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Preface

During the finishing stages of my thesis I have been thinking a lot on how to write a
preface to it. Browsing through other theses I have noted that a typical preface consists
of an almost blank page with a few lines where the candidate give thanks to various
people. This is of course lame and boring, so I have tried to come up with some better
ideas for how to fill this almost compulsory page. I have been reading Alasdair Gray’s
“Lanark” recently. The biographical notes on the author mentions that he has been
editor for “An Anthology of Prefaces”. I thought that this would be a perfect book to
steal ideas for a preface from. But on closer consideration it occurred to me that this
book is probably not available in an abundant number of copies in Bergen and that it
would be a waste of time searching for a copy. As a consequence I have no brilliant ideas
of what to fill this page with, so I will just stick to the usual list of thank yous.

I would like to thank my thesis advisor, Trygve Johnsen, for his attempt to make a
mathematician out of me.

I would like to thank my parents for their support (I hope this page is somewhat
intelligible as they will probably understand little of the following).

I would like to thank my fellow students for things of both academical and non-
academical nature.

And last but not least a thanks to those who deserve to be thanked but who I have
inconsiderately forgotten to mention above.

Happy reading.



iv



Contents

Preface iii

Introduction 1

Conventions and Notations 5

I K3 Surfaces 7

1 Some Results on K3 Surfaces 9

1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Rational normal scrolls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 The Clifford index and Clifford divisors . . . . . . . . . . . . . . . . . . . 21

1.4 K3 surfaces which are Clifford general and non-BN general . . . . . . . . 30

1.5 Well-behaved divisors and their configurations . . . . . . . . . . . . . . . . 40

1.6 On the relationship of the Clifford divisors of L, L − D, and L + D . . . . 53

2 Projective Models of Polarized K3 Surfaces of Genus 12 59

2.1 c = 3, D2 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.2 c = 3, D2 = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.3 c = 4, D2 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.4 c = 4, D2 = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.5 c = 4, D2 = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

2.6 c = 1, D2 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

2.7 c = 2, D2 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

2.8 Clifford general non-BN general polarized K3 surfaces of genus 12 . . . . . 112

2.9 D2 = 2 and D.L = 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

2.10 D2 = 4 and D.L = 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

2.11 g 6= 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

II Other Surfaces 121

3 Del Pezzo Surfaces 123



vi CONTENTS

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.2 k-very ampleness and birational k-very ampleness . . . . . . . . . . . . . . 125
3.3 Scroll types and resolutions . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4 Enriques Surfaces 139

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.2 The function φ(C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.3 Scroll types and resolutions . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Bibliography 159

Index of Notation 162

Index 163



List of Tables

1.1 Components of ∆′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.1 Scroll types for g = 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.2 Possible scroll types associated to L of type {3, 0}. . . . . . . . . . . . . . 63
2.3 Possible scroll types associated to L of type {3, 2}. . . . . . . . . . . . . . 84
2.4 Possible scroll types associated to L of type {4, 0}. . . . . . . . . . . . . . 85
2.5 Possible scroll types associated to L of type {4, 2}. . . . . . . . . . . . . . 95
2.6 Possible scroll types associated to L of type {4, 4}. . . . . . . . . . . . . . 96
2.7 Possible scroll types associated to L of type {3, 0}. . . . . . . . . . . . . . 99
2.8 Possible scroll types associated to L of type {2, 0}. . . . . . . . . . . . . . 105
2.9 Possible scroll types associated to non-BN general L with D2 = 2 and

D.L = 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
2.10 Possible scroll types associated to non-BN general L with D2 = 4 and

D.L = 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.1 Possible divisors D in case (a) . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.2 Possible divisors D in case (b) . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.1 Properties of φ(C) for φ(C) ≤ 12. . . . . . . . . . . . . . . . . . . . . . . . 146
4.2 Finding c(φ) for φ = 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4.3 Scroll types when C2 = 60. . . . . . . . . . . . . . . . . . . . . . . . . . . 155
4.4 Scroll types for C2 ≤ 20 with C base point free and h0(C − P ) ≥ 2. . . . . 157



viii LIST OF TABLES



Introduction

Given a polarized surface (S,L)1 with L2 > 0, we have a morphism

φL : S −→ P(H0(S,L)) ∼= Ph0(L)−1.

The image of φL is a projective model of the surface. In this thesis we will study (S,L)
and its projective model. There are a lot of questions one can pose: when is φL birational?
what is contracted by φL? is the projective model contained in any “nice” varieties? etc.
We will now look at how these questions are related to my thesis.

We will first look at when φL is birational. Our discussion will motivate the Clifford
index for K3 surfaces and the φ(L) function for Enriques surfaces.

For K3 surfaces Saint–Donat [SD74] showed that φL is birational if and only if (the
general section of) L is not hyperelliptic. Hence we would like to know when L is
hyperelliptic. A curve C is hyperelliptic if and only if it has Clifford index zero (see
definition 1.3.2 and [Har77, theorem IV.5.4]). Thus we would like to be able to extend
the concept of Clifford index to K3 surfaces. Green and Lazarsfeld [GL87] showed that
this can be done (see theorem 1.3.6). For a reformulation of Saint–Donat’s result using
the Clifford index see theorem 1.3.17. In section 1.3 we will study the Clifford index of
a K3 surface. If the Clifford index of L is b(g − 1)/2c (where g is the genus of L), we
say that L is Clifford general.2 If L is not Clifford general, then the Clifford index will
in a natural way give a (not necessarily unique) decomposition L ∼ D + F where D is
a divisor computing the Clifford index of L. Most of part I will consist of studying this
decomposition. The divisor D can be chosen to have certain “nice” properties and we
will call it a Clifford divisor.

The non-Clifford general K3 surfaces are easier to study than the Clifford general K3
surfaces because of the decomposition we get when L is not Clifford general. The notion
of BN (Brill–Noether) generality makes it easier to also study the Clifford general case.
BN generality has been studied by Mukai [Muk95] and he has been able to get good
results for BN general K3 surfaces of low genera. We will see that BN generality implies
Clifford generality. Theorem 1.4.10 will however show that there are lots of Clifford

1See “Conventions and Notations” for the definition of this and some of the other concepts we use in
the introduction.

2The name is somewhat misleading; there are more polarized K3 surfaces that are non–Clifford general
than Clifford general. In fact for a given genus g the general polarized K3 surface is Clifford general if
and only if g − 1 is square-free. (See propositions 1.3.9 and 1.3.18.)
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general non-BN general K3 surfaces, so the situation is far from reduced to studying the
BN general K3 surfaces.3

Cossec [Cos83] determined when φL is birational for an Enriques surface S. In [Cos85]
he introduced the φ(L) function which simplifies his results. In particular φL will be
birational if φ(L) ≥ 3 (proposition 4.2.2). We will study the φ(L) function in section 4.2.
We will especially look at possible pairs (C2, φ(C)) with C an irreducible curve and give
existence results when Sis an unnodal Enriques surface.

We will now look at the curves contracted by φL. These were studied extensively
by Artin [Art62].4 Let E be the set of irreducible curves Γ such that L.Γ = 0. This
is the set of curves contracted by φL. If S is a K3 surface, then the Hodge index
theorem gives that every Γ is a smooth rational curve satisfying Γ2 = −2. Take a
component of the configuration with vertices in E . Using the Hodge index theorem
again we see that the intersection matrix of the elements of the component is negative–
definite. Thus the component is isomorphic to one of the graphs (An), (Dn), (E6), (E7),
and (E8) in the classification of semi–simple Lie algebras. (See [SD74, (4.2)] and [Băd01,
theorem 3.32] for more details.) In section 1.5 we will classify the components of a subset
of E which is obtained in a natural way from Clifford divisors, more precisely we will
classify the components of ∆′ in well-behaved pairs (A′,∆′) (such pairs will be defined
in definition 1.5.3). In table 2.1 we will give the components of E for the most general
non–BN polarized K3 surfaces of genus 12.

We now move on to the third question: is the projective model contained in any
“nice” varieties? In this thesis the “nice” variety (except from the obvious Ph0(L)−1) will
be a rational normal scroll. An introduction to these are given in section 1.2. A pencil

{Dλ}λ∈P1 ⊆ |D|

on S with h0(L − D) ≥ 2 gives in a natural way a rational normal scroll containing
φL(S). We will use this procedure to get scrolls containing the projective models of K3
surfaces, Enriques surfaces, and Del Pezzo surfaces.

For K3 surfaces these scrolls will be associated to Clifford divisors. In section 1.3 we
will see how we can get a pencil contained in |D|, where D is a Clifford divisor. This
will give a scroll containing φL(S). We will get scrolls in this way as long as the Clifford
index is non–zero and L is not Clifford general. A large part of chapter 2 will consist of
describing these scrolls when L has genus 12.

On Enriques surfaces the φ(L) function immediately gives elliptic pencils |P |. We
can use these pencils to get scrolls when h0(L − P ) ≥ 2 (see p. 144). These scrolls will
be studied in section 4.3.

Also on some polarized Del Pezzo surfaces we find pencils that give scrolls. The
pencils will be given by case (a) of proposition 3.2.6. The scrolls will be studied in
section 3.3.

3Given a fixed genus g our results will imply that i) the moduli space of BN general polarized K3
surfaces of genus g has dimension 19, ii) the moduli space of Clifford general non-BN general polarized
K3 surfaces of genus g has dimension 18, and iii) the moduli space of non-Clifford general polarized K3
surfaces of genus g has dimension 18 if g − 1is square-free and 19 otherwise.

4See also [Băd01, chapter 3] for a more leisurely introduction.
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A different way to study the map φL is by using higher order embeddings. This
gives rise to concepts such as k-very ampleness. Geometrically the projective model has
no (k + 1)-secant (k − 1)-plane Pk−1 ⊂ Ph0(L)−1 if L is k-very ample. We will give an
introduction to k-very ampleness and related concepts in section 3.2. We will study the
concepts more closely on Del Pezzo surfaces.

This introduction is intended to be a motivation for the rest of the thesis. For a more
detailed discussion of the contents and results of this thesis see the introduction to each
chapter.
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Conventions and Notations

We work over the ground field C. A surface is always a reduced and irreducible smooth
projective algebraic surface. A curve is always reduced and irreducible.5 A curve on a
surface will then necessarily be a prime divisor. A polarized surface (S,L) is a surface
with a base point free line bundle L.6 We write g(L) for the arithmetic genus of L. The
genus of a polarized surface (S,L) is the genus g(L).

Line bundles and divisors are used with almost no distinction.
We will usually write H i(L) for H i(S,L), where L is a line bundle on the surface S.

hi(L) is the dimension of H i(L). Given two divisors A and B we write A ≥ B when
|A − B| 6= ∅, i.e. h0(A − B) > 0. Similarly we write A > B when h0(A − B) > 0 and
A � B.

A configuration is a graph where the vertices corresponds to divisors and where
the number of edges between two distinct vertices is the intersection number of the
corresponding divisors. For all the sets of divisors that we will give the configurations
of the intersection numbers will be non-negative so this is well-defined. Note that a
configuration says nothing about self-intersections. We say that the configuration of the
divisor m1A1 + · · · + mrAr is the configuration with vertices {Ai}.

Given a divisor m1A1 + · · ·+mrAr +n1B1 + · · ·+nsBs, where mi, ni ∈ Z, h0(Ai) > 1,
and h0(Bj) = 1, we can write Bj ∼ k1,jC1,j + · · · + kt,jCt,j uniquely as a sum of prime
divisors. Then the configuration-graph of m1A1 + · · ·+ mrAr + n1B1 + · · ·+ nsBs is the
configuration of m1A1 + · · · + mrAr +

∑s
1(ki,jC1,j + · · · + kt,jCt,j).

An example will clarify these concepts. Take a divisor A + B + C where A.B = 1,
A.C = 1, B.C = 1, C2 = −2, h0(A) > 1, h0(B) = h0(C) = 1, and C is a prime divisor.
Assume that B = C +D is a prime decomposition. Then the configuration of A+B +C
is

A

@@
@@

@@
@ C

B

~~~~~~~

while the configuration-graph of A + B + C is

A C D

5Sometimes we will write irreducible curve instead of just curve to emphasize that it is irreducible.
6Note that this differs somewhat from the “usual” definition of a polarized surface. A polarized surface

(S, L) is usually defined to be a surface with an ample line bundle L.
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Chapter 1

Some Results on K3 Surfaces

This chapter is about K3 surfaces. We will develop further the theory of Clifford divi-
sors in [JK01]. In the next chapter we will use our results to solve a specific problem:
classifying projective models of polarized K3 surfaces of genus 12 in scrolls.

The first three sections include mostly well-known material. Section 1.1 gives an
overview of the standard material on K3 surfaces which we will be using later on. The
section also includes definitions and results that holds for all surfaces. Several of these
results will be used in part II also. Almost all the material in this section is standard
and taken from other sources. Lemma 1.1.14 and proposition 1.1.22 are the only results
here that I have not seen explicitely stated in the literature.

Section 1.2 is an introduction to rational normal scrolls.

In section 1.3 we introduce the Clifford index of a polarized K3 surface (S,L). This
leads naturally to the concept of Clifford divisors. The linear systems of these divisors
contains pencils that will give scrolls containing the image of S in Pg by the natural
morphism given by the complete linear system |L|. It is these scrolls we will classify for
g = 12 in chapter 2. We will see that one can choose a Clifford divisor to have certain
nice properties. Most of the material in this section is taken from [JK01] though it is
a bit rearranged. The most notable new material in this section are propositions 1.3.9
and 1.3.18 with its surrounding material.

In section 1.4 we look at the relationship between Clifford generality and BN (Brill-
Noether) generality. This section is in some ways an extension of the ideas in [JK01,
section 10]. We will show that BN generality implies Clifford generality. We will also
give conditions for a K3 surface to be Clifford general but non-BN general. We will use
these conditions to find possible intersection numbers in Clifford general non-BN general
K3 surfaces for g ≤ 13. The main result of this section is theorem 1.4.10, where we show
that for g = 8 and g ≥ 10 there exists K3 surfaces that are Clifford general but non-BN
general. A good reason for studying the relationship between Clifford and BN generality
is the results of Mukai [Muk95]. He finds the projective model of BN general K3 surfaces
(S,L) with L ample for g = 2, . . . , 10, and 12. We end the section with looking shortly
at how BN generality of K3 surfaces relates to BN theory of curves.

Section 1.5 studies the base point divisor ∆ of L− D where L is base point free and
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D is a Clifford divisor for L. We introduce the concept of a well-behaved pair (A ′,∆′) of
divisors. The divisor ∆′ will have many of the same properties as ∆ but will be easier to
work with. We show existence of well-behaved pairs for all L and D (proposition 1.5.8)
and classify the components of ∆′ (theorem 1.5.10).

In section 1.6 we study the relationship between the Clifford divisors of L, L − D,
and L + D. This also gives information on the scroll types associated to L, L − D, and
L + D. The primary motivation of this section was to be able to use some of the results
found in [JK01] for g = 8 and g = 9 to get results for g = 12 when c = 1 and c = 2.
Considering the use of this section in the next chapter one sees that this goal has to some
extent been fulfilled. But the results of this section are also interesting in themselves
and are for large genus much more interesting than in the g = 12 case in which we will
be using them.1

1.1 Preliminaries

We start with the definition of a K3 surface.

Definition 1.1.1. A K3 surface S is a smooth regular surface with a trivial canonical
bundle, i.e. h1(S,OS) = 0 and KS = 0.

The most usual examples of K3 surfaces are Kummer surfaces and the complete
intersections (4), (2, 3), and (2, 2, 2). See [BPvdV84, sections V.2, V.16, and V.22] for
these and other examples.

K3 surfaces has a natural placing in the classification of surfaces. The Kodaira di-
mension κ(S) of a surface is the transcendence degree over C of the ring

R =
⊕

n≥0

H0(S, nKS).

This is the definition given in [Har77, p.421]. See [Băd01, definition 5.6] for an alternative
definition. One sees that a K3 surface has Kodaira dimension 0. We know have the
following important classification theorem.

Theorem 1.1.2. (Enriques, Kodaira) [Har77, theorem 6.3], [GH94, p.590] A surface S
with κ(S) = 0 is either

• a K3 surface,

• an Enriques surface,

• an abelian surface,

• or a hyperelliptic surface.

1See the last paragraph of section 2.11 for more details.
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See the references for definitions of the other types of surfaces (for Enriques surfaces
see definition 4.1.1).

Setting K = 0 in the Riemann-Roch formula and using Serre duality we get (K3
surfaces have pg = 1)

(1.1) h0(D) + h0(−D) =
1

2
D2 + 2 + h1(D)

for a divisor on a K3 surface. If D2 ≥ −2 then the right hand side is larger than or equal
to 1. Hence either |D| or | − D| contains an effective member.

For a general surface S we have several equivalence relations between divisors: linear
equivalence (D ∼ D′), algebraical equivalence, and numerical equivalence (D ≡ D ′).
Modulo the equivalence class containing 0 we get the groups ClS, NSS, and NumS
respectively (see [Har77, V.1] or [Băd01, chapter 4]). Note that, with our definition of a
surface, we have ClS ∼= Pic S.

In general we have that linearly equivalent divisors are algebraically equivalent, and
that algebraically equivalent divisors are numerically equivalent (see [Har77, exe.V.1.7]).
For K3 surfaces the converse holds.

Proposition 1.1.3. Let S be a K3 surface. Then two divisors are linearly equivalent if
and only if they are algebraically equivalent if and only if they are numerically equivalent.
In particular Pic S = NSS = NumS. Hence Pic S is free Z-module of finite rank.

Proof. See [SD74, (2.3)] or [Băd01, theorem 10.3]. We have to show that a divisor D
numerically equivalent to 0 is linearly equivalent to 0. Assume that D � 0. If D ≡ 0,
then we have in particular that D2 = 0 so |D| or | − D| have to contain an effective
divisor, which must be non zero since D � 0. Note that if D ≡ 0, then −D ≡ 0. Hence
we have an effective non zero divisor which is numerically equivalent to zero, which is
impossible since S is projective.

The last statement follows from the Néron-Severi theorem (which says that NSS is
a finitely generated abelian group) and the fact that NumS has no torsion.

For a K3 surface the adjunction formula is particularly simple.

Proposition 1.1.4. (Adjunction formula) Let C be an effective divisor of arithmetic
genus g on a K3 surface, then

D2 = 2(g − 1)

Proof. This is just [Har77, exe.V.1.2] with K = 0.

We see that an irreducible curve Γ has negative self-intersection if and only if Γ2 = −2
and g(Γ) = 0. Such a curve is a smooth rational curve. By lemma 1.1.16 we also have
h1(Γ) = 0. Riemann-Roch then gives h0(Γ) = 1.

The Hodge Index Theorem is a useful result on surfaces that we will be needing. A
divisor D is big if D2 > 0.



12 Some Results on K3 Surfaces

Proposition 1.1.5. (Hodge Index Theorem) [Băd01, corollary 2.3] Let H be a big divisor
and let D be any divisor on a surface S. with D.H = 0. Then D2 ≤ 0, with equality if
and only if D ≡ 0.

Corollary 1.1.6. Let H be a big divisor on a surface S, and let D be a divisor. Then

D2H2 ≤ (D.H)2,

with equality if and only if (D.H)H ≡ H2D.

Proof. Let E = (D.H)H − H2D. Then E.H = 0 so by the Hodge index theorem
E2 = H2(D2H2 − (D.H)2) ≤ 0, with equality if and only if E ≡ 0.

Remark 1.1.7. By proposition 1.1.3 we can for a K3 surface substitute ≡ with ∼ in the
last two results. We will later on usually refer to corollary 1.1.6 as the Hodge index
theorem also.

A point P ∈ S is a base point of the linear system δ if P is in the union of the prime
divisors of D for all D ∈ δ. We say the a divisor D is base point free if |D| has no base
points. Note that D is base point free if and only if OS(D) is generated by its global
sections. A divisor λ is called a fixed component of δ if D − λ ≥ 0 for all D ∈ δ. The
union of the fixed components of δ is the fixed part of δ. Note that if ∆ is the fixed part
of a complete linear system then h0(∆) = 1.

A divisor D is numerically effective (nef )2 if D is effective and D.E ≥ 0 for all
effective divisors E. (Equivalently: D is nef if D.C ≥ 0 for all curves C on S.) To know
that a divisor is nef is useful in many situations. We will now give some conditions for
a divisor to be nef.

Proposition 1.1.8. Let D be an effective divisor on a surface S. Then D is nef if and
only if D.E ≥ 0 for every fixed irreducible component of |D|.

Proof. See [Knu98, proposition 2.17] The intersection number is non-negative between
effective divisors if all intersections are transversal [Har77, V, 1.4]. Hence a negative
intersection number arises from a common fixed component.

Corollary 1.1.9. Let D be an effective divisor on a K3 surface. If D is not nef, then it
contains an irreducible curve Γ with Γ2 = −2 and Γ.D < 0.

Proof. See [Knu98, proposition 2.18] The only way an irreducible component Γ of D
gives rise to a negative intersection number Γ.D is if it has negative self-intersection.

Note also that an effective base point free divisor is without fixed components, so it
is nef by this corlllary.

Proposition 1.1.10. [SD74, corollary 3.2] Let |D| be a complete linear system on a K3
surface. Then |D| has no base points outside its fixed components.

2or numerically eventually free or something else. There does not seem to be consensus in what the
abbreviation nef stands for. Since one normally only uses the abbreviation this should cause no problems.
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Proposition 1.1.11. [SD74, proposition 2.6] Let D be an effective base point free divisor
on a K3 surface. Then either

1. D2 > 0. Then the generic member of |D| is an irreducible curve of genus 1
2D2 +1.

Furthermore h1(D) = 0.

2. D2 = 0. Then D ∼ kE, where k ≥ 1 is an integer and E is an irreducible curve of
genus 1. Furthermore h1(D) = k − 1 and every member of |D| can be written as a
sum E1 + · · · + Ek, where Ei ∈ |E| for all i.

We will need to know when a divisor is base point free.

Proposition 1.1.12. [SD74, subsection 2.7] Let D be a nef divisor on a K3 surface S.
Then D is not base point free if and only if there exist smooth irreducible curves E and
Γ and an integer k ≥ 2 such that

D ∼ kE + Γ, E2 = 0, Γ2 = −2, E.Γ = 1.

In this case, every member of |D| is of the form E1 + · · · + Ek + Γ, where Ei ∈ |E| for
all i.

Corollary 1.1.13. If a nef divisor D on a K3 surface is not base point free, then D is
big and there exists a curve E such that E2 = 0 and E.D = 1.

If D2 ≥ 5 then this corollary is just a special case of Reider’s theorem (see [Laz97,
theorem 2.1]).

We will now state some results about fixed divisors on K3 surfaces. A graph is a
forest if it contains no cycles or multiple edges. The next lemma will be very useful to
us later on.

Lemma 1.1.14. Let D be an nonzero effective divisor with h0(D) = 1. Then there
exists smooth rational curves Γ1, . . . ,ΓN such that D = n1Γ1 + · · · + nNΓN , where ni is
a positive integer for every i.

Furthermore the configuration-graph of D is a forest.

Proof. D can be written as a sum of irreducible curves. If D could not be written as in
the lemma, then there exists an irreducible curve 0 < C ≤ D such that C 2 ≥ 0. But
then h0(D) ≥ h0(C) ≥ 2, a contradiction.

Suppose the configuration-graph contains a multiple edge. Then Γi.Γj > 1 for some
pair (i, j) (i 6= j). This gives

h0(D) ≥ h0(Γi + Γj) ≥ (Γi + Γj)
2 + 2 ≥ 2,

a contradiction.
Suppose the configuration-graph contains a cycle. Reordering the vertices if necessary

we may assume that it looks as follows:

Γ1 ΓN · · ·

Γ2 Γ3

||||||||
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Using Riemann-Roch this gives

h0(D) ≥ h0(Γ1 + · · · + ΓN ) ≥ (Γ1 + · · · + ΓN )2 + 2 ≥ 2,

a contradiction.

Corollary 1.1.15. Let D be an effective divisor on a K3 surface. The fixed part of |D|
can be written (uniquely) as a sum of smooth rational curves.

Proof. We have already noted that the fixed part ∆ of |D| satisfies h0(∆) = 1. Hence
the proposition follows from the lemma.

We are in some cases able to say when a smooth rational curve is a fixed component
of a complete linear system. We will need a lemma.

Lemma 1.1.16. [SD74, lemma 2.2] Let D be an effective divisor on a K3 surface, then

h1(D) = h0(D,OD) − 1

Proof. From the exact sequence

0 → OS(−D) → OS → OD → 0

we get the long exact sequence

0 → H0(S,OS(−D)) → H0(S,OS) → H0(D,OD) →

H1(S,OS(−D)) → H1(S,OS) = 0.

We et the stated result using the additivity of long exact sequences, since h0(−D) = 0 (D
effective), h0(S,OS) = 1, h1(−D) = h1(D) (Serre duality), and h1(S,OS) = 0 (definition
of K3 surface).

Proposition 1.1.17. [SD74, remark 2.7.3] Let D be a big and effective base point free
divisor and Γ be a smooth rational curve on a K3 surface. Then Γ is fixed in |D + Γ| if
and only if Γ.D = 0 or Γ.D = 1.

Proof. By proposition 1.1.11 we have two cases to consider.
i) D an irreducible big curve. Then h1(D) = 0. If Γ.D = 0, then lemma 1.1.16 gives

h1(D +Γ) = 1, so h0(D) = h0(D +Γ) by Riemann-Roch. If Γ.D = 1, then lemma 1.1.16
gives h1(D + Γ) = 0, so h0(D) = h0(D + Γ) Riemann-Roch. If Γ.D > 1, then

h0(D) =
1

2
D2 + 2 <

1

2
(D + Γ)2 + 2 ≤ h0(D + Γ).

ii) D ∼ kE where E is an elliptic curve. Then h1(D) = k − 1. If Γ.D = 0, then
lemma 1.1.16 gives h1(D + Γ) = k, so h0(D) = h0(D + Γ) by Riemann-Roch. Γ.D ≥ 1
is ad verbatim as above.

The concept of numerical connectedness will be of some importance to us.
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Definition 1.1.18. Let D be an effective divisor on a surface. We say that D is nu-
merically m-connected if for every decomposition D ∼ D1 + D2 of D into a sum of two
effective non-zero divisors, we have

D1.D2 ≥ m.

Proposition 1.1.19. (Ramanujam’s lemma) [Rei97, lemma 3.11] If D is a big and nef
divisor, then D is numerically 1-connected.

If D is numerically 1-connected, then h0(OD) = 1.
In particular if S is a K3 surface and D a numerically 1-connected divisor on S, then

h1(D) = 0.

Proof. The first two statements are proven in [Rei97, lemma 3.11]. The last statement
follows from lemma 1.1.16 and the second statement.

Many of the divisors we will be working with will be numerically 2-connected as the
next result shows.

Proposition 1.1.20. [SD74, lemma 3.7] Let C be an irreducible curve on a K3 surface
such that C2 > 0. Then C is numerically 2-connected.

We will need some lattice theory.

Definition 1.1.21. A lattice is a free Z-module of finite rank with a Z-valued symmetric
bilinear form b(x, y). A lattice is even if the associated quadratic form b(x, x) takes on
only even values. The discriminant of a lattice is the determinant of the matrix of its
bilinear form. A lattice is non-degenerate if the discriminant is non-zero. If L is a non-
degenerate lattice, the signature of L is a pair (s(+), s(−)), where s(+), resp. s(−), is the
number of positive, resp. negative, eigenvalues of the quadratic form on L⊗Z R. A lattice
is unimodular if the discriminant is ±1.

Note that both the discriminant and signature is independent on the choice of basis
for L.

Every surface S has a lattice associated to it. Just take NumS as the module, and
let the intersection pairing give the symmetric bilinear form. If di, i ∈ I, with Di an
element of the numerical equivalence class di, is a basis for NumS then (Di.Dj)i,j∈I is
the matrix of the bilinear form. We call this lattice the Picard lattice. The Hodge index
theorem says that this lattice has signature (1, ρ(S)− 1), where ρ(S) := rankNSS is the
Picard number (see [Băd01, proof of corollary 2.4]).

In the next chapter we will consider many lattices which we among other things have
to find the signature of. We will in all of the cases just state the signature without
including the computation. If one wants to compute the signature one can of course do
this by computing all the eigenvalues (i.e. let Maple compute all eigenvalues) and then
count their signs. A smarter way is to use the Descartes rule of signs. See [CLO98,
proposition 5.4] for details.

We need a way to decide if certain combinations of elements are possible in a lattice.
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Proposition 1.1.22. Let L be the lattice Za1 ⊕ · · · ⊕ Zan. If b1, . . . , bn are elements in
L, then the determinant of the matrix given by the bilinear form on b1, . . . , bn is divisible
by the determinant of the matrix given by the bilinear form on a1, . . . , an.

Proof. The determinant of the matrix given by the bilinear form on a1, . . . , an looks as
follows

∣
∣
∣
∣
∣
∣

b(a1, a1) . . . b(a1, an)
. . . . . . . . . . . . . . . . . . . . . . .
b(an, a1) . . . b(an, an)

∣
∣
∣
∣
∣
∣

To prove the proposition is enough to show that it is true when we replace a1 with ca1

(c ∈ Z) and with a1 + a2, since the determinant is unchanged (up to sign) by permuting
rows and columns.

If we replace a1 with ca1 (c ∈ Z), then we get

∣
∣
∣
∣
∣
∣

b(ca1, ca1) . . . b(ca1, an)
. . . . . . . . . . . . . . . . . . . . . . . . . .
b(can, a1) . . . b(an, an)

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

c2b(a1, a1) . . . cb(a1, an)
. . . . . . . . . . . . . . . . . . . . . . . . . .
cb(an, a1) . . . b(an, an)

∣
∣
∣
∣
∣
∣

= c

∣
∣
∣
∣
∣
∣

cb(a1, a1) . . . b(a1, an)
. . . . . . . . . . . . . . . . . . . . . . . .
cb(an, a1) . . . b(an, an)

∣
∣
∣
∣
∣
∣

= c2

∣
∣
∣
∣
∣
∣

b(a1, a1) . . . b(a1, an)
. . . . . . . . . . . . . . . . . . . . . . .
b(an, a1) . . . b(an, an)

∣
∣
∣
∣
∣
∣

If we replace a1 with a1 + a2, then we get

∣
∣
∣
∣
∣
∣
∣
∣

b(a1 + a2, a1 + a2) b(a1 + a2, a2) . . . b(a1 + a2, an)
b(a2, a1 + a2) b(a2, a2) . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b(an, a1 + a2) b(an, a2) . . . b(an, an)

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

b(a1, a1) + 2b(a1, a2) + b(a2, a2) b(a1, a2) + b(a2, a2) . . . b(a1, an) + b(a2, an)
b(a2, a1) + b(a2, a2) b(a2, a2) . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b(an, a1) + b(an, a2) b(an, a2) . . . b(an, an)

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

b(a1, a1) + b(a1, a2) b(a1, a2) + b(a2, a2) . . . b(a1, an) + b(a2, an)
b(a2, a1) b(a2, a2) . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b(an, a1) b(an, a2) . . . b(an, an)

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

b(a1, a1) b(a1, a2) . . . b(a1, an)
b(a2, a1) b(a2, a2) . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b(an, a1) b(an, a2) . . . b(an, an)

∣
∣
∣
∣
∣
∣
∣
∣
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(where we have first subtracted the second column from the first and then subtracted
the second row from the first).

For a Kähler surface H2(S, Z) is a lattice, with signature (2h2,0 + 1, h1,1 − 1). A K3
surface is a Kähler surface with h2,0 = 1 and h1,1 = 20 (see [BPvdV84, chapter VIII]),
so H2(S, Z) is a lattice with signature (3, 19). The Hodge decomposition gives

H2(S, C) ∼= H2,0(S) ⊕ H1,1(S) ⊕ H0,2(S).

The Hodge index theorem says that the signature of the form on H 1,1(S, R) is (1, h1,1 −
1) = (1, 19).

NSS has a natural embedding in H2(S, Z), and NSS can be identified with H2(S, Z)∩
H1,1(S). If S is a K3 surface then H2(S, Z) has no torsion and is an even lattice, so
by [Mor84, 1.3] H2(S, Z) is isometric the K3 lattice Λ = U 3 ⊕ E8(−1)2, where U is the
lattice whose bilinear form has matrix

(
0 1
1 0

)

and E8 is the lattice whose bilinear form has matrix















2 −1
−1 2 −1

−1 2 −1 −1
−1 2 0
−1 0 2 −1

−1 2 −1
−1 2 −1

−1 2















.

Note that Λ is unimodular.
An embedding M ↪→ L of lattices is primitive if L/M free. We have the following

result.

Proposition 1.1.23. [Mor84, corollary 1.9] Let Λ be the K3 lattice. Suppose L ↪→ Λ is
a primitive sublattice of signature (1, ρ − 1). Then there exists a K3 surface S and an
isometry NS S ∼= L.

For ρ ≤ 11 we have the following stronger result.

Proposition 1.1.24. [Mor84, corollary 2.9] Let ρ ≤ 11 and L be a lattice. Then there
exists a K3 surface with Pic S ∼= L if and only if L is an even lattice of signature (1, ρ−1).

Remark 1.1.25. [Mor84, corollary 2.9] includes only the case ρ ≤ 10, but we will not need
the uniqueness of the primitive embeddings. Hence we can include ρ = 11 by [Mor84,
remark 2.11].

Proof. The if part is [Mor84, corollary 2.9]. The only if part follows from Hodge index
theorem and the adjunction formula.
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Let ∆ := {Γ ∈ Pic S|Γ2 = −2} and consider the Picard-Lefschetz reflection

φΓ : Pic S −→ PicS
D 7−→ D + (D.Γ)Γ

We see easily that φΓ ◦ φΓ = idPic S so φΓ is a reflection. Furthermore φΓ leaves the
intersection between divisors invariant. Note that a reflection maps a basis for Pic S into
another basis for PicS. Let

CS = {D ∈ Pic S|D effective and D2 > 0}

be the positive cone of S and

C+
S = {D ∈ CS|Γ.D > 0 for all Γ ∈ ∆}

be the Kähler cone. Its closure

C+
S = {D ∈ CS|Γ.D ≥ 0 for all Γ ∈ ∆}

is the big-and-nef cone. It consists of every big and nef divisor by [BPvdV84, corollary
3.8].

[BPvdV84, proposition VIII.3.9] says that the set {φΓ}Γ∈∆ leave CS invariant and

any orbit in CS of the group generated by {φΓ}Γ∈∆ meets C̄+
S in exactly one point.

We will now show that given a Picard lattice of a K3 surface we, using this result,
can assume that a chosen big divisor in this lattice is nef. Given a big divisor D ∈ Pic S,
we know that either |D| or |−D| contains an effective member. After using, if necessary,
the reflection

φ− : PicS −→ Pic S
D 7−→ −D

we may assume that D ∈ CS . Using the Picard-Lefschetz reflections we may then assume
that D is nef.

To end this section we will make some remarks concerning the moduli of K3 surfaces.
There is a 20-dimensional family of analytic isomorphism classes of K3 surfaces. Moreover
there is a countable union of 19-dimensional families of algebraic K3 surfaces. We have
seen that a K3 surface has Picard number between 1 and 20. For a given K3 surface
with a specified Picard lattice and Picard number ρ there exists a (20 − ρ)-dimensional
family of isomorphism classes of algebraic K3 surfaces with the same Picard lattice.

1.2 Rational normal scrolls

We will now include some results on scrolls that we will need later on. We start with the
definition.

Definition 1.2.1. Let E = OP1(e1) ⊕ · · · ⊕ OP1(ed) be a locally free sheaf of rank d on
P1 and let

π : P(E) = Proj Sym E −→ P1
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denote the corresponding Pd−1-bundle. Let e1 ≥ · · · ≥ ed ≥ 0 and

f := e1 + · · · + ed ≥ 2.

A rational normal scroll T := S(e1, . . . , ed) of type (e1, . . . , ed) is the image of the map

j : P(E) −→ PH0(P(E),OP(E)(1)) = Pn

where n = f + d − 1.

Remark 1.2.2. Note that there is quite a lot of ambiguity between different authors on
the definition of a rational normal scroll. The definition given here is equivalent to the
one given in [Sch86] and [JK01]. [EH87] requires that f ≥ 1, [PS84] requires ed > 0,
while [Bra97] only requires f ≥ 0.

Note also that we will often be sloppy and write scroll instead of rational normal
scroll. In this thesis scroll will always mean rational normal scroll.

There are several different ways to describe a rational normal scroll. We will include
another often used description: Let e1, . . . , ed be integers as above and n = f + d − 1.
Denote by

a1, . . . , ad

the linear span of the d points a1, . . . , ad in Pn. Choose complementary linear subspaces
Λi of Pn, each of dimension ei, rational normal curves Ci ⊂ Λi, and isomorphisms
ϕi : P1 → Ci. Then

⋃

λ∈P1

ϕ1(λ), . . . , ϕd(λ) ∼= S(e1, . . . , ed).

Proposition 1.2.3. [PS84, lemma 1], [Sch86, section 1], [EH87, section 1], [ACGH85,
pp.95-98]

1. T := S(e1, . . . , ed) is a non-degenerate (that is not contained in a hyperplane)
irreducible projectively normal variety of degree f and dimension d.

2. S(e1, . . . , ed) is nonsingular if and only if ed > 0.

3. j : P(E) → PH0(P(E),OP(E)(1)) is an embedding if and only if ed > 0. (Note that
j is always birational.)

4. [Rei97, exercise 2.6] Let E = (O)P1(e1)⊕· · ·⊕ (O)P1(ed) and E ′ = (O)P1(e′1)⊕· · ·⊕
(O)P1(e′d) be two locally free sheaves of rank d on P1. Then P(E) ∼= P(E ′) if and
only if there exists an integer c such that ei = e′i + c for all i.

We will now give some examples (taken from [Rei97] and [EH87]).

1. S(1, 1) ∼= P1 × P1

2. S(a) is a rational normal curve of degree a
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3. S(a, 0) is the cone over a rational normal curve of degree a. (More generally:
S(e1, . . . , ed, 0, . . . , 0) is a cone over S(e1, . . . , ed)).

If X is a non-degenerate variety, then deg X ≥ 1 + codimX ([EH87, proposition 0]).
We say that a variety has minimal degree if X is non-degenerate and deg X = 1+codim X.
Then one has the following classification result for varieties of minimal degree.

Theorem 1.2.4. (Del Pezzo, Bertini) [EH87, theorem 1] If X ⊂ Pn is a variety of
minimal degree, then X is a cone over a smooth such variety. If X is smooth and
codimX > 1, then X ⊂ Pn is either a rational normal scroll or the Veronese surface in
P5.

It is noted in [Sch86, p. 110] that we may replace T by P(E) for most cohomological
considerations even when T is singular. As a consequence of this it is useful to know
more about the cohomology on P(E).

We will now describe the Picard group of P(E). (This is done in [Har77, exercise
II.7.9].) It is generated by the hyperplane class H = j∗OPn(1) and the fibre3 F =
π∗OP1(1) of π : P(E) → P1 such that

Pic P(E) = ZH⊕ ZF .

We have the following important formula for the cohomology on P(E).

(1.2) h0(P(E),OP(E)(aH + bF)) = h0(P1,Syma(E) ⊗OP1(b)).

(See [Sch86, 1.3] or [EH87, p.7] for proof.) We will use this formula later on when we
look at resolutions of projective models of Del Pezzo and Enriques surfaces.

One also has a description of the scroll S(e1, . . . , ed) as a determinantal variety using
the homogenous coordinates of Pn: Let X0,0, . . . , X0,e1 , X1,0, . . . , Xd,ad

be homogenous
coordinates of Pn. Then the ideal of S(e1, . . . , ed) is generated by the the 2 × 2 minors
of the following matrix

[
X0,0 . . . X0,e1−1 X1,0 . . . Xd,ad−1

X0,1 . . . X0,e1 X1,1 . . . Xd,ad

]

(See [ACGH85, p.96] or [Rei97, theorem 2.5] for proof.)

We will now give a summary of the results in [Sch86, section 2]. These will be of
importance to us later on.

We start with a smooth variety V (in the cases we consider later on V will always be
a surface S) and a line bundle L on V . Consider the natural map

φL : V −→ PH0(V,L) = Pr.

We are interested in rational normal scrolls T ⊂ Pr containing φL(V ).

3We can also view this fibre as a ruling of the cone.
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Let T ⊂ Pr be a scroll of degree f containing φL(V ). The ruling F on T cuts out a
pencil of divisors

{Dλ}λ∈P1 ⊆ |D|

on V with h0(V,L − D) = f ≥ 2.
Conversely from any pencil of divisors {Dλ}λ∈P1 on V with h0(V,L−D) = f ≥ 2 we

can construct a scroll of degree f . Each φL(Dλ) will span a (h0(L) − h0(L − D) − 1)-
dimensional linear subspace of Pr. The variety swept out by these linear spaces will be
a rational normal scroll.

Furthermore we can compute the scroll type rather easily as follows: Decompose the
pencil {Dλ} into its moving part {Mλ} and fixed part F . Then we have T = S(e1, . . . , ed)
with

(1.3) ei = #{j|dj ≥ i} − 1,

where

d = d0 = h0(L) − h0(L − D)

d1 = h0(L − D) − h0(L − F − 2M)

...
...

...(1.4)

di = h0(L − F − iM) − h0(L − F − (i + 1)M)

Note that obviously di = 0 for all i ≥ n for some n. Furthermore the di form a
non-increasing sequence (see [JK01, remark 2.4]). This is a property we will use several
times later on.

1.3 The Clifford index and Clifford divisors

Definition 1.3.1. Let C be a smooth irreducible curve of genus g ≥ 2. A gr
d is a linear

system of dimension r and degree d. C is k-gonal if C possesses a g1
k but no g1

k−1. (If C
is k-gonal we say that k is its gonality.) We write gon C for the gonality of C.

Definition 1.3.2. Let C be a smooth irreducible curve of genus g ≥ 2. If A is a line
bundle on C, then the Clifford index of A is

Cliff A := deg(A) − 2(h0(A) − 1).

If g ≥ 4 we define the Clifford index of C as

Cliff C := min{Cliff A|h0(A) ≥ 2,deg(A) ≤ g − 1}

= min{Cliff A|h0(A) ≥ 2, h1(A) ≥ 2}

A line bundle A on C contributes to the Clifford index of C if a satisfies h0(A) ≥ 2 and
deg A ≤ g − 1. A line bundle A on C computes the Clifford index of C if in addition
Cliff C = Cliff A.
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The next result gives bounds for Cliff C.

Theorem 1.3.3. Let C be a smooth irreducible curve of genus g ≥ 4. Then

0 ≤ Cliff C ≤

⌊
g − 1

2

⌋

.

Proof. Cliff C ≥ 0 is just Clifford’s theorem (see [Har77, theorem IV.5.4]).

For the other inequality we use [ACGH85, theorem V.1.1]. This says that if

g − 2(g − d + 1) ≥ 0,

then there exists a g1
d. In particular there exists a g1

b(g+3)/2c. Hence

(1.5) gonC ≤

⌊
g + 3

2

⌋

.

Then

Cliff C ≤

⌊
g − 1

2

⌋

follows from the lemma below.

Lemma 1.3.4. [CM91, theorem 2.3] The gonality of a smooth irreducible curve C of
genus g ≥ 4 satisfies

Cliff C + 2 ≤ gon C ≤ Cliff C + 3

Proof. We will only prove Cliff C +2 ≤ gon C, which is the part used in the above proof.

The existence of a g1
k gives a line bundle A with h0(A) = 2 and deg(A) = k ≤

b(g + 3)/2c (using equation (1.5)). Since b(g + 3)/2c ≤ g − 1 (for g ≥ 4 with equality if
and only if g = 4) A contributes to the Clifford index of C. Thus

Cliff C ≤ Cliff A = k − 2 = gonC − 2.

The curves satisfying gonC = Cliff C + 3 are conjectured to be very rare and are
called exceptional.

The Clifford index measures how general C is from the point of view of moduli. We
have:

i) Cliff C = 0 if and only if C is hyperelliptic (i.e. C has gonality 2).

ii) Cliff C = 1 if and only if C is trigonal (i.e. C has gonality 3).

iii) Cliff C = b g−1
2 c if C is a general curve of genus g.

We will now define the Clifford index of a K3 surface.
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Definition 1.3.5. Let L be a base point free big line bundle on a K3 surface, and let
C ∈ |L| be a smooth irreducible curve.Then the Clifford index of L is

Cliff L := Cliff C.

If (S,L) is a polarized K3 surface the Clifford index of S is

CliffL S := Cliff L.

We say that S is Clifford general if CliffL S = b g−1
2 c.

Furthermore we set
c := CliffL S.

The following result of Green and Lazarsfeld shows that the definition is well-defined.

Theorem 1.3.6. [GL87] Let L be a base point free and big line bundle on a K3 surface.

Then Cliff C is constant for all smooth irreducible C ∈ |L| and if Cliff C <
⌊

g−1
2

⌋

, then

there exists a line bundle M on S such that MC := M ⊗OC computes the Clifford index
of C for all smooth irreducible C ∈ |L|.

The following existence theorem shows that K3 surfaces with all possible Clifford
indices exist.

Theorem 1.3.7. [JK01, theorem 4.1] Let g and c be integers such that g ≥ 4 and

0 ≤ c ≤
⌊

g−1
2

⌋

. Then there exists a polarized K3 surface of genus g and Clifford index c.

The proof actually shows that there exists at least an 18-dimensional family of po-
larized K3 surfaces of genus g and Clifford index c in all of the possible cases.

If

(1.6) A(L) := {D ∈ Pic S|h0(D), h0(L − D) ≥ 2}

is non-empty we set

(1.7) µ(L) := min{D.(L − D) − 2|D ∈ A(L)}.

If A(L) = ∅ we set µ(L) = ∞. We also write

(1.8) A0(L) := {D ∈ A(L)|D.(L − D) − 2 = µ(L)}.

Amazingly we may express Cliff L by µ(L):

Theorem 1.3.8. [Knu01a, lemma 8.3] Let L be a base point free and big line bundle on
a K3 surface. Then

Cliff L = min{µ(L),

⌊
g − 1

2

⌋

}.
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One would presume that the general polarized K3 surface is Clifford general. This
is not true as the next proposition shows. However if we restrict ourselves to primitive
polarized K3 surfaces it is true as proposition 1.3.18 below will show.

Proposition 1.3.9. Let (S,L) be a polarized K3 surface. Then (S, nL) is not Clifford
general for n > 1.

Proof. Set L′ := nL, D′ := L, and d := L2 > 0. Note that 2g(L′) = n2d + 2. Then if
n > 1 it is obvious that D′ ∈ A(L′). If nL was Clifford general we would have

D′.(L − D′) = (n − 1)d ≥ µ(L′) − 2 ≥

⌊
g + 3

2

⌋

=

⌊
n2d

4

⌋

+ 2 ≥
n2d

4
+

5

4
.

This gives

4(n − 1)d ≥ n2d + 5

which is impossible for positive d and real n. Since f(n) = n2d − 4nd + (4d + 5) has
negative discriminant −20d and f(0) > 0.

Looking at this proposition one might conjecture Cliff L ≥ Cliff nL for n ≥ 1. This
is false: Take for example an ample base point free divisor with Cliff L = 0. Then
Cliff 2L > 0 by [SD74, theorem 8.3] and theorem 1.3.17.

We will now look at the case when CliffL S = µ(L). Then there exist a divisor
D ∈ A0(L). We also have F := L − D ∈ A0(L). By interchanging F and D if necessary
we may assume that D.L ≤ F.L (or equivalently D2 ≤ F 2). Hence we have

(C1) c = D.L − D2 − 2 = D.F − 2 and D ∈ A(L).

(C2) D.L ≤ F.L (or equivalently D2 ≤ F 2).

By [JK01, proposition 2.5] we also have

(C3) h1(D) = h1(F ) = 0.

(C4) The (possibly empty) base divisor ∆ of F satisfies L.∆ = 0.4

If A(L) 6= ∅ we can, by [JK01, proposition 2.6], always find D ∈ A0(L) such that

(C5) |D| is base point free and its general member is a smooth irreducible curve.

Definition 1.3.10. A divisor (class) satisfying (C1)-(C4) is a Clifford divisor for L. A
divisor (class) satisfying (C1)-(C5) is a free Clifford divisor for L.

Note that it is enough for a divisor to satisfy (C1)-(C2) to be a Clifford divisor.

Over the next pages we will summarize the most important properties of Clifford
divisors.

4From now on (that is for the rest of part I) we will always write ∆ for the base divisor of F .
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Let D be any Clifford divisor. Since h0(D) ≥ 2 and h1(D) = 0, Riemann-Roch gives
D2 ≥ 0. The condition D.L ≤ F.L = (L−D).L can be written as 2D.L ≤ L2. The Hodge
index theorem then gives 2D2(D.L) ≤ D2L2 ≤ (D.L)2. Whence 2D2 ≤ D.L = D2+D.F ,
i.e. D2 ≤ D.F = c + 2. Thus any Clifford divisor satisfies

(1.9) 0 ≤ D2 ≤ c + 2.

By the Hodge index theorem we also have

(1.10) D2L2 ≤ (L.D)2 = (D2 + c + 2)2

We want to say as much as possible about ∆. For this purpose we define

(1.11) RL,D := {Γ|Γ is a smooth rational curve, Γ.L = 0 and Γ.D > 0}.

Then we have the following proposition.

Proposition 1.3.11. [JK01, proposition 5.3] Let D be a free Clifford divisor for L and
Γ a curve in RL,D. Then D.Γ = −D.A = 1 and Γ is contained in the base locus ∆ of F .
In particular ∆.D = #RL,D, where the elements are counted with the multiplicity they
have in ∆. Furthermore we have that the curves in RL,D are disjoint.

We will need the following special cases (where all the Γ’s are smooth rational curves):

(E0) L ∼ 2D + Γ, D2 = c + 1, L2 = 4c + 6, and Γ.D = 1.

(E1) L ∼ 2D + Γ1 + Γ2, D2 = c, L2 = 4c + 4, with the following configuration:

D Γ1

Γ2

(E2) L ∼ 2D +2Γ0 + · · ·+2ΓN +ΓN+1 +ΓN+2, D2 = c, L2 = 4c+4, with the following
configuration:

D Γ0 · · · ΓN ΓN+1

ΓN+2

(E3) L ∼ 2D + 2Γ0 + Γ1, c = D2 = 0, L2 = 6, with the following configuration:

D Γ0 Γ1

(E4) L ∼ 4D + 2Γ, c = D2 = 0, L2 = 8, and Γ.D = 1.

(Q) L ∼ 2D, D2 = c + 2, and L2 = 4c + 8.
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We then get the following result.

Proposition 1.3.12. [JK01, proposition 5.6] Let D be a free Clifford divisor. Assume
that we are not in the case with L2 ≤ 4c + 6 and ∆ = 0, one of the cases (E0)-(E2), or
the case

L2 = 4c + 4, D.∆ = 1, and ∆2 = −2.

Then

h1(L − 2D) ≤
1

2
c + 1 − D2.

Write R := L − 2D. Using Riemann-Roch on R we get that h0(R) = 0 if and only if
L2 = 4c+4 and h1(R) = 0 (see [JK01, pp.16-17]). Hence we will mostly be in a situation
where R > 0. Write F0 for the moving component of |F |. When R > 0, we can write
F0 ∼ D + A for some effective divisor A. Then we have

(1.12) L ∼ 2D + A + ∆.

We have the following useful lemma.

Lemma 1.3.13. [JK01, lemma 6.4] Assume that R := L − 2D > 0 and that we are not
in one of the cases (E3) or (E4), then

∆2 = −2D.∆

and
∆.A = 0.

In section 1.5 we will classify the components of a sub-divisor ∆′ of ∆. To be able
to use this classification we have to know D.∆. Keeping this and proposition 1.3.12 in
mind we see that the following property is useful:5

(C6) h1(L−2D) = ∆.D or D is of one of the types (E0)-(E4) with h1(L−2D) = ∆.D−1.

Given a spanned and big divisor L we have a natural morphism

(1.13) φL : S −→ Ph0(L)−1 = Pg

given by the linear system |L|. Taking a free Clifford divisor D for L we can choose
a subpencil {Dλ}λ∈P1 ⊂ |D| as follows: Pick any smooth members D1 and D2 in |D|
intersecting in D2 distinct points, such that none of these belong to

⋃

{Γ|Γ is a smooth rational
curve with Γ.L≤c+2}

Γ.

Then we define

{Dλ}λ∈P1 := the pencil generated by D1 and D2.

5Note that (C6) here is not what is called (C6) in [JK]. I will later on denote (C6) in [JK] by (C8).
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By the results on page 21 this pencil will define in a natural way a scroll containing
φL(S) = S′, which we will denote by T = T (c,D, {Dλ}. We will say that this scroll is
associated to the Clifford divisor D. We will also say that the scroll is associated to the
divisor L and to the polarized K3 surface (S,L). The pencil giving the scroll will not
necessarily be base point free, but has D2 base points.

We will see below (theorem 1.3.17) that if c > 0, then φL is birational. For now we
will assume that c > 0. By our assumptions on {Dλ} the D2 base points of the pencil
will be mapped to n = D2 distinct points x1, . . . , xn by φL. Furthermore let y1, . . . , yr

be the images of the contractions of the curves Γi ∈ RL,D and mi be the multiplicity of
Γi in ∆. Set m =

∑
mi. Then we define

Zλ := x1 + · · · + xn + m1y1 + · · · nryr.

By < Zλ > we mean the linear span of the zero-dimensional scheme Zλ on φL(S). See
[JK01, pp.18–19] for more details about these definitions.

With this notation we have the following property which we want to be satisfied.6

(C7) V := SingT =< Zλ >' Pn+m−1 or D is of one of the types (Q), (E0), (E1), or
(E2) with

V ' Pn−2 if D is of type (Q),

V ' Pn−1 if D is of type (E0),

V ' Pn if D is of type (E1), and

V ' Pn if D is of type (E2).

Furthermore V does not intersect (set-theoretically) with S ′ outside the points in
the support of Zλ and for any irreducible Dλ we have

V ∩ Dλ = Zλ.

Here we have used the convention P−1 = ∅. Note also that property (C7) only gives
meaning when c > 0. [JK01, proposition 5.11] gives the corresponding properties for
c = 0.

Definition 1.3.14. A divisor (class) satisfying (C1)-(C7) is a perfect Clifford divisor for
L.

We have the following existence result.

Theorem 1.3.15. [JK01, theorem 5.7] For c > 0 there exists a perfect Clifford divisor
D.

In fact if L − 2D > 0, then any free Clifford divisor satisfying the following two
properties is perfect:

6Note that (C7) here is not what is called (C7) in [JK]. I will later on denote (C7) in [JK] by (C9).
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(C8) If D′ is any other free Clifford divisor such that D ′ > D, then ∆ 6= 0 and D′ is of
type (E1) or (E2).

(C9) If D is of type (E1) or (E2), and D ′ is any other free Clifford divisor satisfying
(C8), then D′ ∼ D.

Note that (C8) is called (C6) and (C9) is called (C7) in [JK].

We also have the following result.

Lemma 1.3.16. [JK01, lemma 6.10] Assume c > 0 and let D be a free Clifford divisor,
not of type (E1) or (E2). If h1(A) = 0, then D is perfect.

Given a polarized K3 surface (S,L) it is interesting to ask whether there exists Clifford
divisors that are not perfect and to find the number of perfect Clifford divisors (up to
linear equivalence). Proposition 1.6.6 will show that in most cases all Clifford divisors
are perfect and unique up to linear equivalence. On p. 69 we will give an example of a
non-perfect Clifford divisor. See p. 55 for several examples of non-linear perfect Clifford
divisors.

We have already mentioned the following result. It shows how different the cases
c = 0 and c > 0 are.

Theorem 1.3.17. [SD74] Let L be a spanned and big line bundle on a K3 surface S,
and denote by φL the morphism given by |L| and let c be its Clifford index.

1. If c = 0, then φL is 2 : 1 onto a surface of degree 1
2L2.

2. If c > 0, then φL is birational onto a surface of degree L2 (it is in fact an isomor-
phism outside of finitely many contracted smooth rational curves), and S ′ = φL(S)
is normal and has only rational double points as singularities. In particular KS′ '
OS′ , and pa(S

′) = 1.

We will now look at K3 surfaces with Picard number one. As noted in section 1.1,
these K3 surfaces are the most general ones. We have

Pic S = ZD,

where D2 ∈ 2Z+. There exists a 19-dimensional family of K3 surfaces with this Picard
lattice. Riemann-Roch gives that either D or −D is effective. By a reflection of the
Picard lattice, if necessary, we may assume that D is effective. The following proposition
is almost immediate.

Proposition 1.3.18. Let (S,L) be a polarized K3 surface with PicS = ZD and L = nD
(n >≤ 1).

If n = 1, then L is Clifford general. Especially if L2 is square-free, then L is Clifford
general.

If n > 1, then L is not Clifford general.
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Proof. The n = 1 case follows from µ(L) = ∞. The statement with L2 square-free follows
since n must equal one if L2 is square-free. The n > 1 case follows from proposition 1.3.9.

We will now look at the scroll types that are associated to (S,L) when S has Picard
number one and L is not Clifford general (i.e. n > 1). First we compute h0(nD) for
all n. We know that S contains an ample divisor A ∼ nD. Since A.D > 0 by the
Nakai-Moishezon criterion we have n > 0. Using the Nakai-Moishezon criterion again
we see that mD is effective if and only if mD.A = nmd ≥ 0, i.e. if m ≥ 0. Using the
Nakai-Moishezon criterion yet another time we get that D is ample and furthermore that
nD is ample if and only if n > 0. Since h1(B) = 0 if B is ample we have the following
equation

(1.14) h0(nD) =







1
2n2d + 2, n > 0

1, n = 0
0, n < 0

We also have to find the perfect Clifford divisors associated to S. Write L = nD.
Then

A(L) = {mD|1 ≤ m ≤ n}.

Thus

µ(L) = min{mD.(L − mD)|1 ≤ m ≤ n} = dmin{m(n − m)|1 ≤ m ≤ n} = d(n − 1)

where the minimum is computed by D and (n− 1)D. Since (C2) is to be satisfied we see
that D is a perfect Clifford divisor and that D is the only one (up to linear equivalence).

We can now compute the scroll type using the equations on p. 21. We get

d0 =
n − 1

2
d

...
...

...

di =
n − i − 1

2
d

...
...

...

dn−2 =
3

2
d

dn−1 = 1 + d/2

dn = 1

dn+1 = 0

and the following scroll type

(n, n − 1, . . . , n − 1
︸ ︷︷ ︸

1
2
d

, n − 2, . . . , n − 2
︸ ︷︷ ︸

d−1

, n − 3, . . . , n − 3
︸ ︷︷ ︸

d

, . . . , i, . . . , i
︸ ︷︷ ︸

d

, 0, . . . , 0
︸ ︷︷ ︸

d

)
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We end this section with some short remarks on ampleness. As already noted our
definition of a polarized surface (S,L) is with L base point free, while the usual definition
is with L ample. We will call a surface S with an ample line bundle L for a a-polarized
surface.

We first consider the case where (S,L) is both polarized and a-polarized. Since L
is ample the Nakai-Moishezon criterion gives RL,D = ∅. Especially we get that for any
perfect Clifford divisor D we have h1(L − 2D) = h1(R) = 0.7

We then consider the case where (S,L) is a-polarized but not polarized. We saw
above that the case where (S,L) is both polarized and a-polarized fits nicely into the
framework we have done in this section. When (S,L) is a-polarized but not polarized this
is no longer true. Remember that we defined the Clifford index of L to be the Clifford
index of an irreducible curve in |L|. But by [SD74, proposition 8.1] |L| does not contain
any irreducible curves. Thus it makes no sense to talk about the Clifford index in this
case.

1.4 K3 surfaces which are Clifford general and non-BN

general

Given a divisor D on S we set OC(D) := OS(D) ⊗ OC and denote the corresponding
divisor on C by DC .

With F = L − D Riemann-Roch for curves gives

deg DC = h0(DC) − h0(FC) − 1 + g.

Hence

Cliff OC(D) = degOC(D) − 2(h0(DC) − 1)

= g + 1 − (h0(DC) + h0(FC)).(1.15)

We start with the definition of BN generality.

Definition 1.4.1. A polarized K3 surface (S,L) of genus g is said to be Brill-Noether
(BN) general if the inequality

h0(D)h0(F ) < h0(L) = g + 1

holds for every non-trivial effective decomposition D + F ∼ L.

7The converse does not hold. There exists K3 surfaces with h1(R) = 0 where L is not ample. Consider
for example the K3 surface given by the lattice ZL ⊕ ZD ⊕ ZΓ with intersection matrix





L2 L.D L.Γ
L.D D2 D.Γ
L.Γ D.Γ Γ2



 =





12 3 0
3 0 0
0 0 −2





One can show that L has Clifford index 1 and perfect Clifford divisor D. It is easy to show that
RL,D = ∅, so h1(R) = 0. Riemann-Roch gives that either Γ or −Γ is effective. Thus L is not ample by
the Nakai-Moishezon criterion since L.Γ = 0.



1.4 K3 surfaces which are Clifford general and non-BN general 31

We will see below how this definition relates to BN theory of curves.
We see that if µ(L) = ∞, then L is BN general. Generalizing this we have the

following result.8

Proposition 1.4.2. (Knutsen) Let (S,L) be a polarized K3 surface. If S is BN general,
then it is Clifford general.

Proof. Let D be an effective divisor, with h0(D), h0(F ) ≥ 2. Set d := h0(D), f := h0(F ),
and a := d + f . Since S is BN general fd < g + 1. We want to find an upper bound for
a. The expression df = d(a− d) has minimum for fixed a, with d, a− d ≥ 2, when d = 2.
Hence a is maximal when d = 2 and f is the largest integer such that 2f < g + 1, i.e. for
f = bg/2c. This gives

h0(D) + h0(F ) ≤

⌊
g + 4

2

⌋

.

If (S,L) is not Clifford general we can find a divisor D that computes the Clifford index
for all smooth C ∈ |L| (proposition 1.3.6). We can choose D such that h1(D) = h1(F ) = 0
(by for example theorem 1.3.8 and [JK, proposition 2.5]). Then we get h0(D) = h0(DC)
and h0(F ) = h0(FC). By arguing as in the proof of lemma 1.4.5 below. In particular
this gives

h0(DC) + h0(FC) ≤

⌊
g + 4

2

⌋

,

for all smooth C ∈ |L|. Equation (1.15) then gives

Cliff OC(D) ≥

⌊
g − 1

2

⌋

,

a contradiction.

Our next results will concern the cases where the converse does not hold. We will
need a couple of lemmas.

Lemma 1.4.3. Given a polarized K3 surface (S,L), a smooth C ∈ H 0(S,L), and an
effective divisor D on S such that h0(D), h0(L − D) ≥ 2, then

h0(DC), h1(DC) ≥ 2

Proof. From the short exact sequence

0 → OS(−L) → OS → OC → 0

we get the exact sequence

0 → OS(D − L) → OS(D) → OC(D) → 0,

by tensorizing with D. Hence (with F := L − D)

0 → H0(−F ) → H0(D) → H0(DC)

8The result is previously unpublished. I believe it is due to Knutsen. The proof is my own.
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is exact. From which we see that h0(DC) ≥ h0(D) ≥ 2, using H0(−F ) = 0. A symmetric
argument gives h0(FC) ≥ h0(F ) ≥ 2.

From Serre duality we get H1(DC) = H1(LC − FC) = H0(FC)′, in particular
h1(DC) = h0(FC) ≥ h0(F ) ≥ 2.

Lemma 1.4.4. Given a polarized K3 surface (S,L), a smooth C ∈ H 0(S,L), and an
effective divisor D on S such that h0(D), h0(L − D) ≥ 2, then

Cliff OC(D) ≤ g + 1 − (h0(D) + h0(L − D)).

Proof. Follows immediately from the proof of lemma 1.4.3 and equation (1.15).

With the additional condition h1(D) = 0 we get a stronger result.

Lemma 1.4.5. Given a polarized K3 surface (S,L), a smooth C ∈ H 0(S,L), and an
effective divisor D on S such that h0(D), h0(L − D) ≥ 2, and h1(D) = 0 then

Cliff OC(D) = g + 1 − (h0(D) + h0(L − D) + h1(L − D)).

Proof. From

0 → OS(−F ) → OS(D) → OC(D) → 0

we get

0 → H0(−F ) → H0(D) → H0(DC) → H1(−F ) → H1(D).
|| || ||
0 H1(F )′ 0

Hence h0(DC) = h0(D) + h1(F ). Looking at F instead of D we have the exact sequence

0 → H0(−D) → H0(F ) → H0(FC) → H1(−D).

Using h0(−D) = 0 and h1(−D) = h1(D) = 0 (be Serre duality) we get h0(F ) = h0(FC).
The result then follows from equation (1.15).

Proposition 1.4.6. Let (S,L) be a polarized K3 surface. Then (S,L) is Clifford general
and non–BN general only if there exists an effective divisor D with h0(D), h0(F ) ≥ 2
(where F := L − D), such that

(1.16) h0(D)h0(F ) ≥ g + 1

and

(1.17) h0(D) + h0(F ) ≤

⌊
g + 4

2

⌋

.

With equality in equation (1.17) only if h1(D) = h1(F ) = 0.
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Proof. The first inequality follows directly from the definition of BN generality. The
second inequality follows from lemma 1.4.4 and the definition of Clifford generality. We
see from equation (1.15) that we have equality in equation (1.17) only if h0(D) = h0(DC)
and h0(F ) = h0(FC). For this to be the case we must have h1(−F ) = h1(−D) = 0 (see
proof of lemma 1.4.5). Hence h1(F ) = h1(D) = 0.

Let us examine what this proposition gives for small genus g (we assume in the
following that h0(D) ≤ h0(F )).

g=2,3,. . . ,7, and 9 In these cases the inequalities have no integral solutions.

g=8 h0(D) = h0(F ) = 3. Since we have equality in equation (1.17) we get h1(D) =
h1(F ) = 0. This gives D2 = 2 and D.L = 7.

g=10 h0(D) = 3, h0(F ) = 4. Since we have equality in equation (1.17) we get
h1(D) = h1(F ) = 0. This gives D2 = 2 and D.L = 8.

g=11 h0(D) = 3, h0(F ) = 4. Since we have equality in equation (1.17) we get
h1(D) = h1(F ) = 0. This gives D2 = 2 and D.L = 9.

g=12 We now have two solutions to the inequalities, both with equality in equa-
tion (1.17).

i) h0(D) = h0(F ) = 4. This gives D2 = 4 and D.L = 11.

ii) h0(D) = 3, h0(F ) = 5. This gives D2 = 2 and D.L = 9.

g=13 We again have two solutions to the inequalities, both with equality in equa-
tion (1.17).

i) h0(D) = h0(F ) = 4. This gives D2 = 4 and D.L = 12.

ii) h0(D) = 3, h0(F ) = 5. This gives D2 = 2 and D.L = 10.

g=14 We now have four different solutions to the inequalities. Two of them without
equality in equation (1.17).

i) h0(D) = 3, h0(F ) = 6. Equality in equation (1.17) gives D2 = 2 and D.L = 10.

ii) h0(D) = 4, h0(F ) = 5. Equality in equation (1.17) gives D2 = 4 and D.L = 12.

iii) h0(D) = h0(F ) = 4.

iv) h0(D) = 3, h0(F ) = 5.

For g = 8, 10, 11, 12, and 13 we have a partial converse to the above computations.9

Corollary 1.4.7. Let (S,L) be a Clifford general polarized K3 surface. If g = 8 resp.
10 resp. 11, then (S,L) is not BN general if and only if there exists an effective divisor
D satisfying D2 = 2 and D.L = 7 resp. 8 resp. 9.

If g = 12 resp. 13 then (S,L) is not BN general if and only if there exists an effective
divisor D satisfying either D2 = 2 and D.L = 9 resp. 10 or D2 = 4 and D.L = 11 resp.
12.

Proof. The computations above give the only if part. We will now show the if part.
Using Riemann-Roch and the fact that L is nef it is immediate that h0(L−D) ≥ 2 in all
of the above cases, since (L − D)2 ≥ 0 and (L − D).L > 0. Likewise we get h0(D) ≥ 2.

9[JK, proposition 10.1] is a special case of the following proposition.
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Using

h0(D) =
1

2
D2 + 2 + h1(D)

≥
1

2
D2 + 2

and

h0(F ) =
1

2
F 2 + 2 + h1(F )

=
1

2
(L2 − D2 − 2D.F ) + 2 + h1(F )

≥
1

2
(2(g − 1) + D2 − 2D.L) + 2

we get
h0(D)h0(F ) ≥ g + 1

in all of the cases.

Remark 1.4.8. The proof of the proposition only holds for those genus g for which the
inequalities in proposition 1.4.6 only have solutions with equality in equation (1.17).
This only holds for the genera treated in the proposition, so it cannot be extended to
higher genus. We will see later that there exists K3 surfaces satisfying every case of the
proposition, so none of the cases are superfluous.

The proposition also shows that when g = 8, 10, 11, 12, or 13 every non-BN general
Clifford general K3 surface (S,L) satisfies

Cliff(L) = µ(L) =

⌊
g − 1

2

⌋

.

This is not necessarily the case if g > 13. Consider for example the polarized K3 surface
(S,L) of genus 14 with lattice ZD ⊕ ZF (L ∼ D + F ) and intersection matrix

[
D2 D.F
D.F F 2

]

=

[
4 9
9 4

]

Then Cliff(L) = 6, but µ(L) = 7.10 Because of this it becomes much harder to determine
possible scroll types for g > 13 than for g ≤ 13.

We have seen that a polarized K3 surface (S,L) of genus g = 2, 3, . . . , 7 or 9 is
Clifford general if and only if it is BN general. The next theorem will show that this
equivalence holds for no other g. We start with a lemma which is just a special case of
proposition 1.1.22.11

10Proof: The existence of such a polarized K3 surface follows from proposition 1.1.24. We have
Cliff(L) ≤ 6. Equations 1.9 and 1.10 together with lemma 1.4.9 gives µ(L) = 7. Thus Cliff(L) = 6 by
theorem 1.3.8.

11We include it because we will use the proof of the lemma in the proof of the theorem.
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Lemma 1.4.9. Let S be a K3 surface with Pic S = ZL ⊕ ZD. If aL + bD = M and
cL + bD = N are elements in Pic S, then the determinant of the intersection matrix of
L and D divides the determinant of the intersection matrix of M and N .

Proof. This follows immediately from computations of the determinants. We have

∣
∣
∣
∣

L2 L.D
D.L D2

∣
∣
∣
∣
= L2D2 − (L.D)2

and ∣
∣
∣
∣

M2 M.N
N.M N2

∣
∣
∣
∣
= (a2d2 + b2c2 − 2abcd)(L2D2 − (L.D)2).

Theorem 1.4.10. For g = 8 and g ≥ 10 there exists polarized K3 surfaces that are
Clifford general and non–BN general.

Proof. We will for g = 8 and g ≥ 10 construct K3 surfaces that are Clifford general and
non–BN general. The lattice ZL ⊕ ZD with intersection matrix

A =

[
L2 L.D

D.L D2

]

=




2(g − 1)

⌊
g+7
2

⌋

⌊
g+7
2

⌋

2





has signature (1,1), so by proposition 1.1.24 there exists a K3 surface with PicS =
ZL ⊕ ZD.

We will show that (S,L) is Clifford general and non–BN general (after a suitable
change of basis) for g = 8 and g ≥ 10.

Using Picard-Lefschetz reflections we may assume that L is nef. L is then also base
point free. For if L was not base point free, there would exist a curve C with C 2 = 0 and
C.L = 1 (proposition 1.1.12), a contradiction by lemma 1.4.9. Hence (S,L) is a polarized
K3-surface.

We will now show that D is nef by arguing along the lines of the first part of the proof
of [Knu01b, proposition 4.4]. Assume D is not nef. Then there exists a smooth rational
curve Γ such that D.Γ < 0 and Γ2 = −2 (corollary 1.1.9). Since L is nef Γ.L ≥ 0. If
Γ.L > 0 then we set e := −D.Γ ≥ 1 and D′ := D − eΓ. Then D′2 = D2 = 2 so by
Riemann-Roch either |D′| or | − D′| contains an effective member. Since h0(eΓ) = 1 it
must be |D′|.For if eΓ − D ≥ 0, then eΓ ≥ D. Whence 1 = h0(eΓ) ≥ h0(D) ≥ 3, a
contradiction. Hence

0 ≤ D′.L = D.L − e(Γ.L) < D.L.

Looking at the proof of lemma 1.4.9 we see that with L ∼ M and D ′ ∼ cL + dD = N
we have

(D′.L)2 − D2L2 ≥ 0,
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with equality only if d = 0. If d = 0 we get, with Γ ∼ xL+yD, that cL ∼ D ′ = D−eΓ ∼
D − e(xL + yD), i.e. e = y = 1. But then −1 = Γ.D = xD.L + 2, which is impossible
with x ∈ Z. Hence

0 < (D′.L)2 − D′2L2 = (D′.L)2 − D2L2 < (D.L)2 − D2L2,

which contradicts lemma 1.4.9.
It remains to look at Γ.L = 0. We use lemma 1.4.9 again. This gives

4(g − 1) −

⌊
g + 7

2

⌋2

= detA

∣
∣
∣
∣
∣

∣
∣
∣
∣

L2 L.Γ
Γ.L Γ2

∣
∣
∣
∣
=

∣
∣
∣
∣

2(g − 1) 0
0 −2

∣
∣
∣
∣
= −4(g − 1).

So (

4(g − 1) −

⌊
g + 7

2

⌋2
)

a = 4(g − 1)

for some integer a. We get

4(g − 1)(a − 1) =

⌊
g + 7

2

⌋2

a ≤

(
g + 8

2

)2

a.

One easily sees a > 1. Thus

16(g − 1)

(g + 8)2
≥

a

a − 1
> 1,

a contradiction. Hence D is nef.
We will now show that (S,L) is Clifford general. Assume (S,L) is not Clifford general

with Clifford index c < b g−1
2 c. Then there exists a free Clifford divisor M ∼ aL + bD

on S.12 In particular M and L − M are effective. Since h0(M) ≥ 2 and h1(M) = 0 we
have M2 ≥ 0 by Riemann-Roch. Hence 0 ≤ M.L−M 2 − 2 = c ≤ M.L− 2, in particular
M.L ≥ 2. Since L is nef we also have (L − M).L ≥ 0. Combining these inequalities one
gets

1 −
bD.L

L2
≥ a ≥

2

L2
−

bD.L

L2
.

Hence

(1.18) a =

⌊

1 −
bD.L

L2

⌋

.

Likewise since D is nef we get M.D ≥ 0 and (L − M).D ≥ 0. Which leads to the
numerical conditions

1 −
bD2

D.L
≥ a ≥ −

bD2

D.L
.

This gives two cases to consider: (A) a =
⌊

1 − bD2

D.L

⌋

and (B) a =
⌈

− bD2

D.L

⌉

.

12M � D since D.(L − D) − 2 =
⌊

g−1
2

⌋
.
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(A) If a =
⌊

1 − bD2

D.L

⌋

we must have (using equation (1.18))

−
bD.L

L2
− 1 < −

bD2

D.L
< −

bD.L

L2
+ 1.

That is

(1.19)
∣
∣b((L.D)2 − L2D2)

∣
∣ < (D.L)L2.

If a = 0, then 0 < b ≤ D.L
D2 and M ∼ bD. But (C2) gives M.L ≤ (L − M).L, so

2bD.L = 2M.L ≤ L2. Hence

b ≤
L2

2D.L
=

g − 1
⌊

g+7
2

⌋ < 2.

This gives M = D, a contradiction.
If a = 1, then b ≤ 0 and M ∼ L + bD. From 0 ≤ M.L − M 2 − 2 and 0 ≤ M 2 we get

b ≥
−2(g − 2)
⌊

g+7
2

⌋ > −4.

So b = −1, −2, or −3. In all these cases we get a contradiction by looking at M.L −

M2 − 2 ≥
⌊

g−1
2

⌋

. This will get a contradiction for all but a finite number of genera. The

remaining genera are treated individually. For example if b = −3 we get

M.L − M2 − 2 = 3

⌊
g − 1

2

⌋

− 8 ≥

⌊
g − 1

2

⌋

,

for g ≥ 9. If g = 8, then M.L = −7 and M is non-effective since L is nef. Thus we get a
contradiction for g = 8 too.

If |b| ≥ 6, then

∣
∣b((L.D)2 − L2D2)

∣
∣ ≥ 6

((
g + 6

2

)2

− 4(g − 1)

)

> g2 + 6g − 7

≥ 2

⌊
g + 7

2

⌋

(g − 1)

= (D.L)L2,

which contradicts equation (1.19).
If g ≥ 16 and |b| < 6, then a = 0 or a = 1 which we have seen is impossible. It

remains to look at g < 17 and |b| < 6.
g = 8: |b| ≤ 3 gives a = 0 or a = 1. |b| = 4 and |b| = 5 contradict 4 ≤ 2M.L ≤ L2.
g = 10: |b| ≤ 3 and b = 4 give a = 0 or a = 1. b = −4 contradict M.L − M 2 − 2 <

⌊
g−1
2

⌋

. |b| = 5 contradicts 4 ≤ 2M.L ≤ L2.
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g = 11, 13, 15: We either get a = 0, a = 1 or a contradiction to equation (1.19).
g = 14: We only get cases with a = 0 or a = 1.

(B) If a =
⌈

− bD2

D.L

⌉

6=
⌊

1 − bD2

D.L

⌋

, then bD2

D.L ∈ Z, so we can write a = − bD2

D.L . Hence we

have

1 −
bD.L

L2
< 1 −

bD2

D.L
,

which gives b > 0, and

−
bD2

D.L
≤ 1 −

bD.L

L2
,

which gives

b ≤
(D.L)L2

(D.L)2 − L2D2
<

D.L

D2

for g > 9. Then bD2

D.L /∈ Z, a contradiction.

For g = 8 the smallest value of b with bD2

D.L = 2b
7 ∈ Z is 7, but then (D.L)L2

(D.L)2−L2D2 = 14
3 ,

so b < 7 and we get a contradiction in this case too.
It only remains to show that S is non–BN general. By arguing as in the proof of

proposition 1.4.7 we see that

h0(D) ≥ 3

and

h0(L − D) ≥ (g + 2) −

⌊
g + 7

2

⌋

So we need only look at when

3

(

(g + 2) −

⌊
g + 7

2

⌋)

≥ g + 1.

For g odd this happens when g ≥ 11. For g even this happens when g ≥ 8.

Remark 1.4.11. The theorem still holds if we by a polarized K3 surface (S,L) mean a
K3 surface with an ample line bundle L. In fact all the L we consider in the proof are
ample. This follows from the paragraph starting with “It remains to look at Γ.L = 0
. . .” and the Nakai-Moishezon criterion.

The method of proof here can be used to show Clifford generality for other surfaces
with Pic S of rank 2. Especially we see that the K3 surfaces with intersection matrices

(1.20)

[
L2 L.D

D.L D2

]

=

[
22 11
11 4

]

and [
L2 L.D

D.L D2

]

=

[
24 12
12 4

]

are Clifford general. Hence we see that there exist K3 surfaces satisfying every case of
proposition 1.4.7.
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In the previous section we said quite a lot about the relationship between the Clifford
index of curves and of K3 surfaces. The reader may be familiar with BN theory on curves
and may be wondering how this relates to our concept of BN generality on a K3 surface.
We will end this section with a few comments that will clarify this relationship.

We define the BN number ρ(g, r, d) by

ρ(g, r, d) := g − (r + 1)(g − d + r).

The BN theorem asserts that when ρ(g, r, d) ≥ 0 every curve of genus g possesses a
rr
d, while when ρ(g, r, d) < 0 the general curve of genus g has no gr

d’s. (See [ACGH85,
chapter V] for details.)

Given a curve C of genus g we define the BN index of a divisor D on C to be

ρ(C,D) := g − h0(D)h0(KC − D).

If we assume that a gr
d is a complete linear system |D|, then

r = r(D) = h0(D) − 1

and by Riemann-Roch on curves

d = deg D = h0(D) − h0(KC − D) − 1 + g,

so
ρ(C,D) = ρ(g(C), r(D),deg D).

We now define the BN index of C as

ρ(C) := min{ρ(C,D)}

and say that C is BN general if ρ(C) ≥ 0.
We have the following result.

Proposition 1.4.12. Let (S,L) be a polarized K3 surface and C ∈ |L| a smooth curve.
If C is BN general, then (S,L) is BN general.

Proof. We prove that if (S,L) is non-BN general, then every smooth curve C ∈ |L| is
non-BN general. If (S,L) is non-BN general, then there exists a divisor D such that

h0(D)h0(L − D) ≥ g + 1.

By the proof of lemma 1.4.3 we get h0(DC) ≥ h0(D) and h0(KC−DC) = h0((L−D)C) ≥
h0(L − D). This gives

ρ(C) ≤ ρ(C,DC)

= g − h0(DC)h0(KC − DC)

≤ g − h0(D)h0(L − D)

≤ −1.

Hence C is non-BN gereral.

It is an open question whether this proposition can be extended to an analouge of
theorem 1.3.6.
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1.5 Well-behaved divisors and their configurations

Throughout this section we will assume that (S,L) is a polarized K3 surface with non-
general Clifford index and that D is a free Clifford divisor.

Lemma 1.5.1. Assume we are not in one of the cases (E3) or (E4). Let ∆0 be ∆−RL,D,
where RL,D is the sum of the elements in RL,D with the multiplicity they have in ∆. Then
for every effective divisor B < ∆, resp. B < ∆0, we have B.L = 0, resp. B.D = 0.

Proof. We have L.∆ = D.∆0 = 0 (lemma 1.3.13).13 Hence if an effective divisor B < ∆,
resp. B < ∆0, satisfies B.L > 0, resp. B.D > 0, then some other effective divisor B < ∆,
resp. B < ∆0, satisfies B.L < 0, resp. B.D < 0. This is impossible since L, resp. D, is
nef..

Lemma 1.5.2. Assume we are not in one of the cases (E3) or (E4). Let ∆0 be as in
lemma 1.5.1. Then for every smooth rational curve Γ in the support of ∆0, we have
Γ.A = 0 or 1.

Proof. Since D+A is the moving component of F and Γ is fixed in F , proposition 1.1.17
gives (D + A).Γ = 0 or 1. Lemma 1.5.1 gives D.Γ = 0, hence A.Γ = 0 or 1.14

Remember that we write

L ∼ 2D + A + ∆,

where D+A is the moving component of F := L−D, and ∆ is the base divisor of F . We
would like to say as much as possible about ∆. If Γ ∈ RL,D, then A.Γ = 0 or A.Γ = −1,
by proposition 1.1.17 used on D + A and Γ. It is the case A.Γ = −1 which causes the
most trouble. To get rid of this problem we will introduce new divisors A′ and ∆′ that
behave almost as A and ∆, at the expense of ∆′ no longer always being the base divisor
of F . We need a precise definition.

Definition 1.5.3. The pair (A′,∆′) is well-behaved if the following properties are satis-
fied:

(W1)

L ∼ 2D + A′ + ∆′,

(W2)




D2 D.A D.∆
D.A A2 A.∆
D.∆ A.∆ ∆2



 =





D2 D.A′ D.∆′

D.A′ A′2 A′.∆′

D.∆′ A′.∆′ ∆′2





(W3)

RL,D ≤ ∆′ ≤ ∆

13This is true also when L � 2D since then ∆ = 0.
14See lemma 1.5.9 for an alternative proof.
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(W4)

For every effective ∆′′ ≤ ∆′ we have A′.∆′′ = 0.

Note that if the pair (A′,∆′) is well-behaved then A ≤ A′ ≤ A + ∆ − RL,D. Note
also that to show (W4) it is enough to show that for every smooth rational curve Γ ≤ ∆ ′

we have A′.Γ = 0. Furthermore (W3) is equivalent to ∆′ ≤ ∆ and ∆′.D = ∆.D. Since
∆′ ≤ ∆ several of the properties of ∆ will be satisfied by ∆′. In particular ∆′ will be
fixed in F and h0(∆′) = 1. Also note that (A,∆) always satisfy (W1)-(W3).

We will show in proposition 1.5.8 that for every polarized K3 surface (S,L) one can
find a well-behaved pair (A′,∆′).

Lemma 1.5.4. Assume we are not in one of the cases (E3) or (E4), and that for every
Γ ∈ RL,D we have Γ.A = 0. Then for every effective divisor B ≤ ∆ we have B.A = 0.
In particular the pair (A,∆) is well-behaved.

Proof. If an effective divisor B ≤ ∆ satisfies A.B 6= 0, then some smooth rational
curve Γ ≤ ∆ (possibly equal to B), must satisfy A.Γ < 0. But (D + A).Γ = 0 or
1, by proposition 1.1.17. Hence Γ ∈ RL,D. But then A.Γ = 0 by the assumptions, a
contradiction.

By considering the explicit classification we give for g = 12 in chapter 2, we find that
in most cases the most general family of K3-surfaces associated to a particular scroll
type will be such that (A,∆) is well-behaved. There are exceptions. Take for example
the scroll type (3, 2, 2, 1, 0) on page 75.

In particular if D is perfect andh1(R) = 0 (and we are not in one of the cases (E0)-
(E4)), then (C6) gives ∆.D = 0. So (2D + A).∆ = 0 which gives ∆ = 0, since L is
numerically 2-connected. We see that (A,∆) = (A, 0) is well-behaved.

The following lemma will be crucial when we show below that for every L and D
with h1(R) ≤ 3 we can find a well-behaved pair (A′,∆′). Remember our definition of a
configuration-graph (see p. 5).

Lemma 1.5.5. Every component of the configuration-graph of ∆ contains a Γ ∈ RL,D

as a vertex. In particular the configuration-graph of 2D + ∆ is connected.

Proof. Suppose there exists a component C of the configuration-graph of ∆ without a
Γ ∈ RL,D as a vertex. Let the vertices of this component be Γ′

1, . . . ,Γ
′
M , and let ni be

the multiplicity of Γ′
i in ∆. Write ∆1 = n1Γ

′
1 + · · · + nMΓ′

M . We have ∆1.D = 0 (by
assumption) and ∆1.(∆ − ∆1) = 0 (since C is a component of the configuration-graph).
∆1.L=0 gives ∆1.A + ∆2

1 = 0. Using h1(F0) = 0 we get

1

2
(D + A)2 + 2 = h0(D + A) = h0(D + A + ∆1) ≥

1

2
(D + A + ∆1)

2 + 2,

which gives 2∆1.A + ∆2
1 ≤ 0. Then ∆1.A + ∆2

1 = 0 gives ∆2
1 ≥ 0. A contradiction since

∆1 6= 0 and h0(∆1) = h0(∆) = 1.
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Remark 1.5.6. We have in fact that every component of the configuration-graph of ∆
contains exactly one Γ ∈ RL,D as a vertex. For if Γ1,Γ2 ∈ RL,D both were in the same
component, then there would be a path from Γ1 to Γ2 in the configuration-graph. Let
the vertices of the path be Γ1,Γ2,Γ

′
1, . . . ,Γ

′
N . Write γ = Γ1 + Γ2 + Γ′

1 + · · · + Γ′
N . Then

γ2 = −2, γ.L = 0, and γ.D = 2. This contradicts [JK01, lemma 6.3.2(c)].

We are now ready to state the main result of this section: a classification of the ∆ ′

in well-behaved pairs (A′,∆′) when c = 4 and D2 = 0. Remember that by lemma 1.1.14,
any two distinct smooth rational curves, Γ1 and Γ2, in the support of ∆ satisfies Γ1.Γ2 = 0
or 1. This will be used extensively (without mention) in the next proof.

c = 4,D2 = 0,L2 ≥ 20

{4,0} D2 = 0, D.L = 6

We can find a well-behaved pair (A′,∆′) for every L with c = 4 and D2 = 0. Let D
be a perfect Clifford divisor.

h1(R) 6= 0 if and only if L is in one of the following cases (where every Γi is a smooth
rational curve with Γi.A

′ = 0):

{4, 0}a L ∼ 2D + A′ + Γ, D.A′ = 5, 20 ≤ L2 = A′2 + 22 ≤ 72, h1(R) = 1,RL,D = {Γ}, with
the following configuration:

D Γ

{4, 0}b L ∼ 2D + A′ + Γ1 + Γ2, D.A′ = 4, 20 ≤ L2 = A′2 + 20 ≤ 36, h1(R) = 2,RL,D =
{Γ1,Γ2}, with the following configuration:

D Γ1

Γ2

{4, 0}c L ∼ 2D + A′ + 2Γ0 + · · · + 2ΓN + ΓN+1 + ΓN+2, D.A′ = 4, 20 ≤ L2 = A′2 + 20 ≤
36, h1(R) = 2,RL,D = {Γ0}, with the following configuration:

D Γ0 · · · ΓN ΓN+1

ΓN+2

{4, 0}d L ∼ 2D +A′ +Γ1 +Γ2 +Γ3, D.A′ = 3, 20 ≤ L2 = A′2 +18 ≤ 24, h1(R) = 3,RL,D =
{Γ1,Γ2,Γ3}, with the following configuration:

D

AA
AA

AA
AA

Γ3

Γ1 Γ2
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{4, 0}e L ∼ 2D+A′+Γ−1+2Γ0+· · ·+2ΓN +ΓN+1+ΓN+2, D.A′ = 3, 20 ≤ L2 = A′2+18 ≤
24, h1(R) = 3,RL,D = {Γ−1,Γ0}, with the following configuration:

D Γ0 · · · ΓN ΓN+1

Γ−1 ΓN+2

{4, 0}f L ∼ 2D+A′+3Γ0+2Γ1+2Γ2+Γ3+Γ4, D.A′ = 3, 20 ≤ L2 = A′2+18 ≤ 24, h1(R) =
3,RL,D = {Γ0}, with the following configuration:

D Γ0

AA
AA

AA
A

Γ1 Γ3

Γ2 Γ4

{4, 0}g L ∼ 2D + A′ + 3Γ0 + 4Γ1 + 2Γ2 + 3Γ3 + 2Γ4 + Γ5, D.A′ = 3, 20 ≤ L2 = A′2 + 18 ≤
24, h1(R) = 3,RL,D = {Γ0}, with the following configuration:

D Γ0 Γ1

AA
AA

AA
A

Γ2

Γ3 Γ4 Γ5

{4, 0}h L ∼ 2D + A′ + 3Γ0 + 4Γ1 + 5Γ2 + 6Γ3 + 4Γ4 + 2Γ5 + 3Γ6, D.A′ = 3, 20 ≤ L2 =
A′2 + 18 ≤ 24, h1(R) = 3,RL,D = {Γ0}, with the following configuration:

D Γ0 Γ1 Γ2 Γ3

AA
AA

AA
A

Γ4 Γ5

Γ6

Proof. Every divisor we define throughout this proof is assumed to be effective. Every
Γ we introduce is by assumption a smooth rational curve. Assume we are in case {4, 0}.
Then D.L = D2 + c + 2 = 6, and since c = 4 and L is not Clifford general we must have
g ≥ 11, i.e. L2 ≥ 20. Note also that D.L = 6, ∆.L = 0, and L2 = L.(2D + A + ∆) give
A.L = L2 − 12. Then especially h0(R) 6= 0. For the rest of the proof we will assume that
h1(R) 6= 0.

We will first find the classification in the cases where the conditions of lemma 1.5.4
holds.

For now we will assume Γ.A = 0 for every Γ ∈ RL,D. In particular the assumptions
of lemma 1.5.4 are satisfied.

By proposition 1.3.12 and (C6) we have 1 ≤ D.∆ ≤ 3. Since

6 = D.L = D.A + D.∆,

we have three cases to consider:
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(A) D.∆ = 1 and D.A = 5,

(B) D.∆ = 2 and D.A = 4,

(C) D.∆ = 3 and D.A = 3.

In all of the cases we have ∆2 = −2D.∆ and A.∆ = 0, by lemma 1.3.13.
In case (A) there has to exist a smooth rational curve Γ such that

{Γ} = RL,D.

By the assumptions A.Γ = 0. We write ∆ = Γ + ∆1. Then Γ.L = 0 gives Γ.∆1 = 0. We
also have D.∆ = 1 and A.∆ = 0, whence D.∆1 = A.∆1 = 0. Since

L ∼ 2D + A + Γ + ∆1

and L is numerically 2-connected we have ∆1 = 0. This gives {4, 0}a.
L2 = (2D + A + Γ)2 gives A2 = L2 − 22. Using this, with A.L = L2 − 12, we get

L2 ≤ 72 from the Hodge index theorem.
In case (B) we have either

RL,D = {Γ1,Γ2}

or
RL,D = {Γ0}.

Note that all these Γi must satisfy A.Γi = 0 by the assumptions.
If RL,D = {Γ1,Γ2}, then Γ1.Γ2 = 0, by proposition 1.3.11. Writing ∆ = Γ1 +Γ2 +∆1

we have, as in case (A), ∆1.D = ∆1.A = ∆1.Γ1 = ∆1.Γ2 = 0. Using that L is numerically
2-connected, as above, we get {4, 0}b.

If RL,D = {Γ0}, then Γ0 must have multiplicity two in ∆. We write ∆ = 2Γ0 + ∆1.
Note that since D.∆1 = A.∆1 = 0 (by lemma 1.5.4) every divisor in ∆1 is disjoint from
D and A (by lemmas 1.5.1 and 1.5.2). From 0 = Γ0.L = Γ0.(2D +A+2Γ0 +∆1), we get
Γ0.∆1 = 2. Then ∆2 = (2Γ0 + ∆1)

2 = −4 gives ∆2
1 = −4. Now there exists either two

(and only two) disjoint15 smooth rational curves Γ1 and Γ2 with multiplicity one in the
support of ∆1 such that Γ0.Γ1 = Γ0.Γ2 = 1 or one and only one smooth rational curve
Γ1 with multiplicity two in the support of ∆1 such that Γ0.Γ1 = 1. We can now iterate
until we get {4, 0}c. (See also [JK01, proposition 3.6].)

L2 = (2D + A + ∆)2 gives A2 = L2 − 20 Then L2 ≤ 36 follows from the Hodge index
theorem, using A.L = L2 − 12.

In case (C) we have either

RL,D = {Γ1,Γ2,Γ3}

or
RL,D = {Γ−1,Γ0}

15Since h0(Γ1 + Γ2) = 1 we get Γ1.Γ2 = 0 or 1 by lemma 1.1.14. Write ∆1 ∼ Γ1 + Γ2 + ∆2. Then
0 = Γ1.L = Γ1.Γ2 + Γ1.∆2. Since Γ1 has multiplicity 1 in ∆1 we have Γ1.∆1 ≥ 0. Hence Γ1.Γ2 = 0 (and
Γ1.∆1 = 0).
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or

RL,D = {Γ0}

Note that these Γi must have A.Γi = 0 by the assumptions.

L2 = (2D +A+∆)2 gives A2 = L2−18. Then L2 ≤ 24 follows from the Hodge index
theorem, with A.L = L2 − 12.

In the first case Γ1,Γ2, and Γ3 are disjoint by proposition 1.3.11. Using that L is
numerically 2-connected, as above, we get {4, 0}d.

In the second case either Γ−1 or Γ0 has multiplicity two in ∆. We assume that Γ0 has
multiplicity two in ∆. Then ∆ = Γ−1 + 2Γ0 + ∆1. Since L.Γ−1 = 0, we get ∆1.Γ−1 = 0.
Similarly ∆1.Γ0 = 2 and ∆2

1 = −4. We can now iterate as in the case {4, 0}c until we
get {4, 0}e.

In the third case Γ0 has multiplicity three in ∆. Write ∆ = 3Γ0 +∆1. L.Γ0 = 0 gives
∆1.Γ0 = 4. Then ∆2 = −6 gives ∆2

1 = −12. There must exist a smooth rational curve
Γ′ ≤ ∆1 such that Γ0.Γ

′ = 1. Let Γ′ be any such curve. Write ∆1 ∼ Γ′ + ∆′′. Since
0 = L.Γ′ = 1 + ∆′′.Γ′, we see that Γ′ has multiplicity at least two in ∆1. This gives two
cases to consider:

(D) ∆1 ∼ 2Γ1 + 2Γ2 + ∆2, where Γ1.Γ0 = Γ2.Γ0 = 1 and ∆2.Γ0 = 0,

(E) ∆1 ∼ 4Γ1 + ∆2 where Γ1.Γ0 = 1 and ∆2.Γ0 = 0.

Let us look at (D) first. Then we have either Γ1.Γ2 = 1 or Γ1.Γ2 = 0. The former is
impossible, for in that case 0 = Γ1.L = 1 + Γ1.∆2 > Γ1.∆2, i.e. Γ1 < ∆2.

16 The latter
gives Γ1.∆2 = Γ2.∆2 = 1 and ∆2

2 = −4. We must then be in one of the following three
cases:

(D.α)

D Γ0

AA
AA

AA
A

Γ1 Γ3 · · ·

Γ2 Γ4 · · ·

(D.β)

D Γ0

AA
AA

AA
A

Γ1 Γ3 · · ·

Γ2 Γ4 · · ·

(D.γ)

D Γ0 Γ1

Γ2 Γ3 · · ·

16If Γ1 < ∆2 then Γ0.(∆2 − Γ1) = −1, so Γ0 < ∆2. This gives that Γ0 has multiplicity at least four in
∆. Hence D.∆ ≥ 4, a contradiction.
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Using that L is numerically 2-connected, we get ∆2 = Γ3 + Γ4 in case (D.α). This is
just {4, 0}f .

The cases (D.β) and (D.γ) are impossible by lemma 1.1.14.
Only case (E) remains. We will show that this gives {4, 0}g or {4, 0}h. We have to

consider the more general situation (which we will denote by (E,N)):

L ∼ 2D + A + 3Γ0 + 4Γ1 + · · · + (N + 3)ΓN + ∆N+1, N > 0,

where all the Γi have multiplicity zero in ∆N+1 and the (partial) configuration looks as
follows

D Γ0 Γ1 · · · ΓN .

Note that L.ΓN = 0 gives ∆N+1.ΓN = N + 4. We will now show that if we are in case
(E,N) the we must be in case (E,N + 1), {4, 0}g or {4, 0}h. If we are not in case {4, 0}g

or {4, 0}h we will obtain a contradiction by iterating.
Let ΓN+1 ≤ ∆N+1 be a smooth rational curve such that ΓN+1.ΓN 6= 0. Then

ΓN+1.ΓN = 1. Writing ∆N+1 = ΓN+1 + ∆′
N+2 we have ΓN+1.∆

′
N+2 = −(N + 1), since

L.ΓN+1 = 0. Hence ΓN+1 has multiplicity at least d(N + 1)/2e + 1 = b(N + 4)/2c in
∆N+1. Since ∆N+1.ΓN = N + 4, this gives us two cases to consider:

(E.α) ∆N+1 ∼
⌊

N+4
2

⌋
ΓN+1 +

⌊
N+5

2

⌋
ΓN+2 + ∆N+2,

where ΓN .ΓN+1 = ΓN .ΓN+2 = 1 and ∆N+2.ΓN = 0,

(E.β) ∆N+1 ∼ (N + 4)ΓN+1 + ∆N+2,
where ΓN .ΓN+1 = 1 and ∆N+2.ΓN = 0.

If we are in case (E.α) we have two possibilities:

(E.α1) ΓN+1.ΓN+2 = 0

(E.α2) ΓN+1.ΓN+2 = 1

In case (E.α1) we have

0 = ΓN+1.L = (N + 3) − 2

⌊
N + 4

2

⌋

+ ΓN+1.∆N+2

and

0 = ΓN+2.L = (N + 3) − 2

⌊
N + 5

2

⌋

+ ΓN+2.∆N+2.

If N is odd this gives ΓN+1.∆N+2 = 0 and ΓN+2.∆N+2 = 2. This gives two cases
to consider: ∆N+2 = ΓN+3 + ΓN+4 + ∆N+3, with ΓN+2.ΓN+3 = ΓN+2.ΓN+4 = 1,
and ∆N+2 = 2ΓN+3 + ∆N+3, with ΓN+2.ΓN+3 = 1. In the first case 0 = ΓN+3.L ≥
(N + 5)/2 − 2 + ΓN+3.∆N+3 > ΓN+3.∆N+3, a contradiction. In the second case we have
0 = ΓN+3.L = (N + 5)/2 − 4 + ΓN+3.∆N+3. For N ≥ 5 this gives ΓN+3.∆N+3 < 0, a
contradiction.

For N = 3 we get Γ6.∆6 = 0. If ∆6 6= 0 then ∆2
6 < 0 (since h0(∆6) = 1), but then

L.∆6 < 0, a contradiction. If ∆6 = 0 we get {4, 0}h.
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If N = 1, then Γ4.∆4 = 1. Let Γ5 be a smooth rational curve in the support of ∆4

such that Γ4.Γ5 = 1. Then Γi.Γ5 = 0 for 0 ≤ i ≤ 3. For if Γi.Γ5 6= 0, then Γi would
have larger multiplicity than assumed in ∆. Iterating we would get that Γ0 has larger
multiplicity than three in ∆, a contradiction. Since L.Γ5 = 0 we get Γ5.(∆4 − Γ5) = 0.
We also get Γi.(∆4 − Γ5) = 0 for 0 ≤ i ≤ 4. Hence ∆4 = Γ5, since L is numerically
2-connected. This gives {4, 0}g .

If N is even, then ΓN+1.∆N+2 = ΓN+2.∆N+2 = 1. So there exists ΓN+3 < ∆N+2

such that ΓN+2.ΓN+3 = 1. Write ∆N+2 = ΓN+3 + ∆N+3. Then we have 0 = ΓN+3.L ≥
N/2 + ∆N+3.ΓN+3 > ∆N+3.ΓN+3, a contradiction.

In case (E.α2) we have

0 = ΓN+1.L

= (N + 3) − 2

⌊
N + 4

2

⌋

+

⌊
N + 5

2

⌋

+ ΓN+1.∆N+2

> ΓN+1.∆N+2,

a contradiction.
It remains to look at case (E.β). But this is equal to case (E,N + 1). If N + 1 ≥ 18

we get a contradiction, since PicS ≤ 20. If N + 1 < 18, then we must be in case (E.β),
since we have shown that case (E,α) is impossible with N + 1 > 1. Hence we can iterate
until we are in case (E,N ′), where N ′ ≥ 18.

We now stop assuming Γ.A = 0 for every Γ ∈ RL,D. Proposition 1.5.8 gives that
we can always find a well-behaved pair (A′,∆′). To complete the proof of the theorem
interchange every A, resp. ∆, in the above with A′, resp. ∆′.

Remark 1.5.7. We have only used the assumption c = 4 to show that h1(R) ≤ 3 and
to compute D.A and L.A. Hence the whole proof holds for any c < 4, we only have
to restrict ourselves to a lower value of h1(R) and change the values of D.A and L.A.
The results we then get for c = 1, 2, and 3, are given in [JK01, pp.77–78]. The results
as stated there are not entirely correct, since they have overlooked the possibility of
A.Γ = −1 for Γ ∈ RL,D. One gets correct results by substituting A with A′ in [JK01,
pp.77–78].

If we replace h1(R) with D.∆ in the statement of the classification it is enough to
assume that D is a free Clifford divisor.

Note the resemblance between the cases {4, 0}d–{4, 0}f and the cases (CG3)-(CG5)
in [JK01, pp.74-75]. There should also be a case (CG6) resembling {4, 0}g and a case
(CG7) resembling {4, 0}h These cases have for mysterious reasons been omitted in [JK01].
These cases should be included both on [JK01, p.75] and in the table on [JK01, p.89].

An alternative way to classify ∆′ is by using [Băd01, theorem 3.22]. See theorem 1.1
for details.

The proof we used to show that Γ.A = 0 if Γ ∈ RL,D with multiplicity two or three
does not work when the multiplicity is larger than three.

It is possible to find ∆ also, but it requires a bit more work. We include the result
here without supplying any proof. Note that for our classification purposes in the next
chapter it is enough to have found ∆′. In the following we let Γ0 ∈ RL,D.
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If Γ0 has multiplicity one in ∆ and Γ0.A = −1, then the component of ∆ that contains
Γ0 looks as follows:
Γ0 + · · · + ΓN with the following configuration

Γ0 Γ1 · · · ΓN

where ΓN .A = 1.
If Γ0 has multiplicity two in ∆ and Γ0.A = −1, then the component of ∆ that contains

Γ0 looks as follows:
2Γ0 + · · · + 2ΓN + ΓN+1 + ΓN+2 + ΓN+3 with the following configuration

D Γ0 · · · ΓN ΓN+1

ΓN+3 ΓN+2

where ΓN .A = 1, or
2Γ0 + 3Γ1 + 4Γ2 + 3Γ3 + 2Γ4 + 2Γ5 with the following configuration

D Γ0 Γ1 Γ2 Γ5

Γ3 Γ4

where Γ4.A = 1.
If Γ0 has multiplicity three in ∆ and Γ0.A = −1, then the component of ∆ that

contains Γ0 looks as follows:
3Γ0 + · · · + 3ΓN + 2ΓN+1 + ΓN+2 + 2ΓN+3 + ΓN+4 with the following configuration

D Γ0

EE
EE

EE
EE

· · · ΓN ΓN+1 ΓN+2

ΓN+3 ΓN+4

where ΓN .A = 1, or
3Γ0 + 5Γ1 + 3Γ2 + 4Γ3 + 3Γ4 + 2Γ5 + Γ6 with the following configuration

D Γ0 Γ1 Γ2

Γ3 · · · Γ6

where Γ2.A = 1.
As a consequence of the above we see that if D is of type {4, 0}c with N 6= 0 and

N 6= 2, then (A,∆) = (A′,∆′), i.e. (A,∆) is well-behaved. Likewise if D is of type
{4, 0}h, then (A,∆) = (A′,∆′).

We will now give a proof by Knutsen that shows that for all values of D.∆ we can
find a well-behaved pair (A′,∆′).
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Proposition 1.5.8. Given a polarized K3 surface (S,L) with non-general Clifford index
and a free Clifford divisor D not of type (E3)-(E4), one can always find a well-behaved
pair (A′,∆′).

Proof. We will give an algorithmic proof. We need the following lemma.

Lemma 1.5.9. Suppose we have a pair of divisors (Ai,∆i) such that (W1)–(W3) holds.17

If there exists a smooth rational curve Γ ≤ ∆i such that Γ.Ai > 0, then Γ.Ai = 1 and
Γ.D = 0.

Proof of lemma. Remember that F0 is the moving component of F . Then F0 = F −∆ ∼
D + A. We write Fi := D + Ai. Then F0 ≤ Fi ≤ F . Hence we have h0(Fi) = h0(F0).
Since (Ai,∆i) satisfies (W2) we have F 2

0 = F 2
i . Riemann-Roch then gives h1(Fi) =

h1(F0) = 0.18

Using Riemann-Roch yet another time gives

h0(Fi + Γ) − h0(Fi) = Fi.Γ − 1 + h1(Fi + Γ) = 0.

Hence Fi.Γ ≤ 1.
Since D.Γ ≥ 0 we get Γ.Ai ≤ 1. So if Γ.Ai > 0, then Γ.Ai = 1 and Γ.D = 0.

Write ∆0 := ∆ and A0 := A.
Given (Ai,∆i) that satisfy (W1)-(W3) assume that there exists a smooth rational

curve Γ ≤ ∆i such that Γ.Ai > 0. Write Ai+1 := Ai + Γ and ∆i+1 := ∆i − Γ. Then
(Ai+1,∆i+1) satisfies (W1)-(W3) by the lemma.

We repeat this as long as there exists a smooth rational curve Γ ≤ ∆i such that
Γ.Ai > 0. It is obvious by the definition of divisors that the procedure will stop after
finitely many steps. When there no longer exists such a curve (W4) holds also. Hence
we have a well-behaved pair of divisors.

We will end this section with a list of the possible components of ∆′.

Theorem 1.5.10. Let D be a free Clifford divisor associated to the base point free divisor
L and (A′,∆′) a well-behaved pair. Then every component of ∆′ looks like one of the
divisors in table 1.1.

Proof. We will show this using [Băd01, theorem 3.32]. It says that every component of
∆′ has as configuration-graph (An), (Dn), (E6), (E7), or (E8). We will find possible
components with configuration-graph (An), the other cases are left to the reader. With
multiplicity we will mean multiplicity in ∆′.

So assume that we have a component C with configuration-graph (An). We may
assume n > 1 since n = 1 is trivial. Let Γ0 be the vertex of the configuration-graph that
is contained in RL,D.19 Let n0 be the multiplicity of Γ0. Let Γ′

1 be an end vertex of (An)

17Remember that (W1)–(W3) always holds for (A,∆).
18Here we use that we are not in one of the cases (E3) or (E4).
19This vertex exists by lemma 1.5.5 and is unique by remark 1.5.6.
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that is not contained in RL,D. We may assume that the partial configuration looks as
follows (k ≥ 1)

Γ0 Γ′
k · · · Γ′

1

Let n′
i > 0 be the multiplicity of Γ′

i (1 ≤ i ≤ k). Since L.Γ′
1 = 0 we have n′

2 = 2n′
1. Since

L.Γ′
2 = 0 we have n′

1 +n′
3−2n′

2 = 0, i.e. n′
3 = 3n′

1. Continuing like this we get n′
k = kn′

1.
Then L.Γ′

k = 0 gives n0 = (k + 1)n′
1. Especially

(1.21) n′
k =

k

k + 1
n0.

If Γ0 is an end vertex of (An), then

0 = L.Γ0 = 2D.Γ0 + n0Γ
2
0 + n′

kΓ
′
k.

This gives (

2 −
k

k + 1

)

n0 = 2.

Since n0 is a positive integer and 2 − k/(k + 1) > 1 we get n0 = 1 and k = 0. Hence
n = 1.

If Γ0 is not an end vertex of (An), then the configuration looks as follows (k, l > 0)

D Γ0

@@
@@

@@
@

Γ1 Γ2 · · · Γk

Γ′
1 Γ′

2 · · · Γ′
l

Let ni be the multiplicity of Γi and n′
i the multiplicity of Γ′

i. Equation (1.21) gives

n1 =
k

k + 1
n0

and

n′
1 =

l

l + 1
n0.

In particular (l + 1)|n0.
L.Γ0 = 2 + n1 + n′

1 − 2n0 = 0 gives

(1.22) n0 = 2
(k + 1)(l + 1)

l + k + 2
.

Then
n0

l + 1
= 2

k + 1

l + k + 2
∈ Z.

The number on the right hand side is an integer between 0 and 2 since 0 < k+1 < l+k+2.
That is

2
k + 1

l + k + 2
= 1,
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i.e. k = l. Equation (1.22) gives n0 = k + 1. This gives the first line of table 1.1 (after a
change of indices).

One finds the rest of table 1.1 in a similar fashion: First one fixes a vertex Γ0 in
the configuration-graph and assumes Γ0 ∈ RL,D. Then one calculate the multiplicities
of the vertices using equation (1.21). (We discard the cases where the multiplicities are
non–integral. An example of such a case is when we choose Γ0 to be one of the vertices
in (E6) with degree 2.)

Table 1.1: Components of ∆′

component configuration

(N +1)Γ0+NΓ1+NΓ2+(N−1)Γ3+
(N − 1)Γ4 + · · · + Γ2N−1 + Γ2N (0 ≤
N ≤ 9)

D Γ0

AA
AA

AA
AA

Γ1 · · · Γ2N−1

Γ2 · · · Γ2N

kΓ0 + · · ·+kΓN + k
2ΓN+1 + k

2ΓN+2 +

(k − 2) k
k−1Γ′

1 + (k − 4) k
k−1Γ′

2 + · · · +
2Γ′

M (k even, M = (k−2)/2, M,N ≥
0, M + N ≤ 16 )

D Γ0 · · · ΓN

EE
EE

EE
EE

E
ΓN+1

Γ′
1 · · · Γ′

M ΓN+2

kΓ0 +(2k− 2)Γ1 +(2k− 3)Γ2 + · · ·+
ΓN +(k− 1)ΓN+1 (N = 2k− 2 ≤ 17)

D Γ0 Γ1 ΓN+1

Γ2 · · · ΓN

3Γ0+4Γ1+5Γ2+6Γ3+4Γ4+2Γ5+3Γ6

D Γ0 · · · Γ3 Γ6

Γ4 Γ5

4Γ0 + 6Γ1 + 4Γ2 + 4Γ3 + 2Γ4 + 2Γ5

D Γ0 Γ1

AA
AA

AA
A

Γ2 Γ4

Γ3 Γ5

4Γ0+6Γ1+8Γ2+10Γ3+12Γ4+6Γ5+
8Γ6 + 4Γ7

D Γ0 · · · Γ4 Γ5

Γ6 Γ7

7Γ0 +12Γ1 +8Γ2 +4Γ3 +9Γ4 +6Γ5 +
3Γ6

D Γ0 Γ1 Γ2 Γ3

Γ4 Γ5 Γ6

8Γ0+4Γ1+10Γ2+12Γ3+6Γ4+8Γ5+
4Γ6

D Γ0 Γ2 Γ3 Γ4

Γ1 Γ5 Γ6
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12Γ0 + 6Γ1 + 16Γ2 + 8Γ3 + 12Γ4 +
8Γ5 + 4Γ6

D Γ0 Γ2 Γ3

Γ1 Γ4 Γ5 Γ6

12Γ0 + 6Γ1 + 16Γ2 + 20Γ3 + 24Γ4 +
12Γ5 + 16Γ6 + 8Γ7

D Γ0 Γ2 Γ5 Γ7

Γ1 Γ3 Γ4 Γ6

15Γ0 + 10Γ1 + 5Γ2 + 18Γ3 + 12Γ4 +
6Γ5 + 9Γ6

D Γ0 Γ3

AA
AA

AA
A

Γ4 Γ5

Γ1
// Γ2 Γ6

16Γ0 + 30Γ1 + 20Γ2 + 10Γ3 + 24Γ4 +
18Γ5 + 12Γ6 + 6Γ7

D Γ0 Γ1

}}
}}

}}
}

Γ2 Γ3

Γ4 Γ5 Γ6 Γ7

24Γ0+12Γ1+16Γ2+16Γ3+8Γ4+8Γ5

D Γ0

AA
AA

AA
A

Γ2 Γ4

Γ1 Γ3 Γ5

24Γ0 + 12Γ1 + 16Γ2 + 8Γ3 + 18Γ4 +
12Γ5 + 6Γ6

D Γ0

AA
AA

AA
A

Γ2 Γ3

Γ1 Γ4 Γ5 Γ6

24Γ0 + 16Γ1 + 8Γ2 + 30Γ3 + 36Γ4 +
18Γ5 + 24Γ6 + 12Γ7

D Γ0 Γ3 Γ4 Γ5

Γ1 Γ2 Γ6 Γ7

28Γ0 + 14Γ1 + 40Γ2 + 20Γ3 + 32Γ4 +
24Γ5 + 16Γ6 + 8Γ7

D Γ0 Γ2 Γ4 Γ7

Γ1 Γ3 Γ5 Γ6

40Γ0 + 30Γ1 + 20Γ2 + 10Γ3 + 48Γ4 +
24Γ5 + 32Γ6 + 16Γ7

D Γ0

AA
AA

AA
A

Γ1 Γ2 Γ3

Γ5 Γ4 Γ6 Γ7

60Γ0 + 30Γ1 + 20Γ2 + 10Γ3 + 48Γ4 +
36Γ5 + 24Γ6 + 12Γ7

D Γ0

}}
}}

}}
}

Γ2 Γ3

Γ1 Γ4 Γ5 Γ6 Γ7
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1.6 On the relationship of the Clifford divisors of L, L−D,

and L + D

Remember that given a polarized K3 surface (S,L) with perfect Clifford divisor D the
associated scroll type is (e1, . . . , ed), with

ei = #{j|dj ≥ i} − 1,

where

d = d0 = h0(L) − h0(L − D)

d1 = h0(L − D) − h0(L − 2D)

...
...

...

di = h0(L − iD) − h0(L − (i + 1)D)

...
...

...

dn = h0(L − nD)

dn+1 = 0

We will throughout this section let n denote the largest integer such that h0(L−nD) > 0,
i.e. n := e1. Note that if h1(L − 2D) = h1(R) = 0 and D2 = 0, then d1 = d0 = d.
Furthermore L − D is base point free in this case. Hence we can use the machinery on
p. 21 to get a scroll containing φL−D(S). This scroll has scroll type (e1 − 1, . . . , ed − 1).

We will now give some results on the relationship between the perfect Clifford divisors
of L and L + D. We will need a numerical lemma.20

Lemma 1.6.1. Let (S,L) be a polarized K3 surface with genus g and Clifford index c.
If 4(g − 1) > (c + 4)2, then any Clifford divisor D must satisfy D2 = 0.

Proof. By equation (1.9) we have 0 ≤ D2 ≤ c + 2. Any Clifford divisor must also satisfy
equation (1.10):

D2L2 ≤ (D.L)2 = (D2 + c + 2)2.

We have

(1.23)
d

dx

(x + a)2

x
=

(x + a)(x − a)

x2
.

Hence for even positive integers less than or equal to c + 2 the expression (x + c + 2)2/x
has a maximum for x = 2.

Thus D2 > 0 gives

2(g − 1) = L2 ≤
(D2 + c + 2)2

D2
≤

(c + 4)2

2
.

20I think that that the numerical bound in the lemma is the best possible result. For c = 1 and 2 this
follows from the classification in [JK, section 11].
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Proposition 1.6.2. Let (S,L) be a polarized K3 surface with genus g, non-general Clif-
ford index c > 0, perfect Clifford divisor D, associated scroll type (e1, . . . , ec+2), and
4(g+c+1) > (c+4)2. Then D is also a perfect Clifford divisor for L+D with associated
scroll type (e1 + 1, . . . , ec+2 + 1).

Remark 1.6.3. Note that the case c = 1 is a stronger version of [JK01, proposition 9.7].

Proof. Write L′ := L + D. Then L′ is base point free and has a well-defined Clifford
index c′. Since D.(L′−D) = D.L = D.(L−D) = c+2 and B ∈ A(L′) we see that c′ ≤ c.

Lemma 1.6.1 gives that L′ has no Clifford divisor B with B2 = 2, since L′ has genus
g′ := g + c + 2.

Assume c′ < c and let B be a Clifford divisor of L′. Then we have B2 = 0 and

B.(L′ − B) = B.(L + D − B) = B.(L + D) = c′ + 2 ≤ c + 1

Since D is nef we have D.B ≥ 0. Hence B.L ≤ c + 1. If we can show that B ∈ A(L),
then this is a contradiction. But (L − B)2 = L2 − 2L.B ≥ L2 − 2c − 2 ≥ 0 (using
c < b g−1

2 c), so either h0(L − B) ≥ 2 or h0(B − L) ≥ 2 by Riemann-Roch. We also have
L.(L − B) ≥ L2 − c − 1 ≥ 0. Hence h0(L − B) > 0, since L is nef. Thus B ∈ A(L), and
we obtain a contradiction. Hence c = c′.

In particular D is a Clifford divisor for L + D. By lemma 1.3.16 it is also a perfect
Clifford divisor.21

We will now prove a partial converse.

Proposition 1.6.4. Let (S,L) be a polarized K3 surface with g ≥ c2 + 4c + 6 (c > 0).
Then

Cliff(L) = Cliff(L − D).

Let (S,L) be a polarized K3 surface with g ≥ c2 +6c+10 (c > 0). Then a divisor D is
a perfect Clifford divisor for L with h1(L − 2D) = 0 if and only if it is a perfect Clifford
divisor for L − D. In particular L is associated to the scroll type (e1 + 1, . . . , ec+2 + 1)
if and only if L − D is associated to the scroll type (e1, . . . , ec+2).

Remark 1.6.5. I believe that the second part of the proposition still holds for g ≥ c2+4c+6
but have been unable to prove this.

We will now make some comments concerning the c = 2 case of the proposition.22

For g ≤ 17 the proposition does not hold in general. Especially if g < 11, then L−D
must have g < 7. In this case L−D has Clifford index less than two, so the proposition
certainly does not hold in this case.

If h1(R) 6= 0, then the proposition certainly does not hold. For in this case F = L−D
is not even base point free, so it makes no sense to talk about its Clifford index.

For 11 ≤ g ≤ 17 the proposition holds in most cases, but not in all. We will now give
some examples of polarized K3 surfaces where the proposition does not hold.

21Here A = F . Also we can not be in case (E1) or (E2) for then c = D2 = 0.
22One can make similar remarks for c 6= 2.
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Consider L ∼ 2E1 + 2E2 + E3 (g = 17), where E1, E2, and E3 are elliptic curves,
with the following configuration:

(1.24) E1 E3

E2

||||||||

||||||||

Then both E1 and E2 are perfect Clifford divisor with associated scroll type (2, 2, 2, 2).
Consider L − E1. We see that L − E1 has Clifford index 1 and perfect Clifford divisor
E2. Hence the proposition does not hold in this case.23

Consider L ∼ 3E1 + 3E2 + Γ (g = 15), where E1 and E2 are elliptic curves, Γ is a
smooth rational curve, and we have the following configuration:

(1.25) E1 Γ

E2

~~~~~~~~

Then both E1 and E2 are perfect Clifford divisor with associated scroll type (3, 3, 3, 3).
Consider L − E1. We see that L − E1 has Clifford index 1 and perfect Clifford divisor
E2. Hence the proposition does not hold in this case either.

Since we most of the time work with g = 12 we will now give an example to show
that the proposition does not hold for g = 12. Consider L ∼ 3D + Γ1 + Γ2 + E, where
E is an elliptic curve, Γ1 and Γ2 are smooth rational curves, and we have the following
configuration:

(1.26) D Γ1

E Γ2

Then both D and D′ := Γ1 + Γ2 are perfect Clifford divisors. We see that L − D has
Clifford index 1, with perfect Clifford divisor D ′. Hence the proposition does not hold
in this case either.24

Proof. Since g ≥ c2 + 4c + 5 any perfect Clifford divisor must satisfy D2 = 0, by
lemma 1.6.1. The if part is just proposition 1.6.2. We will now prove the only if part.

Assume that D is a perfect Clifford divisor for L. Since h1(L − 2D) = 0 we have
∆ = 0. Hence L − D is base-point free, and it makes sense to talk about its Clifford
index. We have D.(L− 2D) = c+2. Hence L−D has Clifford index c′ ≤ c. We use here
that D ∈ A(L−D), i.e. h0(D), h0(L− 2D) ≥ 2. That h0(D) ≥ 2 is obvious since D is a
perfect Clifford divisor for L. Riemann-Roch gives h0(L − 2D) ≥ 2 or h0(2D − L) ≥ 2,

23We can show that this case and the next two cases all exist by arguing with the intersection matrices
as we will do many times in the next chapter.

24Configuration (2.58) gives another example with g = 12.
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since (L − 2D)2 = L2 − 4(c + 2) ≥ 0 (the last inequality follows from g ≥ c2 + 4c + 5).
Then h0(L − 2D) ≥ 2 since L is nef and L.(L − 2D) = L2 − 4(c + 2) > 0. We will now
show that c′ = c.

Assume c′ < c. Then there exists a divisor B ∈ A(L − D) such that c′ + 2 =
B.(L − D − B) < c + 2 and B2 = 0.25 Since L has Clifford index c we must have
B.(L − B) = B.L ≥ c + 2. Whence B.D > 0. We have (B + D)2 = 2B.D and
(B + D).L = B.L + D.L = c′ + c + 4 + B.D. Since B ∈ A(L − D) we see that
(B + D) + (L − D − B) ∼ L gives a non-zero effective decomposition of L such that
B + D ∈ A(L). Hence (B + D).(L −D −B) ≥ c + 3.26 This gives c + 3 ≤ (B + D).(L−
D − B) = c′ + c + 4 − B.D, i.e. B.D ≤ c′ + 1 ≤ c.

The Hodge index theorem gives

(B + D)2(L − B − D)2 ≤ ((L − B − D).(B + D))2,

so

2B.D(L2 − 2c − 2c′ − 8) ≤ (c′ + c + 4 − B.D)2 ≤ (2c + 3 − B.D)2.

Thus

4(g − 1) = 2L2 ≤ 4c + 4c′ + 16 +
(2c + 3 − B.D)2

B.D

≤ 8c + 12 +
(2c + 3 − B.D)2

B.D
< 8c + 13 + (2c + 2)2

= 4c2 + 16c + 17,

where we have used c′ < c. The last inequality follows from equation (1.23) with
0 < B.D ≤ c.

Hence c′ = c, so D is a Clifford divisor for L − D. If g(L) ≥ c2 + 5c + 10, then
g(L − D) ≥ c2 + 4c + 8 so D is a perfect Clifford divisor by proposition 1.6.6.

Note that since d = D2/2 + c + 2 (see equation (2.4)) we get d = c + 2.

The method of proof we have used here can also be used to show other results.

Proposition 1.6.6. Let (S,L) be a polarized K3 surface with genus g and non-general
Clifford index c. Assume g ≥ c2 + 4c + 8. Let D be a perfect Clifford divisor. Then
D2 = 0. Furthermore any other Clifford divisor D ′ is linearly equivalent to D. In
particular any Clifford divisor D′ is perfect.

Proof. That D2 = 0 is immediate from lemma 1.6.1. It is also immediate that any other
Clifford divisor D′ satisfies D′2 = 0.

25B2 = 0 by lemma 1.6.1.
26We cannot have (B + D).(L − D − B) = c + 2. For then we would have to have (B + D)2 =

0, after arguing as in the proof of lemma 1.6.1. This contradicts (B + D)2 = 2B.D > 0. Hence
(B + D).(L − D − B) > c + 2.
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Let D′ be a Clifford divisor. Assume D.D′ 6= 0. We have D + D′ ∈ A(L),27 We have
seen that any Clifford divisor D′ must satisfy D′2 = 0. Hence

c + 3 ≤ (D + D′).(L − D − D′) = 2(c + 2) − 2D.D′,

so D.D′ ≤ (c + 1)/2.
We will now use the Hodge index theorem as in the previous proof to get a bound

on L2. First of all the Hodge index theorem gives

(D + D′)2(L − D − D′)2 ≤ ((L − D − D′).(D + D′))2,

so
2D.D′(L2 − 4(c + 2) − 2D.D′) ≤ 4((c + 2) − D.D′)2.

Thus

g =
L2

2
+ 1 ≤ 5 + 2c + D.D′ +

((c + 2) − D.D′)2

D.D′

≤ 6 + 2c + (c + 1)2

= c2 + 4c + 7,

where we have used that the maximum of

x +
((c + 2) − x)2

x
,

for integers x between 1 and (c + 1)/2, is when x = 1.
If D.D′ = 0, then Riemann-Roch used on D − D′ gives that either h0(D − D′) 6= 0

or h0(D′ − D) 6= 0. We also have

(D − D′)2.L2 = ((D − D′).L)2 = 0.

The equality conditions of the Hodge index theorem then give L2(D − D′) ∼ ((D −
D′).L)L = 0. Hence D ∼ D′.

27It is obvious that h0(D + D′) ≥ 2. Since D.(L −D −D′) = D.L −D.D′ ≤ D.L = c + 2 and likewise
D′.(L − D − D′) ≤ c + 2 we have

(L − D − D′)2 = L.(L − D − D′) − D.(L − D − D′) − D′.(L − D − D′) ≥ L2 − 4(c + 2) ≥ 0.

Riemann-Roch then gives h0(L − D − D′) ≥ 2, so D + D′ ∈ A(L).
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Chapter 2

Projective Models of Polarized

K3 Surfaces of Genus 12

We will in this chapter classify projective models of K3 surfaces of genus 12. This chapter
is quite long, as a consequence of its computational character.

If g = 12, then g−1 is square-free. Thus the general polarized K3 surface of genus 12 is
BN general (proposition 1.3.18). Mukai [Muk95] has previously described the projective
model of BN general polarized K3 surfaces with L ample. We will now quickly describe
this projective model. We follow [JK01, pp.72–73].

Let V be a vector space. Write Grass(r, V ) for the Grassmann variety of r-dimensional
subspaces of V . Let V be a 7-dimensional vector space and N ⊆ ∧2V ∨ a 3-dimensional
vector space of skew-symmetric bilinear forms, with basis {m1,m2,m3}. We denote
by Grass(3, V,mi) the subset of Grass(3, V ) consisting of 3-dimensional subspaces U of
V such that the restriction of mi to U × U is zero. Write Σ3

12 = Grass(3, V,N) :=
∩Grass(3, V,mi). It has dimension 3 and degree 12. Then the projective image of a BN
general polarized K3 surface of genus 12 with L ample is

(1) ∩ Σ3
12 ⊆ P12.

For the rest of this chapter we will be considering the non-BN general case. The non-
Clifford general case takes up very much space. We will rely heavily on the configurations
we found in section 1.5. The Clifford general and non–BN general case is rather short
compared to the non–Clifford general case. We have already done much of the necessary
work in section 1.4.

To end this chapter we include a short section 2.11 where we will see how the methods
used in this chapter can be extended to other genera.

We summarize the results of this chapter in table 2.1.1 We use the same conventions
as for the tables in [JK01, section 11], i.e. the singularity type listed in the column
“sing” indicates that for “almost all” K3 surfaces in question its projective model has
singularities exactly as indicated.2

1For c = 1 and c = 2 we can find some of this information in the tables in [JK01, p.58 and p.65].
2By “almost all” we mean that the moduli of the exceptional set of K3 surfaces is strictly less than the
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Table 2.1: Scroll types for g = 12

c D2 scroll type #mod sing

1 0 (4, 3, 3) 18 sm. (2.42)

1 0 (4, 4, 2) 17 sm. (2.45), (2.46)

1 0 (5, 3, 2) 16 A1 (2.48)

1 0 (6, 3, 1) 17 sm. (2.49)

2 0 (3, 2, 2, 2) 18 sm. (2.50)

2 0 (3, 3, 2, 1) 17 sm. (2.52), (2.53), (2.54)

2 0 (4, 2, 2, 1) 15 A1 (2.55)

2 0 (4, 3, 1, 1) 16 sm. (2.57)

2 0 (4, 3, 2, 0) 17 sm. (2.59)

2 0 (5, 3, 1, 0) 16 A1 (2.60)

3 0 (2, 2, 2, 1, 1) 18 sm. (2.6)

3 0 (3, 2, 1, 1, 1) 16 A1 (2.7)

3 0 (2, 2, 2, 2, 0) 17 A1 (2.10)

3 0 (3, 2, 2, 1, 0) 16 A2 (2.14), A1 (2.15), (2.16)

3 0 (3, 3, 1, 1, 0) 15 A1 (2.17)

3 0 (4, 2, 1, 1, 0) 14 A2 + A3 (2.11)

3 0 (3, 3, 2, 0, 0) 16 2A1 (2.18)

3 0 (4, 2, 2, 0, 0) 16 2A1 (2.22

3 2 (3, 2, 1, 1, 0, 0) 18 sm. (2.25)

4 0 (2, 1, 1, 1, 1, 1) 18 sm. (2.26)

4 0 (2, 2, 1, 1, 1, 0) 17 A1 (2.31)

4 0 (3, 1, 1, 1, 1, 0) 16 A2 (2.32)

4 0 (2, 2, 2, 1, 0, 0) 16 2A1 (2.33)

4 0 (3, 2, 1, 1, 0, 0) 14 2A1 (2.34)

4 0 (3, 2, 2, 0, 0, 0) 15 3A1 (2.35)

4 2 (1, 1, 1, 1, 1, 1, 0) 18 sm. (2.36)

4 4 (2, 1, 1, 1, 0, 0, 0, 0) 18 sm. (2.37)

5 2 (1, 1, 1, 1, 1, 0, 0, 0) 18 sm.

5 2 (2, 1, 1, 1, 0, 0, 0, 0) 16 A1 (2.62), 2A1 (2.63)

5 2 (2, 2, 1, 0, 0, 0, 0, 0) 17 A1 (2.64), (2.65)

5 4 (1, 1, 1, 1, 0, 0, 0, 0, 0) 18 sm.

5 4 (2, 1, 1, 0, 0, 0, 0, 0, 0) 16 3A1 (2.67)
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We will now include some preliminary material for our classification of projective
models of non-Clifford general polarized K3 surfaces of genus 12. From now on until
section 2.8 we will assume that L is a base point free divisor with arithmetic genus 12
(L2 = 22) and non-general Clifford index c. Then c ≤ 4. Let D be a perfect Clifford
divisor. We have

D.L = D2 + c + 2(2.1)

0 ≤ D2 < c + 2(2.2)

22D2 ≤ (D2 + c + 2)2(2.3)

The first equation is just the definition of a Clifford divisor. The next two are just
equations (1.9) and (1.10).

The inequalities give the following possible pairs of {c,D2}:

{1, 0} {2, 0} {3, 0} {3, 2}
{4, 0} {4, 2} {4, 4}

We say that L (and (S,L)) is of type {c,D2} if L has Clifford index c and a perfect
Clifford divisor with self-intersection D2. We have seen that D gives a scroll in a natural
way. Remember that we say that this scroll is associated to the perfect Clifford divisor
D. Let d be the dimension of this scroll, and f its degree. Then

d = d0 := h0(L) − h0(L − D) =
1

2
D2 + c + 2(2.4)

d + f = g + 1 = 13(2.5)

We stumble upon quite a few Diophantine equations in this section, and the following
lemma will be useful for solving some of these.

Lemma 2.0.1. [NZM91, theorem 3.10] Let f(x, y) = ax2+bxy+cy2 be a binary quadratic
form, with integral coefficients and discriminant d := b2 − 4ac. If d 6= 0 and d is not a
perfect square then the only integral solutions of f(x, y) = 0 is x = y = 0.

Proof. Completing the square gives

0 = 4af(x, y) = (2ax + by)2 − dy2,

from which the statement readily follows.

Let B1 be a nef divisor and B2 a divisor such that B1.B2 > 0 and B2
2 ≥ −2. Then

by Riemann-Roch either B2 or −B2 is linearly equivalent to an effective divisor. Since

number of moduli listed in the column “# mod”. For the possible singularities see [Băd01, theorem 3.32].
The number(s) after the singularity type denotes the configurations which give rise to this singularity.
The computations for this column is non-trivial. We will not include the details except for the first two
scroll types we consider.



62 Projective Models of Polarized K3 Surfaces of Genus 12

B1.B2 > 0 it must be B2. If B2 represents an equivalence class in PicS, then we may
assume B2 to be effective. It is this argument I refer to when I in the following write
”B1 is nef and Riemann-Roch used on B2 let us assume B2 ≥ 0.”

In many places we will want to say something about a non-zero divisor B such that
h0(B) = 1. In this case lemma 1.1.14 says sufficiently much about B for our purposes.
In particular it says that two distinct smooth rational curves, Γ1 and Γ2, in the support
of B satisfies Γ1.Γ2 = 0 or 1. This is a property we will use extensively without referring
to lemma 1.1.14 in each instance.

I will take the opportunity to emphasize footnotes 5 and 8 below.
In the following we will find those scroll types associated to a perfect Clifford divisor

D. We will give a description of possible configurations in Pic S.3 In most cases we will
only give the most general configurations, though in some cases we will give all possible
configurations. If the last non-zero di has value larger than one, the situation is too
complex for us to give the complete picture. If the last non-zero di is equal to one, it
is relatively easy to give the complete picture. Still the number of configurations is so
large for some of the scroll types that it is not forthwhile to give the complete picture.

Note also that many of the proofs will be quite long and tedious. When these proofs
do not present any new and interesting ideas we will feel free to skip the details.4

After giving possible configurations we will show existence of the most general one.
This too will give long and tedious proofs at times. For the reader who is not interested
in checking all the details I recommend reading the existence proofs in subsections 2.1.1,
2.1.2, and 2.1.5. When there is more than one configuration that gives the largest moduli
of K3 surfaces (for a given scroll type) we will only do the existence proof for one of the
configurations. In all of the cases one can show existence for the other configurations in
a similar way, but we will not include the details.

2.1 c = 3, D2 = 0

We have D.L = 5, d = 5, and f = h0(L − D) = 8. Since L.(L − 5D) = −3 and L is
nef we see that h0(L − 5D) = 0. Proposition 1.3.12 gives h1(R) ≤ 2. By Riemann-Roch
h0(L − 2D) = h0(R) = 3 + h1(R). Table 2.2 gives the possible scroll types.

2.1.1 (2, 2, 2, 1, 1)

In this case h1(R) = 0, so ∆ = 0. In general A is an irreducible curve of genus 2.
Then L ∼ 2D + A is a decomposition of L into irreducible curves with the following
configuration:

(2.6) D A

We will show that there exists an 18-dimensional family of polarized K3 surfaces
(S,L) with a perfect Clifford divisor D associated to this scroll type.

3We will only number those configurations which are actually possible for a given scroll type.
4This is why this chapter is “only” sixty pages!
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Table 2.2: Possible scroll types associated to L of type {3, 0}.

d0 d1 d2 d3 d4 scroll type

5 5 3 0 0 (2, 2, 2, 1, 1)

5 5 2 1 0 (3, 2, 1, 1, 1)

5 5 1 1 1 (4, 1, 1, 1, 1)

5 4 4 0 0 (2, 2, 2, 2, 0)

5 4 3 1 0 (3, 2, 2, 1, 0)

5 4 2 2 0 (3, 3, 1, 1, 0)

5 4 2 1 1 (4, 2, 1, 1, 0)

5 3 3 2 0 (3, 3, 2, 0, 0)

5 3 3 1 1 (4, 2, 2, 0, 0)

5 3 2 2 1 (4, 3, 1, 0, 0)

The lattice ZL ⊕ ZD with intersection matrix

[
L2 L.D

D.L D2

]

=

[
22 5
5 0

]

has signature (1,1), so by proposition 1.1.24 there exists a K3 surface with PicS =
ZL ⊕ ZD.

Using Picard-Lefschetz reflections we may assume that L is nef. We will now show
that L is base point free and of type {3, 0}. It is enough to show that there exists no
divisor B such that5

B2 = 0 B.L = 1, 2, 3, or 4

B2 = 2 B.L = 7

This is immediate from lemma 1.4.9.6

Assume that B is a perfect Clifford divisor. Let B ∼ xL + yD. Then B2 = 0 gives
x = 0. B.L = 5 then gives y = 1. Hence B ∼ D, and we may assume that D is a
perfect Clifford divisor. Using lemma 2.0.1 we see that there exists no divisor Γ such
that Γ2 = −2 and Γ.L = 0. Hence RL,D = ∅. We will show below that the associated
scroll type is (3, 2, 1, 1, 1) only if rankPic S > 2 and that the scroll type (4, 1, 1, 1, 1) is not
associated with any perfect Clifford divisor whatsoever. Therefore D must be associated
to the scroll type (2, 2, 2, 1, 1), since h1(R) = 0.

Since there exists no divisor Γ such that Γ2 = −2 and Γ.L = 0 we also get that the
mapping given by L is smooth.

5The non-existence of B such that B2 = 0 and B.L = 1 gives that L is base point free (proposi-
tion 1.1.12). The non-existence of the rest of the B’s give that L is of type {3, 0} using equations (2.1)
and (2.2). For the rest of this chapter we will write up equations as below without writing the previous
two sentences repeatedly (with {3, 0} and B substituted suitably).

6Alternatively use lemma 2.0.1.
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2.1.2 (3, 2, 1, 1, 1)

In this case h1(R) = 0, so ∆ = 0. Let Γ′ be a smooth rational curve, such that Γ′ < L−3D.
Lemma 1.1.16 and the definition of a free Clifford divisor give h0(D,OD) = 1. Then
h0(D + Γ′,OD+Γ′) = 1 or 2. Lemma 1.1.16 and Riemann-Roch then give

2 = h0(D) ≤ h0(D + Γ′) = D.Γ′ + h0(D + Γ′,OD+Γ′) ≤ h0(L − 3D) = 3.

Hence D.Γ′ = 0, 1, or 2.
Since h0(L − 3D) = 1 we can write

L ∼ 3D + B,

where B is a sum of smooth rational curves, B2 = −8, and B.D = 5. We can write

B ∼ B0 + B1,

where B0.D = 5, B1.D = 0, and B0 can be written as a sum of smooth rational curves,

B0 = n1Γ1 + · · · + nNΓN ,

where D.Γi > 0 and ni > 0 for all i. Then ΣN
i=1ni ≤ 5. Especially we have N ≤ 5. If

B1 6= 0, then B2
1 ≤ −2 since h0(B1) = 1 (use Riemann-Roch).

We must have rankPic S ≥ 3 and the only possibility with rankPic S = 3 is config-
uration 2.7. Over the next couple of pages we will present the ideas of the proof of this
statement. Since the proof is so long (and at times uninteresting) we will not include all
the details.

N = 1: Then we must have B0 = 5Γ1, so B2
0 = −50. L nef and L.(3D+5Γ1+B1) = 22

gives L.Γ1 = 1 and L.B1 = 2. Then L.Γ1 = 1 gives Γ1.B1 = 8 and B2 = −8 gives
B2

1 = −38. Take any smooth rational curve Γ2 ≤ B1 such that Γ1.Γ2 = 1. Using that
L.Γ2 ≥ 0 we get that Γ2 has multiplicity at least three in B1. This gives three possibilities
(here Γ3 ≤ B2 is another smooth rational curve such that Γ1.Γ2 = 1 and B2 is an effective
divisor such that Γ1.B2 = 0):

B1 ∼ 3Γ2 + 5Γ3 + B2

B1 ∼ 4Γ2 + 4Γ3 + B2

B1 ∼ 8Γ2 + B2

In the first two case we get rankPicS ≥ 5 by checking all possibilities. That is the (six
different) possibilities given by Γ2.Γ3 = 0 or 1 and L.(Γ2 + Γ3 + B2) = 1. These possi-
bilities determine the intersection matrix of D,Γ1,Γ2,Γ3, and B2. Taking determinants
we get something non-zero in all of the cases. Thus D,Γ1,Γ2,Γ3, and B2 are linearly
independent and rankPic S ≥ 5.

Similar reasoning in the last case gives rankPicS ≥ 5 here too. The reasoning here
is a bit more complex than in the above cases. That rankPicS ≥ 4 is easy to show. This
follows by checking that D,Γ1,Γ2, and B2 are linearly independent both for L.Γ1 = 0
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and L.Γ1 = 1. To show that rankPic S ≥ 5 we introduce a new smooth rational curve
Γ3 ≤ B2 such that Γ2.Γ3 = 1, and then show that D,Γ1,Γ2,Γ3, and (B2−Γ3) are linearly
independent.

N = 2: Consider first rankPic S = 3. We first look at B1 = 0. In this case
B ∼ n1Γ1 + n2Γ2. Arguing modulo 2 we see that either D.Γ1 = 1 or D.Γ2 = 1. Assume
that D.Γ1 = 1. Then n1 is odd. A case by case analysis shows that every possible
combination of n1, n2, D.Γ2, and Γ1.Γ2, with n1 + n2 ≤ 5, 1 ≤ D.Γ2 ≤ 2, and 0 ≤
Γ1.Γ2 ≤ 1, gives B2 6= −8, a contradiction. Similarly one can show that B1 6= 0 gives
a contradiction. It is possible to show that the only possibility with N = 2 (for all
rankPic S) is L ∼ 3D + Γ1 + 2Γ2 + Γ3, with the following configuration:7

(2.7) D Γ1

Γ2 Γ3

N = 3: We will now “show” that there exists no configurations with N = 3 and
rankPic S = 4. One can easily show that D,Γ1,Γ2, and Γ3 are linearly independent
so rankPicS ≥ 4. The rankPic S = 4 case is rather complex. We will show that
rankPic S = 4 is impossible with B1 = 0. The case B1 6= 0 is left to the reader.
Assume that rankPic S = 4 is possible with B1 = 0. Then we have B ∼ n1Γ1 +
n2Γ2 +n3Γ3. Assuming n1 ≤ n2 ≤ n3 we have four possible values of (n1, n2, n3), namely
(1, 1, 1), (1, 1, 2), (1, 1, 3),and (1, 2, 2).

(1, 1, 1) gives B2 = (Γ1 +Γ2 +Γ3)
2 = Γ2

1 +Γ2
2 +Γ2

3 + · · · ≥ −6 > −8, a contradiction.
(1, 1, 2) and B2 = −8 reduces to two cases:

D

AA
AA

AA
AA

Γ1

Γ2 Γ3

and

D

AA
AA

AA
AA

Γ1

Γ2 Γ3

Both configurations give L.Γ3 = 0, and therefore RL,D 6= ∅. Hence they cannot give
scroll type (3, 2, 1, 1, 1).

(1, 1, 3) and B2 = −8 is only possible with the following configuration

D

AA
AA

AA
AA

Γ3

}}
}}

}}
}

Γ1 Γ2

7We will see below that there exists none for N = 3, hence this is the only possibility with rank Pic S =
4 and associated scroll type (3, 2, 1, 1, 1).
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In this case L.Γ3 = −1, which contradicts L nef.

(1, 2, 2) and B2 = −8 is impossible.

We have shown that there exists no configurations with B1 = 0 and 1 ≤ N ≤ 3.
Arguing as above we get the following possible configurations for N = 4 and 5 (with
B1 = 0):

N = 4: L ∼ 3D + Γ1 + Γ2 + Γ3 + Γ4 and configuration

(2.8) Γ1 D

~~
~~

~~
~~

@@
@@

@@
@@

Γ4

Γ2 Γ3

N = 5: L ∼ 3D + Γ1 + Γ2 + Γ3 + Γ4 + Γ5 and configuration

(2.9) Γ1 D

}}
}}

}}
}}

AA
AA

AA
AA

Γ5

Γ2 Γ3 Γ4

We will now show that configuration (2.7) gives a 16-dimensional family of polarized
K3 surfaces (S,L), with this scroll type.

The lattice ZD ⊕ ZΓ1 ⊕ ZΓ2 ⊕ ZΓ3 with intersection matrix







D2 D.Γ1 D.Γ2 D.Γ3

D.Γ1 Γ2
1 Γ1.Γ2 Γ1.Γ3

D.Γ2 Γ1.Γ2 Γ2
2 Γ2.Γ3

D.Γ3 Γ1.Γ3 Γ2.Γ3 Γ2
3







=







0 1 2 0
1 −2 0 0
2 0 −2 1
0 0 1 −2







has signature (1,3), so by proposition 1.1.24 there exists a K3 surface with Pic S =
ZD ⊕ ZΓ1 ⊕ ZΓ2 ⊕ ZΓ3.

Using Picard-Lefschetz reflections we may assume that L ∼ 3D+Γ1 +2Γ2 +Γ3 is nef.
L nef and Riemann-Roch used on D, Γ1, and Γ2 let us assume D, Γ1, and Γ2 effective.

We will now show that B ∈ A0(L), with B nef, implies B ∼ D. This will in particular
show that L is base point free and of type {3, 0}.

Let B ∈ A0(L), with B ∼ xD+yΓ1+zΓ2+wΓ3 and B nef. Then we have B.L−B2 ≤
(B + H).L − (B + H)2 for H = D, H = Γ1, and H = Γ2.

8 This gives 0 ≤ 2H.B ≤
H.L + 2, where the first inequality follows from B nef. For H = Γ3 we similarly get

8For the inequality to be true it is enough that B+H ∈ A(L), i.e. h0(B+H), h0(L−B−H) ≥ 2. That
h0(B+H) ≥ 2 is immediate, since h0(B+H) ≥ h0(B) ≥ 2 when H is effective. That h0(L−B−H) ≥ 2 is
a bit harder to show in general. When c ≤ 3 and B ∈ A0(L) we have B2−2B.L ≥ −12 (with inequality if
and only if B2 = 2 and B.L = 7). With L2 = 22 we then have (L−B−H)2 ≥ 10+H2−2L.H +2H.B ≥
10 + H2 − 2L.H. One can easily check that in the cases, H = D, H = Γ1, and H = Γ2, one gets
H2 − 2L.H ≥ −10. Whence h0(L − B − H) ≥ 2 + (L − B − H)2/2 ≥ 2 also. (Later on we will refer to
this page when we do similar arguments. In these cases too one can show as we have done above that
h0(L − B − H) ≥ 2.)
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2|H.B| ≤ H.L + 2.9 Hence

0 ≤ Γ1.B = x − 2y ≤ 1

0 ≤ Γ2.B = 2x − 2z + w ≤ 2

−1 ≤ Γ3.B = z − 2w ≤ 1

0 ≤ D.B = y + 2z ≤ 3

A case by case analysis shows that the only integral solution is B ∼ D. Hence we may
assume that D is a perfect Clifford divisor.

From Riemann-Roch we see that either Γ3 or −Γ3 is effective. We will show that
we may assume Γ3 to be effective. If Γ3 is effective, there is nothing to show. If −Γ3 is
effective, then we change the basis of Pic S as follows:

D 7→ D := D′

Γ1 7→ Γ1 := Γ′
1

Γ2 7→ Γ2 + Γ3 := Γ′
2

Γ3 7→ −Γ3 := Γ′
3

We see that L ∼ 3D′ + Γ′
1 + 2Γ′

2 + Γ′
3 and that the new intersection numbers are equal

to the old ones. Furthermore since L is nef we may assume that Γ′
1 and Γ′

2 is effective.
We have assumed that −Γ3 is effective, so Γ′

3 is effective..
It remains to determine the scroll type given by D. We want to find RL,D. Let

B ∼ xD+yΓ1+zΓ2+wΓ3 ∈ RL,D. Then we must have B.D = 1, B.L = 0, and B2 = −2.
This is equivalent to y+2z = 1, 5x+y+3z = 0, and −1 = −(y2+z2+w2)+xy+2xz+zw.
These equations are seen to have no simultaneous integral solutions. Hence RL,D = ∅.
The scroll type must then be either (3, 2, 1, 1, 1) or (4, 1, 1, 1, 1) since h0(L − 3D) =
h0(Γ1 + 2Γ2 + Γ3) > 0. We will show below that the scroll type (4, 1, 1, 1, 1) is not
associated to any perfect Clifford divisor, hence the scroll type must be (3, 2, 1, 1, 1).

We will now find the curves contracted by φL. Let Γ be a divisor such that Γ.L = 0
and Γ2 = −2. Then 5x+y+3z = 0 and −(y2 +z2 +w2)+xy+2xz+zw = −1. Inserting
x = −(y + 3z)/5 into the second equation gives 6y2 + 11z2 + 5w2 = −5xy + 5zw + 5.
Adding −3y2 − 6z2 − 3w2 to the left hand side and 5xy − 5zw to the right hand side
gives

3y2 + 5z2 + 2w2 ≤ 5,

since −5zy ≤ 3y2 + 3z2 and 5zw ≤ 3z2 + 3w2. This gives Γ = ±Γ1, ±Γ2, or ±Γ3. Only
Γ = ±Γ3 satisfies Γ.L = 0. We want Γ to be effective and may by the above base change
assume that Γ = Γ3 is effective. Then Γ has to contain a smooth rational curve γ such
that γ.L = 0, since Γ.L = 0, Γ2 = −2, and Γ is effective.10 But since Γ3 is the only
effective divisor with Γ.L = 0 and Γ2 = −2 we get γ = Γ3. The singularity type becomes
(A1).

9Since Γ2
3 = −2 gives Γ3 or −Γ3 effective.

10Since L is nef and Γ.L = 0 every prime divisor γ contained in Γ must satisfy γ.L = 0. Since L is big,
the Hodge index theorem gives that every prime divisor γ contained in Γ has negative self-intersection.
In particular γ must be a smooth rational curve.



68 Projective Models of Polarized K3 Surfaces of Genus 12

2.1.3 (4, 1, 1, 1, 1)

We will show that there exists no perfect Clifford divisor D associated to this scroll type.
Assume that there exists a perfect Clifford divisor D associated to the scroll type

(e1, . . . , e5) = (4, 1, 1, 1, 1). L + D gives a mapping φL+D from S to Pg+d = P16 (see
[JK01, p.35]11) Set S′′ = φL+D(S). Then |D| defines a smooth rational scroll T0 in Pg+d

containing S ′′.12 [JK01, proposition 8.4] says that T0 is smooth of type (e′1, . . . , e
′
5) =

(e1 + 1, . . . , e5 + 1). [JK01, prop.8.14] gives a resolution of T0. From this resolution we
get integers b1

1, . . . , b
5
1, which (by [JK01, cor.8.19]) satisfies

∑5
k=1 bk

1 = 2g − 2 = 22. We
may order the bk

1 in a non-increasing way.
From the proof of [JK01, corollary 8.27] we see that

b1
1 ≤ 2e′12 = 2(e2 + 1) = 4.

This gives

22 =
5∑

k=1

bk
1 ≤ 5b1

1 = 20,

a contradiction.

2.1.4 (2, 2, 2, 2, 0)

We must be in case {3, 0}a. Hence ∆′ = Γ, RL,D = {Γ}, A′2 = 4, D.A′ = 4, and
L ∼ 2D + A′ + Γ. In general A′ is a curve C of genus 3, and we have the following
configuration

(2.10) D C

Γ

We will now show that there exists a 17-dimensional family of polarized K3 surfaces
(S,L) with this scroll type.

The lattice ZD ⊕ ZA′ ⊕ ZΓ with intersection matrix




D2 D.A′ D.Γ
D.A′ A′2 A′.Γ
D.Γ A′.Γ Γ2



 =





0 4 1
4 4 0
1 0 −2





has signature (1,2), so by proposition 1.1.24 there exists a K3 surface with Pic S =
ZD ⊕ ZA′ ⊕ ZΓ.

Using Picard-Lefschetz reflections we may assume that L ∼ 2D + A′ + Γ is nef. We
will now show that L is base point free and of type {3, 0}. It is enough to show that
there exists no divisor B ∼ xD + yA′ + zΓ such that

B2 = 0 B.L = 1, 2, 3, or 4

B2 = 2 B.L = 7
11Since D2 = 0 we have S̃ = S and H = L + D in the notations of [JK01, p.35].
12See [JK01, pp.37–38]. Since D2 = 0 we have D̃ = D.
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We have B.L = 5x + 12y and B2 = 4y2 − 2z2 + 8xy + 2xz. If B2 = 0, then this gives
6z2 = B.L−(5−2B.L)x+6xz−10x2. If |z| ≤ |x|, this gives 0 ≤ B.L−(5−2B.L)x−4x2.
For 1 ≤ B.L ≤ 4 this gives x = −1, 0 or 1, all of which give y /∈ Z. If |x| < |z| we get
0 ≤ B.L − (5 − 2B.L)x − 10x2. For 1 ≤ B.L ≤ 4 this gives x = −1 or 0, which give
y /∈ Z. B2 = 2 and B.L = 7 is shown in a similar way to have no solutions.

Hence (S,L) is of type {3, 0}. Let B ∼ xD + yA′ + zΓ be a perfect Clifford divisor.
Then B2 = 0 and B.L = 5, i.e. 6z2 = 5 − 5x + 6xz − 10x2. This gives B ∼ D or
B ∼ D+Γ. Changing the basis of Pic S, if necessary, as on p. 67 we may assume B ∼ D.

If B ∼ D, then we may assume that D is a perfect Clifford divisor. D nef and
Riemann-Roch used on Γ let us assume Γ ≥ 0. But then L.Γ = 0 and D.Γ = 1. So
RL,B 6= ∅.13

Hence every perfect Clifford divisor D ′ must satisfy RL,D′ 6= ∅. We will see below
that every perfect Clifford divisor with RL,D′ 6= ∅ associated to a scroll type not equal
to (2, 2, 2, 2, 0) must have rankPic S > 3. Hence the scroll type associated to the perfect
Clifford divisor D′ on (S,L) must be (2, 2, 2, 2, 0).

We will now stop to answer a question posed on p. 28: Do there exist non-perfect Clif-
ford divisors? We will answer this question in the affirmative by exhibiting an example.
We have seen that

A0(L) = {D,D + Γ, L − D,L − D − Γ}.

We have also seen that we may assume that D is a perfect Clifford divisor. Then D + Γ
satisfies (C1) and (C2), so D + Γ is a Clifford divisor. Thus h1(D + Γ) = 0 and we get

2 = h0(D) = h0(D + Γ).

Thus Γ is fixed in |D+Γ|, so D+Γ is not base point free. Especially (C5) is not satisfied.
Hence D + Γ is a non-free, and whence a non-perfect, Clifford divisor.

2.1.5 (4, 2, 1, 1, 0)

L must be of type {3, 0}a. Hence ∆′ = Γ, where RL,D = {Γ}. We can write A′ ∼ 2D+B0,
where h0(B0) = 1.

Γ.L = 0 gives Γ.B0 = −2. Hence we can write B0 ∼ Γ+B1, where D.B1 = 3,Γ.B1 =
0, B2

1 = −10, and L.B1 = 2.

Let γ ≤ B1 be a smooth rational curve such that D.γ 6= 0. Then D.γ = 1 by
proposition 1.1.17, since 2 = h0(L − 3D) = h0(D + 2Γ + B1) = h0(D).

If rankPicS < 6 then this scroll type is not associated to any polarized K3 surface.14

If rankPicS = 6 then this scroll type is possible with L ∼ 4D +3Γ+2Γ1 +2Γ2 +Γ3 +Γ4

13The argument in footnote 10 gives that Γ is a sum of smooth rational curves γ satifying γ.L = 0.
Since D is nef there must exist a γ such that γ.D = 1.

14The only possible configuration (i.e. a configuration with h0(L−4D) > 0 and RL,D consisting of only
one curve) we find with rank(Pic (S)) < 6 is configuration (2.24) with N = 0. Then Γ0.(L −D) = −1 so
Γ0 is fixed in F := L − D. Γ1.(F − Γ0) = −1 so Γ1 is fixed in F − Γ0. Γ2.(F − Γ0 − Γ1) = −1 so Γ2 is
fixed in F −Γ0 − Γ1. Γ0.(F −Γ0 −Γ1 − Γ2) = −1 so Γ0 is fixed in (F −Γ0 −Γ1 −Γ2). Especially 2Γ0 is
fixed in F , hence h1(R) ≥ 2. Since c = 3 we get h1(R) = 2. Then the associated scroll type cannot be
(4, 2, 1, 1, 0).
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and the following configuration:

(2.11) D

@@
@@

@@
@@

Γ Γ2 Γ3

Γ1 Γ4

This is our first example of a decomposition where (A,∆) is not well-behaved. For
Γ2.(L − 2D − Γ) = −1, so Γ2 is fixed in L − 2D − Γ. Hence ∆′ < Γ + Γ2 ≤ ∆′.

We will now show that this gives a 14-dimensional family of polarized K3 surfaces
(S,L) associated to the scroll type (4, 2, 1, 1, 0).

The lattice ZD ⊕ ZΓ ⊕ ZΓ1 ⊕⊕ZΓ2 ⊕ ZΓ3 ⊕ ZΓ4 with intersection matrix

M =











D2 D.Γ D.Γ1 D.Γ2 D.Γ3 D.Γ4

D.Γ Γ2 Γ.Γ1 Γ.Γ2 Γ.Γ3 Γ.Γ4

D.Γ1 Γ.Γ1 Γ2
1 Γ1.Γ2 Γ1.Γ3 Γ1.Γ4

D.Γ2 Γ.Γ2 Γ1.Γ2 Γ2
2 Γ2.Γ3 Γ2.Γ4

D.Γ3 Γ.Γ3 Γ1.Γ3 Γ2.Γ3 Γ2
3 Γ3.Γ4

D.Γ4 Γ.Γ4 Γ1.Γ4 Γ2.Γ4 Γ3.Γ4 Γ2
4











=











0 1 1 0 0 0
1 −2 0 1 0 0
1 0 −2 0 0 1
0 1 0 −2 1 0
0 0 0 1 −2 0
0 0 1 0 0 −2











has signature (1,5), so by proposition 1.1.24 there exists a K3 surface with Pic S =
ZD ⊕ ZΓ ⊕ ZΓ1 ⊕⊕ZΓ2 ⊕ ZΓ3 ⊕ ZΓ4.

Using Picard-Lefschetz reflections we may assume that L ∼ 4D + 3Γ + 2Γ1 + 2Γ2 +
Γ3 + Γ4 is nef. L nef and Riemann-Roch used on D and Γ1 let us assume that D and Γ1

are effective.
Assume that B ∈ A0(L), with B nef. Let B ∼ xD + yΓ + rΓ1 + sΓ2 + tΓ3 + uΓ4.

Then B must satisfy one of the following

B2 = 0 B.L = 1, 2, 3, or 4

B2 = 2 B.L = 7

Arguing as on page 66 we get:

0 ≤ B.D = y + r ≤ 3

−1 ≤ B.Γ = x − 2y + s ≤ 1

0 ≤ B.Γ1 = x − 2r + u ≤ 2

−1 ≤ B.Γ2 = y − 2s + t ≤ 1

−1 ≤ B.Γ3 = s − 2t ≤ 1

−1 ≤ B.Γ4 = r − 2u ≤ 1
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Solving for x we get

x =
12

17
B.D +

9

17
B.Γ +

8

17
B.Γ1 +

9

17
B.Γ2 +

3

17
B.Γ3 +

4

17
B.Γ4

The inequalities then give −1 ≤ x ≤ 3. Similarly we get 0 ≤ y ≤ 2, 0 ≤ r ≤ 2,
−1 ≤ s ≤ 2, −1 ≤ t ≤ 1, and 0 ≤ u ≤ 1. Then 1 ≤ B.L = 5x + 2r ≤ 7 gives x = 1.

Checking all possible values of y, r, s, t, and v we get B ∼ D, B ∼ D + Γ, B ∼
D+Γ+Γ2, and B ∼ D+Γ+Γ2 +Γ3 as possible solutions. Especially L is of type {3, 0}.

We will now show that, after a change of basis if necessary, we may assume B ∼ D.
If B ∼ D, then there is nothing to show.

If B ∼ D + Γ, then we change the basis of Pic S as follows:

D 7→ D + Γ := D′

Γ 7→ −Γ := Γ′

Γ1 7→ Γ1 := Γ′
1

Γ2 7→ Γ + Γ2 := Γ′
2

Γ3 7→ Γ3 := Γ′
3

Γ4 7→ Γ4 := Γ′
4

We see that L ∼ 4D′ +3Γ′ +2Γ′
1 +2Γ′

2 +Γ′
3 +Γ′

4 and that the new intersection numbers
are equal to the old ones. Hence we may assume that B ∼ D in this case.

If B ∼ D + Γ + Γ2, then we change the basis of Pic S as follows:

D 7→ D + Γ + Γ2 := D′

Γ 7→ −Γ2 := Γ′

Γ1 7→ Γ1 := Γ′
1

Γ2 7→ −Γ := Γ′
2

Γ3 7→ Γ + Γ2 + Γ3 := Γ′
3

Γ4 7→ Γ4 := Γ′
4

We see that L ∼ 4D′ +3Γ′ +2Γ′
1 +2Γ′

2 +Γ′
3 +Γ′

4 and that the new intersection numbers
are equal to the old ones. Hence we may assume that B ∼ D in this case also.

If B ∼ D + Γ + Γ2 + Γ3, then we change the basis of Pic S as follows:

D 7→ D + Γ + Γ2 + Γ3 := D′

Γ 7→ −Γ3 := Γ′

Γ1 7→ Γ1 := Γ′
1

Γ2 7→ −Γ2 := Γ′
2

Γ3 7→ −Γ := Γ′
3

Γ4 7→ Γ4 := Γ′
4

We see that L ∼ 4D′ +3Γ′ +2Γ′
1 +2Γ′

2 +Γ′
3 +Γ′

4 and that the new intersection numbers
are equal to the old ones. Hence we may assume that B ∼ D in this case also.

We will now find RL,D. We will show below that we may assume h0(L − 4D) > 0.
Hence RL,D 6= ∅, since the scroll type (4, 1, 1, 1, 1) is not associated to any polarized K3
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surface of type {3, 0}. Let B ∈ RL,D. Then B.D = 1, B.L = 0, and B2 = −2 gives
B ∼ Γ, B ∼ Γ + Γ2, or B ∼ Γ + Γ2 + Γ3. Since divisors in RL,D are disjoint only one
of the above can be in RL,D. Consequently RL,D consists of only one divisor. We will
show that we may assume this divisor to be Γ. If B ∼ Γ, then there is nothing to show.

If B ∼ Γ + Γ2, then we change the basis of Pic S as follows:

D 7→ D := D′

Γ 7→ Γ + Γ2 := Γ′

Γ1 7→ Γ1 := Γ′
1

Γ2 7→ −Γ2 := Γ′
2

Γ3 7→ Γ2 + Γ3 := Γ′
3

Γ4 7→ Γ4 := Γ′
4

We see that we have 3Γ+2Γ2 +Γ3 = 3Γ′+2Γ′
2 +Γ′

3 and that the new intersection matrix
is equal to the old one. Hence we may assume that B ∼ Γ in this case too.

If B ∼ Γ + Γ2 + Γ3, then we change the basis of Pic S as follows:

D 7→ D := D′

Γ 7→ Γ + Γ2 + Γ3 := Γ′

Γ1 7→ Γ1 := Γ′
1

Γ2 7→ −Γ2 − Γ3 := Γ′
2

Γ3 7→ Γ2 := Γ′
3

Γ4 7→ Γ4 := Γ′
4

We see that we have 3Γ+2Γ2 +Γ3 = 3Γ′+2Γ′
2 +Γ′

3 and that the new intersection matrix
is equal to the old one. Hence we may assume that B ∼ Γ in this case too. Thus we may
assume RL,D = {Γ}.

We will now show that h1(R) = 1. It is enough to show that we are not in case
{3, 0}c, since RL,D consists of only one curve.

If h1(R) = 2 we must be in a case equivalent to configuration (2.24) with N = 0 or
N = 1.15

If we are in a case equivalent to configuration (2.24) with N = 1, then there must

15Since h0(L− 4D) ≥ 0 (this will be shown below) the scroll type must be (4, 2, 2, 0, 0) or (4, 3, 2, 0, 0)
if h1(R) = 2. It will follow from our treatment of these scroll types below that the configuration must
then be as in configuration (2.24). Since rankPic S = 6 we have N = 0 or N = 1.
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exist Γ′, Γ′
1, Γ′

2 and Γ′
3 in Pic S such that

M ′ =











D2 D.Γ D.Γ′
1 D.Γ′

2 D.Γ′
3 D.Γ′

D.Γ Γ2 Γ.Γ′
1 Γ.Γ′

2 Γ.Γ′
3 Γ.Γ′

D.Γ1 Γ.Γ′
1 Γ′2

1 Γ′
1.Γ

′
2 Γ′

1.Γ
′
3 Γ′

1.Γ
′

D.Γ′
2 Γ.Γ′

2 Γ′
1.Γ

′
2 Γ′2

2 Γ′
2.Γ

′
3 Γ′

2.Γ
′

D.Γ′
3 Γ.Γ′

3 Γ′
1.Γ

′
3 Γ′

2.Γ
′
3 Γ′2

3 Γ′
3.Γ

′

D.Γ′ Γ.Γ′ Γ′
1.Γ

′ Γ′
2.Γ

′ Γ′
3.Γ

′ Γ′2











=











0 1 0 0 0 1
1 −2 1 0 0 0
0 1 −2 1 1 0
0 0 1 −2 0 0
0 0 1 0 −2 0
1 0 0 0 0 −2











But we have det(M) = −17 and det(M ′) = −12, which contradicts proposition 1.1.22.
Hence we cannot have N = 1.

If N = 0 there must exist two disjoint curves Γ′
1 and Γ′

2 such that L.Γ′
i = D.Γ′

i = 0,
Γ.Γ′

i = 1, and Γ′2
i = −2 (for i = 1 and 2). Write Γ′

i ∼ xD + yΓ + rΓ1 + sΓ2 + tΓ3 + uΓ4.
Then L.Γ′

i = 0 gives 5x+r = 0, D.Γ′
1 = 0 gives y+r = 0, and Γ.Γ′

i = 1 gives x−2y+s = 1.
Solving for x and substituting into B2 = −2 gives

86x2 + (13 − 9t + u)x + (t2 + u2 − t) = 0.

Viewing this as a quadratic equation in x it has integral solutions only if the discriminant

169 + 110t − 254t2 + 26u − 335u2 − 9(t + u)2

is non-negative. Using a2 ≥ a (for integral a) this gives 0 ≤ 199−144t2−309u2−9(t+u)2,
or 144t2 + 309u2 + 9(t + u)2 ≤ 199. Hence u = 0 and t = 0 or 1. This gives Γ′

i ∼ Γ2 or
Γ′

i ∼ Γ2 + Γ3. Since Γ2.(Γ2 + Γ3) = −1 there cannot exist a Γ′
2 disjoint to Γ′

1. Hence the
case N = 0 is impossible too. Therefore h1(R) = 1.

We will now show that L−4D is effective. D nef and Riemann-Roch gives Γ effective.
We have already seen that Γ1 is effective. Therefore it is enough to show that we may
assume that Γ2, Γ3, and Γ4 is effective.

Since Γ2
2 = −2, Riemann-Roch gives that either Γ2 or −Γ2 is effective. If −Γ2 is

effective, then Γ.(−Γ2) = −1 gives that Γ is a fixed divisor in Γ2. Hence we can write
−Γ2 ∼ Γ + F , where F is effective. But then Γ2.D = 0 gives F.D = −1, a contradiction
since D is nef. Hence Γ2 is effective.

Since Γ2
3 = −2, Riemann-Roch gives that either Γ3 or −Γ3 is effective. If Γ3 is

effective, we are done. If −Γ3 is effective we change the basis of Pic S as follows:

D 7→ D := D′

Γ 7→ Γ := Γ′

Γ1 7→ Γ1 := Γ′
1

Γ2 7→ Γ2 + Γ3 := Γ′
2

Γ3 7→ −Γ3 := Γ′
3

Γ4 7→ Γ4 := Γ′
4
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We see that L ∼ 4D′ +3Γ′ +2Γ′
1 +2Γ′

2 +Γ′
3 +Γ′

4 and that the new intersection numbers
are equal to the old ones. Hence we may assume that Γ3 is effective.16

Since Γ2
4 = −2, Riemann-Roch gives that either Γ4 or −Γ4 is effective. If Γ4 is

effective, there is nothing to show. If −Γ4 is effective, we change the basis of Pic S as
follows:

D 7→ D := D′

Γ 7→ Γ := Γ′

Γ1 7→ Γ1 + Γ4 := Γ′
1

Γ2 7→ Γ2 := Γ′
2

Γ3 7→ Γ3 := Γ′
3

Γ4 7→ −Γ4 := Γ′
4

We see that L ∼ 4D′ +3Γ′ +2Γ′
1 +2Γ′

2 +Γ′
3 +Γ′

4 and that the new intersection numbers
are equal to the old ones. Hence we may assume that Γ4 is effective.17

Hence we have h0(L − 4D) > 0 and h1(R) = 1. The associated scroll type must be
(4, 2, 1, 1, 0).

2.1.6 (3, 2, 2, 1, 0)

This scroll type is possible with many different configurations. Due to the expense of
paper and the patience of the reader we will concentrate on the most general ones; which
are those that give 16-dimensional families of K3 surfaces.

We must be in case {3, 0}a. Hence ∆′ = Γ, where RL,D = {Γ}. We can write
A′ ∼ D + B0, where h0(B0) = 1.

Γ.L = 0 gives Γ.B0 = −1. Hence we can write B0 ∼ Γ + B1 with B1 effective,
D.B1 = 3,Γ.B1 = 1, B2

1 = −4, and L.B1 = 7.

There must exist a smooth rational curve Γ1 ≤ B1 such that Γ1.Γ = 1. Write
B1 ∼ Γ1 + B2, with B2 effective. Then Γ.B2 = 0.

Note that D.Γ1 = 3 does not occur. For then we have −2 = 2Γ1.B2 + B2
2 , B2.D = 0,

and L.B2 = Γ1.B2 + B2
2 ≥ 0, which gives B2

2 ≥ 0. This contradicts h0(B0) = 1. In
particular D.B2 6= 0.

We will now show that rankPicS ≥ 4. Since D, Γ, and Γ1 are linearly independent
rankPicS < 4 only if we can write B2 ∼ nΓ + n1Γ1 + n2D (n, n1, n2 ∈ Q). We have
0 ≤ Γ1.L ≤ 7 and 0 ≤ Γ1.D ≤ 2. Fixing a = Γ1.L and b = Γ1.D the three equations
Γ.B2 = 0, Γ1.L = a, and L.B2 = 7− a give three linearly independent equations that we
can solve for n, n1 and n2. For all possibilities of a and b we get B2 /∈ 2Z, a contradiction.
For example if a = b = 0 we get n = 3

5 , n1 = 7
5 , and n2 = 7

5 . This gives B2 = 28
25 . Hence

rankPicS ≥ 4.

We may assume that there exists a smooth rational curve Γ2 (not equal to Γ or Γ1)
such that D.Γ2 > 0 and Γ2 < B2.

16Note that we still have Γ2 effective after the change of basis, for our proof of Γ2 being effective still
holds after the base change.

17Note that we may still assume that Γ′

1 is effective, since L.Γ′

1 = 1.
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If Γ1.B2 > 0 we only get configurations which have rankPic S > 4, such as:

(2.12) Γ2 D

AA
AA

AA
AA

Γ

Γ3 Γ1

with L ∼ 3D + Γ1 + Γ2 + Γ3 + 2Γ.
Hence we are only interested in the case where Γ1.B2 = 0. In this case too we have

many possible configurations. Most of these with rankPic S > 4, such as

(2.13) Γ D

~~
~~

~~
~~

@@
@@

@@
@@

Γ3 · · · Γ2N+1

Γ1 Γ2 · · · Γ2N

with L ∼ 3D + Γ1 + · · · + ΓN+1 + 2Γ.
If there exists a smooth rational curve Γ3 ≤ B2 distinct from Γ,Γ1, and Γ2 one

can show that D,Γ,Γ1,Γ2, and Γ3 are linearly independent so rankPicS ≥ 5. When
rankPic S = 4 we may thus assume B2 ∼ nΓ + n1Γ1 + n2Γ2 for non-negative integers
n, n1, and n2. We got four cases to consider

i) Γ1.Γ2 = Γ.Γ2 = 0. Since Γ1.B2 = Γ.B2 = 0 we get n = n1 = 0 and n2 = 1.

ii) Γ1.Γ2 = 0 and Γ.Γ2 = 1. From Γ1.B2 = Γ.B2 = 0 we get n = 2n1 and n1 +n2 = n.
Then B2

2 = −2 gives n1 = 1/8. A contradiction.

iii) Γ1.Γ2 = 1 and Γ.Γ2 = 0. This is symmetrical to case ii).
iv) Γ1.Γ2 = Γ.Γ2 = 1. Since Γ1.B2 = Γ.B2 = 0 we get n = n1 = n2. But then

B2
2 = −2 gives −2 = (nΓ + n1Γ1 + n2Γ2)

2 = 0. A contradiction.

Hence we have B2 ∼ Γ2, with Γ1.Γ2 = Γ.Γ2 = 0. Since D.Γ1 equals 0, 1, or 2 we get
the following possible configurations (all with L ∼ 3D + Γ1 + Γ2 + 2Γ):

D Γ

Γ2 Γ1

(2.14)

D

BB
BB

BB
BB

Γ

Γ2 Γ1

(2.15)

D

BB
BB

BB
BB

BB
BB

BB
BB

Γ

Γ2 Γ1

(2.16)

Note that configuration (2.14) gives an example of a perfect Clifford divisor where
(A,∆) is not well-behaved. For if (A,∆) was well-behaved, then we would have ∆ ′ =
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∆ = Γ. But we see that Γ1.(L − D − Γ) = −1, so Γ1 is fixed in L − D − Γ. Hence
Γ + Γ1 ≤ ∆, and we cannot have ∆′ = ∆.18

We will now show that there exists a 16-dimensional family of polarized K3 surfaces
(S,L) with configuration (2.14) and associated scroll type (3, 2, 2, 1, 0).

The lattice ZD ⊕ ZΓ ⊕ ZΓ1 ⊕ ZΓ2 with intersection matrix







D2 D.Γ D.Γ1 D.Γ2

D.Γ Γ2 Γ.Γ1 Γ.Γ2

D.Γ1 Γ.Γ1 Γ2
1 Γ1.Γ2

D.Γ2 Γ.Γ1 Γ1.Γ2 Γ2
2







=







0 1 0 3
1 −2 1 0
0 1 −2 0
3 0 0 −2







has signature (1,3), so by proposition 1.1.24 there exists a K3 surface with Pic S =
ZD ⊕ ZΓ ⊕ ZΓ1 ⊕ ZΓ2.

Using Picard-Lefschetz reflections we may assume that L ∼ 3D +Γ1 +Γ2 +2Γ is nef.
L nef and Riemann-Roch used on D and Γ2 let us assume D and Γ2 effective. Likewise
we see that Γ or −Γ, resp. Γ1 or −Γ1, is effective.

We will now show that L is base point free and of type {3, 0}. Assume B ∼ xD +
yΓ + zΓ1 + wΓ2 ∈ A0(L).

Arguing as on page 66 we get:

−1 ≤ Γ.B = x − 2y + z ≤ 1

−1 ≤ Γ1.B = y − 2z ≤ 1

0 ≤ Γ2.B = 3x − 2w ≤ 4

0 ≤ D.B = y + 3w ≤ 3

A case by case analysis shows that the only integral solutions are B ∼ D, B ∼ D + Γ,
and B ∼ D +Γ +Γ1. Hence c = 3. After a change of basis as on the pages 71 and 71 we
may assume that B ∼ D. Hence we may assume that D is a perfect Clifford divisor. D
is nef and Riemann-Roch used on Γ let us assume Γ effective. After another change of
basis if necessary we may assume that Γ1 is effective (see page 67).

It remains to determine the scroll type given by D. First we find RL,D. Let B ∈ RL,D.
Then B.D = 1, B.L = 0, and B2 = −2 give B ∼ Γ. Hence RL,D = {Γ}. The scroll type
must be (3, 2, 2, 1, 0), (3, 3, 1, 1, 0), or (4, 2, 1, 1, 0), since h0(L−3D) = h0(Γ1 +Γ2+2Γ) >
0. We have shown that (4, 2, 1, 1, 0) is only possible with rankPicS > 4. We will show
the same for the scroll type (3, 3, 1, 1, 0) below. Hence the associated scroll type is
(3, 2, 2, 1, 0).

2.1.7 (3, 3, 1, 1, 0)

We must be in case {3, 0}a. Thus we can write L ∼ 3D + B0 + Γ, where A′ ∼ D + B0.
L.Γ = 0 gives Γ.B0 = −1. Hence we can write B0 ∼ Γ + B1, where B1.Γ = 1, B1.D = 3,
B1.L = 7, and B2

1 = −4.

18In fact we have A ∼ D + Γ + Γ2 = A′ − Γ1 and ∆ = Γ + Γ1 = ∆′ + Γ1.
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We have h0(L−3D) = h0(2Γ+B1) = 2. Γ is fixed in 2Γ+B1, since Γ.(2Γ+B1) = −3.
Furthermore Γ is fixed in Γ + B1, since Γ.(Γ + B1) = −1. Consequently 2Γ is fixed in
2Γ + B1. Therefore h0(B1) = 2.

Assume that we can write B1 ∼ nΓ+n1F +n2G+n3H, where F , G, and H are prime
divisors on S such that F 2, G2, and H2 equals −2 or 0. Using B1.Γ = 1, B1.D = 3,
B1.L = 7, B2

1 = −4, and h0(B1) = 2 we find no solutions with at least one of the ni

equal to zero.19 Hence there exists no solutions with rankPic S < 5.20 When all the ni

are non-zero there exists a solution. Let F 2 = G2 = H2 = −2, then we have the solution
B1 ∼ F + 2G + H, with the following configuration:

(2.17) D

AA
AA

AA
A Γ

F G H

We will now show that this gives rise to a 15-dimensional family of K3-surfaces
associated to the scroll type (3, 3, 1, 1, 0). The lattice ZD ⊕ ZF ⊕ ZG ⊕ ZH ⊕ ZΓ with
intersection matrix









D2 D.F D.G D.H D.Γ
D.F F 2 F.G F.H F.Γ
D.G F.G G2 G.H G.Γ
D.H F.H G.H H2 H.Γ
D.Γ F.Γ G.Γ H.Γ Γ2









=









0 1 1 0 1
1 −2 0 0 1
1 0 −2 2 0
0 0 2 −2 0
1 1 0 0 −2









has signature (1,4), so by proposition 1.1.24 there exists a K3 surface with Pic S =
ZD ⊕ ZF ⊕ ZG ⊕ ZH ⊕ ZΓ.

Using Picard-Lefschetz reflections we may assume that L ∼ 3D + 2Γ + F + 2G + H
is nef. L nef and Riemann-Roch used on D, F , G, and H let us assume that D, F , G,
and H is effective.

We will now show that B ∈ A0(L), with B nef, implies B ∼ D or B ∼ D + Γ. This
will in particular show that L is base point free and of type {3, 0}. Since D.L−D2−2 = 3,
we know that c ≤ 3. Hence B.L ≤ 7. Assume B ∼ xD + yF + zG + uH + vΓ.

Arguing as on page 66 we get:

0 ≤ B.D = y + z + v ≤ 3

0 ≤ B.F = x − 2y + v ≤ 2

0 ≤ B.G = x − 2x + 2u ≤ 2

0 ≤ B.H = 2z − 2u ≤ 2

−1 ≤ B.Γ = x + y − 2v ≤ 1

19This is quite a lot of work. It is not particularly interesting so I will omit the details. Note that
there exists several solutions with h0(B1) = 1. These solutions are associated to other scroll types. In
particular we see that the configurations (2.14), (2.15), (2.16), and (2.18) are solutions to B1.Γ = 1,
B1.D = 3, B1.L = 7, B2

1 = −4, and h0(B1) = 1.
20We may assume that a basis for Pic S consists of prime divisors.
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Adding the inequalities for B.G and B.H we get 0 ≤ x ≤ 4. Rearranging

B2 = −2(y2 + z2 + u2 + v2) + 2x(y + z + v) + 2yv + 4zu ≥ 0,

we get
2(z − u)2 + y2 + v2(y − v)2 ≤ 2x(y + z + v) ≤ 8(y + z + v) ≤ 24,

by the inequality for B.D. Hence there are only finitely many possible values of (y − v),
(z − u), y and v to check. We can reduce the number of cases further by noting that
u ≤ z ≤ u + 1 by the inequality for B.H. A case by case analysis (using 1 ≤ B.L ≤ 7)
gives B ∼ D or B ∼ D + Γ.

If B ∼ D + Γ, then after a change of basis of Pic S, as on page 71, we may assume
that B ∼ D.

Hence we may assume that D is a perfect Clifford divisor. It remains to determine the
scroll type given by D. We have to find RL,D. Let B ∈ RL,D. Then B.D = 1, B.L = 0,
and B2 = −2 gives B ∼ Γ. Then RL,D = {Γ}. Since h0(L − 3D) ≥ h0(F + G) ≥ 2,
the scroll type must be (3, 3, 1, 1, 0) or (4, 2, 1, 1, 0). We have shown that the scroll type
(4, 2, 1, 1, 0) is only possible with rankPicS > 5. Hence the scroll type associated to D
must be (3, 3, 1, 1, 0).

2.1.8 (3, 3, 2, 0, 0)

Let A′ ∼ D + B0, where B0 is effective and h0(B0) = 2. We have h1(R) = 2 so we must
be in case {3, 0}b or {3, 0}c.

{3,0}b Then L ∼ 3D + B0 + Γ1 + Γ2. A′.Γi = 0 gives B0.Γi = −1. Hence we can
write B0 ∼ Γ1 +Γ2 +B1, where B1 is effective, B1.Γi = 1, and B2

1 = 0. Since h0(B1) ≤ 2
and B1 6= 0 we get h0(B1) = 2. In general we have B1 ∼ E, where E is an elliptic curve.
This gives

L ∼ 3D + E + 2Γ1 + 2Γ2,

with the following configuration:

(2.18) D

AA
AA

AA
AA

Γ2

Γ1 E

As an example of a less general configuration, where B1 is not an elliptic curve, we
take

L ∼ 3D + 2Γ1 + 2Γ2 + Γ3 + · · · + Γ2N+1,

with the following configuration:

(2.19) D

AA
AA

AA
AA

Γ2 Γ5 · · · Γ2N+1

Γ1 Γ3

}}}}}}}}

Γ4 · · · Γ2N
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{3,0}c Then L ∼ 3D+B0+2Γ0+. . .+2ΓN +ΓN+1+ΓN+2. A′.Γi = 0 and A′ ∼ D+B0

give B0.Γ0 = −1 and B0.Γi = 0 for i > 0. Hence we can write B0 ∼ Γ0 + B1, where B1

is effective, D.B1 = 2, B1Γ0 = 1, and B1.Γi = −Γ0.Γi for i > 0.
N = 0. In this case B1.Γ1 = B1.Γ2 = −1, so we can write B1 ∼ Γ1 + Γ2 + B2, where

B2 is effective, B2.D = 2, B2.Γ1 = B2.Γ2 = 1, and B2.Γ0 = −1. Hence we can write
B2 ∼ Γ0 + B3, where B3 is effective, B3.D = 1, B3.Γ1 = B3.Γ2 = 0, B3.Γ

′
0 = 1, and

B2
3 = 0. Since h0(B3) ≤ 2 and B3 6= 0 we get h0(B3) = 2. In general we have B ∼ E,

where E is an elliptic curve. This gives

L ∼ 3D + E + 4Γ0 + 2Γ1 + 2Γ2,

with the following configuration:

(2.20) E

@@
@@

@@
@@

D Γ2

}}
}}

}}
}

Γ0 Γ1

N > 0. In this case B1.Γ1 = −1 and B1.Γi = 0 for i > 1. Arguing as for N = 0 we
get (with E in general an elliptic curve)

L ∼ 3D + E + 3Γ0 + 3Γ1 + 2Γ2 + · · · + 2ΓN + ΓN+1 + ΓN+2,

with the following configuration:

(2.21) D

??
??

??
??

Γ0 Γ1 Γ2 · · · ΓN ΓN+1

E

~~~~~~~~
ΓN+2

We will now show that there exists a 16-dimensional family of polarized K3 surfaces
(S,L) with configuration (2.18) and scroll type (3, 3, 2, 0, 0).

The lattice ZD ⊕ ZE ⊕ ZΓ1 ⊕ ZΓ2 with intersection matrix






D2 D.E D.Γ1 D.Γ2

D.E E2 E.Γ1 E.Γ2

D.Γ1 E.Γ1 Γ2
1 Γ1.Γ2

D.Γ2 E.Γ2 Γ1.Γ2 Γ2
2







=







0 1 1 1
1 0 1 1
1 1 −2 0
1 1 0 −2







has signature (1,3), so by proposition 1.1.24 there exists a K3 surface with Pic S =
ZD ⊕ ZE ⊕ ZΓ1 ⊕ ZΓ2.

Using Picard-Lefschetz reflections we may assume that L ∼ 3D + E + 2Γ1 + 2Γ2 is
nef. L nef and Riemann-Roch used on D and E let us assume D and E effective. We
will now show that L is base point free and of type {3, 0}. To show all this it is enough
to show that there exists no divisor B ∼ xD + yE + zΓ1 + wΓ2 such that

B2 = 0 B.L = 1, 2, 3, or 4

B2 = 2 B.L = 7
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We will now show that there exists no B such that B2 = 0 and B.L = 1. The rest of the
cases can be handled likewise. 1 = B.L = 5x + 7y and 0 = B2 = −2(z2 + w2) + 2(xy +
xz + xw + yz + yw) give 7(z2 + w2) = x − 5x2 + (z + w)(2x + 1). We can without loss
of generality assume |z| ≤ |w|.

|z| ≤ |w| ≤ |x| gives

0 ≤ 7(z2 + w2) = x − 5x2 + (z + w)(2x + 1) ≤ x − 5x2 + (2x2 + 2x) = x + 2|x| − x2

Hence −1 ≤ x ≤ 3. Only x = 3 gives y ∈ Z. But then 7(z2 + w2) = 7(z +w)− 42, which
has no integral solutions.

|z| ≤ |x| ≤ |w| gives 7(z2+w2) ≤ 2x−3x2+3w2. This gives 0 ≤ 4w2+7z2 ≤ 2x−3x2,
so x = 0. But then y /∈ Z.

|x| ≤ |z| ≤ |w| gives 7(z2 + w2) ≤ x − 5x2 + 3z2 + 3w2. This gives 0 ≤ 4(w2 + z2) ≤
x − 5x2, so x = 0. But then y /∈ Z.

We will now show that the scroll type associated to (S,L) is (3, 3, 2, 0, 0). Let B ∼
xD + yE + zΓ1 + wΓ2 be a perfect Clifford divisor on (S,L). Then we have B.L = 5
and B2 = 0. This gives y = 5

7(1 − x) and 7(z2 + w2) = 5(x + z + w) + 2x(z + w) − 5x2.
Solving this in the same way that we handled B2 = 0 and B.L = 1 above we get: B ∼ D,
B ∼ D + Γ1, B ∼ D + Γ2, or B ∼ D + Γ1 + Γ2. Hence L is of type {3, 0}.

We will now show that we may assume B ∼ D. If B ∼ D then there is nothing to
show. If B ∼ D+Γ1, then we change the basis of PicS as on p. 71. The case B ∼ D+Γ2

is symmetric.

If B ∼ D + Γ1 + Γ2, then we change the basis of Pic S as follows

D 7→ D + Γ1 + Γ2 := D′

E 7→ E + Γ1 + Γ2 := E′

Γ1 7→ −Γ1 := Γ′
1

Γ2 7→ −Γ2 := Γ′
2

We easily see that the lattice ZD′ ⊕ ZE′ ⊕ ZΓ′
1 ⊕ ZΓ′

2 has the same intersection matrix
as ZD ⊕ ZE ⊕ ZΓ1 ⊕ ZΓ2, and that L ∼ 3D′ + E′ + 2Γ′

1 + 2Γ′
2. Hence we may assume

B ∼ D in this case too.

We will now show that the associated scroll type is (3, 3, 2, 0, 0). First of all note that
D nef and Riemann-Roch give E,Γ1, and Γ2 effective. Hence h0(L − 3D) ≥ h0(E) ≥ 2.
Since the scroll type (4, 1, 1, 1, 1) is not associated to any polarized K3 surface table 2.2
gives that the associated scroll type must be (3, 3, 1, 1, 0), (4, 2, 1, 1, 0), (3, 3, 2, 0, 0),
(4, 2, 2, 0, 0), or (4, 3, 1, 0, 0). The associated scroll type is not (3, 3, 1, 1, 0) or (4, 2, 1, 1, 0)
since rankPic S = 4. We will show below that the scroll type (4, 3, 1, 0, 0) is not associ-
ated to any perfect Clifford divisor. Hence the scroll type is (4, 2, 2, 0, 0) or (3, 3, 2, 0, 0).
We will show below that the scroll type (4, 2, 2, 0, 0) is possible with rankPic S ≤ 4 only
with configuration (2.22). Taking determinants, proposition 1.1.22 gives that lattice we
are considering does not satisfy configuration (2.22) (compare p. 73). Hence the scroll
type must be (3, 3, 2, 0, 0).
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2.1.9 (4, 2, 2, 0, 0)

Let A′ ∼ 2D +B0, where B0 is effective and h0(B0) = 1. We have h1(R) = 2 so we must
be in case {3, 0}b or {3, 0}c.

{3,0}b Then L ∼ 4D + B0 + Γ1 + Γ2. A′.Γi = 0 gives B0.Γi = −2. Hence we can
write B0 ∼ Γ1 +Γ2 +B1, where B1 is effective with, B1.Γi = 0, B1.D = 1, B1.L = 2 and
B2

1 = −2.

Assume that Γ1 and Γ2 have multiplicity zero in B1. There must exist a smooth
rational curve Γ3 ≤ B1 such that Γ3.D = 1. Write B1 ∼ Γ3 + B2, where B2 is effective.
Then D.B2 = Γ1.B2 = Γ2.B3 = 0. We also have L.Γ3 = 2 + Γ3.B2. Since D is nef and
D.B2 = 0, we see that Γ3 has multiplicity zero in B2. Hence Γ3.B2 ≥ 0. Since L is nef
and L.B1 = 2 we must have L.Γ3 ≤ 2. This gives Γ3.B2 = 0. Since L is numerically
2-connected this gives B2 = 0. Hence we have L ∼ 4D + 2Γ1 + 2Γ2 + Γ3, with the
following configuration:

(2.22) Γ1 D Γ3

Γ2

We now assume that either Γ1 or Γ2 has non-zero multiplicity in B1. Without loss
of generality we may assume that Γ1 has multiplicity at least one in B1. Since D is nef
and D.B1 = 1 we get that Γ1 has multiplicity one in B1 and that Γ2 has multiplicity
zero in B1. Write B1 ∼ Γ1 + B2, where B2 is effective. We have B2.D = B2.Γ2 = 0 and
L.B2 = 2. Since L.Γ1 = 0 we get Γ1.B2 = 2. This gives B2

2 = −4.

Assume that there exists two distinct smooth rational curves, Γ3 and Γ4, in the
support of B2 such that Γ1.Γ3 = Γ1.Γ3 = 1. Write B2 ∼ Γ3 + Γ4 + B3. Then Γi.L =
1 + Γ3.Γ4 + Γi.B3 ≥ 1 (i = 3 or 4). Since L is nef and B2.L = 2 we get Γ3.Γ4 =
Γ3.B3 = Γ4.B3 = 0. We also have D.B3 = Γ1.B3 = Γ2.B3 = 0. Hence B3 = 0, since L is
numerically 2-connected. This gives L ∼ 4D + 3Γ1 + 2Γ2 + Γ3 + Γ4, with the following
configuration:21

(2.23) D Γ1 Γ3

Γ2 Γ4

Assume that there only exists one smooth rational curve Γ3 in the support of B2

such that Γ1.Γ3 = 1. Then Γ3 has multiplicity two in B2. Write B2 ∼ 2Γ3 + B3. Then
D.B3 = Γ1.B3 = Γ2.B3 = 0. Furthermore 0 ≤ L.Γ3 = −1 + Γ3.B3 ≤ 2, 0 ≤ L.B3 =
Γ3.B3 + B2

3 ≤ 2, and L.B2 = 3Γ3.B3 + B2
3 − 2 = 4. We see that Γ3.B3 = 0 contradicts

L.Γ3 ≥ 0. Hence B3 6= 0. Since h0(B3) = 1 we then get B2
3 ≤ −2. To satisfy the

conditions given by L.Γ3, L.B3, and L.B2 we must then have Γ3.B3 = 2 and B3 = −2.

21We see that this is yet another example of a situation where (A, ∆) is not well-behaved. We have
∆ = Γ1 + Γ2 + Γ3 + Γ4 but ∆′ = Γ1 + Γ2.
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But Γ3.B3 = 2 and B2
2 = −4 give −4 = B2

2 = (2Γ3 + B3)
2 = −2, a contradiction. Hence

this case is impossible, and {3,0}b is only possible with the configurations (2.22) and
(2.23).

{3,0}c We have L ∼ 4D + B0 + 2Γ0 + . . . + 2ΓN + ΓN+1 + ΓN+2. A′.Γ0 = 0 gives
B0.Γ0 = −2. Hence we can write B0 = Γ0 + b1, with b1 effective. Then Γ1.L = 0 gives
b1.Γ1 = −1. Iterating we find that we can write B0 = Γ0 + · · · + ΓN + bN , where bN is
effective and ΓN+1.bN = ΓN+2.bN = −1. Hence we can write B0 = Γ0+· · ·+ΓN+2+bN+1,
with bN+1 effective. Then L.ΓN = 0 gives ΓN .bN+1 = −1. Hence we can write B0 =
Γ0 + · · · + ΓN−1 + 2ΓN + ΓN+1 + ΓN+2 + b′1. Then ΓN−1.L = 0 gives ΓN−1.b1 = −1.
Iterating we find that we can write B0 = 2Γ0 + · · ·+2ΓN +ΓN+1 +ΓN+2 +b′N = ∆′+b′N ,
where b′N is effective. We easily see that Γi.b

′
N = 0 (for 0 ≤ i ≤ N + 2), D.b′N = 1,

L.b′N = 2 and b′2N = −2. Set B1 := b′N .
Let Γ′ ≤ B1 be a smooth rational curve such that Γ′.D = 1. Write B1 = Γ′ + B2,

where B2 is effective. Then D.B2 = 0. We have L.Γ′ = 2 + 2∆′.Γ′ + B2.Γ
′ ≥ 0 and

L.B2 = B2
2 + 2∆′.B2 + B2.Γ

′ ≥ 0.

Suppose that ∆′.Γ′ < 0. Then by iterating as above we get ∆′ < B1, a contradiction
since D.B1 = 1. If ∆′.B2 < 0 we get that ∆′ < B2, also a contradiction. Since
∆′.B1 = ∆′.Γ′ + ∆′.B2 = 0, we thus have ∆′.Γ′ = ∆′.B2 = 0.

Since B2
2 ≤ 0, B2.Γ

′ ≥ 0, and L.Γ′ + L.B2 = 2 we get B2
2 = B2.Γ

′ = 0. Since L is
numerically 2-connected this gives B2 = 0.

Hence we have L ∼ 4D + 4Γ0 + · · · 4ΓN + 2ΓN+1 + 2ΓN+2 + Γ′ = 4D + 2∆′ + Γ′ with
the following configuration:

(2.24) D Γ0 · · · ΓN ΓN+1

Γ′ ΓN+2

We will now show that there exists a 16-dimensional family of polarized K3 surfaces
(S,L) with configuration (2.22) and associated scroll type (4, 2, 2, 0, 0).

The lattice ZD ⊕ ZΓ1 ⊕ ZΓ2 ⊕ ZΓ3 with intersection matrix







D2 D.Γ1 D.Γ2 D.Γ3

D.Γ1 Γ2
1 Γ1.Γ2 Γ1.Γ3

D.Γ2 Γ1.Γ2 Γ2
2 Γ2.Γ3

D.Γ3 Γ1.Γ3 Γ2.Γ3 Γ2
3







=







0 1 1 1
1 −2 0 0
1 0 −2 0
1 0 0 −2







has signature (1,3), so by proposition 1.1.24 there exists a K3 surface with Pic S =
ZD ⊕ ZΓ1 ⊕ ZΓ2 ⊕ ZΓ3.

Using Picard-Lefschetz reflections we may assume that L ∼ 4D + 2Γ1 + 2Γ2 + Γ3 is
nef. L nef and Riemann-Roch used on D and Γ3 let us assume D and Γ3 are effective.

Assume that B ∈ A0(L), with B nef. Let B ∼ xD + yΓ1 + zΓ2 + wΓ3. Then by
arguing as on page 66 we have that

0 ≤ Γ3.B = x − 2w ≤ 1
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Hence w = bx/2c. From B.L = 5x + 2w we then get B.L = 6x (x even) or B.L =
6x − 1 (x odd). Hence B.L is congruent 0 or −1 modulo 6. This gives B.L = 5, since
D.L − D2 − 2 = 3 and c ≤ 3. Then we must have x = 1, w = 0, and B2 = 0. B2 = 0 is
equivalent to y(y − 1) = z(z − 1). Hence we find B ∼ D, B ∼ D + Γ1, B ∼ D + Γ2, or
B ∼ D + Γ1 + Γ2. By changing the basis of Pic S if necessary, as on pages 71 and 80 we
may assume that B ∼ D.

D nef and Riemann-Roch used on Γ1 and Γ2 let us assume Γ1 and Γ2 effective. Hence
h0(L−4D) > 0. Thus the associated scroll type is (4, 1, 1, 1, 1), (4, 2, 1, 1, 0), (4, 2, 2, 0, 0),
or (4, 3, 1, 0, 0). We have already shown that (4, 1, 1, 1) is impossible and will show
below that (4, 3, 1, 0, 0) is impossible. Hence the associated scroll type is (4, 2, 1, 1, 0) or
(4, 2, 2, 0, 0). Since rankPic S = 4 the associated scroll type is (4, 2, 2, 0, 0).

2.1.10 (4, 3, 1, 0, 0)

Reasoning as for the scroll type (4, 2, 2, 0, 0), we see that we must be in one of the cases
given by configurations (2.22)-(2.24). We will show that none of these configurations
have (4, 3, 1, 0, 0) as an associated scroll type. We will do this by showing that none of
these configurations satisfy h0(L − 3D) = 3, which we must have if the associated scroll
type is (4, 3, 1, 0, 0), since then d3 = 2 and d4 = 1.

Assume that we have L ∼ 4D + 2Γ1 + 2Γ2 + Γ3, with configuration (2.22). Then
L − 3D ∼ D + 2Γ1 + 2Γ2 + Γ3, where h0(D) = 2. Γ3 is fixed in L − 3D, since Γ3.(L −
3D) = −1. Hence h0(L − 3D) = h0(L − 3D − Γ3). Γ2 is fixed in L − 3D − Γ3, since
Γ2.L−3D−Γ3 = −1. Consequently h0(L−3D−Γ3) = h0(L−3D−Γ3−Γ2). Continuing
this way we get

h0(L − 3D) = h0(L − 3D − Γ3)

= h0(L − 3D − Γ3 − Γ2)

= h0(L − 3D − Γ3 − 2Γ2)

= h0(L − 3D − Γ3 − 2Γ2 − Γ1)

= h0(L − 3D − Γ3 − 2Γ2 − 2Γ1)

= h0(D)

= 2.

Hence the scroll type cannot be (4, 3, 1, 0, 0).

Reasoning in the same way for the configurations (2.23) and (2.24) we see that h0(L−
3D) = 2 in these cases too. Hence the scroll type (4, 3, 1, 0, 0) is not associated to any
perfect Clifford divisor D.

2.2 c = 3, D2 = 2

We have D.L = 7, d = 6, and f = h0(L − D) = 7. Since L.(L − 4D) = −6 and L is
nef, we see that h0(L − 4D) = 0. By proposition 1.3.12 we get h1(R) = 0. Hence ∆ = 0
and by Riemann-Roch h0(L − 2D) = 3. Since d2 ≥ d3, this gives h0(L − 3D) = 0 or
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1. L.(3D − L) = −1 < 0 and L nef gives h0(3D − L) = 0. Then Riemann-Roch gives
h0(L − 3D) = 1. So the only possible scroll type is the one given in table 2.3.

Table 2.3: Possible scroll types associated to L of type {3, 2}.

d0 d1 d2 d3 scroll type

6 4 2 1 (3, 2, 1, 1, 0, 0)

2.2.1 (3, 2, 1, 1, 0, 0)

In this case h0(R) = 0, so ∆ = 0. Write L ∼ 3D + B0, where B0 is a sum of smooth
rational curves and satisfies h0(B0) = 1.

Easy computations give D.B0 = 1, B2
0 = −2, and L.B0 = 1. Hence there exists a

smooth rational curve Γ such that D.Γ > 0. If D.Γ > 1 then there has to exist a smooth
rational curve such that D.Γ′ < 0, a contradiction since D is nef. Hence D.Γ = 1. Since
Γ /∈ RL,D, we have L.Γ > 0. By the same argument as for D.Γ we get L.Γ = 1.

Write B0 ∼ Γ + B1, with B1 effective. Then B1.D = 0. Since L.Γ = 1 we get
B1.Γ = 0. Then B1 = 0 since L is numerically 2-connected. Hence we have

L ∼ 3D + Γ,

with the following configuration

(2.25) D Γ

We will now show that there exists an 18-dimensional family of polarized K3 surfaces
(S,L) with this configuration and scroll type (3, 2, 1, 1, 0, 0).

The lattice ZD ⊕ ZΓ with intersection matrix

[
D2 D.Γ
D.L Γ2

]

=

[
2 1
1 −2

]

has signature (1,1), so by proposition 1.1.24 there exists an 18-dimensional family of K3
surfaces with Pic S = ZL ⊕ ZD.

Using Picard-Lefschetz reflections we may assume that L ∼ 3D + Γ, is nef. We will
now show that L is base point free and of type {3, 2}. To show all this it is enough to
show that there exists no divisor B ∼ xD + yΓ such that

B2 = 0 B.L = 1, 2, 3, 4, or 5

since D.(L−D) = 5. B2 = 0 gives 0 = 2x2+xy−y2, which gives B = 0, by lemma 2.0.1.22

Thus L is of type {3, 2}, and therefore the associated scroll type must be (3, 2, 1, 1, 0, 0).

22Alternatively use lemma 1.4.9.



2.3 c = 4, D2 = 0 85

2.3 c = 4, D2 = 0

We have D.L = 6, d = 6, and f = h0(L − D) = 7. Since L.(L − 4D) = −2 and L is nef,
we see that h0(L − 4D) = 0. Proposition 1.3.12 gives h1(R) ≤ 3 and by Riemann-Roch
h0(L − 2D) = h0(R) = 1 + h1(R). This gives the possible scroll types listed in table 2.4.

Table 2.4: Possible scroll types associated to L of type {4, 0}.

d0 d1 d2 d3 scroll type

6 6 1 0 (2, 1, 1, 1, 1, 1)

6 5 2 0 (2, 2, 1, 1, 1, 0)

6 5 1 1 (3, 1, 1, 1, 1, 0)

6 4 3 0 (2, 2, 2, 1, 0, 0)

6 4 2 1 (3, 2, 1, 1, 0, 0)

6 3 3 1 (3, 2, 2, 0, 0, 0)

6 3 2 2 (3, 3, 1, 0, 0, 0)

2.3.1 (2, 1, 1, 1, 1, 1)

We have h1(R) = 0, so ∆ = 0. Furthermore h0(A) = 1, D.A = 6, L.A = 10, and
A2 = −2.23 Let Γ1 be a smooth rational curve in the support of A, such that D.Γ1 > 0.
Write A ∼ Γ1 + A1.

If D.Γ1 = 6, then A1 = 0, since L is numerically 2-connected. Hence we have
L ∼ 2D + Γ1, with the following configuration:

(2.26) D Γ1

This is the only possible configuration with rankPicS = 2. We will now give the
possible configurations which give rankPic S = 3.

If D.Γ1 = 5 and rankPic S = 3, then there exists a smooth rational curve Γ2 such
that D.Γ2 = 1 and Γ2 ∼ A1. Since A2 = −2 we must have Γ1.Γ2 = 1. This gives
L ∼ 2D + Γ1 + Γ2, with the following configuration

(2.27) D Γ1

}}
}}

}}
}

Γ2

If D.Γ1 = 4 and rankPic S = 3, then there exists a smooth rational curve Γ2 such
that either D.Γ2 = 2 and Γ2 ∼ A1 or D.Γ2 = 1 and 2Γ2 ∼ A1. Since A2 = −2 we

23Remember that since h1(R) = 0 we can write A′ = A.
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must have Γ2 ∼ A1 and Γ1.Γ2 = 1. This gives L ∼ 2D + Γ1 + Γ2, with the following
configuration

(2.28) D Γ1

}}
}}

}}
}

Γ2

If D.Γ1 = 3 and rankPic S = 3, then there exists a smooth rational curve Γ2 such
that D.Γ2 = 3, Γ2 ∼ A1, and Γ1.Γ2 = 1 since A2 = −2. This gives L ∼ 2D + Γ1 + Γ2,
with the following configuration

(2.29) D Γ1

}}
}}

}}
}

Γ2

If D.Γ1 ≤ 2 and rankPic S = 3, then there exists a smooth rational curve Γ2 such
that D.Γ2 ≥ 4, and we are in one of the cases already considered.

There also exists configurations which only are possible with rankPicS > 3. As an
example take L ∼ 2D + Γ1 + · · · + Γ2N+1, with the following configuration

(2.30) D

FF
FF

FF
FFF

Γ1 Γ3 · · · Γ2N−1

Γ2N+1 Γ2 Γ4 · · · Γ2N

We will now show that there exists an 18-dimensional family of polarized K3 sur-
faces (S,L) of the type given by configuration (2.26), that has a perfect Clifford divisor
associated to the scroll type (2, 1, 1, 1, 1, 1).

The lattice ZL ⊕ ZD with intersection matrix
[

L2 L.D
D.L D2

]

=

[
22 6
6 0

]

has signature (1,1), so by proposition 1.1.24 there exists a K3 surface with Pic S =
ZL ⊕ ZD.

Using Picard-Lefschetz reflections we may assume that L is nef. We will now show
that L is base point free and is of type {4, 0}. It is enough to show that there exists no
divisor B such that

B2 = 0 B.L = 1, 2, 3, 4, or 5

B2 = 2 B.L = 7 or 8

B2 = 4 B.L = 10

This is immediate from lemma 1.4.9.24

24Alternatively use lemma 2.0.1.
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We will see below that if the scroll type associated to a perfect Clifford divisor D ′

of type {4, 0} is not (2, 1, 1, 1, 1, 1), then rankPic S > 2. Hence the scroll type must be
(2, 1, 1, 1, 1, 1).

2.3.2 (2, 2, 1, 1, 1, 0)

We must be in the situation {4, 0}a. Hence ∆′ = Γ, RL,D = {Γ}, A′2 = 0, D.A′ = 5, and
L ∼ 2D + A′ + Γ. In general A′ is an elliptic curve E. We then have L ∼ 2D + E + Γ,
with the following configuration:

(2.31) D E

Γ

We will now show that there exists a 17-dimensional family of polarized K3 surfaces
(S,L), with this scroll type.

The lattice ZD ⊕ ZE ⊕ ZΓ with intersection matrix




D2 D.E D.Γ
D.E E2 E.Γ
D.Γ E.Γ Γ2



 =





0 5 1
5 0 0
1 0 −2





has signature (1,2), so by proposition 1.1.24 there exists a K3 surface with Pic S =
ZD ⊕ ZE ⊕ ZΓ.

Using Picard-Lefschetz reflections we may assume that L ∼ 2D + E + Γ is nef. We
will now show that B ∈ A0(L), with B nef, implies B ∼ D or V ∼ D + Γ. This will
in particular show that L is base point free and of type {4, 0}. Let B ∈ A0(L), with
B ∼ xD + yE + zΓ. Since D satisfies D.L − D2 − 2 = 4 we must have c ≤ 4. Hence B
must satisfy one of the following

B2 = 0 B.L = 1, 2, 3, 4, 5, or 6

B2 = 2 B.L = 7 or 8

B2 = 4 B.L = 10

We have B.L = 6x + 10y ≡ 0 (mod 2). If B.L = 2 and B2 = 0, then we get
y = (1 − 3x)/5 and z2 − 2xz + (3x2 − x) = 0. Considering this last equation as a
polynomial of degree two in the variable z, we see that it has a real solution if and only
if the discriminant 4x2 − 12x2 + 4x is larger than or equal to zero. This gives x = 0, but
then y = 1/5, a contradiction. The other cases are treated similarly. The only solutions
are B ∼ D and B ∼ D + Γ. By changing the basis of Pic S if necessary (as on p. 71) we
may assume that D is a perfect Clifford divisor.

We will now show that RL,D ⊆ {Γ}. Let B ∼ xD + yE + zΓ be a divisor in RL,D.
Then B.L = 0 gives x = − 5

3y and B.D = 1 gives z = 1 − 5y. Substituting this into
B2 = −2 we get y = 0 or y = 2/5. y = 1 gives B ∼ Γ and y = 2/5 is impossible, hence
RL,D ⊆ {Γ}.
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We will now show that h1(R) = 1. We first show h1(R) ≤ 1. If h1(R) > 1, then
(h1(R) − 1)Γ must be fixed in D + E, i.e. h0(D + E) = h0(D + E − (h1(R) − 1)Γ). We
assume h1(R) > 1. Then

h1(D + E − (h1(R) − 1)Γ) 6= 0

by Riemann-Roch. But we also have A ∼ D + E − (h1(R) − 1)Γ and may assume
h1(A) = 0,25 a contradiction. Hence h1(R) ≤ 1. L nef and Riemann-Roch give E
effective. Hence h0(L − 2D) ≥ h0(E) ≥ 2. Table 2.4 then gives h1(R) = 1.

We will show below that the scroll type (3, 1, 1, 1, 1, 0) is only associated to K3 surfaces
with rankPicS > 3. Hence the scroll type associated to D must be (2, 2, 1, 1, 1, 0).

2.3.3 (3, 1, 1, 1, 1, 0)

We must be in case {4, 0}a. Hence ∆′ = Γ, RL,D = {Γ}, A′2 = 0, and D.A′ = 5. Hence
we have L ∼ 2D + A′ + Γ. Since h0(L − 3D) = 1, we can write A′ ∼ D + B0, where
h0(B0) = 1, D.B0 = 5, L.B1 = 4, and B2

0 = −10. Γ.A′ = 0 gives Γ.B0 = −1, so we can
write B0 ∼ Γ + B1, where h0(B1) = 1, D.B1 = L.B1 = 4, Γ.B1 = 1, and B2

1 = −10.
There must exist a smooth rational curve Γ1 in the support of B1 such that Γ.Γ1 = 1.

We will now give all26 possible configurations such that rankPic S ≤ 4. Since D,
Γ1, and Γ are linearly independent we get rankPicS ≥ 3. We can show that B1 must
contain another smooth rational curve Γ2. Then one can show that D, Γ, Γ1, and Γ2 are
linearly independent. If rankPic S = 4 we can write

B1 ∼ n1Γ1 + n2Γ2 + n3Γ + n4D,

where ni ∈ Z. Arguing as on p. 74 we get only one possibility with rankPicS = 4:
L ∼ 3D + Γ1 + 2Γ2 + 2Γ, with the following configuration:27

(2.32) D Γ

Γ2 Γ1

We will now show that there exists a 16-dimensional family of polarized K3 surfaces
(S,L) with configuration (2.32) and associated scroll type (3, 1, 1, 1, 1, 0).

The lattice ZD ⊕ ZΓ1 ⊕ ZΓ2 ⊕ ZΓ with intersection matrix






D2 D.Γ1 D.Γ2 D.Γ
D.Γ1 Γ2

1 Γ1.Γ2 Γ1.Γ
D.Γ2 Γ1.Γ2 Γ2

2 Γ2.Γ
D.Γ Γ1.Γ Γ2.Γ Γ2







=







0 0 2 1
0 −2 0 1
2 1 −2 0
1 1 0 −2







25By [JK01, section 6] there exists a perfect Clifford divisor with h1(A) = 0. We have seen that the
only possible perfect Clifford divisors are D and D + Γ. We may change the basis of Pic S, if necessary,
such that D is the perfect Clifford divisor with h1(A) = 0.

26Actually there exists only one.
27This is yet another example of a situation where (A, ∆) is not well-behaved. We have ∆ = Γ + Γ1

but ∆′ = Γ.
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has signature (1,3), so by proposition 1.1.24 there exists a K3 surface with PicS =
ZD ⊕ ZΓ1 ⊕ ZΓ2 ⊕ ZΓ.

Using Picard-Lefschetz reflections we may assume that L ∼ 3D + Γ1 + 2Γ2 + 2Γ is
nef. L nef and Riemann-Roch used on D and Γ2 let us assume D and Γ2 effective.

We will now assume that B ∼ xD + yΓ1 + zΓ2 + wΓ is a perfect Clifford divisor.
Since D satisfies D.L−D2− 2 = 4 we must have c ≤ 4. Hence B must satisfy one of the
following

B2 = 0 B.L = 1, 2, 3, 4, 5, or 6

B2 = 2 B.L = 7 or 8

B2 = 4 B.L = 10

Arguing as on page 66 we get:28

−1 ≤ Γ.B = x + y − 2w ≤ 1

−1 ≤ Γ1.B = −2y + w ≤ 1

0 ≤ Γ2.B = 2x + y − 2z ≤ 2

We also have 1 ≤ B.L = 6x + 2z ≤ 10. Since x and z are integers this gives 2 ≤ B.L =
6x + 2z ≤ 10. Solving for x we have

x =
1

25
Γ.B +

3

25
Γ2.B +

3

25
B.L +

2

25
Γ1.B.

The inequalities then give
3

25
≤ x ≤

39

25
,

so x = 1. Similarly we get 0 ≤ y ≤ 1, 0 ≤ z ≤ 1, and −1 ≤ w ≤ 1. Checking all
the possibilities gives B ∼ D, B ∼ D + Γ, or B ∼ D + Γ + Γ1. Changing the basis, if
necessary, we may assume that B ∼ D.

D nef and Riemann-Roch used on Γ give Γ effective. After another change of basis, if
necessary, we may assume that Γ1 is effective also. Thus h0(L−3D) = h0(Γ1+2Γ2+2Γ) ≥
1. We will show below that the other possible scroll types with h0(L − 3D) ≥ 1 have
rankPic S > 4. Hence the associated scroll type is (3, 1, 1, 1, 1, 0).

2.3.4 (2, 2, 2, 1, 0, 0)

L must be of type {4, 0}b or {4, 0}c. We will only consider type {4, 0}b, since this is the
most general case. We have

L ∼ 2D + A′ + Γ1 + Γ2,

28Here we have to consider c = 4, which we did not have to do on page 66. Thus we no longer
automatically have h0(L − B − D) ≥ 2. (For example if B2 = 4, B.L = 10, and B.D ≤ 2 then
(L − B − D)2 < 0.) For H = Γ, Γ1, and Γ2 our argument still holds.



90 Projective Models of Polarized K3 Surfaces of Genus 12

where A′ satisfies h0(A′) = 3 and h1(A′) = 0. In general A′ will be an irreducible curve
of genus 2. We have the following configuration:

(2.33) D A′

Γ1 Γ2

AAAAAAAA

We will show that there exists a 16-dimensional family of polarized K3-surfaces (S,L),
with this scroll type.

The lattice ZD ⊕ ZA′ ⊕ ZΓ1 ⊕ ZΓ2 with intersection matrix







D2 D.A′ D.Γ1 D.Γ2

D.A′ A′2 A′.Γ1 A′.Γ2

A′.Γ1 A′.Γ1 Γ2
1 Γ1.Γ2

D.Γ2 A′.Γ2 Γ1.Γ2 Γ2
2







=







0 4 1 1
4 2 0 0
1 0 −2 0
1 0 0 −2







has signature (1,3), so by proposition 1.1.24 there exists a K3 surface with Pic S =
ZD ⊕ ZA′ ⊕ ZΓ1 ⊕ ZΓ2.

Using Picard-Lefschetz reflections we may assume that L ∼ 2D +A′ +Γ1 +Γ2 is nef.
L is nef and Riemann-Roch used on D and A′ let us assume D and A′ effective.

We will now assume that B ∼ xD + yΓ1 + zΓ2 + wA′ is a perfect Clifford divisor.
Since D satisfies D.L−D2− 2 = 4 we must have c ≤ 4. Hence B must satisfy one of the
following

B2 = 0 B.L = 1, 2, 3, 4, 5, or 6

B2 = 2 B.L = 7 or 8

B2 = 4 B.L = 10

Arguing as we have done several times already we find that we may assume B ∼ D to
be a perfect Clifford divisor (possibly after a change of basis). D nef and Riemann-Roch
gives Γ1 and Γ2 effective. Hence h0(L − 2D) ≥ h0(A′) ≥ 3. Table 2.4 give h1(R) ≥ 2.
We will see below that the other possible scroll types with h1(R) ≥ 2 only arise when
rankPicS ≥ 5. Thus the associated scroll type is (2, 2, 2, 1, 0, 0).

2.3.5 (3, 2, 1, 1, 0, 0)

We must be in case {4, 0}b or {4, 0}c. Once again we will only consider case the {4, 0}b,
since this is the most general case. We have h0(L−3D) = 1, so we can write A′ ∼ D+B0,
where h0(B0) = 1, D.B0 = 4, and B2

0 = −6. From L.Γ1 = 0 we get Γi.B0 = −1 (i = 1
or 2). Hence we can write B0 ∼ Γ1 + Γ2 + B1, where D.B1 = 2, Γ1.B1 = Γ2.B1 = 1, and
B2

1 = −6. Continuing this line of reasoning, as we have done in multiple cases above, we
find that the most general case has L ∼ 3D + 2Γ1 + 2Γ2 + Γ3 + Γ4, with the following
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configuration

(2.34) Γ4 D

}}
}}

}}
}}

Γ1

Γ5 Γ2 Γ3

We will now show that this gives a 14-dimensional family of polarized K3-surfaces
(S,L), associated to the scroll type (3, 2, 1, 1, 0, 0).

The lattice ZD ⊕ ZΓ1 ⊕⊕ZΓ2 ⊕ ZΓ3 ⊕ ZΓ4 ⊕ ZΓ5 with intersection matrix










D2 D.Γ1 D.Γ2 D.Γ3 D.Γ4 D.Γ5

D.Γ1 Γ2
1 Γ1.Γ2 Γ1.Γ3 Γ1.Γ4 Γ1.Γ5

D.Γ2 Γ1.Γ2 Γ2
2 Γ2.Γ3 Γ2.Γ4 Γ2.Γ5

D.Γ3 Γ1.Γ3 Γ2.Γ3 Γ2
3 Γ3.Γ4 Γ3.Γ5

D.Γ4 Γ1.Γ4 Γ2.Γ4 Γ3.Γ4 Γ2
4 Γ4.Γ5

D.Γ5 Γ1.Γ5 Γ2.Γ5 Γ3.Γ5 Γ4.Γ5 Γ2
5











=











0 1 1 0 1 1
1 −2 0 1 0 0
1 0 −2 1 0 0
0 1 1 −2 0 0
1 0 0 0 −2 0
1 0 0 0 0 −2











has signature (1,5), so by proposition 1.1.24 there exists a K3 surface with PicS =
ZD ⊕ ZΓ1 ⊕⊕ZΓ2 ⊕ ZΓ3 ⊕ ZΓ4 ⊕ ZΓ5.

Using Picard-Lefschetz reflections we may assume that L ∼ 3D+2Γ1 +2Γ2 +Γ3 +Γ4

is nef. L nef and Riemann-Roch used on D, Γ3, Γ4, and Γ5 let us assume that D, Γ3,
Γ4, and Γ5 are effective.

We will now assume that B ∼ xD+yΓ1 + zΓ2 +uΓ3 +vΓ4 +wΓ5 is a perfect Clifford
divisor. Since D satisfies D.L − D2 − 2 = 4 we must have c ≤ 4. Hence B must satisfy
one of the following

B2 = 0 B.L = 1, 2, 3, 4, 5, or 6

B2 = 2 B.L = 7 or 8

B2 = 4 B.L = 10

Arguing as on page 66 we get:29

2 ≤ B.L = 6x + 2u + v + w ≤ 10

−1 ≤ Γ1.B = x + u − 2y ≤ 1

−1 ≤ Γ2.B = x + u − 2z ≤ 1

0 ≤ Γ3.B = y + z − 2u ≤ 2

0 ≤ Γ4.B = x − 2v ≤ 1

0 ≤ Γ5.B = x − 2w ≤ 1

29Remember footnote 28.
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The two last inequalities give v = w = bx/2c. Reasoning as on page 89 we get B ∼ D,
B ∼ D + Γ1, B ∼ D + Γ2, or B ∼ D + Γ1 + Γ2. Hence we must be in case {4, 0}. If
B � D then after a change of basis of Pic S, as on page 71, we may assume that B ∼ D.

D nef and Riemann-Roch used on Γ1 and Γ2 let us assume that Γ1 and Γ2 are effective.
We can now show that RL,D = {Γ1,Γ2}. The scroll type must then be (3, 2, 1, 1, 0, 0),
since h0(L − 3D) = h0(2Γ1 + 2Γ2 + Γ3 + Γ4) > 0.

2.3.6 (3, 3, 1, 0, 0, 0)

We will show that this scroll type is not associated to any polarized K3 surface. This
will be done by showing that if L has a perfect Clifford divisor D associated to this scroll
type, then L will violate the Hodge index theorem.

We have h1(R) = 3 and h0(L−3D) = 2. Write A′ ∼ D+B0, with B0 effective. Then
B2

0 = −2. By arguing as for the scroll type (4, 3, 1, 0, 0) we see that 2 = h0(L − 3D) =
h0(B0) in each of the cases {4, 0}d, {4, 0}e, {4, 0}f , {4, 0}g , and {4, 0}h.

{4,0}d We have ∆′ = Γ1 + Γ2 + Γ3. L.Γi = 0 gives B0.Γi = −1. Hence we can write
B0 ∼ Γ1 + Γ2 + Γ3 + B1, where we show as on p. 83 that h0(B1) = 2. Furthermore
B2

1 = −2. Hence h1(B1) 6= 0. By Ramanujam’s lemma we may write B1 ∼ F + G (with
F and G effective) where F.G = 0. Since F 2 ≤ 0,30 G2 ≤ 0 and B2

1 = F 2 + G2 = −2 we
may assume that F 2 = −2 and G2 = 0.

Since L is numerically 2-connected, B1.D = 0, and B1.Γi = 1 (i = 1, 2, 3) we have
two possibilities (up to symmetry):

(A) L ∼ 3D + F + G + 2Γ1 + 2Γ2 + 2Γ3, with the following configuration:

D

AA
AA

AA
AA

Γ1 G

F Γ3 Γ2

~~~~~~~~

Write B ∼ 2D−3G. Then B.L = B2 = 0 and B 6= 0, which contradicts the Hodge index
theorem.

(B) L ∼ 3D + F + G + 2Γ1 + 2Γ2 + 2Γ3, with the following configuration:

D

AA
AA

AA
AA

Γ1 F

G Γ3 Γ2

~~~~~~~~

Write B ∼ D − 3G. Then B.L = B2 = 0 and B 6= 0, which contradicts the Hodge index
theorem.

{4,0}e We have ∆′ = Γ−1 + 2Γ0 + · · · + 2ΓN + ΓN+1 + ΓN+2. L.Γi = 0 gives
B0.Γi = −1 for i = −1 and i = 0. Hence we can write B0 ∼ Γ−1 + Γ0 + B′

1. L.Γ1 = 0
gives B′

1.Γ1 = −1. Hence Γ1 ≤ B′
1. Iterating we get Γ1 + · · · + ΓN+2 ≤ B′

1. Hence we
can write B0 ∼ Γ−1 + · · · + ΓN+2 + B1, with B1 effective. L.ΓN = 0 gives B1.ΓN = −1.

30Since h0(F ) ≤ 2.
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Hence ΓN ≤ B1. Iterating we get Γ1 + · · · + ΓN ≤ B1. Hence we can write B0 ∼
Γ−1 +2Γ1 + · · ·+2ΓN +ΓN+1 +ΓN+2 +B2 = ∆′ +B2, with B2 effective. Then L.Γi = 0
gives B2.Γ−1 = B2.Γ0 = 1 and B2.Γi = 0 (0 < i ≤ N + 2). We also find that h0(B2) = 2
and B2

2 = −2. Hence h1(B1) 6= 0. As above we can write, by Ramanujam’s lemma,
B2 ∼ F + G, with F.G = 0, F 2 = −2, and G2 = 0. As above this gives two possibilities.

(C) L ∼ 3D + F + G + 2∆′, with the following configuration:

Γ−1 D Γ0 · · · ΓN

FFF
FFFFF

ΓN+1

G F ΓN+2

Write B ∼ 2D−3G. Then B.L = B2 = 0 and B 6= 0, which contradicts the Hodge index
theorem.

(D) L ∼ 3D + F + G + 2∆′, with the following configuration:

Γ−1 D Γ0 · · · ΓN

FFF
FFFFF

ΓN+1

F G ΓN+2

Write B ∼ D − 3G. Then B.L = B2 = 0 and B 6= 0, which contradicts the Hodge index
theorem.

{4,0}f We have ∆′ = 3Γ0 + 2Γ1 + 2Γ2 + Γ3 + Γ4. L.Γ0 = 0 gives B0.Γ0 = −1. Hence
we have Γ0 ≤ B0 and B0 ∼ Γ0 + B′

0, with B′
0 effective. Then Γ1.B

′
0 = Γ2.B

′
0 = −1.

Hence we may write B0 ∼ Γ0 + Γ1 + Γ2 + B′′
0 . Then Γ3.B

′′
0 = Γ4.B

′′
0 = −1. Hence we

may write B0 ∼ Γ0 + · · · + Γ4 + B1.
The intersection numbers between the Γi and B1 are equal to the intersection numbers

between the Γi and B0. Hence we may iterate and write B1 ∼ Γ0 + · · · + Γ4 + B2, with
B2 effective. Iterating this procedure n times gives B0 ∼ nΓ0 + · · ·+ nΓ4 + Bn, with Bn

effective, for all n. A contradiction.
{4,0}g and {4,0}h These cases are treated in the same way as {4,0}f .

2.3.7 (3, 2, 2, 0, 0, 0)

We have h1(R) = 3 and h0(L−3D) = 1. Write A′ ∼ D+B0, with B0 effective. We must
be in one of the cases {4, 0}d, {4, 0}e, {4, 0}f , {4, 0}g , or {4, 0}h. We will only consider
the case {4, 0}d since this gives the most general family of K3 surfaces associated to this
scroll type.

{4,0}d We have ∆′ = Γ1 + Γ2 + Γ3. L.Γi = 0 gives B0.Γi = −1. Hence we can write
B0 ∼ Γ1 +Γ2 +Γ3 +B1, where B1 is effective. Then B2

1 = −2, B1.D = 0, B1.L = 4, and
B1.Γi = 1 (i = 1, 2, 3). Note that B1.D = 0 gives that Γi (i = 1, 2, 3) has multiplicity 0
in B1.

There must exist a smooth rational curve Γ4 in the support of B1 such that Γ1.Γ4 = 1.
Write B1 ∼ Γ4 +B2. Then Γ4 has multiplicity 0 in B2, for if it had non-zero multiplicity
then Γ1 would also have non-zero multiplicity, a contradiction. Hence B2.Γ4 ≥ 0.
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If Γ2.Γ4 = Γ3.Γ4 = 1, then L.Γ4 = 4 + B2.Γ4 ≤ 4 gives B2.Γ4 = 0. Then B2 = 0,
since L is numerically 2-connected. This situation gives the most general family of K3
surfaces.

We have L ∼ 3D + 2Γ1 + 2Γ2 + 2Γ3 + Γ4, with the following configuration

(2.35) D

AA
AA

AA
AA

Γ1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Γ2

PPPPPPPPPPPPPPP Γ3

AA
AA

AA
A

Γ4

We will now show that this gives rise to a 15-dimensional family of K3-surfaces
associated to the scroll type (3, 2, 2, 0, 0, 0). The lattice ZD ⊕ ZΓ1 ⊕ ZΓ2 ⊕ ZΓ3 ⊕ ZΓ4

with intersection matrix









D2 D.Γ1 D.Γ2 D.Γ3 D.Γ4

D.Γ1 Γ2
1 Γ1.Γ2 Γ1.Γ3 Γ1.Γ4

D.Γ2 Γ1.Γ2 Γ2
2 Γ2.Γ3 Γ3.Γ4

D.Γ3 Γ1.Γ3 Γ2.Γ3 Γ2
3 Γ3.Γ4

D.Γ4 Γ1.Γ4 Γ2.Γ4 Γ3.Γ4 Γ2
4









=









0 1 1 1 0
1 −2 0 0 1
1 0 −2 0 1
1 0 0 −2 1
0 1 1 1 −2









has signature (1,4), so by proposition 1.1.24 there exists a K3 surface with Pic S =
ZD ⊕ ZΓ1 ⊕ ZΓ2 ⊕ ZΓ3 ⊕ ZΓ4.

Using Picard-Lefschetz reflections we may assume that L ∼ 3D+2Γ1+2Γ2+2Γ3+Γ4 is
nef. L nef and Riemann-Roch used on D and Γ4 let us assume that D and Γ4 is effective.

Assume that B ∈ A0(L), with B nef. Write B ∼ xD + yΓ1 + zΓ2 + vΓ3 +wΓ4. Then
B must satisfy one of the following

B2 = 0 B.L = 1, 2, 3, 4, 5, or 6

B2 = 2 B.L = 7 or 8

B2 = 4 B.L = 10

Arguing as we have done many times already we get B ∼ D, B ∼ D+Γ1, B ∼ D+Γ2,
B ∼ D+Γ3, B ∼ D+Γ1+Γ2, B ∼ D+Γ1+Γ3, B ∼ D+Γ2+Γ3, or B ∼ D+Γ1+Γ2+Γ3.

If B � D + Γ1 + Γ2 + Γ3, then after a change of basis of Pic S (if necessary), as on
pages 71 and 80, we may assume that B ∼ D.

If B ∼ D + Γ1 + Γ2 + Γ3 then we change the basis of PicS as follows:

D 7→ D + Γ1 + Γ2 + Γ3 := D′

Γ1 7→ −Γ1 := Γ′
1

Γ2 7→ −Γ2 := Γ′
2

Γ3 7→ −Γ3 := Γ′
3

Γ4 7→ Γ1 + Γ2 + Γ3 + Γ4 := Γ′
4



2.4 c = 4, D2 = 2 95

We easily see that the lattice ZD′ ⊕ ZΓ′
1 ⊕ ZΓ′

2 ⊕ ZΓ′
3 ⊕ ZΓ′

4 has the same intersection
matrix as ZD⊕ZΓ1 ⊕ZΓ2 ⊕ZΓ′

3 ⊕ZΓ4 and that L ∼ 3D′ +2Γ′
1 +2Γ′

2 +2Γ′
3 +Γ′

4 Hence
we may assume in this case too that B ∼ D.

We see that h1(R) = 3.31 Since we have shown that no polarized K3 surface is
associated to the scroll type (3, 3, 1, 0, 0, 0) the associated scroll type is (3, 2, 2, 0, 0, 0).

2.4 c = 4, D2 = 2

We have D.L = 8, d = 7, and f = h0(L − D) = 6. Since L.(L − 3D) = −2 and L is nef,
we see that h0(L−3D) = 0. By proposition 1.3.12 we see that h1(R) ≤ 1 Riemann-Roch
gives h0(L − 2D) = h0(R) = h1(R). This gives the two possible scroll types of table 2.5.

Table 2.5: Possible scroll types associated to L of type {4, 2}.

d0 d1 d2 scroll type

7 6 0 (1, 1, 1, 1, 1, 1, 0)

7 5 1 (2, 1, 1, 1, 1, 0, 0)

2.4.1 (1, 1, 1, 1, 1, 1, 0)

In this case h0(R) = 0, so ∆ = 0 and F is base point free. Since F 2 = 8 we can by
proposition 1.1.11 assume that F is an irreducible curve of genus 5. We have L ∼ D +F
with the following configuration:

(2.36) D F

We will now show that there exists an 18-dimensional family of polarized K3 surfaces
(S,L) with a perfect Clifford divisor D associated to this scroll type.

The lattice ZL ⊕ ZD with intersection matrix

[
L2 L.D

D.L D2

]

=

[
22 8
8 2

]

has signature (1,1), so by proposition 1.1.24 there exists a K3 surface with Pic S =
ZL ⊕ ZD.

Using Picard-Lefschetz reflections we may assume that L is nef. We will now show
that L is base point free and is of type {4, 2}. To show all this it is enough to show that

31D nef and Riemann-Roch give Γ1, Γ2, and Γ3 effective. thus h0(L − 3D) > 0. Table 2.4 gives
h0(L − 3D) = 1 (since we have shown that no polarized K3 surface is associated to the scroll type
(3, 3, 1, 0, 0, 0)). Especially h0(Γ1) = 1. Since Γ1.D = 1 there must exist a smooth rational curve Γ ≤ Γ1

such that Γ.D1 = 1. Since L is nef and L.Γ1 = 0 we have L.Γ = 0 and Γ ∈ RL,D. Similar reasoning
holds for Γ2 and Γ3. Thus h1(R) ≥ 3. Since c = 4 we get h1(R) = 3.
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there exists no divisor D ∼ xL + yD such that

B2 = 0 B.L = 1, 2, 3, 4, 5, or 6

B2 = 2 B.L = 7

B2 = 4 B.L = 10

We have B.L = 22x + 8y ≡ 0 (mod 2), so B2 = 0 or c = 4. If 0 = B2 = 22x2 +
16xy + 2y2, then lemma 2.0.1 gives x = y = 0, i.e. B = 0, a contradiction. We also
easily see that B2 = 4 and B.L = 10 have no simultaneous integral solution. Hence L is
of type {4, 2}.

We will show below the scroll type (2, 1, 1, 1, 1, 0, 0) does not occur. Hence the scroll
type must be (1, 1, 1, 1, 1, 1, 0).

2.4.2 (2, 1, 1, 1, 1, 0, 0)

In this case h0(R) = 1, so RL,D = Γ. If we write ∆ ∼ Γ + ∆1, and set A′ ∼ A + ∆1 and
∆ = Γ, then we have

L ∼ 2D + A′ + Γ,

Easy computations give A′2 = 0 and D.A′ = 3. 1 ≤ h0(A′) ≤ h0(A′+Γ) = h0(L−2D) = 1
gives h0(A′) = 1. Then A′2 = 0 gives A′ = 0. This contradicts D.A′ = 3, so this scroll
type is not associated to any perfect Clifford divisor of type {4, 2}.

2.5 c = 4, D2 = 4

We have D.L = 10, d = 8, and f = h0(L −D) = 5. Since L.(L − 3D) = −8 and L is nef,
we see that h0(L − 3D) = 0. By proposition 1.3.12 we get ∆ = 0. Riemann-Roch gives
h0(L − 2D) = 1. Thus we only get the possible scroll type in table 2.6.

Table 2.6: Possible scroll types associated to L of type {4, 4}.

d0 d1 d2 scroll type

8 4 1 (2, 1, 1, 1, 0, 0, 0, 0)

2.5.1 (2, 1, 1, 1, 0, 0, 0, 0)

We can write L ∼ 2D + A, where D.A = 2, A2 = −2, L.A = 2, and h0(A) = 1, since
∆ = 0. Hence we can write A as a non-zero sum of smooth rational curves (lemma 1.1.14).

We have two cases to consider:

(a) There exists a smooth rational curve, Γ, with multiplicity 1 in A, such that D.Γ = 2
and Γ ≤ A.
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(b) There exist two smooth rational curves, Γ1 and Γ2, with multiplicity 1 in A, such
that D.Γi = 1 and Γi ≤ A.

In case (A) we can write A ∼ Γ + A1, with A1 effective. Then D.A1 = 0. Since
L.A = 2 and L is nef we get L.Γ = 2 + A1.Γ ≤ 2, i.e. A1.Γ ≤ 0. But A1.Γ ≥ 0 since
Γ has multiplicity zero in A. Hence A1.Γ = 0. Thus A1 = 0, since L is numerically
2-connected. The configuration is:

(2.37) D Γ

In case (B) we can write A ∼ Γ1 +Γ2 +A1, with A1 effective. Then D.A1 = 0. Since
Γ1,Γ2 /∈ RL,D, we have L.Γ1 > 0. L.A = 2 then gives L.Γ1 = L.Γ2 = 1 and L.A1 = 0.
This gives Γ1.(Γ2 + A1) = Γ2.(Γ1 + A1) = 1 so we have two cases to consider: Γ1.Γ2 = 1
and Γ1.Γ2 = 0.

In the first case we have A1.Γi = 0. We then get A1 = 0, since L is numerically
2-connected. This case has the following configuration:

(2.38) D Γ1

Γ2

}}}}}}}

In the second case we have A1.Γi = 1 and A2
1 = −2. Let Γ3 ≤ A1 be a smooth rational

curve such that Γ1.Γ2 = 1. Write A1 ∼ Γ3 +A2. Then Γ1.A2 = 0 and Γ2.A2 = 1−Γ2.Γ3.

If Γ2.Γ3 = 1, then Γ2.A2 = 0 and Γ3.A2 = 0 (since Γ3.L = 0). So A2 = 0, since L is
numerically 2-connected. Hence L ∼ 2D +Γ1 +Γ2 +Γ3, with the following configuration

(2.39) D Γ1

Γ2 Γ3

If Γ2.Γ3 = 0, then there exists a smooth rational curve Γ4 6= Γ3 such that Γ2.Γ4 = 1
and Γ4 ≤ A2. Write A1 ∼ Γ3 + Γ4 + A3. Then A1.L = 0 gives Γ3.L = Γ4.L = 0, which
gives Γ3.(Γ4 + A3) = Γ4.(Γ3 + A3) = 1. This is the same situation as above, so we can
iterate. There are then two possible types of configurations:

(I) L ∼ 2D + Γ1 + Γ2 + · · ·Γ2N+2, where 0 ≤ N ≤ 9, and the following configuration

(2.40) D

??
??

??
??

Γ1 · · · Γ2N+1

Γ2 · · · Γ2N+2

Note that N = 0 gives configuration (2.38).
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(II) L ∼ 2D +Γ1 +Γ2 + · · ·Γ2N+3, where 0 ≤ N ≤ 8, and the following configuration

(2.41) D

??
??

??
??

Γ1 · · · Γ2N+1 Γ2N+3

ttttttttt

Γ2 · · · Γ2N+2

Note that N = 0 gives configuration (2.39).

We will show that there exists an 18-dimensional family of polarized K3 surfaces
(S,L) with a perfect Clifford divisor D associated to this scroll type and configuration
as in (2.37).

The lattice ZL ⊕ ZD with intersection matrix

[
L2 L.D

D.L D2

]

=

[
22 10
10 4

]

has signature (1,1), so by proposition 1.1.24 there exists a K3 surface with Pic S =
ZL ⊕ ZD.

Using Picard-Lefschetz reflections we may assume that L is nef. We will now show
that L is base point free and of type {4, 4}. To show this it is enough to show that there
exists no divisor B ∼ xL + yD such that

B2 = 0 B.L = 1, 2, 3, 4, 5, or 6

B2 = 2 B.L = 7 or 8

B.L is even, since B.L = 22x+10y. If B2 = 0 then 0 = 22x2 +20xy +4y2, but this gives
B = 0, by lemma 2.0.1. B2 = 2 and B.L = 8 have no simultaneous integral solution.
Hence L is of type {4, 4} and the associated scroll type must be (2, 1, 1, 1, 0, 0, 0, 0).

2.6 c = 1, D2 = 0

We have D.L = 3, d = 3, and f = h0(L − D) = 10. Since L.(L − 8D) = −2 and L is
nef, we see that h0(L− 8D) = 0. The Hodge index theorem gives h1(R) = 0 (see [JK01,
p. 77]) By Riemann-Roch h0(L − 2D) = h0(R) = 4. This gives the possible scroll types
of table 2.7.

We will not go into quite as much detail as we have done for c = 3 and c = 4.
Much of the information we give can be found in [JK01, pp.58–59] and [Ste00, pp.8–10].
Furthermore one can translate results from g = 9 to g = 12, so [JK01, pp.90–93] is also
a good reference.

2.6.1 (4, 3, 3)

In this case h0(L − 4D) = 1. We can write L ∼ 4D + B, where h0(B) = 1, D.B = 3,
B.L = 10, and B2 = −2.
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Table 2.7: Possible scroll types associated to L of type {3, 0}.

d0 d1 d2 d3 d4 d5 d6 d7 scroll type

3 3 3 3 1 0 0 0 (4, 3, 3)

3 3 3 2 2 0 0 0 (4, 4, 2)

3 3 3 2 1 1 0 0 (5, 3, 2)

3 3 3 1 1 1 1 0 (6, 2, 2)

3 3 2 2 2 1 0 0 (5, 4, 1)

3 3 2 2 1 1 1 0 (6, 3, 1)

In the most general case we have B ∼ Γ, where Γ is a smooth rational curve. This
gives L ∼ 4D + Γ, with the following configuration:

(2.42) D Γ

There also exists several less general situations. Such as L ∼ 4D+Γ1 +Γ2 + · · ·+ΓN ,
with the following configuration:

(2.43) Γ1 Γ2

D ΓM

>>
>>

>>
>>

ΓN

or L ∼ 4D + Γ1 + Γ2 + · · · + ΓN , with the following configuration:

(2.44) D Γ1

ΓN

We will now show that configuration (2.42) gives a 18-dimensional family of polarized
K3 surfaces (S,L), with this scroll type.

The lattice ZD ⊕ ZΓ with intersection matrix
[

D2 D.Γ
D.Γ Γ2

]

=

[
0 3
3 −2

]

has signature (1,1), so by proposition 1.1.24 there exists a K3 surface with Pic S =
ZD ⊕ ZΓ.

Using Picard-Lefschetz reflections we may assume that L ∼ 4D + Γ is nef. Assume
that B ∼ xD + yΓ is in A0(L). Then B must satisfy

B2 = 0 B.L = 1, 2, or 3
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It is immediate from lemma 1.4.932 that B ∼ D. Hence L is of type {1, 0}.
We will show below that the associated scroll type is not (4, 3, 3) only if rankPic S > 2.

Hence the scroll type associated to (S,L) must be (4, 3, 3).

2.6.2 (4, 4, 2)

We can write L ∼ 4D + B, where h0(B) = 2. Furthermore B2 = −2, D.B = 3, and
B.L = 10.

We can write B ∼ F + G, where F and G are effective and non-zero with F.G = 0,
since h1(B) 6= 0 (Ramanujam’s lemma). Since h0(B) = 2 we must have F 2 ≤ 0 and
G2 ≤ 0. We may assume that F 2 = 0 and G2 = −2, since B2 = −2. Since L is
numerically 2-connected this gives two possibilities:

(2.45) D F

G

and

(2.46) D F

G

In general we have G ∼ Γ, where Γ is a smooth rational curve, and F ∼ E, where E
is an elliptic curve.

We will now show that configuration (2.45) gives a 17-dimensional family of polarized
K3 surfaces (S,L), with this scroll type.

The lattice ZD ⊕ ZE ⊕ ZΓ with intersection matrix





D2 D.E D.Γ
D.E E2 E.Γ
D.Γ E.Γ Γ2



 =





0 1 2
1 0 0
2 0 −2





has signature (1,2), so by proposition 1.1.24 there exists a K3 surface with Pic S =
ZD ⊕ ZE ⊕ ZΓ.

Using Picard-Lefschetz reflections we may assume that L ∼ 4D+E+Γ is nef. Assume
that B ∼ xD + yE + zΓ is in A0(L). Then B must satisfy

B2 = 0 B.L = 1, 2, or 3

Substituting B.L = 3x + 4y + 6z into B2 = 0 gives 15z2 + (14y − 2B.L)z + (4y2 −
B.Ly) = 0. This is a quadratic equation in the variable z with discriminant 225−223y3+
88B.Ly2 − 8(B.L)2y. Since we are only interested in integral solutions this discriminant

32Alternatively use lemma 2.0.1.
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must be non-negative. This gives y = 0 or y = 1. y = 0 gives z(15z + 2B.L) = 0, i.e.
z = 0. Then we have B.L = 3x. Since 1 ≤ B.L ≤ 3 this gives x = 1 and B ∼ D. y = 1
gives no solutions. Consequently D is a perfect Clifford divisor.

D nef and Riemann-Roch used on E and Γ let us assume E and Γ effective. Then
h0(L − 4D) ≥ h0(E) ≥ 2, so the scroll type cannot be (4, 3, 3). We will show below
that the associated scroll type can be (5, 3, 2) only if rankPic S > 3. We will also show
below that the scroll types (6, 2, 2) and (5, 4, 1) are not associated to any perfect Clifford
divisor. Hence the associated scroll type to D must be either (4, 4, 2) or (6, 3, 1).

If the associated scroll type is (6, 3, 1), then we must be in a situation equivalent to
configuration (2.49). There must then exist a divisor Γ2 ∼ xD + yE + zΓ such that
Γ2

2 = −2, Γ2.L = 1, and Γ2.D = 0. Solving for z this gives 3z2 = 3, i.e. z ± 1. Then
Γ2.D = 0 = y + 2z gives y = ∓2. So Γ2.L = 1 = 3x + 4y + 6z = 3x ∓ 2. Thus x /∈ Z, a
contradiction. The associated scroll type to D must be (4, 4, 2).

2.6.3 (5, 3, 2)

We can write L ∼ 5D + B, where h0(B) = 1. Furthermore B2 = −8, D.B = 3, and
B.L = 7. We see that B satisfies exactly the same conditions as L − 4D in [JK01, (i)
p.92].33 We have the following possibilities:

L ∼ 5D + 2Γ1 + Γ2 + Γ3, with the following configuration:

(2.47) D Γ1 Γ2

Γ3

or L ∼ 5D + 3Γ1 + · · · + 3ΓN + 2ΓN+1 + ΓN+2 + ΓN+3 (1 ≤ N ≤ 16), with the following
configuration:

(2.48) D Γ1 · · · ΓN ΓN+1 ΓN+2

ΓN+3

Note that we may view configuration (2.47) as configuration (2.48) with N = 0.

We will now show that configuration (2.47) gives a 16-dimensional family of polarized
K3 surfaces (S,L), with this scroll type.

The lattice ZD ⊕ ZΓ1 ⊕ ZΓ2 ⊕ ZΓ3 with intersection matrix







D2 D.Γ1 D.Γ2 D.Γ3

D.Γ1 Γ2
1 Γ1.Γ2 Γ1.Γ3

D.Γ2 Γ1.Γ2 Γ2
2 Γ2.Γ3

D.Γ3 Γ1.Γ3 Γ2.Γ3 Γ2
3







=







0 1 0 1
1 −2 1 0
0 1 −2 0
1 0 0 −2







33This is natural since the associated scroll type there is (4, 2, 1) = (5 − 1, 3 − 1, 2 − 1).
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has signature (1,3), so by proposition 1.1.24 there exists a K3 surface with Pic S =
ZD ⊕ ZΓ1 ⊕ ZΓ2 ⊕ ZΓ3.

Using Picard-Lefschetz reflections we may assume that L ∼ 3D+2Γ1 +Γ2 +Γ3 is nef.
L nef and Riemann-Roch used on D, Γ1, and Γ3 let us assume D, Γ1, and Γ3 effective.

We will now show that B ∈ A0(L), with B nef, implies B ∼ D. This will in particular
show that L is base point free and of type {1, 0}. Let B ∼ xD + yΓ1 + zΓ2 + wΓ3. Then
B must satisfy

B2 = 0 B.L = 1, 2, or 3

Furthermore by arguing as on page 66 we get:

0 ≤ Γ1.B = x − 2y + z ≤ 2

−1 ≤ Γ2.B = y − 2z ≤ 1

0 ≤ Γ3.B = x − 2w ≤ 2

0 ≤ D.B = y + w ≤ 2

Arguing as on page 71 we get 0 ≤ x ≤ 4, 0 ≤ y ≤ 2, 0 ≤ z ≤ 1, and 0 ≤ w ≤ 1. Checking
all values, using 1 ≤ B.L ≤ 3 and B2 = 0, gives B ∼ D. Hence we may assume that D
is a perfect Clifford divisor.

We will now show that we may assume Γ2 effective. Since Γ2
2 = −2 either Γ2 or −Γ2

is effective. If Γ2 is effective, then we are done. If −Γ2 is effective, then we change the
basis of PicS as follows:

D 7→ D := D′

Γ1 7→ Γ1 + Γ2 := Γ′
1

Γ2 7→ −Γ2 := Γ′
2

Γ3 7→ Γ3 := Γ′
3

We see that L ∼ 5D′ + 2Γ′
1 + Γ′

2 + Γ′
3 and that the new intersection numbers are equal

to the old ones. Hence we may assume that Γ2 is effective.
This gives h0(L − 5D) = h0(2Γ1 + Γ2 + Γ3) ≥ 1. We will show below that the scroll

types (6, 2, 2) and (5, 4, 1) are not associated to any perfect Clifford divisor. Hence the
scroll type is either (5, 3, 2) or (6, 3, 1).

If the associated scroll type is (6, 3, 1), then we must be in a situation equivalent to
configuration (2.49). Then there must exist a divisor Γ′

1 ∼ yΓ1 + zΓ2 + wΓ3 such that
Γ′2

1 = −2, Γ′
1.L = 1, and Γ′

1.D = 1. Solving for w in Γ′
1.L = 1 = 3x + 2y + 3w and

Γ′
1.D = 1 = y + z, and substituting into Γ′2

1 = −2 give

z2 + (w − 1)z + (
1

3
−

5

3
w + 2w2) = 0

This is a quadratic equation in the variable z with discriminant −7w2 + 14w/3 − 1/3.
Since we are only interested in integral solutions this discriminant must be non-negative.
But −7w2 +14w/3− 1/3 is negative for all integers, so there exists no integral solutions.
Thus the scroll type cannot be (6, 3, 1). Hence the associated scroll type to D must be
(5, 3, 2).
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2.6.4 (5, 4, 1)

This scroll type is not associated to any perfect Clifford divisor.

Reasoning as for the scroll type (5, 3, 2), we see that we must be in one of the cases
given by configurations (2.47)-(2.48).

Let B ∼ L−5D. By arguing as for the scroll type (4, 3, 1, 0, 0) we get h0(D+B) = 2,
a contradiction, since d3 = 2, d4 = 1, and d5 = 0 gives h0(L − 4D) = 3.

See [JK01, p.59] for an alternative proof.

2.6.5 (6, 3, 1)

We can write L ∼ 6D + B, where h0(B) = 1, D.B = 3, B2 = −14, and B.L = 4.

Note that h0(L−5D) = h0(D+B) = 2 = h0(D). Hence we see that for every smooth
rational curve, Γ′ in B such that D.Γ′ 6= 0 we must have D.Γ′ = 1, by proposition 1.1.17.

We have three cases to consider:

(A) There exists three distinct smooth rational curves, Γ1, Γ2, and Γ3, with multi-
plicity one in B such that Γi.D = 1.

In this case we have Γi.L ≥ 2. Hence B.L ≥ 6, a contradiction.

(B) There exists two distinct smooth rational curves, Γ1 and Γ2, with multiplicity
one and two respectively in B such that Γi.D = 1.

Then Γ1.L ≥ 2 and Γ2.L ≥ 3. Hence B.L ≥ 5, a contradiction.

(C) There exists a smooth rational curve, Γ1, with multiplicity three in B such that
Γ1.D = 1.

Write B = 3Γ1 + B1.

If L.Γ1 = 0, then we get B2
1 = −12 and B1.D = B1.Γ1 = 0. A contradiction since L

is numerically 2-connected.

If L.Γ1 = 1, then there exists a smooth rational curve Γ2 with multiplicity one in
B1 such that Γ1.Γ2 = 1. Write B ∼ 3Γ1 + Γ2 + B2. Then we have L.Γ2 ≥ 1 and
3Γ1.L + Γ2.L = 3 + Γ2.L ≤ B.L ≤ 4. Hence L.Γ2 = 1 and Γ2.B2 = 0. We also have
D.B2 = Γ1.B2 = 0. Hence B2 = 0, since L is numerically 2-connected.

If L.Γ1 ≥ 2, then L.B ≥ 3L.Γ1 ≥ 6. A contradiction.

Thus the only possibility is L ∼ 6D + 3Γ1 + Γ2, with the following configuration:

(2.49) D Γ1 Γ2

We will now show that this configuration gives a 17-dimensional family of polarized
K3 surfaces (S,L) associated to the scroll type (6, 3, 1).

The lattice ZD ⊕ ZΓ1 ⊕ ZΓ2 with intersection matrix





D2 D.Γ1 D.Γ2

D.Γ1 Γ2
1 Γ1.Γ2

D.Γ2 Γ1.Γ2 Γ2
2



 =





0 1 0
1 −2 1
0 1 −2





has signature (1,2), so by proposition 1.1.24 there exists a K3 surface with Pic S =
ZD ⊕ ZΓ1 ⊕ ZΓ2.
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Using Picard-Lefschetz reflections we may assume that L ∼ 6D + 3Γ1 + Γ2 is nef. L
nef and Riemann-Roch used on D, Γ1, and Γ2 let us assume D, Γ1, and Γ2 effective.

Assume that B ∼ xD + yΓ1 + zΓ2 is in A0(L). Then B must satisfy

B2 = 0 B.L = 1, 2, or 3

Furthermore by arguing as on page 66 we get:

0 ≤ Γ1.B = x − 2y + z ≤ 1

0 ≤ Γ2.B = y − 2z ≤ 1

0 ≤ D.B = y ≤ 2

The second inequality gives z = by/2c. Using 0 ≤ y ≤ 2 and checking all three possible
cases gives B ∼ D.

Since h0(L − 6D) = h0(3Γ1 + Γ2) ≥ 1 the scroll type must be (6, 3, 1).

2.6.6 (6, 2, 2)

This scroll type is not associated to any perfect Clifford divisor.

By arguing as above for the scroll type (6, 3, 1), we get that L ∼ 6D +3Γ1 +Γ2, with
the following configuration:

D Γ1 Γ2

To show that D is not associated to the scroll type (6, 2, 2) it is enough to show that
h0(L − 3D) = h0(3D + 2Γ1 + Γ2) ≥ 5. But this follows from Riemann-Roch.

See [JK01, p.59] for an alternative proof.

2.7 c = 2, D2 = 0

We have D.L = 4, d = 4, and f = h0(L − D) = 9. Since L.(L − 6D) = −2 and L is
nef, we get h0(L − 6D) = 0. Proposition 1.3.12 gives h1(R) ≤ 1. By Riemann-Roch
h0(L − 2D) = h0(R) = 5 + h1(R). This gives the possible scroll types of table 2.8.

Much of the information we give can be found in [JK01, pp.63–67] and [Ste00, pp.8–
10]. Furthermore we can translate results for g = 8 to g = 12, so [JK01, p.88-90] is also
a good reference.

2.7.1 (3, 2, 2, 2)

We have ∆ = 0 and can write L ∼ 3D + B, where h0(B) = 1, D.B = 4, L.B = 10, and
B2 = −2.

There exists several possible configurations. The most general one is when B equals
Γ, a smooth rational curve. Then we have L ∼ 3D +Γ, with the following configuration:

(2.50) D Γ
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Table 2.8: Possible scroll types associated to L of type {2, 0}.

d0 d1 d2 d3 d4 d5 scroll type

4 4 4 1 0 0 (3, 2, 2, 2)

4 4 3 2 0 0 (3, 3, 2, 1)

4 4 3 1 1 0 (4, 2, 2, 1)

4 4 2 2 1 0 (4, 3, 1, 1)

4 4 2 1 1 1 (5, 2, 1, 1)

4 3 3 3 0 0 (3, 3, 3, 0)

4 3 3 2 1 0 (4, 3, 2, 0)

4 3 3 1 1 1 (5, 2, 2, 0)

4 3 2 2 2 0 (4, 4, 1, 0)

4 3 2 2 1 1 (5, 3, 1, 0)

As an example of a less general situation we take B ∼ Γ1 + Γ2, with the following
configuration:

(2.51) D Γ1

}}
}}

}}
}

Γ2

We will now show that configuration (2.50) gives a 18-dimensional family of polarized
K3 surfaces (S,L), with this scroll type.

The lattice ZD ⊕ ZΓ with intersection matrix
[

D2 D.Γ
D.Γ Γ2

]

=

[
0 4
4 −2

]

has signature (1,1), so by proposition 1.1.24 there exists a K3 surface with Pic S =
ZD ⊕ ZΓ.

Using Picard-Lefschetz reflections we may assume that L ∼ 3D + Γ is nef. Assume
that B ∼ xD + yΓ is in A0(L). Then B must satisfy

B2 = 0 B.L = 1, 2, 3, or 4

It is immediate by lemma 1.4.934 that B ∼ D. Hence L is of type {2, 0}.
We will show below that the associated scroll type is not (3, 2, 2, 2) only if rankPic S >

2. Hence the scroll type associated to (S,L) is (3, 2, 2, 2).

2.7.2 (3, 3, 2, 1)

We have ∆ = 0 and can write L ∼ 3D + B, where h0(B) = 2, D.B = 4, L.B = 10, and
B2 = −2.

34Alternatively use lemma 2.0.1.
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Since h1(B) 6= 0 we can write B ∼ F + G, where F and G are effective and non-zero
with F.G = 0 (Ramanujams’s lemma). Since h0(B) = 2 we must have F 2 ≤ 0 and
G2 ≤ 0. We may then assume that F 2 = 0 and G2 = −2, since B2 = −2. Since L is
numerically 2-connected this gives the following possibilities:

(2.52) D F

G

and

(2.53) D F

G

and

(2.54) D F

G

In general we have G ∼ Γ, where Γ is a smooth rational curve, and F ∼ E, where E
is an elliptic curve.

We will now show that configuration (2.52) gives a 17-dimensional family of polarized
K3 surfaces (S,L), with this scroll type.

The lattice ZD ⊕ ZE ⊕ ZΓ with intersection matrix





D2 D.E D.Γ
D.E E2 E.Γ
D.Γ E.Γ Γ2



 =





0 3 1
3 0 0
1 0 −2





has signature (1,2), so by proposition 1.1.24 there exists a K3 surface with Pic S =
ZD ⊕ ZE ⊕ ZΓ.

Using Picard-Lefschetz reflections we may assume that L ∼ 3D+E+Γ is nef. Assume
that B ∼ xD + yE + zΓ is in A0(L). Then B must satisfy

B2 = 0 B.L = 1, 2, 3, or 4

Furthermore by arguing as on page 66 we get:

0 ≤ D.B = 3y + z ≤ 3

0 ≤ Γ.B = x − 2z ≤ 1

0 ≤ E.B = 3x ≤ 5
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The last inequality gives 0 ≤ x ≤ 1. The second inequality then gives z = bx/2c = 0.
Then the first inequality gives 0 ≤ y ≤ 1. Since 1 ≤ B.L = 4x + 9y + z ≤ 3, we get
B ∼ D. Hence we may assume that D is a perfect Clifford divisor.

L nef and Riemann-Roch used on Γ and E let us assume Γ and E effective. Hence
h0(L − 3D) ≥ h0(E) ≥ 2.

Since rankPic S = 3 the scroll type must be (3, 3, 2, 1) or (4, 3, 2, 0).35 Calculat-
ing determinants we see that (4, 3, 2, 0) is impossible by proposition 1.1.22. Hence the
associated scroll type is (3, 3, 2, 1).

2.7.3 (4, 2, 2, 1)

We can write L ∼ 4D + B, where h0(B) = 1. Furthermore B2 = −10, D.B = 4,
h0(D + B) = 2, and B.L = 6. We see that B satisfies exactly the same conditions as
L − 2D in [JK01, (i) p.89-90].36 We have the following possibilities:

L ∼ 4D + 2Γ + Γ′ + Γ1 + Γ2, with the following configuration:

(2.55) D

AA
AA

AA
AA

Γ Γ′

Γ1 Γ2

or L ∼ 4D + 2Γ + Γ′ + 2Γ0 + · · · + 2ΓN + ΓN+1 + ΓN+2 (N ≥ 0), with the following
configuration:

(2.56) D Γ Γ′

Γ0 · · · ΓN ΓN+1

ΓN+2

We see that all of these configurations give h0(D + B) = 2. Hence if there exists K3
surfaces with these configurations they must be associated to the scroll type (4, 2, 2, 1).

We will now show that configuration (2.55) gives a 15-dimensional family of polarized
K3 surfaces (S,L), with this scroll type.

The lattice ZD ⊕ ZΓ ⊕ ZΓ′ ⊕ ZΓ1 ⊕ ZΓ2 with intersection matrix









D2 D.Γ D.Γ′ D.Γ1 D.Γ2

D.Γ Γ2 Γ.Γ′ Γ.Γ1 Γ.Γ2

D.Γ′ Γ.Γ′ Γ′2 Γ′.Γ1 Γ′.Γ2

D.Γ1 Γ.Γ1 Γ′.Γ1 Γ2
1 Γ1.Γ2

D.Γ2 Γ.Γ2 Γ′.Γ2 Γ1.Γ2 Γ2
2









=









0 1 0 1 1
1 −2 1 0 0
0 1 −2 0 0
1 0 0 −2 0
1 0 0 0 −2









35This will follow from our work below.
36This is natural since the associated scroll type there is (3, 1, 1, 0) = (4 − 1, 2 − 1, 2 − 1, 1 − 1).
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has signature (1,4), so by proposition 1.1.24 there exists a 15-dimensional family of K3
surfaces with Pic S = ZD ⊕ ZΓ ⊕ ZΓ′ ⊕ ZΓ1 ⊕ ZΓ2.

Using Picard-Lefschetz reflections we may assume that L′ ∼ 3D + 2Γ + Γ′ + Γ1 + Γ2

is nef.37

By arguing as we have done many times we get c = 2 and that L′ has associated
scroll type (3, 1, 1, 0). We may after a change of basis, if necessary, assume that D is a
perfect Clifford divisor.

Then proposition 1.6.2 gives that L ∼ L′ + D has associated scroll type (4, 2, 2, 1).38

2.7.4 (4, 3, 1, 1)

We write L ∼ 4D + B, where D.B = 4, B.L = 6, B2 = −10, and h0(B) = 1.

The most general possible configuration is L ∼ 4D+2Γ1+2Γ2+Γ3, with the following
configuration:

(2.57) D Γ1

Γ2 Γ3

As an example of a less general configuration we take L ∼ 4D+2Γ1+2Γ2+Γ3+Γ4+Γ5,
with the following configuration:

(2.58) D Γ1 Γ5

Γ2

AA
AA

AA
A

Γ3

Γ4

Note that this is a configuration for which the result of proposition 1.6.4 does not hold.
For if configuration (2.58) satisfies proposition 1.6.4, then we would be able to find the
polarized surface (S,L − D) in the classification for g = 8 in [JK, p.89] with scroll type
(4 − 1, 3 − 1, 1 − 1, 1 − 1) = (3, 2, 0, 0). But there we see that (3, 2, 0, 0) is of type {2, 0}b

or {2, 0}c. We have (L − D).Γ1 = 0 and (L − D).Γ2 = 1, so RL−D,D ⊆ {Γ1}. We must
then be in case {2, 0}c. This is impossible since in the case {2, 0}c there must either
exists either two disjoint smooth rational curves Γ′

1 and Γ′
2 with multiplicity one in ∆

such that Γ1.Γ
′
1 = Γ1.Γ

′
2 = 1 or there exists a smooth rational curve Γ′

1 with multiplicity
two in ∆ such that Γ1.Γ

′
1 = 1.

37We are looking at L′ := L − D not L! See next footnote for our reason for dong this.
38If we had looked on L instead on L − D it would be much more difficult to determine the scroll

type. We would get h0(L − 4D) > 0 and RL,D, so the scroll type is (4, 3, 1, 1) or (4, 2, 2, 1). To exclude
the scroll type (4, 3, 1, 1) we would have to know all possible configurations for (4, 3, 1, 1) and show that
(S, L) does not satisfy any of these. This is considerably more time-consuming than looking at L − D.
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We will now show that configuration (2.57) gives a 16-dimensional family of polarized
K3 surfaces (S,L), with this scroll type.

The lattice ZD ⊕ ZΓ1 ⊕ ZΓ2 ⊕ ZΓ3 with intersection matrix







D2 D.Γ1 D.Γ2 D.Γ3

D.Γ1 Γ2
1 Γ1.Γ2 Γ1.Γ3

D.Γ2 Γ1.Γ2 Γ2
2 Γ2.Γ3

D.Γ3 Γ1.Γ3 Γ2.Γ3 Γ2
3







=







0 1 1 0
1 −2 0 1
1 0 −2 1
0 1 1 −2







has signature (1,3), so by proposition 1.1.24 there exists a K3 surface with PicS =
ZD ⊕ ZΓ1 ⊕ ZΓ2 ⊕ ZΓ3.

Using Picard-Lefschetz reflections we may assume that L ∼ 4D + 2Γ1 + Γ2 + Γ3 is
nef. L nef and Riemann-Roch used on Γ1, Γ2, and Γ3 let us assume that Γ1, Γ2, and Γ3

is effective.

Assume that B ∼ xD + yΓ1 + zΓ2 + uΓ3 is in A0(L). Then B must satisfy

B2 = 0 B.L = 1, 2, 3, or 4

Furthermore by arguing as on page 66 we get:

0 ≤ D.B = y + z ≤ 3

0 ≤ Γ1.B = x − 2y + u ≤ 1

0 ≤ Γ2.B = x − 2z + u ≤ 1

0 ≤ Γ3.B = y + z − 2u ≤ 2

Checking all possible values we get B ∼ D. Furthermore one gets RL,D = ∅. Since
h0(L − 4D) = h0(2Γ1 + Γ2 + Γ3) > 0, the associated scroll type must then be (4, 2, 2, 1)
or (4, 3, 1, 1). The scroll type (4, 2, 2, 1) does not occur when rankPic S = 4. Hence the
associated scroll type is (4, 3, 1, 1).

2.7.5 (5, 2, 1, 1)

There exists no perfect Clifford divisors associated to this scroll type.

Assume that there exists a perfect Clifford divisor D associated to this scroll type.
Then we can write L ∼ 5D + B, where D.B = 4, B.L = 2, B2 = −18, and h0(B) = 1.
As usual we may write B as a sum of smooth rational curves. Using proposition 1.1.17
we also have that 0 ≤ D.Γ ≤ 1 for all smooth rational curves in the support of B, since
h0(B) = 1.

There exists (up to multiplicity) four smooth rational curves Γi (i = 1, . . . , 4) in the
support of B such that D.Γi = 1. Then L.Γi ≥ 1 since RL,D = ∅. Hence 2 = L.B ≥
L.Γ1 + L.Γ2 + L.Γ3 + L.Γ4 ≥ 4, a contradiction.

The methods of [JK01, section 9] give an alternative proof.
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2.7.6 (3, 3, 3, 0)

We will now show that this scroll type is not associated to any perfect Clifford divisor.
Assume otherwise. We can write L ∼ 3D+B+Γ, where RL,D = {Γ} and h0(B+Γ) =

3. Then Γ.B = −1, so we can write B ∼ B1 + Γ, where B1.Γ = 1, D.B1 = 2, L.B1 = 10,
and B2

1 = 2.
Then (B1 − D)2 = −2 and L.(B1 − D) = 6. Thus L nef and Riemann-Roch used on

B1 − D gives h0(B1 − D) > 0. So h0(L − 4D) > 0, a contradiction.
Alternative proofs can be found using the methods of [JK01, section 9], [Ste00], or

[Bra97].

2.7.7 (4, 3, 2, 0)

We can write L ∼ 4D + Γ + B, where RL,D = {Γ} and h0(B + Γ) = 1. Then Γ.B = −2,
so we can write B ∼ B1 + Γ, where B1.Γ = 0, D.B1 = 2, L.B1 = 6, and B2

1 = −2.
In general B1 is linearly equivalent to a smooth rational curve Γ1, and we have the

following configuration

(2.59) D Γ1

Γ

We will now show that configuration (2.59) gives a 17-dimensional family of polarized
K3 surfaces (S,L), with this scroll type.

We write A ∼ D + Γ1 to ease notation. The lattice ZD ⊕ZA⊕ ZΓ with intersection
matrix 



D2 D.A D.Γ
D.A A2 A.Γ
D.Γ A.Γ Γ2



 =





0 2 1
2 2 1
1 1 −2





has signature (1,2), so by proposition 1.1.24 there exists a K3 surface with Pic S =
ZD ⊕ ZA ⊕ ZΓ.

Using Picard-Lefschetz reflections we may assume that L ∼ 3D + Γ1 + 2Γ is nef.
Assume that B ′ ∈ A0(L), with B ′ nef. Write B ′ ∼ xD + yA + zΓ. Then B ′ must

satisfy one of the following

B′2 = 0 B′.L = 1, 2, 3, or 4

Since B′.L = 4x + 10y we have B ′.L = 2 or 4.
Furthermore by arguing as on page 66 we get:

0 ≤ D.B′ = 2y + z ≤ 3

0 ≤ B1.B
′ = 2x + 2y + z ≤ 6

These inequalities give −3 ≤ x ≤ 3. For B ′.L to be 2 or 4 we must have x = 1 with
y = 0 or x = 3 with y = −1. In the first case B ′2 = 0 gives z = 0 or z = 1. In the second
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case B′2 = 0 gives z2 + 2z + 5 = 0, which has no integral solutions. Hence B ′ ∼ D or
B′ ∼ D + Γ. If B ′ ∼ D + Γ, then we may change the basis of Pic S as we have done
many times already. Thus we may assume that B ′ ∼ D.

Since L.Γ = 0 and D.Γ = 1 we see that RL,D 6= ∅.39 Hence h1(R) = 1, since
h1(R) ≤ 1.

Since rankPicS = 3 the scroll type must be (4, 3, 2, 0), by our treatment of the other
possible scroll types below.

2.7.8 (5, 2, 2, 0) and (4, 4, 1, 0)

There exists no perfect Clifford divisors associated to these scroll types.

For the scroll type (5, 2, 2, 0) one can show this by the method we used to show
that the scroll type (4, 3, 1, 0, 0) is not associated to any perfect Clifford divisor. To do
this we would have had to find all possible configurations, and then show that these
configurations actually are associated to the scroll type (5, 3, 1, 0) by looking at h0(L −
3D). This is a lot of work which we will not include here.

For the scroll type (4, 4, 1, 0) one can show this by using Ramanujam’s lemma as we
have done for several other scroll types. This is also quite a lot of work, so we will not
include the details.

Instead we will refer to the tables in [Bra97, A.2] and [Ste00, p.10], which say that
these scroll types are not associated to any K3 surface.

2.7.9 (5, 3, 1, 0)

We can write L ∼ 5D + Γ + B, where RL,D = {Γ} and h0(B + Γ) = 1. Then Γ.B = −3,
so we can write B ∼ B1 + 2Γ.

Suppose there exists smooth rational curve Γ1 in the support of B1 such that D.Γ1 6= 0
and Γ1 6= Γ. Then since L.B1 = 1 we see that Γ1 must have multiplicity one in B1. Also
D.Γ1 = 1, since 2 = h0(D) ≤ h0(D + Γ1) ≤ h0(L − 4D) = 2. Furthermore Γ1.B1 ≥ −2
and Γ1.Γ ≥ 0. Hence L.Γ1 = 5D.Γ1 + B1.Γ1 + Γ.Γ1 ≥ 3, a contradiction since L.B1 = 1.

Hence Γ has multiplicity one in B1 and we can write B1 ∼ B2 + Γ, where B2.Γ = 3,
D.B2 = 0, L.B2 = 1, and B2

2 = −10.

There exists several possible configurations. The most general one is L ∼ 5D + 4Γ +
2Γ1 + Γ2,

40 with the following configuration:

(2.60) D Γ Γ1

Γ2

Another possible configuration is L ∼ 5D + 4Γ + 3Γ1 + Γ2 + Γ3, with the following

39See footnote 31.
40Where B2 ∼ 2Γ1 + Γ2.
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configuration:

(2.61) D Γ Γ1 Γ2

Γ3

We will now show that configuration (2.60) gives a 16-dimensional family of polarized
K3 surfaces (S,L), with this scroll type associated to it.

The lattice ZD ⊕ ZΓ ⊕ ZΓ1 ⊕ ZΓ2 with intersection matrix






D2 D.Γ D.Γ1 D.Γ2

D.Γ Γ2 Γ.Γ1 Γ.Γ2

D.Γ1 Γ.Γ1 Γ2
1 Γ1.Γ2

D.Γ2 Γ.Γ2 Γ1.Γ2 Γ2
2







=







0 1 0 0
1 −2 1 1
0 1 −2 0
0 1 0 −2







has signature (1,3), so by proposition 1.1.24 there exists a K3 surface with Pic S =
ZD ⊕ ZΓ ⊕ ZΓ1 ⊕ ZΓ2.

Using Picard-Lefschetz reflections we may assume that L ∼ 5D + 4Γ + 2Γ1 + Γ2 is
nef.

Assume that B ′ ∈ A0(L), with B ′ nef. Arguing as we have done many times we get
B′ ∼ D, B′ ∼ D + Γ, B′ ∼ D + Γ + Γ1, or B′ ∼ D + Γ + Γ2. Then we may change
the basis of Pic S to assume that B ′ ∼ D. Changing the basis of Pic S yet another time
(if necessary) lets us assume that Γ, Γ1, and Γ2 is effective.41 We also find RL,D 6= ∅.
Hence h1(R) = 1, since c = 2. Since h0(L− 5D) = h0(4Γ+2Γ1 +Γ2) > 0, the associated
scroll type must then be (5, 3, 1, 0).

2.8 Clifford general non-BN general polarized K3 surfaces

of genus 12

We have seen (proposition 1.4.7) that every Clifford general non-BN general K3 surfaces
of genus 12 satisfies

Cliff(L) = µ(L) = 5.

But there is a huge difference from the non-Clifford general cases in that we are no longer
is guaranteed the existence of perfect Clifford divisors. In particular we are no longer
guaranteed that (C6) holds. Hence it becomes much harder to determine the base divisor
∆ of F = L − D.

Using lemma 1.4.6 and proposition 1.4.7 we see that there exists a divisor D such
that

µ(L) = 5 = D.(L − D) + 2

and
h1(D) = h1(L − D) = 0.

Using [JK01, lemma 2.6] we get the existence of a free Clifford divisor,42 i.e. a divisor

41See p.73 for details.
42Compare [JK01, corollary 10.4].
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that satisfies (C1)-(C5).

Proposition 1.4.7 gives us two cases to consider:

D2 = 2 and D.L = 9

and

D2 = 4 and D.L = 11.

2.9 D2 = 2 and D.L = 9

We have h0(L) = 13, h0(D) = 3, and h0(L−D) = 5. Since L.(L− 3D) = −5 > 0 and L
is nef, we see that h0(L − 3D) = 0. Hence we have

d0 = 8,

d1 = 5 − h0(L − 2D),

d2 = h0(L − 2D).

Since d1 ≥ d2 we get 0 ≤ h0(L− 2D) ≤ 2. We have the possible scroll types of table 2.9.

Table 2.9: Possible scroll types associated to non-BN general L with D2 = 2 and D.L = 9.

d0 d1 d2 scroll type

8 5 0 (1, 1, 1, 1, 1, 0, 0, 0)

8 4 1 (2, 1, 1, 1, 0, 0, 0, 0)

8 3 2 (2, 2, 1, 0, 0, 0, 0, 0)

2.9.1 (1, 1, 1, 1, 1, 0, 0, 0)

We will first find RL,D. To do this we will argue along the lines of [JK01, lemma 10.5].
First note that we have h1(R) = 1 and h0(R) = 0.

Choose a smooth curve D0 ∈ |D| and set FD0 = F ⊗OD0 . Then

deg FD0 = F.D = c + 2 = 7 = D2 + 3 = 2g(D0) + 1.

Then [Har77, corollary 3.2(b)] gives that FD0 is very ample.

Tensoring the exact sequence

0 → OS(−D) → OS → OD0 → 0

with F we get the exact sequence

0 → R → F → FD0 → 0.
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Tensoring this sequence with −∆ we get the exact sequence

0 → R − ∆ → F − ∆ → (F − ∆)D0 → 0.

Thus (using that ∆ is fixed in F and h0(R) = h0(R−∆) = h1(F ) = 0) we get the exact
sequences:

0 → H0(F ) → H0(FD0) → H1(R) → 0
||

0 → H0(F − ∆) → H0((F − ∆)D0)

Whence h0((F − ∆)D0) ≥ h0(FD0) − 1, so ∆.D = 0 or 1 by [Har77, proposition 3.1(b)].
From the definition of RL,D we find that RL,D is either empty or consists of only one

curve. Both of these cases arise.
The lattice of proposition 1.4.10 gives an 18-dimensional family of K3 surfaces with

c = 5 and D2 = 2. Lemma 1.4.9 gives RL,D = ∅ for this lattice. We will see below that
the scroll types (2, 1, 1, 1, 0, 0, 0, 0) and (2, 2, 1, 0, 0, 0, 0, 0) always have rankPic S > 3.
Hence the scroll type must be (1, 1, 1, 1, 1, 0, 0, 0).43

There exists a 17-dimensional family of K3 surfaces with RL,D = {Γ} and associated
scroll type (1, 1, 1, 1, 1, 0, 0, 0). Consider the lattice ZD ⊕ ZF ⊕ ZΓ with intersection
matrix 



D2 D.F D.Γ
D.F F 2 F.Γ
D.Γ F.Γ Γ2



 =





2 9 1
9 2 −1
1 −1 −2





It has signature (1,2), so by proposition 1.1.24 there exists a K3 surface with PicS =
ZD ⊕ ZF ⊕ ZΓ.

Using the methods of the previous sections we find that we may assume that D is a
free Clifford divisor. Furthermore one gets RL,D = {Γ}.

We will show below that the scroll types (2, 1, 1, 1, 0, 0, 0, 0) and (2, 2, 1, 0, 0, 0, 0, 0)
always have rankPic S > 3. Hence the associated scroll type is (1, 1, 1, 1, 1, 0, 0, 0).

2.9.2 (2, 1, 1, 1, 0, 0, 0, 0)

We have h0(L− 2D) = 1. Hence we can write R := L− 2D as a sum of smooth rational
curves. We also have R.D = 5 and R2 = −6. There exists two different configurations44

that both give 16-dimensional families of K3 surfaces (all the Γi are smooth rational
curves):

L ∼ 2D + Γ1 + Γ2 + Γ3, with the following configuration:

(2.62) D

AA
AA

AA
AA

AA
AA

AA
AA

Γ3

Γ1 Γ2

43Note that this give an example of a K3 surface with a free Clifford divisor that is not a perfect
Clifford divisor. We have h1(R) = 1 6= ∆.D = 0.

44One can show that both of these configurations in fact exists with the prescribed properties.
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and RL,D = {Γ1}.
L ∼ 2D + Γ1 + Γ2 + Γ3, with the following configuration:

(2.63) D

AA
AA

AA
AA

Γ3

Γ1 Γ2

and RL,D = {Γ1,Γ2}.

2.9.3 (2, 2, 1, 0, 0, 0, 0, 0)

We have h0(L − 2D) = 2. We also have R.D = 5 and R2 = −6. In this case there
exists two configurations45 that give 16-dimensional families of K3 surfaces (all the Γi

are smooth rational curves and E is an elliptic curve):
L ∼ 2D + E + 2Γ1 + Γ2, with the following configuration:

(2.64) Γ2 Γ1 D E

and L ∼ 2D + E + 2Γ1 + Γ2, with the following configuration:

(2.65) Γ2 Γ1 D E

The following configuration also satisfy h0(L − 2D) = 2, R.D = 5, and R2 = −6:
L ∼ 2D + E + Γ1 + 2Γ2, with the following configuration:

Γ2 Γ1 D E

L ∼ 2D + E + Γ1 + 2Γ2, with the following configuration:

Γ2 Γ1 D E

L ∼ 2D + E + Γ1 + 2Γ2, with the following configuration:

Γ2 Γ1 D E

L ∼ 2D + E + Γ1 + 2Γ2, with the following configuration:

Γ2 Γ1 D E

None of these four configurations are associated to the scroll type (2, 1, 1, 1, 0, 0, 0, 0).
One can show this as follows: The configurations with D.E = 4 give

5 = h0(L − D) = h0(D + R) ≥ h0(D + E) = 6,

a contradiction.

45All with RL,D = ∅.
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The configuration with D.Γ1 = 3 gives

5 = h0(L − D) = h0(D + R) ≥ h0(D + E + Γ1) ≥ 6,

a contradiction.

The configuration with D.E,D.Γ1 > 1 gives h0(D + E) = 5, with D + E base point
free, and Γ1.(D + E) = 2. Proposition 1.1.17 gives

5 = h0(L − D) = h0(D + R) ≥ h0(D + E + Γ1) > 5,

a contradiction.

There also exists configurations with RL,D 6= ∅. For example L ∼ 2D + E + Γ1 +
Γ2 + Γ3, with the following configuration:

(2.66) Γ1 D

AA
AA

AA
AA

AA
AA

AA
AA

E

Γ2 Γ3

and RL,D = {Γ1,Γ2}.

2.10 D2 = 4 and D.L = 11

We have h0(L) = 13, h0(D) = 4, and h0(L − D) = 4. Since L.(L − 3D) = −11 > 0 and
L is nef, we see that h0(L − 3D) = 0. Hence we have

d0 = 9

d1 = 4 − h0(L − 2D)

d2 = h0(L − 2D)

Since d1 ≥ d2 we get 0 ≤ h0(L − 2D) ≤ 2. Hence we have the possible scroll types of
table 2.10.

Table 2.10: Possible scroll types associated to non-BN general L with D2 = 4 and
D.L = 11.

d0 d1 d2 scroll type

9 4 0 (1, 1, 1, 1, 0, 0, 0, 0, 0)

9 3 1 (2, 1, 1, 0, 0, 0, 0, 0, 0)

9 2 2 (2, 2, 0, 0, 0, 0, 0, 0, 0)
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2.10.1 (1, 1, 1, 1, 0, 0, 0, 0, 0)

Arguing as in section 2.9.1 we get RL,D = ∅ or RL,D = {Γ}.
The lattice of equation (1.20) gives an 18-dimensional family of K3 surfaces with

c = 5 and D2 = 4. Lemma 1.4.9 gives RL,D = ∅. We will see below that the other
possible configurations with c = 5 and D2 = 4 all have rankPicS > 3. Hence the scroll
type must be (1, 1, 1, 1, 0, 0, 0, 0, 0).

There exists a 17-dimensional family of K3 surfaces with RL,D = {Γ} and associated
scroll type (1, 1, 1, 1, 0, 0, 0, 0, 0).

Consider the lattice ZD ⊕ ZF ⊕ ZΓ with intersection matrix





D2 D.F D.Γ
D.E F 2 F.Γ
D.Γ F.Γ Γ2



 =





4 11 1
11 4 −1
1 −1 −2





It has signature (1,2), so by proposition 1.1.24 there exists a K3 surface with Pic S =
ZD ⊕ ZF ⊕ ZΓ.

Using the methods of the previous sections we find that we may assume that D is a
free Clifford divisor. Furthermore one gets RL,D = {Γ}.

We will show below that for the other possible scroll types we always have rankPic S >
3. Hence the associated scroll type is (1, 1, 1, 1, 1, 0, 0, 0).

2.10.2 (2, 1, 1, 0, 0, 0, 0, 0, 0)

We have h0(L− 2D) = 1. Hence we can write R := L− 2D as a sum of smooth rational
curves. We also have R.D = 3, R.L = 0, and R2 = −6. This is just the conditions we
used to classify ∆ in section 1.5. Hence we can use the results we got there.

We get the following configurations:46

L ∼ 2D + Γ1 + Γ2 + Γ3 with the following configuration

(2.67) D

AA
AA

AA
AA

Γ3

Γ1 Γ2

and RL,D = {Γ1,Γ2,Γ3}.
L ∼ 2D + Γ−1 + 2Γ0 + · · · 2ΓN + ΓN+1 + ΓN+2 with the following configuration

(2.68) D Γ0 · · · ΓN ΓN+1

Γ−1 ΓN+2

and RL,D = {Γ−1,Γ0}.

46Note that in all of the following cases we can show that R is fixed in F = L−D. Hence R = ∆. We
also have h1(R) = 2 6= D.∆ = 3.
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L ∼ 2D + 3Γ0 + 2Γ1 + 2Γ2 + Γ3 + Γ4 with the following configuration

(2.69) D Γ0

AA
AA

AA
A

Γ1 Γ3

Γ2 Γ4

and RL,D = {Γ0}.
L ∼ 2D + 3Γ0 + 4Γ1 + 2Γ2 + 3Γ3 + 2Γ4 + Γ5 with the following configuration:

(2.70) D Γ0 Γ1

AA
AA

AA
A

Γ2

Γ3 Γ4 Γ5

and RL,D = {Γ0}.
L ∼ 2D + 3Γ0 + 4Γ1 + 5Γ2 + 6Γ3 + 4Γ4 + 2Γ5 + 3Γ6 with the following configuration:

(2.71) D Γ0 Γ1 Γ2 Γ3

AA
AA

AA
A

Γ4 Γ5

Γ6

and RL,D = {Γ0}.

2.10.3 (2, 2, 0, 0, 0, 0, 0, 0, 0)

We will show that this case does not exist. We have h0(R) = 2 and h1(R) = 3. We also
have R.D = 3, R.L = 0, and R2 = −6.

By Ramanujam’s lemma we can write R ∼ G+H, where G and H are non-zero with
G.H = 0.47 Since L.R = 0 we get L.G = L.H = 0. Using lemma 1.1.16 and G.H = 0
we get

h1(G + H) = h0(G + H,OG+H) − 1

= h0(G,OG) + h0(H,OH) − 1

= h1(F ) + h1(G) + 1.

Then Riemann-Roch gives

2 = h1(G + H) =
1

2
G2 +

1

2
H2 + 2 + h1(G + H)

=
1

2
G2 +

1

2
H2 + 3 + h1(F ) + h1(G)

= h0(F ) + h0(G) − 1.

47Since h0(R) = 2 we must have G2 ≤ 0 and H2 ≤ 0.
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Hence either h0(G) = 2 or h0(H) = 2.

Assume G2 = 0. Since G.L = 0 we get G = 0 by the Hodge index theorem, a
contradiction.

Assume G2 = −2. Then we have H2 = −4. Furthermore L.G = L.H = 0 gives
D.G = 1 and D.H = 2. If h0(G) = 2, then h1(G) 6= 0 and we can write G ∼ G1 +
G2, where G1 and G2 are non-zero with G1.G2 = 0. Since D.G = 1 we either have
D.G1 = 0 or D.G2 = 0. If D.G1 = 0, then since L.G1 = 0 we also get H.G1 = 0.
Consequently G1 = 0, since L is numerically 2-connected, a contradiction. We similarly
get a contradiction if D.G2 = 0. Hence we cannot have h0(G) = 2. Therefore h0(H) = 2.
Then h1(H) 6= 0 and we can write H ∼ H1 + H2, where H1 and H2 are non-zero with
H1.H2 = 0. We cannot have H2

i = 0 for the same reason as for G2 = 0. Therefore
H2

1 = H2
2 = −2, since H2 = −4. Since H1 and H2 are non-zero and L is numerically

2-connected we get H1.D = H2.D = 1. Arguing as above we must have h0(H1) = 2 or
h0(H2) = 2. Iterating the argument for h0(G) = 2 we get a contradiction.

If G2 = −4 or G2 = −6, then we get H2 = −2 or H2 = 0 respectively. Hence we are
in a case already considered.

If G2 ≤ −8, then H2 > 0, a contradiction.

So the scroll type (2, 2, 0, 0, 0, 0, 0, 0, 0) is not associated to any free Clifford divisor.

2.11 g 6= 12

In this chapter we have only considered g = 12. We will now give an overview over what
has to be done for other genera.

The BN general case is the hardest to classify, because we can not use µ(L) to
automatically reduce the problem to a lattice-theoretical one. On the other hand Mukai
[Muk95] has been able to say very much in this case for low genera (with L ample). I
have only been able to obtain a rather poorly translation of his article, so it is difficult
for me to say whether his techniques may be extended to higher genera. Since he has
not done the g = 11 case it seems probable that his techniques does not easily extend to
other genera. The base point free but non-ample situation also has to be considered. It
looks like no work has been done in this area.

For the Clifford general and non-BN general case almost everything that is known at
present is included in section 1.4. The big problem that remains to show here is whether
one always can assume h1(F ) = h1(D) = 0. Proposition 1.4.6 gives conditions for h1(F )
and h1(D) to vanish but one would like stronger conditions if possible. For g ≥ 14 the
conditions of proposition 1.4.6 are not strong enough to guarantee h1(F ) = h1(D) = 0.
Even for the case g = 14 iii) treated on p. 33 it is difficult to decide whether h1(F ) =
h1(D) = 0 always holds. The example with Cliff(L) = 6 and µ(L) = 7 in remark 1.4.8
is of this type with h1(D) = h1(F ) = 0. I have been able to show that if h1(D) 6= 0 or
h1(F ) 6= 0, then rankPic S > 4 by arguing with Ramanujans’s lemma and the Hodge
index theorem. If one wants to use this procedure to show that h1(D) = h1(F ) = 0
always holds, then one has to check that rankPic S = n is impossible for each n with
1 ≤ n ≤ 20. This is computationally very long-winded, and it does not seem feasible to
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do this in every case where the conditions of proposition 1.4.6 are not satisfied. So if one
wants to study fully the Clifford general and non-BN general case for g ≥ 14 it seems
that one has to try a different approach.

The non-Clifford general case is easier. For g 6= 12 this can be treated just as we
have done in this chapter for g = 12. Chapter 1 includes all the necessary theory. For
higher g there are more possibilities for c, this will make the classification more time
consuming. But for a fixed c the classification will actually become easier as we increase
g. There are several reasons for this. Firstly when g is high enough we may assume
D2 = 0 (lemma 1.6.1). Secondly when g is high enough we always get h1(R) = 0 by the
Hodge index theorem. See for example our classification of ∆′ for c = 4 where we showed
that h1(R) = 0 for L2 ≥ 74 and c = 4. Thirdly the results of section 1.6 implies that for
large g we may just make small modifications in the classification for g− c− 2 to get the
classification for g. For example when c = 4 it is enough to know the classification from
g = 74 to 86 to know the classification for all g ≥ 74.48

48Proof: When g ≥ 74 we have h1(R) = 0. Propositions 1.6.2 and 1.6.4 then give a one-to-one
correspondence between perfect Clifford divisors associated to polarized K3 surfaces of genus g(L) = g
and g(L + D) = g + 6 with c = 4.
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Other Surfaces





Chapter 3

Del Pezzo Surfaces

We will now consider Del Pezzo surfaces. Section 3.1 gives an introduction to Del Pezzo
surfaces and contains results we need later on.

In section 3.2 we introduce some concepts used to study higher order embeddings:
k-jet ampleness, k-very ampleness, k-spannedness, birational k-very ampleness, and bi-
rational k-spannedness. We give a brief introduction to these concepts before discussing
k-very ampleness and birational k-very ampleness in more detail on Del Pezzo surfaces.
Di Rocco [Roc96] has completely characterized k-very ampleness on Del Pezzo surfaces.
Knutsen [Knu02] has done the same for birational k-very ampleness. We will translate
Knutsen’s result to numerical conditions in the Picard group. This will enable us to
compare the results of Di Rocco and Knutsen.

In many cases the results of Knutsen give in a natural way scrolls containing projective
models of Del Pezzo surfaces. In section 3.3 we will study these scrolls. In the first half
of the section we compute scroll types, while we in the second half look at the resolutions
that arise from the inclusion of the projective model in the scroll.

3.1 Preliminaries

Definition 3.1.1. A Del Pezzo surface S is a surface with an ample anticanonical bundle
−KS. The degree of S is deg S = K2

S .

Remark 3.1.2. This definition differs slightly from the one in [Har77, remark V.4.7.1]. In
[Har77] a Del Pezzo surface is a surface with a very ample anticanonical bundle −KS .

We write BP1,...,Pn(S) for the blow up of S at the points P1, . . . , Pn. We say that the
points P1, . . . , Pn are in general position if no 3 of the Pi are collinear and no 7 of them
lie on a conic.

We have a complete description of the isomorphism classes of Del Pezzo surfaces.

Theorem 3.1.3. (see [Dem80]) Let S be a Del Pezzo surface. Then

1 ≤ deg S ≤ 9.

Furthermore S is of one of the following types:
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(a) deg S = 9 if and only if S ∼= P2

(b) if deg S = 8, then either S ∼= P1 × P1 or S ∼= BP (P2).

(c) if 1 ≤ deg S ≤ 7, then S ∼= BP1,...,P9−deg S
(P2) where P1, . . . , P9−deg S are points in

general position on P2.

We will from now on denote a Del Pezzo surface of degree deg S by Sn, where n =
9 − deg S, when S � P2 and S � P1 × P1.

We will now describe the Picard lattice on a Del Pezzo surface.
If S ∼= P2, then

Pic S = Zl,

where l is a line bundle such that l2 = 1. Furthermore KS = −3l.

If S ∼= P1 × P1, then

PicS = Zl1 ⊗ Zl2,

where l1 and l2 are line bundles such that l2i = 1 and l1.l2 = 0.

For Sn the Picard lattice is a bit more involved.1 Let

π : Sn → P2

be the blowing up of P2. We denote by l the class of π∗(OP2(1)) and by ei the class of
π−1(Pi). Then

l2 = 1, ei.ej = −δij, ei.l = 0,

and

PicSn = Zl ⊗ Ze1 ⊗ · · · ⊗ Zen.

Furthermore −KSn = 3l −
∑n

1 e1. Note that −KSn is base point free unless n = 8. Also
−KS is very ample if and only if deg S ≥ 3. Thus we see that the definition in [Har77]
corresponds to our definition when deg S ≥ 3.

We will usually write line bundles on the form al −
∑n

1 biei. Note that the the
self-intersection of al −

∑n
1 biei is a2 −

∑n
1 b2

i .
Riemann-Roch on Del Pezzos is as follows

h0(D) − h1(D) + h0(K − D) =
1

2
D.(D − K) + 1.

Since K is ample (and hence especially effective) there arises situations where both h0(D)
and h0(K − D) are positive.

We will need some vanishing results.

Proposition 3.1.4. [Par91, (0.4.5) and (0.4.6)] Let S be a Del Pezzo surface.

If C is a connected reduced curve, then

h1(−C) = h1(C + K) = 0.

1See [Har77, section V.3] for proofs of the following.
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If L is base point free, then

h1(L) = h2(L) = 0.

If L is nef with g(L) ≥ 1, then

h1(L) = h1(L + K) = h2(L) = h2(L + K) = 0.

The adjunction formula is

g(L) =
1

2
L.(L + K) + 1.

Using Riemann-Roch and the previous proposition we see that this gives h0(L + K) =
g(L) when L is nef and g(L) ≥ 1.

Almost all nef divisors on Del Pezzos are base point free. In fact L is nef if and only
if L is base point free or L ∼ −KS8 [Roc96, corollary 4.7].

A (-1)–curve is a curve Γ such that Γ2 = −1. Such a curve is necessarily a smooth
rational curve and satisfies Γ.K = −12 (use the adjunction formula). We write

In := {Γ ∈ Pic Sn|Γ
2 = −1 and L.KSn = −1}.

All of the members of his set are irreducible effective divisors. The cardinality of In is
finite (see table [Roc96, p.4]).

Proposition 3.1.5. Let L be a divisor on a Del Pezzo surface, such that L � −KS8 ,
L � −2KS8 , and L � −KS7. Then L is ample if and only if it is very ample.

Proof. If S ∼= P2 or S ∼= P1 × P1, then the result follows from [Har77, examples II.7.6.1
and II.7.6.2].

Assume that S ∼= Sr, L � −KS8 , L � −2KS8 , and L � −KS7 . Then [Roc96,
corollary 4.5] gives that if L.ξ > 0 for any ξ ∈ Ir and L.(l−e1) > 0, then L is very ample
(since 1-very ample is equivalent to very ample).3 By definition very ample implies
ample. The Nakai-Moishezon criterion gives that if L is ample, then L.ξ > 0 for any
ξ ∈ Ir and L.(l − e1) > 0. Thus we get the result.

3.2 k-very ampleness and birational k-very ampleness

After introducing the concepts of k-very ampleness and birational k-very ampleness we
study these concepts on Del Pezzo surfaces. The first half of this section is influenced by
lectures held by T. Szemberg on “Higher order embeddings” in Bedlewo, March 2002. We
will only consider the algebraic properties of the concepts we introduce. For geometric
properties see the references.

2This property in fact characterizes (-1)-curves almost completely: if D is an effective irreducible
divisor on Sr such that D.KSr

= −1, then D is a (-1)-curve or D = −KS8
[Dem80, lemma 9].

3See next section.
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Definition 3.2.1. Let L be a line bundle on a smooth projective variety X and k ≥ 1
an integer.

L is k-jet ample if the evaluation map

H0(X,L) −→ H0(X,L ⊗OX/(mk1
y1

⊗ · · · ⊗ m
kr
yr

))

is surjective for any choice of distinct points y1, . . . , yr in X and positive integers k1, . . . , kr

such that
∑

ki = k + 1.

L is k-very ample (resp. k-spanned) if for every zero-dimensional subscheme (resp.
curvilinear zero-dimensional subscheme) (Z,OZ) ⊆ (X,OX ) of length k +1 the natural
map

H0(X,L) −→ H0(X,L ⊗OZ)

is surjective.

These concepts where introduced by Beltrametti and Sommese to study higher order
embeddings, but have lately been much studied for their own sake. We list some examples
and first properties.

1. A line bundle L is 0-jet ample if and only if it is 0-very ample if and only if it is
0-spanned if and only if it is base point free.

2. A line bundle L is 1-jet ample if and only if it is 1-very ample if and only if it is
1-spanned if and only if it is very ample.

3. A line bundle L is k-jet ample only if it is k-very ample only if it is k-spanned.

4. There exists line bundles that are k-very ample but not k-jet ample. Take for
example an abelian surface with Picard number 1 and let L be a primitive line
bundle of type (1, 7). Then L is 2-very ample and 1-jet ample but not 2-jet ample
(see [BS97]). There exists examples of k-spanned line bundles that are not k-very
ample, but none are known on surfaces.

5. Let L be k-jet ample and M be l-jet ample. Then L + M is k + l-jet ample.
In particular let L be an ample line bundle and fix a positive integer k, then pL
is k-jet ample for all sufficiently large p. (Corresponding statements holds for k-
spannedness.4)

6. Let C be a curve of genus g and L a line bundle of degree d. Then [Ha, corollary
IV.3.2] says that if deg L ≥ 2g + k, then L is k-jet ample (k = 0 or 1). This result
also holds for all k > 1.

Proposition 3.2.2. [BS88a, 0.5.1] If L is a k-very ample line bundle on a surface S,
then L.C ≥ k for every curve C on S, with equality only if C ∼= P1.

4But not for k-very ampleness. See [BS93].
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Theorem 3.2.3. [BS88b, theorem 2.1] Let M be a nef line bundle on a smooth surface
S, such that M 2 ≥ 4k + 5, for k ≥ 0. Then either K = M + KS is k-very ample or
there exists an effective divisor D such that M − 2D is Q-effective, D contains some
zero-dimensional subscheme where the k-very ampleness fails and

M.D − k − 1 ≤ D2 ≤
M.D

2
< k + 1.

Di Rocco has completely characterized k-very ampleness on Del Pezzo surfaces [Roc96,
corollary 4.6].

Definition 3.2.4. (Knutsen) Let L be a line bundle on a smooth projective variety
X and k ≥ 1 an integer. L is birationally k-very ample (resp. birationally k-spanned)
if there exists a non-empty Zariski-open subset of S where L is k-very ample (resp.
k-spanned).

Knutsen gives in [Knu02] conditions for the adjoint bundle on a Del Pezzo surface to
be birationally k-very ample.

Theorem 3.2.5. [Knu02, theorem 1.1] Let L be a nef line bundle of sectional genus
g(L) ≥ 2 on a Del Pezzo surface S and k ≥ 1 an integer. The following is equivalent:

1. L + KS is birationally k-very ample,

2. L + KS is birationally k-spanned,

3. L.D ≥ k+2 (resp. L.D ≥ k+3) for all smooth rational curves D with D2 = 0 (resp.
D2 = 1) and −KS .L ≥ k + 2 + m(L) + K2

S whenever KS + m(L) ≤ min{k + 1, 4},
where m(L) is the cardinality of

R(L) := {Γ|Γ = (−1)-curve and Γ.L = 0}

We will be working with the following conditions:

(†)

h0(D) ≥ 2, h0(L − D) ≥ 2,

D.(L − D) ≤ k + 1, L + KS ≥ D,

and if L2 ≥ 4k + 3, then L ≥ 2D

With (†) we have the following proposition, which is a main ingredient in the proof of
theorem 3.2.5.

Proposition 3.2.6. [Knu02, proposition 3.7] Assume that L is a big and nef line bundle
of sectional genus g(L) ≥ 2 on a Del Pezzo surface S such that L � −2KS8 . Assume
that there are divisors satisfying the condition (†) for k = k0, but none for k < k0. Then
k0 ≥ 1, and any divisor D satisfying (†) for k = k0 has the following properties (with
M := L − D):

1. D.M = k0 + 1,
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2. h1(D) = h1(M) = h1(D + KS) = h1(M + KS) = 0,

3. M and D are nef with g(M) ≥ 1,

4. the general members of |D| and |M | are smooth curves.

Furthermore D is of one of the following types (with g(D) = 0 in (a)-(b) and g(D) = 1
in (c)-(g)):

(a) D2 = 0, D.KS = −2,

(b) D2 = 1, D.KS = −3,

(c) D ∼ −KS8 ,

(d) D2 = −KS .D = 2, K2
S ≤ 2 with D ∼ −KS7 if K2

S = 2,

(e) D2 = −KS .D = 3, K2
S ≤ 3 with D ∼ −KS6 if K2

S = 3,

(f) D2 = −KS .D = 4, g(L) = 5, k0 = 3, K2
S ≤ 4 with D ∼ −KS5 if K2

S = 4.

Remark 3.2.7. If S ∼= P2 or S ∼= P1 × P1, then it is easily seen that we must be in case
(b) of the proposition. Then we have D ∼ l if S ∼= P2 and D ∼ li if S ∼= P1 × P1.

When S ∼= Sr tables 3.1 and 3.2 give the possible equivalence classes of D in the
cases (a) and (b).5

Possibilities for D in the cases (c)-(f) are discussed in [Knu02, remark 3.8]. Here we
just note that in most cases when we have a divisor L with an associated divisor D as
in the proposition of type (c)-(f), then in most cases there also exists a divisor D ′ of
type (a) or (b) associated to L. For example if S ∼= S5, then we must be in case (a),(b),
or (f). The only big and nef divisor L with g(L) ≥ 2 which is not of type (a) or (b) is
L ∼ −2KS5 .

6

We will now look at the numerical conditions the results of [Knu02] give for deg S ≥ 7.
We first consider S ∼= P2 and S ∼= P1 × P1.

Proposition 3.2.8. Let S ∼= P2 and L ∼ al be a divisor on S. Then L is k-very ample
if and only if L is birationally k-very ample if and only if a ≥ k.

Let S ∼= P1 × P1 and L ∼ al1 + bl2 be a divisor on S. Then L is k-very ample if and
only if L is birationally k-very ample if and only if a ≥ k and b ≥ k.

5Table 3.1 is equal to the table on top of p.5 in [Roc96]. It is not immediate that they should be
equal since the table in [Roc96] lists divisors such that D2 = 0 and D.KS = −2, while table 3.1 lists
nef divisors such that D2 = 0 and D.KS = −2. Table 3.2 lists nef divisors such that D2 = 1 and
D.KS = −3. In this case there exists five non-nef divisors that satisfy D2 = 1 and D.KS = −3, such as
L ∼ 7l − 3e1 − 3e2 − 3e3 − 3e4 − 3e5 − e6 − e7 − e8. These have been excluded from the table.

6This is not immediate, but the proof is not particularly difficult either. It consists more or less of
finding all L such that −KS5

.(L + KS5
) = 4 and D.(L − D) > 4 for all possible D in tables 3.1 and 3.2.
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Table 3.1: Possible divisors D in case (a)

a, b1, b2, b3, b4, b5, b6, b7, b8

1, 1, 0, 0, 0, 0, 0, 0, 0

2, 1, 1, 1, 1, 0, 0, 0, 0

3, 2, 1, 1, 1, 1, 1, 0, 0

4, 3, 1, 1, 1, 1, 1, 1, 1

4, 2, 2, 2, 1, 1, 1, 1, 0

5, 2, 2, 2, 2, 2, 2, 1, 0

5, 3, 2, 2, 2, 1, 1, 1, 1

6, 3, 3, 2, 2, 2, 2, 1, 1

7, 3, 3, 3, 3, 2, 2, 2, 1

7, 4, 3, 2, 2, 2, 2, 2, 2

8, 3, 3, 3, 3, 3, 3, 3, 1

8, 4, 3, 3, 3, 3, 2, 2, 2

9, 4, 4, 3, 3, 3, 3, 3, 2

10, 4, 4, 4, 4, 3, 3, 3, 3

11, 4, 4, 4, 4, 4, 4, 4, 3

Table 3.2: Possible divisors D in case (b)

a, b1, b2, b3, b4, b5, b6, b7, b8 a, b1, b2, b3, b4, b5, b6, b7, b8

1, 0, 0, 0, 0, 0, 0, 0, 0 9, 4, 4, 4, 4, 2, 2, 2, 2

2, 1, 1, 1, 0, 0, 0, 0, 0 9, 5, 4, 3, 3, 3, 2, 2, 2

3, 2, 1, 1, 1, 1, 0, 0, 0 10, 5, 5, 3, 3, 3, 3, 3, 2

4, 3, 1, 1, 1, 1, 1, 1, 0 10, 5, 4, 4, 4, 3, 3, 2, 2

4, 2, 2, 2, 1, 1, 1, 0, 0 10, 5, 5, 3, 3, 3, 3, 3, 2

5, 2, 2, 2, 2, 2, 2, 0, 0 10, 6, 3, 3, 3, 3, 3, 3, 3

5, 3, 2, 2, 2, 1, 1, 1, 0 11, 5, 5, 4, 4, 4, 3, 3, 2

5, 3, 3, 1, 1, 1, 1, 1, 1 11, 6, 4, 4, 4, 3, 3, 3, 3

6, 3, 3, 2, 2, 2, 2, 1, 0 12, 5, 5, 5, 4, 4, 4, 4, 2

6, 3, 3, 3, 2, 1, 1, 1, 1 12, 5, 5, 5, 5, 4, 3, 3, 3

6, 4, 2, 2, 2, 2, 1, 1, 1 12, 6, 5, 4, 4, 4, 4, 3, 3

7, 3, 3, 3, 3, 2, 2, 2, 0 13, 6, 5, 5, 5, 4, 4, 4, 3

7, 4, 3, 3, 2, 2, 2, 1, 1 13, 6, 6, 4, 4, 4, 4, 4, 4

8, 3, 3, 3, 3, 3, 3, 3, 0 14, 6, 5, 5, 5, 5, 5, 5, 3

8, 4, 3, 3, 3, 3, 3, 1, 1 14, 6, 6, 5, 5, 5, 4, 4, 4

8, 4, 4, 3, 3, 2, 2, 2, 1 15, 6, 6, 6, 5, 5, 5, 5, 4

8, 5, 3, 2, 2, 2, 2, 2, 2 16, 6, 6, 6, 6, 6, 5, 5, 5

9, 4, 4, 4, 3, 3, 3, 2, 1 17, 6, 6, 6, 6, 6, 6, 6, 6
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Proof. Assume first that S ∼= P2. Then it is shown in [BS93, (2.1.1)] that L is k-very
ample if and only if a ≥ k. By remark 3.2.7 we see that L ∼ al is not birationally k-very
ample if and only if (L − K).D = (L − K).l ≤ k + 2.7 Since KP2 ∼ −3l, this condition
is equivalent to L.l = a ≤ k − 1.

The proof for S ∼= P1 × P1 is similar.

We will now consider S ∼= S1.

Lemma 3.2.9. Let S ∼= S1 and L ∼ al − be1 be a divisor on S. Then L is big and nef
with g(L) ≥ 2 if and only if a > b + 1 ≥ 1, L � 2l, and L � 3l.

Proof. L is nef if and only if a ≥ b ≥ 0, by [Roc96, theorem 3.4]. L is big if and only if
a2 > b2. Hence L is big and nef if and only if a > b ≥ 0.

Assume that L is a big and nef divisor. If a = b + 1 we get

g(L) =
1

2
L.(L + K) + 1 =

1

2
((2b + 1) + (−2b − 3)) + 1 = 0.

If a = b + 2, then

g(L) =
1

2
L.(L + K) + 1 =

1

2
((4b + 4) + (−2b − 6)) + 1 = 2b

is less than 2 if and only if b = 0.

If a = b + 3, then

g(L) =
1

2
L.(L + K) + 1 =

1

2
((6b + 9) + (−2b − 9)) + 1 = 4b + 1

is less than 2 if and only if b = 0.

If a > b + 3, then g(L) ≥ 2.

Proposition 3.2.10. Let S ∼= S1 and L ∼ al−be1 be a big and nef divisor with g(L) ≥ 2.

1. If b = 0, then L + K is birationally k-very ample if and only if k ≤ a − 3.

2. If b 6= 0, then L + K is birationally k-very ample if and only if k ≤ a − b − 2.

Proof. Let L be a big and nef divisor with g(L) ≥ 2 that is birationally (k0 − 1)-very
ample but not k0-very ample. Then we must be in case (a) or (b) of proposition 3.2.6. If
we are in case (b), then D2 = 1 and D.K = −3 gives D ∼ l. If we are in case (a), then
D2 = 0 and D.K = −2 gives D ∼ l − e1.

Assume that we are in case (b), then we have

D.(L − D) = l.((a − 1)l − be1) = a − 1 = k0 + 1.

7If a < 0, this is trivial. If a = 0, then L is easily seen to be birationally 0-very ample but not
birationally 1-very ample. If a > 0, then L − K is nef and big with g(L − K) ≥ 2 so the conditions of
proposition 3.2.6 holds for L − K (see lemma 3.2.11).
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Hence a = k0 + 2. If b 6= 0, then D′ = l − e1 < L and

k0 + 1 ≤ D′.(L − D′) = (l − e1).((a − 1)l − (b − 1)e1) = a − b ≤ k0 + 1,

thus we are also in case (a).

Assume that we are in case (a). Then b 6= 0 since D ∼ l − e1 < L and M = L−D is
nef. We have

D.(L − D) = (l − e1).((a − 1)l − (b − 1)e1) = a − b = k0 + 1.

Hence L ∼ (k0 + 1 + b)l − be1.

This gives the if part of the proposition. That it also gives the only if part follows
from theorem 3.2.5.

Lemma 3.2.11. Let L be a nef divisor on a Del Pezzo surface. Then L − K is big and
nef with g(L − K) ≥ 2.

Proof. Since both L and −K is nef, it is immediate that L−K is nef. Since L is nef and
−K is ample we also gave that L2 ≥ 0, −L.K > 0, and −K2 > 0. Hence (L − K)2 > 0
so L − K is big. Using L2 ≥ 0 and −L.K > 0 we get

g(L − K) =
1

2
(L − K).L + 1 > 1.

Corollary 3.2.12. Let S ∼= S1 and L ∼ al− be1 be a nef (equivalently a base point free)
divisor. Then L is birationally k-very ample if and only if k ≤ a − b.

Proof. By the lemma L′ = L − K is nef and big with g(L) ≥ 2 for all nef L. The result
then follows from proposition 3.2.10.

Corollary 3.2.13. Let S ∼= S1 and L ∼ al − be1 be a nef (equivalently a base point
free) divisor. Then L is birationally k-very ample but not k-very ample if and only if
b < k ≤ a − b.

Proof. Follows from [Roc96, theorem 4.6] and the preceding corollary.

This corollary gives the existence of line bundles that are (k − 1)-very ample and
birationally k-very ample but not k-very ample, namely L ∼ (k − 1)l − ke1.

For S ∼= S2, as for S ∼= S1, we only have (up to symmetry) the possibilities D ∼ l
and D ∼ l − e1 to consider. The proof of proposition 3.2.10 holds almost ad verbatim
for S ∼ S2. We get the following results.

Proposition 3.2.14. Let S ∼= S2 and L ∼ al − b1e1 − b2e2 be a big and nef divisor with
g(L) ≥ 2 and b1 ≥ b2.

1. If b1 = 0, then L + K is birationally k-very ample if and only if k ≤ a − 3.
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2. If b1 6= 0, then L + K is birationally k-very ample if and only if k ≤ a − b1 − 2.

Corollary 3.2.15. Let S ∼= S2 and L ∼ al − b1e1 − b2e2 be a nef (or equivalently a
base point free) divisor with b1 ≥ b2. Then L is birationally k-very ample if and only if
k ≤ a − b1.

Corollary 3.2.16. Let S ∼= S2 and L ∼ al − b1e1 − b2e2 be a nef (or equivalently a base
point free) divisor with b1 ≥ b2. Then L is birationally k-very ample but not k-very ample
if and only if b1 + k ≤ a < b1 + b2 + k or b2 < k ≤ a − b1.

Proof. Follows from [Roc96, theorem 4.6] and the preceding corollary.

Remark 3.2.17. One can make similar statements as in the preceding results for Del
Pezzo surfaces with deg S < 7 using [Roc96, theorem 4.6] and proposition 3.2.6. There
will arise no new technical difficulties, but the proofs will be much longer with many
more cases to consider. For example for deg S = 1 there is over a hundred different
possibilities (up to symmetry) for D which have to be considered.

3.3 Scroll types and resolutions

We will now look at the scroll types that arise when S ∼= S1 and we are in case a)
of proposition 3.2.6. We have already seen in the proof of proposition 3.2.10 that this
case arises if and only if L ∼ (k0 + 1 + n)l − ne1 with n > 0 and D ∼ l − e1. Then
L + K ∼ (k0 + n − 2)l − (n − 1)e1. By [Roc96, corollary 4.6] we see that L + K is base
point free (since k0 ≥ 1 and n > 0). Hence we get a morphism

(3.1) φL+K : S −→ Ph0(L+K)−1 = Pg(L)−1

Since h0(D) = 2 we see that |D| is a pencil. We have seen (p. 21) that this gives a scroll
T = T (D) containing φL+K(S). We would like to determine its type. For this we need
the following lemma.

Lemma 3.3.1. Let S ∼= Sr and L ∼ al +
∑

biei a divisor on S with a, b1, . . . , br ≥ 0.
Then

∑
biei is fixed in L and h0(L) = 1

2a(a + 3) + 1.

Proof. Assume first that
∑

biei is fixed in L, then

h0(L) = h0(al) =
1

2
a(a + 3) + 1,

where we have used Riemann-Roch and the fact that al is nef so h1(al) = h2(al) = 0.
We will now show that

∑
biei is fixed in L. By induction on the number of non-zero

bi it is enough to show that bjej is fixed in L. We have

L.ej = −bj.

Since ej is an irreducible curve this gives that ej is fixed in L by [Har77, proposi-
tion V.1.4]. Now

(L − ej).ej = −(bj − 1),
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so ej is fixed in L − ej (if bj ≥ 2). Continuing this we get that ej is fixed in L − bej for
b < bj. Hence bjej is fixed in L.

To find the scroll type it is enough to calculate

di = h0(L + K − iD) − h0(L + K − (i + 1)D).

We have

L + K − iD ∼ (k0 + n − 2 − i)l − (n − 1 − i)e1.

[Roc96, theorem 3.4] gives that this divisor if nef if and only if i ≤ n − 1. This gives
h1(L + K − iD) = h2(L + K − iD) = 0 for i ≤ n − 1, so we can use Riemann-Roch to
calculate h0(L + K − iD).

When n − 1 < i ≤ k0 + n − 2 we can calculate h0(L + K − iD) using lemma 3.3.1.
For i > k0 + n − 2 we get l.(L + K − iD) < 0, so h0(L + K − iD) = 0 since l is nef.
Combining the above we get

d = d0 = k0

d1 = k0

...
...

...

dn−1 = k0

dn = k0 − 1

dn+1 = k0 − 2
...

...
...

dk0+n−2 = 1

dk0+n−1 = 0

Which gives the scroll type

(3.2) (k0 + n − 2, k0 + n − 3, . . . , n, n − 1).

Note that when S ∼= S1 and we are in case (b) of proposition 3.2.6 we get no similar
results, for then L + K is not even base point free and we do not even get a morphism
φL+K .

We will now generalize some of the arguments made above while finding the scroll
type. First note that the only fact about al we used in the proof of lemma 3.3.1 to show
that

∑
biei was fixed was that h0(al) > 0. Hence the same proof gives:

Proposition 3.3.2. Let S ∼= Sr and L ∼ al −
∑

biei be a divisor on S with h0(L) > 0.

Furthermore write b′i = max{0, bi} and b†i = min{0, bi}. Then
∑

b†iei is fixed in L and
h0(L −

∑
b′iei) = h0(L) > 0.

Secondly we showed that al − bei is not effective when a < 0. By similar arguments
we can give a complete description of when h0(L) > 0 for a divisor on S1.
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Proposition 3.3.3. Let al − be1 be a divisor on S1. Then h0(L) > 0 if and only if
a ≥ 0 and a ≥ b.

Proof. Assume that L is effective. Then since l and l − e1 are nef divisors on S1, we get
L.l ≥ 0 and L.(l − e1) ≥ 0. This gives a ≥ 0 and a − b ≥ 0.

For the converse assume that a ≥ 0 and a ≥ b. If b < 0, then L ∼ (al) + (−be1) is
linearly equivalent to the sum of two effective divisors and hence h0(L) > 0. If b ≥ 0,
then L is nef by [Roc96, theorem 3.4] and hence h0(L) > 0.

We will now look at scroll types that arise when S ∼= S2. We can handle this situation
almost as we did S ∼= S1, there are only minor computational differences. This time also
we are in case (a) or (b) of proposition 3.2.6. Case (b) happens if and only if L ∼ (k0+2)l,
in which case L+K is not even base point free and we do not get a morphism φL+K . Case
(a) happens only if D ∼ l − e1 or D ∼ l − e2. We can assume without loss of generality
that D ∼ l − e1. Then we get L ∼ (k0 + 1 + n1) − n1e1 − n2e2 where n1 ≥ n2 ≥ 0
and n1 ≥ 1. For L + K to be base point free we also have to assume k0 ≥ n2 by [DR,
theorem 3.4]. Then as above we get a morphism φL+K and a scroll T = T (D) containing
φL+K(S).

We have

L + K − iD ∼ (k0 + n − 2 − i)l − (n − 1 − i)e1 − (n2 − 1)e2.

Using [Roc96, corollary 4.6] again we see that L+ K − iD is nef if and only if i ≤ n− 1.
As above this gives h0(L + K − iD) when i ≤ n − 1.

For i > n − 1 we can calculate h0(L + K − iD) using proposition 3.3.2. We get

h0(L + K − iD) = h0((k0 + n1 − 2 − i)l − (n2 − 1)e2).

A := (k0 + n1 − 2 − i)l − (n2 − 1)e2 is nef for i ≤ k0 + n1 − n2 − 1 and we can calculate
h0(A) using Riemann-Roch and h1(A) = h2(A) = 0. For i > k0 + n1 − n2 − 1 we get
h0(A) = 0, since then A.(l − e2) > 0 and l − e2 is nef.

Combining the above we get

d = d0 = k0

d1 = k0

...
...

...

dn1−1 = k0

dn1 = k0 − 1

dn1+1 = k0 − 2

...
...

...

dk0+n1−n2−2 = n2 + 1

dk0+n1−n2−1 = n2

dk0+n1−n2 = 0
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Which gives the scroll type

(3.3) (k0 + n1 − n2 − 1, . . . , k0 + n1 − n2 − 1
︸ ︷︷ ︸

n2

, k0 + n1 − n2 − 2, . . . , n1, n1 − 1).

One can make similar statements for S ∼= Sr with r ≥ 3, but in these cases the
computations will be more difficult and there are more cases to consider as we will get
different scroll types for each choice of D in table 3.1.

We will now take a closer look at the resolutions that arise from the inclusion
φL+K(S) ⊂ T . We will use the techniques of [Sch86] and the results will be similar
to those in [JK01, section 7].

We will assume that we are in case a) of proposition 3.2.6. To make things easier we
will also assume that L + K is very ample. Then the morphism

(3.4) φL+K : S −→ Ph0(L+K)−1 = Pg(L)−1

is an embedding. As above we get a canonical scroll T = T (D) containing S ′ :=
φL+K(S). We will construct a resolution of the structure sheaf OS′ as an OT -module.

If S ∼= S1, S2, or S3, then D ∼ l−ei and |D| consists of the pullback, by the morphism

π : S −→ P2,

of the lines in P2 that passes through Pi. Hence every divisor in |D| is a smooth rational
curve.

For general S every divisor in |D| is not a smooth rational curve. Take for example
S ∼= S4 and D ∼ 2l−e1−e2−e3−e4. Then |D| consists of the pullback, by the morphism

π : S −→ P2,

of the curves of degree 2 in P2 that passes through P1, P2, P3, and P4. Generically
(actually in all but three cases) these curves will be irreducible conics in P2 (their pullback
will then be smooth rational curves). But we also have the three exceptional cases shown
in figure 3.1, thus not all members of |D| are smooth rational curves. See also [Roc96,
proposition 3.1].

[Roc96, second table p. 5] shows that |D| will always consist of only smooth rational
curves except for a finite number of exceptions.

Since φL+K is an embedding we get that when D0 ∈ |D| is a smooth rational curve
the image φL+K(D0) is also a smooth rational curve. The degree of φL+K(D0) is k0 − 1
and

D0
∼= Ph0(L)−h0(L−D)−1 = Pk0−1.

If we now argue as in the proof of [JK01, lemma 7.1] (using [Sch86, lemma 5.2] instead
of [Sch86, lemma 4.2]) we get the following resolution8

0 −→ O
Pk0−1(−(k0 − 1))βk0−2 −→ · · · −→ O

Pk0−1(−2)β1

−→ O
P

k0−1 −→ OφL+K(D0) −→ 0,

8Note that the resolution gives k0 ≥ 3. We can also show this using the results of [Roc96], though
the proof is much longer in this case. We will show how the proof goes for S ∼= S1 as an example. When
S ∼= S1, we have L + K ∼ (k0 + n − 2)l − (n − 1)e1. Since we have assumed that L + K is very ample,
[Roc96, theorem 4.6] gives k0 ≥ 3.
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Figure 3.1: Reducible curves of degree 2 in P2 passing through P1, P2, P3, and P4.

qP1

qP3

qP2

qP4

q
P1

q
P3

q
P2

q
P4

�
�

�
�

�
�

�
�

qP1

qP3
@

@
@

@
@

@
@

@

qP2

qP4

where

(3.5) βi = i

(
k0 − 1

i + 1

)

.

Then [Sch86, theorem 3.2] (compare [Sch86, corollary 4.4.i]) gives the following res-
olution of OS′ as an OT -module

0 −→

βk0−2
⊕

j=1

OT (−(k0 − 1)H + bj
k0−2F) −→ · · · −→

βi⊕

j=1

OT (−(i + 1)H + bj
iF)

−→ · · · −→

β1⊕

j=1

OT (−2H + bj
1F) −→ OT −→ OS′ −→ 0.(3.6)

The problem now is to determine the bj
i . As noted in [Sch86, remark 3.3]9 we may

find linear equations that bj
i satisfy by using the additivity of the Hilbert polynomials.

We will find these equations as in the proof of [JK01, proposition 7.2(d)], i.e. we will use
equation (1.2). For this we need the following lemma.

Lemma 3.3.4. Set E = OP1(e1)⊕· · ·⊕OP1(ed), with e1, . . . , ed ≥ 0 and f = e1+ · · ·+ed.
Then with a ≥ 0 and b ≥ 0 we get

h0(P1,Syma(E) ⊗OP1(b)) =

(
a + d − 1

a

)(
af

d
+ b

)

Proof. We first calculate h0(P1,Syma(E)). We have

Syma(E) =
∑

a1+···+ad=a
a1,...,ad≥0

OP1(a1e1 + · · · + aded)

9Where there is a typo.
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The average value of a1e1 + · · · + aded is

a

∑
ei

d
= a

f

d
.

Using that the number of summands is
(

a + d − 1

a

)

we get

h0(Syma(E)) =
∑

a1+···+ad=a
a1,...,ad≥0

h0(OP1(a1e1 + · · · + aded)) =

(
a + d − 1

a

)(
af

d

)

.

Twisting with b we get the wanted result.

In our case T ∼= P(E) with d = deg T = h0(L + K) − h0(L + K − D) = k0 and
f = h0(L + K − D) = h0(L + K) − k0 = g(L) − k0.

Write

Fi =

βi⊕

j=1

OT (−(i + 1)H + bj
iF).

Then the additivity of the Hilbert polynomial gives

χ(OT (nH)) − χ(S ′
T (nH)) =

k0−2∑

i=1

(−1)i+1χ(Fi(nH)).

For large n we have χ(OT (nH)) = h0(OT (nH)) and χ(Fi(nH)) = h0(Fi(nH)), by
[Har77, III.5.3] using that H is very ample on T . We can calculate h0 using (this is
equation (1.2))

h0(P(E),OP(E)(aH + bF)) = h0(P1,Syma(E) ⊗OP1(b)).

For large n we also have

χ(S′
T (nH)) = h0(S′

T (nH))

= h0(n(L + K))

= n2(g(L) − 1) +

(
n

2

)

K.(L + K) + 1.

Combining the above and using the lemma we get
(

n + k0 − 1

n

)(

n
g − k0

k0
+ 1

)

− n2(g − 1) −

(
n

2

)

K.(L + K) − 1(3.7)

=

k0−2∑

i=1

(−1)i+1

(
n + k0 − i − 2

k0 − 1

)




(
(n − i − 1)(g − k0)

k0
+ 1

)

βi +

βi∑

j=1

bj
i
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This is a polynomial equation in n that holds for all large n. Consequently it holds
for all n. Inserting different values of n we get enough linear equations to determine
∑βi

j=1 bj
i for all i.

Example We will examine k0 = 3, which is the simplest case. It is also the only case
where the equation above gives enough information to determine all the bj

i .
When k0 = 3 we have β1 = 1 and the only unknown is b1

1. Inserting n = 2 in the
above equation gives

b1
1 = −K.(L + K) − 4.

For S ∼= S1 and L ∼ (n + 4)L − ne1 (n > 1) this gives the following resolution

0 −→ OT (−2H + 2nF) −→ OT −→ OS′ −→ 0.



Chapter 4

Enriques Surfaces

In this chapter we consider Enriques surfaces. The first section consists of preliminary
material. The next two sections contain new material.

In section 4.2 we study the function φ(C) introduced by Cossec. The function is
defined purely lattice-theoretically, but it encodes much geometric information. We
include several results that show the importance of this function. The main part of this
section deals with existence of pairs (C2, φ(C)) with C an irreducible curve. To get
existence results we restrict ourselves to unnodal Enriques surfaces. We get complete
results for small values of φ(C) (table 4.1) and give a conjectural picture for large φ(C).
It does not seem computationally feasible to give complete results for large φ(C).

The function φ(C) gives elliptic pencils that give scroll containing the image φC(S)
for S an Enriques surface. In section 4.3 we study these scrolls. We first try to compute
scroll types. Proposition 4.3.4 is an extension of [Cos83, lemma 5.2.8]. The proof shows
how difficult it is to compute the scroll type for nodal Enriques surfaces. For unnodal
Enriques surfaces the situation is easier. We will in fact show that for unnodal Enriques
surfaces we are able to compute the scroll type almost completely just by knowing C 2

and φ(C). For small C2 our results are listed in table 4.4. We end the section with some
resolutions that arise from the inclusion of the projective model in the scroll.

4.1 Preliminaries

In this section we define Enriques surfaces and state results that we need later on in this
chapter. Most of the material in this section will be taken from [Cos83, Cos85, CD89].
We start with the definition of an Enriques surface.

Definition 4.1.1. A (classical) Enriques surface is a smooth projective surface S such
that h1(S,OS) = 0, 2KS = 0, and KS 6= 0 where KS is the canonical divisor class.

Remark 4.1.2. An alternative definition of Enriques surface (which follows naturally from
the proof of the classification theorem 1.1.2) is a surface with κ(S) = 0 and b2 = 10.
Since we work over the complex numbers our definition is equivalent to this one. But if
one works over an algebraically closed field with characteristic 2, then these definitions
are not equivalent. See [CD89, chapter 1] for details.
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Note that K = KS is numerically equivalent to zero.
For examples of Enriques surfaces see [Cos83, 2.5], [Băd01, 10.16], [BPvdV84, V.23],

and [CD89, 1.6].
Looking at the definitions and theorem 1.1.2 it is not surprising that there is a close

relationship between Enriques surfaces and K3 surfaces. In fact K3 surfaces are double
covers of Enriques surfaces, as the next result says.

Proposition 4.1.3. [Băd01, propositions 10.14 and 10.15], [CD89, 1.3]. Let S be an
Enriques surface. Then there exists an étale covering of degree 2, π : S ′ → S, with S ′ a
K3 surface and the structural group of π isomorphic to Z/2Z.

Conversely let S ′′ be a surface that admits an étale and connected covering of degree
2, π : S′ → S′′, with S′ a K3 surface. Then S ′′ is an Enriques surface.

We also include the following important theorem before moving on to results we will
be using later on.

Theorem 4.1.4. [Băd01, theorem 10.17], [BPvdV84, VIII.17] Every Enriques surface
admits an elliptic fibration.

Riemann-Roch on Enriques surfaces looks as follows (with L a divisor on S)

h0(L) + h0(K − L) =
1

2
L2 + 1 + h1(L).

When L is effective and non-zero, this gives

h0(L + K) =
1

2
L2 + 1 + h1(L + K)

h0(L) =
1

2
L2 + 1 + h1(L)

There is a special case in which h1(D) always vanishes.

Proposition 4.1.5. [Cos83, proposition 1.3.1] Let C be an irreducible curve on an
Enriques surface such that C2 > 0. Then h1(D) = 0 and

dim |C| = h0(C) − 1 =
1

2
C2

We include another vanishing result that we will need later on.

Proposition 4.1.6. [Cos85, theorem 2.6] Let D be a big and nef divisor on an Enriques
surface. Then

h1(D) = h1(−D) = 0.

Remember that given a divisor D on a K3 surface with D2 ≥ −2, then either |D| 6= ∅
or | − D| 6= ∅. For a Enriques surface one must have D2 ≥ 0. That is given a divisor D
on an Enriques surface with D2 ≥ 0, then either |D| 6= ∅ or | − D| 6= ∅ (see [BPvdV84,
proposition VIII.16.1(ii)] for proof).

The Bertini theorem gives the following for Enriques surfaces (compare theorem 1.1.11)
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Theorem 4.1.7. [Cos83, theorem 1.5.1] Let L be an effective divisor without fixed com-
ponent on an Enriques surface S. Then either

1. L2 > 0 and the generic member of |L| is an irreducible curve, or

2. L2 = 0 and there exists an elliptic pencil |P | and an integer k ≥ 1 such that
L ∼ kP , h1(L) = k, and every member of L is of the form P1 + · · · + Pk where
Pi ∈ |P |.

Proposition 4.1.8. [Cos83, proposition 1.5.2] Let D be an effective divisor on an En-
riques surface S such that D2 > 0. Then the moving part of |D| is irreducible.

The adjunction formula on an Enriques surface reduces to

g(D) =
1

2
D2 + 1.

In particular C2 ≥ −2 for any irreducible curve C and C2 = −2 if and only if C is a
smooth rational curve. To be consistent with Cossec we will call a smooth rational curve
a nodal curve in this chapter.

Let C be a nodal curve. Then h0(C) = 1 since C has negative self-intersection and
h0(C + K) = 0 by Riemann-Roch (see [Cos83, proposition 1.6.1(ii)]).

An Enriques surface S is of special type if it contains an elliptic pencil |P | and a nodal
curve θ such that P.θ = 2. By [Cos85, theorem 4.1] an Enriques surface is of special type
if and only if it contains a nodal curve. We say that an Enriques surface S is nodal if it
contains a nodal curve. An Enriques surface S is unnodal if it does not contain a nodal
curve. A generic Enriques surface is unnodal.1 We have the following useful result.

Proposition 4.1.9. [Cos85, proposition 2.4] Let D be a big and nef divisor on an En-
riques surface S. Then |D| has no fixed components unless |D| = |P + θ| for an elliptic
pencil |P | and a nodal curve θ such that P.θ = 2.

In particular if S is unnodal, then every big and nef divisor is without fixed compo-
nents.

Definition 4.1.10. [Cos83, definition 1.6.2.1] Let D be an effective non-zero divisor on
an Enriques surface S. Then D is of canonical type if its support is connected, D2 = 0,
and D is nef.

A divisor of canonical type is said to be a primitive divisor of canonical type if there
is no divisor D′ such that D = mD′ for an integer m ≥ 2.

One easily sees that a primitive divisor of canonical type is primitive lattice theoret-
ically also.2 Important properties of canonical and primitive divisors are summarized in
[Cos83, 1.6.2.2-1.6.2.5]. For Enriques surfaces we have the following result.

1[BP83] shows this using the global Torelli theorem for K3 surfaces and proposition 4.1.3 above. It
also follows from [Cos85, theorem 4.1].

2D gives an element [D] of the Néron-Severi group which we have seen can be viewed as a lattice. In
a lattice M a primitive element is an element such that M/mZ is a free abelian group. See also p.17.



142 Enriques Surfaces

Proposition 4.1.11. [Cos83, propositions 1.6.4. and 1.6.8] Let D be a non-zero effective
divisor with D2 = 0 on an Enriques surface S. Then

1. there exists a divisor E of canonical type such that D − E ≥ 0, and

2. if D is a primitive divisor of canonical type, then |2D| is an elliptic pencil.

The following proposition gives a converse to the last part of this proposition.

Proposition 4.1.12. (S̆afarevic) [Cos83, proposition 1.6.3] Let |P | be an elliptic pencil
on an Enriques surface S. Then there exists two primitive divisors of canonical type, E
and E′, satisfying the following properties:

1. |P | = |2E| = |2E ′|, E′ ∈ |E + K|.

2. 2E and 2E ′ are the only multiple fibers of |P |.

3. h0(E) = h0(E′) = h0(E + E′) = 1.

Note especially that the intersection number of an elliptic pencil with any divisor is
even. Because of this proposition we will also call primitive divisors of canonical type
for halfpencils.

We will now examine the Enriques lattice. On the surfaces we have studied earlier,
K3 surfaces and Del Pezzo surfaces, numerical equivalence is equal to linear equivalence.
On an Enriques surface this is no longer true. This is immediate since K is numerically
equivalent to 0, but not linearly equivalent to 0. One can show that K is the only non-
zero divisor (up to linear equivalence) that is numerically equivalent to 0. This is the
second part of the following result.

Proposition 4.1.13. [Cos83, theorem 2.3 and proposition 2.1] Pic S is generated by the
class of nodal curves and irreducible curves of arithmetic genus zero.

The torsion Picτ S of PicS is isomorphic to Z/2Z and generated by the class of the
canonical divisor.

Since K is algebraically equivalent to zero this result gives

NSS = NumS = Pic S/Picτ S.

Theorem 4.1.14. [Cos83, theorem 2.2], [Cos85, (1.1)–(1.3)], [CD89, proposition 2.5.7]3

All Enriques surfaces have isomorphic Picard lattices E. In fact4

NSS ∼= U ⊕ E8(−1) =: E.

We also have the following description of E:

E =

9⊕

i=0

ωi

3There is a typo in [CD89, proposition 2.5.7]: the first 6 in the last row of the matrix should be a 4.
4See p. 17 for the definitions of U and E8.
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with the following intersection matrix



















10 7 14 21 18 15 12 9 6 3
7 4 9 14 12 10 8 6 4 2
14 9 18 28 24 20 16 12 8 4
21 14 28 42 36 30 24 18 12 6
18 12 24 36 30 25 20 15 10 5
15 10 20 30 25 20 15 12 8 4
12 8 16 24 20 16 12 9 6 3
9 6 12 18 15 12 9 6 4 2
6 4 8 12 10 8 6 4 2 1
3 2 4 6 5 4 3 2 1 0



















We will call E the Enriques lattice. The second description of the Enriques lattice
will be very useful to us later on.

The dual basis {ri} of {ωi} consists of elements such that r2
i = −2. These ri give

Picard-Lefschetz reflections of the Enriques lattice. The Weyl group W (E) of E is the
group generated by these reflections. The fundamental chamber C of E is the subset of
L := E ⊗Z R given by

C := {x ∈ L|x.ri > 0 for all i}.

The closure C̄ of C is the convex polyhedral cone spanned by the vectors {ωi}, i.e.

C̄ = {
∑

i

aiωi|ai ≥ 0}.

Let
H := {x ∈ L|x2 > 0}.

Then H is the disjoint union of two components H1 and H2 = −H1, where H1 is the
component which contains the fundamental chamber. By the reflection x 7−→ −x, if
necessary, we may assume that H1 is the positive cone. Then C̄ is contained in the big
and nef cone.

[Bou68] shows that C is the fundamental domain for the action of W (E) on E1. Thus
when considering nef divisors it will for many purposes be enough to consider D ∈ C̄.5

4.2 The function φ(C)

We will now introduce a function φ(C) that will help us to classify projective models of
polarized Enriques surfaces.

Definition 4.2.1. Let E′
0 = {E ∈ E| E2 = 0, E 6= 0}, and let C be a big divisor. Then

φ(C) := min
E∈E

′

0

|E.C|.

5See [Cos85, section 1] and [CD89, sections 2.1-2.5] for a more complete treatment of W (E) and C.
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Note that when C is an irreducible curve one actually has

φ(C) = min
E∈Ê

′

0

(E.C),

where Ê′
0 = {E ∈ E0|E is an halfpencil}.6 Take a halfpencil E calculating φ(C). There

is associated a unique pencil 2E = P . Assume C base point free and h0(C − P ) ≥ 2.
Then this pencil gives a scroll containing the image of S given by the morphism φ(C) (see
p. 21). Thus we get a canonical scroll associated to (almost) every polarized Enriques
surface (S,C).

The next two propositions shows that classifying polarized Enriques surfaces accord-
ing to the φ-function gives a lot more geometric information than one would suppose.
As usual we write φC for the natural map

φC : S −→ Ph0(C)−1

given by |C|.

Proposition 4.2.2. (Cossec) Let C be an irreducible curve on an Enriques surface S.
Then

1. |C| has a base point if and only if φ(C) = 1. In fact if φ(C) = 1, then |C| has
exactly two base points of multiplicity 1.

2. φC is a birational map into a surface with at most rational double points as singu-
larities if and only if φ(C) ≥ 3.

Proof. This is just [CD89, theorem 4.4.1] and [CD89, theorem 4.6.1.]. The results are
also contained in [Cos83] and [Cos85].

For φ(C) = 2 the situation is a bit more complex. See [CD89, theorem 4.6.3 and
proposition 4.7.1].

The next result shows the relationship between φ(C) and birational k-very ampleness.
We will later on consider φ(C) and k-very ampleness.

Proposition 4.2.3. (Knutsen7) Let L be a base point free divisor on an Enriques surface.
Then L is birationally (φ(C)− 2)-very ample but not birationally (φ(C)− 1)-very ample.

We will now consider the existence of pairs (C2, φ(C)) with C an irreducible curve.
The next proposition gives some bounds.

6Proof: Let D be an element in E′

0 such that C.D = φ(C) (using Riemann-Roch and the fact that
C is nef we may assume D effective and |C.D| = C.D). We may write (by [CD89, theorem 3.2.1])
D ∼ E +

∑
miRi (mi ≥ 0), where E is canonical and Ri are nodal curves. Then E.C ≤ D.C, so we

may assume E = D. It is easily seen that we may also assume E primitive. Then E is an halfpencil by
proposition 4.1.11.

7Private correspondence 7. May 2002.
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Proposition 4.2.4. [CD89, corollary 2.7.1]8 For any C (with C2 > 0) we have

0 < (φ(C))2 ≤ C2.

Moreover there exists C such that we have (φ(C))2 = C2.

We will look at which of the pairs (C2, φ(C)) satisfying the above inequalities actually
exists. We will restrict ourselves to unnodal Enriques surfaces to make things simpler.9

What makes the unnodal case simpler is proposition 4.1.9. This says that a big and nef
divisor on an unnodal Enriques surface has no fixed components. Using that every big
and effective divisor on an unnodal Enriques surface is nef together with theorem 4.1.7
we see that every big and effective divisor on an unnodal Enriques surface is linearly
equivalent to an irreducible curve. Hence to show that a pair (C 2, φ(C)) exists with C
an irreducible curve it is enough to find a pair (C 2, φ(C)) with C effective.

Since both C2 and φ(C) are conserved by reflections we may furthermore assume
that C ∈ C̄. As we have already noted we may assume that every divisor in C̄ is effective.
It is actually very easy to calculate φ(C) for C ∈ C̄. By [CD89, lemma 2.7.1] we have

φ(C) = C.ω9.

Proposition 4.2.5. Let S be an unnodal Enriques surface, and let φ ≥ 2 be an even
integer. Then there exists an irreducible curve C with φ(C) = φ on S such that

C2 = φ2.

Proof. Pick an irreducible curve C such that C ∼ φ
2 ω1. Then

φ(C) = C.ω9 = φ

and

C2 = φ2.

For odd integers φ it is obvious that we never obtain equality in (φ(C))2 ≤ C2 since
E is an even lattice. One would hope for the existence of pairs (C 2, φ(C)) = (φ2 + 1, φ).
This is not always the case. I have only been able to find pairs (φ2 + 1, φ) for φ = 1 and
3. Numerical computations for φ ≤ 25 suggests the following conjecture.

8There is a slight misprint in the proof of [CD, corollary 2.7.1]. It is supposed to be

max((ωi.ω9)/ω2
i ) = ((ω2.ω9)/ω2

2) = 1.

9Since the general Enriques surface is unnodal this is no great restriction. Furthermore note that in
the unnodal case all the restrictions we make below still holds: the “only” problem being that we do not
necessarily have existence. I.e. if a pair (C2, φ(C)) exists on a nodal Enriques surface, then the same pair
always exists on an unnodal Enriques surface but not necessarily conversely.
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Table 4.1: Properties of φ(C) for φ(C) ≤ 12.

φ b(φ) c(φ) d(φ)

1 2 2 ∅
2 4 4 ∅
3 10 10 ∅

4 16 16 ∅
5 28 28 ∅
6 36 48 {38, 46}
7 54 54 ∅
8 64 70 {66, 68}

9 88 88 ∅
10 100 112 {102, 104, 106, 110}
11 130 54 {132, 134}
12 144 160 {146, 148, 150, 152, 156, 158}

Conjecture 4.2.6. Let S be an unnodal Enriques surface, and let φ > 1 be an odd
integer. Let C be an irreducible curve on S such that φ(C) = φ. Then

C2 ≥ φ2 + φ − 2.

Furthermore for every φ there exists an irreducible curve C on S such that φ(C) = φ
and C2 = φ2 + φ − 2.

The last part of the conjecture is easily seen to be true. Just pick an irreducible curve
C such that

C ∼ ω0 +
φ − 3

2
ω1.

The hard part is to show that this divisor actually computes the minimal possible value.
Another interesting problem to consider is whether there exists a number c = c(φ)

such that for fixed n ≥ c (n even) there always exists an irreducible curve C with C 2 = n
and φ(C) = φ. Table 4.110 gives the value of c(φ) for φ ≤ 12. According to Maple there
always exists such a c for φ ≤ 100. This gives the following conjecture.

Conjecture 4.2.7. Let S be an unnodal Enriques surface. Then there exists a number
c = c(φ) such that for fixed n ≥ c (n even) there always exists an irreducible curve C
with C2 = n and φ(C) = φ.

A proof of the conjecture will also probably at the same time give a upper bound
to c(φ). A procedure for showing that c(φ) exists for fixed φ is given below. I have not
been able to prove the conjecture for large φ except for rather rare classes of numbers. I
have for example shown the conjecture for odd prime φ with 2 a quadratic non-residue

10Here b(φ) := minimal value of C2 such that there exists C with φ(C) = φ. And d(φ) is the set of
integers C2 between b(φ) and c(φ) such that there does not exist C with φ(C) = φ.
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by considering C ∼ a1ω1 + a8ω8 + a9ω9 and C ∼ a7ω7 + a8ω8 + a9ω9. I also conjecture
that b(φ) < c(φ) when φ ≥ 10.

We will now say some words about how table 4.1 was computed. As noted above we
may assume C ∈ C̄. Then we can write

C ∼ a0ω0 + a1ω1 + a2ω2 + a3ω3 + a4ω4 + a5ω5 + a6ω6 + a7ω7 + a8ω8 + a9ω9,

with ai ≥ 0.
We see that

φ(C) = C.ω9 = 3a0 + 2a1 + 4a2 + 6a3 + 5a4 + 4a5 + 3a6 + 2a7 + a8

is independent of a9. Thus
φ(C + aω9) = φ(C).

We also have
(C + aω9)

2 = C2 + 2aφ ≡ C2( mod 2φ).

Hence if we for every even congruence class modulo 2φ have found a C with C 2 in the
congruence class and φ(C) = φ, then c(φ) exists. It is obvious that if we are interested
in minimal values of C2 we may assume a9 = 0.

Example We will sketch the computations for φ = 6. There exists 26 different
equivalence classes C ∈ C̄ with a9 = 0 such that φ(C) = 6. Computing C2 for all of
these we see that ω0 + ω6, 3ω1, and 2ω1 + ω7 all give the minimal value C2 = 36 (this is
of course consistent with proposition 4.2.5).

Table 4.2: Finding c(φ) for φ = 6.

C C2 C2 mod 12

3ω1 36 0

ω0 + ω1 + ω8 50 2

2ω0 40 4

ω3 42 6

ω1 + ω4 44 8

ω2 + 2ω8 58 10

We will now show that c(φ) exists and compute it. Looking at the 26 divisors we have
modulo 2φ = 12 one sees that every even congruence class is filled for some divisor C, so
c(6) exists. To compute it we have to find the divisors C with minimal self-intersection
in each congruence class. These are given in table 4.2. We see that c(6) = 48.

We will make some comments on the φ function and k-very ampleness. For the rest
of this section we will not necessarily assume that S is unnodal.

Proposition 4.2.8. [Sze01, theorem 2.4] and [Knu01a, theorem 1.2]. Let L be an ample
divisor on an Enriques surface. If L is k-very ample, then φ(L) ≥ k + 2.

If S is unnodal, then the converse is also true.
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Comparing with proposition 4.2.3 we see that for unnodal Enriques surfaces k-very
ampleness is equivalent to birationally k-very ampleness.

Proposition 4.2.9. For k = 0 and k = 1 the converse statement of proposition 4.2.8 is
true even if S is nodal.

Proof. For k = 0 this is just [CD89, theorem 4.4.1].

For k = 1 this is just [CD89, theorem 4.6.1] by using the Nakai-Moishezon criterion.

Alternatively use [Knu01a, theorem 1.2]. Since L is assumed ample the Nakai-
Moishezon criterion holds. Hence every effective divisor D with D2 = −2 must satisfy
D.L > 0. Thus the D.L ≤ k − 1 case of [Knu01a, theorem 1.2] is not possible for
k < 2.

For k ≥ 2 I am unsure whether the converse holds. Because of the nodal curve in
[Knu01a, theorem 1.2] I do not think so, but I have been unable to come up with a
counterexample.

Szemberg also has the following result.

Proposition 4.2.10. [Sze01, theorem 2.4] Let L be an ample divisor on a smooth En-
riques surface. Then for n ≥ k + 2 the divisor nL is k-very ample.

The result here is the best possible, which the divisor L of the next proposition shows.

Proposition 4.2.11. Let L be an ample line bundle on S with φ(L) = 1 (or equivalently
an ample divisor with base points). Then L ∼ dE1 + E2 for two halfpencils E1 and E2

with E1.E2 = 1.

Such an ample divisor always exists if S is unnodal.

Proof. L is now given by [CD89, prop. 3.6.1], since φ(L) = 1. We can not be in case (ii):
for then L.R = 0, which contradicts L ample.

We now prove existence. Existence of E1 and E2 follows from [Cos85, theorem 3].
Since we have assumed S unnodal we see that dE1 + E2 is ample.11

4.3 Scroll types and resolutions

Let C be an irreducible curve and P a pencil such that its halfpencil E computes φ(C).
We want to study the canonical scroll T containing φC(S) and given by |P |.

To find possible scroll types we are interested in calculating h0(C − nP ) for n ≥ 1.
We first look at h0(C − P ). One easily sees that C − P is effective (see lemma 4.3.1).
Thus to calculate h0(C − P ) it is enough to calculate h1(C − P ). Our first proposition
will extend [Cos83, lemma 5.2.8] to all values of φ(C). For this we need some lemmas.

11Since any effective divisor L with L2 > 0 on an unnodal Enriques surface is ample (use the Hodge
index theorem to show that the Nakai-Moishezon criterion is satisfied).
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Lemma 4.3.1. Let C be an irreducible curve on S such that C 2 ≥ 2 and let |P | be an
elliptic pencil, with halfpencil E.

Then the multiplicity m of E in C is bounded as follows
⌊

C2

2E.C

⌋

≤ m ≤

⌊
C2

E.C

⌋

Proof. We have
(

C −
C2

2E.C
E

)2

= 0.

Hence either C −
⌊

C2

2E.C

⌋

E ≥ 0 or
⌊

C2

2E.C

⌋

E −C ≥ 0. Since C.(C − C2

2E.C E) = C2

2 and C

is nef, we get C −
⌊

C2

2E.C

⌋

E ≥ 0. This gives the lower bound.

For the upper bound note that

C.

(

C −
C2

E.C
E

)

= 0.

The result then follows since C is nef.

Note that this lemma says that for n ≤ C2

4φ(C) we have h0(C − nP ) > 0 and for

n ≥ C2

2φ(C) we have h0(C − nP ) = 0. Also note that if S is unnodal the proof actually

gives m =
⌊

C2

2E.C

⌋

=
⌊

C2

2φ(C)

⌋

.

Lemma 4.3.2. Let C be an irreducible curve on S such that C 2 ≥ 2, let |P | be an elliptic
pencil with halfpencil E, let m be the multiplicity of E in C, and let θ be a nodal curve
such that E.θ ≥ 1. Then θ.(C − mE) ≥ −P.C.

Proof. We note that the multiplicity k of θ in C − mE is less than E.C since E is nef
and thus E.(C − mE − kθ) = E.C − E.kθ ≥ 0. Hence

θ.(C − kE) ≥ θ.kθ ≥ −2E.C = −P.C,

where the first inequality follows from the fact that θ intersects every prime divisor
unequal to θ non-negatively.

For P.C = 2 or 4 we have θ.(C − mE) ≥ −P.C/2.12 I believe, but have not been
able to prove, that this also holds for larger values of φ(C). If it does then one can
automatically get better bounds in lemma 4.3.3 and proposition 4.3.4.

The following lemma is similar (both in proof and statement) to [Cos83, lemma 4.7].

Lemma 4.3.3. Let C be an irreducible curve on S such that C 2 ≥ 2 and let |P | be an
elliptic pencil. Then for any effective divisor ∆ such that P.∆ > 0 we have

C.∆ ≥

⌊
C2

P.C

⌋

− P.C.

12This follows from studying all the cases of [Cos83, theorem 4.2 and theorem 5.3.6].
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For P.C = 2 or 4 we have the improved bound

C.∆ ≥

⌊
C2

P.C

⌋

−
P.C

2
.

Proof. Let E be a halfpencil of P , let m be the multiplicity of E in C, and Θ be a
component of ∆ such that E.Θ ≥ 1. If Θ contains a nodal curve θ such that E.θ ≥ 1,
then we assume Θ = θ. If not, then we may assume that Θ contains no nodal curves. In
the first case we get (using lemma 4.3.1 and lemma 4.3.2)

C.∆ ≥ C.Θ ≥ m − P.C ≥

⌊
C2

P.C

⌋

− P.C.

In the latter case we get

C.∆ ≥ C.Θ ≥ m ≥

⌊
C2

P.C

⌋

.

The improved bound for P.C = 2 and 4 is arrived at by the same argument using the
remark right after lemma 4.3.2.

Note that if S is unnodal, then the proof actually shows

C.∆ ≥

⌊
C2

P.C

⌋

.

When P.C = 2, we see that
C2

P.C
=

⌊
C2

P.C

⌋

,

since C2 is even. This will improve the bound in the next proposition.
We are now ready to prove the following

Proposition 4.3.4. Let |C| be an irreducible curve on S such that φ(C) ≥ 2, and
C2 ≥ 2φ(C)(2φ(C) − 1). If |P | is an elliptic pencil such that C.P = 2φ(C), then
h1(C − P ) = 0.

For φ(C) = 2 it is enough to assume C2 ≥ 10. For φ(C) = 3 it is enough to assume
C2 ≥ 22.

Proof. We argue as in the first half of the proof of [Cos83, lemma 5.2.8]. Let |C − P |
be the decomposition of |C − P | into its moving part |M | and fixed part F . Assume
h1(C − P ) 6= 0. Then

h0(M) = h0(C − P ) ≥
(C − P )2

2
+ 2 =

C2

2
+ 2 − P.C.

If (C−P )2 = C2−4φ(C) > 0, then h0(M) ≥ 3 and |M | is irreducible (by [Cos83, proposi-
tion 1.5.2]), especially M 2 > 0 and h1(M) = 0. We have assumed C2 ≥ 2φ(C)(2φ(C)−1)
and φ(C) ≥ 2, so (C − P )2 = C2 − 4φ(C) > 0 is obviously satisfied. Thus we get

M2 = 2(h0(M) − 1) ≥ C2 + 2 − 2P.C.
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Using this we get

h0(C) − 1 =
C2

2
≥ h0(M + P ) − 1

≥
(M + P )2

2

≥
C2

2
+ 1 − P.C + P.M,

which gives P.M < P.C and thus P.F > 0. Hence there exists an irreducible component
Θ of F such that P.Θ ≥ 2 and P.M ≤ P.C − 2 (remember that every elliptic pencil
intersects every divisor evenly). Then

h0(C) − 1 =
C2

2
≥ h0(M + P + Θ) − 1

≥
(M + P + Θ)2

2

≥
C2

2
+ 1 − P.C + M.Θ + P.M + P.Θ +

Θ2

2
.

This gives

P.C − 1 ≥ M.Θ + P.M + P.Θ +
Θ2

2

≥
M2

P.M
+ P.Θ +

Θ2

2

≥
M2

P.M
+

Θ2

2
+ 2,

where the first inequality follows from lemma 4.3.3. This gives

P.C − 2 ≥

⌊
M2

P.M

⌋

≥
M2

P.M
−

P.M − 2

P.M

≥
M2

P.C − 2
−

P.C − 4

P.C
,

where we have used that P.M is even and P.M ≤ P.C − 2, and

C2 + 2 − 2P.C ≤ M 2 ≤

(

P.C − 1 −
2

P.C − 2

)

(P.C − 2).

Thus if C2 > 2φ(C)(2φ(C) − 1) − 2 we can not have h1(C − P ) 6= 0.

The last two statements follows from the P.C = 2 and 4 cases of lemma 4.3.3 (used
on M).
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If S is unnodal, then things are much easier than the proof of this proposition suggests
and we get much better results. We have in fact that every effective and big divisor D
on an unnodal Enriques surface S satisfies h1(D) = 0.We have already noted that every
effective divisor on an unnodal Enriques surface is nef. The result then follows from
proposition 4.1.6.

With this in mind we can say quite a lot about possible scroll types for unnodal
Enriques surfaces S. As usual we let C be an irreducible curve and |P | be an elliptic
pencil such that P.C = 2φ(C). We must restrict ourselves to C with C base point free
and h0(C − P ) ≥ 2, by [Sch86, 2.2] (see also p. 21). Then φC is always a birational
morphism except for C2 = 8 and C superelliptic. First of all note that for

n <
C2

4φ(C)

C−nP is effective and (C−nP )2 > 0 (lemma 4.3.1). Riemann-Roch and proposition 4.1.6
then gives

h0(C − nP ) =
1

2
(C − nP )2 + 1.

Since S is unnodal we also have

h0(C − nP ) = 0

for

n >
C2

4φ(C)
.

This gives the following proposition

Proposition 4.3.5. Let S be an unnodal Enriques surface. Let C be an irreducible base
point free curve, with φC birational, and |P | be an elliptic pencil such that P.C = 2φ(C)

and h0(C − P ) ≥ 2. If C2

4φ(C) /∈ Z, then the scroll type associated to P is

(

C2
−4φ(C)

⌊

C2

4φ(C)

⌋

2
+1

︷ ︸︸ ︷
⌊

C2

4φ(C)

⌋

, . . . ,

⌊
C2

4φ(C)

⌋

,

⌊
C2

4φ(C)

⌋

− 1, . . . ,

⌊
C2

4φ(C)

⌋

− 1

︸ ︷︷ ︸

2φ(C)

).

Proof. We have already done most of the work. We just have to calculate the di (i <
C2

4φ(C) ) from the above expressions for h0(C − nP ). Since P ≤ C we have
⌊

C2

4φ(C)

⌋

6= 013

and we get
d0 = d1 = · · · = d⌊ C2

4φ(C)

⌋

−1
= 2φ(C)

13For if
⌊

C2

4φ(C)

⌋

= 0, then C2 < 4φ(C). Proposition 4.2.4 gives C2 = 6 with φ(C) = 2 or C2 = 10

with φ(C) = 3. In both of these cases h0(C − P ) = 0 since S is unnodal.
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and

d⌊ C2

4φ(C)

⌋ =
C2 − 4φ(C)

⌊
C2

4φ(C)

⌋

2
+ 1.

An interesting observation is that the scroll type is uniquely defined even if there
exists several distinct pencils with halfpencils that compute φ(C).

When C2

4φ(C) ∈ Z it is a lot harder to find the scroll type. We still have

d0 = d1 = · · · = d⌊ C2

4φ(C)

⌋

−2
= 2φ(C),

but now we have

(

C −

⌊
C2

4φ(C)

⌋

P

)2

=

(

C −
C2

4φ(C)
P

)2

= 0.

So we do not necessarily have h1(C − C2

4φ(C)P ) = 0.14

The last two non-zero di are as follows

d C2

4φ(C)
−1

= 2φ(C) − h1

(

C −
C2

4φ(C)
P

)

and

d C2

4φ(C)

= h1

(

C −
C2

4φ(C)
P

)

+ 1.

So the problem of finding the scroll type is reduced to computing h1(C − C2

4φ(C)P ).

Write C − C2

4φ(C)P = G.

We will now show that G ∼ mF for some primitive divisor F of canonical type. Since
we are assuming S unnodal every effective divisor is nef. Thus an effective divisor D with
D2 = 0 is of canonical type if and only if its support is connected. We can write G as a
sum of distinct divisors Gi (1 ≤ i ≤ k) of canonical type. By [Cos83, 1.6.2.2 and 1.6.2.3]
we may assume that Gi = miFi where Fi is primitive. Assume i > 1. Then F1.F2 = 0
and by Riemann-Roch either F1−F2 or F2−F1 is effective. By [Cos83, 1.6.2.4] F1 = F2,
a contradiction. Hence i = 1.

Now

mF.C =

(

C −
C2

4φ(C)
P

)

.C =
C2

2

gives

(4.1) m =
C2

2F.C
.

14In fact we have h1(C − C2

4φ(C)
P ) = 0 if and only if C − C2

4φ(C)
P equals some primitive divisor F .
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Since m ≥ 1 we have F.C ≤ C2

2 . By the definition of φ(C) we have F.C ≥ φ(C). Thus
we have only finitely many possibilities for m.

If m is even [Cos83, proposition 1.6.4 and theorem 1.5.1] gives

h1

(

C −
C2

4φ(C)
P

)

= h1(mF ) =
m

2
=

C2

4F.C
.

If m is odd, then h1(mF ) < h1((m + 1)F ).15 Thus

h1

(

C −
C2

4φ(C)
P

)

= h1(mF ) =
⌊m

2

⌋

=

⌊
C2

4F.C

⌋

.

Since m determines h1(C − C2

4φ(C)P ) uniquely we get only finitely many different possible

scroll types.16

We get a further restriction on the possible scroll types by noting that

(4.2) φ = E.C = E.

(

C −
C2

4φ(C)
P

)

= mE.F,

i.e. m|φ(C).
Until now we have only considered which scroll types are possible. For the unnodal

case we can use the results of the previous section to get existence results as well. It is
again the case C2

4φ(C) ∈ Z which is the hardest. We start with an example.

Example We will find the scroll types that exists when C 2 = 60 and S is an unnodal
Enriques surface. This is the hardest and most interesting case with C 2 comparatively
small. We will see that all the scroll types that are numerically possible by our compu-
tations above actually exists.

First of all note that 2 ≤ φ(C) ≤ 7 by proposition 4.2.4.17 For φ(C) = 2, 4, 6, and 7
the possible scroll types are given uniquely by proposition 4.3.5. That there a actually
exists C with these scroll types and C2 = 60 follows from table 4.1.

We now look at φ(C) = 3. Then equation 4.2 gives m = 1 or m = 3. Assume C ∈ C̄.
We also assume P ∼ 2ω9.

18

An easy calculation gives
C ∼ 3ω8 + 7ω9

or
C ∼ ω7 + 8ω9.

In the first case mF ∼ 3(ω8 − ω9). This divisor cannot be primitive so we must have
m = 3. In the second case mF ∼ ω7 − ω9. Then m = 3 contradicts ω7.mF = 4. Hence
m = 1. Thus we see that both m = 1 and m = 3 are possible.

15For if h1(mF ) = h1((m + 1)F ) (m odd), we could reduce to h1(F ) = h1(2F ), a contradiction.
16Of course this also follows from the fact that only two of the di are unknown and that the di form a

non-increasing sequence.
17Remember that we are only interested in C being base point free so we exclude φ(C) = 1.
18Since we get existence later on this assumption is valid. If we later on did not get existence then this

assumption would not necessarily be valid.
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Table 4.3: Scroll types when C2 = 60.

φ(C) scroll type

2 (7, 7, 7, 6)

3 (5, 4, 4, 4, 4, 4)

3 (5, 5, 4, 4, 4, 3)

4 (3, 3, 3, 3, 3, 3, 3, 2)

5 (3, 2, 2, 2, 2, 2, 2, 2, 2, 2)

5 (3, 3, 3, 2, 2, 2, 2, 2, 1, 1)

6 (2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1)

7 (2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

It remains to consider φ(C) = 5. We do this almost exactly as we did φ(C) = 3.
Equation 4.2 gives m = 1 or m = 5. We assume again C ∈ C̄ and P ∼ 2ω9. Then there
are three possibilities for C:

C ∼ 5ω8 + ω9,

C ∼ ω4 + 3ω9,

and
C ∼ ω1 + ω7 + ω8 + 2ω9.

In the first case mF ∼ 5(ω8 − ω9). This gives m = 5. The second possibility gives
mF ∼ ω4 − 3ω9. Then ω0.mF = 3 gives m = 1. Thus both m = 1 and m = 5 are
possible.

The scroll types we get are given in table 4.3.

Looking just at this example one may conjecture that all scroll types that are nu-
merically possible by equations 4.1 and 4.2 exist. This is not true because one must also
make sure that F.C ≥ φ(C). Take for example C2 = 12 and φ(C) = 3. Then C2

4φ(C) = 1.
Equation 4.2 gives m = 1 or 3. If m = 3 then equation 4.1 gives F.C = 2, which con-
tradicts φ(C) = 3. I am unsure whether all scroll types that are numerically possible
by equations 4.1 and 4.2 with F.C ≥ φ(C) exists, if one excludes the pathological cases
where (C − P )2 = 0.19

By arguing as in the example we get table 4.4. This table shows all the scroll types
that exists for C2 ≤ 30. The pairs (C2, φ(C)) that are not in the table does not occur
since we have assume C base point free and h0(C −P ) ≥ 2. Since S is assumed unnodal
all the C in the table are ample. The map φC has degree 1 for all C in the table except
for the C in the first line. The C in the first line is superelliptic and gives a morphism

19By proposition 4.2.4 these are C2 = 8 with φ(C) = 2, C2 = 12 with φ(C) = 3, and C2 = 16 with
φ(C) = 4. Take for example C2 = 8 with φ(C) = 2. In this case we have (C − P )2 = 0. m = 1 gives
h1(C − P ) = 0, which gives h0(C − P ) = 1. But we are only interested in h0(C − P ) ≥ 2 so we have
excluded this case. Note also that m = 2 gives C superelliptic by [CD89, theorem 4.7.1].
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of degree 2. Note that for every isomorphism class of unnodal surfaces every line in this
table exists.

We will end this chapter with a little bit about the resolutions we get from the
inclusions φC(S) := S′ ⊂ T .20 We no longer assume that S is unnodal, but to make the
resolutions nicer we will assume h1(C − P ) = 0 and φ(C) ≥ 3. Then for any P0 ∈ |P |
we have

P0
∼= Ph0(C)−h0(C−P )−1 = P2φ(C)−1.

Lang [Lan79] showed that the generic member of an elliptic pencil on S is a smooth
elliptic curve. The proof of [JK01, lemma 7.1] works ad libatim in the Enriques surface
case.21 Thus for all P0 ∈ |P | we get a resolution of the type

0 −→ O
P2φ(C)−1(−2φ(C)) −→ O

P2φ(C)−1(−2φ(C) + 2)β2φ(C)−3 −→ · · ·

−→ O
P2φ(C)−1(−2)β1 −→ O

P2φ(C)−1 −→ OφC(P0) −→ 0,

where

(4.3) βi = i

(
2φ(C) − 1

i + 1

)

−

(
2φ(C) − 2

i − 1

)

.

As in the Del Pezzo case [Sch86, theorem 3.2] (see also [Sch86, corollary 4.4.i]) now
gives a resolution of OS′ as an OT -module

0 −→ OT (−2φ(C)H + (C2/2 − 2φ(C) − 1)F)

−→
⊕β2φ(C)−3

j=1 OT (−(2φ(C) − 2)H + bj
2φ(C)−3F)(4.4)

−→ · · · −→
⊕β1

j=1 OT (−2H + bj
1F) −→ OT −→ OS′ −→ 0.

By arguing as in chapter 3 we get the following analogue to equation (3.7)

(
n+2φ(C)−1

n

) (

nC2/2−2φ(C)+1
2φ(C) + 1

)

− n2(n2C2/2 + 1) − 1 =(4.5)

∑2φ(C)−3
i=1 (−1)i+1

(n−i−2φ(C)−2
2φ(C)−1

) (( (n−i−1)(C2/2−2φ(C)+1)
2φ(C) + 1

)

βi +
∑βi

j=1 bj
i

)

+

(−1)2φ(C)−1
( n−1
2φ(C)−1

) ( (n−2φ(C))(C2/2−2φ(C)+1)
2φ(C) + C2/2 − 2φ(C)

)

20This will be very similar to what we did with Del Pezzos in the previous chapter so we will not
include as much details.

21Just remember to disregard the first paragraph of the proof.
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Table 4.4: Scroll types for C2 ≤ 20 with C base point free and h0(C − P ) ≥ 2.

C2 φ(C) scroll type

8 2 (1, 1)

10 2 (1, 1, 0, 0)

12 2 (1, 1, 1, 0)

14 2 (1, 1, 1, 1)

14 3 (1, 1, 0, 0, 0, 0)

16 2 (2, 1, 1, 1)

16 2 (2, 2, 1, 0)

16 3 (1, 1, 1, 0, 0, 0)

16 4 (1, 1, 0, 0, 0, 0, 0)

18 2 (2, 2, 1, 1)

18 3 (1, 1, 1, 1, 0, 0)

18 4 (1, 1, 0, 0, 0, 0, 0, 0)

20 2 (2, 2, 2, 1)

20 3 (1, 1, 1, 1, 1, 0)

20 4 (1, 1, 1, 0, 0, 0, 0, 0)

22 2 (2, 2, 2, 2)

22 3 (1, 1, 1, 1, 1, 1)

22 4 (1, 1, 1, 1, 0, 0, 0, 0)

24 2 (3, 2, 2, 2)

24 2 (3, 3, 2, 1)

24 3 (2, 1, 1, 1, 1, 1)

24 3 (2, 2, 1, 1, 1, 0)

24 4 (1, 1, 1, 1, 1, 0, 0, 0)

26 2 (3, 3, 2, 2)

26 3 (2, 2, 1, 1, 1, 1)

26 4 (1, 1, 1, 1, 1, 1, 0, 0)

28 2 (3, 3, 3, 2)

28 3 (2, 2, 2, 1, 1, 1)

28 4 (1, 1, 1, 1, 1, 1, 1, 0)

28 5 (1, 1, 1, 1, 1, 0, 0, 0, 0, 0)

30 2 (3, 3, 3, 3)

30 3 (2, 2, 2, 2, 1, 1)

30 4 (1, 1, 1, 1, 1, 1, 1, 1)

30 5 (1, 1, 1, 1, 1, 1, 0, 0, 0, 0)
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Index of Notation

(A′,∆′), 40

(S,L), 5

(e1, . . . , ed), 19

(s(+), s(−)), 15

A, 26

A > B, 5

A ≥ B, 5

BP1,...,Pn(S), 123

C, 148

D (Del Pezzo), 127

D (K3), 24

DC , 30

E8, 17

F , 24

F0, 26

In, 125

P , 148

R, 26

RL,D, 40

S(e1, . . . , ed), 19

Sn, 124

U , 17

ClS, 11

Cliff C, 21

Cliff L, 23
CliffL S, 23

∆0, 40

NSS, 11

NumS, 11

C̄ =, 143

deg, 123

κ(S), 10

E, 142

A(L), 23

A0(L), 23

F , 20

H, 20

OC(D), 30

RL,D, 25

T , 19

µ(L), 23

ωi, 143
φ(C), 143
φL, 20, 26
φΓ, 18
ρ(D,D), 39
ρ(S), 15
ρ(g, r, d), 39
{c,D2}, 61
c, 23
d, 19, 21, 61
di, 21
ei, 19, 21, 124
f , 19, 61
g(L), 5
hi(L), 5
l, 124
li, 124
(C1), 24
(C2), 24
(C3), 24
(C4), 24
(C5), 24
(C6), 26
(C7), 27
(C8), 28
(C9), 28
(E0)–(E4), 26
(Q), 26
(W1), 40
(W2), 40
(W3), 40
(W4), 41
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Index

k-jet ample, 126
k-spanned, 126
k-very ample, 126
(-1)–curve, 125

adjunction formula
Del Pezzo, 125
Enriques, 141
K3, 11

arithmetic genus, 5
associated scroll, 27, 61

big, 11
birationally k-spanned, 127
birationally k-very ample, 127
BN (Brill-Noether) generality

of curve, 39
of polarized K3 surface, 30–39

BN index, 39
BN number, 39

canonical type, 141
Clifford divisor, 24
Clifford general, 23
Clifford index, 21–30

compute, 21
contribute to, 21
of curve, 21
of line bundle on curve, 21
of line bundle on K3 surface, 23
of polarized K3 surface, 23

configuration, 5
configuration-graph, 5
curve, 5

Del Pezzo surface, 123
degree of, 123

Enriques lattice E, 143
Enriques surface, 139

nodal, 141
special type, 141
unnodal, 141

exceptional curve, 22

forest, 13
free Clifford divisor, 24

general position, 123
gonality, 21

halfpencil, 142
Hodge index theorem, 12

K3 lattice, 17
K3 surface, 10

Kodaira dimension, 10

lattice, 15

discriminant, 15
even, 15
K3 lattice, see K3 lattice
non-degenerate, 15

Picard lattice, see Picard lattice
primitive, 17
signature, 15
unimodular, 15

nef, 12

nodal curve, 141
numerically m-connected, 15

perfect Clifford divisor, 27
Picard lattice, 15
Picard number, 15
Picard-Lefschetz reflection, 18

polarized surface, 5
genus of, 5

primitive divisor of canonical type, 141

Ramanujam’s lemma, 15
rational normal scroll, 19–21

type, 19
Riemann-Roch

Del Pezzo, 124
Enriques, 140
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K3, 11

scroll, see rational normal scroll
smooth rational curve, 11
surface, 5

type, line bundle, 61
type, scroll, see rational normal scroll

well-behaved divisors, 40–52
components of, 49
existence of, 49
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