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An adaptive technique for control-volume methods applied to second order elliptic equations in
two dimension is presented. The convergence behavior of this method is investigated numerically.
For solutions with low Sobolev regularity, the found L2 convergence order is 2 for the potential
and 1 for the flow density. The system of linear equations is better conditioned for the adaptive
grids than for uniform grids. The test runs indicate that a pure flux-based refinement criterion
is preferable. c© (Year) John Wiley & Sons, Inc.
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I. INTRODUCTION

This paper discusses adaptive algorithms for control-volume methods applied to second
order elliptic equations in two dimensions. The grids consist of coarse and fine rectangular
grid cells.

It is well known that discrete approximations to solutions of second order elliptic equa-
tions possess poor convergence properties when the solution has low Sobolev regularity
[1, 10, 16]. The purpose of the paper is to investigate if the convergence behavior can be
improved by the application of adaptive techniques.

Convergence of control-volume methods has been proved for matching quadrilateral
grids [2, 12, 17, 19]. In this paper we apply multipoint flux approximations on non-
matching grids, and for this method, no proof exists.

Adaptive techniques have been analyzed and applied with the finite element method
[4, 5, 8, 13, 18] and with the mixed finite element method [15]. For control-volume
methods, refinement along a curve of finite length has been analyzed [11]. For repeated
refinements, numerical tests have been performed [3, 7, 9], but these tests do not cover
convergence behavior as a function of Sobolev regularity.

Our applications are solution of multiphase flow equations in subsurface flow [14].
These equations contain an elliptic operator similar to the one occuring in our simple
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model equation. In these applications, due to nonlinear hyperbolic terms, control-volume
formulations are prevailing.

The paper is organized as follows. In Section II, we discuss the discretization of the
elliptic equation. The adaptive technique is discussed in Section III. Section IV contains
numerical test runs and discussions on the convergence behavior. We also investigate
the convergence of the conjugate gradient method for solution of the linear systems. A
related discussion of the conjugate gradient method for refined grids can be found in [6].

II. DISCRETIZATION

We consider the boundary value problem

−div(K grad p) = q in Ω, (2.1)
p = p0 on ∂ΩD, (2.2)

−(K grad p) · n = u0 on ∂ΩN, (2.3)

where Ω ⊂ R2 and ∂ΩD ∪ ∂ΩN = ∂Ω. Here, the conductivity K is a symmetric positive
definite matrix with principal directions parallel to the x and y directions, i.e., in the
coordinate system (x, y), the conductivity is the diagonal matrix K = diag(kx, ky). In
the applications, K will be piecewise constant. The vector n is the outer unit normal
vector.

We equip the domain with a grid such that the union of the grid cells equals the
domain. Integrating over the volume Vi of cell i, equation (2.1) reads∑

j

fi,j =
∫

Vi

q dτ. (2.4)

Here, fi,j is the flux across edge j of cell i, i.e.,

fi,j =
∫

Si,j

u dσ, (2.5)

where Si,j is the surface of the edge and u is the flow density normal to the edge,

u = −(K grad p) · n. (2.6)

We use the control-volume method to discretize equation (2.4). Initially, we apply a
Cartesian grid, where the grid lines are aligned with the x and y directions. Figure 1
shows two cells whose common edge is normal to the x direction. For this edge, the
conventional two-point flux approximation reads

f = T (p1 − p0), (2.7)

where pi is the potential at the center of cell i and T is the transmissibility between the
two cells,

T =
h1,y

1
2

(
h0,x

k0,x
+

h1,x

k1,x

) . (2.8)

Here, ki,x is the conductivity of cell i in x direction. Further, hi,x and hi,y are the width
of cell i in x and y direction, respectively. The formula (2.8) is derived by assuming
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FIG. 2. Cell with two neighbors at one
side.

linear potentials in the two cells 0 and 1, and requiring continuous flux and continuous
potential at the point A of Figure 1.

To refine the grid in areas where the discretization error is large, cells may be divided
into two or more equal subcells. We require that each cell may only have two refined cells
at each side, as shown in Figure 2. The refined cells have the same conductivity values
as the mother cell. To determine the flux across the edges between cell 1 and cell 0 and
between cell 2 and cell 0 in Figure 2, we assume that the potentials in the three cells are
linear and that flux and potential are continuous at the points A, B and C. The flux
between cell 1 and cell 0 as well as the flux between cell 2 and cell 0 are then determined
to

f = T
(

1
2 (p1 + p2)− p0

)
, (2.9)

where pi is the potential at the center of cell i. The flux expression (2.8), (2.9) has earlier
been applied in [9], but is there rendered with a misprint. We remark that we only derive
the flux expression for the case of equal conductivities in cells 1 and 2. In case of different
conductivities, a flux expression taking more cells into account, may be required [3].

Note that in case of a homogeneous medium, the flux approximations (2.7) and (2.9)
are exact for linear pressure fields.

The two-point flux expression (2.7) yields a system of equations where the matrix
of coefficients is a symmetric M-matrix. Refinement with the multipoint flux expression
(2.9) leaves the matrix of coefficients symmetric, while the M-matrix property is retained
for [9] √

k1,x

k1,y

h1,y

h1,x
≤ 1. (2.10)

If the grid is constructed such that the left-hand side of inequality (2.10) is 1, refinement
in both x and y direction can be performed, retaining the M-matrix property.

In the control-volume formulation (2.4), the treatment of the Neumann boundary
condition (2.3) is straight forward. To treat the Dirichlet boundary condition (2.2), we
introduce for each Dirichlet boundary cell a triangle with one corner at the cell center
and the other two corners at the boundary corners of the cell, see Figure 3. Let the
outer normal vectors of the edges of the triangle be denoted by sk, where the length of
each normal vector is equal to the length of the edge to which it is normal. The vector
sk is normal to the edge opposite to corner k, k = 1, 2, 3, see Figure 3. The area of the
triangle is denoted by A. The flux (2.5), (2.6) across the boundary edge may then be
approximated by expressing the gradient in the boundary cell by

grad p = − 1
2A

3∑
k=1

pksk, (2.11)
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FIG. 3. Boundary cell with vectors sk. FIG. 4. Cell refinement.

where pk is the potential value at corner k of the triangle.

III. ADAPTIVE TECHNIQUE

When discretizing the differential equation (2.1), it is advantageous to use a coarse grid
in some areas and a finer grid in other areas. In an adaptive technique, the grid is
refined according to some criterion, where the goal is to reduce the computational cost
necessary to achieve a solution which satisfies some error bound. For each cell i, a
refinement indicator εi is defined, and those cells with the largest values of εi are divided
into smaller cells. The process is repeated until some stopping criterion is met.

When equation (2.1) is discretized with the finite element method, it is customary to
use a residual-based refinement indicator [4, 5, 8, 18], see also [15]. For our control-volume
method, this refinement indicator may be given as

εi = ‖q‖L2(Vi)
|Vi|1/2 + ‖uh‖L2(∂Vi)

|∂Vi|1/2
. (3.1)

Here, uh is the discrete approximation to (2.6), |Vi| is the area of cell i and |∂Vi| is the
length of the boundary of cell i. Note that uh is already known through the discrete flux
expressions (2.7) (2.9).

The first term in (3.1) measures the source term in a cell, and the second term in
(3.1) measures the flux across the cell edges. However, unlike finite element methods,
control-volume methods possess local conservation, and therefore, one may argue that
the source term is contained in the flux term. A reasonable refinement indicator for
control-volume methods is therefore given by the reduced expression

εi = ‖uh‖L2(∂Vi)
|∂Vi|1/2

. (3.2)

In Section IV, we will compare the performance of the refinement algorithm, using the
expressions (3.1) and (3.2).

To create a refinement algorithm, we define for each cell i an adaptivity index

ηi =
εi

maxj εj
. (3.3)

Obviously, ηi ∈ [0, 1]. At each iteration level, we refine all cells for which ηi ≥ δ, where
δ is some prescribed tolerance between 0 and 1. In the test runs of Section IV, we have
chosen δ = 0.6.

When a cell is chosen for refinement, we devide the cell into two equal parts both
vertically and horizontally, thus creating four equal subcells. Each of the four daugther
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cells then has the same shape as the mother cell. Thus, if inequality (2.10) is satisfied
for the initial grid, it will be satisfied for all grids in the refinement algorithm.

We require that each cell can have at most two neighboring cells at each side. To
ensure that this criterion is fulfilled at each iteration level, additional cells may have to
be refined. Figure 4 shows an example of a refined grid.

The behavior of the refinement algorithm can be measured by the error indicator

ξk = max
i

εi, k = 0, 1, 2, . . . , (3.4)

where k is the iteration level. The ratio ξk/ξ0 measures the reduction rate of the re-
finement indicator εi. Therefore, the condition ξk/ξ0 ≤ ∆ may be used as a stopping
criterion in the algorithm [8].

IV. NUMERICAL EXAMPLES

In this section, we test the adaptive algoritm described in Section III with the discretiza-
tion of Section II. In all examples, we use an isotropic medium (ki,x = ki,y = ki) and a
grid with square grid cells (hi,x = hi,y = hi). The initial grid is a 2× 2 grid on a square
domain.

The convergence of the algorithm is measured in L2 and L∞ norm for the potential
and in L2 norm for the flow density. The discrete L2 norms are defined by

‖ph − p‖L2 =

(∑
i

‖ph − p‖2L2(Vi)

)1/2

(4.1)

and

‖uh − u‖L2 =
1
2

(∑
i

‖uh − u‖2L2(∂Vi)
|∂Vi|

)1/2

, (4.2)

where, as before, i is the cell index. Note that on uniform grids, the norm (4.2) equals 2
times the norm applied in [1] for the same quantity (disregarding boundary effects).

The number of degrees of freedom in the discrete system is denoted by DOF. At each
iteration level, DOF equals the number of cells in the grid. We measure the convergence
as a function of DOF, or rather as a function of n = DOF1/2. On a uniform square grid,
n equals the number of grid cells in each coordinate direction.

In our first test case, we test the two refinement indicators (3.1) and (3.2) for a case
where the source density, q, in equation (2.1) varies strongly. The medium is homogeneous
with k = 1, and the domain is [0, 1]× [0, 1]. We apply homogeneous Dirichlet boundary
conditions. The source density q is chosen such that the exact solution becomes

p(x, y) = 0.0005[x(1− x)y(1− y)]2 e10(x2+y2). (4.3)

A similar solution has been studied in [15]. The convergence behavior of the flow density
in the refinement algorithm is shown in Figure 5. The results for uniform grids is also
shown. All test runs indicate a convergence rate

‖uh − u‖L2 ∼ n−2, (4.4)
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FIG. 5. Convergence behavior of example
(4.3). L2 error of the flow density.
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FIG. 6. Chessboard domain.

where n = DOF1/2, but the error using the adaptive methods is smaller than the error
using uniform grids. Further, among the adaptive methods, the flux-based refinement
indicator (3.2) produces the smallest error, as well as the fastest refinement. This indi-
cates that of the two refinement indicators (3.1) and (3.2), the flux-based indicator (3.2)
is to be preferred.

Our second test case has a strong heterogeneity, producing a solution with a low
Sobolev regularity. For this case the source density, q, is zero. The domain [−1, 1]×[−1, 1]
is divided into four equal squares as shown in Figure 6. The parts are enumerated as
shown in the figure. The conductivity in part 1 and part 3 is k1, and the conductivity in
part 2 and part 4 is k2. Thus, the domain is similar to the four squares of a chessboard.
Let the distance from the origin be r and the angle from the x axis be θ. For q = 0 there
exists a solution to (2.1) of the form

p(r, θ) = crγ

{
cos γ(θ − π/4) for θ ∈ [0, π/2],
d sin γ(3π/4− θ) for θ ∈ [π/2, π],

(4.5)

satisfying the symmetry relation p(r, θ) = −p(r, θ− π). Here, c is an arbitrary constant,
γ = (4/π) arctan(1/

√
κ) and d = cos(γπ/4)/ sin(γπ/4), while κ = k1/k2 is the conductiv-

ity ratio. The solution belongs to the Sobolev space H1+α for any α < γ. The constant c
has been chosen to c = − sin(γπ/4). This test case is a standard case for testing adaptive
techniques with finite element methods [8, 13, 15]. We solve this problem for varying
κ, using Dirichlet boundary conditions at the boundary parts 2 and 4 and Neumann
boundary conditions at the boundary parts 1 and 3.

Figures 7, 8 and 9 show the convergence behavior on uniform grids for different values
of γ in the solution (4.5). The test runs indicate the following asymptotic convergence
rates for γ ∈ (0, 1],

‖ph − p‖L2 ∼ n−2γ ,

‖ph − p‖L∞ ∼ n−γ ,

‖uh − u‖L2 ∼ n−γ ,

(4.6)

where, as before, n = DOF1/2. The smaller γ is, the later the asymptotic region is
entered. For γ = 0.1, the expected asymptotic behavior of the flow density error was
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FIG. 7. Convergence of example (4.5) for
uniform grids. L2 error of the potential.

100 102 104 106 108
10−4

10−3

10−2

10−1

100

Degrees of Freedom [ DOF ]

||p
 −

 p
h|| L∞

 

 

γ = 0.1
γ = 0.2
γ = 0.3
γ = 0.4
γ = 0.5
γ = 0.6
γ = 0.7
γ = 0.8
γ = 0.9

FIG. 8. Convergence of example (4.5) for
uniform grids. L∞ error of the potential.
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FIG. 9. Convergence of example (4.5) for
uniform grids. L2 error of the flow density.
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FIG. 10. Convergence of example (4.5) for
adaptive grids. L2 error of the flow density.

not reached for DOF ≤ 106. The convergence behavior on uniform grids coincides with
results reported in [1, 10] for the control-volume method. In [1], the rate n−γ for the
errors ‖ph − p‖L∞ and ‖uh − u‖L2 is reported to hold also for p ∈ H1+γ , γ ∈ [1, 2].

Figures 10, 11 and 12 show the convergence behavior for different values of γ in
the solution (4.5), using the adaptive algorithm. The test runs indicate the following
asymptotic convergence rates for γ ∈ (0, 1],

‖ph − p‖L2 ∼ n−2,

‖ph − p‖L∞ ∼ n−1,

‖uh − u‖L2 ∼ n−1,

(4.7)

where, as above, n = DOF1/2. The asymptotic region is entered earlier than for uniform
grids. Equation (4.7) demonstrates achievable convergence rates for solutions in the
Sobolev space H1+γ , γ ∈ (0, 1]. A sequence of the adaptive grids for the case γ = 0.1 is
shown in Figure 13.

Figure 14 shows the behavior of the error indicator (3.4) for different values of γ. For
low refinement levels k, the indicator reduces rapidly. For higher values of k, large refine-
ments in the grid are necessary to achieve a significant reduction in the error indicator.
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adaptive grids. L2 error of the potential.
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FIG. 13. Sequence of adaptive grids for the case γ = 0.1 for selected refinement levels.

The linear equations of the discrete formulation are solved with the conjugate gradient
(CG) method. At each iteration level in the CG algorithm, the error in the norm defined
by the matrix of coefficients is reduced by

1− κ−1/2

1 + κ−1/2
≈ 1− 2κ−1/2, (4.8)

where κ is the spectral condition number of the matrix of coefficients. Hence, after m
cycles of the CG iteration, the error is reduced by

r =
(
1− 2κ−1/2

)m ≈ e−2m/
√

κ. (4.9)

It follows that

m ≈ −1
2

√
κ ln r. (4.10)
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In Figure 15, the number of CG iteration cycles is compared for uniform and adaptive
grids for the case γ = 0.1. The diagram shows that for a given number of degrees of free-
dom, the number of iteration cycles required to solve the discrete system is approximately
three times higher for the uniform grid than for the adaptive grid.

Denote the number of CG iteration cycles necessary to achieve a certain error bound
by mu for the uniform grid and by ma for the adaptive grid. Similarly, let the spectral
condition number of the matrix of coefficients be κu for the uniform grid and κa for the
adaptive grid. From equation (4.10) it then follows that√

κu

κa
≈ mu

ma
≈ 3. (4.11)

Hence, the ratio of the condition numbers is approximately nine. Thus, the applied
adaptive algorithm does not only give better convergence rates than uniform grids. The
discrete systems of the adaptive algorithm are also better conditioned.

V. CONCLUSIONS

In this work, numerical convergence of an adaptive algorithm for a control-volume method
applied to elliptic equations has been studied. The test runs indicate that for solutions in
the Sobolev space H1+γ , γ ∈ (0, 1], the convergence rate is second order for the potential
in L2 norm and first order for the potential in L∞ norm and for the flow density in L2

norm. Also, the system of linear equations is better conditioned for the adaptive grids
than for uniform grids.

Finally, the refinement criterion in the algorithm has been discussed. The numerical
tests indicate that a pure flux-based criterion is preferable.
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