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Abstract: We report the measurement of a new observable of jet quenching in central

Pb-Pb collisions at
√
sNN = 2.76 TeV, based on the semi-inclusive rate of charged jets

recoiling from a high transverse momentum (high-pT) charged hadron trigger. Jets are

measured using collinear-safe jet reconstruction with infrared cutoff for jet constituents of

0.15 GeV, for jet resolution parameters R = 0.2, 0.4 and 0.5. Underlying event background

is corrected at the event-ensemble level, without imposing bias on the jet population. Recoil

jet spectra are reported in the range 20 < pch
T,jet < 100 GeV. Reference distributions for pp

collisions at
√
s = 2.76 TeV are calculated using Monte Carlo and NLO pQCD methods,

which are validated by comparing with measurements in pp collisions at
√
s = 7 TeV.

The recoil jet yield in central Pb-Pb collisions is found to be suppressed relative to that

in pp collisions. No significant medium-induced broadening of the intra-jet energy profile

is observed within 0.5 radians relative to the recoil jet axis. The angular distribution of

the recoil jet yield relative to the trigger axis is found to be similar in central Pb-Pb and

pp collisions, with no significant medium-induced acoplanarity observed. Large-angle jet

deflection, which may provide a direct probe of the nature of the quasi-particles in hot

QCD matter, is explored.
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1 Introduction

Hadronic jets are unique probes of the hot Quantum Chromodynamic (QCD) matter gen-

erated in nuclear collisions at collider energies. Interactions of hard-scattered partons with

colored matter may modify intra-jet structure, softening and broadening the distribution

of hadronic jet fragments relative to jets generated in vacuum, and may deflect jets by large

angles. These phenomena, known as jet quenching [1], can probe dynamical properties of

the hot QCD medium [2] and the nature of quasi-particles in the Quark-Gluon Plasma

(QGP) [3].

Jet quenching generates marked, experimentally observable effects. Measurements of

inclusive distributions and correlations of high transverse momentum (high-pT) hadrons

have revealed significant yield suppression in nuclear collisions relative to vacuum [4–16].

Suppression of the inclusive yield of reconstructed jets [17–20] and enhancement in the rate

of energy-imbalanced back-to-back di-jet pairs [21, 22] have also been observed in nuclear

collisions. A measurement of event-averaged missing pT suggests that the radiated energy

induced by the interaction of an energetic parton with the medium is carried to a significant

extent by soft particles at large angles relative to the jet axis [23].

The measurement of reconstructed jets over a wide range in jet energy and jet resolution

parameter (R) is required for comprehensive understanding of jet quenching in heavy-ion

collisions. Such measurements are challenging, however, due to the presence of complex,

uncorrelated background to the jet signal, and the need to minimize biases in the selected

jet population imposed by background suppression techniques. Multiple, complementary

measurement approaches, differing both in instrumentation and in analysis algorithm, are

therefore important to elucidate the physics of jet quenching using reconstructed jets.

In this article we present a new approach to the measurement of jet quenching, based

on the semi-inclusive distribution of charged jets recoiling from a high-pT charged hadron

trigger (“h-jet” coincidence) in central (0-10%) Pb-Pb collisions at
√
sNN = 2.76 TeV. Jets

are reconstructed using charged particle tracks with the kT [24] and anti-kT algorithms [25],

with infrared cutoff for tracks pT,const > 0.15 GeV/c. Uncorrelated background to the recoil

jet signal is corrected solely at the level of ensemble-averaged distributions, without event-

by-event discrimination of jet signal from background, using a technique that exploits the

phenomenology of jet production in QCD. The correction is carried out using an unfolding

technique. This approach enables the collinear-safe measurement in heavy-ion collisions of

reconstructed jets with low infrared cutoff over a wide range of jet energy and R. Recoil jet

distributions, which are differential in pT,jet and in azimuthal angle relative to the trigger

axis, are reported for R = 0.2, 0.4 and 0.5, over the range 20 < pch
T,jet < 100 GeV/c.

Suppression of the recoil jet yield due to quenching is measured by comparison to

the yield in pp collisions. However, our current data for pp collisions at
√
s = 2.76 TeV

do not have sufficient statistical precision to provide a reference for the Pb-Pb measure-

ments reported here. The reference distribution is therefore calculated using the PYTHIA

event generator [26] and perturbative QCD (pQCD) calculations at Next-to-Leading Order

(NLO) [27], which are validated by comparison with ALICE measurements of pp collisions

at
√
s = 7 TeV. Angular broadening of the internal jet structure due to quenching is in-
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vestigated by comparing the differential recoil jet distributions for different values of R.

Acoplanarity between the trigger hadron and recoil jet directions is measured to explore

the deflection of the jet axis induced by quenching. The rate of large angular deviations

is measured; this rate may be dominated by single hard (Molière) scattering, which could

potentially probe the quasi-particle nature of the hot QCD medium [3, 28].

These observables are directly comparable to theoretical calculations, without the need

to model the heavy-ion collision background, due to utilization of a hadron trigger, the semi-

inclusive nature of the observables, and the background suppression technique. The only

non-perturbative component required to calculate the hard-process bias is the inclusive

charged hadron fragmentation function (in-vacuum or quenched) for the trigger hadron.

The paper is organized as follows: section 2, dataset, event selection, and simulations;

section 3, jet reconstruction; section 4, discussion of observables; section 5, raw distri-

butions; section 6, corrections; section 7, systematic uncertainties; section 8, reference

distributions for pp collisions; section 9, results; and section 10, summary.

2 Data set, offline event selection, and simulations

The ALICE detector and its performance are described in [29, 30].

The Pb-Pb collision data were recorded during the 2011 LHC Pb-Pb run at
√
sNN

= 2.76 TeV. This analysis uses the 0–10% most-central Pb-Pb collisions selected by the

online trigger based on the hit multiplicity measured in the forward V0 detectors. The

online trigger had 100% efficiency for the 0–7% interval in centrality percentile, and 80%

efficiency for the 8–10% interval.

Events are reconstructed offline as described in ref. [13]. Charged tracks are measured

in the ALICE central barrel, with acceptance |η| < 0.9 over the full azimuth. Accepted

tracks are required to have 0.15 < pT < 100 GeV/c, with at least 70 Time Projection

Chamber (TPC) space-points and at least 80% of the geometrically findable space-points

in the TPC. To account for the azimuthally non-uniform response of the Inner Tracking

System (ITS) in this dataset, two exclusive classes of tracks are used [30]: tracks with

Silicon Pixel Detector (SPD) hits (70% of all tracks in central Pb-Pb collisions, and 95%

in pp collisions); and tracks without SPD hits but with a primary vertex constraint. The

primary vertex is required to lie within 10 cm of the nominal center of the detector along

the beam axis, and within 1 cm of it in the transverse plane. After offline event selection,

the Pb-Pb dataset consists of 17M events in the 0–10% centrality percentile interval.

The pp collision data used to validate PYTHIA and pQCD calculations were recorded

during the 2010 low-luminosity pp run at
√
s = 7 TeV, using a MB trigger. The MB trigger

configuration, offline event selection, and tracking are the same as described in [31]. After

event selection cuts, the pp dataset consists of 168M events. There is negligible difference

in the inclusive jet cross section for events selected by the ALICE online trigger, and for a

non-single diffractive event population.

Simulations of pp collisions were carried out using PYTHIA 6.425, with the Perugia

0, Perugia 2010, and Perugia 2011 tunes [32]. Instrumental effects are calculated using the

Perugia 0 and Perugia 2010 tunes for pp and Pb-Pb collisions respectively, with a detailed
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detector model implemented using GEANT3 [33]. In addition, a simulation based on HI-

JING [34] is used to evaluate the detector response in the high multiplicity environment

of Pb-Pb collisions. Perugia 2011, which has been tuned to other LHC data, is used as an

alternative to compare with the new data presented here. Simulated events, which include

primary particles and the daughters of strong and electromagnetic decays but not instru-

mental effects or the daughters of weak decays, are denoted “particle level”. Simulated

events also including instrumental effects and weak decay daughters where reconstructed

tracks are selected using the experimental cuts are denoted “detector level”.

For central Pb-Pb collisions, tracking efficiency is 80% for pT > 1 GeV/c, decreasing

to 56% at 0.15 GeV/c. Track momentum resolution is 1% at pT = 1 GeV/c and 3% at pT

= 50 GeV/c. For pp collisions, tracking efficiency is 2%-3% higher than in central Pb-Pb

collisions. Track momentum resolution is 1% at pT = 1 GeV/c for all reconstructed tracks;

4% at pT = 40 GeV/c for tracks with SPD hits; and 7% at pT = 40 GeV/c for tracks

without SPD hits [30, 31].

3 Jet reconstruction

Jet reconstruction for both the pp and Pb-Pb analyses is carried out using the kT [24]

and anti-kT [25] algorithms applied to all accepted charged tracks. The boost-invariant

pT-recombination scheme is used [24]. Jet area is calculated by the Fastjet algorithm using

ghost particles with area 0.005 [35].

Charged jets are not safe in perturbation theory, because radiation carried by neutral

particles is not included. However, infrared-safe calculations of charged-jet observables can

be performed using non-perturbative track functions, which absorb infrared divergences and

describe the energy fraction of a parton carried by charged tracks [36]. Track functions

are analogous to fragmentation functions, with DGLAP-like evolution, and perturbative

calculations using them are in good agreement with PYTHIA calculations [36]. Track

functions can provide the basis for rigorous comparison of the charged-jet measurements

reported here with both analytic and Monte Carlo QCD calculations.

For the Pb-Pb analysis, adjustment of jet energy for the presence of large background

utilizes the FastJet procedure [37], in which jet reconstruction is carried out twice for each

event. The first pass applies the kT algorithm with R = 0.4 to estimate ρ, the density of

jet-like transverse-momentum due to background, which is defined as

ρ = median

{
praw,i

T,jet

Ai
jet

}
, (3.1)

where index i runs over all jet candidates in an event, and praw,i
T,jet and Ai

jet are the transverse

momentum and area of the ith reconstructed jet. Further details are presented in [38]. The

central data points in this analysis are determined by excluding the two jets with highest

praw,i
T,jet from calculation of the median, with a variant used to study systematic sensitivity

to this choice.

The second pass, which generates jet candidates for the reported distributions, applies

the anti-kT algorithm with resolution parameter R = 0.2, 0.4, and 0.5. The value of praw,i
T,jet
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is corrected according to [37],

preco,i
T,jet = praw,i

T,jet − ρ ·A
i
jet, (3.2)

where praw,i
T,jet and Ai

jet are measured for the ith jet in an event, and ρ is a scalar value common

to all jets in each event, but varies from event to event.

Jet candidates are accepted if |ηjet| < 0.5 for R = 0.2 and 0.4 and |ηjet| < 0.4 for

R = 0.5, where ηjet is the pseudo-rapidity of the jet candidate centroid. The azimuthal

acceptance of the recoil yield measurement is π−∆ϕ < 0.6, where ∆ϕ = |ϕtrig−ϕjet| is the

difference between the azimuthal angle of the trigger hadron (ϕtrig) and the jet candidate

centroid (ϕjet), and 0 ≤ ∆ϕ ≤ π.

A cut on jet area is applied to suppress combinatorial jets while preserving high effi-

ciency for true hard jets [39, 40]. Jet candidates are rejected if Ai
jet < 0.07 for R = 0.2;

Ai
jet < 0.4 for R = 0.4; and Ai

jet < 0.6 for R = 0.5.

Similar procedures are followed for the pp data analysis. Jets are reconstructed with

the anti-kT algorithm for R = 0.2, 0.4 and 0.5. Reconstructed preco,ch
T,jet is adjusted using

eq. (3.2), where ρ is estimated in this case by the summed pT in two cones of radius R = 0.4,

with centroids at the same η but perpendicular in azimuth to the leading jet in the event.

The instrumental jet energy resolution (JER), which characterizes the detector re-

sponse relative to charged jets at the particle level, varies from 20% at pT,jet = 20 GeV/c

to 25% at pT,jet = 100 GeV/c, for both Pb-Pb and pp collisions, with negligible depen-

dence on R. The jet energy scale (JES) uncertainty, which is dominated by the uncertainty

of tracking efficiency, is approximately 5% for both Pb-Pb and pp collisions, with negli-

gible dependence on pch
T,jet and R. However, the instrumental response is significantly

non-Gaussian [17] and unfolding of the full response matrix is used for corrections.

4 Discussion of observables

4.1 General considerations

Energetic jets that arise from high momentum transfer (high-Q2) scattering of partons are

readily visible in event displays of high multiplicity heavy-ion collisions [22, 23]. How-

ever, accurate measurement of jet energy in such events, and unbiased measurement of

jet distributions, are more difficult. Application of a jet reconstruction algorithm to high

multiplicity events will cluster hadrons arising from multiple incoherent sources into each

reconstructed jet, resulting in significant smearing of the true hard jet energy distribution.

It will also generate a large population of “combinatorial” background jets comprising solely

hadrons generated by soft production processes (Q2 below a few GeV2), which cannot be

identified as hard jets with smeared energy.

Current heavy-ion jet analyses select the hard jet population on a jet-by-jet basis by

several different approaches: removal of an estimated background component of transverse

energy prior to jet reconstruction [41]; or imposition of a fragmentation bias requiring a

cluster of high-pT tracks or a single high-pT track in the jet, and imposition of a jet pT

threshold [17, 19, 20, 42]. These rejection techniques may bias towards certain fragmenta-

tion patterns in the accepted hard jet population.
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This analysis takes a different approach, in which corrections for background and in-

strumental effects are applied solely at the level of ensemble-averaged distributions, without

rejection of individual jet candidates or removal of event components. The analysis is based

on the semi-inclusive differential distribution of charged jets recoiling from a high-pT trig-

ger hadron, with the trigger hadron selected within a limited pT,trig interval (Trigger Track,

or TT, class). This distribution, which is the number of jets measured in the recoil accep-

tance normalized by the number of trigger hadrons, is equivalent to the ratio of inclusive

production cross sections,

1

NAA
trig

d2NAA
jet

dpch
T,jetdηjet

∣∣∣∣∣
pT,trig∈TT

=

(
1

σAA→h+X
· d2σAA→h+jet+X

dpch
T,jetdηjet

)∣∣∣∣∣
pT,h∈TT

, (4.1)

where AA denotes pp or Pb-Pb collisions, σAA→h+X is the cross section to generate a

hadron within the pT interval of the selected TT class, d2σAA→h+jet+X/dpch
T,jetdη is the

differential cross section for coincidence production of a hadron in the TT interval and a

recoil jet, and pch
T,jet and ηjet are the charged jet transverse momentum and pseudo-rapidity.

Because the observable in eq. (4.1) is semi-inclusive, the selection of events containing a

hard process (“hard-process selection”) is based solely on the presence of a high-pT hadron

trigger. In particular, there is no requirement that a jet satisfying certain criteria be found

in the recoil acceptance. Rather, all jet candidates in the recoil acceptance are counted

in eq. (4.1), regardless of their specific properties. Events with no hard jet candidates

(however defined) falling within the acceptance are not rejected, and contribute to the

normalization. This observable thereby measures the absolutely normalized rate of recoil

jets observed per trigger. Correction for the contribution of uncorrelated background jets

in eq. (4.1) is carried out at a later step in the analysis, as discussed below.

Other jet correlation measurements in heavy-ion collisions have been carried out, in

which hard-process selection utilizes a compound condition that requires the presence of

both a trigger object (jet or photon) and a recoil jet satisfying certain criteria [22, 23, 43].

The jet correlation distributions in these analyses are normalized per trigger-recoil pair;

absolute normalization requires scaling by the inclusive trigger yield, together with selection

of the recoil jet population using the semi-inclusive procedure described above. The role

of normalization in the measurement of in-medium large-angle scattering is discussed in

section 9.2.

4.2 Trigger hadrons and hard-process bias

The use of high-pT hadron triggers for hard-process selection in this analysis is based on

the following considerations.

Hadrons with pT larger than about 5-7 GeV/c are expected to originate primarily from

fragmentation of energetic jets, in both pp and Pb-Pb collisions at
√
sNN = 2.76 TeV (see

e.g. [44]). They provide experimentally clean triggers, without the need for correction for

uncorrelated background. Selection of events by requiring the presence of a high-pT hadron

biases towards events containing a high-Q2 partonic interaction, with jets in the final state.

Inclusive distributions of high-pT hadrons have been measured and calculated theoret-

ically in both pp and heavy-ion collisions at collider energies. For pp collisions at the LHC,
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agreement within a factor two is found between NLO calculations and data for pT > 10

GeV/c, with the discrepancies attributable to poorly constrained gluon fragmentation func-

tions that can be improved by fitting to LHC data [45]. For inclusive hadron production in

heavy-ion collisions [5, 9, 13, 14], the medium-induced modification and evolution of frag-

mentation functions have been calculated in several frameworks, showing good agreement

with data ([46, 47] and references therein). Suppression of inclusive hadron production in

heavy-ion collisions has been used to determine the jet transport parameter q̂ [2].

Any hard-process selection procedure imposes bias on the accepted event population,

and accurate comparison of theory calculations with such measurements requires calcula-

tion of this selection bias. In this analysis, hard-process selection uses the same cuts as

those used for high-pT inclusive hadron measurements. Since inclusive hadron production

is calculable in both pp and Pb-Pb collisions, the selection bias in this analysis is likewise

calculable using current theoretical approaches.

4.3 Hadron-jet coincidences

There are additional considerations for interpreting hadron-triggered recoil distributions in

eq. (4.1) and comparing such measurements to theoretical calculations, as follows.

The h-jet coincidence cross section in pp collisions has been calculated in a pQCD

framework [27]. In this process at LO, a pair of final-state partons is generated with op-

posing transverse momenta, with one of the pair fragmenting into a hadron which carries

momentum fraction z of the recoiling jet. Since z = pT,trig/pT,jet ≤ 1 at LO, the require-

ment of a high-pT,trig hadron above threshold therefore biases against coincident recoil

jets with pT,jet < pT,trig, but does not impose a kinematic constraint on recoil jets with

pT,jet > pT,trig.

The inclusive hadron distribution at high-pT is biased towards high-z jet fragments,

due to interplay between the shape of the inclusive jet pT spectrum and the shape of the

inclusive fragmentation function, with 〈zincl〉 ≈ 0.6 at LHC energies [48]. However, in the

semi-inclusive measurement based on eq. (4.1), the trigger-normalized rate of recoil jets is

measured as a function of pch
T,jet. At LO this corresponds to z = pT,trig/pT,jet, which can

differ significantly from 〈zincl〉 [27]. For fixed pT,trig the z-bias therefore varies as a function

of recoil pT,jet, with stronger bias than the inclusive case for pT,jet ≈ pT,trig, and weaker bias

for pT,jet � pT,trig. The z-bias has been calculated for pp collisions at
√
s = 2.76 and 7 TeV

using the approach of [27] and found to be similar at LO and NLO. This z-bias, which is

kinematic in origin, likewise occurs in nuclear collisions in which jets experience quenching.

This effect is intrinsic to any theoretical framework based on pQCD, both in-vacuum and

quenched, and will be properly accounted for in such calculations.

For quenched jets in nuclear collisions, high-pT hadron selection may generate two

additional, related biases. The first is a bias towards high-z fragments of jets that have

lost relatively little energy in the medium [49]. The second is a geometric bias in which small

energy loss corresponds to small path length in matter. In the latter case, jets generating

high-pT trigger hadrons are generated predominantly on the surface of the collision region

and headed outward [50–56], with the corresponding recoil jet population biased towards

longer path length in matter than the unbiased, fully inclusive jet population.
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The degree to which high-pT hadron selection biases towards small energy loss of its

parent jet determines the degree of similarity in the underlying distribution of high-Q2

processes in pp and Pb-Pb collisions, for the same hadron trigger cuts. In the following,

we refer to potential differences in such Q2 distributions as being due to “trigger-jet”

energy loss. Quantitative assessment of these effects can be carried out using theoretical

calculations of inclusive charged hadron production.

4.4 Semi-inclusive recoil jet measurements

Trigger hadrons lie within the charged-track acceptance |η| < 0.9 and are selected in the

intervals 8 < pT,trig < 9 GeV/c, denoted by TT{8,9} and referred to as the Reference TT

class; and 20 < pT,trig < 50 GeV/c, denoted by TT{20,50} and referred to as the Signal

TT class.

Figure 1 shows semi-inclusive distributions (eq. (4.1)) for recoil jets with R = 0.4, for

the Signal and Reference TT classes in pp collisions at
√
sNN = 7 TeV and central Pb-

Pb collisions measured by ALICE, and in pp collisions at
√
sNN = 2.76 TeV simulated by

PYTHIA. The distributions include all jet candidates in the recoil acceptance.

Since ρ is the median energy density in an event, there must be jet candidates with

energy density less than ρ, and which consequently have preco,ch
T,jet < 0. The recoil jet dis-

tribution in the region preco,ch
T,jet < 0 is seen to be largely uncorrelated with TT class in all

cases, indicating that the yield in this region is dominated by combinatorial jets. In pp

collisions the distribution in this region is narrow, indicating only small background density

fluctuations. The predominant feature of the pp distributions is the strong dependence on

TT class for preco,ch
T,jet > 0, with a harder recoil jet spectrum for higher pT,trig, as expected

from the systematics of jet production in QCD. For Pb-Pb collisions the distribution in

the region preco,ch
T,jet < 0 is much broader, indicating significantly larger background density

fluctuations than in pp collisions. For large and positive preco,ch
T,jet , the recoil jet distribution

in Pb-Pb is strongly correlated with TT class, similar to pp collisions, showing that this

region has significant contribution from the true coincident recoil jet yield.

The integrals of the Pb-Pb distributions in figure 1 are 1.645±0.005(stat) for TT{8,9}
and 1.647± 0.009(stat) for TT{20,50}. This integral represents the average number of jet

candidates per trigger hadron, both correlated and uncorrelated, and is seen to be consis-

tent, within errors of a few per mil, for the two TT classes. Similar features have been

observed in model calculations [57]. Since central Pb-Pb events have high multiplicity, the

recoil acceptance in each event is fully populated by jet candidates. Invariance of the inte-

gral with TT class therefore indicates that the number of jet candidates per trigger hadron

is due largely to geometric factors, specifically the acceptance and jet resolution param-

eter R. This behavior is consistent with the robustness of the anti-kT algorithm against

modification of jet structure by soft particles from the underlying event [25]. Jet candidate

distributions reconstructed using the anti-kT algorithm for different trigger hadron kine-

matics appear to differ most significantly in the shape of the distribution as a function of

pch
T,jet, not in the total number of jet candidates per event.

Based on these considerations we define a new observable, ∆recoil, which suppresses

the uncorrelated jet yield in a purely data-driven way. ∆recoil is the difference between two
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Figure 1. Semi-inclusive distributions of jets recoiling from a hadron trigger for two exclusive

TT classes (eq. (4.1)), for pp collisions at
√
s = 7 TeV from ALICE data (top), pp collisions at√

s = 2.76 TeV from particle-level PYTHIA simulations (center), and central Pb-Pb collisions at√
sNN = 2.76 TeV from ALICE data (bottom). All distributions are a function of preco,chT,jet (eq. (3.2)).

Distributions from data are not corrected for background fluctuations and instrumental effects.

semi-inclusive recoil jet distributions (eq. (4.1)) for the Signal and Reference TT classes [57],

∆recoil =
1

NAA
trig

d2NAA
jet

dpch
T,jetdηjet

∣∣∣∣∣
pT,trig∈TTSig

− cRef ·
1

NAA
trig

d2NAA
jet

dpch
T,jetdηjet

∣∣∣∣∣
pT,trig∈TTRef

. (4.2)

The scale factor cRef , which is within a few percent of unity, is discussed in section 5.1.

– 9 –



J
H
E
P
0
9
(
2
0
1
5
)
1
7
0

The raw ∆recoil distribution must be corrected for instrumental effects and for smear-

ing of coincident recoil jet energy by fluctuations of energy density in the underlying event.

After corrections, ∆recoil represents the change in the distribution of jets recoiling in co-

incidence with a trigger hadron, as the trigger hadron pT changes from the Reference to

Signal TT interval. While this differential coincidence observable has not been reported

previously, it is nevertheless well-defined in terms of perturbative QCD.

We also extend eq. (4.2) to measure the angular distribution of recoil jet yield with re-

spect to the axis defined by the trigger hadron momentum, in order to investigate medium-

induced acoplanarity [3, 28] (“inter-jet broadening”). The azimuthal correlation between

the trigger hadron and coincident recoil charged jets is measured via

Φ(∆ϕ) =
1

NAA
trig

d2Njet

dpch
T,jetd∆ϕ

∣∣∣∣∣
pT,trig∈TTSig

− cRef ·
1

NAA
trig

d2Njet

dpch
T,jetd∆ϕ

∣∣∣∣∣
pT,trig∈TTRef

, (4.3)

where the recoil acceptance for this observable is π/2 < ∆ϕ < π. Normalization to unit η

is omitted from the notation for clarity.

We quantify the rate of medium-induced large-angle scattering by measuring the inte-

grated recoil yield at large angular deflection relative to ∆ϕ = π, defined as

Σ (∆ϕthresh) =

∫ π−∆ϕthresh

π/2
d∆ϕ [Φ(∆ϕ)] , (4.4)

where the lower limit of the integration is set arbitrarily to π/2. The upper limit excludes

the main peak of the Φ(∆ϕ) distribution, |∆ϕ − π| < ∆ϕthresh, in order to measure the

yield in the tail of the distribution. Σ (∆ϕthresh) is measured as a function of ∆ϕthresh.

The distributions Φ(∆ϕ) and Σ (∆ϕthresh) likewise represent the change in the angular

distribution of recoil jet yield, as the trigger hadron pT changes from the Reference to

Signal TT interval.

5 Raw distributions

In order to ensure statistical independence of the recoil jet distributions for the Signal and

Reference TT classes, each event is assigned randomly to one of the TT classes and is used

only for its assigned TT class. The statistical reach of the analysis is optimized by assigning

80% of the events to the Signal TT subset and 20% to the Reference TT subset. This choice

balances retention of the high-preco,ch
T,jet component of the Signal recoil jet distribution with

statistical precision of the Reference distribution in the region preco,ch
T,jet < 0, with the latter

condition required to provide accurate normalization of the combinatorial background jet

distribution.

Events within each subset are then selected for further analysis if they contain at least

one hadron within the pT,trig interval of their assigned TT class. If more than one hadron

satisfying this criterion is found, one hadron is chosen randomly as the trigger hadron. For

the Pb-Pb analysis there are 65k events with trigger hadrons in the Reference TT class and

22k in the Signal TT class. For the pp analysis there are 74k events with trigger hadrons

in the Reference TT class and 5k in the Signal TT class.
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Figure 2. Uncorrected trigger-normalized recoil charged jet distributions for central Pb-Pb col-

lisions, with Signal TT{20,50} and Reference TT{8,9}. Jets are reconstructed with the anti-kT
algorithm, constituent pT,const > 0.15 GeV/c, and R = 0.2, 0.4, and 0.5. Left: individual spec-

tra. Right: their ratios. The red line shows a linear fit in the indicated region. Error bars show

statistical errors only. Left-middle panel (R = 0.4) is identical to right panel in figure 1.

5.1 Distributions of ∆recoil

Figure 2, left panels, show uncorrected trigger-normalized recoil jet distributions for R =

0.2, 0.4 and 0.5 for both Signal and Reference TT classes. The right panels show the ratio

of Signal and Reference distributions for each value of R. The error bars in figure 2 are

statistical only, and are dominated by the statistics of the recoil jet yield in all cases. The

statistical error due to trigger hadron yield is negligible.
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R preco,ch
T,jet fit range (GeV/c) Constant (cRef in eq. (4.2)) Slope (GeV/c)−1

0.2 [-12, 2] 0.99± 0.01 0.004± 0.002

0.4 [-20, 4] 0.96± 0.01 0.004± 0.001

0.5 [-26, 10] 0.93± 0.01 0.002± 0.001

Table 1. Parameters from linear fits to ratios shown in right panels of figure 2.

Figure 2, left panels, also show the integrals of the distributions. The integrals are seen

to be insensitive to TT class for a given R, with variations at the percent level or smaller,

while the value of the integral depends strongly on R. These features are consistent with

the geometric interpretation of the integral given in section 4.4.

Table 1 shows the parameters resulting from the fit of a linear function to the ratios

in the right panels of figure 2, in the region of preco,ch
T,jet where the distributions are largely

uncorrelated with TT class. The constant term of the fit, cRef , is less than unity by a few

percent, while the slopes exceed zero by about 2 σ. The individual distributions vary by

three orders of magnitude in this region.

A value of cRef below unity arises because the higher TT class has a larger rate of true

coincident recoil jets, and the integrals of the distributions are largely uncorrelated with

TT class. Larger yield at positive preco,ch
T,jet consequently depletes the yield at negative and

small positive values of preco,ch
T,jet .

Accurate subtraction of the uncorrelated component from the Signal TT distribution

therefore requires scaling of the Reference TT distribution by cRef , as indicated in eq. (4.2)

and eq. (4.3). Scaling of the Reference TT distributions in the pp analysis by cRef has

negligible effect.

Figure 3 shows ∆recoil distributions for R = 0.2, 0.4 and 0.5. The left panels, which

have linear vertical scale, show ∆recoil in the region of preco,ch
T,jet in which the scale factor cRef

is determined. ∆recoil is seen to be consistent with zero over the entire fitting range. These

panels also show the close similarity of the shapes of the Signal and Reference distributions

in this region.

Figure 3, right panels, show ∆recoil at positive preco,ch
T,jet , where the Signal and Reference

distributions diverge. This is the ensemble-averaged distribution of the trigger-correlated

differential jet yield, but with measured preco,ch
T,jet not yet corrected for instrumental effects

and fluctuations of the underlying event background.

5.2 Φ(∆ϕ) and Σ (∆ϕthresh)

The analysis of Φ(∆ϕ) (eq. (4.3)) and Σ (∆ϕthresh) (eq. (4.4)) is the same as that for ∆recoil

in terms of event selection, track cuts, jet reconstruction, and jet candidate selection. For

this analysis we only consider jets with R = 0.4 and 40 < preco,ch
T,jet < 60 GeV/c.

Figure 4, left panel, shows the distributions of Φ(∆ϕ) for TT{8,9} and TT{20,50}
individually, and for TT{20,50}-TT{8,9}, illustrating the effect of the subtraction.

Figure 4, right panel, shows the raw distribution of Σ (∆ϕthresh), likewise for TT{8,9}
and TT{20,50} individually, and for TT{20,50}-TT{8,9}. Since Σ (∆ϕthresh) is an integral
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Figure 3. Distribution of raw ∆recoil for R = 0.2, 0.4, and 0.5, measured in central Pb-Pb collisions

for Signal TT class {20,50} and Reference TT class {8,9}. Left panels: preco,chT,jet range of fit to extract

cRef , with linear vertical scale. Right panels: preco,chT,jet range above fit region, with logarithmic vertical

scale. Error bars show statistical errors only.

over ∆ϕ beyond a specified threshold, care must be taken to ensure statistical independence

of measurements for different values of the threshold. Each point in figure 4, right panel,

is therefore generated from an exclusive subset of the data, with 10% of the data used for

threshold values 0.1 and 0.2, 20% for 0.4, and 60% for 0.7. Subsets of unequal size are

chosen to optimize the statistical errors.

Due to the limited statistical precision of the data, correction of the raw distributions

in figure 4 via unfolding for background fluctuations and instrumental effects is not pos-
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Figure 4. Φ(∆ϕ) (left) and Σ (∆ϕthresh) (right) distributions in central Pb-Pb collisions for

TT{20,50} (open red circles), TT{8,9} (open blue boxes), and TT{20,50}-TT{8,9} (filled black

circles), for jets with 40 < preco,chT,jet < 60 GeV/c. All error bars are statistical only. The vertical

dashed line in the left panel indicates the acceptance limit for the ∆recoil measurement. Points in

the right panel are displaced horizontally for clarity.

sible. In order to compare the Pb-Pb distributions with a reference distribution for pp

collisions, we therefore impose the effects of instrumental response and Pb-Pb background

fluctuations on the distribution calculated by PYTHIA for pp collisions at
√
s = 2.76 TeV.

The instrumental response, modeled by GEANT, is dominated by tracking efficiency and

momentum resolution. The effects of background fluctuations are modeled by embedding

detector-level PYTHIA events into real Pb-Pb events. Recoil jets are reconstructed from

these hybrid events, using the same procedures as real data analysis.

6 Corrections to ∆recoil distributions

Corrections to the raw ∆recoil distributions for underlying event fluctuations and instru-

mental response are carried out using unfolding methods [58, 59], in which the true jet

distribution T is determined from the measured distribution M using a response matrix.

We denote by Rtot the response matrix that incorporates all corrections, due to underlying

event fluctuations and to instrumental response. Rtot maps T (ppart
T,jet) to M(pdet

T,jet),

M(pdet
T,jet) = Rtot

(
pdet

T,jet, p
part
T,jet

)
× T (ppart

T,jet), (6.1)

where ppart
T,jet is the particle-level charged-jet pT and pdet

T,jet is the detector-level or recon-

structed jet pT.

Precise inversion of eq. (6.1) for non-singular Rtot may result in a solution with

large fluctuations in central values and large variance, arising from statistical noise in

M(pdet
T,jet) [58]. Inversion of eq. (6.1) to obtain a physically interpretable solution is

achieved via regularized unfolding, which imposes the additional constraint of smoothness

on the solution.

Input to the unfolding procedure uses jets in the range 20 < pdet
T,jet < 100 GeV/c. The

distribution in eq. (4.2) provides a natural cutoff at low pdet
T,jet, where the difference between
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central values of Signal and Reference distributions is smaller than the statistical error of

the difference, so that imposition of a lower bound in this range is strictly speaking not

required. However, in practice it was found that imposition of a lower bound at pdet
T,jet =

20 GeV/c, which is above the LO cutoff in terms of charged jet pdet
T,jet, is needed for stable

unfolding. This bound was kept as low as possible, to retain as much correlated signal as

possible. The upper bound is set by the requirement that the highest pdet
T,jet bin has at least

10 counts.

Correction for loss of jet yield in the excluded regions is carried out by applying a

ppart
T,jet-dependent efficiency εkin, which is determined using PYTHIA simulations. εkin is

close to unity for all R in the analysis, over most of the range 20 < ppart
T,jet < 100 GeV/c.

Its value is εkin = 50% at ppart
T,jet = 20 GeV/c for all R, due primarily to detector efficiency,

and εkin = 70% at ppart
T,jet = 100 GeV/c for all R, due to the effects of momentum resolution

and background fluctuations. The jet finding efficiency is 95% for ppart
T,jet = 20 GeV/c and

100% for ppart
T,jet > 40 GeV/c, for all R.

For the Pb-Pb analysis, the primary unfolding algorithm is an iterative procedure

based on Bayes’ Theorem [60], as implemented in the RooUnfold software package [61].

Regularization is imposed by requiring only small variation between successive iterations,

which occurs typically after three iterations. Closure of the unfolding procedure for ∆recoil

was tested in model studies with correlated spectrum and background fluctuations similar

to those of this measurement [57]. An alternative unfolding algorithm, regularized Singular

Value Decomposition (SVD) [59], was used to estimate the systematic uncertainties.

Both unfolding algorithms were also used for the pp analysis. In this case, the SVD

algorithm was used to determine the central values, while Bayesian unfolding is used to

estimate the systematics. This was found to be the optimal approach for the more limited

statistics of the pp distributions.

Both unfolding methods require initial specification of a prior distribution. For the

Pb-Pb analysis, the prior is the ∆recoil distribution for pp collisions at
√
s = 2.76 TeV,

calculated using PYTHIA (Perugia 10 tune). For pp collisions at
√
s = 7 TeV, the prior is

calculated using PYTHIA (Perugia 10 tune [32]).

6.1 Correction for instrumental response

The procedures to correct the jet energy for instrumental effects are the same as those

described in [17]. The dominant correction is due to tracking efficiency, with pT resolution

generating the second-largest correction.

Corrections for instrumental effects are determined from simulations of pp collisions

at
√
s = 2.76 TeV generated by PYTHIA, together with detailed detector simulations

generated using GEANT followed by event reconstruction. The lower tracking efficiency

in central Pb-Pb collisions was modeled by randomly discarding additional detector-level

tracks. The additional rejection factor was determined by comparing Hijing and Pythia

efficiencies and corresponds to 2-3%, with weak pT dependence [20].

Jet reconstruction is carried out for each event at both the particle and detector level.

The instrumental response matrix, Rdet, is generated by associating particle-level and
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detector-level jets whose centroids are close in (η, φ), following the procedure described

in [17].

6.2 Correction for background fluctuations

The adjustment of reconstructed jet energy by the estimated background density ρ · Ai
jet

(eq. (3.2)) accounts approximately for event-wise variation in the background level, which

arises from variation in multiplicity within the 0-10% centrality percentile bin [38]. The jet

energy scale of the ∆recoil distribution must still be corrected for energy smearing, due to

local background energy density fluctuations relative to the median background density ρ.

Background fluctuations δpT are measured by two techniques: the Random Cone

method (RC) [38], and a method in which model jets are embedded into real events [39].

The distribution of fluctuations in background energy for the RC method has RMS =

4.35 GeV/c for R = 0.2, 9.9 GeV/c for R = 0.4, and 13 GeV/c for R = 0.5. The RC

method is used for the central data points, with the embedding method used to assess the

systematic uncertainty.

The calculation of ρ (eq. (3.1)) requires algorithmic choices that are not unique, no-

tably the jet reconstruction algorithm and the population of jets used for the median

calculation. However, calculation of the response matrix for unfolding of background fluc-

tuations incorporates the same set of choices. If all jet candidates are retained, without

rejection based on pdet
T,jet, the effect of any systematic shift in JES due to ρ will be precisely

counterbalanced by a shift of the same magnitude but opposite sign in the response ma-

trix. This two-step JES correction, with event-by-event jet energy adjustment for event

pedestal ρ · Ai
jet followed by ensemble-level unfolding of background fluctuations δpT, will

consequently be independent of the specific algorithmic choices for determining ρ.

In this analysis, the definition of ρ for the first step excludes the two hardest jet candi-

dates from the median calculation (eq. (3.1)), while in the second step only jet candidates

with pdet
T,jet > 20 GeV/c are used for unfolding. However, this rejection cut in the second

step induces an implicit dependence on the specific definition of ρ. In order to assess this

effect, the analysis was repeated with an alternative definition of ρ, in which all jet can-

didates are included in the median calculation in the first step. No significant differences

were observed in the corrected recoil jet spectra.

6.3 Cumulative response matrix

For the Pb-Pb analysis, the cumulative response matrix Rtot is the product of the re-

sponse matrices for instrumental response and background fluctuations. To illustrate the

magnitude of corrections to ∆recoil from unfolding the raw distributions with Rtot, we cal-

culate the converse effect by convoluting the ∆recoil distribution for pp collisions with Rtot.

Figure 5 compares the particle-level ∆recoil distribution calculated using PYTHIA for pp

collisions at
√
s = 2.76 TeV for R = 0.2 and 0.5 with their convolution with Rdet and δpT

separately, and Rtot. The figure shows the ratio of the convolution over the unsmeared

distribution. For R = 0.2, the effects of background fluctuations are small, and the net

effect of Rtot is due primarily to the instrumental response. For R = 0.5, the effects of

background fluctuations and instrumental response offset each other to a large degree, with
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Figure 5. Ratio of ∆recoil distributions for pp collisions at
√
s = 2.76 TeV, for R = 0.2 (left) and

R = 0.5 (right). The numerator is convoluted with Rdet and δpT separately, and with Rtot. The

denominator is the unsmeared distribution.

only a small net effect on the central values of the distribution. The distributions for R =

0.4 are similar to those for R = 0.5. Since the shape of the ∆recoil distribution is similar in

the pp and Pb-Pb analyses, the corrections in the two analyses will likewise be similar.

For the pp analysis, only the instrumental response was corrected using unfolding, i.e.

Rtot = Rdet.

6.4 Other effects

In this section we discuss other effects that do not warrant correction of the data.

Since this analysis is based on a semi-inclusive observable, with normalization provided

by the number of trigger hadrons measured offline, correction for online trigger efficiency

(section 2) is not required. No significant difference in measured distributions was observed

for events in the 0-8% and 9-10% centrality intervals.

Tracking efficiency at high-pT is 80% (section 2), so that 20% of all trigger hadrons will

not be observed. However, this tracking efficiency is uniform over the pT,trig range spanning

both the Reference and Signal TT classes, so the loss in trigger statistics is unbiased in

pT,trig. Since the measurements are trigger-normalized semi-inclusive distributions, the

reduction in the observed trigger hadrons corresponds simply to a loss of events, and

correction for this effect is not required.

Section 4.3 presented considerations of trigger-jet energy loss in the interpretation of

these measurements. A related but distinct effect is variation of RAA, the suppression of

inclusive hadron yield in central Pb-Pb collisions, over the pT,trig-interval of the Signal TT

bin [13, 14]. Such a variation can generate different hard-process selection bias for the

same hadron trigger cuts in pp and Pb-Pb collisions, even if trigger-jet energy loss effects

in Pb-Pb are negligible. Using PYTHIA simulations, we estimate that this variation may

generate an increase in ∆recoil of 5% at pT,jet = 20 GeV/c and 15% at pT,jet = 100 GeV/c,

but negligible change in the ratio of ∆recoil in Pb-Pb with different R (see figure 10 and

discussion below). Such effects will however be included in theoretical calculations which
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incorporate quenching and accurately reproduce the measured pT-dependence of inclusive

hadron RAA, and we do not correct the data for them.

High-pT,trig hadron triggers above a fixed pT threshold bias the event population due to

correlation with the Event plane (EP) orientation, and bias towards more-central events.

Both effects will bias the underlying event density and its fluctuations in the recoil jet

region. Note, however, that for the pT,trig ranges of the Signal and Reference TT classes in

this analysis, the second-order EP correlation amplitude v2 exhibits no significant variation

with hadron pT (v2 ≈ 0.01 for pT > 10 GeV/c [62, 63]), and the centrality bias is also

invariant. The subtraction of the two distributions in ∆recoil and Φ(∆ϕ) thereby removes

the effect of such background biases to a significant extent. Residual effects of these biases

are assessed in section 7, and are included in the systematic uncertainties.

Multiple, incoherent partonic interactions (MPI) can generate both a trigger hadron

and uncorrelated hard jets in the recoil acceptance, in the same Pb-Pb collision. A recent

analysis of γ-jet coincidences corrected for this background using a mixed event tech-

nique [43]. Since the rate of uncorrelated hard interactions is by definition independent of

pT,trig, the subtraction of the Reference from the Signal distribution in eq. (4.2) and eq. (4.3)

suppresses entirely the contribution of jet candidates from all uncorrelated sources, includ-

ing jets found in the recoil acceptance arising from MPI. Correction for MPI effects is

therefore not required, for all observables considered in this analysis.

7 Systematic uncertainties

7.1 Systematic uncertainties of ∆recoil

The systematic uncertainties for the distributions from Pb-Pb collisions are deter-

mined by varying parameters and algorithmic choices in corrections for instrumental

response and background fluctuations. For the ∆recoil distribution for pp collisions at√
s = 7 TeV, systematic uncertainties are determined by varying the corrections for the

instrumental response.

The significant systematic uncertainties of the ∆recoil distributions in Pb-Pb collisions

are as follows:

• Fit range for cRef (table 1): variation of limits for fit generates a variation in ∆recoil

of less than 1%;

• Tracking efficiency: variation of Rdet by changing the tracking efficiency by 5% gen-

erates a variation in corrected ∆recoil of 4% at pch
T,jet ≈ 20 GeV/c and 15% at pch

T,jet

≈ 100 GeV/c;

• Fragmentation model for instrumental response: determination of Rdet using

PYQUEN rather than PYTHIA. PYQUEN has large-angle radiation enabled and

was tuned to LHC data [64]. This gives a variation in ∆recoil of 2% at pch
T,jet ≈ 20

GeV/c and 13% at pch
T,jet ≈ 100 GeV/c;
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• Event plane and multiplicity bias: the trigger hadron yield and background fluctu-

ation distributions are measured differentially in bins of azimuthal angle relative to

the EP. The trigger hadron yield is found to be correlated with EP orientation, indi-

cating non-zero elliptic flow. The response matrix is then obtained by weighting the

azimuth-dependent background fluctuation distribution with the azimuth-dependent

trigger hadron yield. The change in corrected jet yield with and without this weight-

ing is less than 5%. The effects of the multiplicity bias are negligible;

• Background fluctuations: using embedding rather than the RC method to measure

background fluctuations (section 6.2) generates differences in the corrected ∆recoil

distribution of less than 10%;

• Variation in unfolding algorithm: termination of Bayesian unfolding after five rather

than three iterations generates variations in ∆recoil of ≈ 1% over most of the measured

range. SVD unfolding yields ∆recoil distributions that differ from the Bayesian-based

corrected distributions by 1%;

• Choice of unfolding prior: for Bayesian-based unfolding, the alternative priors are the

∆recoil distribution for pp collisions at
√
s = 2.76 TeV including a 10% or 20% relative

energy shift, to model jet energy loss. For SVD unfolding, the alternative prior is the

Bayesian-based unfolded distribution. The largest variation in the corrected ∆recoil

is less than 6% at all pch
T,jet;

• Spectrum binning and limits: variations of upper and lower spectrum limits generate

variations in corrected ∆recoil of less than 3% at low pch
T,jet, with negligible variation

at high pch
T,jet. Variation in choice of binning generates changes in corrected ∆recoil

that are less than 4%.

The products of weak decays make negligible contribution to pch
T,jet because of the

stringent track selection requirements of the analysis and the low material budget of the

ITS and TPC. The systematic uncertainty of ∆recoil due to the contribution of secondary

vertex decays is less than 2%.

Table 2 presents the significant systematic uncertainties for R = 0.4, at two values

of pch
T,jet. Uncertainties are presented as the relative difference to the central values of

the corrected ∆recoil. We distinguish between correlated systematic uncertainties, arising

from variations that generate a correlated change in the magnitude of the spectrum, and

uncorrelated (or shape) uncertainties, arising from variations that preserve the integral but

generate a change in the shape of the spectrum. Cumulative uncertainties are the quadratic

sum of all correlated or uncorrelated uncertainties. Uncertainties for R = 0.2 and 0.5 are

evaluated in a similar way.

Similar systematic uncertainties were considered for the ∆recoil distribution in pp col-

lisions at
√
s = 7 TeV as those discussed for Pb-Pb collisions. Uncertainty in tracking

efficiency causes variation in ∆recoil by 2% at pT,jet ≈ 20 GeV/c and 9% at pT,jet ≈ 60

GeV/c. The systematic uncertainty due to track momentum resolution is estimated to be

4% in the entire pT range. The shift of jet energy scale due to contamination by secondary
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Systematic uncertainty pch
T,jet = 25 GeV/c pch

T,jet = 75 GeV/c

Correlated

Scale Factor cRef (−1,+0)% (−0,+0.1)%

Tracking efficiency (−6,+6)% (−16,+16)%

Fragmentation model (−0,+2)% (−0,+14)%

EP bias (−2,+0)% (−3,+0)%

Uncorrelated or shape

Background fluctuations (−0,+7)% (−0,+8)%

Unfolding algorithm (−0,+1)% (−0,+2)%

Unfolding prior (−5,+0)% (−11,+6)%

Spectrum limits and binning (−1,+0)% (−2,+3)%

Cumulative correlated uncertainty (−7,+6)% (−17,+22)%

Cumulative uncorrelated uncertainty (−5,+7)% (−11, +11)%

Table 2. Relative systematic uncertainties of ∆recoil, for R = 0.4 jets and two values of pchT,jet for

central Pb-Pb collisions at
√
sNN = 2.76 TeV, TT{20,50}-TT{8,9}. Uncertainties are expressed as

negative and positive differences from the central values, with an entry of zero indicating negligible

contribution. Uncertainties are classified as correlated and uncorrelated, as described in the text.

particles and fake tracks causes a variation in ∆recoil of less than 2%. Variations in the

unfolding procedure, including change in the choice of unfolding algorithm, prior, and spec-

trum binning, result in ∆recoil changes of ≈ 5%. The cumulative systematic uncertainty is

given by the quadratic sum of all individual uncertainties.

7.2 Systematic uncertainties of Φ(∆ϕ) and Σ (∆ϕthresh)

The systematic uncertainties for the measurement of Φ(∆ϕ) and Σ (∆ϕthresh) are presented

in this section.

• Since the yield of correlated hard jets decreases with increasing acoplanarity (i.e.

increasing |∆ϕ − π|), the scale factor cRef in this region should approach unity. To

assess this effect, cRef is varied from its nominal values in table 1 to unity. The

resulting change in width of the uncorrected Φ(∆ϕ) distribution (eq. (9.1)) is 0.001

and the change in slope of the Σ (∆ϕthresh) ratio (figure 12) is 0.35, which are taken

as the systematic uncertainties.

• Tracking efficiency less than unity will result in jets that are reconstructed from a

subset of their charged track constituents, with consequent variation of jet centroid.

However, the 5% relative uncertainty of tracking efficiency generates negligible varia-

tion in the width of the Φ(∆ϕ) distribution and in the slope of the Σ (∆ϕthresh) ratio.

• The EP bias due to the hadron trigger, discussed in section 7.1, generates a change

of 0.005 in the width of the Φ(∆ϕ) and 0.07 in the slope of the Σ (∆ϕthresh) ratio.
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Systematic uncertainty Width of Φ(∆ϕ) Slope of Σ (∆ϕthresh) ratio

Scale factor cRef ±0.001 ±0.35

Tracking efficiency negligible negligible

EP bias ±0.005 ±0.07

Cumulative uncertainty ±0.005 ±0.36

Table 3. Systematic uncertainties for the width of the Φ(∆ϕ) distribution (eq. (9.1)) and the slope

of the Σ (∆ϕthresh) ratio (figure 12, right panel). The cumulative uncertainty is the quadratic sum

of all contributions.

Table 3 shows all sources of systematic uncertainty for Φ(∆ϕ) and Σ (∆ϕthresh), with

the cumulative uncertainty given by their quadratic sum. Instrumental effects generate

negligible uncertainty in the azimuthal correlations.

8 Distributions for pp collisions at
√
s= 2.76 TeV

As noted above, comparison of Pb-Pb measurements to similar distributions in pp collisions

at
√
s = 2.76 TeV requires calculations based on PYTHIA and NLO pQCD. In order to

validate this approach, we compare PYTHIA and NLO pQCD-based calculations to ALICE

measurements of ∆recoil distributions in pp collisions at
√
s = 7 TeV, using the data shown

in figure 1.

The NLO pQCD-based framework was developed initially to calculate the spin-

dependent hadron-jet coincidence cross section at
√
s = 200 GeV [27]. The calculation

uses the DSS fragmentation function [65] and the CT10 NLO parton distribution func-

tion [66]. We model hadronization by a shift in pT for parton-level jets [67], with the

magnitude of the shift determined by a fit to inclusive jet distributions [68]. The result-

ing particle-level jet distribution is transformed to a charged-jet distribution by applying

a response matrix calculated using PYTHIA. The systematic uncertainty of the resulting

spectrum is estimated by independently varying the parton distribution function and the

factorization and renormalization scales by a factor two.

Figure 6, upper panels, show ∆recoil distributions for R = 0.5, from ALICE data

and calculations for pp collisions at
√
s = 7 TeV. The lower panels show the ratios of these

distributions to a function which parameterizes the ALICE data. The PYTHIA calculations

for both tunes agree with the measurement within uncertainties; similar agreement is found

for R = 0.2 and 0.4. The central values of the NLO calculation are above the measured

data by about 20%, though the calculation is consistent with data within uncertainties for

R = 0.5. The discrepancy in central values is larger for smaller R, reaching about 50% for

R = 0.2, which is not consistent within systematic uncertainties. In pQCD calculations the

difference between the parton and jet momenta involves an expansion in terms of log(R),

whose contribution may be significant for small R [69]. Improved agreement between the

NLO calculation and data for R = 0.2 may therefore be achievable using resummation

techniques [69].
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Figure 6. ∆recoil distributions for R = 0.5, for ALICE data and calculations of pp collisions
√
s =

7 TeV. ALICE data, which are the same in both panels, are compared with calculations based on

PYTHIA (left) and NLO pQCD (right). The green boxes in the right panel show the systematic

uncertainty of the NLO calculation. The lower panels show the ratios of data and calculations to a

smooth function fit to the data.
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Figure 8. ∆recoil for 0-10% central Pb-Pb collisions at
√
sNN = 2.76 TeV for anti-kT jets with

R = 0.2, 0.4 and 0.5. The vertical error bars are the square root of the diagonal elements of

the unfolding covariance matrix, with the boxes indicating correlated and uncorrelated (shape)

systematic uncertainties.

Figure 7 shows the ratio of ∆recoil distributions for R = 0.2 and 0.5 in pp collisions

at
√
s = 7 TeV. The measured ratio is compared with PYTHIA and NLO pQCD-based

calculations. The grey boxes show the systematic uncertainty of the measured ratio, taking

into account correlations of numerator and denominator.

The NLO calculation generates larger ratios than those observed in the data. A related

observable, the ratio of inclusive jet production cross sections for R = 0.2 and 0.4 in pp

collisions at
√
s = 2.76 TeV, has also been compared with pQCD calculations [70]. This

comparison shows that both hadronization corrections and perturbative effects that are

effectively next-to-next-to-leading order (NNLO) in the individual cross sections [68] are

required for agreement. Perturbative QCD calculations to higher order than NLO are also

needed to describe the ratio of ∆recoil distributions presented here.

In contrast, PYTHIA simulations agree within uncertainties with data, both for ∆recoil

at fixed R and the ∆recoil ratio for two different values of R. These comparisons therefore

favor PYTHIA calculations for the reference distributions at
√
s = 2.76 TeV. PYTHIA

combines a LO matrix element with a parton shower resummation of leading logarithmic

terms of soft gluon radiation at all orders, leading to an improved description of data

compared to a fixed order analytic calculation.

9 Results

9.1 ∆recoil

Figure 8 shows corrected ∆recoil distributions for central Pb-Pb collisions, for R = 0.2,

0.4 and 0.5. The shape of the distributions is approximately exponential, with larger

per-trigger yield for R = 0.4 and 0.5 than for R = 0.2.
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The R dependence of ∆recoil is related to the distribution of jet energy transverse to

the jet axis. Scattering of the parton shower within the hot QCD medium may broaden

this distribution [28, 71]. The magnitude of intra-jet broadening can be measured by

comparing ∆recoil distributions for Pb-Pb collisions with those for pp collisions, in which

jets are generated in vacuum. We utilize two related observables for this purpose: (i) ∆IAA,

which is the ratio of ∆recoil for Pb-Pb to that for pp collisions simulated using PYTHIA,

for fixed R, and (ii) the ratio of ∆recoil at two different R in Pb-Pb, compared with that

in pp collisions.

Figure 9 shows ∆IAA for R = 0.2, 0.4 and 0.5. Suppression of the yield of recoil jets

in Pb-Pb collisions is observed, with similar magnitude for all R.

Figure 10 shows the ratio of ∆recoil for R = 0.2 relative to ∆recoil for R = 0.4 and

0.5, in central Pb-Pb and pp collisions. The systematic uncertainties of the Pb-Pb ratios

take into account the correlated systematic uncertainties in numerator and denominator.

The shape uncertainties are propagated independently in the ratio, since variation in their

components induces different effects as a function of R. The distributions for Pb-Pb and

pp collisions are seen to be similar, with no evidence for intra-jet broadening in central

Pb-Pb collisions within the uncertainties.

The CMS collaboration has reported a significant redistribution of energy within R <

0.3 for jets in central Pb-Pb collisions [72], potentially in contrast to figure 10. However,

that measurement and the one reported here cannot be compared directly. Modeling of the

two measurements within the same theoretical framework is required for their comparison.

Figures 9 and 10 show that the recoil jet yield is suppressed, while the intra-jet energy

profile is not changed significantly for R ≤ 0.5. We note in addition that the infrared cutoff

for jet constituents (tracks) in this measurement is pT,const = 0.15 GeV/c, which strongly

constrains the correlated energy within the jet cone that would not be detected by this

measurement.

Taken together, these observations are consistent with a picture in which there is

significant in-medium transport of radiation to angles larger than 0.5 radians. This picture

was initially suggested by a measurement showing that the energy imbalance of highly

asymmetric jet pairs is compensated, on an ensemble-averaged basis, by the energy carried

by soft particles at large angles relative to the jet axis [23]. Also in this case, however,

quantitative comparison of these measurements requires their calculation in a common

theoretical framework.

The ∆recoil distributions in both pp and Pb-Pb collisions are well-described by an

exponential distribution ∝ e−p
ch
T,jet/b, with values of b around 16 GeV/c. Figure 9 shows

that ∆IAA has negligible dependence on pch
T,jet for R = 0.4 and 0.5 within 60 < pch

T,jet < 100

GeV/c, which indicates that the values of b are similar within this pT,jet range for the pp

and Pb-Pb distributions. The value of ∆IAA in this region can therefore be expressed as

the horizontal shift of an exponential distribution of fixed slope. For R = 0.5 in the range

60 < pch
T,jet < 100 GeV/c, the suppression in ∆IAA corresponds to a shift in pch

T,jet of −8±2

(stat) GeV/c. In the scenario of negligible trigger-jet energy loss, this shift corresponds to

the average partonic energy loss of the recoil jet population via energy transport to large

angles, outside the jet cone.
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Figure 9. ∆IAA, the ratio of ∆recoil in central Pb-Pb and pp collisions at
√
s = 2.76 TeV, for R =

0.2, 0.4 and 0.5. ∆recoil for pp collisions are calculated using PYTHIA.
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Figure 10. Ratio of ∆recoil for R = 0.2 relative to R = 0.4 (top) and to R = 0.5 (bottom), for

central Pb-Pb (black) and pp collisions simulated using PYTHIA (red) at
√
s = 2.76 TeV.

9.2 Azimuthal correlations

Figure 11 shows the uncorrected Φ(∆ϕ) distributions for central Pb-Pb data and pp simu-

lations. As noted in section 5.2, we compare the uncorrected Φ(∆ϕ) distribution of Pb-Pb

data to a reference distribution for pp collisions (PYTHIA, Perugia 2010 tune), modified by

the background and instrumental effects expected for central Pb-Pb collisions. We recall

that Φ(∆ϕ) suppresses the uncorrelated contribution from MPI, which otherwise would

provide a significant background at large π −∆ϕ.

The absolute yield of the Pb-Pb distribution is seen to be smaller than that of the pp

reference. This is consistent with the suppression observed for ∆IAA (figure 9), which is

the ratio of the integrals of the Φ(∆ϕ) distributions over the range π −∆ϕ < 0.6.

The Φ(∆ϕ) distributions for Pb-Pb and pp collisions are characterized by fitting a

function corresponding to an exponential plus a pedestal term [43],

f(∆ϕ) = p0 × e(∆ϕ−π)/σ + p1, (9.1)
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Figure 11. Φ(∆ϕ) distributions for 0-10% central Pb-Pb data (black circles) and pp collisions

simulated by detector-level PYTHIA events embedded into central Pb-Pb events (red squares), at√
sNN = 2.76 TeV. Jets have 40 < preco,chT,jet < 60, with preco,chT,jet not corrected for background fluctu-

ations and instrumental effects. The lines show the result of fitting eq. (9.1) to the distributions,

with the value of σ from the fit as indicated. The error bars show statistical errors only. The Pb-Pb

data points are the same as the solid circles shown in the left panel of figure 4.

where the parameter σ reflects the width of the distribution. The fit range is 2π/3 <

∆ϕ < π. The fitted values are σPb−Pb = 0.173± 0.031(stat.)± 0.005(sys.) and σPYTHIA =

0.164 ± 0.015(stat.), which are consistent within uncertainties. We find no evidence from

this comparison for medium-induced acoplanarity of recoil jets with uncorrected energy in

the range 40 < preco,ch
T,jet < 60 GeV/c.

The azimuthal distribution between a direct photon (pT,γ > 60 GeV/c) and a recoil

jet (pT,jet > 30 GeV/c) has been measured in central Pb-Pb collisions and compared to

that from PYTHIA events embedded in a simulation of Pb-Pb collisions [43]. Fits of

an exponential function to these distributions give similar values of σ for central Pb-Pb

and embedded PYTHIA, likewise indicating no evidence for medium-induced acoplanarity,

though the values of σ are larger than those for the analysis reported here. Comparison of

the shape of the azimuthal distribution of di-jet pairs in central Pb-Pb data and embedded

PYTHIA events has been reported [22, 23], with indication of an enhancement in the tail

of the distribution for central Pb-Pb collisions [22].

More detailed characterization of the change in the angular distribution with change

in TT interval is provided by Σ (∆ϕthresh) (eq. (4.4)), which measures the yield in the tail

of the distribution beyond a threshold, π/2 < ∆ϕ < π − ∆ϕthresh. Figure 12, left panel,

shows the Σ (∆ϕthresh) distributions for central Pb-Pb data and the embedded PYTHIA

reference. As discussed in section 5.2, for the measurement of Σ (∆ϕthresh) the dataset is

divided into exclusive subsets, with each subset used for only one value of threshold, so

that the data points in figure 12 are statistically uncorrelated.

The relative contribution to Σ (∆ϕthresh) of different physics processes may vary with

∆ϕthresh. At sufficiently large angular deflection of the jet centroid, at a value of ∆ϕthresh
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Figure 12. Left: Σ (∆ϕthresh) distributions for central Pb-Pb data (black circles) and the pp

reference distribution (red squares), obtained by embedding detector-level PYTHIA events into

real data. Right: ratio of the Σ (∆ϕthresh) distribution between Pb-Pb data and the PYTHIA

reference shown in the left along with a first-order polynomial fit. The error bars in both panels

show statistical errors only.

which has not yet been determined, the yield is expected to arise predominantly from single

hard (Molière) scattering in the hot QCD medium [3, 28]. Figure 12, right panel, shows the

ratio of the two distributions in the left panel. We utilize this ratio of absolutely normalized

distributions in pp and Pb-Pb collisions to search for effects due to Molière scattering.

The value of the ratio at small ∆ϕthresh corresponds approximately to the ∆ϕ-

integrated suppression in recoil yield in figure 9, while its dependence on ∆ϕthresh provides

a comparison of the shapes of the distributions. This comparison is quantified by fitting a

first-order polynomial function to the ratio of Σ (∆ϕthresh) in the right panel. The fit gives

a slope of −0.527 ± 0.641(stat.) ± 0.36(sys.), which is consistent with zero within uncer-

tainties. If Moliere scattering were the only mechanism modifying the Pb-Pb distribution

relative to that of pp collisions the ratio at large ∆ϕthresh should be larger than unity;

however, the ratio is seen to be below unity at the largest measured ∆ϕthresh, indicating

that other mechanisms have large effect in this region. We find no evidence from this mea-

surement for medium-induced Molière scattering. The uncertainty in this measurement is

dominated by the statistical error, however, meaning that additional data, together with

measurements at other jet energies and larger angular deviations, will provide more precise

constraints on the rate of large-angle scattering in the hot QCD medium.

10 Summary

We have reported measurements of jet quenching in central Pb-Pb collisions at the LHC,

using a new analysis method based on the semi-inclusive distribution of jets recoiling from

a high-pT trigger hadron. Discrimination of coincident jet yield from background is carried

out at the level of ensemble-averaged distributions with a trigger-difference technique, with

no selection bias imposed on the recoil jet population. This approach enables measurement

of the distribution of jets with large R and low infrared cutoff for jet constituents, over
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a broad range of jet energy. Distributions are reported for charged jets in the range

20 < pch
T,jet < 100 GeV/c, for R = 0.2, 0.4 and 0.5.

The differential recoil jet yield in central Pb-Pb collisions is suppressed relative to

that in pp collisions by up to a factor two for 0.2 ≤ R ≤ 0.5. Together with the low

infrared cutoff of this measurement, this indicates that medium-induced energy loss arises

predominantly from radiation at angles larger than 0.5 relative to the jet axis. The energy

carried by this radiation, which is reflected in the magnitude of the spectrum shift under

the assumption of negligible trigger-jet energy loss, is estimated to be 8 ± 2 GeV/c for

charged jets with R = 0.5, in the range 60 < pch
T,jet < 100 GeV/c.

The ratio of differential recoil jet yields with different R is similar for Pb-Pb and pp

collisions. No significant medium-induced modification of the intra-jet energy distribution

for angles R ≤ 0.5 relative to the jet axis is thereby observed.

The width of the azimuthal distribution of recoil jets relative to the trigger axis is

measured to be similar in Pb-Pb and pp collisions for jets of 40 < preco,ch
T,jet < 60 GeV/c.

No significant medium-induced acoplanarity is therefore observed, consistent with findings

from di-jet and direct photon-jet measurements. Large angular deflection of the recoil jet

may be sensitive to the rate of single Molière scattering in the hot QCD medium and

provide a direct probe of its quasi-particle degrees of freedom. We observe no significant

rate of such large-angle scatterings, though with limited statistical precision at present.

These data, when combined with theoretical calculations, will provide guidance for the

necessary precision to achieve discriminating measurements in the future.
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Xunta de Galicia (Conselleŕıa de Educación), Centro de Aplicaciones Tecnológicas y De-
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J. Pan135, A.K. Pandey48, D. Pant48, P. Papcun115, V. Papikyan1, G.S. Pappalardo107,

P. Pareek49, W.J. Park97, S. Parmar87, A. Passfeld54, V. Paticchio104, R.N. Patra132, B. Paul101,

T. Peitzmann57, H. Pereira Da Costa15, E. Pereira De Oliveira Filho120, D. Peresunko100,76,
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42 Faculty of Technology, Buskerud and Vestfold University College, Vestfold, Norway
43 Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt,

Frankfurt, Germany
44 Gangneung-Wonju National University, Gangneung, South Korea
45 Gauhati University, Department of Physics, Guwahati, India
46 Helsinki Institute of Physics (HIP), Helsinki, Finland
47 Hiroshima University, Hiroshima, Japan
48 Indian Institute of Technology Bombay (IIT), Mumbai, India
49 Indian Institute of Technology Indore, Indore (IITI), India
50 Inha University, Incheon, South Korea
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114 Suranaree University of Technology, Nakhon Ratchasima, Thailand

– 40 –



J
H
E
P
0
9
(
2
0
1
5
)
1
7
0

115 Technical University of Košice, Košice, Slovakia
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