
Ultrasonic measurement systems with
diffraction correction for gas

Andreas Hagen

Master thesis in acoustics

Department of Physics and Technology
University of Bergen

August 31, 2017

Contents

1 Introduction 4
1.1 Background and motivation . 4
1.2 Objectives . 5
1.3 Outline . 5

2 Theory 6
2.1 Governing principles . 6

2.1.1 Waves in fluids . 6
2.1.2 Waves in solids . 6
2.1.3 Waves in piezoelectric materials . 7

2.2 Fourier analysis . 8
2.2.1 Problem . 8
2.2.2 Fourier transform . 9
2.2.3 Discretizing signals . 10
2.2.4 Discrete Fourier transform . 11

2.3 System model . 12
2.3.1 Transfer functions . 13
2.3.2 Transmission line model . 14
2.3.3 Correcting for internal impedance . 16
2.3.4 Reciprocity based propagation model . 16
2.3.5 Sound speed model . 18
2.3.6 Incorporating attenuation in lossless models 19
2.3.7 Combined system model . 19

2.4 Diffraction correction . 20
2.4.1 Definition . 20
2.4.2 Far-field diffraction correction . 21
2.4.3 Baffled piston diffraction correction . 21
2.4.4 Simplified finite element diffraction correction 22

2.5 Finite element analysis . 22
2.5.1 Problem . 22
2.5.2 Weak formulation . 24
2.5.3 Weighted residual methods . 25
2.5.4 Numerical integration . 27
2.5.5 Discretization . 27

2.6 Helmholtz-Kirchhoff equation . 29
2.6.1 Green’s theorem . 29
2.6.2 Outer boundary . 31
2.6.3 Pressure in the extended domain . 31
2.6.4 Formula . 32
2.6.5 Verification of the solution . 32

1

3 Simulation 34
3.1 Geometry . 34
3.2 Materials . 34
3.3 Equations . 34
3.4 Perfectly matched layer . 37
3.5 Mesh . 37
3.6 Solver . 38
3.7 Post-processing . 38

4 Measurement 40
4.1 Experimental setup . 40
4.2 Measuring transfer functions . 41

4.2.1 Burst length and measurement window . 42
4.2.2 Compensating for propagation time . 42
4.2.3 Avoiding spectral leakage . 42
4.2.4 Calculating transfer functions . 43

4.3 Measurement procedure . 43
4.3.1 Measuring transducer admittances . 43
4.3.2 Transducer alignment . 43
4.3.3 Measuring full system’s transfer function 44
4.3.4 Compensating for cables and receiver electronics 45
4.3.5 Compensating for coherent noise . 45

5 Results 47
5.1 Noise reduction . 47

5.1.1 Low frequency background noise . 47
5.1.2 White noise . 47
5.1.3 Coherent noise . 49

5.2 Cable transfer functions (H12 and H5open5) . 51
5.3 Receiver transfer function (H56) . 52
5.4 Acoustic transfer function (H25open) . 52

5.4.1 Nonlinear behaviour . 52
5.4.2 20cm . 55
5.4.3 30cm . 57
5.4.4 50cm . 57

5.5 COMSOL/FEMP comparison . 58
5.5.1 Transducer properties . 58
5.5.2 Transfer function . 58
5.5.3 Diffraction correction . 61

6 Discussion 63
6.1 Validity of the results . 63
6.2 Interpretation of the unexplained discrepancies 64
6.3 Conclusions . 65
6.4 Suggestions for future work . 65

A FEMP simulations 70
A.1 Proposed FEMP Python API . 70
A.2 Running FEMP simulations . 74

B labctrl 79
B.1 Source code . 79

2

C tftools 96
C.1 Source code . 96

3

Chapter 1

Introduction

1.1 Background and motivation

Indirect measurement of quantities like density, distance, composition, and more can be done
with acoustic techniques. This means that many measurements can be done with little to no
disturbance to the object measured by utilising these techniques over more direct approaches.
Examples of this include flow measurement, where full or partial removal of the measurement
equipment from the flow minimises the pressure drop over the measurement equipment, and med-
ical imaging, where internal images can be captured without irradiating or performing surgery
on patients.

The electroacoustic transducers used in these applications necessarily exhibit diffraction ef-
fects due to their finite extent, which depending on the application can be a significant source of
error if not properly accounted for, especially for measurements over a short distance (i.e. inside
the Fresnel region; d � ka2 for distance from transducer d, wavenumber k, and transducer
radius a). An example of this is the apparent rise in the propagation speed of sound in the near
field of a transducer observed by Hebb [1] and Reid [2]; however this was not identified by the
authors as diffraction at the time.

The earliest attempt of diffraction correction in an acoustic system known to the current
author is by Huntington et al. [3], who while constructing a model for an ultrasonic delay
line included diffraction effects by considering special cases of the Helmholtz-Kirchhoff equation
(discussed in section 2.6) for a uniformly vibrating circular piston mounted flush in a rigid baffle
of infinite extent subject to Fresnel and Fraunhofer approximations [4, Chapter 8, pp. 382-386].
In regions where the model proved difficult to solve they resorted to using tabular data after
Lommel [5]. An exact integral form of this diffraction correction was later given by Rogers and
Van Bruen [6].

Notable developments on the idealised baffled piston diffraction correction model after the
above initial work is William’s exact solution in all regions for a transducer pair of identical
dimensions [7] based on earlier work by King [8], and tabulated by Khimunin [9; 10], and
Sabin’s more general solution for transducers of differing dimensions [11].

Recent work on diffraction correction include a proposal by Lunde et al. [12] to augment the
far-field solution of the idealised baffled piston model with data from finite element analysis of
non-uniformly vibrating transducers and their immediate vicinity.

Only partially simulating the acoustic system where the diffraction occurs as proposed might
seem like a suboptimal approach as opposed to simulating the whole system and computing the
diffraction correction directly, but finite element analysis at the resolutions required for the
proposed purpose is a computationally expensive process; Hence it is of interest to check the
validity of the partial model. Some work on this has been done at the University of Bergen [13;
14; 15; 16; 17], but due to difficulties pertaining to coherent electrical noise (crosstalk) the model
has thus far evaded comparisons at shorter separation distances.

4

1.2 Objectives

The current work is focused on general improvements of the measurement system left after
Andersen [17] to facilitate measurements of transfer functions of the acoustic system with shorter
distances between the electroacoustic transducers. These transfer functions are then to be
compared with transfer functions predicted by the reciprocity based transfer function model
from section 2.3.4 corrected for diffraction with the proposed finite element based diffraction
correction by Lunde et al. [12] to explore the viability of this diffraction correction model at
shorter separation distances.

To improve the measured signal used to calculate transfer functions the grounding and shield-
ing of different parts of the experimental setup and other electronics in its immediate vicinity is
investigated. Additional shielding of some exposed wiring on the transducers are also introduced
and the effects of this is explored.

A method of removing residual coherent noise by subtracting its spectrum from measured
signals is also explored. The coherent noise spectrum is obtained by blocking out the acoustic
part of the signal with a screen, thus measuring the electric part separately. This part of the
current work should be seen as preliminary tests as material parameters of the screen filtering
out the acoustic part of the signal has been given no attention and can surely be optimised.

In the current work the software COMSOL Multiphysics [18] is used to simulate piezoelectric
discs immersed in air in order to calculate their electric and acoustic properties for use in the
aforementioned reciprocity based transfer function model and diffraction correction model. This
is a departure from previous work done at University of Bergen, which all primarily have been
using FEMP [19], and as such a rudimentary comparison is performed to show that both pieces
of software yield similar results for the problem at hand.

As the measurement setup used in the current work is a semi-permanent setup at the Uni-
versity of Bergen, being used to the authors best knowledge for at least six theses, an effort to
make a coherent codebase for obtaining and post-processing measurement data is also included,
but relegated to an appendix as it is not a primary focus of the current work.

1.3 Outline

For the readers convenience the following short outline will present the general structure of the
present work.

Chapter 2 gives derivations and explanations of the theoretical framework the current work is
based on. Full derivations of equations used are preferred over plain explanations as it is thought
that this gives the reader an easier time understanding the uses of the principles discussed.

Chapter 3 explains the setup used for simulating the piezoelectric discs and post-processing
done to the resulting data.

Chapter 4 explains the measurement system used and the procedures used with it to preform
the measurements used in the current work. This also includes post-processing of the data to
remove spurious contributions to the measured value.

Chapter 5 walks the reader through the acquired results from simulations and measurements.
A comparison between the two will also be included in the end.

Chapter 6 will discuss the results from the previous chapter and argue conclusions to draw
from the presented data. A section suggesting future work on the topic is also included.

5

Chapter 2

Theory

2.1 Governing principles

2.1.1 Waves in fluids

One of the types of media dealt with in acoustics are fluids, which generally are described by
the Navier-Stokes equations, which can be formulated as

ρ

(
∂~v

∂t
+ (~v · ∇)~v

)
= −∇p+

(
4

3
η + ηB

)
∇(∇ · ~v)− η∇×∇× ~v . (2.1)

The non-linear terms of the above equation makes it unwieldy when used for non-trivial cases
and as such should be linearised. This can be accomplished by assuming that the velocity field
is not turbulent, which yields η∇ ×∇ × ~v ≈ 0, and that each differential volume of fluid isn’t
over time affected much by travelling through the velocity field, either because the velocity field
is not a strong function of space, or because differential volumes of fluid doesn’t move far from
their starting location, both of which yields (~v · ∇)~v ≈ 0.

By taking the divergence of the linearised Navier-Stokes equation and substituting in the
linearised continuity equation, ∇ · ~v = −∂s

∂t , and the adiabatic relation p = ρ0c
2s one can derive

the lossy wave equation (as shown in [20, Chapter 8, pp. 211-212])

1

c2

∂2p

∂t2
=

(
1 + τS

∂

∂t

)
∇2p , (2.2)

where the time constant τS = (4
3
η+ηB)/ρ0c2.

By assuming harmonic solutions, p = p0e
iωt, the above wave equation reduces to Helmholtz

equation,
(∇2 + k2)p = 0 , (2.3)

with k = ω
c/
√

1+iωτS. This equation is used to model acoustical pressure waves, i.e. waves in
gasses and liquids, and while constrained to mono-frequency solutions when used alone can
model all sorts of signals when combined with Fourier analysis.

2.1.2 Waves in solids

In solid media the Navier-Stokes equations used in the previous section does not apply and as
such a different way of obtaining a wave equation has to be used. The Cauchy stress tensor
from continuum mechanics is defined by the net propagation of forces in a body, given by
∆~F = (T · ~n)∆A, which implicitly yields the equation for traction

~t =
d~F

dA
= T · ~n . (2.4)

6

Using the above equation together with the divergence theorem on a volume small enough
so that ∇ · T can be approximated as constant over the whole volume yields

ρ
∂2~u

∂t2
= ∇ · T (2.5)

when said volume is divided through. This relation is essentially just Newton’s second law for
the insides of solid bodies as stated in terms of stresses instead of forces. A more detailed
derivation of this relation can be found in [21, Chapter 5].

Since stresses are just an analogue of forces in continuum mechanics it should come as no
surprise that Hooke’s law also has an analogue in the form of

TH = cE : S . (2.6)

This linear representation accounts for all stress linearly induced by strains, but other sources
of stresses might also contribute to the total stress, and thus this component is here subscripted
by H.

It is usually easier to express deformations in terms of displacements instead of strains, and
thus it is desirable to have a relation between the two. Assuming that the displacement ~u is given
as an affine transformation of the position ~x, meaning the solid is restricted to a translation ~b
and a linear deformation, it’s complete Taylor series is given as

~u = M~x+~b = (∇~u) ~x+~b . (2.7)

Since a strain is just the change in length per length, i.e. percentage change, it is natural to
assume from the above equation that S = M = ∇~u.

While this works as long as no rotation is induced, it fails otherwise as ∇~u also includes these
rotations, and thus rotations would be interpreted as spurious strains. As the curl ∇× ~u is zero
only when M is symmetric [22, Chapter 6, pp. 210-211], S has to be defined as the symmetric
part of M ,

S = ∇S~u =
1

2

(
∇~u+ (∇~u)T

)
. (2.8)

Combining the above relations, adding in a term TE to account for external stresses not due
to strain of the material, one can form a wave equation of the form

ρ
∂2~u

∂t2
= ∇ · (cE : ∇S~u+ TE) . (2.9)

As in the previous section the wave equation can be simplified by assuming harmonic solu-
tions of the form ~u = ~u0e

iωt, yielding

− ω2ρ~u = ∇ · (cE : ∇S~u+ TE) . (2.10)

2.1.3 Waves in piezoelectric materials

As piezoelectric materials are generally crystalline structures the governing equation for waves
will be the same as in the general solid case. In addition to the stress-strain relationship found
in all solids piezoelectric materials also exhibit the piezoelectric and the reverse piezoelectric
effect, which is generally characterized by the generation of voltage from forced strains to the
material, and the generation of stresses from induced voltages in the material.

These effects are usually modelled by the constitutive equations for piezoelectric materi-
als [23, Chapter 2], which adds a term involving the material strain to the electric displacement

7

field equations, ~DE = e : S, and a term involving the electric field to Hooke’s law, TE = −eT · ~E,
yielding

T = cE : S − eT · ~E
~D = e : S + εS · ~E

. (2.11)

As piezoelectric materials don’t tend to have unbound charges in them there will be approx-
imately no sources in the electric displacement field inside them. Thus ∇ · ~D = 0.

Assuming that the electric field is irrotational it can be expressed as the negative gradient of
the electric potential in the material, ~E = −∇V . Making this substitution reduces the remaining
unknown variable to a scalar.

The above relations can be used together with the equation for waves in solids to give an
equation for acoustic waves in piezoelectric materials together with an equilibrium equation for
the corresponding electric field which have to be solved simultaneously.

−ω2ρ~u = ∇ ·
(
cE : ∇S~u+ eT · ∇V

)
0 = ∇ · (e : ∇S~u− εS · ∇V)

. (2.12)

2.2 Fourier analysis

In nature no signal is a clean sine or cosine function, but instead has more features. A signal
might have some start or stop, i.e. if what generated the signal is turned on or off; might increase
or decrease in power, i.e. if the source of the signal moves closer or further away; or any number
of other complications.

A useful abstraction is to think of these signals as composed of a possibly infinite number of
simpler mono-frequency signals, like how music might be built up from many single instruments
playing different notes.

2.2.1 Problem

The problem solved by Fourier analysis is to decompose arbitrary functions h(·) on the domain
[a, b] ∈ R into sets of simple mono-frequency functions. This sort of decomposition works if the
function being decomposed is sufficiently “nice”, but for general functions this might not work.
For this reason one often restrict the scope of the analysis to square integrable functions for
which

bˆ

a

|h(t)|2 dt <∞ . (2.13)

If the function h(·) represents a linear wave, i.e. the wave phenomena is governed by Hooke’s
law, then |h(·)|2 is proportional to the energy carried by the wave. Thus the above restriction
can be seen as a restriction to waves or signals carrying a finite amount of energy. The absolute
value is included in case of a complex valued functions to ensure amplitude is integrated over.

The above restriction is however slightly too strict because there exists functions that can be
decomposed into mono-frequency functions but which is not square integrable. A trivial example
of this is an infinite sine wave.

To dodge this problem instead define the domain of Fourier analysis to be all functions that
can be composed from summing complex exponential waves Aeit. Borrowing from linear algebra
this is the same as saying that the domain is the abstract vector space of functions spanned by
the above exponentials.

A vector space can be equipped with an inner product which adds the possibility of projecting
vectors in the space onto each other. A natural definition for the inner product for the above

8

vector space would be a generalization of the dot product for Cn as complex valued functions
can be seen as infinite dimensional vectors of the complex numbers they produce.

〈h, g〉 =

bˆ

a

h(t)g(t) dt (2.14)

The projection of h(·) onto g(·) is then given by

projg(h) = 〈h, g〉 g
‖g‖

(2.15)

where the norm of g(·) is just the square root of its inner product with itself, ‖g‖ =
√
〈g, g〉.

2.2.2 Fourier transform

The previous section defined the domain of Fourier analysis to be the vector space of functions
spanned by the complex exponentials. It is useful to find an orthogonal basis for this vector
space as it enables construction and decomposition of arbitrary vectors in the space. It is also
convenient if the basis is already normalized as this removes normalization terms when the basis
is used. It is possible to show that

bk(t) =
1√
2l
e
iπkt
l , k ∈ Z (2.16)

forms such a basis for functions defined on the interval [−l, l] ∈ R [24, Chapter 1, p. 60].
Since projecting a vector onto a basis vector from an orthonormal basis essentially just gets one
coefficient of the vector as expressed in that basis it follows that h(·) can be decomposed and
reconstructed as

h(t) =

∞∑
k=−∞

〈h, bk〉bk(t) =

∞∑
k=−∞

αke
iπkt
l , (2.17)

where

αk =
1

2l

lˆ

−l

h(t)e−
iπkt
l dt . (2.18)

By making the substitution 2fk = k/l, noting that ∆f = fk+1 − fk = 1/2l (as show in [24,
Chapter 2, p. 93]),

h(t) =
∞∑

k=−∞
Hl(fk)∆f =

∞∑
k=−∞

 lˆ

−l

h(t)e−2πifkt dt

 e2πifkt∆f , (2.19)

one can easily see that as l goes to infinity the decomposition and reconstruction of f(·) can be
separated as the Fourier transform

F{h(t)}(f) =

∞̂

−∞

f(t)e−2πift dt , (2.20)

and it’s inverse

h(t) =

∞̂

−∞

F{f(t)}(f)e2πift df . (2.21)

9

· =

Figure 2.1: Multiplication of an example function with a dirac comb to discretize it.

∗ =

Figure 2.2: Convolution of an example function with a dirac comb to periodize it.

2.2.3 Discretizing signals

When working with the Fourier transform in a digital environment a discretized version of the
transform is needed. It is desirable to discretize both the time domain and the frequency domain
as this makes both signal representations fit in a finite amount of memory.

This discretization can be done by multiplying the function under analysis with the Dirac
comb function

h(t) ·XT (t) =
∞∑

k=−∞
h(kT)δ(t− kT) , (2.22)

which essentially just samples the function at time intervals T as illustrated in fig. 2.1. When
evaluating expressions where the delta function is used like this it is assumed that one needs to
integrate over a small interval containing the evaluation point since evaluating the delta function
is not well defined.

While multiplying with a Dirac comb discretizes a function convolving with it periodizes a
function by repeatedly superposing every point with all points a distance kT, k ∈ Z away.

h(t) ∗XT (t) =
∞∑

k=−∞
h(t− kT) (2.23)

This is shown for a function with support on an interval of length T in fig. 2.2.
Combining the fact that the Dirac comb is the Fourier transform of itself,

F{XT (t)}(f) =
1

T
X1/T (f) , (2.24)

with the convolution theorem,

F{h(t) · g(t)}(f) = F{h(t)}(f) ∗ F{g(t)}(f)

F{h(t) ∗ g(t)}(f) = F{h(t)}(f) · F{g(t)}(f)
, (2.25)

one can easily see that for a discrete signal to have a discrete Fourier transform the signal has
to be periodic. This relation works both ways as the convolution theorem is symmetric, and
discrete signals has to have a periodic Fourier transform as well.

Because of the above restriction on signals with a discrete Fourier transform one is forced to
assume that signals sampled during an interval T are of the form

ĥ(t) = h(t) = XT (t) ∗ (ΠT (t)h(t)) = h

(
t−

⌊
t

T

⌋
T

)
, (2.26)

10

where

ΠT (t) =

{
1 if 0 ≤ t < T

0 else
, (2.27)

meaning the sampled signal is a whole number of periods of a periodic signal. As such signals
would have to go on forever this is not a realistic assumption and thus a discrete Fourier transform
will never be better than approximately equal to the continuous Fourier transform of a natural
signal.

If the signal is not periodic the forced periodicity from the above formula will cause spectral
leakage, which is when the Dirac comb convolution and the rectangle function’s Fourier transform
causes artefacts in the computed Fourier transform that is not present in the actual Fourier
transform of the signal.

2.2.4 Discrete Fourier transform

As the previous section demonstrated that a signal with a discrete Fourier transform has to be
periodic, one has to assume that this is the case for a sampled signal ĥ(t) = XTs(t) · h(t) to
derive the discrete Fourier transform. For simplicity assume that the signal is periodic with an
interval T a multiple of the sampling interval Ts such that the signal repeats right after the last
sample taken. For N samples taken in t ∈ [0, (N − 1)Ts] this yields the relation T = NTs.

Inserting the signal h(t) into the Fourier transform formula, equation (2.20), utilizing the
convolution theorem yields

F{ĥ(t)}(f) =
1

T
X1/T (f)

T−ˆ

0

∞∑
n=−∞

h(nTs)δ(t− nTs)e−2πifnTs dt . (2.28)

Since X1/T (f) non-zero only when f = k/T , k ∈ Z one can restrict analysis to these discrete
frequencies by substituting it for f .

The sum under the integral only produces non-zero values when 0 ≤ n ≤ N − 1 due to the
sifting property of the delta function. Therefore one can restrict the sum to this range while
moving it outside the integral to produce an integral that sifts out a single value for each n.

F{ĥ(t)}
(

k

NTs

)
=

1

NTs

N−1∑
n=0

T−ˆ

0

h(nTs)δ(t− nTs)e−2πik n
N dt (2.29)

Defining h[n] = h(nTs) and evaluating the integral yields

F{ĥ(t)}
(

k

NTs

)
=

1

NTs

N−1∑
n=0

h[n]e−2πik n
N , (2.30)

which scaled by a factor Ts, to have a scale independent definition, is the discrete Fourier
transform

DFT{h[n]}[k] = TsF{ĥ(t)}
(

k

NTs

)
=

1

N

N−1∑
n=0

h[n]e−2πik n
N . (2.31)

As the factor 1/N is frequency independent it is irrelevant when doing relative computations,
and is often moved to the inverse transform to save computation time when inverting the signal
is not of interest.

11

Figure 2.3: Diagram of the path taken by signals propagated through the system.

The above equation can be rewritten as a matrix equation with w = e
−2πi
N , yielding

DFT{h[n]} =
1

N

1 1 1 · · · 1
1 w w2 · · · wN−1

1 w2 w4 · · · w2(N−1)

...
...

...
. . .

...
1 wN−1 w2(N−1) · · · w(N−1)2

h[0]
h[1]
h[2]
...

h[N − 1]

 . (2.32)

Due to the simplicity of this matrix there exists several optimized algorithms to efficiently com-
pute partial or full DFTs of sampled signals. Examples including the Cooley-Tukey algorithm,
which exploits the similarity between different coefficients in the matrix to re-express the above
equation as a recursive problem with smaller and smaller matrices, and the Goertzel algorithm,
which re-expresses the expression for one DFT bin as an IIR filter.

2.3 System model

To be able to treat the measurement setup as individual parts whose effect can be accounted
for with a single function it is assumed that the system is linear and time invariant. This
is obviously just an approximation as no physical systems are linear and time invariant [25,
Chapter 2, p. 33], but an approximation that is non the less quite accurate as most systems have
vanishing non-linear components at small deflections from the equilibrium of the system [26,
Chapter 4, p. 266].

The system at hand propagates a measurement signal in order through an oscilloscope, a
cable, the transmitting transducer, the medium, the receiving transducer, another cable, an
amplifier, a third cable, a digital filter, and through a fourth cable back to the oscilloscope. The
signal originates from an arbitrary waveform generator, but this element will be kept out of the
system model as the signal is being measured at the oscilloscope before propagating through the
rest of the system. For a visual of the signal path refer to fig. 2.3.

For conformity with previous works at the University of Bergen [27] (and to a lesser extent
[13; 14; 15; 16; 17]) the system parts, called blocks, will be numbered as:

1. Electronics connected between the first measurement of the signal and the transmitting
transducer, meaning the port on the oscilloscope an the cable connecting the oscilloscope to
the transmitting transducer. As the incoming signal from the arbitrary waveform generator
is connected with a parallel t-junction to a high impedance port on the oscilloscope and the
cable connecting to the transmitter, it is thought that the oscilloscope port is of minimal
importance and as such only the cable is accounted for in the current work.

2. The transmitting transducer, including any electronics welded onto it, which in the current
work happens to be a set of cables to move the electronic connection point away from the
radiation surfaces of the transducer.

12

3. The medium, including any obstructions placed inside or in the vicinity of the system in
such a manner that they influence the signal propagated through the medium.

4. The receiving transducer, including any electronics welded onto it. As similar transducers
are used on both ends this also includes a set of cables in the current work.

5. Electronics connected between the receiving transducer and the last measurement of the
signal. In the current work this includes the cable connecting the receiving transducer to
the amplifier, the amplifier, the cable connecting the amplifier to the filter, the filter, and
the cable connecting the filter to the oscilloscope.

6. Termination, which in the current work is just the last connection the oscilloscope.

As will be discussed in section 2.3.1 transfer functions for individual or groups of system
blocks can be constructed, and will be labeled by the system block where the signal is inputted,
and the system block where the output signal is inputted next, i.e. the transfer function for
block number 1 is named H12.

A special case is introduced in order to be able to calculate the open-circuit voltage of the
receiving transducer, where the transfer function for block number 5 is split into H5open5 and
H56, representing the cable connecting the receiver compensated with the internal impedance of
the receiving transducer (see section 2.3.3 for more details), and the rest of block 5 respectively.

2.3.1 Transfer functions

The defining properties of linear time invariant systems are that the output of the system depends
only linearly on the input to the system and this dependance dosen’t change over time.

To see this property it is easier to start with the example of a causal linear time invariant
system, where the current output value only depend on past input values. In such a system one
can calculate the current output value as the weighted sum

s2(t) = a0s1(t− 0∆t) + a1s1(t− 1∆t) + a2s1(t− 2∆t) + . . .

=
∞∑
n=0

ans1(t− n∆t)
(2.33)

for sufficiently small ∆t. Letting ∆t go to zero one can construct a Riemann integral from the
above expression which converges to

s2(t) =

∞̂

0

h12(τ)s1(t− τ) dτ . (2.34)

If the requirement of causality is dropped above the math works out the same way but the
output signal may then also depend on future values of the input signal as well. This results in
the final result instead being the convolution integral

s2(t) =

∞̂

−∞

h12(τ)s1(t− τ) dτ = h12(t) ∗ s1(t) . (2.35)

Selecting s1(t) as a Dirac delta pulse it is evident from the sifting property of the Dirac delta
function that h12(t) is the impulse response of the system.

If sequential system blocks are numerated such that s1(t) is the input to block number 1,
s2(t) is the output from block number 1 and the input to block number 2, and s3(t) is the output
of block number 2, a chain of convolutions can be established to calculate the final output;

s3(t) = h23(t) ∗ (h12(t) ∗ s1(t)) (2.36)

13

There is of course no limit to how many blocks can be linked like this, and the number of blocks
picked here was just picked for illustrational purposes.

Using the convolution theorem (equation (2.25)) the above relation can be shown to be
equivalent to

F{s3(t)}(f) = F{h23(t)}(f)F{h12(t)}(f)F{s1(t)}(f)

= H23(f)H12(f)F{s1(t)}(f)
, (2.37)

where the Hnm(·) functions are the transfer functions discussed earlier.
Combining the above transfer functions H12(f) and H23(f) to H13(f) one can right away see

that transfer functions are simply the ratio between the Fourier transform of the output signal
and the input signal, generally

Hnm(f) =
F{sm(t)}(f)

F{sn(t)}(f)
. (2.38)

It can be easily proved by using the Fourier shift theorem combined with the identity cos(x) =
1/2
(
eix + e−ix

)
that sinusoidals have the Fourier transform

F{A cos(2πf0t+ θ)}(f) =
A

2
e
iθ f
f0 (δ(f + f0) + δ(f − f0)) . (2.39)

Using this fact together with equation (2.38) it is evident that the magnitude and phase of the
transfer function represents relative scaling and phase shift of a signal measured at different
points in the system;

Hnm(f0) =
An
Am

ei(θn−θm) . (2.40)

2.3.2 Transmission line model

As several cables are used in the system a way to calculate their transfer function is necessary.
The telegrapher’s equations is a set of differential equations describing cables for which

lumped models are inadequate, either because high precision is required or because the cables
are long compared to the wavelength of the signal. Such cables are called transmission lines.

It is assumed by the telegraphers equations that each differential element of length of a two
conductor cable can be modelled by four components, as shown in fig. 2.4:

• A series resistor of value R∆x, representing simple losses in the cable.

• A series inductor of value L∆x, representing self inductance of the cable.

• A shunt resistor of value (G∆x)−1, representing conductance in the dielectric separating
the two conductors.

• A shunt capacitance of value C∆x, representing the capacitance between the two conduc-
tors.

Using Kirchhoff’s circuit laws, letting ∆x go to zero, one can from the circuit described above
deduce the relations

∂V

∂x
= lim

x→0

∆V

∆x
= −RI − L∂I

∂t
∂I

∂x
= lim

x→0

∆I

∆x
= −GV − C∂V

∂t

, (2.41)

which when substituted one into the other can be reduced to a single linear partial differential
equation;

∂2V

∂x2
= LC

∂2V

∂t2
+ (CR+ LG)

∂V

∂t
+GRV . (2.42)

14

Figure 2.4: Schematic of transmission line segment of size ∆x.

Assuming solutions of the form V = V0e
iωt the above equation reduces to the one dimensional

Helmholtz equation,(
∂2

∂x2
− (R+ iωL)(G+ iωC)

)
V =

(
∂2

∂x2
− ZY

)
V = 0 (2.43)

whose solution is commonly known to be

V = Ae
√
ZY x +Be−

√
ZY x . (2.44)

For shorter cables at lower frequencies the cumulative influence of resistance in the cables
are negligible, so assuming R = 0 and G = 0 is reasonable. This yields

√
ZY = iω

√
LC = ik,

which means that the wave propagation speed is given as c = 1/
√
LC.

A derivation for I can be done in similar fashion to the derivation for V above, and used in
conjunction with Ohm’s law, V = IZ, with some algebraic manipulation it can be derived that

VS = −VR cos(kl) + iIRRC sin(kl)

IS = IR cos(kl)− i VR
RC

sin(kl)
(2.45)

where subscript S and R represents values on the “source” and “receiver” sides of the transmission
line respectively, and l and RC =

√
L/C is its length and characteristic impedance [28, Chapter 1,

pp. 5-19].
Using the trigonometric identities sin2(x) + cos2(x) = 1 and cos(x) = 1− sin(x) tan(x/2) the

above equations can be transformed to the set

VS =

(
iRC tan

(
kl

2

)
+

RC
i sin(kl)

)
IS −

RC
i sin(kl)

IR

VR = − RC
i sin(kl)

IS +

(
iRC tan

(
kl

2

)
+

RC
i sin(kl)

)
IR

, (2.46)

which for impedances Za = iRC tan(kl/2) and Zb = −iRC(sin(kl))−1 are equivalent to the
equations describing the circuit in fig. 2.5 (See [29, Chapter 5] for a more in depth treatment of
this set of equations).

For a known source voltage VS and receiver load ZR solving the linear system of equations
1 0 0 0
−1 Za + Zb 0 −Zb
0 −Zb −1 Za + Zb
0 0 −1 ZR

VS
IS
VR
IR

 =

VS
0
0
0

 (2.47)

15

Figure 2.5: Equivalent lumped circuit for a transmission line.

yields currents and voltages on both sides of the transmission line, so that constructing transfer
functions is just a matter of dividing corresponding quantities by each other, i.e

HV V (f) =
VR(f)

VS(f)
. (2.48)

2.3.3 Correcting for internal impedance

As mentioned earlier a special case is introduced for the transfer function of the cable connected
to the receiving transducer, H5open5, so that it’s transfer function also includes the effects of
the internal impedance of the receiving transducer. This means that Hn5open = Hn5/H5open5 gives
results as if the receiving transducer was unloaded.

By Thévenin’s theorem [30, Chapter 5, pp. 77-78] a real voltage source can be represented
as an ideal voltage source, VI , in series with an internal impedance, ZI , which means that when
used in conjunction with the transmission line model

VI = ISZI + VS = VS
ZI + ZS
ZS

, (2.49)

where ZS = VS/IS. Thus when calculating H5open5 with the transmission line model described
in the previous section an extra term must be included, e.g.

HV V
5open5(f) =

VR(f)

VI(f)
=
VR(f)

VS(f)

ZS
ZI + ZS

. (2.50)

2.3.4 Reciprocity based propagation model

In general electroacoustic transducers can be governed by an arbitrary set of equations. For
a limited subset of these transducers, called reciprocal transducers, a useful relation can be
deduced relating their transmitting current sensitivity

SI =
p(~r0)

I
, (2.51)

to their receiving voltage sensitivity

MV =
V

p(~r0)
, (2.52)

16

for some arbitrary definition of ~r0, and V being the open-circuit voltage generated by the trans-
ducer [31]. A common definition for ~r0 is 1 m from the transducer along the acoustic axis, or
backpropagated by means of spherical waves to this point if it fails to be in the transducers
far-field [29].

Linear passive electroacoustic transducers are those whose transduced “output” quantities
are related only as a linear superposition of it’s “input” quantities, i.e. it’s governing equations
are of the form

p(~r) =

ˆ

S

z0(~r, ~s)(~v(~s) · ~n(~s)) d~s+ h(~r)I

E =

ˆ

S

h′(~s)(~v(~s) · ~n(~s)) d~s+ ZT I

, (2.53)

where S is the surface of the transducer in contact with the medium. Of these, reciprocal
transducers additionally satisfy

h(~r)

h′(~r)
= eiα

z0(~r, ~s) = z0(~s, ~r)

, (2.54)

which essentially means that the normal velocity at point ~r contributes equally as much to the
pressure at point ~s as the normal velocity at point ~s contributes to the pressure at point ~r,
and that the transduction effect is reversible in a one-to-one fashion, i.e. applying pressure p(~r)
to the transducer generating voltage V results in the same transducer state as applying the
resulting voltage V to the transducer, with a possible phase shift introduced.

Foldy and Primakoff proved that for a reciprocal transducer the ratio of it’s two sensitivities
mentioned above when incoming waves are restricted to spherical ones are given as [32]

MV

SI
= Jsph =

2dλ

iρc
ei(kd−α) . (2.55)

Two identical transducers, Tx and Rx, located in each others far-fields, so that waves trans-
mitted from one is approximately spherical when received by the other, on the same acousti-
cal axis such that the transmitter’s transmitting current sensitivity is measured at a distance
r0 = |~r0|, and the receiver’s receiving voltage sensitivity is measured in the point located distance
d away from the transmitter, is thus related as

V Rx

V Tx =
SIMV

ZT

r0

d
e−ik(d−r0) . (2.56)

Using the reciprocity parameter Jsph together with the relation SI/ZT = SV , the transmitting
voltage sensitivity, the above equation becomes (as shown by [13])

HV V
25open(f)Cdif(f) =

V Rx

V Tx = S2
V ZTJsph

r0

d
e−ik(d−r0) . (2.57)

In the current work the voltages in the above equation corresponds with the input to block
2 and the output from block 5open when no diffraction is present except its far-field limit value
(i.e. the far-field condition discussed above is met), which is indicated by the equality with
the transfer function HV V

25open(·) corrected with the diffraction correction Cdif(·) (to be discussed
in section 2.4.1). Dividing through by Cdif(·) (as shown in [33]) yields an uncorrected transfer
function.

17

Constant Value
a0 331.5024 m s−1

a1 0.603 055 m s−1 ◦C−1

a2 −5.28× 10−4 m s−1 ◦C−2

a3 51.471 935 m s−1

a4 0.149 587 4 m s−1 ◦C−1

a5 −7.82× 10−4 m s−1 ◦C−2

a6 −1.82× 10−7 m s−1 Pa−1

a7 3.73× 10−8 m s−1 ◦C−1 Pa−1

a8 −2.93× 10−10 m s−1 ◦C−2 Pa−1

a9 −85.209 31 m s−1

a10 −0.228 525 m s−1 ◦C−1

a11 5.91× 10−5 m s−1 ◦C−2

a12 −2.835 149 m s−1

a13 −2.15× 10−13 m s−1 Pa−2

a14 29.179 762 m s−1

a15 0.000 486 m s−1 Pa−1

Table 2.1: Fitted values for coefficients in equation (2.58).

2.3.5 Sound speed model

In the model from the previous section an unknown parameter difficult to determine with high
precision is the speed of sound (introduced through the parameter k). As especially signal phase
is highly dependant on the speed of sound it is important to have a good model for this, and
as such several attempts have been made to construct such a model, notably by Wong [34], and
Cramer [35].

For a zero-frequency signal Cramer proposed the fitted model

c0 = (1 xw p xc)

a0 a1 a2

a3 a4 a5

a6 a7 a8

a9 a10 a11

1
t
t2

+ (x2
w p2 x2

c xwpxc)

a12

a13

a14

a15

 , (2.58)

with accompanying coefficients given in table 2.1 for the temperature t given in degrees Celsius,
the ambient pressure p given in pascals, and the concentration of water vapour and carbon
dioxide xw and xc given as mole fractions.

As pointed out by O’Donnell et al. [36; 37] linear attenuative (absorbing or scattering)
systems have to be dissipative to preserve causality (this can easily be seen by subtracting a
single frequency sinusoid from a signal with finite support in time, as the result will have infinite
support in either direction), which is an effect described by the Kramers-Kronig relations.

A commonly used approximation to this relation for acoustical systems (e.g. [27, Chapter
4]) was given by Morfey and Howell [38] as

1

c0
− 1

cp
=
∑
i

αi
ωri

, (2.59)

where cp is the phase speed of a given frequency, and αi is the attenuation coefficient for the
i-th relaxation mechanism resonating at ωri.

In air the most notable relaxation mechanisms are due to internal vibrations of nitrogen and
oxygen molecules [27, Chapter 4] for which fitted models of the form

αi = Ce
−θi/T frif

2

f2
ri + f2

, (2.60)

18

where θi is the characteristic vibrational temperature of the molecule, are available in the ANSI
standard on atmospheric absorption [39] with accompanying fitted models for fri.

2.3.6 Incorporating attenuation in lossless models

As explored in section 2.2 the complex exponentials C→ C forms a basis for sufficiently “nice”
functions f : C→ C. Without proof it will be stated that this also applies to f : Cn → C, which
is spanned by the complex exponentials

Ae−i(
~k·~x) . (2.61)

This can easily be seen by taking the previously defined Fourier transform in each dimension
separately as each dimension is linearly independent.

Interpreting ~x ∈ Rn as a spatial position and defining
~k = ~k0 − i~α (2.62)

one can see that the above form will have the kind of exponential decay in its spatial dimension
xi as an attenuation of αi neper per unit distance exhibits. Thus retrofitting a lossless model
with a complex ~k introduces a parameter with which to tune the exponential decay produced
by attenuation mechanisms.

This observation is substantiated by the form of the wave equation given in section 2.1.1
where ~k is directionless and reduces to a scalar.

In the current work this technique is used with the propagation model from section 2.3.4 along
with the attenuation coefficients for classical (thermoviscous) and rotational absorption [40; 27,
Chapter 4]

αcl =
ω2

2ρ0c3

(
4

3
η +

(γ − 1)κ

cP

)
(2.63a)

αrot =
ω2

2ρ0c3

(
3

5
η

)
(2.63b)

as approximated by the ANSI standard on atmospheric absoption [39], and the relaxation mech-
anisms due to nitrogen and oxygen as discussed in the previous section.

2.3.7 Combined system model

Combining the models discussed in previous sections one can construct a model for the full
system

HV V
16 (f) =

Transmission line
(section 2.3.2)︷ ︸︸ ︷
HV V

12 (f)HV p
23 (f)Hpp

34 (f)HpV
45open(f)︸ ︷︷ ︸

Reciprocity based propagation model
(sections 2.3.4 to 2.3.6)

Transmission line with correction for internal impedance
(sections 2.3.2 and 2.3.3)︷ ︸︸ ︷

HV V
5open5(f)HV V

56 (f) , (2.64)

where transfer function HXY
ij = Xi/Yj is defined by the quantities described in table 2.2.

Of the transfer functions in equation (2.64) only HV V
56 (f) is yet to be discussed. As this

subsystem have electrical terminals on either side where arbitrarily short cables can be connected
to equipment to measure its transfer function, and the behaviour of the subsystem is not really
of interest in the current work, a model to calculate its transfer function has been foregone and
instead the transfer function is simply measured separately.

Isolating out all electrical transfer functions gives and expression from which the transfer
function of only the acoustic part of the measurement system can be calculated from measured
data;

HV V
25open(f) =

HV V
16 (f)

HV V
12 (f)HV V

5open5(f)HV V
56 (f)

. (2.65)

19

Quantity Definition

V1

Voltage over the cable connecting the transmitting transducer and the
oscilloscope (i.e. voltage between signal and ground in t-junction, as-
sumed to be equal to voltage over oscilloscope terminals).

V2 Voltage over the terminals of the transmitting transducer.

p3
Pressure free- far-field (possibly back-propagated) on-axis pressure at the
reference distance for transmitting transducer.

p4 Free-field pressure at the reference distance for the receiving transducer.

V5open
Compensated open-circuit voltage over the terminals of the receiving
transducer.

V5
Voltage over the terminals of the first component in the post-processing
electronics.

V6 Voltage over the oscilloscope terminals.

Table 2.2: Definition of quantities used in transfer functions.

Comparing results of this calculation with calculations of HV V
25open(f) based on finite-element

modelling (see chapter 3), either with the reciprocity method from section 2.3.4 or with a full
finite-element solution (beyond the scope of the current work), verification of the diffraction
model from section 2.4.4 can be done.

2.4 Diffraction correction

2.4.1 Definition

Diffraction is the result of receivers having an extended receiving surface, which leads to multiple
pick-ups of the transmitted signal. As the distance from the origin of the transmitted signal
varies with each pickup point the travel time of the picked up signal will also have a variable
delay, resulting in multiple phase shifted copies of the same signal being picked up.

Assuming each pickup point on the receiver contributes equally to the received signal, the
average of the field variable carrying the signal at the pickup points will be proportional to the
received signal, i.e if the received signal is given as a voltage and the signal propagated as a
pressure wave then

V ∝ 〈p〉 . (2.66)

In the above relation the coefficient of proportionality is often identified as the receivers sensi-
tivity.

To account for this effect, diffraction correction amounts to creating a relation between the
average of the field variable carrying the signal over the surface of the receiver and an equivalent
plane wave being picked up by a point receiver [9; 6];

Hdif =
〈p〉
pplane

. (2.67)

Dividing through by this factor in equation (2.66) cancels the factor 〈p〉 yielding an equation
that can be used to relate received signals to their equivalent diffraction-less plane wave repre-
sentations. This correction can also be introduced into the system model as a “transfer function”
to correct for relative diffraction

Cdif(z) =
pcorr(z)

pmeas(z)
=

zff
z Hdif(zff)

Hdif(z)
, (2.68)

as shown by Mosland [14, Chapter 2, p. 11]. This essentially accounts for all diffraction effects
that exists at distance z but is gone by distance zff, thus if zff is placed at a distance sufficiently
far away one can correct for all but the far-field limit of the diffraction.

20

2.4.2 Far-field diffraction correction

One of the simpler approximations for a piezoelectric disc is the model for a uniformly vibrating
circular piston mounted flush in a rigid baffle of infinite extent [27, Chapter 5]. This model
is not an accurate model for a piezoelectric transducer in all regimes, but due to the way the
diffraction corrections in the subsequent section are normalized it will yield the same diffraction
correction in the far-field limit of both the baffled piston diffraction correction and the simplified
finite element diffraction correction. The reason for choosing this approximation is that the
corresponding Rayleigh integral [41, Chapter 15, p. 162; 20, Chapter 7, p. 179],

p(~x) = i
ρ0cv0

λ

ˆ

S

e−ik|~x
′|

|~x′|
dS , (2.69)

where |~x′| is the distance between the surface element dS and ~x, has a closed form solution in
certain regions, most notably on the acoustic axis, and under far-field assumptions.

As Cdif involves the diffraction correction in the far-field it is beneficial to have a closed form
expression for this. Assuming a transmitter and an acoustically transparent receiver with radii
a and b respectively, aligned on each other’s axes, and located in each other’s far-field, the above
expression can be simplified, since ~x ≈ (0, 0, zff), which makes the integrand in the Rayleigh
integral a constant. Averaging as prescribed in the diffraction correction formula yields

〈p〉(zff) =

ˆ

Sb

iρ0cv0

λ

ˆ

Sa

e−ikzff

zff
dSa

 dSb
πb2

=
iρ0cv0ka

2

2zff
e−ikzff . (2.70)

Using the above expression the numerator of (2.68) can be expressed as

zff
z
Hdif(zff) =

ika2

2z
. (2.71)

2.4.3 Baffled piston diffraction correction

Outside the regions mentioned in the previous section where the baffled piston model has a
closed form solution it still has integral solutions, i.e. the Rayleigh integral. Another such
integral solution, due to King [8], can be constructed by solving the wave equation in cylindrical
coordinates in terms of Bessel functions of the first kind;

p(r, z) = iρ0cv0ka

∞̂

0

e−µzJ0(αr)J1(αa)
dα

µ
, (2.72)

for µ =
√
α2 − k2.

This expression lends itself better to construction of a near-field diffraction correction along
the lines of the far-field diffraction correction from the last section, since the integrand sim-
plifies when averaged over a receiver of the same dimensions as the transmitter, as shown by
Williams [7];

〈p〉(z) = ρ0cv0

e−ikz − 4

π

π/2ˆ

0

e−ik
√
z2+(2a cos(θ))2 sin2(θ) dθ

 . (2.73)

The corresponding diffraction correction was tabulated by Khimunin [9; 10];

HBPDC
dif (z) = 1− 4

π

π/2ˆ

0

e
−ik

(√
z2+(2a cos(θ))2−z

)
sin2(θ) dθ . (2.74)

21

2.4.4 Simplified finite element diffraction correction

To account for diffraction effects that occur for piezoelectric discs but not for baffled pistons
Lunde, Frøysa, Kippersund, and Vestrheim proposed to use finite element analysis to calculate
the average pressure [12] used in the diffraction correction, and relate this to an equivalent
baffled piston model.

Solving equation (2.70) for v0 gives a way to back-propagate the average far-field pressure
at zff to an equivalent front velocity of a baffled piston, which multiplied with ρ0c gives an
equivalent plane wave pressure to use in diffraction correction.

peq,plane0 = ρ0cv
eq
0 =

2zff〈p〉(zff)

ika2
eikzff . (2.75)

The final diffraction correction can then be calculated by taking the average pressure over
the receiver area using finite element analysis and dividing by the above equivalent plane wave;

HSFDC
dif (z) =

〈p〉(z)
〈p〉(zff)

ika2

2zff
eik(z−zff) =

〈p〉(z)eikz

〈p〉(zff)eikzff
Hdif(zff) . (2.76)

2.5 Finite element analysis

As most processes in nature are described by partial differential equations, solving these equa-
tions is vital to understand it. While many algebraic equations and ordinary differential equa-
tions can be solved in closed form, most partial differential equations can not.

It is however often possible to approximate the solution of partial differential equations
numerically given proper constraints. Therefore it is of particular interest to have methods that
allow this kind of approximation.

In the following section a general deduction of the framework needed for the finite elements
simulation in chapter 3 are presented. The deductions made have partly been based on similar
deductions from [42; 19; 18; 43] and should largely agree with the stated resulting finite element
matrices in [13; 14; 15; 16; 17] except for the method of enforcing Dirichlet boundary conditions,
which instead follows COMSOL MULTIPHYSICS [18; 43].

2.5.1 Problem

The field of partial differential equations is a large field, and as such defining a canonical par-
tial differential equation accounting for every possible variation is not easy. A large family of
equations can however be written on the form

D[u(~x)] = g(~x) in Ω . (2.77)

Here the mapping g and the differential operator D[·] is generally known while the mapping u
is sought. This form can be used for a number of different types of mappings, and thus type
notation for them will here be suppressed, but in many cases u and g will simply be functions
relating a scalar or vector to another scalar or vector. This simple mapping happens in the case
where only one governing principle is taken into account in the problem.

For more complicated phenomena where multiple interlinked governing principles act to-
gether multiple interlinked differential equations would need to be formed. To accommodate
this in the concise notation above it would have to be extended to a mixed formulation where
the mappings u and g map to tuples of scalars or vectors, however for simplicity an indexed set

22

of equations

D1[u1(~x), u2(~x), . . . , uj(~x), . . . , un(~x)] = g1(~x) in Ω1

D2[u1(~x), u2(~x), . . . , uj(~x), . . . , un(~x)] = g2(~x) in Ω2

...
Di[u1(~x), u2(~x), . . . , uj(~x), . . . , un(~x)] = gi(~x) in Ωi

...
Dn[u1(~x), u2(~x), . . . , uj(~x), . . . , un(~x)] = gn(~x) in Ωn

(2.78)

will instead be used with the tuple

u(~x) = (u1(~x), u2(~x), . . . , uj(~x), . . . , un(~x)) (2.79)

substituted with the arguments to the differential operator D[·] for economy of notation. This
results in an almost as concise notation as (2.77), yielding

Di[u(~x)] = gi(~x) in Ωi . (2.80)

As constants of integration will have to be eliminated from solutions of differential equations
boundary conditions will also have to be specified before a partial differential equation problem
can be solved. There are many ways of including such conditions, but some of the more usual
ones are to include extra equations of the Dirichlet type

ui = u0
i (u(~x)) on ΓDi , (2.81)

or of the Neumann type
∂ui
∂n

= t0i (u(~x)) on ΓNi . (2.82)

For many problems these will simply be constants, but for interlinked problems they are also
often used to tie together adjacent sub-domains with different governing principles. This can be
done for example by require continuity in a corresponding function in each domain.

The current discussion will however be restricted to partial differential problems on the form

Di[u(~x)] = 0 = ∇ · Ti[u(~x)]− Ui[u(~x)]

= ∇ ·
n∑
j=1

Tij [uj(~x)]−
n∑
j=1

Uij [uj(~x)] in Ωi

ui = u0
i (u(~x))

=
n∑
j=1

u0
ij(uj(~x)) + u0

i0 on ΓDi

Ti[u(~x)] · n = t0i (u(~x))

=

n∑
j=1

t0ij(uj(~x)) + t0i0 on ΓNi

, (2.83)

which might seem daunting, but the essential parts here is that none of the operators in the
problem contain cross-terms between different uj(~x) and allDi[·] contain terms with a divergence
operator in front of it. Both of these properties of the problem will be exploited in the following
derivation of the finite element method, but this does not mean that the finite element method
is restricted to problems with these properties.

Note that the last equation above will for Ti[·] being a gradient like operator, which is the
case for all applications in the current work, essentially be a generalized Neumann boundary
condition, and thus is labelled as such here.

23

The reason for the above choice of equations is because this form covers both problems similar
to Poisson’s equation, which describes many aspects of mechanical deformations due to stress
and strains, problems similar to Helmholtz’ equation, which describes wave propagation, and
interlinking of these. Thus the above set of equations can be used to describe waves generated
by harmonic deformation of solids, vice versa.

2.5.2 Weak formulation

The problem posed in the previous section may in some circumstances not have a solution in
the conventional sense, as in there might not exist a function that when substituted into the
set of equations given perfectly cancels both sides due to discontinuities. This problem can be
avoided by generalising the concept of a solution to also include so-called “weak solution”.

To derive the weak form of equation (2.80) first transform it into the equivalent integral formˆ
Ωi

wik(~x) ⊗̃Di[u(~x)] dΩi =

ˆ
Ωi

wik(~x) ⊗̃ gi(~x) dΩi . (2.84)

by multiplying by the arbitrary test function wik(~x) in the same function space as u(~x). wik(~x)
is indexed by k here to signify that multiple different possible functions could be picked, even
though the space of functions from which it originates might not actually be indexable. The
⊗̃ operator introduced is defined as the scalar tensor product, i.e. if the factors are vectors it
would be the dot product while if the factors are matrices it would be the double dot product,
etc.

The above integral equation is essentially an equation of two inner products, and for economy
of notation will be annotated as such;

〈wik, Di[u]〉Ωi = 〈wik, gi〉Ωi . (2.85)

Note that in this notation function arguments are suppressed as is customary.
Performing integration by parts on the above equation now introduces the weak solutions by

“lifting some of the differential burden” on the sought functions uj(~x) because some terms involv-
ing them loose some differential operators in favour of newly introduced differential operators
on the test function.

Reformulating the problem at hand yields

〈wik, Ui[u]〉Ωi + 〈∇wik, Ti[u]〉Ωi = 〈wik, Ti[u] · n〉Γi (2.86)

where Γi is the boundary around the domain Ωi. It is immediately obvious that for the part of
the boundary where Neumann boundary conditions are imposed these can simply be substituted
straight into the above equation, however Dirichlet boundary conditions does not fit as well.

There are several ways of incorporating Dirichlet boundary conditions into the weak formu-
lation, a quite versatile of these being the method of Lagrange multipliers. Defining

Ti[u(~x)] · n = λi(~x) on ΓDi (2.87)

introduces an extra unknown function λi(~x), which allows incorporation of the Dirichlet bound-
ary conditions directly as a new equation without making the system overdetermined;

〈vik, ui〉ΓDi = 〈vik, u0
i (u)〉ΓDi . (2.88)

In the above equation a new test function vik(~x) has to be introduced as ui(~x) is not in the same
function space as wik(~x).

Since Dirichlet and Neumann boundary conditions act on different parts of the boundary
introducing them now that both of them “look like” Neumann boundary conditions is done by
splitting the boundary into a Dirichlet part ΓDi and a Neumann part ΓNi :

〈·, ·〉Γi = 〈·, ·〉ΓDi + 〈·, ·〉ΓNi . (2.89)

24

Putting together the above formulation for the differential problem and its boundary condi-
tions one can rearrange the weak formulation into its generic bilinear-linear form,

n∑
j=1

auij(uj(~x), wik(~x)) +
m∑
j=1

auλij (λj(~x), wik(~x)) = Lui (wik)

n∑
j=1

aλuij (uj(~x), vik(~x)) = Lλi (vik)

, (2.90)

by organizing terms by unknown function. This can be done because there is no cross-terms
between any of the unknown functions. The newly introduced functionals a�ij(·, ·) and L�

i (·) are
given in the equation list below.

auij(uj(~x), wik(~x)) = 〈wik, Uij [uj]〉Ωi + 〈∇wik, Tij [uj]〉Ωi − 〈wik, t0ij(uj)〉ΓNi (2.91a)

auλij (λj(~x), wik(~x)) = −〈wik, Iij [λj]〉ΓDi (2.91b)

aλuij (uj(~x), vik(~x)) = 〈vik, Iij [uj]〉ΓDi − 〈vik, u
0
ij(uj)〉ΓDi (2.91c)

Lui (wik) = 〈wik, t0i0〉ΓNi (2.91d)

Lλi (vik) = 〈vik, u0
i0〉ΓDi (2.91e)

Note that many of the functionals will be zero when i 6= j. Examples of this is auλij (·, ·) because
only one λj is defined per governing equation, and aλuij (·, ·) when Dirichlet boundary conditions
are constant. To annotate the factors which are always zero when i 6= j the operator

Iij [f(·)] =

{
f(·) if i = j
0 else

(2.92)

has been introduced.

2.5.3 Weighted residual methods

For linear differential equations solutions are generally a weighted sum of a fundamental set
of solutions, but for partial differential equations there is no known method to solve for this
fundamental set generally, and therefore solutions must be approximated.

One method of approximating solutions to differential equations is to assume a set of “fun-
damental solutions” ψjl(~x) for each solution uj(~x) and do a weighted sum over the set. More
rigorously, this amounts to projecting the solution into the function space spanned by the as-
sumed functions, Ψj = span(ψj1(~x), ψj2(~x), . . . , ψjl(~x), . . . , ψjpj (~x)), called the approximation
space for uj(~x).

ũj = projΨj (uj) =

pj∑
l=1

αjlψjl(~x) (2.93)

Since the Lagrange multiplier functions are also unknowns they also need to be projected
into an approximation space Φj = span(φj1(~x), φj2(~x), . . . , φjl(~x), . . . , φjqj (~x)).

λ̃j = projΦj (λj) =

qj∑
l=1

βjlφjl(~x) (2.94)

Substituting ũj and λ̃j for uj and λj , and exploiting the linear properties of the bilinear-linear

25

formulation from the previous section yields a set of linear equations:

n∑
j=1

pj∑
l=1

αjla
u
ij(ψjl(~x), wik(~x)) +

m∑
j=1

qj∑
l=1

βjla
uλ
ij (φjl(~x), wik(~x)) = Lui (wik(~x))

n∑
j=1

pj∑
l=1

αila
λu
ij (ψjl(~x), vik(~x)) = Lλi (vik(~x))

. (2.95)

Picking as many test functions, wik(~x) and vik(~x), as base functions in the corresponding
projection spaces Ψi and Φi one can replicate the above equations for each test function to form
a matrix equation

n∑
j=1

KijUj +
m∑
j=1

NF
ijΛj = Li

n∑
j=1

NijUj = Mi

, (2.96)

where the newly introduced matrices and vectors are given as:

KijUj =

auij(ψj1, wi1) · · · auij(ψjpj , wi1)
...

. . .
...

auij(ψj1, wipi) · · · auij(ψjpj , wipi)

αj1

...
αjpj

 (2.97a)

NF
ijΛj =

auλij (φj1, wi1) · · · auλij (φjqj , wi1)
...

. . .
...

auλij (φj1, wipi) · · · auλij (φjqj , wipi)

βj1

...
βjqj

 (2.97b)

NijUj =

a
λu
ij (ψj1, vi1) · · · aλuij (ψjpj , vi1)

...
. . .

...
aλuij (ψj1, viqi) · · · aλuij (ψjpj , viqi)

αj1

...
αjpj

 (2.97c)

Li =

Lui (wi1)
...

Lui (wipi)

 (2.97d)

Mi =

L
λ
i (vi1)
...

Lλi (viqi)

 (2.97e)

Combining the above matrices for every equation i and unknown j into one big partitioned
matrix according to the summation gives

K11 · · · K1n NF
11 · · · NF

1m
...

. . .
...

...
. . .

...
Kn1 · · · Knn NF

n1 · · · NF
nm

N11 · · · N1n 0 · · · 0
...

. . .
...

...
. . .

...
Nm1 · · · Nmn 0 · · · 0

U1
...
Un
Λ1
...

Λn

=

L1
...
Ln
M1
...
Mn

, (2.98)

which for economy of notation can be further be simplified to(
K NF

N 0

)(
U
Λ

)
=

(
L
M

)
, (2.99)

26

which is essentially a matrix equation on the form Ax = b.
By selecting the test function to be the same as the base functions for the corresponding

projection spaces, wik = ψik and vik = φik, the above method turns into the Galerkin method
which for symmetric bilinear terms a�ij(·, ·) and auλij (·, ·) = aλuij (·, ·) will result in a symmetric
matrix problem.

2.5.4 Numerical integration

To compute the matrix A and the vector b from the previous section a numerical integration
technique is needed since most of the non-zero elements are defined in terms of integrals.

One approach to to evaluating these integrals is using numerical quadrature
ˆ
D
f(x) dD =

∑
i

cif(xi) , (2.100)

which reduces the integration to a simple sum.
Since the quadrature approach is in general not exact it is important to pick weightings ai

and sample points bi carefully. If non-representative sample points or poor weightings are picked
quadratures can yield wildly incorrect results, but for some choices of projection spaces Ψk and
Φi it is possible to pick them such that the quadrature yields exact values for the integrals. An
example of this is the Gaussian quadrature of n terms which is exact for polynomials of degree
2n− 1 or below.

2.5.5 Discretization

In the finite element method the base functions in the function spaces Ψi and Φi are usually
selected as a set of bump functions filling the domain Ωi such that only a few number of bump
functions have support on any given subsection of the domain. For brevity construction of these
base functions will be done in terms of ψi here as construction is identical for all function spaces.

To avoid encoding redundant information each bump function ψi is “centred” on a unique
point in the domain so that

ψi(~xj) = δij , (2.101)

where ~xj is the “center” of ψj(·) and δij is the Kronecker delta. The “center” in this context is
taken to be the highest point inside the support of the associated function.

The above selection of base functions naturally leads to a grid-like structure, which can easily
be seen by scattering the “center” points of all base functions, called nodes, in the domain and
drawing up grid lines between adjacent ones. Such a discretisation might look like one of the
meshes in fig. 2.6.

As seen in fig. 2.6 multiple different meshes can be constructed for a single domain. Choice
of mesh like this is highly problem dependant, but common meshes consist of triangle or quadri-
lateral mesh elements.

The discretisation done thus far has yielded a mesh with nodes in the corners of each mesh
element, which for first order elements are usually fine, as these elements tend to have their
nodes in the corners anyway. For higher order elements additional nodes are usually placed
on edges of the element, or in its interior. The interpolation functions associated with interior
nodes are usually defined with support that does not extend outside the element. This is the
same as adding restrictions when scattering the nodes in the first place, and when drawing up
a mesh such that all the elements end up with additional nodes where prescribed.

To simplify working with the base function each element can be considered separately if one
splits base functions associated with nodes located on edges between elements into parts witch
only have support in each of the elements. Thus the original base function for a node can be

27

(a) Triangles (b) Quadrilaterals

Figure 2.6: Two possible discretizations of a domain with different element types.

reconstructed by summing over the parts

ψp(~x) =
∑

q∈node p
ϕq(~x) . (2.102)

To simplify further each element can be distorted to look like a given reference element by
introducing a shift of coordinates. Thus all integrations done can be done over a pre-defined
element instead of on a highly irregular mesh.

ψi(~x) dΩ = ψi(~χ(~x))|J(~x))| dΩe (2.103)

This shift of coordinates inevitably introduces a Jacobian of the form

J =

∂χ1

∂x1
· · · ∂χ1

∂xn
...

. . .
...

∂χn
∂x1

· · · ∂χn
∂xn

 , (2.104)

which will need to be computed for a given distortion. To approximate this calculation the whole
element’s shape is approximated with a set of mapping functions between local coordinates ~χ
and global coordinates ~x. A common choice is to do this approximate mapping with the base
functions associated with the element in the same way the sought function is approximated,
which yields iso-parametric elements.

Depending on what shape of elements in the mesh selected different families and order of
elements are available. Figure 2.7 shows the first and second order elements from the Lagrange
family of elements, which is a common choice. To derive the base functions for a Lagrange
type element one can utilize the orthogonality property from equation (2.101). By setting the
characteristic polynomial, here shown for a triangle with vertices at (0, 0), (1, 0), and (0, 1),

ϕi(ξ, η) = ai1 + ai2ξ + ai3η + ai4ξ
2 + ai5ξη + ai6η

2 , (2.105)

equal to zero at every node but one a Vandermonde matrix problem can be formulated

1 0 0 0 0 0
1 .5 0 .25 0 0
1 1 0 1 0 0
1 .5 .5 .25 .25 .25
1 0 1 0 0 1
1 0 .5 0 0 .25

ai1
ai2
ai3
ai4
ai5
ai6

 =

δi1
δi2
δi3
δi4
δi5
δi6

 . (2.106)

28

(a) 1st order triangle (b) 1st order quadrilateral

(c) 2nd order triangle (d) 2nd order quadrilateral

Figure 2.7: 1st and 2nd order triangle and quadrilateral reference elements.

The solution to this problem are the Lagrange polynomials shown below and plotted in fig. 2.8.

ϕ1 = 1− 3ξ − 3η + 2ξ2 + 4ξη + 2η2 (2.107a)

ϕ2 = 4ξ − 4ξ2 − 4ξη (2.107b)

ϕ3 = −ξ + 2ξ2 (2.107c)
ϕ4 = 4ξη (2.107d)

ϕ5 = −η + 2η2 (2.107e)

ϕ6 = 4η − 4ξη − 4η2 (2.107f)

2.6 Helmholtz-Kirchhoff equation

The normal formulation of Helmholtz-Kirchhoff equation gives a way to calculate an acoustic
field at an arbitrary point enclosed inside a surface given that the field and its derivative is know
on the enclosing surface [21, Chapter 1], and all acoustical sources and obstructions are located
outside the surface. In this thesis it will be necessary to calculate the acoustic field in this way,
but since this will be used to extend the effective domain of finite element simulations the relation
will need to be restated in terms of the field outside the surface where all acoustical sources and
obstructions are inside the surface. A similar derivation has been done in the user manual for
Comsol [18, Evaluating the Acoustic Field in the Far-Field Region], but the derivation itself is
not given. For completeness sake it will be given here.

2.6.1 Green’s theorem

Given a vector field ~ϕ(~x) the divergence theorem states that the sum of all divergence in a
volume enclosed by a surface is equal to the flux of the vector field passing through that surface.
Thus we can form the equation

˚

A

∇ · ~ϕ dV =

‹

SI

~ϕ · n̂I dS (2.108)

to evaluate the divergence of volume A in figure (2.9).

29

(a) ϕ1
(b) ϕ2

(c) ϕ3

(d) ϕ4
(e) ϕ5 (f) ϕ6

Figure 2.8: Interpolation functions for a 2nd order Lagrangian triangle reference element.

Figure 2.9: Domains

30

The divergence theorem also holds for the union of domain A and B together with the surface
around domain B since B in figure (2.9) fully encapsulates domain A, yielding

˚

A∪B

∇ · ~ϕ dV =

˚

A

∇ · ~ϕ dV +

˚

B

∇ · ~ϕ dV =

‹

SO

~ϕ · n̂O dS . (2.109)

Combining equation (2.108) and equation (2.109) we can relate the volume integral over
domain B to the surface integral around domain A (on the surface SI) together with the surface
integral around domain B (on the surface SO). Thus we have

˚

B

∇ · ~ϕ dV =

‹

SO

~ϕ · n̂O dS −
‹

SI

~ϕ · n̂I dS . (2.110)

Defining ~ϕ as G∇p − p∇G, where both p(~x) and G(~x) are scalar fields, and applying the
identity ∇ · (U∇V) = U∇2V +∇U · ∇V twice yields
˚

B

(G∇2p− p∇2G) dV =

‹

SO

(G∇p− p∇G) · n̂O dS −
‹

SI

(G∇p− p∇G) · n̂I dS (2.111)

which is Green’s theorem (similar to [20, Appendix A8, p. 521]) for a domain squeezed in between
two separate surfaces.

2.6.2 Outer boundary

To deal with the outer boundary we introduce Sommerfeld’s radiation condition as given in [44,
Chapter 4, p. 178].

lim
r→∞

r

(
∂φ

∂r
+

1

c

∂φ

∂t

)
= 0 (2.112)

By looking for solutions of the form φ = φ0e
iωt to this equation, and dividing through by

r (doing this effectively ignores the decay rate constraint given in Sommerfeld’s equation by
multiplying by r, and thus is a looser boundary condition) this equation can be simplified to
(see [19, Chapter 3, p. 46])

∇φ · n̂O = −ikφ . (2.113)

Moving the boundary SO to infinity while imposing Sommerfeld’s radiation condition for
both p and G lets us cancel everything in the integral over the surface SO from equation (2.111),
and yields

‹

SO

(G∇p− p∇G) · n̂O dS =

‹

SO

(−Gikp+ pikG) dS = 0 . (2.114)

2.6.3 Pressure in the extended domain

To calculate the pressure in domain B we have to solve the wave equation,(
1 + τS

∂

∂t

)
∇2p =

1

c2

∂2p

∂t2
, (2.115)

in this domain.

31

If we look for solutions of the form p = p0e
iωt the wave equation reduces to Helmholtz

equation
(∇2 + k2)p = 0 (2.116)

where k = ω
c/
√

1+iωτS (see [20, Chapter 8, p. 212] for a more detailed discussion of this).
A Green’s function can be designed to solve Helmholtz equation (2.116) by taking advantage

of the sifting property of the Dirac delta function. By using ~r − ~rq as a the parameter to the
delta function this property lets us use the delta function to evaluate some function under an
integral at a query point ~rq.

(∇2 + k2)G = −δ(~r − ~rq) (2.117)

Solving equation (2.116) and (2.117) for∇2p and∇2G respectively and inserting the resulting
expression into the volume integral from equation (2.111) yields the expression

˚

B

(G∇2p− p∇2G) dV =

˚

B

pδ(~r − ~rq) dV = p(~rq) , (2.118)

which cancels everywhere except at the query point ~rq.

2.6.4 Formula

Inserting the results from equation (2.118) and (2.114) into equation (2.111), and interchanging
n̂I with −n̂, yields the Helmholtz-Kirchhoff equation.

p(~rq) =

‹

SI

(G∇p− p∇G) · n̂ dS (2.119)

To evaluate this equation we need a closed form solution for G. The literature [21; 44; 20]
gives the solution to equation (2.117) as

G =
e−ik|~r−~rq |

4π|~r − ~rq|
. (2.120)

The gradient of G can easily be found since G is spherically symmetric, and thus the gradient
only has a non zero derivative in the radial component.

∇G =
dG

dr
=

(~r − ~rq)e−ik|~r−~rq |(−1− ik|~r − ~rq|)
4π|~r − ~rq|3

= −G1 + ik|~r − ~rq|
|~r − ~rq|2

(~r − ~rq) (2.121)

Inserting equation (2.120) and (2.121) into (2.119) yields the expression for the far field
pressure as given in [18, Evaluating the Acoustic Field in the Far-Field Region].

p(~rq) =
1

4π

‹

SI

e−ik|~r−~rq |

|~r − ~rq|

(
∇p+ p

1 + ik|~r − ~rq|
|~r − ~rq|2

(~r − ~rq)

)
· n̂ dS (2.122)

2.6.5 Verification of the solution

To verify that equation (2.120) is actually a solution to equation (2.117) integrate the equation
over a sphere centred at ~rq, and apply the divergence theorem (as suggested by [20, Chap-
ter 5, p. 142]) to get

32

˚

V

(∇2 + k2)GdV =

‹

S

∇G · n̂ dS + k2

˚

V

GdV . (2.123)

To ease evaluation define s = |~r − ~rq|. This together with spherical coordinates eliminates
the need for absolute values in the expressions and equation (2.120) and (2.121) reduces to
G = e−iks/4πs and ∇G = −G(ik + 1/s) respectively.

The surface integral in the first term of equation (2.123) only contains constant terms as G is
spherically symmetric. Thus to integrate it simply multiply by a factor of 4πr2. This, together
with defining the radius of the sphere as R, yields

‹

S

∇G · n̂ dS = −e−ikR(ikR+ 1) . (2.124)

The volume integral in the second term of equation (2.123) can be divided up into a spherical
integral integrated over a radial integral. Again the spherical integral can be evaluated by
multiplying by a factor of 4πr2 due to G being spherically symmetric, yielding

‹

S

GdS = se−iks . (2.125)

and taking this result as the sphere to be integrated in the radial direction gives the equation

k2

˚

V

GdV = k2

R̂

0

se−iks ds = −1 + e−ikR(1 + ikR) . (2.126)

Summing equation (2.124) and (2.126) yields the result −1. By definition integrating the
delta function yields a value of 1 and thus the left hand side and the right hand side of equa-
tion (2.123) is equal.

Since we did not specify the sphere integrated over more than its center we can make the
sphere arbitrarily small and equation (2.123) through (2.126) will still hold. Thus we can con-
clude that G is translated correctly in relation to the delta function in equation (2.116), and
that G actually is a solution.

33

Chapter 3

Simulation

3.1 Geometry

The size and complexity of the geometry used in finite element simulations is one of the major
factors in computation time (this is immediately obvious as each mesh element contributes a
number of degrees of freedom to the problem at hand). Therefore it is of great interest to keep
the geometry as simple as possible. The two transducer transmitter and receiver problem is in
general a three dimensional problem spanning at least the separation distance between the two
transducers, but modelling such a problem has proven to be a challenge with the hardware at
hand.

Simplifications is therefore made by assuming the two transducers are reciprocal (see sec-
tion 2.3.4), thus reducing the needed geometry to only the transmitting transducer, and assum-
ing that the problem is rotationally symmetric (i.e. the transducers don’t have any rotational
modes), thus reducing the problem to a half space two dimensional problem.

This simplified geometry is shown in fig. 3.1,

3.2 Materials

For each domain in the geometry a corresponding material needs to be selected. In the current
thesis the default air material properties in COMSOL Multiphysics are used for the medium
and PML domain while the material properties for Pz27 given by Aanes [45, Chapter 5, p. 78]
is used for the piezo.

In the medium domain the relevant material property is density, which is given by

ρ =
0.02897p

8.314T
, (3.1)

where p is ambient pressure in pascals and T is the thermodynamic temperature in kelvin.
For the piezo the relevant material properties are density, which is specified as 7700 kg/m3,

elasticity matrix which is given in table 3.1, coupling matrix which is given in table 3.2, and
relative permittivity matrix which is given in table 3.3.

3.3 Equations

The equations solved in each domain is dependant on the purpose of the domain. In the geometry
used there exists three distinct domains, one which models a piezoelectric disc and two which
acts as fluid loading for said disc.

In the piezoelectric medium the acoustic wave equation and associated electric potential
equilibrium equation presented in section 2.1.3 is used, while the two medium domains are
modelled by Helmholtz equation from section 2.1.1.

34

Figure 3.1: The geometry used

cE11 cE12 cE13 0 0 0
cE12 cE11 cE13 0 0 0
cE13 cE13 cE33 0 0 0
0 0 0 cE44 0 0
0 0 0 0 cE44 0
0 0 0 0 0 cE66

Constant Value (×1010 N m−2)
cE11 12.025 (1 + i/96)
cE12 7.62 (1 + i/70)
cE13 7.42 (1 + i/120)
cE33 11.005 (1 + i/190)
cE44 2.11 (1 + i/75)
cE66 2.16 (1 + i/315)

Table 3.1: Pz27 elasticity matrix

0 0 e31

0 0 e31

0 0 e33

0 e15 0
e15 0 0
0 0 0

Constant Value (C m−2)

e31 −5.4 (1 - i/166)
e33 17.0 (1 - i/324)
e15 11.2 (1 - i/200)

Table 3.2: Pz27 coupling matrix

εS11/ε0 0 0
0 εS11/ε0 0
0 0 εS33/ε0

 Constant Value (×10−9 F m−1)
εS11 8.110 44 (1 - i/50)
εS33 8.145 85 (1 - i/130)

Table 3.3: Pz27 relative permittivity matrix

35

Figure 3.2: The boundary conditions used

There also exists two boundaries in the geometry that need to be constrained in order to
solve the problem at hand, namely the outer boundary of the problem domain and the boundary
between the piezoelectric domain and the medium domain.

To deal with the end of the simulation domain at the outer edge of the problem domain a
hard wall boundary condition is applied, as

∂p

∂n
= 0 . (3.2)

The exact condition applied here does not matter too much as the PML region between this
boundary and the inner medium domain will dampen down any wave travelling through it,
and this boundary condition will not have a chance to interact with waves of any appreciable
amplitude.

At the boundary between the piezoelectric domain and the medium domain two boundary
conditions are applied to connect the two domains since they are formulated with different
variables.

The boundary condition
∂p

∂n
= −ρd

2~u

dt2
· ~n (3.3)

expresses the pressure in the medium domain generated by displacements on the surface of the
piezoelectric domain, and the boundary condition

T · ~n = p~n (3.4)

expresses the stress in the piezoelectric domain generated by pressure in the medium domain.
These are both essentially just Newtons second law stated in different ways.

For the specific case of a piezoelectric disc the radial edge of the disc does not have an electric
connection to the two terminals on either side of the disk. Therefore there is no way to build
up charge on this boundary. To model this constraint the boundary condition

~D · ~n = 0 (3.5)

36

is applied.
On each terminal the voltage at that terminal is imposed as a boundary condition as

V = V0 . (3.6)

For the ground terminal this value is zero, while on the voltage terminal the a value of one is
chosen. As long as the results of interest are just relative quantities like the sensitivity or the
impedance of the disc the actual value chosen for the voltage terminal doesn’t matter much
outside of problems relating to floating point round-off errors.

3.4 Perfectly matched layer

As mentioned earlier in the outermost simulation domain a perfectly matched layer (PML) is
used to absorb outgoing waves so that the hard wall boundary condition applied to the outermost
boundary doesn’t produce reflections traveling back into the medium domain, interfering with
the simulated fields.

This can be done since smoothly introducing an imaginary part −i~σ(~x)/ω to the coordinates
inside the PML domain (analytical continuation of the solution), yielding exponentially decaying
solutions in it, doesn’t influence solutions computed outside the domain [46, Section 3, pp. 6-8].

e−i
~k·~x → e−i

~k·~x′ = e−i
~k·~xe

−
(
~k
ω

)
·~σ(~x) (3.7)

In the current work the default PML in COMSOL Multiphysics is used, which is given by
the coordinate transform

~x′ = ~x− ~nξξL+ ~nξf(ξ) (3.8)

for a PML domain of length L in the propagation direction ~nξ, which is the normal to the inner
boundary of the domain [43, Chapter 5, pp. 298-299]. ξ in the above expression linearly maps
the position inside the PML from 0 to 1 so that ξ = 0 and ξ = 1 corresponds to the inner and
outer boundary of the PML domain respectively. This results in the coordinates inside the PML
domain in the propagation direction ~nξ to be exclusively controlled by the coordinate stretching
function f(·); e.g. in three dimensional spherical coordinates if a PML domain is placed in the
region r0 ≤ r ≤ r0 + L the transformed coordinates in it will be given by

~x′ =

r0

θ
φ

+

f(ξ)
0
0

 . (3.9)

COMSOL Multiphysics’ default coordinate stretching function is also chosen for f(·);

f(ξ) = sλξ

(
1

3p(1− ξ) + 4
− i

3p(1− ξ)

)
, (3.10)

where s and p are tuneable parameters to compensate for obliquely incident waves and a curved
PML boundary, left at their default value of 1 in the current work as these are optimisation
parameters to allow for coarser meshes to preform better. This coordinate stretching function
resizes the PML domain so that is is always a quarter of a wavelength long in the transformed
coordinates, with ~σ(~x) going to infinity at the outer boundary of the PML domain.

3.5 Mesh

As the finite element method relies on discretisation of space in order to solve the problem at
hand, a mesh is needed. It is important that such a mesh is fine-grained enough to capture the
characteristics of the problem.

37

The PML region in the othermost layer is topologically identical with a rectangle and as such
a quadratic element mesh is easily fitted in this region. The inner regions are harder to mesh
with quadratic elements, and due to the utilised software not supporting any practical way of
meshing circular regions with these elements triangular elements are used instead. This choice
of elements can be assumed to raise the lower limit of mesh granularity to achieve convergence as
triangular elements generally converges slower than their quadratic counterpart [42, Chapter 2,
pp. 38-39, Chapter 4, pp. 110-119].

Since the current work is dealing with single frequency bursts the Nyquist-Shannon sampling
theorem sets an absolute minimum mesh granularity of two elements per wavelength, however
such coarse meshes have been found to be inadequate to properly capture the characteristics of
the time harmonic wave problem. Instead a rule of thumb of five to six elements for accurate
magnitude values is found in the literature [47; 19, Chapter 4, pp. 95–96]. In the current work
phase information, along with the magnitude information, is of interest and thus a finer mesh
granularity is assumed to be needed, and a granularity of about 10 elements per wavelength
have been found to yield satisfactory results (which is corroborated by [48] who claims 8 to be
sufficient).

3.6 Solver

To actually solve the posed finite element problem a numerical solver is used. In the current
work the direct solver PARDISO [49; 50] have been used without much regard for solution
parameters, as these generally only affect the computation speed of the solver. Other solvers,
like the iterative Krylov subspace solvers, have been considered, but the matrix assembly stage of
the solution process have proved to be the most time consuming step, and thus the gain of using
iterative solvers is most likely minimal. Direct solvers also have the advantage of not giving an
answer when the problem at hand is ill-posed, and thus erroneous answers from unconstrained
problems won’t be misinterpreted as correct solutions.

The PARDISO solver uses LU-decomposition to decompose the problem

Ax =

a11 · · · an1
...

. . .
...

an1 · · · ann

x = b (3.11)

into a lower and upper triangular matrix problem

LUx =

l11 0 · · · 0
l21 l22 · · · 0
...

...
. . .

...
ln1 ln2 · · · lnn

u11 u12 · · · u1n

0 u22 · · · u2n
...

...
. . .

...
0 0 · · · unn

x = b , (3.12)

which in turn can be solved quite quickly with a forward substitution step Ld = b followed by
a backward substitution step Ux = d.

PARDISO also avoids the problem of singular L or U matrices in the case where the matrix
A has zeros on its diagonal by permuting the matrix and the corresponding vector b with one
or more permutation matrices.

3.7 Post-processing

As the quantities computed by the finite element analysis described in the previous sections only
yields values for the pressure, displacement and voltage fields additional post-processing of the
data is required to obtain the desired transfer functions and diffraction corrections.

38

Since the medium domain used in the simulations is only slightly bigger than the transmitting
piezoelectric disc it is unlikely that the far-field pressure used in the calculation of transfer
functions and diffraction corrections exists inside it, and as such the extrapolation method
described in section 2.6.4 is used to obtain it, integrating over the boundary between the medium
and the PML domains. According to the COMSOL Multiphysics manual [18, Evaluating the
Acoustic Field in the Far-Field Region] this works for distances in the vicinity of the simulation
domain, but the technique is numerically unstable when extrapolations are carried out too far
away from it. A distance of zff = 10 m is used in the current work, which in all scenarios studied
is over 30 times the Rayleigh distance.

While calculating the diffraction correction HSFDC
dif (f), and its associated transfer function

CSFDC
dif (f), can be calculated with only the simulated field variables and the above extrapolation

the transfer function HV V
25open(f)Cdif(f) additionally needs the value of ZT = V0/I.

The current I can be calculated by integrating the normal component in the current direction
of the current density over one of the terminals of the piezoelectric disc [23]

I =

ˆ

S

~J · ~n dS =

ˆ

S

∂ ~D

∂t
· ~n dS , (3.13)

and said current density can be calculated as the time derivative of the displacement field from
the constitutive equations given in section 2.1.3.

39

Chapter 4

Measurement

4.1 Experimental setup

The experimental setup used is inherited from Andersen, and is largely kept as described in his
master thesis [17, Chapter 3, pp. 32-42].

A Tektronix DPO3012 digital oscilloscope is used to digitise the signal as it enters the cable
leading to the transmitter, and then again as the signal leaves the receiver electronics. For more
accurate waveform readings the oscilloscope is configured to average 128 consecutive bursts for
each reading.

To generate the signals used for measurements an Agilent 33220A arbitrary waveform gener-
ator is used. To get the best readings possible the generator is configured to output at its highest
possible voltage, 10 V, except when measuring close to the radial modes (80 kHz to 120 kHz and
240 kHz to 260 kHz); for which it instead is configured to output at 1 V (as suggested by Ander-
sen) and 100 mV for the first and second mode respectively to avoid the transducers behaving
non-linearly [17, Chapter 6, pp. 96-96].

The receiver electronics consists of a Brüel & Kjær 2636 measurement amplifier configured
to amplify the signal by 60 dB and a Krohn-Hite 3940A digital filter configured as a high-pass
Butterworth filter with a cutoff frequency of 4 kHz. To connect the receiver electronics internally
and to the oscilloscope RG-58 coaxial cables with BNC connectors on either end are used.

The acoustic subsystem under measurement is connected to the rest of the measurement
setup by RG-178 B/U coaxial cables with BNC connectors on one end and banana jacks on the
other. The jacks are present so that transducers can be easily switched, although this feature is
not used much in the current work.

Alignment of the system is done using linear and rotational stages from Physik Instrumente
(PI): Two linear stages, PI M-535.22 and PI M-531.DG, is used to move the receiver in its
lateral plane, and another linear stage, PI miCos LS270, is used to move the transmitter along
its longitudinal axis. A PI M-037.PD worm-gear rotational stage is additionally mounted on the
transmitter to rotate it about its vertical axis.

To measure the electric characteristics of the transducers for use in the transmission line
model from section 2.3.2 a HP 4192A impedance analyser is used.

Environmental parameters are recorded with a ASL F250 MKII thermometer, a Vaisala
HMT313 hygrometer, and a Brüel & Kjær UZ0004 correction barometer.

The transducers being measured is made by previous master students at the University of
Bergen [14–17], and is constructed by soldering leads with banana plugs at one end to 20× 2 mm
PZ-27 discs and taping on a rods to the leads for suspending the transducers. Some of these
transducers have additionally been shielded by the current author by wrapping 2-3 layers of
aluminum foil around the leads, held in place by electrical tape, as seen in fig. 4.1. The reason
for the simplistic transducer construction is to ease comparison with simulations [14, Chapter 9,
p. 125; 15, Chapter 8, p. 121].

40

Figure 4.1: The two types of transducers used: shielded (above) and unshielded (below).

Figure 4.2: The acoustic measurement setup used with and without the plastic screen blocking
the acoustic path inserted.

To reduce coherent electrical noise both the transmitting and receiving transducer is encircled
by a Faraday cage; whose effect have been explored by Andersen [17, Chapter 6, p. 88]. To further
reduce this noise the current author has additionally introduced a measurement step involving
measurement of the coherent noise without the acoustical signal (see section 4.3.5) and as such
a plastic screen to block the acoustic signal path has also been introduced. The measurement
setup with the Faraday cages and with and without the plastic screen can be seen in fig. 4.2.

4.2 Measuring transfer functions

The transfer function of a system was previously defined and discussed in section 2.3.1, and
was shown to be the ratio of the Fourier transform of an output signal and its corresponding
input signal. The method used in the current work to obtain this ratio is to measure input and
output waveforms of tone-bursts of sufficiently concentrated frequencies in the frequency range
of interest, calculating the Fourier components from the measured waveforms.

For the measurement setup at hand the transfer functions measured this way will contain
spurious contributions from the non-acoustic components in the system; notably the cables
connecting the acoustic subsystem to the rest of the system, and the receiver electronics (i.e.
the amplifier and the filter, including cables connecting them to each other and to the point of
measurement). Additionally there is also spurious contributions from coherent electrical noise
generated by the transmitting transducer, due to full or partial lack of shielding. The removal
of these contributions are done by taking their associated transfer functions into account after
calculating the transfer function of the whole system, as described in the following subsections.

41

4.2.1 Burst length and measurement window

When measuring transfer functions with the waveform approach, coarsely outlined above, the
first thing to take into account is for how long to excite the system measured with the tone-burst,
and when to sample the systems input and output signals. Optimally one would want to have a
long run of sampled data in steady-state for each frequency in the measurement range, so that
a discrete Fourier transform can yield an accurate result for each of them.

In section 2.3.1 it is shown that a system’s impulse response weights previous system inputs
contribution to current output; and as such the length of a system’s transient period when
subjected to new input can be as long as it’s impulse response (the length here measured as
the time taken until all subsequent values are below a negligible threshold). To satisfy the the
above outlined optimal measurement condition one have to introduce a delay after subjecting
the system under measurement to a new signal before sampling (or discard data sampled during
this delay) to avoid sampling the system’s transient, and another delay between two subsequent
signals to allow for the former to die down.

For some systems there might be other constraints, other than its transient length, that
constrains when measurements can be taken. In the current work this arrises when measuring
the full system; when spurious reflections from the environment and the system itself should not
be part of the measured waveform. This effectively sets an upper limit to the time between the
start of the tone-burst and the end of the measurement equal to the time taken for the first such
spurious reflection to reach the receiver.

The above mentioned constraints effectively yield lower and upper bounds for the measure-
ment window, and an upper bound for the burst length; and the measurement window and burst
length should be chosen accordingly, maximising the length of the sampled steady-state signal.

4.2.2 Compensating for propagation time

As the propagation speed in the acoustic part of the measured system is not negligible, sampling
of the output signal of the system must be delayed accordingly to ensure comparison between
equal parts of the input and output signal.

In the current work the delay introduced when measuring the full system is computed using
the model presented in section 2.3.5 applied to a plane wave; yielding a delay t = d/c. The
propagation distance d here is the separation distance calibrated during alignment, as described
in section 4.3.2. Since the model relies on temperature, pressure, and humidity these quantities
are also measured as described in section 4.3.3 and fed into the model.

Adding this correction also ensures that any subsequent phase measurements are now relative
to the phase of a plane wave, i.e. one is measuring the slowly varying phase.

4.2.3 Avoiding spectral leakage

As shown in section 2.2.3, for a discrete Fourier transform to be accurate the sampled window
needs to contain a whole number of periods of a periodic signal, otherwise the transients “seen” by
the discrete Fourier transform at either end of the signal (due to the assumption of the sampled
window being a whole number of periods) will cause energy to be redistributed to adjacent bins
outside the frequency bin allocated to the actual frequency of the signal [51, Spectral leakage
and windowing].

This effect is often referred to as spectral leakage, and several signal processing techniques
exists to counter it (e.g. applying additional windowing with a tuned frequency response). In
the current work spectral leakage is countered by clipping the signal to an integer number of
periods.

The first step in ensuring an integer number of periods in the sampled signal is to transmit
an integer number of periods. This further restricts the length of the tone-burst discussed in

42

section 4.2.1; although this extra constraint is insubstantial for all but the lowest frequencies as
the original measurement window is much larger than the signal period.

Subsequently the first and last part of the sampled signal is discarded so that the signal starts
and ends in points where the signal’s value crosses zero, while maximising the number of integer
number of periods retained (for implementation details refer to appendices C.1.9 and C.1.11).
This sacrifices some frequency resolution in favour of avoiding spectral leakage.

4.2.4 Calculating transfer functions

When two waveforms have been measured and selected as prescribed in the previous sections the
last step to computing a transfer function is to compute the waveforms’ discrete Fourier trans-
forms and divide one by the other as described in section 2.3.1. Any algorithm that computes the
discrete Fourier transform would suffice for this purpose, and in the current work the Goertzel
algorithm is used (as opposed to the plain discrete Fourier transform described in section 2.2.4
or the more standard Cooley-Tukey fast Fourier transform algorithm) as it efficiently computes
single frequency discrete Fourier transforms.

Since the implementation of the Goertzel algorithm used (the default implementation shipped
with MATLAB 2017a) can only compute the discrete Fourier transform of the default Fourier
“bins” extra zero-padding needs to be introduced to shift the center frequency of one of these
bins to the frequency of the signal. The center frequency of a Fourier bin is given by f = k fsN
(see eq. (2.31)) when k is the bin number, and fs and N is the signals sampling frequency and
sample count respectively. As introducing extra zeros at the end of a signal doesn’t affect the
signal’s discrete Fourier transform, but increases N , the Fourier bins can be tuned by this kind
of padding. In the current work a selected space of possible paddings are simply searched for
a padding that gives the closest match between the signal’s frequency and a Fourier bin (for
implementation details refer to appendix C.1.10).

4.3 Measurement procedure

4.3.1 Measuring transducer admittances

The transmission line model from sections 2.3.2 and 2.3.3 takes the load of the transmission line
and electrical characteristics of the voltage source connected to it, and as such the admittance or
impedance of the transducers have to be measured. This is done using the previously mentioned
impedance analyser with a frequency sweep over the frequencies to be measured later on when
measuring the full system’s transfer function while the instrument is connected to the cables
leading to the transducers and configured to excite them with 1 V to measure their admittance.

After measurements are done for all desired frequencies the admittance of the transducers
are found by applying the transmission line model constrained with the measured admittance
on the source side of the cable, and calculating the transducers admittance on the receiver side;
given by

YT =
IR
−VR

. (4.1)

4.3.2 Transducer alignment

As the transducers are directional their relative rotation must be kept minimal in order to match
the head-on setup simulated (chapter 3). In the current work the transducers are aligned by
means of laser measurements at close distance before the transmitting transducer is translated
along its longitudinal axis into its final position.

43

Figure 4.3: Closeup of a transducer inscribed with a reticle.

To aid alignment, each transducer is inscribed with a ruler assisted hand-drawn reticle. The
axes of the reticle is placed by marking visually perpendicular lines at the cords of the disc face
measured to be the longest with the ruler.

When brought close (the distance is limited by the size and range of the laser put in-between
the discs, and is in the current measurement setup ≈240 mm [17, Chapter 3, pp. 41-43]), the
transducers are aligned first visually so that the alignment process starts in a roughly aligned
state. The aforementioned reticles are then centred by placing the laser in the center of one
and then the other disc is realigned so that the laser also hits its reticle’s center. In the current
measurement setup the receiver is actuated in this alignment plane, and as such it is selected
for convenience to be moved in this alignment step.

Next separation distances between the transducers are measured and compared. For two
perpendicular lateral axes the separation distance is measured at the disc’s rim in either end
and compared. If the difference in separation distance along an axis is deemed to be too large (in
the current work a maximum difference of≈100 µm is used) the corresponding axis is realigned by
rotating the disc accordingly. In the current measurement setup only the vertical rotational axis
of the transmitter is actuated, and as such all other axes are hand aligned. The vertical rotational
axis of the receiver is aligned by unfastening the transducer from the rest of the measurement
setup and rotating; while the horizontal rotational axis is aligned by taking advantage of the
stiffness of the cables holding the disc of the transducer up. After alignment of the last axis, all
axes are checked again (in case an axis was disturbed while aligning another) and any unaligned
axes are realigned.

When all axes have been aligned and verified the transducer is translated along its longitudi-
nal axis to the desired position. The travel distance of the transmitter is calculated by measuring
the separation distance between the disc centres and subtracting from the desired separation
distance for the measurements to be taken [17, Chapter 3, p. 43].

4.3.3 Measuring full system’s transfer function

After aligning the transducers as prescribed in the previous section the full systems’s transfer
function is measured as described in section 4.2.

As mentioned in section 4.2.2 the model used to compensate for propagation time relies
on pressure, temperature, and humidity. While the thermometer and hygrometer used in the
current measurement setup can interface with a computer, the barometer used is analogue and
thus doesn’t have this capability. This means that temperature and humidity readings can be
done quickly and precisely along with each waveform measurement, while pressure readings are

44

In Signal

Coherent noise

Out+
+

(a) Uncompensated

In Signal

Simulated noise

Coherent noise

Out
–+
+

(b) Compensated

Figure 4.4: A system with coherent noise with and with and without additional compensation.

only done once manually at the start of a measurement series and the recorded value is used for
every subsequent waveform measurement in the series.

During transit through the system the reduction in signal strength is significant; at ∼100 dB
reduction, the signal is sometimes close to the noise floor when recorded at the receiving end.
To alleviate this a high output voltage of 10 V peak-to-peak is used at the signal generator
throughout most of the frequency spectrum, but as pointed out by Andersen this will cause
non-linear behaviour close to the resonant modes of the transducers [17, Chapter 6, p. 96]. To
avoid this problem an output voltage of 1 V and 100 mV is instead used in the problematic
regions 80 kHz to 120 kHz and 240 kHz to 260 kHz respectively.

4.3.4 Compensating for cables and receiver electronics

As shown in section 2.3.7 the effects of the cables and receiver electronics can be removed from
the measured transfer function by dividing through by their respective transfer functions; which
for the cables are modelled by the models from sections 2.3.2 and 2.3.3, and for the receiver
electronics are simply measured.

Measuring the transfer function for the receiver electronics, H56, is done as described in
section 4.2, with no compensation for propagation time or reflections.

With the signal generator at hand the lowest achievable voltage is 10 mV peak-to-peak, which
if applied directly to the receiver electronics in the configuration used would be amplified by
≈60 dB to ≈10 V. This is well outside the specified max voltage of the filter used and as such
an additional attenuator is inserted after the signal generator to attenuate the generated signal.
As this attenuator is inserted before the point where the input signal is measured its effects are
accounted for without extra effort.

4.3.5 Compensating for coherent noise

In the current measurement system coherent electrical noise is generated as the transducers
act like antennas due to the previously mentioned lack of shielding. As the coherent noise is
predictable it can be removed by introducing a negated version of the signal [30, Chapter 3,
pp. 41-42], as described by the block diagrams in fig. 4.4.

In the current work the coherent noise is predicted by applying the system’s transfer function
when the coherent noise is considered it’s output, H16noise, to the measured system input wave-
form. For this to be accurate H16noise should be measured at all the Fourier bins calculated for
the signal it is applied to. These Fourier bins also include negative frequencies which is simply
computed as the conjugate of their positive equivalent due to the conjugate symmetry property
of Fourier transforms of real signals [52, Properties of the Fourier Transform].

For implementation details see appendix C.1.8, which additionally adds functionality for
interpolating the transfer function used and resampling the signal it is applied to if the above

45

matching criterion is not satisfied. As this more advanced functionality has yielded poorer results
than just measuring the transfer function at the needed frequencies it is not taken advantage of
in the current work; except for extending the transfer function at lower frequencies by means of
nearest neighbour extrapolation when the lowest frequencies have proved hard to measure.

Measuring H16noise is done as described in section 4.2 with a plastic screen inserted in-
between the transducers to block the acoustic signal path. As the coherent electric noise signal
propagates virtually instantaneous (as compared to period of the signal) no compensation for
propagation time is applied. Reflections are also not considered as the present reflections are
simply a part of the coherent noise signal to be compensated for.

46

Chapter 5

Results

5.1 Noise reduction

To improve measurement precision a simple noise analysis with accompanying reduction tech-
niques have been carried out in the current work. Previous works have tried to reduce noise by
introducing averaging [14; 15; 16; 17] (for white noise) and Faraday cages (for coherent electrical
noise) and grounding these [16; 17]. The effectiveness of these are also evaluated here.

5.1.1 Low frequency background noise

As electrical equipment tend to create 50 Hz to 60 Hz (depending on operating frequency) back-
ground noise all such equipment deemed unnecessary for the measurements at hand was un-
plugged in the lab before the measurements presented in this chapter was taken.

To get a baseline reading of low frequency noise a high resolution (Tektronix patented process
which essentially runs the oscilloscope digitiser at the highest possible frequency and downsam-
ples to the desired sample frequency by averaging all samples within a sample period [53, How
the Analog Acquisition Modes Work, p. 89]) 20 s voltage trace at a sample rate of 500 Hz was
measured of the input and output of the measurement setup. The discrete Fourier transform
of this baseline is shown in fig. 5.1a and shows significant spikes at 50 Hz and its overtones. As
this noise could be either electrical noise from transformers and the like, or acoustical noise from
cooling fans being picked up by the transducers a second measurement with the loudest fans shut
off was also taken, yielding the spectrum shown in fig. 5.1b. As no appreciable difference can be
spotted between the two the noise is assumed to be electrical and as such must be removed by
filtering or better grounding.

Applying the high-pass Butterworth filter used in the measurement procedure at its lowest
used cutoff frequency (4 kHz) brings the white noise level of the receiving side down by ≈40 dB
as shown in fig. 5.2a, but does not seem to do much to reduce the relative amplitude of the 50 Hz
noise.

The transfer functions measured in the current work are not measured using the high res-
olution mode as its effectiveness is diminished by the higher sample rate used during their
measurement. When additionally disabling this mode used in this section while measuring the
background noise with the filter applied most of the 50 Hz noise does however mostly drown in
the added white noise, as shown in fig. 5.2b.

5.1.2 White noise

To combat white noise all measurements taken with the measurement procedure for measuring
transfer functions are averaged over 128 subsequent bursts. The effectiveness of this, a reduction
in the noise level of ≈20 dB, can be seen from fig. 5.3 in which the frequency spectrums of

47

(a) Baseline (b) Baseline with no audible noise

Figure 5.1: Frequency spectrums of baseline measurements.

(a) High resolution (b) Single sampled

Figure 5.2: Frequency spectrum of low frequency background noise.

48

(a) No averaging (b) Averaged 128 times

Figure 5.3: Frequency spectrum of background noise.

measurements of the system without a transmitted signal present is taken with and without
averaging enabled.

This dropping of the white noise level will additionally reveal some of the 50 Hz noise that
was drowned when not averaging as explained in the previous section.

5.1.3 Coherent noise

As discussed previously in chapter 4 an appreciable amount of coherent noise is generated as the
transducers are not fully shielded. To sample this coherent noise a signal at the second radial
mode (≈260 kHz) of the transducers was propagated through the system as if measuring the
system’s transfer function. The second radial mode was used as it seemingly generates the most
coherent noise of the frequencies investigated in the current work. For comparison the coherent
noise was sampled for several different shielding configurations.

The first evaluated shielding is the Faraday cages used by previous master students [16; 17].
These cages are cylindrical metal meshes with openings in the longitudinal direction to allow for
unimpeded sound propagation; as seen in fig. 4.2.

Figure 5.4a compares the envelopes (as calculated by the function envelope in MATLAB
2017a; which calculates |h+ iH(h)| for a signal h where H is the Hilbert transform) of the
sampled coherent noise and it can be seen that using one Faraday cage drops the coherent noise
level by 6 dB to 7 dB depending on which side the cage is placed on, while using both drops it
by about 10 dB.

Previous master students additionally grounded the Faraday cage on the receiving side by
wiring it to ground at the input of the amplifier with an extra cable [17, Chapter 3, p. 53].
Figure 5.4b shows measurements with and without this extra grounding; and shows an increase
in coherent noise by about 1 dB when the extra grounding is used. This extra grounding is thus
dropped in all subsequent measurements in the current work.

In the current work new shielding is also introduced in the form of aluminium foil wrapped
around the leads of the transducers; as shown in fig. 4.1. The effect of this shielding can be seen
in fig. 5.4c; which shows a drop in the coherent noise level of about 2 dB to 3 dB when just one
side is shielded, and about 9 dB when both are shielded.

As described in section 4.3.5 a post-processing technique new in the current work is addi-
tionally used to remove coherent noise. As measuring the transfer function of the noise used
in this post-processing is by far the most time consuming step in the measurement process,
due to the number of required measurement frequencies, it is of interest to reuse the measured
transfer function for different distances. Figure 5.5 shows the transfer function for two distances

49

(a) Faraday cages (b) Grounded Faraday cages

(c) Faraday cages and aluminium foil wrapping

Figure 5.4: Envelope of coherent noise with different shielding.

50

Figure 5.5: The measured transfer function of the noise compensated for (H16noise) compared at
20 cm and 50 cm.

Constant Value Note
Characteristic impedance (RC) 50 Ω

Capacitance (C) 93 nF km−1

Self inductance (L) 232.5 µH km−1 Calculated as L = R2
CC

Transmitter cable length (ltx) 304 cm Measured
Receiver cable length (lrx) 304.5 cm Measured

Table 5.1: Parameters for cables used.

(kd ≈ 0.01 and kd ≈ 0.026 for the highest measured frequency of 2.5 MHz); and shows promi-
nent near field effects, which means the data does not lend itself very well to reuse at different
separation distances. In the current work the noise transfer function is therefore measured in
sequence with the full system transfer function for which it is used for post-processing.

Figure 5.6 compares a signal with and without this post-processing along with the other
techniques described above; and it can be seen that the technique lowers the coherent noise by
about 11 dB.

Taking into account all the presented noise reduction methods a total of about 30 dB reduc-
tion of the coherent noise level was achieved.

5.2 Cable transfer functions (H12 and H5open5)

Combining the measurements from section 4.3.1 with the transmission line model from sec-
tions 2.3.2 and 2.3.3 along with length measurements of the cables (done by hand with a ruler)
and data-sheet values for the self inductance and capacitance of the cables given in table 5.1 [54],
the transfer function for the cables used to connect the transducers to the rest of the measure-
ment system can be calculated. These transfer functions can be seen in fig. 5.7.

51

Figure 5.6: Envelope of coherent noise with and without post-processing applied.

It is apparent that the cable on the transitter side, characterised by H12, does not contribute
significantly to the transfer function of the full system, and could therefore be ignored without
making the results inaccurate to any appreciable degree. It is however taken into account in the
current work as there is no downsides to doing so.

H5open5 does however have a significant contribution to the full system transfer in the vicinity
of resonances of the receiving transducer; as can be seen from the figure. By inspecting the
calculations it can be seen that this is mostly due to the correction for the voltage drop over the
internal impedance of the receiving transducer from section 2.3.3, and as such a lumped model
with the load in parallel with the cable’s capacitance would suffice; given by

ZS =

(
1

ZL
+ iωClrx

)−1

H5open5 =
ZS

ZS + ZI

. (5.1)

Figure 5.8 shows the difference between the two models. The full transmission line model is
again however used in the current work as there is no downsides to doing so.

5.3 Receiver transfer function (H56)

The transfer function used to correct for the effects of the receiver electronics is shown in fig. 5.9.
Since the receiver electronics only consist of an amplifier and a Butterworth filter their

transfer function quite expectedly is only a gain with a mostly linear phase response, except for
in the vicinity of the cutoff point, as seen in the figure.

The shown transfer function is used as is in the current work and its properties are not
investigated further.

5.4 Acoustic transfer function (H25open)

5.4.1 Nonlinear behaviour

Andersen previously investigated the nonlinearity around the first radial mode of the measured
system [17, Chapter 6, pp. 96-97]; and while this seems to be the most dominant nonlinearity
at longer separation distances, when measuring at shorter distances the second mode becomes
significant.

52

(a) Transmitter side H12

(b) Receiver side H5open5

Figure 5.7: Transfer functions for the cables connecting the transducers to the rest of the
measurement system.

53

Figure 5.8: Difference of H5open5 computed with transmission line and lumped model.

Figure 5.9: Transfer function for the receiver electronics.

54

Figure 5.10

Figure 5.10 shows the magnitude of the simulated and measured transfer function close to
the second radial mode, and it can be seen that when progressively lowering the excitation
voltage of the transmitting transducer the transfer function converges towards the simulated
transfer function. While the correspondence is quite good when the excitation voltage is 10 mV,
measuring at this voltage is not practical as the signal barely breaks through the white noise
level; which can be seen from the unstable transfer function in the interval leading up to the
peak. Due to this high noise level the mentioned measurement at 10 mV might also be due to
noise.

5.4.2 20cm

The simulated and measured transfer functions for the acoustic subsystem with a separation
distance of 20 cm is shown in fig. 5.11. While there is not a perfect fit between the measured
and simulated data most intervals have a relatively close correspondence.

As can be seen in the magnitude plot the simulated resonances generally occur at slightly
higher frequencies than the measured ones, which might be due to inaccurate material parameters
yielding a too high speed of sound or too large values for the transducer dimensions; both of
which makes the value ka grow slower.

In addition to this the measured magnitude seems to deviate down from the simulated mag-
nitude as frequency increases, possibly indicating that there is some attenuation not taken into
account or interference with other signals (e.g. reflections) partially cancelling the measured
waveforms. To exclude the interference hypothesis the period between subsequent bursts were
slowly increased well beyond the point where no previous reflections could be seen on the os-
cilloscope before the trigger for emitted bursts. While this excludes reflections from old bursts
interfering with newer bursts it does not exclude reflections from objects close to the transducers
reflecting the newer bursts in such a way that the reflection reaches the receiver before the burst
ends. Of special concern here are the mount for the transducers which are located close enough
for this same burst reflection to happen. Previous master students have shaped these poles to
be triangular to divert the reflections away from the receiving transducers, but it is not known
if this is sufficient. This issue is not investigated further in the current work.

Looking at the phase plot in the figure one can see that the measured phase seems to
fall slightly faster than the simulated phase, which probably is due to imprecise Fourier window
placements when calculating the phase. Figure 5.12 shows the measured phase with an additional
linear contribution calibrated in the interval 150 kHz to 225 kHz to make it match the simulated
phase. The found coefficients of adjustment are on the order of 0.2 ◦ kHz−1 to 0.6 ◦ kHz−1, which

55

Figure 5.11: Measured and simulated (with and without diffraction correction) transfer function
for the acoustic subsystem at a separation distance of 20 cm.

can be explained by an error in the propagation time (d/c) on the order of 1 µs. This error is
well within the margin of the measurement of d (∼± 10 µm) and the margin of error of the
model used for c (>7000 ppm, almost exclusively due to imprecise temperature measurements;
±0.01 ◦C [17, Chapter 3, p. 38]).

An extra dip in the phase not predicted by the simulation model can be seen in measured
data in the range 250 kHz to 275 kHz (right after the second radial mode). It is not known wether
this is a real effect or an artefact of the measurement procedure. If it is an artefact it seems to
be local to the range as the phase converges back to the simulated one above 275 kHz, barring
the falling phase discrepancy discussed above. In this higher region of 275 kHz to 300 kHz the
simulation model with diffraction predicts a rather noticeable deviation of more than 360◦ from
the diffractionless model which seemingly also shows up on the measured data.

Figure 5.12: Phase of H25open at a separation distance of 20 cm corrected with 0.25 ◦ kHz−1

(correction A) and 0.55 ◦ kHz−1 (correction B) less phase lag along with simulated phases with
and without diffraction correction.

56

Figure 5.13: Measured and simulated (with and without diffraction correction) transfer function
for the acoustic subsystem at a separation distance of 30 cm.

5.4.3 30cm

Figure 5.13 shows the simulated and measured transfer functions for the acoustic subsystem at
a separation distance of 30 cm; and one of the notable features is again the discrepancies in the
range 250 kHz to 275 kHz. At this separation distance there is also a discrepancy between the
simulated magnitude with diffraction effects included and the measured data; which in the range
instead seemingly follows the diffractionless curve.

Also of note is that the ∼360◦ phase shift seen in both the measured and simulated phase
with diffraction effects at 20 cm separation distance is here only present in the measured curve.

It is of interest that 30 cm is approximately the Rayleigh distance for the transducers used
when operating at a frequency of 300 kHz, and this transition from near-field to far-field might
be implicated in the disparity between the simulated and measured curves; but this is not
investigated in the current work.

5.4.4 50cm

A separation distance 50 cm was also used in the current work for comparison with Andersen [17];
who measured at this distance and longer.

Figure 5.14 shows the transer function of the acoustical subsystem simulated and measured
at this distance; which shows good correspondence with each other, barring the problems of
inaccurate material parameters and phase drift discussed before.

There is seemingly also good correspondence with the data presented by Andersen [17, Chap-
ter 6, pp. 97-102] except for a few features seen in some of his data as the phase rises after each
resonant mode; but as the transducers measured are not the same it is not known what causes
these discrepancies. This is not investigated any further in the current work.

57

Figure 5.14: Measured and simulated (with and without diffraction correction) transfer function
for the acoustic subsystem at a separation distance of 50 cm.

5.5 COMSOL/FEMP comparison

Since previous works at the University of Bergen on the topic have used an internally developed
finite element analysis software, FEMP, it is of interest to compare the simulations used in the
current work with simulations from this software. Simulations presented in this section were
computed with FEMP version 6.0.0, as described in appendix A.

5.5.1 Transducer properties

As shown in fig. 5.15 both the COMSOL simulations used in the current work and simula-
tions done with FEMP yield the same admittance to the point where the curves are seemingly
overlapping and the COMSOL curve can’t be properly seen.

Figure 5.16 compares the sensitivity of the transducer as computed by COMSOL and FEMP,
and discrepancies can be seen in both the magnitude and phase. As will be discussed in the
next section the magnitude disparity might be caused by problems with FEMP.

The observed phase difference can be explained by a difference in propagation distance of
about ∼10 µm; and since the mesh elements used are of size ∼100 µm for this frequency region
in FEMP, and slightly finer in COMSOL (by a factor of ∼ 3, since in COMSOL the same mesh
is used for all frequencies) this difference in phase is probably explainable in terms of mesh
resolution.

5.5.2 Transfer function

As seen in fig. 5.17 the same discrepancies seen in the source sensitivity of the transducer unsur-
prisingly also show up in the transfer function of the system. Figure 5.18 shows the difference in
magnitude of the transfer function as computed by COMSOL and FEMP which resembles the

58

Figure 5.15: Comparison of admittance as computed by COMSOL and FEMP.

Figure 5.16: Comparison of source sensitivity as computed by COMSOL and FEMP.

59

Figure 5.17: Comparison of the transfer function H25openCdif as computed by COMSOL and
FEMP.

shape of the correction term Cdif for a simplified finite element diffraction correction; which can
be seen in Figure 5.19.

Assuming diffraction was present in H25openCdif as computed by FEMP but not as computed
by COMSOL, one would expect the difference between the two to be Cdif as

COMSOL︷ ︸︸ ︷
20 log10(H25openCdif)−

FEMP︷ ︸︸ ︷
20 log10(H25openCdif/Cdif) = 20 log10(Cdif) . (5.2)

Assuming the diffraction is present in COMSOL but not FEMP, both, or none yields a difference
of 20 log10(1/Cdif), 0, and 0 respectively. Comparing with Andersen [17, Chapter 6, p. 95, fig. 6.20]
the observed difference between the two transfer functions corresponds with Cdif for a separation
distance of 50 cm.

The current author hypothesises that de observed discrepancy is due to to the extrapola-

Figure 5.18: Difference between transfer function H25openCdif as computed by COMSOL and
FEMP (COMSOL minus FEMP).

60

Figure 5.19: Comparison of diffraction correction as computed by COMSOL and FEMP.

tion method used in FEMP for calculating the far-field pressure for the sensitivity as FEMP
propagates the solution on the outer rim of the simulation domain towards infinity by means
of interpolating inside Asltey-Leis infinite elements. The current author is concerned that this
might propagate near-field effects present on this rim to the far-field points where the pressure
for the source sensitivity is sampled, since Asltey-Leis elements essentially interpolate several
different plane waves (12 as implemented in FEMP) where the innermost 3 are fitted to the
pressure values present on the outer rim of the simulation domain [19, Chapter 3, pp. 53-55],
and this might not be enough to properly resolve the transition from near- to far-field. This
hypothesis is not verified in the current work due to time constraints.

To test the hypothesis and possibly work around the problems described above one could
try working with a larger simulation domain so that the outer rim of the simulation domain
contains less near-field effects, but as this takes a lot of computational time with the simulation
parameters used in the current work this is not investigated further. A better tradeoff between
resolution, domain shape, and computational time could remedy these problems and bring the
computational time down to plausible time scales, but this is not investigated in the current
work as FEMP is not used as a primary tool for simulations.

5.5.3 Diffraction correction

Figure 5.19 shows the correction factor for simplified finite element diffraction correction as
computed by COMSOL and FEMP, and again a discrepancy can be seen in the magnitude of
the two. Here the discrepancy stems from the computed average pressure over the would be
receiver, which can be seen in fig. 5.20.

Similar to the problem described in the previous section; this problem might be related to in-
terpolation in the Astley-Leis infinite elements as this is how the average pressure over the would
be receiver is computed in FEMP, however it is not certain it is related to diffraction as the effect
spans a wider frequency range than the effects explored in the previous section. This problem
is not investigated further in the current work due to the previously stated constraints.

61

Figure 5.20: Comparison of average pressure at receiver as computed by COMSOL and FEMP.

62

Chapter 6

Discussion

6.1 Validity of the results

As the discrepancies pointed out in the previous chapter might call into question the validity of
the presented data a discussion of this topic is warranted.

The most glaring discrepancies are probably the ones between the simulations done with
COMSOL and FEMP, calling into question the extrapolation techniques used calculate pressure
outside the finite element domain in one, or both, of the tools.

As the presented difference between the two from section 5.5.2 hints at the possibility of
diffraction effects being included in the source sensitivity calculations from FEMP it seems
more likely than not that FEMP is at least partially to blame for the observed discrepancies; or
at least is prone to produce erroneous simulations given non-optimal, but seemingly valid, user
input. Since some of the observed discrepancies seemingly relate to diffraction it is possible that
a larger finite element domain would mitigate the problems; but if the problems are caused by
the limited resolution in the Astley-Leis infinite elements as proposed by the current author the
concern would possibly need be addressed in all simulation done with FEMP as the computed
solution would only converge to the true solution in the limit where the domain size is infinite
(although the effects might be virtually invisible with quite small domains as the solution might
converge quickly).

The second discrepancy between the FEMP and COMSOL simulations presented in sec-
tion 5.5.3, although not investigated as much by the current author, also seemingly stems from
problems with FEMP as the diffraction correction (Cdif) computed with COMSOL seems to
agree with the diffraction correction presented by Andersen [17, Chapter 6, p. 95, fig. 6.20]
while the diffraction correction computed with FEMP does not. To the author’s best knowledge
Andersen’s data was obtained with FEMP, meaning FEMP is probably capable of producing
the correct results, however maybe in a way that eluded the current author’s brief experience
with it. After a brief correspondence with Kocbach [19] (the original developer of FEMP) with
additional input from Storheim [13] it seems to the current author to be some confusion to which
version(s) of FEMP in which this capability is fully functional, and it is possible that the version
compared in the current work has a faulty or partial implementation.

Since the rest of the simulations presented corresponded well with previous results by An-
dersen [17], and the above discrepancies seems to be due to problems with FEMP, it seems
plausible that the simulations done with COMSOL, which are used in the current work, are
accurate; however as the COMSOL documentation [18] doesn’t provide implementation details
on all the features used feature tests should be implemented to verify each component of the
simulations carried out in the current work. Of these, the COMSOL manual specifically raises
the concern of the stability of the Helmholtz-Kirchhoff method of extrapolating the pressure field
outside the finite element domain for long extrapolation distances [18, Evaluating the Acoustic
Field in the Far-Field Region]. While this has not specifically been investigated in the current

63

work it seemingly hasn’t been a problem due to the correspondence with Andersen’s results, and
as such the distances used in the current work probably don’t fall under the category of “long”;
but for feature testing this is probably the most obvious candidate.

For the separation distance of 50 cm the presented measurement data seems to be in good
agreement with the presented simulation data, and to a slightly lesser extent in agreement with
Andersen’s data for the separation distance [17, Chapter 6, pp. 97-102]. This lends credibility
to the measurement procedure, including the newly introduced noise reduction technique; and
as such it is plausible that the data measured at shorter distances are also accurate; however as
measurement uncertainties are not calculated it is not possible to draw any definitive conclusions
based on the data. This should be improved in subsequent works, so that conclusions hinted by
the current work can be confirmed.

The discrepancies seen between the measured and simulated transfer functionH25open around
the second radial mode at a separation distance of 30 cm, and to a lesser extent at 20 cm, is an
unresolved issue in the current work; which could hint at problems with the diffraction correction
used in the simulations, or problems with the measurement procedure at these short separation
distances.

As discussed previously the remaining discrepancies between the measurements and simula-
tions are probably due to inaccurate material constants used in the simulations and the inherent
difficulty of measuring the slowly varying phase accurately. Although the discrepancies are
present in the data they are easily explained and corrected for, and as such does not pose a
limitation when testing the used diffraction correction.

6.2 Interpretation of the unexplained discrepancies

While no hard conclusions can be drawn as the data lacks associated error estimates, the afore-
mentioned discrepancies around the second radial mode might hint at problems with the tested
diffraction correction.

As the simplified finite element diffraction correction is a free-field diffraction correction,
it does not take into account effects related to the interaction between the pressure field and
the receiving transducer; and as such the discrepancies seen in the magnitude of H25open at
a separation distance of 30 cm might be due to local dips in pressure at the receiver which
would be present in the equivalent free-field, but is suppressed when the field interacts with
the receiving transducer. These suppressions might occur due to the wast difference in specific
acoustic impedance between the medium (∼400 Rayl) and the transducer (∼30 MRayl); making
the transducer appear like a hard wall boundary to incoming waves. Such a hard wall boundary
is described approximately by the boundary condition

∂p

∂n
= 0 ; (6.1)

which eliminates sudden dips along the normal axis of the receiving transducer in the transducers
vicinity as it requires the pressure to converge to a stable value as the wave approaches the
transducer.

The observed discrepancies in phase are not explained as easily as the magnitude discrepan-
cies. It is however possible that the same mechanism might be partly or wholly responsible as
the largest discrepancy, the missing 360◦ phase shift after the second radial mode at a separation
distance of 30 cm, coincides with the magnitude discrepancy described above. It is also possible
that this is related to the phase dip seen after the second radial mode at a separation distance
of 20 cm and 30 cm which is missing from the simulated transfer functions, however the author
has no clear cut hypothesis for this proposed relationship.

64

6.3 Conclusions

As mentioned before the lack of error estimates prohibits drawing any definite conclusions from
the presented data in the current work; yet the provided data seems to hint at problems with
the simplified finite element diffraction correction as mentioned in the previous section.

Besides conclusions about the stated subject matter, the current work effectively demon-
strates the effectiveness of the techniques used.

As the previous works have manly dealt with the FEMP simulation software, while the
current work instead utilises COMSOL MULTIPHYSICS as the main simulation software, the
current work effectively demonstrates the fitness of COMSOL for the problem at hand.

Since the two softwares features different approaches to dealing with unbounded domains,
which causes the method of extrapolating pressure values outside the finite element domain
to differ, the current work also demonstrates that the Hemholtz-Kirchhoff expression for field
values outside the finite element domain is apt for the task.

While the presented comparison between COMSOL and FEMP seems to show some issues
with FEMP, particularly when extrapolating outside the simulated finite element domain, it
does not conclusively demonstrate anything as the current author can not exclude user error as
a possible reason for the discrepancies. However as the simulated transfer function based on the
reciprocity model seems to include diffraction effects when simulated with FEMP the current
work does hint at possibly fundamental problems with the extrapolation method used in the
software as discussed earlier.

The current work does however demonstrate the effectiveness of the newly introduced method
of dealing with coherent noise, which in section 5.1.3 was shown to significantly decrease this
type of noise. As the analysis in the current work was limited to just a single frequency it doesn’t
conclusively demonstrate the effectiveness of the technique for all frequencies, but the current
author sees no reason why the results would not generalise to a wider frequency range. The
current work also demonstrates the effectiveness of aluminium foil to reduce the coherent noise,
although as the coherent noise is electromagnetic in nature this should not come as a surprise.

6.4 Suggestions for future work

As one of the biggest weaknesses with the current work is the lack of error estimations future
work should include this in order to verify the conclusions hinted to in this work. To optimise
these error estimates to the smallest possible intervals better material data for the transducers
and a more precise method of estimating the propagation time of the signal is also needed if the
future works approach the diffraction correction verification problem in the same manner as the
current work.

Future works could also explore the possibility of improving and extending the coherent
noise reduction method introduced in the current work to also compensate for reflections; which
would allow for measurements at much shorter separation distances along with longer excitation
bursts, which in turn might eliminate the need to estimate propagation time to compensate for
the plane wave component, and yield more precise measurements due to the longer bursts. This
could be done by treating each reflection as a coherent noise source that turns on after a specific
delay. The spectra of these sources could possibly be measured by measuring the system with
long bursts, which when a full set of discrete Fourier frequencies have been measured could be
fitted and gated in the time domain to yield spectra of different sources.

An alternate route to further explore the simplified finite element diffraction correction is
to simulate the whole acoustic system (transmitter, medium, and receiver) by means of finite
element analysis or equivalent techniques, comparing the results, since these full system simula-
tions would include effects like the suppression of local minima proposed in section 6.2. Since the
full system simulation should be equivalent to the physical system in the low excitation (linear)

65

limit this could possibly verify and explain the discrepancies observed in the current work.
When mentioning improvements to simulations, it would also be interesting to know what

causes the discrepancies between COMSOL and FEMP, particularly the discrepancies shown
in the average pressure over the receiver in the current work. However as COMSOL seems to
correctly simulate the problem at hand this might not be the best allocation of the limited
research time associated with such works. Instead time should probably be invested in the
feature testing of COMSOL discussed earlier to verify that the results produced are accurate.

66

Bibliography

[1] T. C. Hebb, “The velocity of sound”, Physical Review (Series I) 20, 89–99 (1905) DOI:
10.1103/PhysRevSeriesI.20.89.

[2] C. D. Reid, “Some investigations into the velocity of sound at ultra-sonic frequencies using
quartz oscillators”, Physical Review 35, 814–831 (1930) DOI: 10.1103/PhysRev.35.814.

[3] H. B. Huntington, A. G. Emslie, and V. W. Hughes, “Ultrasonic delay lines. I.”, Journal of
the Franklin Institute 245, 1–23 (1948) DOI: 10.1016/0016-0032(48)90826-6.

[4] M. Born and E. Wolf, Principles of Optics, 6th edition (Pergamon Press, 1980).

[5] E. Lommel, “Beugungserscheinungen einer kreisrunden Öffnung und geradlinig begrenzter
Schirme”, Abhandlungen der Bayerischen Akademie der Wissenchaften 15, 229–328 (1886).

[6] P. H. Rogers and A. L. V. Buren, “An exact expression for the Lommel-diffraction correction
integral”, The Journal of the Acoustical Society of America 55, 724–728 (1974) DOI: 10.
1121/1.1914589.

[7] A. O. Williams Jr, “The piston source at high frequencies”, The Journal of the Acoustical
Society of America 23, 1–6 (1951) DOI: 10.1121/1.1906722.

[8] L. V. King, “On the acoustic radiation field of the piezo-electric oscillator and the effect
of viscosity on transmission”, Canadian Journal of Research 11, 135–155 (1934) DOI: 10.
1139/cjr34-080.

[9] A. S. Khimunin, “Numerical calculation of the diffraction corrections for the precise mea-
surement of ultrasound absorption”, Acta Acustica united with Acustica 27, 173–181 (1972).

[10] A. S. Khimunin, “Numerical calculation of the diffraction corrections for the precise mea-
surement of ultrasound phase velocity”, Acta Acustica united with Acustica 32, 192–200
(1975).

[11] G. A. Sabin, “Calibration of piston transducers at marginal test distances”, The Journal of
the Acoustical Society of America 36, 168–173 (1964) DOI: 10.1121/1.1918929.

[12] P. Lunde, K. E. Frøysa, R. Kippersund, and M Vestrheim, “Transient diffraction effects
in ultrasonic meters for volumetric, mass and energy flow measurement of natural gas”, in
Proceedings of the 21st North Sea Flow Measurement Workshop (2003).

[13] E. Storheim, “Diffraction effects in the ultrasonic field of transmitting and receiving circular
piezoceramic disks in radial mode vibration. FE modelling and comparison with measure-
ments in air”, PhD thesis (The University of Bergen, 2015).

[14] E. Mosland, “Reciprocity calibration method for ultrasonic piezoelectric transducers in air”,
MA thesis (University of Bergen, 2013), HDL: 1956/7164.

[15] R. Hauge, “Finite element modeling of ultrasound measurement systems for gas. Comparison
with experiments in air.”, MA thesis (University of Bergen, 2013), HDL: 1956/7182.

[16] A. A. Søvik, “Ultrasonic measurement systems for gas. Finite element modelling compared
with measurements in air”, MA thesis (University of Bergen, 2015).

67

http://dx.doi.org/10.1103/PhysRevSeriesI.20.89
http://dx.doi.org/10.1103/PhysRevSeriesI.20.89
http://dx.doi.org/10.1103/PhysRev.35.814
http://dx.doi.org/10.1103/PhysRev.35.814
http://dx.doi.org/10.1016/0016-0032(48)90826-6
http://dx.doi.org/10.1016/0016-0032(48)90826-6
http://dx.doi.org/10.1016/0016-0032(48)90826-6
http://dx.doi.org/10.1121/1.1914589
http://dx.doi.org/10.1121/1.1914589
http://dx.doi.org/10.1121/1.1914589
http://dx.doi.org/10.1121/1.1906722
http://dx.doi.org/10.1121/1.1906722
http://dx.doi.org/10.1121/1.1906722
http://dx.doi.org/10.1139/cjr34-080
http://dx.doi.org/10.1139/cjr34-080
http://dx.doi.org/10.1139/cjr34-080
http://dx.doi.org/10.1121/1.1918929
http://dx.doi.org/10.1121/1.1918929
http://dx.doi.org/10.1121/1.1918929
http://hdl.handle.net/1956/7164
http://hdl.handle.net/1956/7182

[17] K. K. Andersen, “Reciprocity calibration of ultrasonic piezoelectric disks in air ”, MA thesis
(University of Bergen, 2015), HDL: 1956/11006.

[18] COMSOL Multiphysics version 4.2a Manual, COMSOL AB (COMSOL AB).

[19] J. Kocback, “Finite Element Modeling of Ultrasonic Piezoelectric Transducers”, PhD thesis
(University of Bergen, 2000).

[20] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics,
4th edition (John Wiley & Sons, 2000).

[21] P. Lunde, “Lecture notes, PHYS374 Theoretical Acoustics”.

[22] C. Canuto and A. Tabacco, Mathematical Analysis II, 2nd edition (Springer International
Publishing, 2015).

[23] “IEEE Standard on Piezoelectricity”, ANSI/IEEE Std 176-1987 (1988) DOI: 10.1109/
IEEESTD.1988.79638.

[24] A. Boggess and F. J. Narcowich, A First Course in Wavelets with Fourier Analysis (John
Wiley & Sons, 2009).

[25] B. Douglas, The Fundamentals of Control Theory, Revision 1.5 (2017).

[26] R. A. Adams and C. Essex, Calculus: A Complete Course, 7th edition (Pearson Education,
2009).

[27] M. Vestrheim, “Lecture notes, PHYS373 Acoustic measurement systems”.

[28] R. W. P. King, H. R. Mimno, and A. H. Wing, Transmission Lines, Antennas and Waveg-
uides, 2nd edition (Dover Publications, 1965).

[29] M. Vestrheim, “Lecture notes, PHYS272 Acoustic transducers”.

[30] J. P. Bentley, Principles of Measurement Systems, 4th edition (Pearson Education, 2005).

[31] R. J. Bobber, “General reciprocity parameter”, The Journal of the Acoustical Society of
America 39, 680–687 (1966) DOI: 10.1121/1.1909941.

[32] L. L. Foldy and H. Primakoff, “A general theory of passive linear electroacoustic transducers
and the electroacoustic reciprocity theorem. I”, The Journal of the Acoustical Society of
America 17, 109–120 (1945) DOI: 10.1121/1.1916305.

[33] P. Lunde, “Modeller for beskrivelse av elektroakustisk sender-mottaker mÃělesystem, inkl.
diffraksjonseffekter / diffraksjonkorreksjon”, Jan. 2013.

[34] G. S. K. Wong, “The variation of the specific heat ratio and the speed of sound in air with
temperature, pressure, humidity, and CO2 concentration”, Journal of the Acoustical Society
of Japan (E) 11, 145–155 (1990) DOI: 10.1250/ast.11.145.

[35] O. Cramer, “The variation of the specific heat ratio and the speed of sound in air with
temperature, pressure, humidity, and CO2 concentration”, The Journal of the Acoustical
Society of America 93, 2510–2516 (1993) DOI: 10.1121/1.405827.

[36] M. O’Donnell, E. T. Jaynes, and J. G. Miller, “General relationships between ultrasonic
attenuation and dispersion”, The Journal of the Acoustical Society of America 63, 1935–
1937 (1978) DOI: 10.1121/1.381902.

[37] M. O’Donnell, E. T. Jaynes, and J. G. Miller, “Kramers–Kronig relationship between ul-
trasonic attenuation and phase velocity”, The Journal of the Acoustical Society of America
69, 696–701 (1981) DOI: 10.1121/1.385566.

[38] C. L. Morfey and G. P. Howell, “Speed of sound in air as a function of frequency and
humidity”, The Journal of the Acoustical Society of America 68, 1525–1527 (1980) DOI:
10.1121/1.385080.

68

http://hdl.handle.net/1956/11006
http://dx.doi.org/10.1109/IEEESTD.1988.79638
http://dx.doi.org/10.1109/IEEESTD.1988.79638
http://dx.doi.org/10.1109/IEEESTD.1988.79638
http://dx.doi.org/10.1121/1.1909941
http://dx.doi.org/10.1121/1.1909941
http://dx.doi.org/10.1121/1.1909941
http://dx.doi.org/10.1121/1.1916305
http://dx.doi.org/10.1121/1.1916305
http://dx.doi.org/10.1121/1.1916305
http://dx.doi.org/10.1250/ast.11.145
http://dx.doi.org/10.1250/ast.11.145
http://dx.doi.org/10.1250/ast.11.145
http://dx.doi.org/10.1121/1.405827
http://dx.doi.org/10.1121/1.405827
http://dx.doi.org/10.1121/1.405827
http://dx.doi.org/10.1121/1.381902
http://dx.doi.org/10.1121/1.381902
http://dx.doi.org/10.1121/1.381902
http://dx.doi.org/10.1121/1.385566
http://dx.doi.org/10.1121/1.385566
http://dx.doi.org/10.1121/1.385566
http://dx.doi.org/10.1121/1.385080
http://dx.doi.org/10.1121/1.385080

[39] “Method for calculation of the absorption of sound by the atmosphere”, ANSI/ASA S1.26-
1995 (1995).

[40] H. E. Bass, H.-J. Bauer, and L. B. Evans, “Atmospheric absorption of sound: Analytical
expressions”, The Journal of the Acoustical Society of America 52, 821–825 (1972) DOI:
10.1121/1.1913183.

[41] J. W. Strutt, The Theory of Sound, 2nd edition, Vol. 2 (Macmillan and Co, 1896).

[42] O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The Finite Element Method, 6th edition,
Vol. 1 (Butterworth-Heinemann, 2005).

[43] COMSOL Multiphysics version 4.4 Reference Manual, COMSOL AB (COMSOL AB).

[44] A. D. Pierce, Acoustics: An Introduction to Its Physical Principles and Applications (Acous-
tical Society of America, 1989).

[45] M. Aanes, “Interaction of piezoelectric transducer excited ultrasonic pulsed beams with a
fluid-embedded viscoelastic plate. Finite element modeling, angular spectrum modeling and
measurements”, PhD thesis (The University of Bergen, 2014), HDL: 1956/7891.

[46] S. G. Johnson, “Notes on Perfectly Matched Layers (PMLs)”, Mar. 2010.

[47] S. Marburg, “Six boundary elements per wavelength: is that enough?”, Journal of Compu-
tational Acoustics 10, 25–51 (2002) DOI: 10.1142/S0218396X02001401.

[48] B. Ghose, K. Balasubramaniam, C. V. Krishnamurthy, and A. S. Rao, “Two dimensional
FEM simulation of ultrasonic wave propagation in isotropic Solid Media using COMSOL”,
in COMSOL Conference (2010).

[49] C. G. Petra, O. Schenk, M. Lubin, and K. Gärtner, “An augmented incomplete factorization
approach for computing the Schur complement in stochastic optimization”, SIAM Journal
on Scientific Computing 36, C139–C162 (2014) DOI: 10.1137/130908737.

[50] C. G. Petra, O. Schenk, and M. Anitescu, “Real-time stochastic optimization of complex
energy systems on high-performance computers”, IEEE Computing in Science & Engineering
16, 32–42 (2014) DOI: 10.1109/MCSE.2014.53.

[51] M. C. Nechyba, “Lecture notes, EEL3135 Discrete-Time Signals and Systems”.

[52] D. Kundur, “Lecture notes, ECE316 Communication Systems”.

[53] DPO3000 Series Digital Phosphor Oscilloscope User Manual, Tektronix (Tektronix).

[54] DATA SHEET RG 178 B/U, 0019/0894, Lapp Group (Lapp Group, June 2008).

69

http://dx.doi.org/10.1121/1.1913183
http://dx.doi.org/10.1121/1.1913183
http://hdl.handle.net/1956/7891
http://dx.doi.org/10.1142/S0218396X02001401
http://dx.doi.org/10.1142/S0218396X02001401
http://dx.doi.org/10.1142/S0218396X02001401
http://dx.doi.org/10.1137/130908737
http://dx.doi.org/10.1137/130908737
http://dx.doi.org/10.1137/130908737
http://dx.doi.org/10.1109/MCSE.2014.53
http://dx.doi.org/10.1109/MCSE.2014.53
http://dx.doi.org/10.1109/MCSE.2014.53

Appendix A

FEMP simulations

A.1 Proposed FEMP Python API

While trying to run simulations in FEMP the current author ran into problems where FEMP
would get terminated by the system for exhausting its memory pool. To remedy this situation a
way of controlling FEMP from Python is proposed by the current autor below; which alleviates
the problem by allowing for segmented runs with cleaned up MATLAB workspace in-between.
This new way of controlling FEMP also yields an easier and cleaner scriptable interface as a
side-effect.

Adding in the file “__init__.py” (whose contents are given in the code listing below) into
the FEMP root directory, and adding FEMP to the Python path, lets one import the specified
run_solver function to control FEMP.

The proposed implementation relies on either the MATLAB Python API, or the pexpect
package, one of which needs to be on the Python path in order for the current implementation
to work. If the MATLAB Python API is present the current implementation will simply issue
commands to an embedded MATLAB process via this API to control FEMP, whereas if the
MATLAB Python API is not present the current implementation will use the pexpect package
to spawn a MATLAB REPL in which it issues commands to FEMP as if a human were typing
them at the MATLAB prompt. This dual implementation is done as the MATLAB Python API
is not kept current, leading to newer distributions of Python not being supported by it.

For a full Python conversion of FEMP the API is made to return the results of simulations
as NumPy arrays. This is supported through the h5py package as version 7.3 of the MAT-
LAB file format used is really just HDF5 files, and as such can be read by a standard HDF5
implementation.

A few places the f-string notation introduced in Python 3.6 is used in the current implementa-
tion (all of which could easily be converted to the .format() syntax for backward compatibility),
rendering the current implementation to require Python 3.6 or newer. As Python 3.6 is not cur-
rently supported by the MATLAB Python API (but probably will be in MATLAB R2017b,
which releases shortly after publication of the current work), only the pexpect based fallback
implementation is currently usable.

1 """Python wrapping layer for FEMP.
2

3 This module contains functionality to control the FEMP solver through Python.
4 It relies upon the MATLAB Python API, but provides its own polyfill
5 based on pseudo-terminals (pexpect) if the API is unavailable.
6 """
7

8 __author__ = ’Andreas Hagen’

70

9 __version__ = ’1.1’
10

11 import os
12 import sys
13 from contextlib import suppress
14 from pathlib import Path
15 from shutil import move
16 from tempfile import TemporaryDirectory, NamedTemporaryFile
17

18 from h5py import File
19

20 # Import MATLAB API or polyfill the necessary functions if unavailable
21 try:
22 from matlab.engine import start_matlab
23 except ImportError:
24 from collections import namedtuple
25

26 from pexpect import spawn, ExceptionPexpect
27 from pexpect.replwrap import REPLWrapper
28

29 def start_matlab():
30 """Spawns a MATLAB instance controlled with the returned object’s eval

function through a pty."""↪→

31 try:
32 child = spawn(os.getenv(’MATLAB’, ’matlab’), [’-nodesktop’],

encoding=’utf-8’, timeout=None)↪→

33 except ExceptionPexpect:
34 raise EnvironmentError(’"$MATLAB" did not contain a valid MATLAB

launch command’)↪→

35

36 child.logfile_read = sys.stdout
37 repl = REPLWrapper(child, ’>> ’, None)
38

39 MATLABEnginePolyfill = namedtuple(’MATLABEnginePolyfill’, [’eval’])
40 return MATLABEnginePolyfill(lambda command, **_:

repl.run_command(command))↪→

41

42

43 def run_solver(config, save=None, env_setup=lambda pwd: None,
lib=Path(__file__).resolve().parent, engine=None):↪→

44 """Runs the FEMP solver with specified configuration.
45

46 :param dict config: Dictionary of FEMP .inn directives.
47 :param str save: Path to results file to save
48 :param callable env_setup: Callback function to set up environment for

FEMP, i.e. copy in material files.↪→

49 :param str lib: Path to the FEMP library. Defaults to the directory the
current↪→

50 module is located in as this module is usually placed alongside FEMP.
51 :param engine: MATLAB engine in which to run FEMP.
52

71

53 :return FEMPResults: Sanitized version of the results generated by FEMP.
54 """
55 # Start up or retrieve cached MATLAB engine if one is not provided
56 if engine is None:
57 try:
58 engine = run_solver.engine
59 except AttributeError:
60 engine = run_solver.engine = start_matlab()
61

62 with TemporaryDirectory() as pwd:
63 env_setup(str(pwd)) # Run environment setup
64 engine.eval(cd_command(str(pwd))) # Switch MATLAB to correct

directory↪→

65

66 # Generate config file
67 with NamedTemporaryFile(mode=’w’, dir=pwd, suffix=’.inn’,

delete=False) as file:↪→

68 conf_file = Path(file.name)
69 print(inn_file(config), file=file)
70

71 # Setup results file
72 if save is None:
73 save, move_save_file = Path(pwd, f’{conf_file.stem}_results.mat’),

True↪→

74 else:
75 save, move_save_file = Path(save), False
76

77 # Run FEMP simulation
78 engine.eval(femp_command(lib, conf_file.name, save.name), nargout=0)
79 return FEMPResults(save, move_save_file)
80

81

82 def cd_command(directory):
83 """Generates MATLAB code to change current working directory.
84

85 :param str directory: Path of the directory to change to.
86 :return str: MATLAB command to run to change the current working

directory.↪→

87 """
88 directory_escaped = directory.replace("’", "’’")
89 return f"cd(’{directory_escaped}’);"
90

91

92 def femp_command(prefix, infile, outfile):
93 """Generates MATLAB code to load and execute FEMP.
94

95 :param str prefix: Path to the FEMP library. Should generally be the same
96 directory as the current file is placed in.
97 :param str infile: Name of .inn file to pass along to FEMP. Must be on
98 the MATLAB path or given as an absolute path.

72

99 :param str outfile: Name of the .mat file FEMP should store its results
in.↪→

100 :return str: MATLAB command to run to start FEMP.
101 """
102 return f"restoredefaultpath; clear; " \
103 f"addpath(’{prefix}’, genpath(’{prefix}/solver’),

’{prefix}/postprocess’); " \↪→

104 f"donotsave = true; fnavn = ’{infile}’; fempsolver;
save(’{outfile}’, ’result’, ’-v7.3’);"↪→

105

106

107 def inn_file(config):
108 """Generates .inn file contents for use with the FEMP solver.
109

110 :param dict config: Dictionary (possibly ordered) of FEMP .inn directives.
111 Values might be strings or numbers, in which case they are used as
112 directive values as is; lists, in which case they are joined by

commas;↪→

113 or dictionaries, in which case entries are put on separate lines with
114 keys and values separated by a comma.
115 :return str: Generated .inn file contents.
116 """
117 def entry(values):
118 if isinstance(values, str):
119 # Strings will be interpreted as lists a couple of lines down if

not handled separately↪→

120 return values
121

122 with suppress(AttributeError):
123 # Yields key/value pairs for use in the ’set’ directive
124 return ’\n’.join(f’{variable},{value}’ for variable, value in

values.items())↪→

125

126 with suppress(TypeError):
127 # Joins argument lists separated by comma
128 return ’,’.join(str(value) for value in values)
129

130 # Defaults to pass arguments as is, assuming it’s a single value
131 return str(values)
132

133 # Joins directives separated by two line breaks
134 return ’\n\n’.join(f’{directive}\n{entry(values)}\nend’ for directive,

values in config.items())↪→

135

136

137 class FEMPResults:
138 """Contains a FEMP result dataset.
139

140 Data is accessed as attributes on the returned object, e.g. the admittance
141 data would be accessed as obj.admittance.
142

73

143 :param Path results_file: Path to the results file to access.
144 :param bool manage_file: Specifies whether the object should manage the

results file.↪→

145 """
146 def __init__(self, results_file, manage_file=False, recover_complex=True):
147 if manage_file:
148 self._pwd = TemporaryDirectory() # Directory is kept as long as a

reference to it is kept↪→

149 move(str(results_file), self._pwd.name)
150 results_file = Path(self._pwd.name, results_file.name)
151

152 self.recover_complex = recover_complex
153 self._results_file = File(str(results_file))
154

155 def __getattr__(self, item):
156 try:
157 # MATLAB stores references in the main datasets, so the real

datasets have to be looked up↪→

158 data = self._results_file[self._results_file[f’/result/{item}’][0,
0]][...]↪→

159 except KeyError:
160 raise AttributeError(f"’{self.__class__.__name__}’ object has no

attribute {item}")↪→

161

162 with suppress(TypeError):
163 if self.recover_complex and {’real’,

’imag’}.issubset(data.dtype.fields):↪→

164 data = data[’real’] + data[’imag’]*1j
165

166 return data

A.2 Running FEMP simulations

In the current work the proposed Python API for FEMP discussed in the previous section is used
to run FEMP simulations for comparison with the COMSOL Multiphysics simulations actually
used. To run these simulations, avoiding the previously mentioned memory problems, FEMP is
simply executed repeatedly with a dictionary of configuration directives as shown in the below
code listing.

1 from collections import ChainMap
2 from contextlib import closing
3 from functools import partial
4 from itertools import chain
5 from shutil import copy2
6

7 from numpy import newaxis, dtype, exp, pi, absolute, linspace, array_split,
tile, fromiter, float64, complex128↪→

8 from tables import open_file
9

10 from FEMP import run_solver as femp
11

74

12 # Calculate frequency ranges
13 f_start, f_stop, f_step = 1e3, 3e5, 1e3
14 frequencies = linspace(f_start, f_stop, round((f_stop - f_start) / f_step) +

1)↪→

15 ranges = map(lambda lst: (lst[0], lst[-1]), array_split(frequencies, 15))
16

17 # Calculate separation distances
18 d_start, d_stop, d_step = .2, .5, .1
19 distances = linspace(d_start, d_stop, round((d_stop - d_start) / d_step) + 1)
20

21 # Constants
22 domain_size = 30.01e-3
23 elements_per_wavelength = 10
24 disc_radius = 10e-3
25 disc_depth = 2e-3
26 disc_material = 1
27 fluid_material = 2
28 reference_distance = 1
29 far_field_distance = 1e3
30

31 # Set up common config
32 config_defaults = {
33 ’meshingtype’: (’elementsperwavelength’, ’f_stop’),
34 ’order’: 2,
35 ’infiniteorder’: 12,
36 ’materialfile’: 1,
37 ’piezodiskfluid’: (disc_radius, disc_depth, elements_per_wavelength,

elements_per_wavelength, disc_material,↪→

38 domain_size, elements_per_wavelength, fluid_material,
1.3),↪→

39 ’directharmonicanalysis’: (’f_start’, ’f_step’, ’f_stop’, ’complex_loss’),
40 ’admittance’: (0, 0, 0),
41 ’sensitivity’: (0, 0, 0, reference_distance),
42 ’pressureatreceiverdistance’: (0, 0, 0, disc_radius, 0, d_start, d_stop,

d_step),↪→

43 ’onaxispressure’: (0, 0, 0, far_field_distance / domain_size, 1),
44 ’save’: (
45 ’admittance_f’,
46 ’admittance’,
47 ’sensitivity’,
48 ’pressureatreceiverdistance_p’,
49 ’onaxispressure’,
50 ’onaxispressure_r’
51)
52 }
53

54

55 def tabulate(results):
56 # Transfer data and define nice variable names
57 f = results.admittance_f
58 r0 = tile(reference_distance, f.shape)

75

59 a = tile(disc_radius, f.shape)
60 rho = tile(results.rho_medium, f.shape)
61 c = tile(results.c_medium, f.shape)
62 Y = results.admittance
63 SV = results.sensitivity
64 p = results.pressureatreceiverdistance_p.T
65

66 # Pick the on-axis node closest to the far field distance as the far field
pressure↪→

67 r = results.onaxispressure_r.squeeze()
68 idx = absolute(r - far_field_distance).argmin()
69 dff = tile(r[idx], f.shape) - disc_depth/2
70 pff = results.onaxispressure[:, idx, newaxis]
71

72 # Build data table
73 rows = (tuple(chain.from_iterable(x)) for x in zip(r0, a, rho, f, c, Y,

SV, p, dff, pff))↪→

74 columns = [(var, float64) for var in (’r0’, ’a’, ’rho’, ’f’, ’c’)] + \
75 [(var, complex128) for var in (’Y’, ’SV’)] + \
76 [(f’p{int(distance * 100)}cm’, complex128) for distance in

distances] + \↪→

77 [(’dff’, float64), (’pff’, complex128)]
78 return fromiter(rows, dtype=columns)
79

80

81 def post_process(file, start=None, stop=None):
82 # Helper to lazy initialize tables
83 def table(distance):
84 name = f’d{int(distance * 100)}cm’
85 return getattr(file.root, name) if hasattr(file.root, name) else

file.create_table(↪→

86 file.root, name,
87 dtype([(var, float64 if var is ’f’ else complex128)
88 for var in (’f’, ’Y’, ’SV’, ’SVslow’, ’H25open’,

’H25openslow’, ’Hdif’, ’Cdif’)])↪→

89)
90

91 # Calculate and save results
92 for r0, a, rho, f, c, Y, SV, *p, dff, pff in file.root.data.read(start,

stop):↪→

93 k = 2*pi*f/c
94 SVslow = SV * exp(1j*k*r0)
95

96 for d, p in zip(distances, p):
97 Jsph = -2j*r0/f/rho * exp(1j*k*r0)
98 H25open = SV**2 / Y * Jsph * r0/d * exp(-1j*k*(d - r0))
99 H25openslow = H25open * exp(1j*k*d)
100

101 Hdif = p/pff * .5j*k*a**2/dff * exp(1j*k*(d - dff))
102 Cdif = .5j*k*a**2/d / Hdif
103

76

104 table(d).append([(f, Y, SV, SVslow, H25open, H25openslow, Hdif,
Cdif)])↪→

105

106

107 with closing(open_file(’results.h5’, mode=’w’)) as file:
108 for lower, upper in ranges:
109 # Run FEMP simulation
110 config = ChainMap({’set’: {
111 ’f_start’: lower,
112 ’f_stop’: upper,
113 ’f_step’: f_step
114 }}, config_defaults)
115 data = tabulate(femp(config, env_setup=partial(copy2,

’material1.dat’)))↪→

116

117 # Post-process and save data
118 try:
119 file.root.data.append(data)
120 except AttributeError:
121 file.create_table(file.root, ’data’, data)
122 post_process(file, len(file.root.data) - len(data),

len(file.root.data))↪→

123 file.flush()

Also used is the below material file. It is simply given in the standard FEMP material
format. For more information on this see the FEMP documentation.

1 1 piezo pz27
2 # mechanical terms
3 1.20250e+11 7.62000e+10 7.42000e+10 0.00000e+00 0.00000e+00 0.00000e+00
4 7.62000e+10 1.20250e+11 7.42000e+10 0.00000e+00 0.00000e+00 0.00000e+00
5 7.42000e+10 7.42000e+10 1.10050e+11 0.00000e+00 0.00000e+00 0.00000e+00
6 0.00000e+00 0.00000e+00 0.00000e+00 2.11000e+10 0.00000e+00 0.00000e+00
7 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.11000e+10 0.00000e+00
8 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.16000e+10
9 # coupling terms
10 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.12000e+01 0.00000e+00
11 0.00000e+00 0.00000e+00 0.00000e+00 1.12000e+01 0.00000e+00 0.00000e+00
12 -5.40000e+00 -5.40000e+00 1.70000e+01 0.00000e+00 0.00000e+00 0.00000e+00
13 # dielectric terms
14 8.11044e-09 0.00000e+00 0.00000e+00
15 0.00000e+00 8.11044e-09 0.00000e+00
16 0.00000e+00 0.00000e+00 8.14585e-09
17 # density and damping coefficients
18 7.70000e+03 9.99000e+02 9.99000e+02
19 # mechanical Q-factors
20 9.60000e+01 7.00000e+01 1.20000e+02 0.00000e+00 0.00000e+00 0.00000e+00
21 7.00000e+01 9.60000e+01 1.20000e+02 0.00000e+00 0.00000e+00 0.00000e+00
22 1.20000e+02 1.20000e+02 1.90000e+02 0.00000e+00 0.00000e+00 0.00000e+00
23 0.00000e+00 0.00000e+00 0.00000e+00 7.50000e+01 0.00000e+00 0.00000e+00
24 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 7.50000e+01 0.00000e+00

77

25 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.15000e+02
26 # piezoelectric Q-factors
27 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 -2.00000e+02 0.00000e+00
28 0.00000e+00 0.00000e+00 0.00000e+00 -2.00000e+02 0.00000e+00 0.00000e+00
29 -1.66000e+02 -1.66000e+02 -3.24000e+02 0.00000e+00 0.00000e+00 0.00000e+00
30 # dielectric Q-factors
31 5.00000e+01 0.00000e+00 0.00000e+00
32 0.00000e+00 5.00000e+01 0.00000e+00
33 0.00000e+00 0.00000e+00 1.30000e+02
34 # end of material data
35 2 fluid air t=24degC pA=1atm h=.25 f=150kHz
36 1.18817e+00 1.42441e+05 0.00000e+00 0.00000e+00

78

Appendix B

labctrl

B.1 Source code

B.1.1 acoustic.py

1 from contextlib import closing
2

3 from numpy import linspace, newaxis
4 from tables import open_file
5

6 from instruments import Oscilloscope, WaveformGenerator, Thermometer,
Hygrometer↪→

7 from spec.data import setup_variables, frequency_variable,
environment_variables, waveform_variables↪→

8 from spec.measurements import measure_waveforms
9

10 # Connect to instruments
11 oscilloscope = Oscilloscope(’USB0::0x699::0x0410::C010246::INSTR’)
12 waveform_generator = WaveformGenerator(’GPIB0::10::INSTR’)
13 thermometer = Thermometer(’GPIB0::3::INSTR’)
14 hygrometer = Hygrometer(’ASRL4::INSTR’)
15

16 # Measurement parameters
17 distance = .2
18 propagation_time = distance / 347 # Underestimate
19 burst_length = .8 * propagation_time
20 measurement_count = 300 - 49
21 sample_count = 10000
22 frequencies = linspace(start=50e3, stop=3e5, num=measurement_count)
23

24 with closing(open_file(’D:\\andreas\\datanew\\acoustic.h5’, mode=’w’)) as
file:↪→

25 # Setup output
26 setup_variables(file, distance=distance, burst_length=burst_length)
27 f = frequency_variable(file, expected_rows=measurement_count)
28 t, p, h, = environment_variables(file, expected_rows=measurement_count)
29 ttx, htx, trx, hrx = waveform_variables(file, sample_count=sample_count,

expected_rows=measurement_count)↪→

30

79

31 for frequency in frequencies:
32 try:
33 timestamp, amplitude = measure_waveforms(
34 frequency=frequency,
35 burst_length=burst_length,
36 propagation_time=propagation_time,
37 voltage=.1 if 240e3 < frequency < 260e3 else 1 if 80e3 <

frequency < 120e3 else 10,↪→

38 oscilloscope=oscilloscope,
39 waveform_generator=waveform_generator
40)
41 except ValueError:
42 continue
43

44 # Frequency
45 f.append((frequency,))
46

47 # Waveforms
48 ttx.append(timestamp[’tx’][newaxis])
49 htx.append(amplitude[’tx’][newaxis])
50 trx.append(timestamp[’rx’][newaxis])
51 hrx.append(amplitude[’rx’][newaxis])
52

53 # Environmental parameters
54 t.append((thermometer.temperature,))
55 p.append((101325.,))
56 h.append((hygrometer.relative_humidity / 100,))

B.1.2 admittance.py

1 from contextlib import closing
2

3 from numpy import linspace
4 from tables import open_file
5

6 from instruments.impedanceanalyzer import ImpedanceAnalyzer
7 from spec.data import frequency_variable, admittance_variable
8 from spec.measurements import measure_admittance
9

10 # Connect to instruments
11 impedance_analyzer = ImpedanceAnalyzer(’GPIB0::17::INSTR’)
12

13 # Measurement parameters
14 measurement_count = 300
15 frequencies = linspace(start=1e3, stop=3e5, num=measurement_count)
16

17

18 with closing(open_file(’D:\\andreas\\datanew\\admittance.h5’, mode=’w’)) as
file:↪→

19 # Setup output
20 f = frequency_variable(file, expected_rows=measurement_count)

80

21 Y = admittance_variable(file, expected_rows=measurement_count)
22

23 for frequency in frequencies:
24 f.append((frequency,))
25 Y.append((measure_admittance(frequency, impedance_analyzer),))

B.1.3 noise.py

1 from contextlib import closing
2

3 from numpy import linspace, newaxis
4 from tables import open_file
5

6 from instruments import Oscilloscope, WaveformGenerator
7 from spec.data import setup_variables, frequency_variable, waveform_variables
8 from spec.measurements import measure_waveforms
9

10 # Connect to instruments
11 oscilloscope = Oscilloscope(’USB0::0x699::0x0410::C010246::INSTR’)
12 waveform_generator = WaveformGenerator(’GPIB0::10::INSTR’)
13

14 # Measurement parameters
15 distance = .2
16 burst_length = 1.6e-3
17 measurement_count = 5001
18 sample_count = 10000
19 frequencies = linspace(start=0, stop=2.5e6, num=measurement_count)
20

21 with closing(open_file(’D:\\andreas\\datanew\\noise.h5’, mode=’w’)) as file:
22 # Setup output
23 setup_variables(file, distance=distance, burst_length=burst_length)
24 f = frequency_variable(file, expected_rows=measurement_count)
25 ttx, htx, trx, hrx = waveform_variables(file, sample_count=sample_count,

expected_rows=measurement_count)↪→

26

27 for frequency in frequencies:
28 try:
29 timestamp, amplitude = measure_waveforms(
30 frequency=frequency,
31 burst_length=burst_length,
32 propagation_time=0,
33 voltage=1 if 80e3 < frequency < 120e3 else 10,
34 oscilloscope=oscilloscope,
35 waveform_generator=waveform_generator
36)
37 except ValueError:
38 continue
39

40 # Frequency
41 f.append((frequency,))
42

81

43 # Waveforms
44 ttx.append(timestamp[’tx’][newaxis])
45 htx.append(amplitude[’tx’][newaxis])
46 trx.append(timestamp[’rx’][newaxis])
47 hrx.append(amplitude[’rx’][newaxis])

B.1.4 receiver.py

1 from contextlib import closing
2

3 from numpy import linspace, newaxis
4 from tables import open_file
5

6 from instruments import Oscilloscope, WaveformGenerator
7 from spec.data import setup_variables, frequency_variable, waveform_variables
8 from spec.measurements import measure_waveforms
9

10 # Connect to instruments
11 oscilloscope = Oscilloscope(’USB0::0x699::0x0410::C010246::INSTR’)
12 waveform_generator = WaveformGenerator(’GPIB0::10::INSTR’)
13

14 # Measurement parameters
15 burst_length = 1.6e-3
16 measurement_count = 300
17 sample_count = 10000
18 frequencies = linspace(start=1e3, stop=3e5, num=measurement_count)
19

20 with closing(open_file(’D:\\andreas\\datanew\\receiver.h5’, mode=’w’)) as
file:↪→

21 # Setup output
22 setup_variables(file, burst_length=burst_length)
23 f = frequency_variable(file, expected_rows=measurement_count)
24 ttx, htx, trx, hrx = waveform_variables(file, sample_count=sample_count,

expected_rows=measurement_count)↪→

25

26 for frequency in frequencies:
27 try:
28 timestamp, amplitude = measure_waveforms(
29 frequency=frequency,
30 burst_length=burst_length,
31 propagation_time=0,
32 voltage=10e-3,
33 oscilloscope=oscilloscope,
34 waveform_generator=waveform_generator
35)
36 except ValueError:
37 continue
38

39 # Frequency
40 f.append((frequency,))
41

82

42 # Waveforms
43 ttx.append(timestamp[’tx’][newaxis])
44 htx.append(amplitude[’tx’][newaxis])
45 trx.append(timestamp[’rx’][newaxis])
46 hrx.append(amplitude[’rx’][newaxis])

B.1.5 instruments/__init__.py

1 from .base import Instrument, Property, SCPIInstrument
2

3 from .oscilloscope import Oscilloscope
4 from .waveformgenerator import WaveformGenerator
5 from .thermometer import Thermometer
6 from .hygrometer import Hygrometer
7 from .filter import Filter

B.1.6 instruments/base.py

1 from functools import lru_cache, partialmethod, partial
2

3 from pyvisa import ResourceManager
4

5

6 @lru_cache() # Lazy load
7 def _rm():
8 return ResourceManager()
9

10

11 class Instrument:
12 def __init__(self, resource, set_message=’{} {}’, query_message=’{}?’):
13 if isinstance(resource, str):
14 resource = _rm().open_resource(resource)
15

16 self.resource = resource
17 self.set_message = set_message
18 self.query_message = query_message
19

20 def __repr__(self):
21 return f’{self.__class__.__name__}({self.resource!r})’
22

23 def _io(self, func, *args, **kwargs):
24 return getattr(self.resource, func)(*args, **kwargs)
25

26 read = partialmethod(_io, ’read’)
27 read_raw = partialmethod(_io, ’read_raw’)
28 write = partialmethod(_io, ’write’)
29 query = partialmethod(_io, ’query’)
30 query_values = partialmethod(_io, ’query_values’)
31 query_ascii_values = partialmethod(_io, ’query_ascii_values’)
32 query_binary_values = partialmethod(_io, ’query_binary_values’)

83

33

34 def __getattribute__(self, item):
35 attr = super().__getattribute__(item)
36

37 if isinstance(attr, Property):
38 message =

self.query_message.format(self.attribute_to_property(item))↪→

39 query_function = getattr(self, attr.query_function)
40 return attr.parse(query_function(message))
41 else:
42 return attr
43

44 def __setattr__(self, item, value):
45 try:
46 attr = super().__getattribute__(item)
47

48 if isinstance(attr, Property):
49 message =

self.set_message.format(self.attribute_to_property(item),
attr.format(value))

↪→

↪→

50 self.write(message)
51 return
52 except AttributeError:
53 pass
54

55 return super().__setattr__(item, value)
56

57 def attribute_to_property(self, attr):
58 return attr
59

60

61 class Property:
62 _formaters = {}
63

64 def __init__(self, type_=str, query_function=’query’, formater=str,
**kwargs):↪→

65 self.type = type_
66 self.formater = formater
67 self.query_function = query_function
68

69 if (1 if formater is not str else 0) + len(kwargs) > 1:
70 raise ValueError(’Incorrect number of formaters specified.’)
71

72 for formater, param in kwargs.items():
73 if formater in self._formaters:
74 setattr(self, formater, param)
75 self.formater = partial(self._formaters[formater], param)
76 else:
77 raise ValueError(f’Unknown formater {formater}.’)
78

79 def format(self, value):

84

80 return self.formater(self.type(value))
81

82 def parse(self, value):
83 return self.type(value)
84

85 @classmethod
86 def add_formater(cls, caster, method):
87 cls._formaters[caster] = method
88

89

90 def propertyformater(caster):
91 return lambda method: Property.add_formater(caster, method)
92

93

94 @propertyformater(’choices’)
95 def choice_formater(choices, choice):
96 if choice not in choices:
97 raise ValueError(f’Invalid option {choice}..’)
98

99 return choice
100

101

102 @propertyformater(’quotes’)
103 def quoted_formater(quotes, string):
104 return f’{quotes}{string}{quotes}’
105

106

107 @propertyformater(’prefix’)
108 def prefix_formater(prefix, string):
109 return f’{prefix}{string}’
110

111

112 @propertyformater(’postfix’)
113 def postfix_formater(postfix, string):
114 return f’{string}{postfix}’
115

116

117 class SCPIInstrument(Instrument):
118 namespace_separator = ’:’
119

120 def attribute_to_property(self, attr):
121 return f’:{attr.replace("_", self.namespace_separator)}’

B.1.7 instruments/filter.py

1 from instruments import Instrument, Property
2

3

4 class KrohnHite3940(Instrument):
5 CH = Property(int, prefix=’1.’)
6 T = Property(int)

85

7 M = Property(int)
8 F = Property(float)
9

10 def __init__(self, *args, **kwargs):
11 super().__init__(*args, set_message=’{}{}’, **kwargs)
12 self.write(’CE’)
13

14

15 class Filter(KrohnHite3940):
16 def config(self, lowpass=None, highpass=None, kind=’butterworth’):
17 if kind == ’butterworth’:
18 kind = 1
19 elif kind == ’bessel’:
20 kind = 2
21 else:
22 raise ValueError(f’Unknown kind passed to config: {kind}.’)
23

24 if lowpass and highpass:
25 self.CH = 1
26 self.M, self.T = 3, kind
27 self.F = highpass
28

29 self.CH = 2
30 self.F = lowpass
31

32 elif lowpass:
33 self.CH = 2
34 self.M, self.T = 1, kind
35 self.F = lowpass
36

37 elif highpass:
38 self.CH = 1
39 self.M, self.T = 2, kind
40 self.F = highpass
41

42 else: # Bypass
43 self.CH, self.M = 1, 5
44 self.CH, self.M = 2, 5

B.1.8 instruments/hygrometer.py

1 from instruments import Instrument, Property
2

3

4 class VaisalaHMT313(Instrument):
5 FORM = Property()
6 SEND = Property()
7

8 def __init__(self, *args, **kwargs):
9 super().__init__(*args, query_message=’{}’, **kwargs)
10

86

11 self.resource.read_termination = None
12 self.resource.write_termination = ’\r’
13

14

15 class Hygrometer(VaisalaHMT313):
16 def __init__(self, *args, **kwargs):
17 super().__init__(*args, **kwargs)
18

19 self.FORM = ’RH #n’
20 self.resource.read_termination = ’\n’
21

22 @property
23 def relative_humidity(self):
24 return float(self.SEND)

B.1.9 instruments/impedanceanalyzer.py

1 import re
2

3 from instruments import Instrument, Property
4

5

6 class HP4192A(Instrument):
7 A = Property(int)
8 C = Property(int)
9 F = Property(int)
10 V = Property(int)
11 OL = Property(float, postfix=’EN’)
12 FR = Property(float, postfix=’EN’)
13

14 def __init__(self, resource):
15 super().__init__(resource, set_message=’{}{}’)
16 self.resource.read_termination = ’\r\n’
17

18

19 class ImpedanceAnalyzer(HP4192A):
20 def measure(self, frequency, voltage):
21 self.V = 1 # Enable averaging
22 self.A = 2 # Set a + ib output
23 self.C = 3 # Select admittance (parallel circuit)
24 self.F = 0 # Output from display A and B
25 self.OL = voltage # Set voltage
26 self.FR = frequency / 1e3 # Set frequency
27 value = self.query(’EX’)
28

29 number = ’[+\-]?[\d.]+E[+\-]?[\d]+’
30 match = re.match(f’NGFN({number}),NBFN({number})’, value)
31

32 if match:
33 return float(match.group(1)) + float(match.group(2))*1j
34 else:

87

35 raise ValueError(f’Impedance analyzer returned unreadable value
{value!r}.’)↪→

B.1.10 instruments/oscilloscope.py

1 from collections import namedtuple, OrderedDict
2 from time import strftime
3

4 from numpy import array, arange, logspace, newaxis, absolute, int16
5

6 from . import SCPIInstrument, Property
7

8

9 _channels = (’CH1’, ’CH2’, ’CH3’, ’CH4’,
10 ’MATH’, ’REF1’, ’REF2’, ’REF3’, ’REF4’,
11 ’D0’, ’D1’, ’D2’, ’D3’, ’D4’, ’D5’, ’D6’, ’D7’, ’D8’, ’D9’,

’D10’, ’D11’, ’D12’, ’D13’, ’D14’, ’D15’,↪→

12 ’DIGITAL’, ’AUX’)
13 _scales = namedtuple(’Scales’, (’horizontal’, ’ch1’, ’ch2’))
14

15

16 class TektronixDPO3000(SCPIInstrument):
17 ACQUIRE_MODE = Property(choices=(’SAMPLE’, ’PEAKDETECT’, ’HIRES’,

’AVERAGE’, ’ENVELOPE’))↪→

18 ACQUIRE_NUMAVG = Property(int)
19 ACQUIRE_STATE = Property(choices=(’OFF’, ’ON’, ’RUN’, ’STOP’))
20 ACQUIRE_STOPAFTER = Property(choices=(’RUNSTOP’, ’SEQUENCE’))
21

22 CH1_COUPLING = Property(choices=(’AC’, ’DC’, ’GND’))
23 CH1_LABEL = Property(quotes=’"’)
24 CH1_POSITION = Property(int)
25 CH1_SCALE = Property(float)
26 CH2_COUPLING = Property(choices=(’AC’, ’DC’, ’GND’))
27 CH2_LABEL = Property(quotes=’"’)
28 CH2_POSITION = Property(int)
29 CH2_SCALE = Property(float)
30

31 CURVE = Property(array, query_function=’query_values’)
32

33 DATA_SOURCE = Property(choices=_channels)
34 DATA_ENCDG = Property(choices=(’ASCII’, ’FASTEST’, ’RIBINARY’, ’RPBINARY’,

’SRIBINARY’, ’SRPBINARY’))↪→

35 DATA_WIDTH = Property(int)
36

37 CURSOR_FUNCTION = Property(choices=(’OFF’, ’SCREEN’, ’WAVEFORM’))
38 CURSOR_VBARS_POSITION1 = Property(float)
39 CURSOR_VBARS_POSITION2 = Property(float)
40 CURSOR_VBARS_UNITS = Property(choices=(’SECONDS’, ’HERTZ’, ’DEGREES’,

’PERCENT’))↪→

41

42 HORIZONTAL_DELAY_MODE = Property(choices=(’OFF’, ’ON’))

88

43 HORIZONTAL_POSITION = Property(float)
44 HORIZONTAL_RECORDLENGTH = Property(int)
45 HORIZONTAL_SCALE = Property(float)
46

47 HEADER = Property(choices=(’OFF’, ’ON’))
48 DATE = Property(quotes=’"’)
49 TIME = Property(quotes=’"’)
50

51 SELECT_CH1 = Property(choices=(’OFF’, ’ON’))
52 SELECT_CH2 = Property(choices=(’OFF’, ’ON’))
53 SELECT_CONTROL = Property(int)
54

55 TRIGGER_A = Property(choices=(’SETLEVEL’,))
56 TRIGGER_A_EDGE_SOURCE = Property(choices=_channels)
57 TRIGGER_A_MODE = Property(choices=(’AUTO’, ’NORMAL’))
58

59 WFMOUTPRE_XINCR = Property(float)
60 WFMOUTPRE_XZERO = Property(float)
61 WFMOUTPRE_YMULT = Property(float)
62 WFMOUTPRE_YOFF = Property(float)
63 WFMOUTPRE_YZERO = Property(float)
64

65 def __init__(self, *args, **kwargs):
66 super().__init__(*args, **kwargs)
67

68 self.resource.read_termination = ’\n’
69 self.resource.write_termination = ’\n’
70

71

72 Channel = namedtuple(’Channel’, [’number’, ’label’, ’propagates’])
73

74

75 class Oscilloscope(TektronixDPO3000):
76 hdivs = 10
77 _hscales = logspace(-9, 3, 13)[newaxis].T * array((1, 2, 4))
78 _hscales[3, 0] = 8e-7
79 _hscales = _hscales.flatten()[:-2]
80

81 vdivs = 10
82 _vscales = logspace(-3, 1, 5)[newaxis].T * array((1, 2, 5))
83 _vscales =_vscales.flatten()[:-2]
84

85 def __init__(self, *args, noise_percentage=.1, timeout=300000, **kwargs):
86 super().__init__(*args, **kwargs)
87

88 self.resource.timeout = timeout
89 self.resource.values_format.is_binary = True
90 self.resource.values_format.datatype = ’h’
91 self.resource.values_format.is_big_endian = True
92 self.resource.values_format.container = int16
93

89

94 self.write(’*RST;*WAI’)
95

96 self.TRIGGER_A_EDGE_SOURCE = ’AUX’
97 self.TRIGGER_A_MODE = ’NORMAL’
98 self.TRIGGER_A = ’SETLEVEL’
99

100 self.SELECT_CH1 = self.SELECT_CH2 = ’ON’
101 self.CH1_COUPLING = self.CH2_COUPLING = ’AC’
102

103 self.HORIZONTAL_DELAY_MODE = ’OFF’
104 self.HORIZONTAL_RECORDLENGTH = 1e4
105 self.HORIZONTAL_POSITION = noise_percentage * 100
106

107 self.DATE = strftime(’%Y-%m-%d’)
108 self.TIME = strftime(’%H:%M:%S’)
109

110 self.HEADER = ’OFF’
111 self.DATA_WIDTH = 2
112 self.DATA_ENCDG = ’RIBINARY’
113

114 def acquire(self, time_scale=None, ch1_scale=None, ch2_scale=None,
length=None, average=None, position=None):↪→

115 if average:
116 self.ACQUIRE_MODE = ’AVERAGE’
117 self.ACQUIRE_NUMAVG = average
118

119 if time_scale:
120 self.HORIZONTAL_SCALE = time_scale
121

122 if length:
123 self.HORIZONTAL_RECORDLENGTH = length
124

125 if position:
126 self.HORIZONTAL_POSITION = position
127

128 self.CH1_POSITION = 0
129 if ch1_scale:
130 self.CH1_SCALE = ch1_scale
131

132 self.CH2_POSITION = 0
133 if ch2_scale:
134 self.CH2_SCALE = ch2_scale
135

136 self.ACQUIRE_STOPAFTER = ’SEQUENCE’
137 self.ACQUIRE_STATE = ’RUN’
138 self.write(’*WAI’)
139

140 def record(self, channel):
141 self.DATA_SOURCE = f’CH{channel}’
142 data = self.CURVE
143

90

144 x_zero = self.WFMOUTPRE_XZERO
145 x_increment = self.WFMOUTPRE_XINCR
146 y_zero = self.WFMOUTPRE_YZERO
147 y_multiplier = self.WFMOUTPRE_YMULT
148 y_offset = self.WFMOUTPRE_YOFF
149

150 timestamps = x_zero + arange(0, len(data)) * x_increment
151 amplitudes = (data - y_offset) * y_multiplier + y_zero
152

153 return timestamps, amplitudes
154

155 def cursors(self, cursor1=None, cursor2=None):
156 self.CURSOR_FUNCTION = ’WAVEFORM’
157 self.CURSOR_VBARS_UNITS = ’SECONDS’
158

159 if cursor1 is not None:
160 self.CURSOR_VBARS_POSITION1 = cursor1
161

162 if cursor2 is not None:
163 self.CURSOR_VBARS_POSITION2 = cursor2
164

165 @property
166 def channel(self):
167 return self.SELECT_CONTROL
168

169 def scale(self, channel=None):
170 return getattr(self, (f’CH{channel}’ if channel else ’HORIZONTAL’) +

’_SCALE’)↪→

171

172 def get_scales(self, direction, minimum_scale=0,
maximum_scale=float(’inf’)):↪→

173 if direction == ’vertical’:
174 return self._vscales[(minimum_scale <= self._vscales) &

(self._vscales <= maximum_scale)]↪→

175 elif direction == ’horizontal’:
176 return self._hscales[(minimum_scale <= self._hscales) &

(self._hscales <= maximum_scale)]↪→

177 else:
178 raise ValueError(f’Unknown direction {direction}.’)
179

180 def step_scale(self, current_scale, delta=0, direction=’vertical’,
**kwargs):↪→

181 scales = self.get_scales(direction, **kwargs)
182 current_idx = absolute(scales - current_scale).argmin()
183 next_idx = current_idx + delta
184

185 if next_idx < 0:
186 next_idx = 0
187 elif next_idx >= len(scales):
188 next_idx = len(scales) - 1
189

91

190 return scales[next_idx]
191

192 def scale_delta(self, scale1, scale2, direction=’vertical’):
193 scales = self.get_scales(direction)
194 idx1 = absolute(scales - scale1).argmin()
195 idx2 = absolute(scales - scale2).argmin()
196 return idx2 - idx1

B.1.11 instruments/thermometer.py

1 import re
2 from datetime import datetime, timedelta
3

4 from instruments import Instrument, Property
5

6

7 class ASLF250MKII(Instrument):
8 D = Property()
9

10 def __init__(self, *args, **kwargs):
11 super().__init__(*args, query_message=’{}’, **kwargs)
12

13 self.resource.read_termination = ’\r\n’
14 self.resource.write_termination = ’\n’
15

16

17 class Thermometer(ASLF250MKII):
18 def __init__(self, *args, skip_time=timedelta(seconds=5), **kwargs):
19 super().__init__(*args, **kwargs)
20

21 self.last_query_time = datetime.min
22 self.skip_time = skip_time
23

24 @property
25 def temperature(self):
26 if datetime.now() - self.last_query_time >= self.skip_time:
27 value = self.D
28 self.last_query_time = datetime.now()
29 match = re.match(’(\w) ([\d.]+)(\w)’, value)
30

31 if match:
32 return float(match.group(2))
33 else:
34 raise ValueError(f’Thermometer returned unreadable value

{value!r}.’)↪→

35 else:
36 return float(’nan’)

92

B.1.12 instruments/waveformgenerator.py

1 from instruments import SCPIInstrument, Property
2

3

4 class Agilent33220A(SCPIInstrument):
5 BURST_INTERNAL_PERIOD = Property(float)
6 BURST_MODE = Property(choices=(’TRIGGERED’, ’GATED’))
7 BURST_NCYCLES = Property(int)
8 BURST_STATE = Property(choices=(’OFF’, ’ON’))
9

10 FREQUENCY = Property(int)
11 FUNCTION = Property(choices=(’SINUSOID’, ’SQUARE’, ’RAMP’, ’PULSE’,

’NOISE’, ’DC’, ’USER’))↪→

12 OUTPUT = Property(choices=(’OFF’, ’ON’))
13 VOLTAGE = Property(float)
14

15

16 class WaveformGenerator(Agilent33220A):
17 def __init__(self, *args, **kwargs):
18 super().__init__(*args, **kwargs)
19 self.write(’*RST’)
20

21 def signal(self, frequency, cycles, voltage, period):
22 self.FUNCTION = ’SINUSOID’
23 self.FREQUENCY = frequency
24 self.VOLTAGE = voltage
25

26 self.BURST_STATE = ’ON’
27 self.BURST_MODE = ’TRIGGERED’
28 self.BURST_NCYCLES = cycles
29 self.BURST_INTERNAL_PERIOD = period
30

31 self.OUTPUT = ’ON’

B.1.13 spec/data.py

1 from tables import FloatAtom, ComplexAtom
2

3

4 def setup_variables(file, distance=None, burst_length=None):
5 if distance is not None:
6 file.create_array(file.root, ’d’, distance, title=’Separation

distance’)↪→

7 if burst_length is not None:
8 file.create_array(file.root, ’l’, burst_length, title=’Burst length’)
9

10

11 def frequency_variable(file, expected_rows=None):
12 return file.create_earray(file.root, ’f’,
13 atom=FloatAtom(8),

93

14 shape=(0,),
15 title=’Frequency’,
16 expectedrows=expected_rows)
17

18

19 def environment_variables(file, expected_rows=None):
20 return (file.create_earray(file.root, label,
21 atom=FloatAtom(8),
22 shape=(0,),
23 title=description,
24 expectedrows=expected_rows)
25 for label, description in ((’t’, ’Temperature’),
26 (’p’, ’Pressure’),
27 (’h’, ’Relative humidity’)))
28

29

30 def waveform_variables(file, sample_count, expected_rows=None):
31 return (file.create_earray(file.root, label,
32 atom=FloatAtom(8),
33 shape=(0, sample_count),
34 title=description,
35 expectedrows=expected_rows)
36 for label, description in ((’ttx’, ’Transmitter timestamps’),
37 (’htx’, ’Transmitter amplitudes’),
38 (’trx’, ’Receiver timestamps’),
39 (’hrx’, ’Receiver amplitudes’)))
40

41

42 def admittance_variable(file, expected_rows=None):
43 return file.create_earray(file.root, ’Y’,
44 atom=ComplexAtom(16),
45 shape=(0,),
46 title=’Admittance’,
47 expectedrows=expected_rows)

B.1.14 spec/measurements.py

1 from collections import OrderedDict
2

3 from numpy import absolute, floor
4

5 from instruments.oscilloscope import Channel
6

7

8 def measure_waveforms(frequency, burst_length, propagation_time, voltage,
9 oscilloscope, waveform_generator):
10 # Measurement parameters
11 noise_percentage = .1
12 window = (propagation_time + burst_length) / (1 - noise_percentage)
13 cycles = floor(burst_length * frequency) # Number of cycles per burst
14 duration = cycles / frequency

94

15

16 if cycles < 1:
17 raise ValueError(’Burst length too short to include any cycles.’)
18

19 # Set up burst
20 waveform_generator.signal(frequency, cycles, voltage=voltage, period=3 *

window)↪→

21

22 # Initialize channels and scales
23 channels = (Channel(1, label=’tx’, propagates=False), Channel(2,

label=’rx’, propagates=True))↪→

24 time_scale = oscilloscope.get_scales(’horizontal’, minimum_scale=window /
oscilloscope.hdivs)[0]↪→

25 amplitude_scales = OrderedDict(((channel, oscilloscope.scale(channel)) for
channel, _, _ in channels))↪→

26

27 timestamp, amplitude = {}, {}
28 while not all(label in timestamp and label in amplitude for _, label, _ in

channels):↪→

29 # Prepare capture
30 oscilloscope.acquire(time_scale, *amplitude_scales.values(),

average=128, position=100 * noise_percentage)↪→

31 oscilloscope.cursors(propagation_time, propagation_time + duration)
32

33 for channel, label, propagates in channels:
34 # Record trace
35 timestamp[label], amplitude[label] = oscilloscope.record(channel)
36

37 # Check for clipping or suboptimal scaling
38 start = propagation_time if propagates else 0
39 end = start + duration
40 burst = (start < timestamp[label]) & (timestamp[label] < end)
41 peak = absolute(amplitude[label][burst]).max()
42 fill = peak / (amplitude_scales[channel] * oscilloscope.vdivs / 2)
43 next_scale = oscilloscope.step_scale(amplitude_scales[channel],
44 delta=-1 if fill < .25 else 1

if fill > .75 else 0,↪→

45 minimum_scale=10e-3)
46

47 # Delete trace and rescale if the channel needs to be rescaled
48 if oscilloscope.scale_delta(next_scale, amplitude_scales[channel])

!= 0:↪→

49 amplitude_scales[channel] = next_scale
50 del timestamp[label], amplitude[label]
51

52 return timestamp, amplitude
53

54

55 def measure_admittance(frequency, impedance_analyzer):
56 return impedance_analyzer.measure(frequency, voltage=1)

95

Appendix C

tftools

The tftools library contains a set of MATLAB utility functions written by the current author to
facilitate post-processing of transfer functions.

The physical models in the library and its tools are written as general as feasible, and as
such may lend itself reuse elsewhere. Due to time constraints the library is poorly documented,
and users are encouraged to read the source code for hints on how to use it.

C.1 Source code

C.1.1 attenuationNitrogen

Path: models/attenuationNitrogen.m

1 function [alphaN, frN] = attenuationNitrogen(f, t, p, h)
2 T = 273.15 + t; % Thermodynamic temperature
3

4 % Approximate equations after ANSI/ASA S.126-1995
5 pa = p/1e3; % Kilopascals
6 pr = 101.325; % NIST STP pressure in kilopascals
7 Tr = 293.15; % NIST STP temperature
8 xw = waterVapor(t, p, h);
9 xwp = xw * 100; % Mole fraction of water vapor in percent
10

11 frN = pa/pr .* (T/Tr).^(-1/2) .* (9 + 280*xwp.*exp(-4.170*((T/Tr).^(-1/3) -
1)));↪→

12 alphaN = f.^2 .* (T/Tr).^(-5/2) .* 0.1068.*exp(-3352.0./T).*(frN./(frN.^2 +
f.^2));↪→

13 end

C.1.2 attenuationOxygen

Path: models/attenuationOxygen.m

1 function [alphaO, frO] = attenuationOxygen(f, t, p, h)
2 T = 273.15 + t; % Thermodynamic temperature
3

4 % Approximate equations after ANSI/ASA S.126-1995
5 pa = p/1e3; % Kilopascals
6 pr = 101.325; % NIST STP pressure in kilopascals
7 Tr = 293.15; % NIST STP temperature

96

8 xw = waterVapor(t, p, h);
9 xwp = xw * 100; % Mole fraction of water vapor in percent
10

11 frO = pa/pr .* (24 + (4.04e4*xwp).*(0.02 + xwp)./(0.391 + xwp));
12 alphaO = f.^2 .* (T/Tr).^(-5/2) .* 0.01275.*exp(-2239.1./T).*(frO./(frO.^2 +

f.^2));↪→

13 end

C.1.3 BPDC

Path: models/BPDC.m

1 function H = BPDC(k, a, z)
2 H = 1 - (4/pi) * ...
3 integral(@(theta) exp(-1i * k .* (sqrt(z.^2 + (2*a*cos(theta)).^2) - z))

.* ...↪→

4 sin(theta).^2, ...
5 0, pi/2, ’ArrayValued’, true);
6 end

C.1.4 carbonDioxide

Path: models/carbonDioxide.m

1 function xc = carbonDioxide
2 xc = 4e-4; % Mole fraction of carbondioxide, assumed 400ppm (CITATION NEEDED)
3 end

C.1.5 speedOfSound

Path: models/speedOfSound.m

1 function c = speedOfSound(f, t, p, h)
2 %C Calculates the speed of sound
3 % c = c(f, t, p, h) Calculates the speed of sound based on the values
4 % given for frequency (), temperature (Celsius), pressure (Pascal),
5 % and relative humidity (percentage in range 0-1).
6 f = f(:)’;
7 t = t(:)’;
8 p = p(:)’;
9 h = h(:)’;
10

11 xc = carbonDioxide; % Mole fraction of carbondioxide
12 xw = waterVapor(t, p, h); % Mole fraction of water vapor
13

14 [alphaO, frO] = attenuationOxygen(f, t, p, h);
15 [alphaN, frN] = attenuationNitrogen(f, t, p, h);
16

17 % Approximate equation after Cramer/1993
18 a = [331.5024 0.603055 -0.000528 51.471935 0.1495874 -0.000782 -1.82e-7 ...
19 3.73e-8 -2.93e-10 -85.20931 -0.228525 5.91e-5 -2.835149 -2.15e-13 ...

97

20 29.179762 0.000486];
21 tp = [ones(size(t)); t; t.^2];
22 c0 = a*[tp; repmat(xw, 3, 1).*tp; repmat(p, 3, 1).*tp; xc*tp; ...
23 xw.^2; p.^2; repmat(xc^2, 1, length(t)); xw.*p.*xc];
24

25 % Dispersion correction after Howell and Morfey/1980
26 c = (c0.^-1 - (alphaO./frO + alphaN./frN)/(2*pi)).^-1;
27 end

C.1.6 transmissionLine

Path: models/transmissionLine.m

1 function E = transmissionLine(f, l, L, C, Z, varargin)
2 p = inputParser;
3 addOptional(p, ’impedance’, ’load’, @(x) any(strcmp(x, {’input’, ’load’})))
4 parse(p, varargin{:})
5 impedance = p.Results.impedance;
6

7 c = sqrt(L*C)^-1;
8 RC = sqrt(L/C);
9

10 k = 2*pi*f / c;
11 Za = 1i * RC * tan(k*l/2);
12 Zb = -1i * RC ./ sin(k*l);
13 V = 1;
14

15 E = zeros(length(f), 4);
16 for idx = 1:length(f)
17 if strcmp(impedance, ’load’)
18 constraints = [zeros(3, 4); 0 0 -1 Z(idx)];
19 elseif strcmp(impedance, ’input’)
20 constraints = [zeros(3, 4); -1 Z(idx) 0 0];
21 end
22

23 % Vs Is Vr Ir
24 A = [1 0 0 0;
25 -1 Za(idx)+Zb(idx) 0 -Zb(idx);
26 0 -Zb(idx) 1 Za(idx)+Zb(idx);
27 0 0 0 0] + constraints;
28 b = [V 0 0 0]’;
29

30 x = A\b;
31 E(idx,:) = x;
32 end
33

34 E = array2table(E, ’VariableNames’, {’Vsource’, ’Isource’, ...
35 ’Vreceiver’, ’Ireceiver’});
36 end

98

C.1.7 waterVapor

Path: models/waterVapor.m

1 function xw = waterVapor(t, p, h)
2 T = 273.15 + t; % Thermodynamic temperature
3

4 % fW, psv and xw given in Cramer/1993 appendix
5 f = 1.00062 + 3.14e-8*p + 5.6e-7*t.^2; % Enhancement factor
6 psv = exp(1.2811805e-5*T.^2 - 1.9509874e-2*T + 34.04926034 - 6.3536311e3./T);

% Saturation vapor pressure↪→

7 xw = h .* f .* psv./p; % Mole fraction of water vapor
8 end

C.1.8 applytf

Path: transferfunctions/applytf.m

1 function h = applytf(h, f, H)
2 H = griddedInterpolant(f, H, ’nearest’);
3 H = H(0:f(2)-f(1):f(end)) / 2;
4 H = [H fliplr(conj(H(2:end-1)))].’;
5

6 for idx = 1:size(h, 2)
7 h(:,idx) = real(ifft(fft(h(:,idx)) .* H));
8 end
9 end

C.1.9 crossings

Path: transferfunctions/private/crossings.m

1 function crossings = crossings(h)
2 %CROSSINGS Detects zero crossings in the signal h
3 % crossings = crossings(h) Finds all the points at which the signal
4 % crosses the zero line. When a zero crossing is found the point before
5 % or after the crossing is returned depending on which is closer to zero.
6 h = h(:);
7

8 % Find all crossings
9 crossings = find(h(1:end-1) .* h(2:end) <= 0 & ...
10 (h(1:end-1) ~= 0 | h(2:end) ~= 0)); % First index of

crossings↪→

11 [~, idx] = min(abs(h([crossings crossings + 1])), [], 2); % Is first or second
index smaller?↪→

12 crossings = crossings + idx - 1; % Correct if second is smaller
13 crossings = unique(crossings); % Remove duplicates
14 end

C.1.10 fftpad

Path: transferfunctions/private/fftpad.m

99

1 function [N, n] = fftpad(f, L, fs, range)
2 %FFTPAD Optimizes fft padding to center a frequency bin close to the
3 %frequency f.
4 % fftpad(f, L, fs) finds the optimal signal length in the range [L 2L].
5 % fftpad(___, range) extends the range to the specified range parameter.
6

7 if nargin < 4
8 range = [1 2];
9 end
10

11 % Possible values
12 n = ceil(range(1)*L*f/fs):floor(range(2)*L*f/fs);
13 N = n*(fs/f);
14

15 % Find optimal
16 [~, idx] = min(N - round(N));
17

18 % Extract
19 n = n(idx) + 1; % Off by one due to MatLab indexing
20 N = round(N(idx));
21 end

C.1.11 waveformtf

Path: transferfunctions/waveformtf.m

1 function H = waveformtf(f, ttx, htx, trx, hrx, bt, pt)
2 if length(pt) == 1
3 pt = repmat(pt, size(f));
4 end
5

6 if length(bt) == 1
7 bt = repmat(bt, size(f));
8 end
9

10 H = cellfun(@transferfunctionvalue, ...
11 num2cell(f, 1), ...
12 num2cell(ttx, 1), num2cell(htx, 1), ...
13 num2cell(trx, 1), num2cell(hrx, 1), ...
14 num2cell(bt, 1), num2cell(pt, 1));
15 end
16

17 function H = transferfunctionvalue(f, ttx, htx, trx, hrx, bt, pt)
18 for data = [struct(’ch’, ’tx’, ’time’, ttx, ’sig’, htx, ’propagates’, false),

...↪→

19 struct(’ch’, ’rx’, ’time’, trx, ’sig’, hrx, ’propagates’, true)]
20 % Reassign loop data
21 time = data.time;
22 sig = data.sig;
23 ch = data.ch;
24 propagates = data.propagates;

100

25

26 % Remove bias
27 sig = sig - mean(sig);
28

29 % Calculate sample rate
30 dt = time(2) - time(1);
31 fs = 1/dt;
32

33 for data = [struct(’idx’, 1, ’discard’, .4, ’indexer’, crossings(sig)),
...↪→

34 struct(’idx’, 2, ’discard’, 0, ’indexer’, 1:length(time))]
%#ok<FXSET>↪→

35 % Reassing loop data
36 idx = data.idx;
37 discard = data.discard;
38 indexer = data.indexer;
39

40 % Estimate start and stop based on characteristic data
41 start = pt * propagates;
42 stop = start + bt;
43

44 % Discard part of the signal according to the discard variable and
45 % readjust to closest estimated period based on characteristic data
46 discard = discard * bt;
47 cyclestarts = (0:floor(f * bt)-1) / f;
48 [~, ndx] = min(abs(cyclestarts - discard));
49 start = start + cyclestarts(ndx);
50

51 % Select closest sample to calculated start and stop according to
52 % the indexer variable
53 [~, start] = min(abs(time(indexer) - start));
54 [~, stop] = min(abs(time(indexer) - stop));
55 ndx = indexer(start):indexer(stop);
56

57 % Calculate DFT bin of cut signal
58 h = sig(ndx);
59 L = length(h);
60 [N, n] = fftpad(f, L, fs);
61 dft.(ch)(idx) = goertzel([h; zeros(N-L, 1)], n);
62 end
63 end
64

65 % Calculate transfer function value
66 Habs = abs(dft.rx(1)/dft.tx(1));
67 Hangle = angle(dft.rx(2)/dft.tx(2));
68 H = Habs * exp(1i * Hangle);
69 end

101

	Introduction
	Background and motivation
	Objectives
	Outline

	Theory
	Governing principles
	Fourier analysis
	System model
	Diffraction correction
	Finite element analysis
	Helmholtz-Kirchhoff equation

	Simulation
	Geometry
	Materials
	Equations
	Perfectly matched layer
	Mesh
	Solver
	Post-processing

	Measurement
	Experimental setup
	Measuring transfer functions
	Measurement procedure

	Results
	Noise reduction
	Cable transfer functions (H12 and H5open5)
	Receiver transfer function (H56)
	Acoustic transfer function (H25open)
	COMSOL/FEMP comparison

	Discussion
	Validity of the results
	Interpretation of the unexplained discrepancies
	Conclusions
	Suggestions for future work

	FEMP simulations
	Proposed FEMP Python API
	Running FEMP simulations

	labctrl
	Source code

	tftools
	Source code

