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The purpose of this article is to present the area functional for the hexahedral mesh generation and optimization,
and the Newton’s optimization algorithm for finding the critical point of the functional.
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1 Introduction

Functional optimization is extensively used for generating quality meshes in 2D and 3D [3, 4, 5], and references
their in. In 3D hexahedral meshes are preferred over other meshes like tetrahedral , prism, pyramid, etc. But
unfortunately generating quality hexahedral meshes is a difficult topic or at least not very well addressed. There
is no algorithm which guareentee generating convex hexahedral mesh [6]. In this paper we will use area functional
whose optimization will result in an improved hexahedral mesh. Though the functional presented can be applied
to unstructured hexahedral meshes as well. We will only present the structured hexahedral mesh. In algebraic
mesh optimization methods, a functional of the inner nodes is designed and it is expected that its minimum be
attained in a mesh with the desirable geometrical properties (convexity,linearity,orthogonality,· · ·). This kind of
functionals are called discrete or algebraic functionals. The first studies of this kind were done by Castillo and
Steinberg[1]. Castillo and Steinberg introduced Length, Orthogonality and Area functionals. Area functional are
extensively used for generating convex quadrilateral meshes in 2D [2, 7]. In 2D area functional are well known
to produce superior 2D meshes compared to other functionals like length, orthogonality etc [2] and references
their-in.

The article is arranged as follows in the next section area functional is presented, and we will explain its
formulation for structured hexahedral meshes and in section three Newton’s optimization algorithm for finding
the critical point of the functional is explained, and section four presents numerical examples.

2 Area Functional for Hexahedral Meshes

First we will present the formulation of area functional for a 2 × 2 × 2 structured hexahedral mesh as shown in
the Figure 1. This mesh consists only one internal node, and it is shared by eight cells. The area functional for
the node 0 (nodal area functional) shown in the Figure 1 can be defined by the equation (1). In the equation (1)
the summation is over the 8 surrounding cells. The area functional (1) is the function of the physical coordinate
(x0,y0, z0) of the node 0. In the equation (1) J0

j is the Jacobian (determinant of the Jacobian matrix) at the node
0 for the cell j. Table 1 list all the eight Jacobian matrix (matrix of covariant vectors) for the node 0. Critical point
of the functional (∇F0 = 0) will provide the proper nodal position for the node 0. Paper [2] mention important
properties of the 2D area functional.

F0(x0,y0, z0) =

8
∑

j=1

(J0
j )2. (1)
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Fig. 1 Left figure shows the 8 cells sharing the node 0 and right figure shows the 8 nodes connected to the node 0.

Table 1 Jacobian matrix at the node 0 for all the 8 surrounding cells.

J1
0 =





(x0 − x1) (x0 − x3) (x0 − x5)
(y0 − y1) (y0 − y3) (y0 − y5)
(z0 − z1) (z0 − z3) (z0 − z5)



 J2
0 =





(x0 − x2) (x0 − x3) (x0 − x5)
(y0 − y2) (y0 − y3) (y0 − y5)
(z0 − z2) (z0 − z3) (z0 − z5)





J3
0 =





(x0 − x1) (x0 − x4) (x0 − x5)
(y0 − y1) (y0 − y4) (y0 − y5)
(z0 − z1) (z0 − z4) (z0 − z5)



 J4
0 =





(x0 − x2) (x0 − x4) (x0 − x5)
(y0 − y2) (y0 − y4) (y0 − y5)
(z0 − z2) (z0 − z4) (z0 − z5)





J5
0 =





(x0 − x1) (x0 − x3) (x0 − x6)
(y0 − y1) (y0 − y3) (y0 − y6)
(z0 − z1) (z0 − z3) (z0 − z6)



 J6
0 =





(x0 − x2) (x0 − x3) (x0 − x6)
(y0 − y2) (y0 − y3) (y0 − y6)
(z0 − z2) (z0 − z3) (z0 − z6)





J7
0 =





(x0 − x1) (x0 − x4) (x0 − x6)
(y0 − y1) (y0 − y4) (y0 − y6)
(z0 − z1) (z0 − z4) (z0 − z6)



 J8
0 =





(x0 − x2) (x0 − x4) (x0 − x6)
(y0 − y2) (y0 − y4) (y0 − y6)
(z0 − z2) (z0 − z4) (z0 − z6)





Let a hexahedral mesh consists of n internal nodes and let the node i is surrounder by 8 hexahedras (structured
mesh is assumed, each internal node is surrounded by 8 hexahedras). The area functional for the whole mesh
(global area functional) can be defined by the equation (2). The functional (2) is a function of the physical
coordinates (x,y, z) of the internal nodes. In the equation (2) J i

j is the Jacobian at the node i for the cell j.
It should be noted that the global area functional is the sum of the nodal area functionals. Thus instead of
performing the global optimization, we can perform the nodal optimization. In this way we can utilise the most
recently updated nodal position, we do not have to form and store global Hessian, implementation of Newton’s
minimization algorithm is simple, one very important benefit for mega meshes is that we can locally (part of the
domain where solution is highly sensitive to mesh distortion) optimize the hexahedral mesh instead of optimizing
the whole mesh which can be very costly or undesirable.

F (x,y, z) =

n
∑

i=1





8
∑

j=1

(J i
j)

2



 . (2)
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3 Newton’s Optimization Algorithm

In this section first we will develop the Newton’s optimization procedure for the nodal area functional (1), and
then provide an algorithm for applying it to the whole mesh. The nodal area functional (1) is function of its
own physical coordinate (r = (x, y, z)). Let the initial position for a node is r0(x0, y0, z0). Expanding the area
functional for this node by Taylors series.

f(r) = f(r0) + ∇f(r0) · (r − r0) +
1

2
(r − r0) · H(r0) · (r − r0) + HOT, (3)

In the equation (3) ∇f(r0) is the gradient row vector (dimension = 3×1) of the functional at the initial position
r0, and H(r0) is the Hessian matrix (dimension = 3 × 3) at the initial position r0. Since the gradient of the
nodal area functional is also the function of the physical coordinate the node (r = (x, y, z)). Expanding the
gradient of the nodal area functional by Taylors series.

∇f(r) = ∇f(r0) + H(r0) · (r − r0) + HOT, (4)

We are interested in such a nodal position r where the gradient ∇f(r) of the nodal area functional vanish (critical
point). Setting equation (4) equal to zero and neglecting higher order terms will result in a linear system read as
follows.

H(r0) · 4r = −∇f(r). (5)

Equation (5) is the basis for the Newton’s minimization algorithm. The system (5) resulting from nodal area
functional is 3×3. The system (5) resulting from the global area functional of a mesh consisting n internal nodes
will be 3n × 3n. Which can be a huge system for mega meshes, and optimization consists of solving many such
linear systems.

Algorithm 1 presents the pseudo code for the overall algorithm. In the Algorithm 1 the sub-script i denotes
the node number, and super-script k denotes the Newton iteration. The algorithm will take advantage of the most
recently calculated nodal positions.

Algorithm 1: Newton’s Minimization Algorithm

while (iter ≤ maxiter1 || resid ≤ tol ) do
forall (Internal Nodes i in the Mesh) do

k = 0
while (k ≤ maxiter2 || (‖4ri‖L2

≤ tol & ‖∇f(rk)‖L2
≤ tol)) do

H(rk) 4r= -∇f(rk)

r
k+1

i
= r

k

i +4r

k++

end
end
resid = ‖newmesh − oldmesh‖L2

iter++

end

In the algorithm (1) ‖ · ‖L2 denotes the discrete L2 norm, maxiter1 denotes the maximum iteration for the
global mesh, resid = ‖newmesh−oldmesh‖L2

denotes the L2 difference between the two global mesh, maxiter2

denotes the maximum number of Newton’s iteration, tol is the error tolerance which can have different value at
different places. It it interesting to note the stopping criteria for the Newtons’s iteration. We are not only using
the gradient of the functional (∇f(r)) but also the difference nodal position vector (4r). We have implemented
the above algorithm in C++.

4 Numerical Examples

We performed two numerical experiments, and results are reported in the Figure 3.
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Fig. 2 Hexahedral Mesh Consisting more than 50000 nodes

Fig. 3 Hexahedral Mesh Consisting more than 20000 nodes
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