}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{u} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{+} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\stackrel{\sim}{\sim}$	ค
$\stackrel{\stackrel{\rightharpoonup}{\omega}}{\underset{\sim}{u}}$	$\begin{gathered} \underset{\sim}{\stackrel{\sim}{e}} \end{gathered}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\omega} \\ & \dot{\sim} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\substack{\infty}}$	$\stackrel{\bullet}{v}$	$\stackrel{\stackrel{\rightharpoonup}{\omega}}{\stackrel{\rightharpoonup}{\infty}} \underset{\sim}{2}$	$\stackrel{\stackrel{\rightharpoonup}{\sim}}{\stackrel{\rightharpoonup}{2}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\sim} \\ & \underset{\sim}{u} \end{aligned}$	\bigcirc
$\stackrel{\stackrel{\rightharpoonup}{*}}{\text { ¢ }}$	$\stackrel{\stackrel{+}{\infty}}{\stackrel{\infty}{\infty}}$	$\stackrel{\stackrel{\rightharpoonup}{\sim}}{\sim}$	$\stackrel{\stackrel{\rightharpoonup}{\omega}}{\omega}$	$\stackrel{\stackrel{\rightharpoonup}{\sim}}{\stackrel{\rightharpoonup}{*}}$	$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\stackrel{\rightharpoonup}{2}}$	$\stackrel{\stackrel{\rightharpoonup}{\omega}}{\omega}$	$\stackrel{\rightharpoonup}{\sim}$	z

		ODM－ROC－V542－037		ODM－ROC－V542－039g			ODM-ROC-V544-063	
$\begin{aligned} & \text { O } \\ & \underset{\infty}{ } \end{aligned}$	$\begin{aligned} & 0 \\ & \text { o } \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{\infty}{\infty} \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & \text { in } \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & \text { y } \end{aligned}$	$\stackrel{\rightharpoonup}{\nu}$	$\begin{aligned} & \text { O} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\stackrel{1}{\omega}} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	m
$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\stackrel{\rightharpoonup}{\infty}}$	$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\underset{\infty}{2}}$	$\begin{aligned} & \underset{\sim}{u} \\ & \sim \end{aligned}$	$\begin{aligned} & \omega \\ & \dot{\sim} \\ & \infty \end{aligned}$	$\stackrel{\rightharpoonup}{6}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{\stackrel{\text { B }}{2}}$	$\stackrel{+}{\sigma}$	$\stackrel{\stackrel{~}{N}}{ }$	®
$\begin{aligned} & \text { o } \\ & \text { ì } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\stackrel{\circ}{\infty}} \\ & \stackrel{\infty}{2} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\stackrel{~}{\sim}}}{\stackrel{1}{*}}$	$\begin{aligned} & \circ \\ & \underset{O}{\circ} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\substack{+ \\ \hline}}$		$\stackrel{\circ}{\dot{0}}$	$\begin{aligned} & \circ \\ & \stackrel{0}{0} \\ & \text { O- } \end{aligned}$	갖
$\stackrel{N}{\mathrm{o}}$	$\underset{\omega}{\omega}$	$\stackrel{\omega}{\stackrel{\omega}{\sim}}$	$\stackrel{\rightharpoonup}{\omega}$	$\underset{\infty}{\infty}$	$\begin{aligned} & \stackrel{N}{\circ} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	$\stackrel{N}{N}$	$\underset{\infty}{\sim}$	¢
$\underset{\underset{\sim}{i}}{\underset{\sim}{\sim}}$	$\begin{aligned} & \text { N } \\ & \underset{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \underset{\sim}{e} \\ & \underset{\sim}{0} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{+}}{\stackrel{\rightharpoonup}{0}}$	$\begin{aligned} & \stackrel{e}{o} \\ & \text { Gu } \end{aligned}$	$\begin{aligned} & \underset{\sim}{\tilde{0}} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{\theta} \\ & \stackrel{\theta}{0} \end{aligned}$	$\begin{aligned} & \tilde{o} \\ & \dot{v} \end{aligned}$	핑
Oí	$\stackrel{\circ}{i}$	$\begin{aligned} & \text { o } \\ & \text { मे } \end{aligned}$	$\underset{\sim}{\underset{\sim}{*}}$	$\stackrel{\circ}{\perp}$	$\underset{\oplus}{\stackrel{\sim}{\sim}}$	$\stackrel{\circ}{\square}$	$\stackrel{\circ}{\stackrel{ }{\star}}$	\cdots
$\underset{\sim}{i}$	$\stackrel{\rightharpoonup}{\dot{\sigma}}$	ָ	io	$\underset{\sim}{\sim}$	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{\rightharpoonup}{+}}$	íg	$\underset{i}{i}$	б
$\begin{aligned} & \circ \\ & \stackrel{\infty}{0} \end{aligned}$	$\underset{\omega}{\omega}$	$\stackrel{0}{\omega}$	$\begin{aligned} & \circ \\ & \stackrel{\infty}{-} \end{aligned}$	$\stackrel{\circ}{\dot{\sim}}$	$\begin{aligned} & \text { io } \\ & \text { en } \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\infty}{\cup} \end{aligned}$	$\stackrel{\circ}{\infty}$	E
$\begin{aligned} & \text { O } \\ & \dot{0} \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\omega}}{\stackrel{\sim}{*}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\infty}} \stackrel{+}{\stackrel{1}{2}} \end{aligned}$	$\begin{aligned} & \text { ò } \\ & \text { ò } \end{aligned}$		$\begin{aligned} & 0 \\ & \text { 를 } \end{aligned}$	$\begin{aligned} & \circ \\ & \dot{-} \\ & \hline \end{aligned}$	$\begin{gathered} \stackrel{\rightharpoonup}{0} \\ \text { O} \end{gathered}$	士
$\begin{aligned} & \circ \\ & \infty \\ & 0 \\ & \hline-1 \end{aligned}$	$\stackrel{\underset{\sim}{\sim}}{\underset{\sim}{\sim}}$	$\begin{aligned} & \text { ò } \\ & \text { さ } \end{aligned}$	$\begin{aligned} & \text { ò } \\ & \substack{\infty} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{+} \end{aligned}$	$\begin{aligned} & \text { ò } \\ & \text { 勺ु } \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\infty}{\ominus} \end{aligned}$	$\begin{aligned} & \circ \\ & \dot{\infty} \\ & \text { oै } \end{aligned}$	』
$\begin{aligned} & 0 \\ & \dot{\sim} \\ & \text { on } \end{aligned}$	$\begin{aligned} & \text { ò } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \stackrel{\text { U }}{\sim} \end{aligned}$	$\begin{aligned} & \text { ì } \\ & \text { 犬 } \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{O}}}{\stackrel{1}{2}}$	$\underset{\sim}{\underset{\sim}{i}}$	$\begin{aligned} & \stackrel{\sim}{\infty} \\ & \underset{\perp}{\circ} \end{aligned}$	$\begin{aligned} & \dot{\sim} \\ & \dot{\infty} \end{aligned}$	꿈
								걱
								\subset

Table A3：Isotopic ratios

					$\begin{array}{ll} \text { O } \\ \text { O } \\ \text { M } \\ \hline \end{array}$													$\begin{aligned} & \text { O} \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & 0.0 \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$		
O $\underset{\sim}{u}$ u	$\begin{aligned} & \text { ò } \\ & \text { ̇ㅓ } \\ & \text { U } \end{aligned}$		O U U	$\begin{aligned} & \stackrel{\rightharpoonup}{\sim} \\ & \stackrel{+}{\infty} \end{aligned}$	$\begin{aligned} & \text { ò } \\ & \text { ⿹ㅡㅇ } \end{aligned}$	$\begin{aligned} & \text { ò } \\ & \text { ָ } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { ò } \\ & \text { ì } \\ & \text { un } \end{aligned}$	ò	$\begin{aligned} & \text { ò } \\ & \text { O } \\ & \text { D } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \underset{\sim}{V} \end{aligned}$	$\begin{aligned} & \text { o } \\ & \dot{\sim} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { o } \\ & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{\infty}{\triangleright} \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{0}{0} \\ & 0 \\ & \infty \\ & \infty \end{aligned}$	$$	$\begin{aligned} & 0 \\ & \underset{0}{0} \\ & \underset{\sim}{3} \end{aligned}$		$\begin{aligned} & \text { o } \\ & \underset{\sim}{0} \\ & \infty \end{aligned}$	$\begin{aligned} & \text { ò } \\ & \text { ö } \\ & \text { 万人 } \end{aligned}$	$\begin{aligned} & \text { o } \\ & \text { oै } \\ & \stackrel{0}{N} \end{aligned}$	$\begin{gathered} {\underset{\sim}{\infty}}_{\infty}^{\infty} \\ \stackrel{\sim}{\infty} \end{gathered}$
$\begin{aligned} & 0 \\ & 0 \\ & \hline 8 \\ & 8 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \hline-8 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \hline-8 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline 8 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{0} \\ & 0 \\ & \hline-\infty \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 8 \\ & 8 \\ & \hline 8 \end{aligned}$	$\begin{aligned} & \circ \\ & \hline-8 \\ & \circ \\ & \hline \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \circ \\ & \hline 8 \\ & \hline 8 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \hline \mathbf{O} \\ & \hline \mathbf{O} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \hline-8 \\ & 0 \\ & \hline- \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 8 \\ & 8 \\ & \hline 8 \end{aligned}$	$\begin{aligned} & \circ \\ & \hline 8 \\ & \hline \mathbf{O} \\ & \hline 6 \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 8 \\ & \hline 8 \\ & 0 \\ & \infty \end{aligned}$	0 8 8 8	$\begin{aligned} & \circ \\ & \stackrel{8}{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \circ \\ & \hline 8 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { O } \\ & \hline 8 \\ & 8 \\ & \hline 8 \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{8}{8} \\ & 80 \end{aligned}$	N
								0 i $\underset{\sim}{0}$ ∞	$\begin{aligned} & \text { oiv } \\ & \text { H} \\ & \text { w } \end{aligned}$	$\underset{\underset{\sim}{i}}{\stackrel{i}{i}}$	$\begin{aligned} & \text { oin } \\ & \underset{\omega}{\omega} \\ & \text { on } \end{aligned}$	$\begin{aligned} & \text { o } \\ & \stackrel{\rightharpoonup}{\omega} \\ & \text { of } \end{aligned}$	$\begin{aligned} & \text { o } \\ & \text { iv } \\ & \text { Hog } \end{aligned}$	$\underset{\underset{\sim}{i}}{\stackrel{i}{i}}$	$\begin{aligned} & \text { or } \\ & \text { iv } \\ & \text { © } \\ & \infty \end{aligned}$	$\begin{aligned} & \text { oiv } \\ & \underset{\omega}{\omega} \\ & \text { un } \end{aligned}$	$\begin{aligned} & \text { oin } \\ & \text { W } \\ & \text { û } \end{aligned}$			
								$\begin{aligned} & \infty \\ & \stackrel{0}{\tilde{0}} \\ & \tilde{\circ} \\ & \text { on } \end{aligned}$	$\begin{aligned} & \text { í } \\ & \dot{\text { in }} \\ & \text { ö } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{8} \\ & \infty \\ & \dot{\infty} \\ & \text { í } \end{aligned}$	$\begin{aligned} & \circ \\ & \infty \\ & \infty \\ & \text { م } \\ & \text { ó } \end{aligned}$	$\begin{aligned} & \text { シ} \\ & \text { in } \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\hat{0}} \\ & \stackrel{\rightharpoonup}{2} \\ & \dot{8} \end{aligned}$	$\begin{aligned} & + \\ & \infty \\ & \infty \\ & \stackrel{+}{\circ} \\ & \dot{8} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\hat{u}} \\ & \text { in } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \omega \\ & \dot{\infty} \\ & \omega \\ & \tilde{\Pi} \\ & \dot{\circ} \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \dot{\infty} \\ & \dot{\sim} \\ & \dot{\delta} \end{aligned}$			N
$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{\rightharpoonup}{\dot{+}} \\ & \stackrel{+}{\infty} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{\circ}{0} \\ & \underset{N}{2} \end{aligned}$	$\stackrel{\rightharpoonup}{\infty}$ $\dot{\infty}$ $\stackrel{\infty}{\infty}$ ∞	$\stackrel{\rightharpoonup}{0}$ $\stackrel{+}{4}$ H	$\stackrel{\stackrel{-}{\infty}}{\underset{\sim}{4}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { W } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \infty \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\stackrel{\circ}{\infty}$ i 0 \sim	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{\infty}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & i_{\circlearrowleft}^{4} \\ & \underset{y}{c} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{\infty} \end{aligned}$	$\begin{aligned} & \text { - } \\ & \stackrel{8}{0} \\ & \text { to } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{+} \\ & 0 \\ & \stackrel{\rightharpoonup}{ث} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { ion } \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{+} \\ & \stackrel{\rightharpoonup}{\sim} \\ & \underset{\infty}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\bullet}{\infty} \\ & \dot{\infty} \\ & \underset{\infty}{\infty} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \stackrel{y}{0} \\ & \text { n } \end{aligned}$	
$$		$\begin{aligned} & \text { O} \\ & \stackrel{-}{0} \\ & \stackrel{\sim}{w} \\ & \hline \end{aligned}$	O	O $\stackrel{\circ}{8}$ $\underset{\infty}{\sim}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{0} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	\circ 8 $\underset{\sim}{\underset{\sim}{4}}$	$\begin{aligned} & 0 \\ & \stackrel{\circ}{0} \\ & \stackrel{W}{0} \\ & \infty \end{aligned}$	\circ 8 0 0 0	$\begin{aligned} & 0 \\ & \stackrel{\circ}{8} \\ & \stackrel{8}{0} \\ & \stackrel{y}{\rightharpoonup} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{8}{8} \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{\circ}{0} \\ & \stackrel{N}{i} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{\circ}{8} \\ & \text { 瓷 } \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{+}{*} \\ & \underset{\bullet}{*} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{\circ}{Q} \\ & \underset{\sim}{0} \end{aligned}$	\circ $\stackrel{-}{O}$ 0 0 0	$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{O} \\ & \underset{\sim}{\mathrm{O}} \end{aligned}$		\circ $\stackrel{O}{2}$ $\stackrel{\rightharpoonup}{0}$ $\stackrel{\rightharpoonup}{\infty}$ 	$\stackrel{\text { m }}{\substack{1}}$
$\begin{aligned} & \text { H } \\ & i \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \text { u } \\ & i \\ & \text { ob } \end{aligned}$	$\begin{aligned} & \stackrel{y}{c} \\ & i \\ & \underset{v}{2} \end{aligned}$	$\begin{aligned} & \text { Hy } \\ & \underset{\sim}{y} \\ & \underset{\omega}{2} \end{aligned}$	$\begin{aligned} & \text { H } \\ & \text { H } \\ & 0 \\ & \text { o } \end{aligned}$	$\begin{aligned} & \text { U } \\ & \text { io } \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{i}{\sim} \\ & \underset{\sim}{i} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { u } \\ & \dot{0} \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & \stackrel{H}{u} \\ & \text { in } \\ & \underset{\sim}{x} \end{aligned}$	$\begin{aligned} & \text { U } \\ & \text { ig } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { H } \\ & \text { in } \\ & \underset{0}{2} \end{aligned}$	$\begin{aligned} & \text { H } \\ & \text { in } \\ & 8 \end{aligned}$	$\begin{aligned} & \text { U } \\ & i_{0} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { H } \\ & \text { in } \\ & \stackrel{0}{\infty} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{H}{u} \\ & \stackrel{\rightharpoonup}{0} \\ & \underset{\omega}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & \underset{\sim}{0} \\ & \underset{\omega}{2} \end{aligned}$	$\begin{aligned} & \stackrel{H}{u} \\ & \underset{\sim}{\widetilde{~}} \\ & \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{u} \\ & \dot{\sim} \\ & \underset{\sim}{\infty} \end{aligned}$	
O O ơ O O on		$\begin{aligned} & \text { O} \\ & \stackrel{\text { O}}{0} \\ & \text { O} \\ & \stackrel{\rightharpoonup}{\square} \end{aligned}$	\circ 8 $\stackrel{\rightharpoonup}{V}$ M ∞	$\begin{aligned} & \text { O} \\ & \stackrel{\circ}{0} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \text { oे } \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{-}{0} \\ & 0 \\ & \stackrel{0}{0} \\ & \stackrel{0}{\sim} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\sim}{u} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \circ \\ & \hline \stackrel{O}{O} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{\text { O}}{0} \\ & \stackrel{\rightharpoonup}{\perp} \\ & \stackrel{\rightharpoonup}{\triangleleft} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{8} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \text { o } \\ & \infty \end{aligned}$			0 0 0 0 0 0	$$	$\begin{aligned} & \text { O } \\ & \stackrel{\circ}{8} \\ & \text { O} \\ & \text { O} \\ & \text { O } \end{aligned}$		$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{0}{0} \\ & \stackrel{0}{\circ} \end{aligned}$	$\begin{gathered} \text { m } \\ \text { 욱 } \end{gathered}$
$\begin{aligned} & \omega \\ & \omega_{0}^{\infty} \\ & \underset{\sim}{0} \\ & \hline \end{aligned}$		$\begin{aligned} & \omega \\ & \infty \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \omega \\ & \stackrel{\infty}{+} \\ & \stackrel{\rightharpoonup}{\infty} \\ & \hline \end{aligned}$	$$	$\begin{aligned} & \omega \\ & \stackrel{\omega}{\omega} \\ & \stackrel{\omega}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \omega \\ & \omega_{0} \\ & \overbrace{0}^{\circ} \\ & 0 \end{aligned}$	$\begin{aligned} & \omega \\ & \stackrel{\infty}{\bullet} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \hline \end{aligned}$	$\begin{aligned} & \omega \\ & \dot{\infty} \\ & \stackrel{\sigma}{\sigma} \\ & \underset{\sigma}{2} \end{aligned}$	$\begin{aligned} & \omega \\ & \infty \\ & \dot{\infty} \\ & \omega \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \omega \\ & \stackrel{\infty}{\circ} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$	$\begin{aligned} & \omega \\ & \infty \\ & i \\ & \underset{\omega}{c} \\ & \end{aligned}$	$$	$\begin{aligned} & \omega \\ & \omega_{0}^{\infty} \\ & \underset{\sim}{\hat{\omega}} \end{aligned}$		$\begin{aligned} & \omega \\ & \underset{\sim}{0} \\ & \stackrel{\sim}{\infty} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \omega \\ & \infty \\ & \infty \\ & \stackrel{\infty}{\oplus} \\ & \stackrel{A}{N} \end{aligned}$	$\begin{aligned} & \omega \\ & \omega_{\infty} \\ & \underset{\infty}{\infty} \\ & \infty \end{aligned}$	$\begin{aligned} & \omega \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\rightharpoonup}{\stackrel{ }{*}} \\ & \stackrel{\rightharpoonup}{*} \end{aligned}$	$\begin{aligned} & \omega \\ & \underset{\sim}{\sim} \\ & \underset{0}{0} \end{aligned}$	
			$\begin{aligned} & \text { O} \\ & \stackrel{-}{0} \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { in } \end{aligned}$		$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \text { O} \\ & \text { H} \\ & \hline \infty \end{aligned}$	$\begin{aligned} & \text { O} \\ & \stackrel{Q}{8} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{\infty} \\ & \sim \end{aligned}$	$\begin{aligned} & 0 \\ & 0 . \\ & 0 . \\ & 0 \\ & 0 \\ & \text { O} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \hline \stackrel{\circ}{\circ} \\ & \stackrel{\sim}{\sim} \\ & \underset{\sim}{\circ} \end{aligned}$							$\begin{aligned} & \circ \\ & \stackrel{O}{O} \\ & \stackrel{O}{0} \\ & \text { O} \\ & \stackrel{\rightharpoonup}{\infty} \end{aligned}$				$\stackrel{\mathrm{T}}{\circ}$
$\begin{aligned} & \stackrel{\sim}{\sim} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{\omega} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\sim} \\ & \stackrel{\sim}{\sim} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\sim} \\ & \stackrel{\sim}{\ominus} \end{aligned}$	$\begin{aligned} & \stackrel{\stackrel{\rightharpoonup}{\infty}}{\stackrel{\sim}{\omega}} \underset{\underset{\omega}{0}}{ } \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{\sim} \\ & \stackrel{\sim}{\sim} \\ & \underset{\sim}{*} \end{aligned}$	$\begin{aligned} & \stackrel{0}{\sim} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{6} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{\infty} \\ & \stackrel{\sim}{\bullet} \end{aligned}$		$\begin{aligned} & \stackrel{\sim}{\infty} \\ & \underset{\omega}{\sim} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{\infty} \\ & \underset{\sim}{0} \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\stackrel{\sim}{\sim}}{\underset{\sim}{\infty}} \underset{\oplus}{\underset{\sim}{0}}$	$\begin{aligned} & \stackrel{\circ}{\sim} \\ & \stackrel{\infty}{心} \\ & \stackrel{\sim}{心} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\sim} \\ & \stackrel{\infty}{心} \\ & \underset{\sim}{心} \end{aligned}$	$\stackrel{0}{\sim}$	$\begin{aligned} & \stackrel{0}{\infty} \\ & \stackrel{\oplus}{\omega} \\ & \stackrel{\sim}{0} \end{aligned}$	$\begin{aligned} & \stackrel{0}{\infty} \\ & \stackrel{\sim}{\sim} \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{0}{\sim} \\ & \stackrel{\infty}{\sim} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \dot{\sim} \\ & \dot{\infty} \\ & \underset{\infty}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\sim} \\ & \stackrel{\sim}{\sim} \\ & \stackrel{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{\sim} \\ & \stackrel{\infty}{\sim} \\ & \stackrel{\sim}{0} \end{aligned}$	$\xrightarrow[\substack { \text { a } \\ \begin{subarray}{c}{\text { a } \\ \pm \pm \pm \pm{ \text { a } \\ \begin{subarray} { c } { \text { a } \\ \pm \\ \pm \\ \pm \\ \pm } }\end{subarray}]{ }$
$\begin{aligned} & 0 \\ & \hline 0 \\ & \hline 8 \\ & \hline 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \circ \\ & \hline 8 \\ & \hline 8 \\ & \hline \end{aligned}$	0 8 8	\circ 8 8 0	0 8 0			$\begin{aligned} & 0 \\ & \hline 0 \\ & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & N \\ & \stackrel{\rightharpoonup}{+} \\ & \stackrel{\rightharpoonup}{8} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{N}{\mathbf{o}} \end{aligned}$	$\begin{aligned} & N \\ & \stackrel{\sim}{0} \\ & \stackrel{0}{0} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{+}{6} \\ & \stackrel{8}{6} \end{aligned}$	$\begin{aligned} & N \\ & \tilde{0} \\ & \tilde{i} \\ & \dot{8} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \dot{\sim} \\ & \dot{\mathbf{o}} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\phi} \\ & \dot{\sim} \\ & \dot{8} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \tilde{\sim} \\ & \dot{8} \end{aligned}$		$\begin{aligned} & \text { N̈ } \\ & \text { ö } \\ & \text { ö } \end{aligned}$	$\begin{aligned} & 0 \\ & 0.8 \\ & 0.8 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{8} \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{\mathrm{T}}{\circ}$

Appendix 3: Source-, melting-, and mixing model

To estimate the nature and evolution of the $13^{\circ} 00^{\prime}-13^{\circ} 36^{\prime} \mathrm{N}$ basalts, a comprehensive model has been made. In this model the composition and evolution of mantle sources, the extent of melting, and the mixing relationship between melts derived from different sources is calculated. For simplicity, a binary mixing scenario between an enriched and a depleted component is assumed.

A4.1 Enriched component

A quantitative model from Stracke, Bizimis et al. (2003) was used here to reproduce the isotopic- and trace element composition of a recycled oceanic crust. According to this model, the differentiation age (i.e. the time elapsed since the source was extracted from the bulk silicate earth) is $\sim 4.55 \mathrm{Ga}$. Input parameters in this model are:

1. Protolith composition
2. Time of isolation from the bulk silicate Earth reservoir
3. Influence of ancient sediments
4. The magnitude of metasomatism occurring in the subduction zone
5. The extent of eclogite melting and interaction of this melt with a given ambient mantle
6. Extent and mode of melting accountable for the final, enriched melts

The protolith composition plays a major role in the present-day composition, particularly for Pb isotopic ratios. No adequate fit with the data of this study was found for protolith compositions analogous to those used by Stracke, Bizimis et al. (2003), that is, an oceanic crust consisting of 25% fresh average N-MORB (Sun and McDonough 1989), 25\% altered MORB (Staudigel, Plank et al. 1996) and 50% average gabbro (Hart, Blusztajn et al. 1999). The best fit for the eclogite protolith is an oceanic crust consisting of 55% fresh N-MORB and 45% altered MORB.

Initial isotopic compositions of the ancient recycled crust are equal to those of the oceanic crust upon recycling. Equation 1.7 (appendix 4) was used to estimate isotope compositions at the time of recycling from average Present-day MORB compositions and bulk silicate earth (BSE)
compositions were used to estimate composition at the time of recycling. A two-stage evolution from the BSE is considered for the $\mathrm{Sr}-$, Nd-, and Hf-isotopic system, whereas a single-stage evolution is considered sufficient to account for the decay of the Pb -system. The age of the recycled crust is estimated here to be $\sim 2 \mathrm{Ga}$. As pointed out by Stracke, Bizimis et al. (2003), the age of recycled crust is a free parameter that comes with a significant uncertainty.

Exclusion of sediment influence on the protolith crusts is ultimately attributed to observations in the Pb -isotopic system. The presence of sediments, even very low concentrations (< 0.5%) decouples the U and Th from each other, resulting in too $10 w{ }^{206} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}$ and too high ${ }^{208} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}$.

It becomes clear from this model that the influence of altered MORB is significant for the ${ }^{206} \mathrm{~Pb} /{ }^{204} \mathrm{~Pb}$ ratios and the ${ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}$ ratios of the HIMU component. This observation agrees with the high U / Pb and $\mathrm{Rb} / \mathrm{Sr}$ ratios expected to follow from seawater interaction (Stracke, Bizimis et al. 2003). Dehydration and loss of fluid mobile elements induces the same effect. Significant subduction modification, i.e. metasomatism may account for some of trace element systematics observed in figure 16. Specifically, such mechanisms fractionate elements according to their mobility coefficients (Kogiso, Tatsumi et al. 1997), ultimately depriving the subducted oceanic crust in the most mobile elements; $\mathrm{K}, \mathrm{Pb}, \mathrm{Rb}, \mathrm{U}, \mathrm{La}, \mathrm{Th}, \mathrm{Ba}$, and Cs but leaving elements like the REE, $\mathrm{Ta}, \mathrm{Nb}, \mathrm{Hf}, \mathrm{Sm}$, and Nd behind. The effect of subduction zone dehydration is obvious from the prominent, positive Nb and Ta anomalies, as well as the negative Pb anomalies (figure 16). To reproduce the negative $\mathrm{Rb}, \mathrm{Th}, \mathrm{U}$, and K anomalies and the positive Nb and Ta anomalies observed in $13^{\circ} 20^{\prime}-13^{\circ} 30^{\prime} \mathrm{N}$ lavas, the protolith is required to have undergone significant metasomatism. The best fit with the data is for a recycled component with moderate loss of fluid mobile elements. A reduction in trace element loss during subduction is done by reducing the mobility coefficients provided by Stracke, Bizimis et al. (2003) reduced by 55%.

Single stage, low F batch melting of pure eclogite (partition coefficients and modes given in table A3-1 and A3-2) produces melts with extreme enrichments in incompatible elements, inconsistent with the observations made in the $13^{\circ} 20^{\prime}-13^{\circ} 30^{\prime} \mathrm{N}$ lavas. A two-stage non-modal (equation 1.3, appendix 4) melting model for the enriched melts successfully resolves this issue in lowering the incompatible trace element compositions. The first melting stage is consistent with low-F ($\sim 7 \%$) eclogite melting (table A3-2). In phase, reactive eclogite melts interact with
olivine-rich peridotite, ultimately forming clinopyroxene (Sobolev, Hofmann et al. 2005). Melting of the resulting pyroxenite constitute the second smelting stage. In accordance with this model, the second phase occurs in the spinel stability field (i.e. spinel partition coefficients and modes). The best fit is when a depleted source is added to the estimated enriched component. This scenario is consistent with that described by Sobolev, Hofmann et al. (2007). The most suitable scenario is one where a mixture of 80% eclogite melts react with 20% ambient mantle, which in turn melts at $\sim 4 \%$ in the spinel stability field.

A4.3 Depleted component

Analogous with the previous model suggested for the $13^{\circ} 20^{\prime}-13^{\circ} 30^{\prime} \mathrm{N}$ area (Wilson, Murton et al. 2013), this model is consistent with a depleted end-member with more extreme isotopic signals than average DMM (Salters and Stracke 2004). It becomes clear from this model that the best fit, particularly in the Hf-isotope system, is one where a ReLish component, i.e. an ancient garnet residue analogous to the component suggested by Hamelin, Bezos et al. (2013), has a certain impact on the depleted end-member. To constrain the nature and composition of this ReLish component, the following parameters are included:

1. Protolith composition
2. Extent of garnet field melting necessary to decouple different parent/daughter ratios in the source residue
3. The time elapsed since this melting event

The ReLish component is essentially considered a residue after non-modal melting (equation 1.3, appendix 4) of some mantle component in the garnet stability field, followed by protracted isolation of this residual mantle. The best fit for the trace element systematics is one where this initial mantle component is relatively enriched. A viable candidate for the protolith is recycled oceanic crust. Given that this model does not consider the effect of slab-modifications or modal eclogite melting as expected for recycled oceanic crust, it is likely that the protolith modeled here is an oversimplification of the actual ReLish protolith. Nevertheless, the model indicates that the ReLish protolith must be less depleted in incompatible elements than the average DMM (Salters and Stracke 2004), and that it decouples the Hf-isotopic system from the remaining
isotopic systems. Indeed, substitution of the recycled oceanic crust protolith with that of a primitive upper mantle (PUM) (McDonough and Sun 1995) produces similar mixing curves when combined with the suggested enriched end-member.

The extent of protolith melting to produce the ReLish composition is ambiguous in this model. As discussed in the following section, the depleted end-member may be reproduced by two scenarios, and the properties of the ReLish component differs for the different scenarios. Before establishing the extent of protolith melting, it becomes necessary to introduce the two different models for the depleted end-member. Regardless of model, the best fit for the melting extent of the final, depleted end-member is $\sim 1 \%$.

A.4.4 Two mixing models

Ultimately, these end-members are constrained by the amount of ReLish in the ambient mantle. The two models suggested here are; (1) Mixing between pyroxenite (interaction between eclogite melts and UDMM) and a ReLish-UDMM derived melts, and (2) mixing between pyroxenite and eclogite influenced ReLish.

In model 1, the extent of ReLish protolith melting in the garnet stability field is considered extensive (batch melting $\sim 18 \%$). In model 2 , the ReLish component requires a significantly lower melting extent (batch melting $\sim 10 \%$) to reproduce the observed variability. In both suggested ReLish compositions, the time elapsed since the melting event is estimated to be 2.1 Ga.

To reduce the extreme depletions observed in ReLish, the depleted component requires buffering by a less depleted mantle component. In model 1, this component is the UDMM (i.e. sourcesource mixing), whereas eclogite melts provides a similar effect in model 2 (i.e. source-melt interaction). Furthermore, the extent of melting to produce sufficient incompatible trace element enrichment from these highly depleted end members is estimated to be extremely low in both models ($\sim 1 \%$) .

In model 1, the depleted end-member consist of a mixture between UDMM ($\sim 75 \%$) and ReLish (35%). Mixing of melts generated from this component with those derived from an enriched
component generated by interaction between eclogite melts ($\sim 80 \%$) and ambient UDMM ($\sim 20 \%$) successfully reproduces the data trend.

Alternatively, model 2 represent mixing scenario between melts generated from ReLish mantle influenced by eclogite melts and those generated from an eclogite melt - UDMM reactant. If this model holds, the best fit is a mixture between melts generated from a depleted end-member with ReLish: low-F eclogite melt $\sim 75: 35$, and an enriched end-member with UDMM: low-F eclogite melt $\sim 20: 80$.

Figure A3-1: Schematic illustration of melting model 1 and 2. Model 1: mixing between a depleted end-member (75\% UDMM and 35% ReLish) and an enriched end-member (80% eclogite melt and 20% UDMM). Model 2 : mixing between a depleted endmember (60% ReLish and 40% eclogite melts) and an enriched end-member (90% eclogite melts and 10% UDMM)

Table A3-1: Trace element concentrations (ppm) and isotopic ratios for ReLish, UDMM, bulk recycled igneous crust and bulk igneous crust, as well as fluid loss from bulk igneous crust associated with dehydration ReLish, bulk recycled igneous crust, and bulk igneous crust (protolith) estimated in this study. UDMM from Workman and Hart (2005). Mobility coefficients modified (reduced to 55\%) from Kogiso, Tatsumi et al. (1997).

	ReLish	UDMM	Bulk recycled igneous crust	Fluid loss	Bulk igneous crust
Rb	0.00398	0.02000	3.09870	44.6\%	1.71823
Ba	0.00310	0.22700	27.92350	28.9\%	19.86059
Th	0.00141	0.00400	0.30722	20.7\%	0.24351
U	0.00077	0.00180	0.12422	41.8\%	0.07229
Nb	0.01588	0.08640	4.86715	2.2\%	4.76007
Ta	0.00104	0.00560	0.27356	2.2\%	0.26754
La	0.13891	0.13400	4.56895	30.9\%	3.15920
Ce	0.54656	0.42100	12.78145	27.9\%	9.21734
Pb	0.02384	0.01400	0.51708	44.6\%	0.28672
Nd	0.93510	0.48300	10.49595	12.1\%	9.22594
Na	0.93510	6.09200		22.4\%	
Sr	9.85795	4.26900	129.28000	12.1\%	100.26957
Zr	9.89614	0.12700	94.97600	12.1\%	83.48390
Hf	0.30413	0.21000	2.69570	7.5\%	2.36952
Sm	0.52504	0.08600	3.41880	4.6\%	3.16307
Eu	0.26305	650	1.21355	3.2\%	1.15815
Ti	2279	0.32400	8659	2.8\%	8382.99088
Gd	1.28050	0.47100	4.48305	2.0\%	4.35977
Dy	1.87499	3.12900	5.51460	1.1\%	5.40541
Y	11.82791	0.32900	32.03500	0.3\%	31.68262
Er	1.29625	0.34800	3.60755	0.8\%	3.59565
Yb	1.50331	0.05600	3.46120	0.6\%	3.43455
Lu	0.22512	0.70263	0.52305		0.52017
87Sr/86Sr	0.70104	0.51326	0.70364		0.70239
$143 \mathrm{Nd} / 144 \mathrm{Nd}$	0.51399	0.28350	0.51284		0.51046
$176 \mathrm{Hf} / 177 \mathrm{Hf}$	0.28534	17.57300	0.28280		0.28173
206Pb/204Pb	15.32818	$\begin{aligned} & 15.40400 \\ & 37.20000 \end{aligned}$	20.05786		15.15824
207Pb/204Pb	15.17588		15.73738		15.21281
208Pb/204Pb	34.34446		39.46878		34.52361

Table A3-2: Bulk partition coefficients for non-modal melting (D and P). Abbreviations Gt. $=$ garnet stability field, $S p .=$ spinel stability field, and Ec. = eclogite melting (Stracke, Bizimis et al. 2003)

	Bulk D Gt.	Bulk P, Gt.	Bulk P, Sp.	Bulk D, Sp.	Bulk D, Ec.	Bulk P, Ec.
Rb	0.00026	0.00021	0.00029	0.00034	0.00032	0.00036
Ba	0.00005	0.00017	0.00006	0.00021	0.00025	0.00027
Th	0.00180	0.00692	0.00253	0.00952	0.01147	0.01261
U	0.00201	0.00837	0.00230	0.00864	0.01134	0.01195
Nb	0.00151	0.00335	0.00150	0.00333	0.00382	0.00390
Ta	0.00151	0.00335	0.00150	0.00333	0.00382	0.00390
La	0.00689	0.02294	0.00971	0.03396	0.03952	0.04379
C	0.00936	0.03386	0.01316	0.04803	0.05700	0.06285
	0.00918	0.03262	0.01348	0.04927	0.05766	0.06411
	0.02588	0.10355	0.03240	0.12119	0.15280	0.16414
	0.01579	0.05890	0.02329	0.08739	0.10314	0.11446
Sr	0.03943	0.17570	0.02497	0.08342	0.14920	0.13561
Zr	0.04491	0.19828	0.03771	0.13699	0.20800	0.20440
Hf	0.05617	0.24449	0.05375	0.19967	0.28440	0.28827
Sm	0.08613	0.37398	0.07993	0.29425	0.42400	0.42670
Eu	0.09375	0.28855	0.09095	0.24990	0.33000	0.33450
Ti	0.15103	0.73838	0.08143	0.30061	0.59200	0.52360
Gd	0.22584	1.16169	0.07264	0.26087	0.74400	0.58020
Dy	0.30570	1.58156	0.08242	0.28398	0.94960	0.70768
Y	0.34605	1.79710	0.08145	0.27049	1.03200	0.74310
Er	0.59870	3.15310	0.09470	0.28200	1.64000	1.08200
Yb	0.64288	3.40005	0.10182	0.31532	1.77920	1.18061
Lu						

Table A4-3: Mineral modes and melting modes from Stracke, Bizimis et al. (2003) used in the non-modal melting equation. Abbreviations $O l=$ olivine, $O p x=$ orthopyroxene, $C p x=$ clinopyroxene, $G t=$ garnet and $S p=$ spinel.

	Garnet peridotite		Spinel peridotite		Eclogite	
	Source mineralogy	Melting mode	Source mineralogy	Melting mode	Source mineralogy	Melting mode
Ol	0.55	0.05	0.55	0.1	0	
Opx	0.25	0.05	0.25	0.2	0	0
Cpx	0.12	0.45	0.18	0.68	0.8	0.89
Sp	0.08	0.45	0	0	0.2	0.11

Appendix 4: Equations

Table A4-1: Abbrevations used in equation 1.1 - 1.7 with explanations.

D_{i}	Bulk partition coefficient
\boldsymbol{P}	Non-modal partition coefficient
K_{d}^{i}	Element partition coefficient in a mineral phase
$C_{i}^{0 l}$	Element concentration in a mineral phase
C_{i}^{0}	Element concentration in source
C_{i}^{S}	Element concentration in solid phase
$\boldsymbol{x}_{\boldsymbol{i}}$	Proportion of rock-forming mineral
F	Melt fraction
$\boldsymbol{M g} \#^{L}$	Magnesium number in mantle melt
Mg\# ${ }^{\text {ol }}$	Magnesium number in mantle olivine
$K^{M g \#}$	Partition coefficient of Mg and Fe in mantle olivine
$\boldsymbol{R g}$	Concentration of radiogenic daughter isotope
$\boldsymbol{R a}$	Concentration of radioactive parent isotope
S	Concentration of stable daughter isotope

Bulk rock partition coefficient $\left(D_{i}\right)$ (Hanson and Langmuir 1978):
$D_{i}=\sum K_{d i} x_{i}=\frac{c_{i}^{S}}{c_{i}^{L}}$

Modal equilibrium melting (Shaw 1970):
$C_{i}^{L}=\frac{C_{i}^{0}}{D_{i}+F\left(1-D_{i}\right)}$

Non-modal equilibrium melting equation (Shaw 1970):
$C_{i}^{L}=\frac{C_{i}^{0}}{\mathrm{D}+F(1-P)}$

The equation for residual mantle:
$C^{s}=\frac{(D-P) \times F}{1-F} \times \frac{1}{D-P} \times 1-D$

Fractional crystallization (Sen 2014):
$C_{L}^{i}=C_{0}^{i} F^{D^{i}-1}$

Mg\# of mantle equilibrated melts:
$\left[\frac{M g \#}{1-M g \#}\right]^{L}=D^{M g \#}\left[\frac{M g \#}{1-M g \#}\right]^{L^{o l}}$
Assuming an average mantle peridotite, $K^{M g \#}$ values are expected to be $\sim 0.3, \sim 0.32$, and ~ 0.35 for pressures less than $0.5 \mathrm{GPa}, 0.5-1.5 \mathrm{GPa}$, and more than 1.5 GPA respectively (Sen 2014).

Radiogenic growth:
$\left(\frac{R g}{s}\right)_{t}=\left(\frac{R g}{S}\right)_{0}+\left(\frac{R a}{s}\right)_{t} \times e^{\lambda \mathrm{t}-1}$

Hanson, G. N. and C. H. Langmuir (1978). "Modelling of major elements in mantle-melt systems using trace element approaches." Geochimica et Cosmochimica Acta 42(6): 725-741.
Sen, G. (2014). Petrology: Principles and Practice. New-Delhi, India, Springer-Verlag Berlin Heidelberg. Shaw, D. M. (1970). "Trace element fractionation during anatexis." Geochimica et Cosmochimica Acta 34(2): 237-243.
Stracke, A., M. Bizimis and V. J. M. Salters (2003). "Recycling oceanic crust: Quantitative constraints." Geochemistry, Geophysics, Geosystems 4(3): n/a-n/a.

