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Introduction

Guaranteed investment products have over the last decade made its entrance into the world
financial markets. In general these products have been concentrated around rate of return
guarantees on investments in stocks, funds and indices1. Guarantees where the underlying
rate of return is the short-term interest rate have also been popular and we try to separate
guarantees where the underlying rate of guarantee is either the rate of return on “stock-like”
investments or the short-term interest rate. Today financial calculus is also used to price
contracts on foreign currencies, electric power and contracts in many other markets.

Guaranteed contracts obviously find applications in other parts of our lifes than investments
in “traditional” financial assets as stocks, bonds etc. Guarantees in life insurance is not a new
concept but the development in financial theory has done it possible to price guarantees more
consistently. In traditinal life insurance the guarantees have in practice been set far below the
short-term interest rate at contract inception, i.e. the guarantees have been far out-of-money
or in other words almost worthless. Companies in several countries encountered then severe
problems in the 90’s after neglecting the impact of such interest-rate guarantees, as the fall of
the high short-term interest rate from the late 80’s made the relatively high guarantees valu-
able or in-the-money. Obviously such interest rate guarantees may have substantial market
values.

In order to price these guarantees the financial theory, which developed after the famous
papers done by Black and Scholes [7] in 1973 and by Merton [18] the very same year, has
shown to be a valuable tool. This theory uses Itô-diffusions2 and geometric Brownian motion,
GBM, to model price processes such as stocks, indices etc. A GBM-model turns out to be
very handy when trying to price options on underlying price processes and the price of such
options is central in valuing guarantees. But the simplicitly of the GBM-model also seem to
exhibit some weaknesses with regard to empiral observations of the price processes, especially
the log-prices of many stocks seem to be heavytailed and skewed. This is not properties
compatible with the GBM-model which is a log-normal process. More advanced models have
thus been proposed in order to model heavy tails and skewness, but these do not hold the
simplicity of the GBM-model. In this thesis we will therefore concentrate on the “classic”
financial theory and the GBM-model is therefore preferred.

1Also called Long Guarantees
2See Appendix A
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INTRODUCTION

As mentioned above option pricing is central in order to value guaranteed contracts. A guaran-
teed contract gives the investor a guaranteed amount at maturity of the contract, in addition
the contract gives the investor a positive stochastic amount if e.g. the stock or index has
a terminal value above the initial value3. We also consider contracts where this additional
rate of return is path-dependent or partly path-dependent, in the sense that we consider the
whole or parts of the trajectory of the underlying process and not only its terminal value.

The recent years banks and financial institutions have offered products with an upper bound
on the stochastic amount, i.e. contracts with a maximal rate of return, and products where
the invested amount is not entirely guaranteed. In order to bound the probability space of
the rate of return, barrier options and collar options have been implemented into the con-
tracts. These options have the property of lowering the value of the option-part and thereby
the entirely guaranteed contract. The terminal value can also be calculated as a mean of
e.g. the index value in a period before termination of the contract, but then we encounter
the problem of pricing an Asian option. These are the rate of return structures which are
considered in this thesis, other structures which do not guarantee the initial amount or with
coupon bearing bonds have also been popular but are not considered here.

The guaranteed contract consists of the guaranteed amount, which value can be represented
as a certain number of zero coupon bonds4, and the positive stochastic amount, which can
be represented as a certain number of options on the underlying process, e.g. options on a
index.

Guaranteed Contract = Zero Coupon Bonds + Options

The financial calculus presented in Chapter 1 and in Appendix A gives us a tool to value the
guaranteed contract above consisting of bonds and options.
We will consider options which can not be exercised at any other time than at the contract
end, named European style options. This is in the spirit of the contracts considered being
investment and savings products with a relatively long horizon and is not meant for the typ-
ical investor with a short investment horizon.

So in this thesis we present the financial calculus which has developed over the recent thirty
years and some of the work done on interest-rate theory and derivative theory. We then define
various guarantees where the underlying rate of return is the rate of return on a stock, mutual
fund or index when these processes are modelled as GBM, and guarantees on the short-term
interest rate.

A summary of the content is as follows:

Chapter 1 Contains general theory with important financial definitions like contingent
claims, numeraire, arbitrage, completeness and combines several results to the important

3Priced with a European option
4A bond which does not pay a coupon rate
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INTRODUCTION

pricing formula in section 1.4. This is the tool we need to valuate options and bonds in the
preceding chapters. This formula gives the “fair” price of different claims as an expectation
under a equivalent probability measure Q. This martingale-based theory was developed by
Harrison & Kreps [11] in 1979 and Harrison & Pliska [12] in 1981.

Chapter 2 Here we define the zero coupon bond and other interest rates used in the finan-
cial market. In section 2.3 we use the pricing result from Chapter 1 to price the zero coupon
bond. Stochastic models of the short-term interest rate are also presented.

Chapter 3 This is the most extensive chapter and values different options connected to the
eventually positive stochastic rate of return generated. Even if they are different they still
have something in common, they are all of “European” style since the only time they can
be exercised is at the predeterminated maturity time. European, Collar, Asian and Barrier
options are presented, with degree of difficulty in (probably) that order.

Chapter 4 Here the guaranteed contracts considered are defined. We show how the con-
tracts consist of a sum of bonds and options, and we present the market prices in percent of
the invested amount.

Chapter 5 Finally some numerical results are presented. We are content with a few remarks
regarding these since they already have been heavily analyzed by existing literature.

viii



Chapter 1

General Theory

First we give a brief introduction to a financial market modelled by Brownian motion, that
is we consider a continous-time market model. Combining the results in this chapter gives
us an valuation formula and we get some very appealing analytic results regarding pricing of
different derivatives.
Most of the chapter is taken from Øksendal [24], except of section 1.5 which basicly is from
Bjørk [6] and Musiela & Rutkowski [20].

1.1 Market and Self-Financing Portfolios

Definition 1.1.1 A market is an F (m)
t -adapted (n+1)-dimensional Itô process

S(t) = (S0(t), S1(t), . . . , Sn(t)) ; 0 ≤ t ≤ T which we will assume has the form

dS0(t) = r(t, ω)S0(t)dt, S0(0) = s (1.1)

where r(t) is a given, possibly stochastic, process, usually assumed to be the price process of
a locally risk free asset. S0 describes a bank deposit or a money account with the stochastic
short rate of interest r(t).

and

dSi(t) = µi(t, ω)dt +

m∑

j=1

σij(t, ω)dWj(t) (1.2)

= µi(t, ω)dt + σi(t, ω)dW (t) ; Si(0) = xi,

where σi is row number i of the n × m matrix [σij ]; 1 ≤ i ≤ n ∈ N

m refers to the number of Wiener processes generating the uncertainty. These processes may
e.g. be assumed to be independent or correlated.

1



1.1. MARKET AND SELF-FINANCING PORTFOLIOS

A special case appears when r is a deterministic constant, then we can interpret S−1
0 (t) as

the price of a bond at time t.

We think of Si(T ) as the price of some security or asset.

Definition 1.1.2 The market S(t)t∈[0,T ] is called normalized if S0(t) ≡ 1

The market can be normalized by defining

Z(t) =
S(t)

S0(t)
= S−1

0 (t)S(t) = (1, Z1(t), . . . , Zn(t)) (1.3)

where Z(t) can be viewed as the discounted price process
By normalization of the market with the price S0(t), i.e. the safe investment, we get the
prices of the other securities as units of S0(t). We regard the price of S0(t) as the unit price
or the numeraire. Solving the differential equation (1.1) we get the solution

S0(t) = exp
( ∫ t

0
r(s)ds

)
, S0(0) = 1

Thereby we get

P (t) := S−1
0 (t) = exp

(
−

∫ t

0
r(s)ds

)
> 0 ∀t ∈ [0, T ] (1.4)

and the dynamics of the normalizations (by the Itô formula)

dZi(t) = d(P (t)Si(t)) = dP (t)Si(t) + P (t)dSi(t)

= −r(t)P (t)Si(t)dt + P (t)dSi(t)

= P (t)[dSi(t) − r(t)Si(t)dt] (1.5)

Definition 1.1.3 Let the (n+1)-dimensional price process S(t)t∈[0,T ] be given

1. A portfolio strategy is any F (m)
t -adapted (n+1)-dimensional stochastic process

h(t) = h(t, S(t)) = (h0(t, S(t)), h1(t, S(t)), . . . , hn(t, S(t))); 0 ≤ t ≤ T. (1.6)

The portfolio h is said to be Markovian when it is on this form.

2. The value process V h corresponding to the portfolio h is given by

V h(t) =

n∑

i=0

hi(t)Si(t) (1.7)

with the corresponding discounted value process to the portfolio h

2



1.1. MARKET AND SELF-FINANCING PORTFOLIOS

V z(t;h) =
V (t, h)

S0(t)
. (1.8)

3. A portfolio h is said to be self-financing if

dV h(t) =

n∑

i=0

hi(t)dSi(t) (1.9)

i.e. if

dV h(t) = h(t)dS(t) (1.10)

That is when the market value of the old portfolio equals the purchase value of the new
portfolio.

4. For a given portfolio h the corresponding relative portfolio u is given by

ui(t) =
hi(t)Si(t)

V h(t)
, i = 0, 1, . . . , n (1.11)

and
n∑

i=0

ui(t) ≡ 1

Remark 1 Note that if h(t) is a self-financing portfolio for S(t) and

V z(t;h) = h(t)Z(t) = h(t)P (t)S(t) = P (t)V h(t)

is the value process of the normalized market, then we have by Itô ’s formula, (1.5) and (1.10)

dV z(t, h) = d(P (t)V h(t)) = P (t)dV h(t) + dP (t)V h(t)

= P (t)h(t)dS(t) − r(t)P (t)V h(t)dt

= P (t)h(t)dS(t) − r(t)P (t)h(t)S(t)dt

= P (t)h(t)[dS(t) − r(t)S(t)dt]

= h(t)dZ(t) (1.12)

The portfolio h(t) is self-financing even for the normalized market.

Remark 2 If the portfolio “weights” h1(t), h2(t), . . . , hn(t) already are chosen, we can make
the portfolio h(t) self-financing by choosing the “right” h0(t). If we combine (1.7) and (1.10)
by solving (1.10) we get

3



1.1. MARKET AND SELF-FINANCING PORTFOLIOS

V h(t) =
n∑

i=0

hi(t)Si(t) = h0(t)S0(t) +
n∑

i=1

hi(t)Si(t) (1.13)

= V (0) +

∫ t

0

n∑

i=0

hi(s)dSi(s) (1.14)

= V (0) +

∫ t

0
h0(s)dS0(s) +

n∑

i=1

∫ t

0
hi(s)dSi(s) (1.15)

Put

Y0(t) = h0(t)S0(t) (1.16)

Then we get from (1.13) and (1.15) that

dY0(t) = d(h0(t)S0(t)) = r(t)Y0(t)dt + dA(t) (1.17)

where

A(t) =

n∑

i=1

(∫ t

0
hi(s)dSi(s) − hi(t)Si(t)

)

and

d
( ∫ t

0
h0(s)dS0(s)

)
= h0(t)dS0(t) = h0(t)r(t)S0(t)dt

= r(t)Y0(t)dt; dV (0) = 0

Using exp(−
∫ t
0 r(s)ds) = P (t) as integrating factor we get the solution of (1.17) by

P (t)Y0(t) − P (0)Y0(0) =

∫ t

0
P (s)dA(s)ds; P (0) = 1, Y0(0) = h0(0)S0(0) = h0(0)

which gives

h0(t) = P (t)Y0(t) = h0(0) +

∫ t

0
P (s)dA(s)ds

Solving the integral in the last equation by integration by parts we get

4



1.2. ADMISSIBILITY, ARBITRAGE AND MARTINGALE MEASURES

h0(t) = h0(0) + P (t)A(t) − P (0)A(0) −
∫ t

0
A(s)dP (s)

= h0(0) +

n∑

i=1

hi(0)Si(0) + P (t)A(t) +

∫ t

0
r(s)A(s)P (s)ds

= V (0) + P (t)A(t) +

∫ t

0
r(s)A(s)P (s)ds (1.18)

Therefore if we already have chosen e.g. the number of stocks, h1(t), h2(t) . . . , hn(t), in the
portfolio; then we can make it self-financing by investing h0(t) according to (1.18) in the bank.

Remark 3 Note that the changes in the wealth are due to capital gains. For simplicity we
assume that the securities do not generate dividends.

1.2 Admissibility, Arbitrage and Martingale Measures

Definition 1.2.1 A portfolio h(t), which is self-financing, is said to be admissible if the
corresponding value process V h(t) is a.s. (almost surely) lower bounded.

This is a natural condition since in real life the investors are “tied” to the creditors and debt
accumulation. Without this condition it could be possible to generate any terminal value
V h(t) from V (0) = 0 with a risky price process modelled as Brownian motion. See [24],
example on p251.

Definition 1.2.2 An arbitrage portfolio is a self-financed portfolio with the following prop-
erties

(i) V (0) = 0

(ii) P (V h(T ) > 0) > 0

(iii) P (V h(T ) < 0) = 0

If no arbitrage portfolios exists we say that the market is free of arbitrage.

Later on we will assume that the respective market is arbitrage free; this is very appealing from
a economic point of view since the existence of arbitrage portfolios is no market equilibrium.
We have also assumed that all investors prefer more money to less and thereby will “exploit”
these possibilities of making money out of nothing. This will (hopefully) create a market
equilibrium.

Definition 1.2.3 The probability measure Q is called a martingale measure if

(i) P ∼ Q

(ii) The discounted price process is a Q local martingale or

5



1.3. ATTAINABILITY AND COMPLETENESS

(iii) The discounted price process is a Q martingale

If we denote it a Q-martingale we say that we have a strong martingale measure

Definition 1.2.4 Consider a given martingale measure Q and a self-financing portfolio h.
Then h is called Q-admissible if V z(t;h) is a Q-martingale.

Since by definition Z(t) is a Q-martingale and since the V z(t)-process is the stochastic inte-
gral of h with respect to Z(t) , we see that every sufficiently integrable self-financing portfolio
is in fact admissible.

Lemma 1.2.1 Assume there exists a martingale measure Q on F (m)
T such that P ∼ Q. Then

the market {S(t)}t∈[0,T ] has no arbitrage in the sense that there exists no Q-admissible port-
folio.

Conversely if the market S(t)t∈[0,T ] has no arbitrage, then there exists an equivalent mar-
tingale measure Q.

For proof see e.g. [24] p253-254 and references therein.

1.3 Attainability and Completeness

In this section we will assume that that the market is free of arbitrage, i.e. there exists an
equivalent martingale measure Q.
We will now give some results which are important in pricing theory and regarding attain-
ability and completeness.

The following important lemma is taken from Yor [23], Proposition 17.1

Lemma 1.3.1 Suppose a process u(t, ω) ∈ Vm(0, T ) satisfies the condition

E
[
exp

(1

2

∫ T

0
u2(s, ω)ds

)]
< ∞ (1.19)

Define then the measure Q = Qu on F (m)
T by

dQ(ω)

dP (ω)
= exp

(
−

∫ T

0
u(t, ω)dW (t) − 1

2

∫ T

0
u2(t, ω)dt

)
(1.20)

Then

W̃ (t) :=

∫ t

0
u(s, ω)ds + W (t) (1.21)

6



1.3. ATTAINABILITY AND COMPLETENESS

is an F (m)
t -martingale and an F (m)

t -Brownian motion w.r.t. Q and any F ∈ L2(F (m)
T , Q) has

a unique representation

F (ω) = EQ[F ] +

∫ T

0
φ(t, ω)dW̃ (t) (1.22)

where φ(t, ω) is an F (m)
t -adapted process such that

EQ
[ ∫ t

0
φ2(t, ω)dt

]
< ∞. (1.23)

Lemma 1.3.2 Let Z(t) = S(t)
S0(t) = P (t)S(t) be the normalized price process as in (1.3).

Suppose h(t) is an admissible portfolio for the market {S(t)}t∈[0,T ] with value process

V h(t) = h(t)S(t) (1.24)

Then h(t) is also an admissible portfolio for the normalized market {Z(t)} with value process

V z(t;h) = h(t)Z(t) = h(t)S−1
0 (t)S(t) = P (t)V h(t) (1.25)

and vice versa.
Assuming a self-financing portfolio h(t) we get

V h(t) = V h(0) +

∫ t

0
h(s)dS(s); 0 ≤ t ≤ T (1.26)

m

P (t)V h(t) = V h(0) +

∫ t

0
h(s)dZ(s); 0 ≤ t ≤ T (1.27)

Proof Since r(t) is bounded which implies that V h(t) is lower bounded; then is also V z(t, h)
lower bounded. That is h(t) is an admissible portfolio. This is an important observation when
proving that the existence of a equivalent measure results in a no-arbitrage market.
Further we have

V z(t, h) = h(t)Z(t) = P (t)V h(t) (1.28)

Assuming that h(t) is self-financing for the market {S(t)} then we have by (1.12)

dV z(t, h) = h(t)dZ(t) (1.29)

Hence h(t) is also admissible for the normalized market {Z(t)} which proves the lemma.

Lemma 1.3.3 Suppose there exists an m-dimensional process u(t, ω) ∈ Vm(0, T ) such that

σ(t, ω)u(t, ω) = µ(t, ω) − r(t, ω)S(t, ω) for a.a. (t, ω) (1.30)

and

E
[
exp

(1

2

∫ T

0
u2(s, ω)ds

)]
< ∞. (1.31)

7



1.3. ATTAINABILITY AND COMPLETENESS

Define then the measure Q = Qu and the process W̃ (t) as in (1.20) and (1.21) respectively.

Then W̃ is a Brownian motion w.r.t. Q and in terms of W̃ we have the following represen-
tation of the normalized market Z(t) = P (t)S(t):

dZ0(t) = 0 (1.32)

dZi(t) = P (t)σi(t)dW̃ (t); 1 ≤ i ≤ n. (1.33)

The normalized value process V z(t, h) of an admissible portfolio h(t) is a local Q-martingale
given by

dV z(t, h) = P (t)
n∑

i=1

hi(t)σi(t)dW̃ (t) (1.34)

Proof The first statement follows from lemma 1.3.1 and the Girsanov theorem. We prove
(1.34) by computing

dZi(t) = d(P (t)Si(t)) = P (t)dSi(t) + Si(t)dP (t)

= P (t)[µi(t)dt + σi(t)dW (t)] − r(t)P (t)Si(t)dt

= P (t)[µi(t)dt − r(t)Si(t)dt + σi(t)dW (t)]

= P (t)[µi(t)dt − r(t)Si(t)dt + σi(t)(dW̃ (t) − ui(t)dt)]

= P (t)σi(t)dW̃ (t)

The last two equations above follows from the assumption of existence of a process u(t, ω).

If
∫ T
0 EQ[P 2(t)σ2

i (t)]dt < ∞, then Q is a equivalent martingale measure and Zi(t) is a mar-
tingale w.r.t. Q by Theorem A.1.2.
Equation (1.34) follows now easily from (1.29) and (1.33).

Definition 1.3.1

• A (European) contingent T-claim is a lower bounded F (m)
T -measurable stochastic vari-

able F (ω) = X of the form

F (ω) = X = Φ(ST ), (1.35)

where the contract function Φ is some given real valued funtion.

• A fixed claim is said to be attainable, in the market {S(t)}t∈[0,T ], if there exists an
admissible, self-financing portfolio h(t) and a real number y = V (0) such that the cor-
responding value process has the following property

V h(T ) = V (T ;h) = X = y +

∫ T

0
h(t)dS(t), P − a.s.

and such that

V z(t, h) = y +

∫ t

0
P (s)σi(s)dW̃ (s); 0 ≤ t ≤ T is a (strong) Q − martingale.

That is the existence of such a portfolio h(t) makes it a replicating or hedging portfolio
in the sense that it replicates the value of the claim F (ω) = X

• The market {S(t)}t∈[0,T ] is called complete if every bounded T-claim is attainable.
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The claim X is attainable or in other words can be replicated by the portfolio h(t) if there
exists a real number V (0) such that if we start with this as our initial fortune then we can
find an admissible portfolio h(t) which generates a value V h(T ) at time T which a.s. equals
X .
Here we have to require that V z(t) is a (strong) martingale and not just a local martingale
w.r.t. Q.
Dropping the martingale condition in the definition above gives us a replicating portfolio
which does not need to be unique.

(For more about strong and local martingales see e.g. [24].)

In order to say anything about completeness of the market the following results are useful

Theorem 1.3.1 The market {S(t)} is complete iff σ(t, ω) has a left inverse Λ(t, ω) for

a.a.(t, ω), i.e. if there exists an F (m)
t -adapted matrix valued process Λ(t, ω) ∈ Rm×n such

that

Λ(t, ω)σ(t, ω) = Im a.a. (t, ω). (1.36)

Which is equivalent to the property

rank σ(t) = m for a.a. (t, ω) (1.37)

For proof see [24] p263.

Remark 1 Assume that (1.36) holds. Let F = X be a bounded T -claim. We now want to
show that we can find an admissible portfolio h(t) = (h0(t), . . . , hn(t)) and a real number y
such that if we put

V h
y (t) = y +

∫ t

0
h(s)dW (s) (1.38)

Then by Lemma 1.3.1 V z
y (t, h) is a Q-martingale and

V h
y (t) = F (ω)

By (1.34) this is equivalent to

P (T )F (ω) = V z
y (T, h) = y +

∫ T

0
P (t)

n∑

i=1

hi(t)σi(t)dW̃ (t).

And by Lemma 1.3.1 we have the unique representation

P (T )F (ω) = EQ[P (T )F ] +

∫ T

0
φ(t, ω)dW̃ (t) = EQ[P (T )F ] +

∫ T

0

m∑

i=1

φ(t, ω)dW̃j(t)

for some φ(t, ω) = (φ1(t, ω), φ2(t, ω), . . . , φm(t, ω)) ∈ Rm. Hence by putting

y = EQ[P (T )F ]

9



1.3. ATTAINABILITY AND COMPLETENESS

and choosing ĥ(t) = (h1(t), h2(t), . . . , hn(t)) such that

P (t)

n∑

i=1

hi(t)σij(t) = φj(t) ; 1 ≤ j ≤ m

i.e. such that

P (t)ĥ(t)σ(t) = φ(t).

We then get by (1.36) the solution of this equation

ĥ(t, ω) = S0(t)φ(t, ω)Λ(t, ω).

By choosing h0(t) according to (1.18) the portfolio becomes self-financing.
By definition and by using (1.34) we obviously have

P (t)V h
y (t) = y +

∫ t

0
h(s)dZ(s) = y +

∫ t

0
φ(s)dW̃ (s)

and

P (T )V h
y (T ) = P (t)V h

y (t) +

∫ T

t
φ(s)dW̃ (s) (1.39)

Conditioning on the information generated by {W (t)} and taking expectation under the
measure Q in the last equation we get the important result

P (t)V h
y (t) = EQ[P (T )V h

y (T )|Ft] = EQ[P (T )F |Ft] (1.40)

Since V h
y (t) is lower bounded, every claim in the market is attainable in the sense that the

value of the claim can be replicated by the portfolio h(t) and the market is by definition
complete.

Remark 2 Note that the filtration {F̃ (m)
t } generated by {W̃ (t)} is contained in {F (m)

t }
by (1.21) but not necessarily equal to {F (m)

t }.
Conditioning on the information generated by {W̃ (t)} will by definition give the same result.

Corrollary 1.3.1

(i) If n=m, i.e. the number of price processes equals the number of Wiener processes gen-
erating the uncertainty, then the market is complete if and only if σ(t, ω) is invertible
for a.a.(t, ω).

(ii) If the market is complete, then

rank σ(t, ω) = m for a.a. (t, ω)

In particular, n ≥ m.
Moreover the process u(t, ω) satisfying (1.33) is unique.
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1.4 Pricing of Contingent Claims

We now turn to the problem of finding av “reasonable” price process Π(t,X) of the given
contingent claim given in (1.35).
The holder of the contract Φ receives the stochastic amount X at time T . A European claim
is a claim where the value of the claim only depends on the value of S(T ) of the securities at
the final time T .
It is also possible to consider path-dependent claims, i.e. claims where the payoff also depends
on the value of the market S(t) where t ∈ [0, T ]. These claims are in general more complicated
to handle and we will return to such claims later on.

Let us now consider a T -claim F (ω). A European option on the claim F guarantees the owner
the amount F (ω) at time t = T > 0.
What is a “reasonable” price for this guarantee?

Consider the following argument:
If the buyer of the option pays the price y for the guarantee, then she has an initial fortune
of −y in her portfolio. Using this negative value to hedge a value V h

−y(T, ω) to time T and
adding the guaranteed payoff F (ω) then this has to give a non-negative result if this deal is
going to give her an intencive to buy the option:

V h
−y(T, ω) + F (ω) ≥ 0 a.s

The maximal price p(F ) she is willing to pay for the option is p(F ) = sup y when there exists
an admissible portfolio h such that

V h
−y(T, ω) := −y +

∫ T

0
h(s)dS(s) ≥ −F (ω) a.s. (1.41)

A similar argument can be given to find the minimum price q(F ) the seller is willing to accept
for the option:
If the seller receives z for the guarantee then he could regard this as his (positive) initial
fortune in his portfolio. Using this positive value to hedge a value V h

z (T, ω) to time T and
which is not smaller than the guaranteed amount F (ω) promised the buyer, gives also the
seller a non-negative result:

V h
z (T, ω) ≥ F (ω) a.s.

The minimum price he is willing to accept for the option is then q(F ) = inf z when there
exists an admissible portfolio h such that

V h
z (T, ω) := z +

∫ T

0
h(s)dS(s) ≥ F (ω) a.s. (1.42)

Theorem 1.4.1 Using Lemma 1.3.3 and assuming that (1.30) and (1.31) holds and that
F (ω) is a bounded T -claim, letting Q be as in (1.20) and assuming that this martingale
measure is unique, i.e. that the market {S(t)} is complete and all claims in the market can
be replicated, then the price of the European claim at time t is given by
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p(F ) = q(F ) =
1

P (t)
EQ[P (T )F |Ft] := S0(t) · EQ[

F

S0(T )
|Ft] (1.43)

Proof For simplicity let t = 0. Since the market is complete we can find unique y and z,
both elements in R such that

−y +

∫ T

0
h(s)dS(s) = −F (ω) a.s.

z +

∫ T

0
h(s)dS(s) = F (ω) a.s.

From Lemma (1.3.2) and Lemma (1.3.3) we obviously get

−y +

∫ T

0

n∑

i=1

hi(s)P (s)σidW̃ (s) = −P (T )F (ω) a.s.

z +

∫ T

0

n∑

i=1

hi(s)P (s)σidW̃ (s) = P (T )F (ω) a.s.

Taking expectation under the measure Q and observing that
∫ t
0

∑n
i=1 hi(s)P (s)σidW̃ (s) is a

Q-martingale, we get

y = EQ[P (T )F ]

z = EQ[P (T )F ]

Hence

p(F ) ≤ y = EQ[P (T )F ]

and

q(F ) ≥ z = EQ[P (T )F ]

For a time 0 < t < T we get from (1.39) and the completeness assumption that V h
−y = y and

V h
z = z

EQ[P (T )V h
−y(T )|Ft] = P (t) · y

EQ[P (T )V h
z (T )|Ft] = P (t) · z (1.44)

Since V h
−y(T ) = F (ω) = V h

z (T ) this proves the theorem.

1.5 Change of Numeraire

In order to get analytical pricing formulas in situations where we want to compute derivatives
of several underlying assets or processes, we can instead of the asset price B(t) use e.g. the
T -bond as numeraire or other assets as e.g. price processes.
When using a T -bond as numeraire, the maturity date of the bond coincides with the ma-
turity date of the derivative and we call the equivalent probability measure the T-forward
neutral measure.
When using a price process as S(t) as numeraire we will denote it the martingale measure for
the numeraire process S(t).
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Especially when the short interest rate is modelled as a stochastic process, a different nu-
meraire will become handy.

We assume the existence of a stochastic process β(t), referred to as the numeraire process,
with the following dynamics under the martingale measure Q

dβ(t) = µβ(t, ω)dt + σβ(t, ω)dW̃ (t)

Defining the market as in Definition 1.1.1 we now normalize the market by the “new” nu-
meraire β(t)

Z(t) =
S(t)

β(t)
=

[
S0(t)

β(t)
,
S1(t)

β(t)
, · · · ,

Sn(t)

β(t)

]

Where the dynamics of Si(t) under the martingale measure Q is defined as

dSi(t) = r(t)Si(t)dt + σi(t, ω)dW̃ (t)

We also define the stochastic process of the short-term rate as an Itô diffusion

dr(t) = α(t, r(t))dt + ν(t, r(t))dW̃ (t)

Consider contingent claims of the form

X = Φ(S(T ), r(T ))

Denote the non-normalized economy as the S-economy and similary the normalized economy
as the Z-economy.
It is now easy to prove1 that the following assertions are true

(i) A portfolio strategy h(t, S(t)) is self-financing in the S-economy iff it is self-financing
in the Z-economy.

(ii) The value processes V S and V Z are connected trough

V Z(t;h) =
V S(t;h)

β(t)

(iii) The claim X is reachable in the S-economy iff the claim

X
β(T )

is reachable in the Z-economy.

(iv) The S-market is arbitrage free iff the Z-market is arbitrage free

1See [6] page 280-281
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(v) The S-market is complete iff the Z-market is complete

(vi) The process Π(t,X ) is an arbitrage free price process in the S-model iff the process

Π(t,X )

β(t)

is an arbitrage free price process in the Z-model.

Pricing

From the assertions above we can now price a claim X either in the S-market or the in
Z-market. From (i), (iii) and (vi) we obviously have that

Π(t;X )

S0(t)
= ΠQβ

(
t;

X
S0(T )

)

which gives

Π(t;X ) = β(t) · ΠQβ
(
t;

X
β(T )

)
(1.45)

The well known price Π(t;X ) in the Q-martingale measure, with the money account as nu-
meraire, can now equivalently be found using another process β(t) as numeraire.
Noticing that whatever price process we use as numeraire, the arbitrage free price of a claim
in their respective normalized economies have to be equal. In other words

ΠQβ
2

(
t;X

)
= ΠQβ

1

(
t;X

)
.

Finally from (1.45) and Theorem 1.4.1 we get

Π(t;X ) = EQ[e−
∫ T

t
r(s)ds · X |Ft] = β(t) · EQβ

[ X
β(T )

|Ft

]
(1.46)

Modelling with e.g. stochastic interest rates, this formula becomes important in order to get
analytical results.

In general in a no-arbitrage market we can find a (possibly) stochastic process u(t, ω), which
satisfies Novikov’s condition trough the Girsanov theorem.
Then we can compute explitcitly the Radon-Nykodym derivative

MT =
dQ(ω)

dP (ω)
, onFT
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By the theorem we can now move between two equivalent probability measures P and Q,
which gives for a given process Yt

EQ[Yt] = EP [Mt · Yt]

and important for our purpose

EQ[YT |Ft] = EP
[MT

Mt
· YT |Ft

]
= M−1

t · EP [MT · YT |Ft]

Letting e.g. Y (T ) = e−
∫ T

t
r(s)ds · X and define the measure P as Qβ we get the situation

above.

1.6 Summary

From an idealistic point of view we assume from now on that the economy and thereby our
market is free of arbitrage, or in other words an quilibrium is prevailing in the market. This
is an important assumtion in order to have a functioning price generating market.
Further we can summarize this chapter as follows

• We model the market in general as an multi-dimensional Itô-process. The stock or price
process number i would usually be modelled as

dSi(t) = µi(t, ω)(t)dt + σi(t, ω)dW (t).

When we later on consider options/claims on a stock we usually assume a 1-dimensional
Itô-diffusion on the form

dS(t) = αS(t)dt + σS(t)dW (t)

or what is called geometric Brownian motion.

• In order to price claims/options on a underlying stock or index we consider portfolios
based on this underlying process and a locally risk-free asset, e.g. a bank deposit.
We then use the non arbitrage argument to show that if we can find a self-financing
portfolio which at any time replicates the value of the claim, then a “fair” price of the
claim should equal the value of this portfolio at the time when the contract is agreed
to start.

• If we can replicate every bounded claim at any time with by changing our self-financing
portfolio, the market is said to be complete and there exists a unique price for the
claim/option.

• It can be shown that the normalized valu process, V z(t, h), of a portfolio h isa martingale
and thereby its dynamics can be written as an Itô-integral. Solving this integral and
taking expectation gives us the arbitrage-free price of a contingent claim X
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1.6. SUMMARY

Π(t;X ) = S0(t) · EQ
t,s[S

−1
0 (T ) · X ]

where S0(t) is the discounting process normalizing the market.

• By a change of numeraire or discounting process we can also price claims when modelling
with a stochastic interest rate.

Stock Price Simulation
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Figure 1.1: Simulated stock price and its expectation over a 10-year period with 4 grids a day
when assuming 250 trading days a year.

Important Assumptions

• Short positions and fractional holdings are allowed.

• The selling price equals the buying price, i.e. no bid-ask spread.

• No transactions costs of trading.

• Arbitrage possibilities do not exist since investors prefer more money to less and will
take advantage of arbitrage possibilities, creating a market equilibrium.
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Chapter 2

Bonds and Interest Rates

We have so far considered the process S0(t) to be a bank deposit with a locally risk-free rate
of return r(t) and the processes Si(t) to be any Brownian-motion driven assets.
Now we turn to the bond market and try to apply arbitrage theory to bond pricing. We
consider a single price process and let Si(t) = S(t) be a bond.
The theory and results in this chapter is basicly from Bjørk [6], but Musiela & Rutkowski
[20] and Miltersen & Persson [19] have also been useful.

2.1 Zero Coupon Bonds

In this thesis the primary object w.r.t. bonds is zero coupon bonds or pure discount bonds.
That is a bond which is not coupon bearing.

Definition 2.1.1 A zero coupon bond with maturity date T , called a T -bond, is a contract
which guarantees the holder 1 monetary unit to be paid out on the date T . The price of the
T -bond at time t is denoted by B(t, T ).

In order to guarantee the existence of a sufficiently rich and regular bond market we have to
make the following assumptions:

(i) There exists a (frictionless) market for T -bonds for every T > 0.

(ii) The relation B(t, t) = 1 holds for all t.

(iii) For every fixed t, the bond price B(t, T ) is differentiable w.r.t. time of maturity T .
B(t, T ) is then a function of T which provides the prices, at the fixed time t, for all
bonds of all possible maturities. This function is called the term structure t.

(iv) For fixed maturity T , B(t, T ) as a function of t will be a scalar stochastic process which
gives the prices at different times of the bond. The trajectory will typically be irregular
like a Wiener-process.

Since the bond market consists of an infinite number of assets this market is different from
the market in the previous chapter.
In general we are interested in the relation which must exist between all these bonds in order
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to avoid arbitrage possibilities. Also we are of course interested in computing prices of interest
rate derivatives.

2.2 Interest Rates

Given the bond market above we can now define a number of interest rates. In order to do
this consider the following construction.
Suppose that we are at time t and let us fix two other points of time, S and T , with t < S < T .
We now want to write a contract at time t which allows us to make an investment of one
monetary unit at time S and which gives us a deterministic rate of return, determined at
the contract time t, over the intervall [S, T ]
This can be done by the following procedure.

1. At time t we sell one S-bond. This will give us B(t, S) monetary units which we use to

buy exactly B(t,S)
B(t,T ) T -bonds. Thus our net investment equals zero.

2. At time S the S-bond matures, so we are obliged to pay out one monetary unit.

3. At time T the T -bonds mature at one monetary unit a piece, so we will receive the
amount of B(t,S)

B(t,T ) monetary units.

4. Based on a contract made at time t, an investment of one monetary unit at time S has
yielded B(t,S)

B(t,T ) monetary units at time T .

5. Thus at time t, we have made a contract guaranteeing a riskless rate of interest over
the future interval [S, T ]. This is called a forward rate of interest.

From this argument we can define the following interest rates:

• The mean rate of return per unit of time contracted at t, referred to as the LIBOR
forward rate for [S, T ] , is defined as

L(t, S, T ) =

B(t,S)
B(t,T ) − 1

T − S
=

B(t, S) − B(t, T )

B(t, T )(T − S)

• The LIBOR spot rate for [S, T ] contracted at time t = S is defined as

L(S, T ) =
1 − B(t, T )

B(t, T )(T − S)

• In order to define a continous rate of return consider the following argument:
If the short-term interest rate, r(t), is deterministic the price of a T -bond at time t

will obviously be given as B(t, T ) = e−
∫ T

t
r(s)ds = e−(T−t)R(t,T ) by letting R(t, T ) =

1
(T−t)

∫ T
t r(s)ds be the mean rate of return for [t, T ]. On the contrary if the short-term

interest rate, r(t), is stochastic, then obviously
∫ T
t r(s)ds will not be Ft-measurable.

But still we are able to define the continously compounded spot rate, R(S, T ) for
the period [S, T ] as
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Y (S, T ) = − log P (S, T )

T − S

Y (S, T ) is also known as the yield, and when relating Y (S, T ) to time to maturity T
we get a funcion called the yield curve or the term structure of interest rates.
This is an adapted process and has become important in calibrating short rate models.

This can easily be done by taking the logarithm of the expression B(t, T ) = e−(T−t)R(t,T ).

• In a similar way we can define the forward rate. Assume that we follow the proce-
dure above. At step 2 we have to pay out one monetary unit. Regarding this as an
investment at time S, we get B(t,S)

B(t,T ) monetary units at time T . Then the mean forward

rate, R(t, S, T ), is the solution to B(t,S)
B(t,T ) = e(T−S)R(t,S,T ). Taking the logarithm of this

expression we can define the continously compounded forward rate contracted at
time t as

Y (t, S, T ) =
log B(t, S) − log B(t, T ))

T − S

• We also define an instantaneous forward rate which plays an important role in the HJM-
methodology.
Let f(t, T ) be the forward interest rate at date t < T for instantaneous riskfree bor-
rowing or lending at date T . f(t, T ) is to be interpreted as the interest rate over the
infinitesimal intervall [T, T + dT ], seen from time t.
This is “only” a formal mathematical definition and this forward rate is not observable
in the market.
Given this definition for a family f(t, T ), t ≤ T ≤ T ∗, of forward rates, the bond
prices can be defined by setting

B(t, T ) = exp
(
−

∫ T

t
f(t, s)ds

)
∀t ∈ [0, T ] (2.1)

where T ∗ is our time horizon.
Assuming that the family of bond prices is differentiable w.r.t. time of maturity T , (2.1)
can be solved for f(t, T ).
This gives the instantaneous forward rate with maturity T , contracted at time t as

f(t, T ) = −∂ log B(t, T )

∂T

• More traditional stochastic interest models are based on the stochastic short-time in-
terest rate or the spot rate r(t). Analogous to the forward rate the spot rate is to be
interpreted as the interest rate for risk free borrowing or lending over the infinitesimal
time interval [t, t + dt] at time t.
From the notation above we define the instantaneous short rate at time t as

r(t) = f(t, t) (2.2)
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If r(t), is stochastic, then
∫ T
t r(s)ds will still not be Ft-measurable and the bond prices

can not be given as B(t, T ) = exp
(
−

∫ T
t r(s)ds

)
.

Still we can define the money account or bank deposit as in (1.1)

S0(t) := B(t) = exp
(
−

∫ t

0
r(s)ds

)

with the following dynamics

dS0(t) = r(t)S0(t)dt, S0(0) = s

2.3 Bond Pricing

We have already defined the bond price in (2.1) as

B(t, T ) = exp
(
−

∫ T

t
f(t, s)ds

)

The forward rate f(t, s) is an adapted process but since it is not observable we have to price
the bond through specifying the dynamics of the short rate.

We will now assume throughout that for any fixed maturity T < T ∗, the price process
B(t, T ), t ∈ [0, T ], follows a strictly positive and adapted process on a filtered probability
space. Suppose also that the adapted process r(t) models the short-term interest rate and
that r(t) is defined on the same filtered probablity space as B(t, T ), t ∈ [0, T ].

In order for the bond market to be arbitrage free, bonds with different maturities have to sat-
isfy certain internal consistency relations. So by this reason we make the following definition

Definition 2.3.1 A family B(t, T ), t ∈ [0, T ] of adapted processes is called an arbitrage free
family of bond prices relative to r if the following conditions are satisfied

(i) B(T, T ) = 1 for every T ∈ [0, T ∗] and

(ii) There exists an equivalent probability measure such that the relative bond price

Z(t, T ) =
B(t, T )

S0(t)
=

B(t, T )

B(t)
, ∀t ∈ [0, T ],

follows a martingale under this equivalent measure.
This is called the martingale measure, Q, for the family B(t, T ) relative to r.

Assuming that the bond market is free of arbitrage, then there exists a process λ(t) according
to Lemma 1.2.1 and Lemma 1.3.1, such that the price of a T -claim with the bond as the
underlying price process B(t, T ) is given by

Π(t, T ) = EQ[B(T )−1 · X |Ft] = EQ[e−
∫ T
t

r(s)ds · X |Ft], ∀t ∈ [0, T ] (2.3)
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In particular the price of a bond is given by letting X = 1, that is a claim of one bond

B(t, T ) = EQ[B(T )−1|Ft] = EQ[e−
∫ T

t
r(s)ds|Ft], ∀t ∈ [0, T ] (2.4)

The last two equations easily follow from Theorem 1.4.1.

In our contionous framework we model the short rate of interest as an Itô process and thereby,
according to the Girsanov theorem, it possess the following Q-dynamics

dr(s) =
(
µ(s, ω) − σ(s, ω) · λ(s)

)
ds + σ(s, ω)dW̃ (s) r(t) := r (2.5)

Since the only exogenous given asset is the risk free one, it is quite clear that the bond market
is incomplete. (We are then not able to form hedging portfolios.)
If we take one particular bond as benchmark we can decide a unique λ(t) such that the bond
market becomes complete and we get a unique, arbitrage free pricing process.

If we assume deterministic interest rates the claim-and bond price will obviously be given
as

Π(t, T ) = e−r(T−t) · EQ[X|Ft]

B(t, T ) = e−r(T−t)

2.4 Interest Rate Models

The focus in this thesis is on deterministic interest rates. This is because we concentrate on
guarantees where the underlying rate of return is the rate of return on a stock or index and
not the rate of return of a short-term interest rate. Though we give an simple example where
we model the short-term interest rate due to the model of Vasiček [22].

Assuming the existence of instantaneous interest rates may become problematic because it
requires smoothness w.r.t. maturity. An alternative is to directly specify the dynamics of all
possible bonds. (See [20] Chapter 14).

The Heath-Jarrow-Morton methodology of term structure modelling is based on exogenous
specification of the dynamics of instantaneously compounded forward rates f(t, T ). i.e the
observed forward rated curve f(t, T );∀T ≥ 0 will be the initial condition. This will relieve
us the task off inverting the yield curve in order to calibrate a interest rate model. The
HJM-approach to interest rates is not a specific model, like e.g. the short-rate models, but it
is a general framework to be used for analyzing different interest rate models.
In section 2.4.2 we show that the short-term interest rate model of Vasiček is a special case
in the HJM-framework.
For more about interest rate models see e.g. [14], [6], [20] and [13].
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2.4.1 Forward Rate Models

We take the observed forward rated curve f(t, T ); ∀T ≥ 0 as given and define the forward
rate dynamics as follows

df(t, T ) = α(t, T )dt + σ(t, T )dW (t) (2.6)

f(0, T ) = f∗(0, T ) (2.7)

where α and σ are assumed to be continously differentable in the T variable and adapted
stochastic processes and W is a d-dimensional independent P -Wiener process .
We also assume that all processes are regular enough so that we can differentiate under the
integral sign and changing the order of integration.
Later we will restrict ourselves to Gaussian models. i.e. models where all volatilities of
assets, forward rates and short-term rates are deterministic functions. This will give us an
computational advantage w.r.t analytical results since the market price of risk then will be-
come deterministic.
From the definition of the forward rates in (2.1) and (2.2) there must be some relations
between the bond prices and the short-term rate when we assume that f(t, T ) satisfies the
dynamics above

By definition we have

r(t) = f(t, t) = f(0, t) +

∫ t

0
α(u, t)du +

∫ t

0
σ(u, t)dW (u) (2.8)

By the stochastic Fubini theorem we have

α(u, t) = α(u, u) + (α(u, t) − α(u, u)) = α(u, u) +

∫ t

u
αT (u, s)ds

σ(u, t) = σ(u, u) + (σ(u, t) − σ(u, u)) = σ(u, u) +

∫ t

u
σT (u, s)ds

Inserting this in (2.8) we get

r(t) = f(0, t)+

∫ t

0
α(u, u)du+

∫ t

0

∫ t

u
αT (u, s)dsdu+

∫ t

0
σ(u, u)dW (u)+

∫ t

0

∫ t

u
σT (u, s)dsdW (u)

Changing the order of integration we get

r(t) = f(0, t)+

∫ t

0
α(u, u)du+

∫ t

0

∫ s

0
αT (u, s)duds+

∫ t

0
σ(u, u)dW (u)+

∫ t

0

∫ s

0
σT (u, s)dW (u)ds
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Since

f(0, t) = r(0) +

∫ t

0
fT (0, u)du

the short-term rate is given as

r(t) = r(0)+

∫ t

0
{fT (0, s)+α(s, s)+

∫ s

0
αT (u, s)du+

∫ s

0
σT (u, s)dW (u)}ds+

∫ t

0
σ(s, s)dW (s)

or

r(t) = r(0) +

∫ t

0
ζ(s)ds +

∫ t

0
σ(s, s)dW (s) (2.9)

where

ζ(s) = fT (0, s) + α(s, s) +

∫ s

0
αT (u, s)du +

∫ s

0
σT (u, s)dW (u) = α(s, s) + fT (s, s)

and with the dynamics

dr(t) = ζ(t)dt + σ(t, t)dW (t)

This framework can now be used to evaluate short-term interest rate models.

Likewise we can find the dynamics of the bond prices by assuming that f(t, T ) satisfies (2.6)
By the definiton of forward rates we have

B(t, T ) = e−
∫ T
t

f(t,s)ds = eY (t, T ) = eY

where Y (t, T ) obviously is given by

Y (t, T ) = −
∫ T

t
f(t, s)ds

Using the Itô formula on the bond price we get

dB(t, T ) = d(eY ) = eY (t,T )dY (t, T ) +
1

2
eY (t,T )(dY (t, T ))2 (2.10)

Here we have to compute dY (t, T ) and (dY (t, T ))2

dY (t, T ) = d

(
−

∫ T

t
f(t, s)ds

)
= f(t, t)dt−

∫ T

t
df(t, s)ds = f(t, t)dt−

∫ T

t
α(t, s)dtds−

∫ T

t
σ(t, s)dW (t)ds

by changing dt and dW (t) with ds and recognizing f(t, t) as r(t) we obtain
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dY (t, T ) = r(t)dt −
∫ T

t
α(t, s)dsdt −

∫ T

t
σ(t, s)dsdW (t) = r(t)dt + A(t, T )dt + S(t, T )dW (t)

A(t, T ) = −
∫ T

t
α(t, s)ds, S(t, T ) = −

∫ T

t
σ(t, s)ds

Using the Itô calculus we derive (dY (t, T ))2 from the equation above when we assume a
d-dimensional factor model.(d sources of uncertainty).

(dY (t, T ))2 = ||S(t, T )||2dt

Substituting dY (t, T ) and (dY (t, T ))2 into (2.10) we obtain

dB(t, T ) = B(t, T )(r(t)dt + A(t, T )dt + S(t, T )dW (t)) +
1

2
B(t, T )||S(t, T )||2dt

= B(t, T )

{
r(t) + A(t, T ) +

1

2
||S(t, T )||2

}
dt + B(t, T )S(t, T )dW (t) (2.11)

For a more formal proof see [20] p306.

Absence of Arbitrage

Deriving the two relations above that must hold between forward rates and bond prices and
between forward rates and short-term rates in order for consistency, we did not assume that
the market was free of arbitrage.
Since we have d sources of randomness, one from every Wiener process, and an infinite num-
ber of traded assets, one bond for every maturity T , we run a risk for introducing arbitrage
possibilities in the market. In order to avoid this we present the HJM drift condition, which
gives a conditon on the drift term α(t, T ) of the forward rate.

Theorem 2.4.1 HJM drift condition Assume that the family of forward rates given by
(2.6) and that the induced bond market is free of arbitrage. Then there exists a d-dimensional
column-vector process

λ(t) = [λ1(t), . . . , λd(t)]
′ (2.12)

with the property that for all T ≥ 0 and for all t ≤ T , we have

α(t, T ) = σ(t, T )

∫ T

t
σ(t, s)′ds − σ(t, T )λ(t) (2.13)

Where ′ denotes tranpose.

Proof From (2.11) we have the bond dynamics under the P -measure, when we take the

24



2.4. INTEREST RATE MODELS

forward rate as given.
Assuming no-arbitrage, then there must exist an equivalent probability measure Q and an

F (d)
t -adapted and (t, ω)-measurable process λ(t, ω) for the normalized bond market.

Using the bank account, B(t), as numeraire, the dynamics of the normalized bond market
becomes

dZ(t, T ) = Z(t, T )

{
A(t, T ) +

1

2
(S(t, T ))2

}
dt + Z(t, T )S(t, T )dW (t)

Using Girsanov’s theorem this becomes an martingale by letting

−S(t, T ) · λ(t) = A(t, T ) +
1

2
||S(t, T )||2

m

−
d∑

i=1

Si(t, T )λi(t) = A(t, T ) +
1

2
||S(t, T )||2

Where the right part of the above equation is the risk premium for the T -bond.
Taking the T -derivative of the last equation gives us

σ(t, T )λ(t) = −α(t, T ) + σ(t, T )

∫ T

t
σ(t, s)′ds

Rearranging we get (2.13).

Corrollary 2.4.1 HJM drift condition under Q Under the martingale measure Q, the
processes α and β must satisfy the following relation for every t and every t ≤ T

α(t, T ) = σ(t, T )

∫ T

t
σ(t, s)′ds (2.14)

Proof Defining the forward rate dynamics under Q we have

df(t, T ) = α(t, T )dt + σ(t, T )dW̃ (t)

The bond price dynamics must then satisfy

dB(t, T ) = B(t, T )

{
r(t) + A(t, T ) +

1

2
||S(t, T )||2

}
dt + B(t, T )S(t, T )dW̃ (t)

But since we are under a martingale measure, every assets local rate of return has to equal
the short rate r. This gives us

r(t) + A(t, T ) +
1

2
||S(t, T )||2 = r(t)

Taking the T -derivative the result follows.
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2.4.2 A Short-Rate Model

We consider here the short-term interest rate model proposed by Vasiček [22] in 1977. This
is a HJM-model in the sense that there exists a mathematical transformation that makes the
Vasiček model a special case of the framework in (2.6) and (2.7).

The Vasiček Model

This is one of the simplest short-rate models. Assuming time-independent parameters we
define the dynamics of the short-rate under the P -measure by

dr(t) = a(r̄ − r(t))dt + σdW (t)

for some constants a, r̄ and σ.
This is a Ornstein-Uhlenbeck process with a mean reverting structure and since the
Vasiček model above only depends on one source of uncertainty it is classified as a single-
factor model. Assuming a non-arbitrage market there must exist a equivalent martingale
measure Q and a process λ such that

dW̃ (t) = λdt + dW (t).

Instead of specifying the dynamics of r under the objective probability measure P we can
now specify the dynamics under the martingale measure Q

dr(t) = a(r̄ − σλ

a
− r(t))dt + σdW̃ (t)

= a(r̂ − r(t))dt + σdW̃ (t) (2.15)

where r̂ = r̄ − σλ
a .

Since solving the differential equation in (2.15) is equivalent to solve

d
(
eatr(t)

)
= eatar̂dt + eatσdW̃ (t) (2.16)

we get the solution of (2.15) to be

r(t) = e−atr(0) +

∫ t

0
e−a(t−s)ar̂dt +

∫ t

0
e−a(t−s)σdW̃ (s) (2.17)

= e−atr(0) + r̂(1 − e−at) +

∫ t

0
e−a(t−s)σdW̃ (s). (2.18)

This solution is a Gaussian process since W̃ (t) is Brownian motion and the integral by def-
inition is a sum. Using (A.1) and (A.2) we can find the repective expectation and variance
functions under the measure Q
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µr(t) := EQ[r(t)] = e−atr(0) + r̂(1 − e−at) and σ2
r (t) := V arQ[r(t)] =

σ2

2a
(1 − e−2at).

and with the following long term values

EQ[r(∞)] = r̂ V arQ[r(∞)] =
σ2

2a

EP [r(∞)] = r̄ V arP [r(∞)] =
σ2

2a

From (2.4) we have the bond price

B(t, T ) = EQ[e−
∫ T

t
r(s)ds]. (2.19)

Since r(s) is normally distributed, with expectation µr(s) and variance σ2
r (s), then the integral∫ T

t r(s)ds is also normally distributed. In order to find the expectation and variance we use
(2.18) and try to find an expression for the integral above. Assume 0 ≤ t ≤ s, then r(s) is
iven by

r(s) = e−a(s−t)r(t) + r̂(1 − e−a(s−t)) + σ

∫ s

t
e−a(s−u)dW̃ (u)

and the integral is obtained by changing the order o integration

∫ T

t
r(s)ds = r(t)

∫ T

t
e−a(s−t)ds + r̂

∫ T

t
(1 − e−a(s−t))ds + σ

∫ T

t

∫ s

t
e−a(s−u)dW̃ (u)ds

=
r(t)

a
(1 − e−a(T−t)) + r̂(T − t) − r̂

a
(1 − e−a(T−t)) + σ

∫ T

t

∫ T

u
e−a(s−u)dsdW̃ (u)

=
r(t)

a
(1 − e−a(T−t)) + r̂(T − t) − r̂

a
(1 − e−a(T−t)) +

σ

a

∫ T

t
(1 − e−a(T−u))dW̃ (u)

Taking expectation and variance of this last equation under Q and using the Itô isometry and
(A.2) we get

µI(t, T ) := E
[ ∫ T

t
r(s)ds

]
= r̂(T − t) +

(r(t) − r̂)(1 − e−a(T−t))

a
(2.20)

and
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σ2
I (t, T ) := V ar

[ ∫ T

t
r(s)ds

]
=

σ2

a2
V ar

[ ∫ T

t
(1 − e−a(T−u))dW̃ (u)

]

=
σ2

a2

{
E

[( ∫ T

t
(1 − e−a(T−u))dW̃ (u)

)2
]
−

(
E

[ ∫ T

t
(1 − e−a(T−u))dW̃ (u)

)2}

=
σ2

a2
E

[ ∫ T

t
(1 − e−a(T−u))2du

]
=

σ2

a2

∫ T

t
(1 − 2e−a(T−u) + e−2a(T−u))du

=
σ2

a2

[
T − t − 2

a
(1 − e−a(T−t)) +

1

2a
(1 − e−2a(T−t))

]
. (2.21)

We then have

−
∫ T

t
r(s)ds ∼ N

[
− µI(t, T ), σ2

I (t, T )
]

(2.22)

such that

e−
∫ T
t

r(s)ds
∼ LN

[
− µI(t, T ), σ2

I (t, T )
]

(2.23)

where LN is to be interpreted as an log-normal distributed variable.
The bond price given in (2.19) is then easily computed as

B(t, T ) = EQ[e−
∫ T

t
r(s)ds] = e−µI (t,T )+σ2

I (t,T )/2. (2.24)

In order to find bond prices when modelling with more complex short-rate models, other
techniques can be applied. See e.g. the section on affine term structures in [6].

The Vasiček Model in HJM-terms

We want to show that the Vasiv̌ek model is a special case in the HJM framework. Assume
that the forward rates in (2.6) are specified directly under a martingale measure Q. Solving
the differential under this measure for 0 ≤ t ≤ s ≤ T we get

f(t, s) = f(0, s) +

∫ t

0
α(u, s)du +

∫ t

0
σ(u, s)dW̃ (u).

From (2.14) we get the HJM drift condition under Q and the solution above then becomes

f(t, s) = f(0, s) +

∫ t

0
σ(u, s)

∫ s

u
σ(u, v)′dvdu +

∫ t

0
σ(u, s)dW̃ (u).

Letting s = t we get the short-term interest rate by definition, which any short-rate model
must satisfy if the HJM framework is assumed.
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r(t) = f(t, t) = f(0, t) +

∫ t

0
σ(u, t)

∫ t

u
σ(u, v)′dvdu +

∫ t

0
σ(u, t)dW̃ (u). (2.25)

Comparing this with the solution of the Vasiček model in (2.17) and (2.18) we must have that

σ(u, t) = e−a(t−u)σ

where σ is the volatility in the short-rate model. Inserted in (2.25) this gives

r(t) = f(t, t) = f(0, t) +
σ2

2a2
(1 − e−at)2 + σ

∫ t

0
e−a(t−u)dW̃ (u)

It remains to compare the other terms in the solutions for the Vasiček and the forward rate.
From (2.18) and the above equation we must have

f(0, t) +
σ2

2a2
(1 − e−at)2 = e−atr(0) + r̂(1 − e−at)

which gives the HJM-representation

f(0, t) = e−atr(0) + r̂(1 − e−at) − σ2

2a2
(1 − e−at)2.

This is our initial condition in the HJM framework for the forward rate curve, thus automat-
ically gives us a perfect fit between model and observed data. And finally this shows that the
Vasiček model is a special case of the HJM framework.

Simulation of Interest Rate

1000 annual simulations for a 10-year period

0 2000 4000 6000 8000 10000

0.05

0.06

0.07

0.08

Figure 2.1: Vasiček model with r0 = 7%.
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Chapter 3

Options

For simplicity we will in this thesis consider Gaussian models. i.e. models where the volatil-
ities of all assets and the forward rate are deterministic or constant.
This assumption violates to some extent empirical research where e.g. the implied volatil-
ity shows to be non-deterministic. In order to model this feature there has been suggested
many “improved” models such as time series, stochastic volatility through an SDE and jump-
diffusion models both on the underlying asset and the volatility.
The theory and results presented in this chapter from beginning to section 3.4.3 is taken from
Bjørk [6]. The last sections is taken from Kunitomo & Ikeda [16] while some proofs regarding
hit probabilities are taken from the article of Anderson [2].

We will only consider the price of call options since these are central in guaranteed investment
contracts. From the put-call parity the put price can in most cases easily be derived.

We also restrict ourselves to options of “European” type, i.e. where the only exercise time is
at the contract end, i.e. at maturity time T .

For simplicity we consider a market consisting of one traded asset S(t), modelled as geo-
metric Brownian motion, and a bank account B(t), with the following dynamics under the
measure P

dS(t) = µ(t)S(t) + σ(t)S(t)dW (t); S(0) := s

dB(t) = r(t)B(t)dt; B(0) := 1

making the dynamics of the asset an Itô-diffusion and thereby Markovian.
Here W (t) is a possibly multi-dimensional Wiener process.
The solutions of the above differential equations are given as
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S(t) = s exp
( ∫ t

0
(µ(v) − 1

2
σ2(v))dv +

∫ t

0
σ(v)dW (v)

)

B(t) = exp
( ∫ t

0
r(v)dv

)

For constant drift-and diffusion term we have

S(t) = s exp
(
(µ − 1

2
σ)t + σW (t)

)
.

3.1 European Options

From definition (1.3.1) we know that a European option is a T -claim in the sense that the
value of the claim only depends on the time of maturity T .
We now use the pricing formula (1.43) and the change of numeraire theory to obtain closed
form solutions of a European claim, considering both deterministic and stochastic interest
rates.

A European call option/claim is on the form

X = Φ(S(T )) = [S(T ) − K]+ = max [S(T ) − K, 0].

3.1.1 Deterministic Interest Rates

Assume non-stochastic interest rates and let the bank account B(t) be the numeraire S0(t).
It is easily seen that with deterministic interest rates the bank account equals bond prices.i.e.
B(t)/B(T ) = B(t, T ).
From (1.43) the price of the claim is given as

Π(t;X ) = B(t)EQ[
X

B(T )
|Ft] = exp

(
−

∫ T

t
r(v)dv

)
· EQ[X|Ft] = B(t, T ) · EQ[X|Ft] (3.1)

where we have to compute EQ[X|Ft] = EQ[max [S(T ) − K, 0]|Ft].
The normalized market have the following dynamics under P

dZ(t) = d(S(t)/B(t)) = Z(t)(µ(t) − r(t))dt + Z(t)σ(t)dW (t)

Assume arbitrage free market and let

λ(t) =
µ(t) − r(t)

σ(t)
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The dynamics of Z(t) and S(t) under the equivalent measure Q are then

dZ(u) = Z(u)σ(u)dW̃ (u)

dS(u) = r(u)S(u)du + S(u)σ(u)dW̃ (u), S(t) = s.

Writing S(T ) = seX , X(u) is a stochastic variable, normally distributed

X ∼ N
[
µx(u), σx(u)

]

X(t) =

∫ t

0
(r(v) − 1

2
||σ(v)||2)dv +

∫ t

0
σ(v)dW̃ (v)

where

µx(u) =

∫ u

0
(r(v) − 1

2
||σ(v)||2)dv, σ2

x(u) =

∫ u

0
||σ(v)||2dv.

since the expextation of an Itô -integral equals zero, this follows from the Itô isometry.
We then have

EQ[X|Ft] := EQ
t,s[X ] = EQ

t,s[Φ(S(T ))] (3.2)

= EQ
t,s[Φ(seX)] =

∫ ∞

−∞
Φ(sex)f(x)dx (3.3)

For a few particular choices of Φ we can solve the above equation analytically, e.g. when
Φ(x) = max [x − K, 0], a European claim form. Otherwise it must evaluated numerically.
Normalizing X(t, T ) we get (without confusing the normalized market Z(t) with the variable
Z ∼ N [0, 1])

Z =
X(t, T ) − µx(t, T )

σx(t, T )
=

∫ T
t σ(t, s)dW̃ (s)
∫ T
t σ2(t, s)ds

∼ N [0, 1]

Under the measure Q we can now write S(T ) as

S(T ) = seµx(t,T )+σx(t,T )Z

The integral in equation (3.3) now becomes

∫ ∞

−∞
max

[
seµx(t,T )+σx(t,T )z − K, 0

]
ϕ(z)dz (3.4)

where ϕ is the density of the N [0, 1] distribution, i.e

ϕ(z) =
1√
2π

e−z2/2.
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The integrand in the integral in (3.4) obviously vanishes when

seµx(t,T )+σx(t,T )z < K,

i.e. when z < z0, where

z0 =
ln

(
K
s

)
− µx(t, T )

σx(t, T )
. (3.5)

We can now write the integral as

∫ ∞

z0

(
seµx(t,T )+σx(t,T )z − K

)
ϕ(z)dz =

∫ ∞

z0

seµx(t,T )+σx(t,T )zϕ(z)dz −
∫ ∞

z0

K · ϕ(z)dz

= A − B

Using the symmetry of the normal distribution the integral B can be written

B = K · Pr(Z ≥ z0) = K · Pr(Z ≤ −z0)

Since the cumalative distribution function of the N [0, 1] is involved we denote it

B = K · N [−z0]

where N [x] is defined as

N [x] =
1√
2π

∫ x

−∞
e−z2/2dz.

Completing the square in the component of integral A we get

A = seµx(t,T ) · 1√
2π

∫ ∞

z0

eσx(t,T )z− 1
2
z2

dz = seµx(t,T ) · 1√
2π

∫ ∞

z0

e−
1
2
(z−σx(t,T ))2+ 1

2
σ2

x(t,T )dz

= seµx(t,T )e
1
2
σ2

x(t,T ) · 1√
2π

∫ ∞

z0

e−
1
2
(z−σx(t,T ))2dz = se

∫ T

t
r(s)ds · Pr(Z ′ ≥ z0)

We easily identify e
∫ T

t
r(s)ds as the inverted bond price and Z ′ as N [σx(t, T ), 1] distributed.

Normalizing Z ′ we get

A = s(B(t, T ))−1·Pr(Z ≥ z0−σx(t, T )) =
s

B(t, T )
·Pr(Z ≤ σx(t, T )−z0) =

s

B(t, T )
·N [σx(t, T )−z0]

Since

µx(t, T ) =

∫ T

t
(r(s) − 1

2
||σ(s)||2)ds = − ln B(t, T ) − 1

2
σ2

x(t, T )

and putting the last results into equation (3.1), we now present the famous Black-Scholes
formula.
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Theorem 3.1.1 Black-Scholes formula The price Π(t,X )=C(t,s;K) of a European call
option, X = max[S(T ) − K, 0], is given by

Π(t,X ) = sN [M1] − KB(t, T )N [M2] (3.6)

Where

M1 =
− ln (K/s) − ln B(t, T )

σx(t, T )
+

1

2
σx(t, T ) (3.7)

M2 =
− ln (K/s) − ln B(t, T )

σx(t, T )
− 1

2
σx(t, T ) = M1 − σx(t, T ) (3.8)

and

σ2
x(t, T ) =

∫ T

t
||σ(s)||2ds

3.1.2 Stochastic Interest Rates

We now turn to the computation of European options when we are modelling with stochastic
interest rates. The price of a claim X is given as

Π(t;X ) = EQ
[ B(t)

B(T )
X|Ft

]
:= EQ

t,s

[
e−

∫ T

t
r(s)dsX

]

Where X = max [S(T ) − K, 0] The obvious problem here is that we have to compute the

expectation of the product of two stochastic variables;
∫ T
t r(s)ds and X . This expectation is

to be evaluated under the measure Q, where these stochastic variables are not independent.
The obvious reason is that the drift term of the process S(T ) includes

∫ T
t r(s)ds under Q.

Using the results from section 1.5 we can avoid this problem.

Using the result (1.46) and letting a T -bond be the numeraire process β(t) we get the following

Π(t;X ) = EQ
t,s

[
e−

∫ T
t

r(s)dsX
]

= B(t, T )EQT

t,s

[ X
B(T, T )

]

= B(t, T )EQT

t,s [X ] (3.9)

where B(T, T ) := 1. We now face a similar problem to deterministic interest rates, the
only difference is the new martingale measure QT . Using a HJM forward rate model the
P -dynamics of the forward rate, f(t, T ), S(t) and B(t, T ) are given by

df(t, T ) = αf (t, T )dt + σf (t, T )dW (t)

dS(t) = µ(t)S(t)dt + σ(t)S(t)dW (t)

dB(t, T ) = B(t, T )
(
r(t) + A(t, T ) +

1

2
||σB(t, T )||2

)
+ B(t, T )σB(t, T )dW (t)
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where A(t, T ) and σB(t, T ) := S(t, T ) are defined in (2.11).
We still let W (t) be a possibly multi-dimensional Wiener process.
Under the Q-measure we have the following dynamics

dS(t) = r(t)S(t)dt + σ(t)S(t)dW̃ (t)

dB(t, T ) = r(t)B(t, T )dt + B(t, T )σB(t, T )dW̃ (t)

Now using the T -bond as numeraire we find the dynamics of normalized process Z(t, T ) =
S(t)/B(t, T ) by Itô ’s formula and noting that Z(T, T ) = S(T )/B(T, T ) = S(T )

dZ(t, T ) = d
( S(t)

B(t, T )

)
=

dS(t)

B(t, T )
− S(t)dB(t, T )

(B(t, T )2
− 2 · 1

2

dS(t)dB(t, T )

(B(t, T )2
+

S(t)
(
(dB(T, T )

)2

(B(t, T ))3

=
S(t)

B(t, T )

{
(r(t)dt + σ(t)dW̃ (t) − (r(t)dt + σB(t, T )dW̃ (t)) − σ(t) · σB(t, T )dt

+||σB(t, T )||2dt
}

= Z(t, T )
{
||σB(t, T )||2 − σ(t) · σB(t, T )

}
dt + Z(t, T ) ·

{
σ(t) − σB(t, T )

}
dW̃ (t)

Using Girsanov’s theorem we change the probability measure such that this normalized pro-
cess becomes a martingale.
From the non-arbitrage assumption there must exist such a equivalent martingale measure.
Let

λ(t) =
||σB(t, T )||2 − σ(t)σB(t, T )

σ(t) − σB(t, T )
= −σB(t, T )

we now get the following QT -dynamics

dS(u) = S(u)
{
r(u) + σ(t)σB(u, T )

}
du + S(u)σ(u)dW̃ T (u)

dZ(u, T ) = Z(u, T )
{
σ(u) − σB(u, T )

}
dW̃ T (u)

Solving the differential equation for the normalized process we get

Z(T, T ) = Z(t, T )e−
∫ T
t

1
2
(σ(s)−σB(s,T ))2ds+

∫ T
t

(σ(s)−σB(s,T ))dW̃ T (s)

=
s

B(t, T )
e−

∫ T

t
1
2
(σ(s)−σB (s,T ))2ds+

∫ T

t
(σ(s)−σB(s,T ))dW̃ T (s)

Letting Z(T, T ) = s
B(t,T )e

X , where X(t, T ) is a stochastic variable, normally distributed

X(t, T ) = −1

2

∫ T

t
(σ(s) − σB(s, T ))2ds +

∫ T

t
(σ(s) − σB(s, T ))dW̃ T (s)

where
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µx(t, T ) = −1

2

∫ T

t
(σ(s) − σB(s, T ))2ds, σ2

x(t, T ) =

∫ T

t
(σ(s) − σB(s, T ))2ds

and

X ∼ N
[
µx(t, T ), σx(t, T )

]

We can now calculate the expectation in the pricing equation (3.9).

EQT

t,s [X ] = EQT

t,s [Φ(S(T ))] = EQT

t,s [Φ(S(T )/B(T, T ))] = EQT

t,z [Φ(Z(T, T ))]

= EQT

t,z [Φ(zeX )], z = S(t)/B(t, T )

= EQT

t,z [Φ(zeµx(t,T )+σx(t,T )V )]

=

∫ ∞

−∞
max

[
zeµx(t,T )+σx(t,T )v − K

]
ϕ(v)dv (3.10)

where V ∼ N [0, 1].
From the integral in (3.10) we proceed as before

∫ ∞

v0

zeµx(t,T )+σx(t,T )vϕ(v)dv −
∫ ∞

v0

Kϕ(v)dv = A − B

where

v0 =
ln K

z − µx(t, T )

σx(t, T )

B obviously equals

B = K · N [−v0]

Completing the square which we have in A we have

A = zeµx(t,T ) · 1√
2π

∫ ∞

v0

e−
1
2
(v−σx(t,T ))2+ 1

2
σ2

x(t,T )dv

= zeµx(t,T )e
1
2
σ2

x(t,T ) · Pr(V ′ ≥ v0)

where V ′
∼ N [σx(t, T ), 1]

Normalizing V ′ we get

A = z · Pr(Z ≤ σ2
x(t, T ) − v0) =

s

B(t, T )
N [σx(t, T ) − v0]

Since µx(t, T )+ 1
2σ2

x(t, T ) = 0 then µx(t, T ) = −1
2σ2

x(t, T ), and we get by putting the formulas
for A and B into (3.9) the Black-Scholes formula for stochastic interest rates:
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Theorem 3.1.2 The price Π(t;X ) = C(t, s;K) of a European call option, with stochastic
interest rates, is given by

Π(t;X ) = sN [M1] − KB(t, T )N [M2] (3.11)

where

M1 =
− ln (K/s) − ln B(t, T )

σx(t, T )
+

1

2
σx(t, T ) (3.12)

M2 =
− ln (K/s) − ln B(t, T )

σx(t, T )
− 1

2
σx(t, T ) = M1 − σx(t, T ) (3.13)

and

σ2
x(t, T ) =

∫ T

t
(σ(s) − σB(s, T ))2ds.

3.2 Collar Contract

In order to lower the price of an European option we could consider an option which “rules
out” unlikely results of the underlying price process.
Let K2 > K1 > 0 be fixed real numbers. A collar contract is a “european type” contract,
i.e. not path dependent, on the form

X = Φ
(
S(t)

)
= min

[
max [S(T ),K1],K2

]
.

By drawing a figure it is easily seen that this can be rewritten to

X = K1 + max [S(T ) − K1, 0] − max [S(T ) − K2, 0]

:= K1 + [S(T ) − K1]
+ − [S(T ) − K2]

+. (3.14)

Or, by observing

min [F,G] = G + min [F − G, 0] = G + [F − G]−

max [F,G] = G + max [F − G, 0] = G + [F − G]+

and

min [F − G, 0] = −max [G − F, 0].

This gives
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X = min
[
max [S(T ),K1],K2

]
= max [S(T ),K1] + min

[
K2 − max [S(T ),K1], 0

]

= K1 + [S(T ) − K1]
+ − max

[
max [S(T ),K1] − K2, 0

]

= K1 + [S(T ) − K1]
+ −

[
max [S(T ),K1] − K2

]+

Since K1 < K2 by assumption we obviously have that

[
max [S(T ),K1] − K2

]+
= [S(T ) − K2]

+ when S(T ) > K1
[
max [S(T ),K1] − K2

]+
= [K1 − K2]

+ = 0 when S(T ) < K1

but when S(T ) < K1 we also have S(T ) < K2.
Then we have

[
max [S(T ),K1] − K2

]+
= [S(T ) − K2]

+, when we assume K1 < K2,

which gives (3.14).
In other words, the Collar contract consists of in this case a sum of two European options
and a fixed value K1.
Using the valuation formula in (1.43) we have from the linear property of mathematical
expectation that the price of the claim X is given by

Π(t;X ) = Π
(
t;K1 + [S(T ) − K1]

+ − [S(T ) − K2]
+
)

= K1 · B(t, T ) + C(t, s;K1) − C(t, s;K2) (3.15)

where B(t, T ) is the bond pricwe of a zero-coupon bond with maturity date T and C(t, s;K1)
and C(t, s;K2) is the Black-Scholes price at time t for a European option with exercise K1

and K2, respectively.

When we are considering guarantees the collar contract intuitively reduces the price of the
guarantee since extreme values of the the underlying price process are ruled out.

3.3 Asian Options

An Asian option is a class of options considered both as European and American style.
The last type gives the owner of the contract the right to exercise the contract at any time
of the contract period and not only at the time of contract termination. We will consider
European style contracts, i.e the only time the contract can be exercised is at time of contract
termination.
An Asian option is a average option in the sense that the payoff depends on a average of
the underlying process during the whole or parts of the contract period. This averaging
feature makes the Asian option more robust with regard to manipulations, like speculators
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wanting to make money, near the date of contract termination. The Asian option is typcally
less expensive than the European option. Typically in our continous-time framework the
avereging part is a arithmetic average of e.g. the stock price S(u), for t ≤ u ≤ T

AS(t, T ) =
1

T − t

∫ T

t
S(u)du

with payoff or contract function CA(t, s;K)

CA(t, s;K) = max [AS(t, T ) − K, 0] = (AS(t, T ) − K)+.

The distribution of AS(t, T ) can now be found to be non-lognormal which makes a closed
form solution for the price of a Asian option hard to find. No general solution for the price
of the contract CA(t, s;K) is known, but Geman & Yor [10] give a closed-form expression for
the Laplace transform of the price which must be found through numerical techniques. A
variety of different techniques have been developed to analyze different arithmetric average
Asian options, see Musiela &Rutkowski [20], Dufresne [9] and references therein.

Using the pricing theory from Chapter 1 the Black-Scholes price for the contract CA(t, s;K)
is given by

CA(t, s;K) = e−r(T−t) · EQ
t,s

[
(AS(t, T ) − K)+

]
(3.16)

when assuming a constant interest rate and

CA(t, s;K) = B(t, T ) · EQT

t,s

[
(AS(t, T ) − K)+

]
(3.17)

when assuming stochastic interest rates.
The obviuos problem with both pricing functions is the expectation expression. Monte Carlo
simulation applies the Strong Law of Large Numbers and we have

1

N

N∑

i=1

(ASi
(t, T ) − K)+

a.s.−→ EQ
t,s

[
(AS(t, T ) − K)+

]
(3.18)

when r is assumed to be constant and where (ASi
(t, T ) − K)+, for 1 ≤ i ≤ N , are indepen-

dent, identical distributed and with finite expectation. And evaluated under the equivalent
probability measure Q. We get an similar expression for stochastic interest rates, but now we
evaluate under the measure QT .

So the approximate price of the Asian option with constant and stochastic interest rates,
respectively, is then given by
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CA(t, s;K) ≈ e−r(T−t) · 1

N

N∑

i=1

(ASi
(t, T ) − K)+ (3.19)

CA(t, s;K) ≈ B(t, T ) · 1

N

N∑

i=1

(ASi
(t, T ) − K)+ (3.20)

Remark The strenghts of the Monte Carlo simulation is that it can be used when the payoff
is path-dependent and when the contract depends on more than one underlying process. The
approximation in (3.20) seems to be unnecesssary complex in the sense that the dynamics
of the underlying process Si is directly specified as a function of the stochastic interest rate
under the measure QT . This can be avoided when we instead consider the “original” pricing
function with stochastic interest rate

CA(t, s;K) = EQ
t,s

[
e−

∫ T
t

r(v)dv · (AS(t, T ) − K)+
]
. (3.21)

By the Law of Large Numbers we can approximate the price of the Asian option with stochas-
tic interest rate by

CA(t, s;K) ≈ 1

N

N∑

i=1

e−
∫ T

t
ri(v)dv · (ASi

(t, T ) − K)+ (3.22)

where e−
∫ T

t
ri(v)dv · (ASi

(t, T )−K)+ for 1 ≤ i ≤ N are independent, identical distributed and
with finite expectation.

3.4 Barrier Options

Barrier options belongs to a class of options whose payoff is path-dependent in the sense that
it depends on if the underlying price(s) hit a predescribed barrier during the lifetime of the
option.
We will here give analytical formulas for single-and double suitable barriers. For simplicity we
consider price processes modelled as geometric Brownian motion with constant coefficients.
We also assume deterministic interest rates. Even though these assumptions is rather re-
strictive the closed form solutions we achieve are advantageous when calculating replicative
strategies and comparative statistics like sensitivity analysis.
In order to give some closed form solutions to single barrier options we first present some
results from absorbed probability distributions. (See [8]).

3.4.1 Single Barrier

Definition 3.4.1 The hitting time of y, τ(X, y), for the process X(t), denoted by τ(y), is
defined by
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τ(y) = inf {t ≥ 0|X(t) = y}.

And the X-process absorbed at y is defined by

Xy(t) = X(t ∧ τ)

where the notation α∧β = min [α, β]. We also define the running maximum and minimum
processes, MX(t) and mX(t), by

MX(t) = sup
0≤s≤t

X(s)

mX(t) = inf
0≤s≤t

X(s)

Let now β be a upside barrier in the sense that X(0) < β and let τ(β) = inf {t ≥ 0|X(t) = β}.
We then define the absorbed process by

Xβ(t) =

{
X(t), t < τ

β, t ≥ τ, X(0) = α

We are now interested in finding the density at time t of the absorbed process Xβ since this
will become handy when evaluating the price of different barrier options. We also give the
distributions of the running maximum and minimum processes.

First we give an important result known as the reflection principle

Lemma 3.4.1 If W (t) is Brownian motion then the following formula is valid for every
t > 0, y ≥ and x ≤ y

P (W (t) ≤ x,MW (t) ≥ y) = P (W (t) ≥ 2y − x,MW (t) ≥ y) = P (W (t) ≥ 2y − x) (3.23)

and if x ≥ y

P (W (t) ≥ x,mW (t) ≤ y) = P (W (t) ≤ 2y − x,mW (t) ≤ y) = P (W (t) ≤ 2y − x) (3.24)

In the first statement, the last equality is obvious since the the condition that supremum be
above y is superfluous in view of the condition that the path end be above 2x − y ≥ y.
A similar argument “explains” the last statement with infimum.
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Modelling the X(t)-process with drift we have

dX(t) = µdt + σdW (t), X(0) = α

First we find the distribution of Xβ when α < β, i.e. when we have a barrier from “above”

Fβ(x; t, α) = P (Xβ(t) ≤ x|X(0) = α) = P (X(t) ≤ x,MX(t) < β)

= P (X(t) ≤ x) − P (X(t) ≤ x,MX(t) ≥ β) by total probability

= P
(
W (t) ≤ x − α − µt

σ

)
− B = A − B = N

(x − α − µt

σ
√

(t)

)
− B

where

N(x) =
1√
2π

∫ x

−∞
e−

1
2
z2

dz

i.e. the cumulative distribution function of a standard normally distributed variable.

We can not immediately use the reflection principle in the B term since the process X(t) is
modelled with a drift term. But by using Girsanov’s theorem we can “kill” this drift and
calculate under a new equivalent probability measure P̃ .

Letting u(t) = µ
σ , put

Z(t) = e−
∫ t

0
u(s)dW (s)− 1

2

∫ t

0
u2(s)ds = e−

µ
σ

W (t)− 1
2
(µ/σ)2t

and by Girsanov

dP̃ = Z(T )dP. (3.25)

Then

W̃ (t) =

∫ t

0
u(s)ds + W (t) = (µ/σ) · t + W (t)

is Brownian motion w.r.t. the measure P̃ . Under this new measure the X(t)-process is

without drift: dX(t) = σdW̃ (t), X(0) = α, and

X(T ) = α + µT + σW (T ) ⇔ W (T ) =
X(T ) − α − µT

σ

Under this equivalent measure Z(T ) is given as
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Z(T ) = e−
µ
σ

X(T )+ 1
2
(µ/σ)2T+ µα

σ2 (3.26)

Inserting (3.26) in (3.4.4) we get

dP̃

dP
:= Z(T ) = e−

µ
σ

X(T )+ 1
2

µ2

σ2 T+ µα

σ2 ⇐⇒ dP

dP̃
:=

1

Z(T )
= e

µ
σ

X(T )− 1
2

µ2

σ2 T−µα

σ2

From this we obviously have

P (G) =

∫
1

Z(T )
· 1{G}(x)dP̃ (x)

= Ẽ
[
1{G} ·

1

Z(T )

]

In our context we have G = X(t) ≤ x
⋂

MX(t) > β which gives

B = P (X(t) ≤ x,MX(t) ≥ β) = Ẽ
[ 1

Z(T )
· 1{X(t)≤x

⋂
MX(t)>β}

]

= Ẽ
[
e

µ
σ

W (T )+ 1
2

µ2

σ2 T · 1{X(t)≤x
⋂

MX(t)>β}
]

= Ẽ
[
e

µ

σ2 X(T )−µα

σ2 − 1
2

µ2

σ2 T · 1{X(t)≤x
⋂

MX(t)>β}
]

= e−
µα

σ2 Ẽ
[
e

µ

σ2 X(T )− 1
2

µ2

σ2 T · 1{X(t)≤x
⋂

MX(t)>β}
]

Since by Girsanov the process (X(t) − α)/σ follows a standard Brownian motion under the
equivalent measure P̃ , we can finally apply the reflection principle

B = e−
µα

σ2 Ẽ
[
e

µ

σ2 (2β−X(T ))− 1
2

µ2

σ2 T · 1{2β−X(t)≤x
⋂

MX(t)>β}
]

= e−
µα

σ2 Ẽ
[
e

µ

σ2 (2β−X(T ))− 1
2

µ2

σ2 T · 1{X(t)≥2β−x
⋂

MX(t)>β}
]

= e−
µα

σ2 Ẽ
[
e

µ

σ2 (2β−X(T ))− 1
2

µ2

σ2 T · 1{X(t)≥2β−x}
]

= e
µ(2β−α)

σ2 · Ẽ
[
e−

µ

σ2 X(T )− 1
2

µ2

σ2 T · 1{X(t)≥2β−x}
]

(3.27)

since 2β − x ≥ β. Under the P̃ -measure we have that

W̃ (t) =
X(t) − α

σ
; is Brownian motion

solving this for X(t), t = T and inserting it in (3.27) we get

B = e
2µ(β−α)

σ2 · Ẽ[e−
µ

σ2 W̃ (T )− 1
2

µ2

σ2 T · 1{X(t)≥2β−x}]
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In order to calculate the expectation above we can define a new equivalent probability measure
P̂ by setting

dP̂

dP̃
:= N(T ) = e−

µ
σ

W̃ (T )− 1
2

µ2

σ2 T

Then there exists a process v(t) by Girsanov, which equals

v(t) =
0 − (−µ)

σ
=

µ

σ
= u(t)

such that

Ŵ (t) =
µt

σ
+ W̃ (t) =

µt

σ
+

X(t) − α

σ
(3.28)

is Brownian motion under the measure P̂ .
By Girsanov we now get

B = e
2µ(β−α)

σ2 · Ẽ
[
e−

µ

σ2 W̃ (T )− 1
2

µ2

σ2 T · 1{X(t)≥2β−x}
]

= e
2µ(β−α)

σ2 · P̂ (X(t) ≥ 2β − x)

= e
2µ(β−α)

σ2 · P̂ (Ŵ (t) ≥ 2β − x − α + µt

σ
) from (3.28)

= e
2µ(β−α)

σ2 · P̂ (Ŵ (t) ≤ x − 2β + α − µt

σ
)

= e
2µ(β−α)

σ2 · N(
x − 2β − µt + α

σ
√

t
) (3.29)

Finally summing A and B we get the distribution of Xβ(t), assuming α < β

Fβ(x, t, α) = A − B = N
(x − µt − α

σ
√

t

)
− e

2µ(β−α)

σ2 · N
(x − 2β − µt + α

σ
√

t

)
(3.30)

Taking the derivative of this distribution w.r.t. x, we get the density of Xβ on the interval
(−∞, β). Later we will show that this also is density for Xβ on the interval (β,∞)

fβ(x, t, α) =
∂Fβ(x, t, α)

∂x
= ϕ(x, µt + α, σ

√
(t)) − e

2µ(β−α)

σ2 · ϕ(x, 2β + µt − α, σ
√

(t)) (3.31)

We now find the distribution of the running maximum and minimum processes, they
will become handy finding Fβ(x, t, α) when α > β, i.e. when the barrier is from “below”.

By total probability and the reflection principle we have
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P (MX(t) ≥ y) = P (X(t) ≤ y,MX(t) ≥ y) + P (X(t) > y,MX(t) ≥ y)

= P (X(t) ≤ y,MX(t) ≥ y) + P (X(t) > y) = B′ + 1 − N
(x − α − µt

σ
√

t

)

Where B′ is on the same form as B, only x = y, β = y, which gives

B′ = e
2µ(y−α)

σ2 · N
(−y − µt + α

σ
√

t

)

We can now give the distribution of the running maximum, MX(t)

FMX(t)
(y) = P (MX(t) ≤ y) = 1 − P (MX(t) ≥ y) = P (X(t) ≤ y) − B′

= N
(y − α − µt

σ
√

t

)
− e

2µ(y−α)

σ2 · N
(−y − µt + α

σ
√

t

)
(3.32)

Assume now that α > β. Using total probability twice the distribution of Xβ can now be
found by

Fβ(x, t, α) = P (Xβ(t) ≤ x) = P (X(t) ≤ x,mX(t) > β)

= P (X(t) ≤ x) − P (X(t) ≤ x,mX(t) ≤ β)

= P (X(t) ≤ x) − P (mX(t) ≤ β) + P (X(t) ≥ x,mX(t) ≤ β) (3.33)

First we have to calculate P (mX(t) ≤ β) = FmX(t)
and P (X(t) ≥ x,mX(t) ≤ β) = C.

We start with the last one

C = P (X(t) ≥ x,mX(t) ≤ β) = Ẽ
[ 1

Z(T )
1{X(t)≥x

⋂
mX(t)≤β}

]

= e
2µ(β−α)

σ2 · Ẽ
[
e−

µ

σ2 W̃ (T )− 1
2

µ2

σ2 T · 1{X(t)≤2β−x
⋂

mX(t)≤x}
]

= e
2µ(β−α)

σ2 · P̂ (X(t) ≤ 2β − x) = e
2µ(β−α)

σ2 · P̂
(
Ŵ (t) ≤ 2β − x − α + µt

σ

)

= e
2µ(β−α)

σ2 · N
(−x + 2β + µt − α

σ
√

t

)
(3.34)

Before we calculate P (mX(t) ≤ β) observe the following:

For a set A we have inf (A) = − sup (−A), which in our context gives mX(t) = −M(−X)(t).
Since

X(t) = α + µt + σW (t) ⇐⇒ −X(t) = −α − µt − σW (t)
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we have

mX(t) := inf
0≤s≤t

X(s) = − sup
0≤s≤t

(−X(s)) = − sup
0≤s≤t

(−α − µt − σW (t))

= − sup
0≤s≤t

(α′ + µ′t − σW (t))

= − sup
0≤s≤t

(α′ + µ′t + σW (t)) := −MX′(t) (3.35)

where α′ = −α and µ′ = µ.
The last equation follows from the symmetry of Brownian motion since W (t) ∼ −W (t).

Using (3.35) and (3.32) we get the distribution of the running minimum, mX(t)

FmX(t)
(y) = P (mX(t) ≤ y) = P (−MX′(t) ≤ y) = P (MX′(t) ≥ −y)

= 1 − P (MX′(t) ≤ −y)

= 1 − N
((−y) − α′ − µ′t

σ
√

t

)
+ e

2µ′((−y)−α′)

σ2 · N
(−(−y) − µ′t + α′

σ
√

t

)

= N
(y + α′ + µ′t

σ
√

t

)
+ e

2µ′((−y)−α′)

σ2 · N
(−(−y) − µ′t + α′

σ
√

t

)

= N
(y − α − µt

σ
√

t

)
+ e

2µ(y−α)

σ2 · N
(y − α + µt

σ
√

t

)
(3.36)

Or, what is easier

FmX(t)
(y) = P (mX(t) ≤ y) = P (X(t) ≤ y,mX(t) ≤ y) + P (X(t) ≥ y,mX(t) ≤ y)

= P (X(t) ≤ y) + C ′; x = y, β = y

= N
(y − α − µt

σ
√

t

)
+ e

2µ(y−α)

σ2 · N
(y − α + µt

σ
√

t

)

Finally we use the above result together with (3.33) and (3.34) to get the distribution of the
absorbed process Xβ when α > β

Fβ(x, t, α) = P (X(t) ≤ x) − P (mX(t) ≤ β) + P (X(t) ≥ x,mX(t) ≤ β)

= N
(x − µt − α

σ
√

t

)
−

{
N

(β − α − µt

σ
√

t

)
+ e

2µ(β−α)

σ2 · N
(β + µt − α

σ
√

t

)}

+ e
2µ(β−α)

σ2 · N
(−x + 2β − α + µt

σ
√

t

)

= N
(x − α − µt

σ
√

t

)
− e

2µ(β−α)

σ2 · N
(x − 2β + α − µt

σ
√

t

)

+ e
2µ(β−α)

σ2 − N
(β − α − µt

σ
√

t

)
− e

2µ(β−α)

σ2 · N
(β − α + µt

σ
√

t

)
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Taking the derivative of this last equation w.r.t. x we get the same density as in 3.31, i.e.
whether α < β or the other way around we get the same density for the absorbed process Xβ .

3.4.2 Out and In Contracts

Modelling the price process as standard brownian motion we have the dynamics

dS(v) = αS(v)dv + σS(v)dW (v), S(t) = s

We now consider a contingent claim of the form X = Φ
(
S(T )

)
, i.e. of “european type”.

In other words the value of the claim is path-dependent but the claim can not be exercised
before time T .
Denote the pricing function of the claim X as before as Π(t, s;X ), where S(t) = s.

We will consider barrier contracts of the form

1. Down-and-Out

XβO =

{
Φ(S(T )) if inft<v≤T S(v) > β

0 else
= Φ(S(T ) · 1{inft<v≤T S(v)>β}

2. Up-and-Out

X βO = Φ(S(T ) · 1{supt<v≤T S(v)<β}

3. Down-and-In

XβI = Φ(S(T ) · 1{inft<v≤T S(v)≤β}

4. Up-and-In

X βI = Φ(S(T ) · 1{supt<v≤T S(v)≥β}

Definition 3.4.2 For a fixed contract function Φ we define

Φβ(x) =

{
Φ(x) if x > β

0 if x ≤ β
(3.37)

and

Φβ(x) =

{
Φ(x) if x ≤ β

0 if x > β
(3.38)
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In-Out Parity

Consider the same barrier β for e.g. a down-and-in contract and a down-and-out contract. Let
ΠβI(t, s,Φ) and ΠβO(t, s,Φ) be the prices of these two contracts, then from a total probability
argument we have

Π(t, s,Φ) = ΠβI(t, s,Φ) + ΠβO(t, s,Φ) (3.39)

This gives in general that

ΠβI(t, s,Φ) = Π(t, s,Φ) − ΠβO(t, s,Φ) and ΠβI(t, s,Φ) = Π(t, s,Φ) − ΠβO(t, s,Φ)

So we “only” need to to find the prices of either the out-price or the in-price.

We now find the price of the down-and-out contract without specifying the claim contract
Φ

(
S(T )

)
in advance

ΠβO(t, s,Φ) = e−r(T−t) · EQ
t,s[XβO], by (1.43)

= e−r(T−t) · EQ
t,s[Φ(S(T )) · 1{inft<v≤T S(v)>β}]

= e−r(T−t) · EQ
t,s[Φβ(S(T )) · 1{inft<v≤T S(v)>β}]

= e−r(T−t) · EQ
t,s[Φβ(eX(T )) · 1{inft<v≤T eX(v)>β}]

where under the Q-measure

dX(v) = r̂dv + σdW̃ (v)X(t) := ln s and r̂ = r − 1

2
σ2.

Using this and the density of the absorbed process Xβ, the last equation above then equals

= e−r(T−t) · EQ
t,s[Φβ(eX(T )) · 1{inft<v≤T eX(v)>β}]

= e−r(T−t) ·
∫ ∞

−∞
Φβ(ex)flnβ(x, t, ln s)dx

= e−r(T−t) ·
∫ ∞

−∞
Φβ(ex)ϕ(x, r̂ + ln s, σ

√
t)dx

− e−r(T−t) · e
2r̂(lnβ−ln s)

σ2 ·
∫ ∞

−∞
Φβ(ex)ϕ(x, r̂ + 2 ln β + ln s, σ

√
t)dx

= e−r(T−t) · EQ
t,s[ΦβS(T )] − e−r(T−t) ·

(β

s

) 2r̂

σ2 · EQ

t, β2

s

[ΦβS(T )]

= Π(t, s,Φβ) −
(β

s

) 2r̂

σ2 · Π(t, β2/s,Φβ). (3.40)
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So the problem of computing the price of an down-and-out contract can be “reduced” to
computing the price of an related claim without barrier.

Using the same arguments we can similary find the price of the up-and-out contract X βO

ΠβO(t, s,Φ) = e−r(T−t) · EQ
t,s[X βO]

= e−r(T−t) · EQ
t,s[Φ(S(T )) · 1{supt<v≤T S(v)<β}]

= e−r(T−t) ·
∫ ∞

−∞
Φβ(ex)ϕ(x, r̂ + ln s, σ

√
t)dx

− e−r(T−t) · e
2r̂(lnβ−ln s)

σ2 ·
∫ ∞

−∞
Φβ(ex)ϕ(x, r̂ + 2 ln β + ln s, σ

√
t)dx

= Π(t, s,Φβ) −
(β

s

) 2r̂

σ2 · Π(t, β2/s,Φβ). (3.41)

We can now by the in-out parity find the respective in-prices, but first note that from (3.45)
and (3.46) we obviously get Φ = Φβ + ββ . From the linearity of the pricing formula Π we
have

Π(t, s,Φ) = Π(t, s,Φβ) + Π(t, s,Φβ). (3.42)

Using the in-out parity and (3.42) we get the price for a down-and-in contract

ΠβI(t, s,Φ) = Π(t, s,Φ) − ΠβO(t, s,Φ)

= Π(t, s,Φ) −
{
Π(t, s,Φβ) −

(β

s

) 2r̂

σ2 · Π(t, β2/s,Φβ)
}

= Π(t, s,Φβ) +
(β

s

) 2r̂

σ2 · Π(t, β2/s,Φβ) (3.43)

Similary we find the price of a up-and-in contract

ΠβI(t, s,Φ) = Π(t, s,Φ) − ΠβO(t, s,Φ)

= Π(t, s,Φ) −
{
Π(t, s,Φβ) −

(β

s

) 2r̂

σ2 · Π(t, β2/s,Φβ)
}

= Π(t, s,Φβ) +
(β

s

) 2r̂

σ2 · Π(t, β2/s,Φβ). (3.44)

3.4.3 Pricing of European Single Barrier Contracts

Yet we have considered a claim Φ in general without specifying a specific contract type. We
now present the result when we assume the contract to be a European option as long as the
barrier is not reached during the contract time. We will consider a European call option
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with exercise time T and exercise price K. Since we mainly are interested in call options we
restrict ourselves to their pricing functions, but from the put-call parity the put prices can
easily be derived. See [6] p191.

A down-and-out contract with barrier β then becomes

XβO = CβO = max [S(T ) − K, 0] · 1{inft<v≤T S(v)>β}.

Using (3.40) we can price this contract. For simplicity denote the “european” part by
C(x,K) = max [x − K, 0]. Now with this notation we have from (3.45) and (3.46) that

Cβ(x,K) =

{
C(x,K) if x > β

0 if x ≤ β
(3.45)

and

Cβ(x,K) =

{
C(x,K) if x ≤ β

0 if x > β
(3.46)

Using this it is obvious that if β < K, then Cβ(x,K) = C(x,K). If β > K it gets more
complicated but by drawing a figure it is seen that

Cβ(x,K) = C(x, β) + (β − K)H(x, β)

where H(x,K) is the Heaviside function, defined by

H(x, β) =

{
1 if x > β

0 if x ≤ β.
(3.47)

Letting bold letters denote the prices of the various contracts and from the linear property
of our pricing function, i.e. the linear property of expectation, and using (3.41), we get the
price of a down-and-out European call option

(i) For β < K

CβO(t, s,K) = Π(t, s, C(S(T ),K)) −
(β

s

) 2r̂

σ2 · Π(t, β2/s,C(S(T ),K))

= C(t, s,K) −
(β

s

) 2r̂

σ2 ·C(t, β2/s,K) (3.48)
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(ii) For β ≥ K

CβO(t, s,K) = Π(t, s, C(S(T ), β)) + (β − K)H(S(T ), β))

−
(β

s

) 2r̂

σ2 · Π(t, β2/s,C(S(T ), β)) + (β − K)H(S(T ), β))

= C(t, s, β) + (β − K)H(t, s, β)

−
(β

s

) 2r̂

σ2 ·
[
C(t, β2/s, β) + (β − K)H(t, β2/s, β)

]
(3.49)

Where C(t, s,K) is the Black-Scholes formula for a European call option with excercise price
K. See Theorem 3.1.1.
The pricing formula, H(t, s, β), of the Heaviside function H(S(T ), β) can easily be found in
the same way as the price of a European call option when we recognize the Heaviside function
as

H(S(T ), β) :=

{
1 if S(T ) > β

0 if S(T ) ≤ β
=

max [S(T ) − β, 0]

S(T ) − β
= Φ(S(T )

We then get by section 3.1.1

H(t, s, β) = e−r(T−t)EQ
t,s[Φ(S(T ))]

= e−r(T−t)

∫ ∞

−∞

max
[
se(r− 1

2
σ2)(T−t)+σ

√
T−t·z − β, 0

]

se(r− 1
2
σ2)(T−t)+σ

√
T−t·z − β

ϕ(z)dz

= e−r(T−t)

∫ ∞

z0

ϕ(z)dz = e−r(T−t)N [−z0]

where

z0 =
ln β − ln s − (r − 1

2σ2)(T − t)

σ
√

T − t

which gives

H(t, s, β) = e−r(T−t)N
[ ln s − lnβ + (r − 1

2σ2)(T − t)

σ
√

T − t

]
. (3.50)

Now consider a up-and-out contract, X βO, given by

X βO = CβO = max [S(T ) − K, 0] · 1{inft<v≤T S(v)<β}

Using (3.41) we can now price this contract. From (3.46) we have per definition that
Cβ(x,K) = 0 when β < K, then the price also equals zero. When β ≥ K we use the
same figure as for the down-and-out contract, and it is seen that
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Cβ(x,K) = C(x,K) − Cβ(x,K)

= C(x,K) − ((C(x, β) + (β − K)H(x, β)) (3.51)

bn

which we knew from (3.45) and (3.46).
From the linearity of the pricing function and (3.41) we get the price of a up-and-out
European call when β ≥ K

CβO(t, s,K) = Π(t, s, C(S(T ),K)) − Π(t, s, C(S(T ), β)) − (β − K)Π(t, s,H(S(T ), β))

−
(β

s

) 2r̂

σ2 ·
(
Π(t, β2/s,C(S(T ),K)) − Π(t, β2/s,C(S(T ), β))

− (β − K)Π(t, β2/s,H(S(T ), β))
)

= C(t, s,K) − C(t, s, β) − (β − K)H(t, s, β)

−
(β

s

) 2r̂

σ2 ·
(
C(t, β2/s,K) − C(t, β2/s, β) − (β − K))H(t, β2/s, β)

)

= C(t, s,K) −
(β

s

) 2r̂

σ2 ·C(t, β2/s,K) −CβO(t, s,K) (3.52)

From the in-out parity and the prices of the out contracts, we find the prices of the in contracts

The price of a down-and-in European call option is given by

(i) For β < K

CβI(t, s,K) = Π(t, s, C(S(T ),K)) − ΠβO(t, s, C(S(T ),K))

= C(t, s,K) −
(
C(t, s,K) −

(β

s

) 2r̂

σ2 · C(t, β2/s,K)
)

=
(β

s

) 2r̂

σ2 ·C(t, β2/s,K) (3.53)

(ii) For β ≥ K

CβI(t, s,K) = C(t, s,K) − C(t, s, β) − (β − K)H(t, s, β)

+
(β

s

) 2r̂

σ2 ·
[
C(t, β2/s, β) + (β − K)H(t, β2/s, β)

]
(3.54)

And finally we get the price of a up-and-in European call option

(i) For β < K

CβI(t, s,K) = C(t, s,K) (3.55)
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(ii) For β ≥ K

CβI(t, s,K) = C(t, s,K) −
[
C(t, s,K) − C(t, s, β) − (β − K)H(t, s, β)

−
(β

s

) 2r̂

σ2 ·
(
C(t, β2/s,K) − C(t, β2/s, β) − (β − K))H(t, β2/s, β)

)]

= C(t, s, β) + (β − K)H(t, s, β)

+
(β

s

) 2r̂

σ2 ·
(
C(t, β2/s,K) − C(t, β2/s, β) − (β − K))H(t, β2/s, β)

)]

=
(β

s

) 2r̂

σ2 ·C(t, β2/s,K) + CβO(t, s,K) (3.56)

3.4.4 Geometrically Curved Boundary

We have yet only considered a constant barrierer, β, but in some applications it seems ap-
pealing to use a time-dependent boundary, i.e. a curved boundary like β(t) = a exp(bt).
Finding the probability distribution of the absorbed process with a time-dependent boundary
the pricing result in section 3.4.3 is still valid after making a slight modification.

We start by giving this probability distribution for the absorbed process Xβ(t), where X(t) =
α + µt + σW (t), with boundary β(t) = a + bt. Then using the transformation theorem to
the transform S(t) = exp(X(t)) we find the probability distribution of the absorbed process
Sβ(t), where S(t) = exp(ln(S0) + r̂t + σW (t)).

Instead of “killing” the drift term as is section 3.4.1 we now use Girsavov’s Theorem to find an
equivalent probability measure where X(t) has the same “drift” as the boundary β(t) = a+bt,
i.e. b. We can then make use of the reflection principle as before.

Let the barrier be given from above by β(t) = a + bt, X(t) = α + µt + σW (t) and MX(t) =
sup

0≤s≤t
X(s).

The distribution of the absorbed process is then given by

Fβ(x; t, α) = P (Xβ(t) ≤ x|X(0) = α) = P (X(t) ≤ x,MX(t) < β(t))

= P (X(t) ≤ x) − P (X(t) ≤ x,MX(t) ≥ β(t))

= N
(x − α − µt

σ
√

(t)

)
− D.

The problem here is as before the D-term. Changing the drift of X(t) to b we let

u(t) =
µ − b

σ
(3.57)

and
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Z(t) = e−
∫ t
0

u(s)dW (s)− 1
2

∫ t
0

u2(s)ds = e−u(t)W (t)− 1
2
u(t)2t.

By Girsanov we now have

dP̃ = Z(T )dP

where

W̃ (t) =

∫ t

0
u(s)ds + W (t) =

µ − b

σ
· t + W (t)

is Brownian motion w.r.t. the measure P̃ .

Under this new probability measure X(t) has the dynamics dX(t) = bdt + σdW̃ (t).
And finally

D = P (X(t) ≤ x,MX(t) ≥ β(t)) = Ẽ
[ 1

Z(T )
· 1{X(t)≤x

⋂
MX(t)>β(t)}

]

= Ẽ
[
euW (T )+ 1

2
u2T · 1{X(t)≤x

⋂
MX(t)>β(t)}

]

= Ẽ
[
e

u
σ

X(T )−u
σ

α−u
σ

µT+ 1
2
u2T · 1{X(t)≤x

⋂
MX(t)>β(t)}

]

= e−
u
σ

α · Ẽ
[
e

u
σ

(2β(T )−X(T ))−u
σ

µT+ 1
2
u2T · 1{X(t)≥2β(t)−x

⋂
MX(t)>β(t)}

]
reflection principle

= e−
u
σ

α · Ẽ
[
e−

u
σ

X(T )+ u
σ
2β(T )−u

σ
µT+ 1

2
u2T · 1{X(t)≥2β(t)−x

⋂
MX(t)>β(t)}

]

= e−
u
σ

α · Ẽ
[
e−

u
σ

(α+bT+σW̃ (T ))+ u
σ
2β(T )−u

σ
µT+ 1

2
u2T · 1{X(t)≥2β(t)−x}

]

= e−2u
σ

α · Ẽ
[
e−uW̃ (T )− 1

2
u2T+u2T+ u

σ
(2a+2bT )−u

σ
bT−u

σ
µT · 1{X(t)≥2β(t)−x}

]

= e2u
σ
(a−α) · Ẽ

[
e−uW̃ (T )− 1

2
u2T+ u

σ
T (µ−b+2b−b−µ) · 1{X(t)≥2β(t)−x}

]

= e2u
σ
(a−α) · Ẽ

[
e−uW̃ (T )− 1

2
u2T · 1{X(t)≥2β(t)−x}

]

In order to calculate the above expectation we define a new equivalent probability measure
P̂ by setting

dP̂

dP̃
:= N(T ) = e−uW̃ (T )− 1

2
u2T .

Then there exists a process v(t) by Girsanov, which equals

v(t) =
b − (2b − α)

σ
= u(t)

such that
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Ŵ (t) = ut + W̃ (t) =
X(t) − α − (2b − µ)t

σ
(3.58)

is Brownian motion under the measure P̂ . Under this measure X(t) has the following dy-
namics

dX(t) = (2b − µ)dt + σdŴ (t) (3.59)

By Girsanov we get

D = e2u
σ
(a−α) · Ẽ

[
e−uW̃ (T )− 1

2
u2T · 1{X(t)≥2β(t)−x}

]

= e2 (µ−b)(a−α)

σ2 · P̂ (X(t) ≥ 2β(t) − x)

= e2 (µ−b)(a−α)

σ2 · P̂
(
Ŵ (t) ≥ 2a + 2bt − x − α − (2b − µ)t

σ

)

= e2
(µ−b)(a−α)

σ2 · P̂
(
Z ≥ 2a − x − α + µt

σ
√

(t)

)

= e2
(µ−b)(a−α)

σ2 · P̂
(
Z ≤ 2a − x − α + µt

σ
√

t

)

= e2
(µ−b)(a−α)

σ2 · N
(x − 2a + α − µt

σ
√

t

)
(3.60)

The distribution of the absorbed process Xβ(t) is then given by (3.57) and (3.60)

Fβ(x; t, α) = P (Xβ(t) ≤ x|X(0) = α)

= N
(x − α − µt

σ
√

t

)
− e2

(µ−b)(a−α)

σ2 · N
(x − 2a + α − µt

σ
√

t

)
(3.61)

with density

fβ(x; t, α) = ϕ
(x − α − µt

σ
√

t

)
− e2 (µ−b)(a−α)

σ2 · ϕ
(x − 2a + α − µt

σ
√

t

)
(3.62)

Recognizing that the only difference from (3.31) is b subtracted from µ in the exponent. If b

is positive the term exp
(
2 (µ−b)(a−α)

σ2

)
decreases and thereby the probability of staying below

the barrier increases. The price of e.g. a knock-out contract would then increase, which is
quite intuitive.

We find the distribution of Sβ(t) through the transformation theorem and the transform
S(t) = eX(t) = h(X(t)). Where X(t) = ln S0 + r̂t + σW (t) and µ̂ = α − 1

2σ2.
The drift-term α is not to be confused with X0 from before. Such that dS(t) = αS(t)dt +
σS(t)dW (t).
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We notice that the linear boundary is transformed into the exponential curved boundary
β′(t) = cebt.

Since β(t) = lnβ′(t) when a = ln c and MS(t) < β′(t) is equivalent to MX(t) < β(t), the
density of the absorbed process Sβ′(t), when the boundary is from above, is given by

fβ′(s; t, S0) := fS(t),MS(t)(s, β
′) = fX(t),MS(t)(h

−1(x), β′) ·
∣∣∣∣∣
∂h−1(x)

∂s

∣∣∣∣∣

= fX(t),MX(t)(ln s, β) ·
∣∣∣∣∣
∂ ln s

∂s

∣∣∣∣∣ = fβ(ln s; t, ln S0) ·
1

s
.

The distribution function of the absorbed process or the probability that the process S(v)
stays below the boundary the entire period is then given by

Fβ′(x; t, S0) = P (Sβ′(t) ≤ x|S(0) = S0) = P (S(t) ≤ x,MS(t) < β′)

:=

∫ x

−∞
fβ′(y; t, S0)dy =

∫ x

−∞
fβ(ln y; t, ln S0) ·

dy

y
.

= N
( ln x − ln S0 − µ̂t

σ
√

t

)
− e2

(µ̂−b)(a−ln S0)

σ2 · N
( ln x − 2a + ln S0 − µ̂t

σ
√

t

)
, a = ln c

= N
( ln x − ln S0 − µ̂t

σ
√

t

)
−

( c

S0

)2
(µ̂−b)

σ2 · N
( ln x − ln (c2/S0) − µ̂t

σ
√

t

)
(3.63)

Since our bondary now is not constant, in the sense that it is curved, we can not use the pricing
result with a constant barrier. The put-call parity relation does not hold either with a curved
boundary. In order to get pricing result we turn to the density in (3.63). By risk-neutralizing
evaluation we get the price, CβvO, of a up-and-out European claim, when assuming that
β(T ) > K.
The contract function is given by

X βvO = CβvO = max [S(T ) − K, 0] · 1{supt<v≤T S(v)<β(v)}.

Evaluating this contract under a risk-neutralized probability measure we get its price, when
r̂ = r − 1

2σ2
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CβvO(t, s,K) = e−rτEQ
t,s[max [S(T ) − K, 0] · 1{supt<v≤T S(v)<β(v)}] τ = T − t

= e−rτ
{ ∫ β(T )

K
sfβ(ln s; t, ln S0) ·

1

s
ds − K

∫ β(T )

K
fβ(ln s; t, ln S0) ·

1

s
ds

}

= e−rτS0

∫ β(T )

K
e(r− 1

2
σ2)τ+σ

√
τz

{
ϕ
( ln s − ln S0 − (r − 1

2σ2)τ

σ
√

τ

)

−
( c

S0

)2
(r̂−b)

σ2
ϕ
( ln s − ln (c2/S0) − (r − 1

2σ2)τ

σ
√

τ

)}1

s
ds

− e−rτK

∫ β(T )

K

{
ϕ
( ln s − ln S0 − (r − 1

2σ2)τ

σ
√

τ

)

−
( c

S0

)2
(r̂−b)

σ2
ϕ
( ln s − ln (c2/S0) − (r − 1

2σ2)τ

σ
√

τ

)}1

s
ds.

Making the transformation y = ln s and letting the integral boundaries be

u1 =
ln β(T ) − ln S0 − (r − 1

2σ2)τ

σ
√

τ
u2 =

lnK − ln S0 − (r − 1
2σ2)τ

σ
√

τ

v1 =
ln β(T ) − ln (c2/S0) − (r − 1

2σ2)τ

σ
√

τ
v2 =

lnK − ln (c2/S0) − (r − 1
2σ2)τ

σ
√

τ

we have

CβvO(t, s,K) = S0

∫ u1

u2

e−
1
2
σ2τ+σ

√
τz · 1√

π
e−

1
2
z2

dz − S0

( c

S0

)2 (r̂−b)

σ2

∫ v1

v2

e−
1
2
σ2τ+σ

√
τz · 1√

π
e−

1
2
z2

dz

−e−rτK

∫ u1

u2

1√
π

e−
1
2
z2

dz + e−rτK
( c

S0

)2 (r̂−b)

σ2

∫ v1

v2

1√
π

e−
1
2
z2

dz.

Completing the squares w.r.t z in the two first integrals it follows that
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CβvO(t, s,K) = S0

∫ u1

u2

1√
π

e−
1
2
(z−σ

√
τ)2dz − S0

( c

S0

)2
(r̂−b)

σ2

∫ v1

v2

1√
π

e−
1
2
(z−σ

√
τ)2dz

−e−rτK

∫ u1

u2

1√
π

e−
1
2
z2

dz + e−rτK
( c

S0

)2
(r̂−b)

σ2

∫ v1

v2

1√
π

e−
1
2
z2

dz.

= S0

[
N(u1 − σ

√
τ) − N(u2 − σ

√
τ)

]
− S0

( c

S0

)2
(r̂−b)

σ2 [
N(v1 − σ

√
τ) − N(v2 − σ

√
τ)

]

−e−rτK
[
N(u1) − N(u2)

]
+ e−rτK

( c

S0

)2
(r̂−b)

σ2 [
N(v1) − N(v2)

]

= S0

[
N(σ

√
τ − u2) − N(σ

√
τ − u1)

]
− S0

( c

S0

)2 (r̂−b)

σ2 [
N(σ

√
τ − v2) − N(σ

√
τ − v1)

]

−e−rτK
[
N(−u2) − N(−u1)

]
+ e−rτK

( c

S0

)2
(r̂−b)

σ2 [
N(−v2) − N(−v1)

]

= S0

[
N

( ln (S0/K) + (r + 1
2σ2)τ

σ
√

τ

)
− N

( ln (S0/ce
bt) + (r + 1

2σ2)τ

σ
√

τ

)]

− S0

( c

S0

)2
(r̂−b)

σ2 [
N

( ln (c2/S0K) + (r + 1
2σ2)τ

σ
√

τ

)
− N

( ln c/S0e
bt + (r + 1

2σ2)τ

σ
√

τ

)]

− e−rτK
[
N

( ln (S0/K) + (r − 1
2σ2)τ

σ
√

τ

)
− N

( ln (S0/ce
bt) + (r − 1

2σ2)τ

σ
√

τ

)]

+ e−rτK
( c

S0

)2 (r̂−b)

σ2 [
N

( ln (c2/S0K) + (r − 1
2σ2)τ

σ
√

τ

)
− N

( ln c/S0e
bt + (r − 1

2σ2)τ

σ
√

τ

)]
.

(3.64)

By letting b → ∞, i.e. without barrier, we see that our price function above is the well known
Black-Scholes formula.

3.4.5 Double Barrier

Now we turn to the more complex problem of pricing double-barrier options. The complexity
of this problem consists of finding the probability distribution of our GBM-price-process when
the boundaries are not hit. We can not immediately use the reflection principle as with a
single barrier, but by repeated use this probability ditribution can be found as an infinite se-
ries of the normal distribution functions. What is important for practical purpose is the rate
of convergence of this infinite series, and Kunitoma & Ikeda concludes in [16] that this series
converges rather rapid such that quite few of the leading terms in the series approximates the
probability well enough for practical purposes.

First we consider a process Y (t) = W (t), i.e. standard Brownian motion, and the linear
boundaries β1 and β2:

β1(t) = a1 + b1t, β2(t) = a2 + b2t (3.65)
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assuming that a1 ≥ a2 and β1 > β2, i.e. the boundaries are not crossing after t = 0. We also
assume that b1 ≥ 0 since this is intuitively the most practical. (In [2], Anderson also gives
the hit probability when b1 < 0).

After finding the probability function we are looking for, we proceed to a process X(t) =
X(0) + µt + σW (t). Using Girsanov’s theorem we find the appropriate probability function
when the process is modelled with drift.
Finally we use the transform S(t) = eX(t) to find the probability we are looking for when
modelling with geometric brownian motion and the boundaries:

β′
1(t) = c1e

b1t, β′
2(t) = c2e

b2t (3.66)

letting a1 = ln c1 and a2 = ln c2 we have ln β′
1(t) = β1(t) and ln β′

2(t) = β2(t). That is the
linear boundaries are transformed into the exponential curved boundaries.

Now consider the process Y (t) = W (t), where W (t) is Brownian motion, and the boundaries
in (3.65). Let τ1 and τ2 be the first hitting times of the upper and lower boundary lines,
respectively. Denote the interval between the boundaries by I ⊂ [a1 + b1t, a2 + b2t], then
the probability we are interested in is P (Y (t) ∈ I, τ1 > t, τ2 > t). By total probability we
obviously have

P (Y (t) ∈ I) = P (Y (t) ∈ I, τ1 > t) + P (Y (t) ∈ I, τ1 < t)

= P (Y (t) ∈ I, τ1 > t, τ2 > t) + P (Y (t) ∈ I, τ1 > t, τ2 < t)

+ P (Y (t) ∈ I, τ1 < t, τ2 > t) + P (Y (t) ∈ I, τ1 < t, τ2 < t) (3.67)

Observing that the first probability term in the last equation is the one we are looking for we
turn to the three other terms.
By total probability we again have

P (Y (t) ∈ I, τ1 < t, τ2 < t) = P (Y (t) ∈ I, τ1 < τ2 < t) + P (Y (t) ∈ I, τ2 < τ1 < t) (3.68)

and

P (Y (t) ∈ I, τ1 < t, τ2 > t) = P (Y (t) ∈ I, τ1 < t, τ1 < τ2) − P (Y (t) ∈ I, τ1 < t, τ1 < τ2 < t)

= P (Y (t) ∈ I, τ1 < t, τ1 < τ2) − P (Y (t) ∈ I, τ1 < τ2 < t) (3.69)

and finally

P (Y (t) ∈ I, τ1 > t, τ2 < t) = P (Y (t) ∈ I, τ2 < t, τ2 < τ1) − P (Y (t) ∈ I, τ2 < t, τ2 < τ1 < t)

= P (Y (t) ∈ I, τ2 < t, τ2 < τ1) − P (Y (t) ∈ I, τ2 < τ1 < t) (3.70)
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Inserting (3.68), (3.69) and (3.70) in (3.67) we get our probability

P (Y (t) ∈ I, τ1 > t, τ2 > t) = P (Y (t) ∈ I) − P (Y (t) ∈ I, τ1 < t, τ1 < τ2)

− P (Y (t) ∈ I, τ2 < t, τ2 < τ1)

= P (Y (t) ∈ I) − Pτ1(t) − Pτ2(t). (3.71)

The obvious problem now is to compute Pτ1(t) and Pτ2(t).
By conditional probability we can rewrite them to

Pτ1(t) = P (Y (t) ∈ I, τ1 < t, τ1 < τ2) = P (τ1 < t, τ1 < τ2)|Y (t) ∈ I) · P (Y (t) ∈ I)

=

∫

I
P (τ1 < t, τ1 < τ2)|Y (t) = y) · P (Y (t) = y)dy

=

∫

I
P1(t, y) · ϕ(y,

√
t)dy (3.72)

and

Pτ2(t) =

∫

I
P2(t, y) · ϕ(y,

√
t)dy (3.73)

(In [16] there seem to be an notational error in equation (A.1) which also appear in the fol-
lowing equations, but the result is right though).

The probabilities P1(t, y) and P2(t, y) can now be found in [2], Theorem 4.2, as two infinite
series. We present the probabilities here and give the proof in Appendix B.

The conditional probability of hitting the upper boundary before the lower, for 0 ≤ u ≤ t,
given that the Y (t) = y is given by

P1(t, y) =

∞∑

n=1

exp
[
− 2

t
{n2a1(a1 + b1t − y) + (n − 1)2a2(a2 + b2t − y)

−n(n − 1)[a1(a2 + b2t − y) + a2(a1 + b1t − y)]}
]

−
∞∑

n=1

exp
[
−2

t
{n2[a1(a1 + b1t − y) + a2(a2 + b2t − y)]

−n(n − 1)a1(a2 + b2t − y) − n(n + 1)a2(a1 + b1t − y)}
]
. (3.74)

Now the conditional probability of hitting the lower boundary before the lower, for 0 ≤ u ≤ t,
can be found simply by replacing (a1, b1) by (−a2,−b2), (a2, b2) by (−a1,−b1) and y by −y
in (3.74)
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P2(t, y) =

∞∑

n=1

exp
[
− 2

t
{n2a2(a2 + b2t − y) + (n − 1)2a1(a1 + b1t − y)

−n(n − 1)[a2(a1 + b1t − y) + a1(a2 + b2t − y)]}
]

−
∞∑

n=1

exp
[
−2

t
{n2[a2(a2 + b2t − y) + a1(a1 + b1t − y)]

−n(n − 1)a2(a1 + b1t − y) − n(n + 1)a1(a2 + b2t − y)}
]
. (3.75)

We can now compute the probabilities Pτ1(t) and Pτ2(t) in (3.72) and (3.73), respectively.
Completing the square with the y-term we get

Pτ1(t) =
1√
2πt

∫

I
P1(t, y) · e y2

2t dy

=
1√
2πt

∫

I

{ ∞∑

n=1

exp
[
− 1

2t
{[y − 2a2 − 2n(a1 − a1)]

2

+4t[a2 + n(a1 − a2)] · [b2 + n(b1 − b2)]}
]

−
∞∑

n=1

exp
[
− 1

2t
{[y − 2n(a1 − a2)]

2

+4tn[a1b2 − a2b1 + n(a1 − a2)(b1 − b2)]}
]}

dy. (3.76)

Completing the square in Pτ2(t) we get

Pτ2(t) =
1√
2πt

∫

I
P2(t, y) · e y2

2t dy

=
1√
2πt

∫

I

{ ∞∑

n=1

exp
[
− 1

2t
{[y − 2a2 + 2(n − 1)(a1 − a1)]

2

+4t[−a1 + n(a1 − a2)] · [−b1 + n(b1 − b2)]}
]

−
∞∑

n=1

exp
[
− 1

2t
{[y + 2n(a1 − a2)]

2

+4tn[a2b1 − a1b2 + n(a1 − a2)(b1 − b2)]}
]}

dy. (3.77)

In order to make Pτ1(t) and Pτ2(t) “compatible” so that we can add them nicely together we
rearrange them a bit. We want the added result to be a summation from −∞ to ∞. Observe
that the first summation term in Pτ1(t) and Pτ2(t) are almost similar. Now rearrange the first
summation term in Pτ2(t) by replacing n − 1 with n, then this summation term equals
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∞∑

n=0

exp
[
− 1

2t
{[y − 2a2 + 2n(a1 − a2)]

2 + 4t[−a1 + (n + 1)(a1 − a2)] · [−b1 + (n + 1)(b1 − b2)]}
]

=

∞∑

n=0

exp
[
− 1

2t
{[y − 2a2 + 2n(a1 − a2)]

2 + 4t[−a2 + n(a1 − a2)] · [−b2 + n(b1 − b2)]}
]
.

Rearranging the first summation term in Pτ1(t) by replacing n with −n this equals

−∞∑

n=−1

exp
[
− 1

2t
{[y − 2a2 + 2n(a1 − a2)]

2 + 4t[−a2 + n(a1 − a2)] · [−b2 + n(b1 − b2)]}
]

and we notice that these terms can be nicely added to

∞∑

n=−∞
exp

[
− 1

2t
{[y − 2a2 + 2n(a1 − a2)]

2 + 4t[−a2 + n(a1 − a2)] · [−b2 + n(b1 − b2)]}
]

(3.78)

The second summation term in Pτ2(t) is rearranged by replacing n with −n and equals

−∞∑

n=−1

exp
[
− 1

2t
{[y − 2n(a1 − a2)]

2 + 4tn[a1b2 − a2b1 + n(a1 − a2)(b1 − b2)]}
]

now this can easily be added to the last summation term in Pτ1(t). But the case n = 0 is not
included, so if we make the summation from −∞ to ∞ we have to subtract the case when
n = 0. Then by adding the last term in Pτ1(t) and Pτ2(t) we get

∞∑

n=−∞
exp

[
− 1

2t
{[y − 2n(a1 − a2)]

2 + 4tn[a1b2 − a2b1 + n(a1 − a2)(b1 − b2)]}
]
− e−

y
2t

The sum Pτ1(t) + Pτ2(t) then becomes

1√
2πt

∫

I

[ ∞∑

n=−∞
exp

[
− 1

2t
{[y − 2a2 + 2n(a1 − a2)]

2 + 4t[−a2 + n(a1 − a2)] · [−b2 + n(b1 − b2)]}
]

−
∞∑

n=−∞
exp

[
− 1

2t
{[y − 2n(a1 − a2)]

2 + 4tn[a1b2 − a2b1 + n(a1 − a2)(b1 − b2)]}
]

+ e−
y
2t

]
dy. (3.79)

And at last we get the probability we are seeking from (3.71) and (3.79), the probability that
the process stays within the barriers for 0 ≤ u ≤ t
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P (Y (t) ∈ I, τ1 > t, τ2 > t) = P (Y (t) ∈ I) − Pτ1(t) − Pτ2(t)

=
1√
2πt

∫

I

[ ∞∑

n=−∞
exp

[
− 1

2t
{[y − 2n(a1 − a2)]

2 + 4tn[a1b2 − a2b1 + n(a1 − a2)(b1 − b2)]}
]

−
∞∑

n=−∞
exp

[
− 1

2t
{[y − 2a2 + 2n(a1 − a2)]

2 + 4t[−a2 + n(a1 − a2)] · [−b2 + n(b1 − b2)]}
]]

dy

(This is equation (A.7) in [16]).

Now we proceed finding the above probability when modelling with a process X(s) = X(0)+
µs + σW (s), i.e. with drift, and the same barriers, β1(s) and β2(s), as before.
Using Girsanov’s theorem we can find the joint probability that X(t) ∈ I and β2(s) <
mX(s) ≤ MX(s) < β2(s) for any 0 ≤ s ≤ t.
Let u(s) = µ/σ and

Z(s) = e−
∫ s

0
u(v)dW (v)− 1

2

∫ s

0
u2(v)dv = e−u(s)dW (s)− 1

2
u(s)s = e−

µ

σ2 (X(s)−X(0))+ µ2s

2σ2 ,

then we get by Girsanov’s theorem that

P (X(t) ∈ I, τ1 > t, τ2 > t) = Ẽ
[
Z−1(t) · 1{X(t)∈I,τ1>t,τ2>t}

]
.

Under this probability measure the X-process is without drift, and the difference from the
Y -process is the starting point X(0) := x0 and a variation change from t to σ2t. In order to
implement this difference it is enough to change a1 to a1 − x0 := a′1, a2 to a2 − x0 := a′2, y to
x − x0 and t to σ2t.
With this change in mind we get from our previous probabability result and the above equation
that

Ẽ
[
Z−1(t) · 1{X(t)∈I,τ1>t,τ2>t}

]
=

∫

I
Z−1(t) · P̃ (τ1 > t, τ2 > t|X(t) = x)P̃ (X(t) = x)dx

=
1√

2πtσ

∫

I
e

µ

σ2 (x−x0)− µ2t

2σ2

[

∞∑

n=−∞
exp

[
− 1

2tσ2
{[x − x0 − 2n(a1 − a2)]

2

+4tn[(a1 − x0)b2 − (a2 − x0)b1 + n(a1 − a2)(b1 − b2)]}
]

−
∞∑

n=−∞
exp

[
− 1

2tσ2
{[x − x0 − 2(a2 − x0) + 2n(a1 − a2)]

2

+4t[−(a2 − x0) + n(a1 − a2)] · [−b2 + n(b1 − b2)]}
]]

dx
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Completing the squares w.r.t. x and noticing that ϕ(x, α, σ) is our notation for the density of
a varaiable X, normally distributed with expectation α and variance σ2, the above equation
equals

∫

I

∞∑

n=−∞
ϕ
(
x, x0 + 2n(a1 − a2) + µt, σ

√
t
)
· exp

[2n

σ2
[µ(a1 − a2) − (a1 − x0)b2 + (a2 − x0)b1

−n(a1 − a2)(b1 − b2)]dx
]

−
∫

I

∞∑

n=−∞
ϕ
(
x,−x0 + 2a2 − 2n(a1 − a2) + µt, σt) · exp

[2µ

σ2
[a2 − x0 − n(a1 − a2)]

]

· exp
[ 2

σ2
[a2 − x0 − n(a1 − a2)] · [−b2 + n(b1 − b2)]

]
dx (3.80)

And finally we use the transform S(t) = eX(t) = h(X(t)) to find the joint probability of
S(t) ∈ I and both τ1 > t, τ2 > t, when the boundaries are given as β′

1 and β′
2 in (3.66).

Using a “sloppy” notation we find the respective density

fS(t),τ1,τ2(s, β
′
1, β

′
2) = fX(t),τ1,τ2(h

−1(x), β′
1, β

′
2) ·

∣∣∣∣∣
∂h−1(x)

∂s

∣∣∣∣∣

= fX(t),τ1,τ2(ln s, β′
1, β

′
2) ·

∣∣∣∣∣
∂ ln s

∂s

∣∣∣∣∣

= fX(t),τ1,τ2(ln s, β1, β2) ·
1

s
. (3.81)

Notice the change from β′
1 and β′

2 to β1 and β2. This is so because the event that the process
S(s) hits the exponential boundaries, β′

1 and β′
2, is equivalent to the event that the process

X(s) hits the linear boundaries, β1 = ln β′
1 and β2 = ln β′

2, i.e. a1 = ln c1 and a2 = ln c2. And
notice that because of the transformation x0 = ln s0 and that µ = r̂ = µS − 1

2σ2.

Finally, using (3.80) and (3.81), we get the joint probability that S(t) ∈ I and c2e
b2t <

mS(t) ≤ MS(t) < c1e
b1t
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P (S(t) ∈ I, c2e
b2t < mS(t) ≤ MS(t) < c1e

b1t) =
∫

I

∞∑

n=−∞
ϕ
(
ln s, ln s0 + 2n(ln a1 − ln a2) + r̂t, σ

√
t
)
· exp

[2n

σ2
[r̂(ln a1 − ln a2

−(ln a1 − ln s0)b2 + (ln a2 − ln s0)b1 − n(ln a1 − ln a2)(b1 − b2)]
]
)
ds

s

−
∫

I

∞∑

n=−∞
ϕ
(
ln s,− ln s0 + 2 ln a2 − 2n(ln a1 − ln a2) + r̂t, σ

√
t)

· exp
[2r̂

σ2
[ln a2 − ln s0 − n(ln a1 − ln a2)]

]

· exp
[ 2

σ2
[ln a2 − ln s0 − n(ln a1 − ln a2)] · [−b2 + n(b1 − b2)]

]ds

s

=

∫

I

∞∑

n=−∞
ϕ
(
ln s, ln (s0a

2n
1 /a2n

2 ) + (µS − σ2/2)t, σ
√

t
)

·
(an

1

an
2

)2µS/σ2−1[(an
2

an
1

)b1−b2(s0

a1

)b2(a2

s0

)b1]2n/σ2 ds

s

−
∫

I

∞∑

n=−∞
ϕ
(
ln s, ln (a2n+2

2 /s0a
2n
1 ) + (µS − σ2/2)t, σ

√
t
)

·
(an+1

2

s0a
n
1

)2µS/σ2−1(an+1
2

s0a
n
1

)2[−b2+n(b1−b2)]/σ2 ds

s
Equation (A.11) in [16] (3.82)

=
∞∑

n=−∞

(an
1

an
2

)2µS/σ2−1[(an
2

an
1

)b1−b2(s0

a1

)b2(a2

s0

)b1]2n/σ2

· N
( ln s − ln (s0a

2n
1 /a2n

2 ) − (µS − σ2/2)t

σ
√

t

)∣∣∣
I

−
∞∑

n=−∞

(an+1
2

s0an
1

)2µS/σ2−1(an+1
2

s0an
1

)2[−b2+n(b1−b2)]/σ2

· N
( ln s − ln (a2n+2

2 /s0a
2n
1 ) − (µS − σ2/2)

σ
√

t

)∣∣∣
I

(3.83)

This probability is quite messy, partly because it is represented as an infinite series, but it is
shown in [16] to be rapidly converging towards the true value such that we can conclude it to
be worthwhile implementing.
The last equation above follows from the assumption that the order of summation and inte-
gration can be reversed when the infinite series is bounded in absolute value by a series that
converges.

3.4.6 Pricing of European Double Barrier Options

We can now construct a Barrier option which consists of e.g one or two of the already discussed
options in this chapter. In this section we give two such examples of possible constructions.
First we consider a fairly easy knock-out contract which knocks to zero whenever a barrier
is hit within the contract period and which stays a European option if not. Secondly we try
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to price a combined option which is knocked to an Asian option at a barrier hit and stays a
European option if the price process stays within the barriers.

Knock-Out Option

Consider a double barrier call option with curved boundaries β1 > β2

X β1

β2
= max [S(T ) − K, 0] · 1{τ1>T

⋂
τ2>T} (3.84)

In other words a European option which is knocked to zero if a barrier is hit.
Using the pricing formula (1.43) in chapter 1 we get the following price of the claim above
when assuming deterministic interest rates

C(t, s;K) = e−r(T−t) · EQ
t,s

[
X β1

β2

]
= e−r(T−t) · EQ

t,s

[
max [S(T ) − K, 0] · 1{τ1>T

⋂
τ2>T}

]

= e−r(T−t) ·
(∫ ∞

0
sf(s)ds − K

∫ ∞

0
f(s)ds ·

)
· 1{τ1>T

⋂
τ2>T

⋂
S(T )≥K}

where f(s) is the risk-neutral density function of S(T ). Letting g(s) be the risk-neutral
density function derived by taking the derivative of equation (3.82), and by noticing that we
must have K ∈ (β1(T ), β2(T )) for the option not to be worthless, we get

C(t, s;K) = e−r(T−t) ·
(∫ β1(T )

K
sg(s)ds − K

∫ β1(T )

K
g(s)ds

)
. (3.85)

We have under the Q measure

g(s) =

∞∑

n=−∞
ϕ
(
ln s, ln (s0a

2n
1 /a2n

2 ) + (r − σ2/2)(T − t), σ
√

T − t
)

·
(an

1

an
2

)2r/σ2−1[(an
2

an
1

)b1−b2(s0

a1

)b2(a2

s0

)b1]2n/σ2 1

s

−
∞∑

n=−∞
ϕ
(
ln s, ln (a2n+2

2 /s0a
2n
1 ) + (r − σ2/2)(T − t), σ

√
T − t

)

·
(an+1

2

s0a
n
1

)2r/σ2−1(an+1
2

s0a
n
1

)2[−b2+n(b1−b2)]/σ2 1

s

where s is our price process.
The first integral seems to cause some trouble and we rewrite sg(s). We try to “implement”
s in ϕ. For simplicity define d = ln (s0a

2n
1 /a2n

2 ), then we have by completing the square w.r.t
ln s that
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s · ϕ
(
ln s, d + r̂(T − t), σ

√
T − t

)
= eln s · 1√

2π(T − t)σ
e
− 1

2σ2(T−t)
(ln(s)−d−r̂(T−t))2

=
1√

2π(T − t)σ
e
− 1

2σ2(T−t)
(ln(s)2−2 ln s(d+r̂(T−t)+σ2(T−t))+(d+r̂(T−t))2)

=
1√

2π(T − t)σ
e
− 1

2σ2(T−t)
(ln s−d−r̂(T−t)−σ2(T−t))2 · e−

1
2σ2(T−t)

((d+r̂(T−t))2−(d+r̂(T−t)+σ2(T−t))2)

= ϕ
(
ln s, d + (r +

1

2
σ2)(T − t), σ

√
T − t

)
· ed+r(T−t)

= ϕ
(
ln s, ln (s0a

2n
1 /a2n

2 ) + (r +
1

2
σ2)(T − t), σ

√
T − t

)
· s0

(an
1

an
2

)2
e−r(T−t).

We also complete the square in the “second” density part of g(s)

ϕ
(
ln s, ln (a2n+2

2 /s0a
2n+2
1 ) + (r +

1

2
σ2)(T − t), σ

√
T − t

)
· s0

(an
1

an
2

)2
e−r(T−t).

Now we can calculate the integrals and after some rearranging we get the price of the claim
X β1

β2
by

Cβ1

β2
(t, s;K) = s0

∞∑

n=−∞

{(an
1

an
2

)c∗1n
(a2

s0

)c2n[
N(k1n) − N(k2n)

]
−

(an+1
2

an
1s0

)c∗3n[
N(k3n) − N(k4n)

]}

− Ke−r(T−t)
∞∑

n=−∞

{(an
1

an
2

)c∗1n−2(a2

s0

)c2n[
N(k1n − σ

√
T − t) − N(k2n − σ

√
T − t)

]

−
(an+1

2

an
1s0

)c∗3n−2[
N(k3n − σ

√
T − t) − N(k4n − σ

√
T − t)

]}
(3.86)

where c∗1n = 2[r − b2 − n(b1 − b2)]/σ
2 + 1, c2n = 2n b1−b2

σ2 , c∗3n = 2[r − b2 + n(b1 − b2)]/σ
2 + 1,

and

k1n =
− ln K + ln (s0a

2n
1 /a2n

2 ) + (r + σ2/2)(T − t)

σ
√

T − t

k2n =
− ln β1(T ) + ln (s0a

2n
1 /a2n

2 ) + (r + σ2/2)(T − t)

σ
√

T − t

k3n =
− ln K + ln (a2n+2

2 /s0a
2n
1 ) + (r + σ2/2)(T − t)

σ
√

T − t

k4n =
− ln β1(T ) + ln (a2n+2

2 /s0a
2n
1 ) + (r + σ2/2)(T − t)

σ
√

T − t
.

N [·] is the standard normal distribution function.

67



3.4. BARRIER OPTIONS

This is the pricing formula in Theorem 3.1 in Kunitomo & Ikeda [16]. They show how
this quite massive formula is a generalization of the Black-Scholes formula. By letting
n = 0, a1 → +∞ and a2 → 0 the three terms k2n k3n and k4n disappears. The result
is identical to the Black-Scholes price of a European option with exercise price K and deter-
ministic interest rate.

“Asian-Knock” Option

We now consider a double barrier option which is knocked to an Asian option with exercise
price KA if a barrier is hit and which stays a European option with exercise price KE if not.
We define the claim to be on the form

X β2

β1
= max [S(T ) − KE , 0] · 1{τ1>T

⋂
τ2>T} + max [AS(t, T ) − KA, 0] · 1{τ1≤T

⋃
τ2≤T}

where AS(t, T ) = 1
T−t

∫ T
t S(v)dv. Notice that 1{τ1≤T

⋂
τ2≤T} = 1−1{τ1>T

⋃
τ2>T} and we then

rewrite our claim to

X β2

β1
= max [S(T ) − KE , 0] · 1{τ1>T

⋂
τ2>T} + max [AS(t, T ) − KA, 0]

−max [AS(t, T ) − KA, 0] · 1{τ1>T
⋂

τ2>T}. (3.87)

When trying to price this claim we face the same problem with the last term in (3.87) as with
pricing the Asian claim in section 3.3, the non-lognormal feature of the Asian option makes
it hard to find a closed-form solution of the problem.
Using the pricing formula in Theorem 1.4.1, equation (3.86) and equation (3.17) we find that
the price of the above claim is given by

Cβ1

β2
(t, s;KA,KE) = Cβ1

β2
(t, s;KE) + CA(t, s;KA)

−e−r(T−t) · EQ
[
max [AS(t, T ) − KA, 0] · 1{τ1>T

⋂
τ2>T}

]
. (3.88)

The obvious problem is the last term which must be evaluated numerically. The Monte
Carlo technique, which often is preferred, seem not to perform well in the context of barrier
options. This is because of the discrete time points of simulations and the fact that this gives
the underlying price process a “chance” to hit a barrier without being detected inbetween the
discrete checkpoints. So standard Monte Carlo simulations seem to overestimate the hitting
time. In [5] Baldi & Caramellino & Iovino use the hit probability in Anderson [2] to develop a
procedure which provides an unbiased Monte Carlo estimator of the price of a barrier option.
This procedure could be implemented here but instead we make an simplifying assumption
in the last term in (3.88). The expectation in (3.88) can be rewritten to
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EQ
[
max [AS(t, T ) − KA, 0] · 1{τ1>T

⋂
τ2>T}

]
= EQ

[
max [AS(t, T ) − KA, 0]

]
· EQ[1{τ1>T

⋂
τ2>T}]

+Cov(max [AS(t, T ) − KA, 0],1{τ1>T
⋂

τ2>T})

= EQ
[
max [AS(t, T ) − KA, 0]

]
· Q(τ1 > T, τ2 > T ) + Cov(max [AS(t, T ) − KA, 0],1{τ1>T

⋂
τ2>T})

where Q(τ1 > T, τ2 > T ) is the probability that the process stays within the barriers under
the probability measure Q. This probability is given in (3.82) by changing µS to the risk
free interest rate r. Now we make the (maybe catastrophical) assumption that the covariance
above equals zero. This is obviously not the case but our pricing function gets more handy
when simulating its value. Denote our new price approximation Ĉβ1

β2
(t, s;KA,KE), we then

have

Ĉβ1

β2
(t, s;KA,KE) = Cβ1

β2
(t, s;KE) + CA(t, s;KA)

(
1 − Q(τ1 > T, τ2 > T )

)
. (3.89)

Using standard Monte Carlo simulations CA(t, s;KA) can be approximated with
e−r(T−t) · 1

N

∑N
i=1(ASi

(t, T ) − K)+ and we get

Ĉβ1

β2
(t, s;KA,KE) ≈ Cβ1

β2
(t, s;KE)+e−r(T−t) · 1

N

N∑

i=1

(ASi
(t, T )−K)+ ·

(
1−Q(τ1 > T, τ2 > T )

)
.

(3.90)

69



Chapter 4

Valuation of Guaranteed Contracts

In this chapter we define the guaranteed contract and show that such contracts consists of
bonds and options. By changing the option type we get different rate of return structures for
the guaranteed contract. We will consider some standard contracts with both single-period
and multi-period gurantees. We concentrate on guarantees where the underlying rate of return
is the rate of return on stock-like investments but we also give some standard examples of
interest rate guarantees, basicly taken from Bacinello & Persson [4], Aase & Persson [1] and
Miltersen & Persson [19].

4.1 Introduction

Today guarantees are included in many financial products like life insurance contracts and
saving contracts sold by banks and other financial institutions. The guarantee is connected
to a rate of return specified in the contract, e.g. rate of return on stock-like investments or
the short-term interest rate. Contracts with such guarantees give investors the possibility
to join the financial markets without facing the risk of huge losses. Investors with less cap-
ital can not in general participate in option markets without facing a considerable risk, but
investment banks offering guaranteed contracts make it possible for investors to place their
savings in international financial markets. These relatively new type of contracts also widen
the productspectre and give investors more flexibility w.r.t. type of investment and risk ex-
posure. Typically these guaranteed contracts are effectice only at the time of expiration of
the contract and thereby are called maturity guarantees.
In real-life, guaranteed contract specify a rate of return factor and a guaranteed amount.
The rate of return factor decides how much “weight” the option part is given in a contract.
Imagine the factor was set to two, i.e. the option is worth twice a option with factor set to
one, hence the option price is set two times higher which obviously raises the price of the
entire contract. For simplicity we only consider contracts with a factor of one since contracts
with a different rate of return factor can easily be derived from the results presented.
The guaranteed amount in the contract depends on contract type and to some extent the
investors preferences. Investment banks usually offer contracts where the entired amount is
guaranteed, it lies in the nature of the name “guaranteed” that the customer should not lose
money on his/her investment, at least in nominal terms. In life insurance the mortality factor
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has to be included and the actual type of contract specifies the guarantee. The fact that some
policyholders dies or survives the contract period makes such contracts attractive not only
for pure insurance arguments but also inhabit a savings aspect.
The recent years financial institutions have offered non-standard contracts where the rate of
return is bounded and where the invested amount is not fully guaranteed. Typically the op-
tion part of the contract is non-standard in the sense that exotic options, like Barrier options
and Collar options, are offered.

4.1.1 Economic Model

We will consider guarantees where the underlying rate of return is either the rate of return from
GBM-modelled stock-like investments or the short-term interest rate, where we for practical
reasons define rate of return as log returns. All contracts are priced using the theory of
arbitrage pricing in financial economics presented in the previous chapters. Consider a mutual
fund or a index with market value St at time t, modelled with GBM dynamics

dSt = µStdt + σStdWt (4.1)

where Wt is possibly multidimensional.
The short-term interest rate will at this point only be assumed to be Gaussian, or in other
words all interest rates considered is modelled with deterministic volatilities. We take the
forward rate dynamics defined by Heath & Jarrow & Morton as given and specify an example
with the Vasiček short rate model.

4.2 Single Period Guarantees

The specified contracts in maturity guarantees are closely related to cashflows of bonds and
options. When specifying the Collar contract in the previous chapter we saw that a up-and
downside bounded contract (guarantee) consists of a specified number of bonds and options.
Likewise we see that by considering a standard single period guarantee this is also the case.

4.2.1 Guarantees on the Stock Market Account

The standard example of a guarantee, where the underlying rate of return is the rate of return
from a stock-like investment, is a contract on the form

CE = Φ(ST ) = max [ST ,K] = K + max [ST − K, 0]

with closed form pricing solution Π(t, T ;X )

Π(t, T ;X ) = EQ
t,s[e

−
∫ T
t

r(v)dv ·K] + EQ
t,s[e

−
∫ T
t

r(v)dv ·max [ST − K, 0]] = KB(t, T ) + C(t, s;K)
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where C(t, s;K) is the price of an European option with exercise price K.
For practical purposes, and in order to compare different contracts, define πb and πo as the
price of the bond-and option-part, respectively, and normalize the bond-part by dividing it
by πb, i.e.

1 = EQ
t,s[e

−
∫ T

t
r(v)dv · eg(T−t)]

where g = 1
T−t ln

(
K
πb

)
such that K

πb
= eg(T−t). Where g may be interpreted as a guaranteed

average rate of return and we observe that K/πb = B−1(t, T ). Now, if one NOK is invested
and eg(T−t) is guaranteed, the price of a European contract is given by

1 + πE = eg(T−t)B(t, T ) + C(t, s; eg(T−t)) (4.2)

where π = C(t, T ; eg(T−t)) equals the price of the option-part. And C is given in section 3.1.
Likewise we can consider non-standard contracts like the Collar, Asian or Barrier contracts,
the only term changing is the option-part or the market based loading.

Price of a Collar contract:

1 + πC = eg1(T−t)B(t, T ) + C(t, s; eg1(T−t)) − C(t, s; eg2(T−t)) (4.3)

where g1 = 1
T−t ln

(
K1
πb

)
, g2 = 1

T−t ln
(

K2
πb

)
and K2 > K1 > 0.

Price of a Asian contract:

1 + πA = eg(T−t)B(t, T ) + CA(t, s; eg(T−t)) (4.4)

where CA is given in (3.17).

Price of a Double Barrier European knock-out contract:

1 + πDB = eg(T−t)B(t, T ) + Cβ1

β2
(t, s; eg(T−t)) (4.5)

where Cβ1

β2
is taken from (3.86).

4.2.2 Interest Rate Guarantees

A volatile or stochastic interest rate lies in the nature of interest rate guarantees, so modelling
with deterministic interest rates makes no sense. We use the HJM-framework and the rate of
return guarantee is connected to a guarantee on the short-term interest rate which we model
by the Vasiček model in section 2.4.2.
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Now, there is no GBM-modelled price process generating the randomness, but a short-term
interest rate which is assumed to satisfy the HJM-framework in section 2.4.1. Many short
rate models have been proposed but they all seem to turn hard to handle when becoming
more realistic, so we only apply the simple Vasiček model.

Consider a contract XT , where the underlying rate of return is the rate of return from the
short-term interest rate rs, for t ≤ s ≤ T

Cr = Φ(rs) = max
[
e
∫ T

t
rsds,K

]
= K + max

[
e
∫ T

t
rsds − K, 0

]
.

We see that the contract above can be rewritten to consist of a bond-part and an option-part
where the underlying process is no price-process, but the a function of the volatile short-term
interest rate.

Normalizing the bond-part and define πr as the market-based loading we get the price of the
contract

1 + πr = EQ
t,r0

[
e−

∫ T
t

rsds · max [e
∫ T

t
rsds, eg(T−t)]

]
= EQ

t,r0

[
max[e0, eg(T−t)−

∫ T
t

rsds]
]

= eg(T−t) · EQ
t,r0

[
e−

∫ T

t
rsds

]
+ EQ

t,r0

[
max[e0 − eg(T−t)−

∫ T

t
rsds, 0]

]

= eg(T−t)B(t, T ) +

∫ ∞

g(T−t)

(
1 − eg(T−t)−x)g(x)dx

= eg(T−t)B(t, T ) +

∫ ∞

g(T−t)
g(x)dx − eg(T−t)

∫ ∞

g(T−t)
e−xg(x)dx (4.6)

where g is the density of
∫ T
t rsds.

From the HJM-framework and the assumption of Gaussian models the above expectation
can be calculated. Consider the variable

∫ T
t rsds, we try some rearranging by using the HJM-

drift condition under the Q-measure and from the predefined bond price in section 2.3 we
have

f(t, s) = − ∂

∂s
ln B(t, s)

this gives

∫ T

t
rsds =

∫ T

t
f(t, s)ds +

∫ T

t

∫ s

t
α(u, s)duds +

∫ T

t

∫ s

t
σ(u, s)dWuds

= − ln B(t, T ) + ln B(t, t) +

∫ T

t

∫ s

t
σ(u, s)

∫ s

u
σ(u, v)dvduds +

∫ T

t

∫ s

t
σ(u, s)dWuds

changing the order of integration we get
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4.2. SINGLE PERIOD GUARANTEES

∫ T

t

∫ s

t
σ(u, s)dWuds =

∫ T

t

∫ T

u
σ(u, s)dsdWu

and since

∫ T

t

∫ s

t
α(u, s)duds =

∫ T

t

∫ T

u
α(u, s)dsdu =

∫ T

t

∫ T

u
σ(u, s)

∫ s

u
σ(u, v)dvdsdu

we have

γ(t) :=

∫ T

u
σ(u, s)

∫ s

u
σ(u, v)dvds =

1

2

∫ T

u
σ(u, v)dv ·

∫ T

u
σ(u, v)dv =

1

2

( ∫ T

u
σ(u, v)dv

)2
.

Finally, we get

∫ T

t
rsds = − lnB(t, T ) +

1

2

∫ T

t

( ∫ T

u
σ(u, v)dv

)2
du +

∫ T

t

∫ T

u
σ(u, s)dsdWu. (4.7)

From the Gaussian-assumption we now have that the above expression must be normally
distributed with expectation and variance given by

µI = − lnB(t, T ) +
1

2

∫ T

t

( ∫ T

u
σ(u, v)dv

)2
du = − ln B(t, T ) +

1

2
σ2

I

and

σ2
I =

∫ T

t

( ∫ T

u
σ(u, v)dv

)2
du.

In other words,
∫ T
t rsds ∼ N [µI , σI ].

Completing the square in the term e−x·g(x) we get e−µI+ 1
2
σ2

I ·h(y), where h is the density func-
tion of a normally distributed variable, Y , with expectation (µI − σ2

I ). From the pricing for-

mula of bonds in section 2.3 we have that B(t, T ) = EQ[exp (−
∫ T
t rsds)] = exp (−µI + 1

2σ2
I ).

We can now continue with the pricing formula above , normalizing X and Y we get

1 + πr = eg(T−t)B(t, T ) + P (X ≥ g(t − t)) − eg(T−t)B(t, T )P (Y ≥ g(T − t))

= eg(T−t)B(t, T ) + N
[−g(T − t) + µI

σI

]
− eg(T−t)B(t, T )N

[−g(T − t) + µI − σ2
I

σI

]

= N
[−g(T − T ) + µI

σI

]
+ eg(T−t)B(t, T )N

[g(T − t) − µI + σ2
I

σI

]
. (4.8)

We have in mind that lnB(t, T ) = −µI + σ2
I/2.
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4.3. MULTI PERIOD GUARANTEES

4.3 Multi Period Guarantees

Contracts or policies with more than one period guarantee are common in life insurance.
Other financial sectors, like investment banks etc, do not seem to offer multi period guaran-
tees to the same extent.
Now we consider guarantees on the stock market account and on the short-term interest rate
with a contract period [t, T ], where τ = T − t is divided into n periods of the same con-
stant length ∆. The financial institutions offering these contracts, guarantees a deterministic
amount in every subperiod i = 1, . . . , n. We will continue to consider rate of return guarantees,
i.e. contracts where log-prices are considered. Our single period contract was, in the interest
rate guarantee case, given as max

[
exp

( ∫ T
t rsds

)
, exp

(
g(T − t)

])
:= exp

( ∫ T
t rsds

)
∨ eg(T−t).

Since the exp function is monotone and increasing we can rewrite the above expression
to exp

( ∫ T
t rsds ∨ g(T − t)). Modelling a stock-like investment with a GBM-model we can

rewrite a guarantee on the stock market account a similar way: max
[
ST , exp g(T − t)

]
:= ST∨

exp (g(T − t)) = exp ((r − 1
2σ2)(T − t) + σ(WT − Wt) ∨ g(T − t)), where the Q-dynamics of

the price process is given by

dSs = rSsds + σSsdWs, t ≤ s ≤ T.

In the multi period case to now define gi to be the guaranteed rate of return in period i.

4.3.1 Guarantees on the Stock Market Account

Constant Interest Rate

First we consider a rate of return guarantee when assuming a constant interest rate, Cn with
n periods and a deterministic guaranteed amount gi in subperiod i. Let t = t0 < t1 < t2 <
... < tn−1 < tn = T , then define the multiperiod European contract by

CE
n =

n∏

i=1

max
[ Sti

Sti−1

, egi∆
]

:=
n∏

i=1

e

(
ln Sti

−lnSti−1

)
∨ egi∆

=

n∏

i=1

(
egi∆ + max

[
e(ln Sti

−ln Sti−1) − egi∆, 0
])

Now if the periodical guarantee is ”beaten” in every period the holder of the contract gets
ST /S0, or a rate of return which is the relative increase of the underlying stock-like process.
The holder of the contract will at least get or in other words the holder is guaranteed the
amount e∆

∑n
i=1 gi , which equals eng when using a constant guarantee and annual periods.

Letting n = 1 we have a normalized single period contract in the sense that St := 1. Assuming
a GBM-model with constant interest rate r, the price of the n-period European contract
above, with normalized bond-part, is given by
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4.3. MULTI PERIOD GUARANTEES

1 + πE
n = e−r(T−t)EQ

t

[ n∏

i=1

(
egi∆ + max

[
e(r− 1

2
σ2)(ti−ti−1)+σ(Wti

−Wti−1
) − egi∆, 0

])]

=

n∏

i=1

e−r∆EQ
ti−1

[
egi∆ + max

[
e(r− 1

2
σ2)(ti−ti−1)+σ(Wti

−Wti−1) − egi∆, 0
]]

=

n∏

i=1

(
egi∆B(ti−1, ti) + C

(
t, 1; egi∆

))

=
n∏

i=1

(
N

[−gi∆ − ln Fti

σ
√

∆
+

1

2
σ
√

∆
]
+ egi∆FtiN

[gi∆ + lnFti

σ
√

∆
+

1

2
σ
√

∆
])

. (4.9)

This follows from independency and since Fti := B(ti−1, ti) = B(t, ti)/B(t, ti−1) = e−r∆ is
measurable at time t. The last equation follows from the assumption of a constant interest
rate.
Similar we could consider other contract types with other, more bounded pay-off structures.
Consider the multiperiod Collar contract defined by

CC
n =

n∏

i=1

min
[
max

[ Sti

Sti−1

, egi∆
]
, ehi∆

]

=

n∏

i=1

(
egi∆ + max

[
e

(
ln Sti

−lnSti−1

)
− egi∆, 0

]
− max

[
e

(
lnSti

−ln Sti−1

)
− ehi∆, 0

])

where hi > gi and egi∆ > 0 for all i = 1, ..., n.
From the independency the price of the n-period Collar contract is given by

1 + πC
n =

n∏

i=1

(
egi∆B(ti−1, ti) + C

(
t, 1; egi∆

)
− C

(
t, 1; ehi∆

))

=
n∏

i=1

(
N [m1] + egi∆FtiN [m2] − N [m3] + ehi∆FtiN [m4]

)
(4.10)

where

m1 =
−gi∆ − ln Fti

σ
√

∆
+

1

2
σ
√

∆ m2 =
gi∆ + ln Fti

σ
√

∆
+

1

2
σ
√

∆

m3 =
−hi∆ − ln Fti

σ
√

∆
+

1

2
σ
√

∆ m4 =
−hi∆ − ln Fti

σ
√

∆
− 1

2
σ
√

∆ = m3 − σ
√

∆

We define the multiperiod Asian contract by
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4.3. MULTI PERIOD GUARANTEES

CA
n =

n∏

i=1

(
max

[
AS(t0, ti−1, ti), e

gi∆
])

where

AS(t0, ti−1, ti) =
1

St0

AS(ti−1, ti) =
1

∆

∫ ti

ti−1

e(r− 1
2
σ2)(u−ti−1)+σ(Wu−Wti−1

)du

From independency between periods we get the following pricing formula for the n-period
Asian contract

1 + πA
n =

n∏

i=1

(
egi∆Fti + FtiE

Q
ti−1,1

[(
AS(t0, ti−1, ti) − egi∆

)+])

=

n∏

i=1

(
egi∆−r∆ + CA

(
ti−1,∆, egi∆

))
(4.11)

where CA
(
ti−1,∆, egi∆

)
= e−r∆EQ

ti−1,1

[(
AS(t0, ti−1, ti) − egi∆

)+]
can be estimated trough

Monte Carlo simulations.

We define the multiperiod Double Barrier European knock-out contract by

CDB
n =

n∏

i=1

(
egi∆ + max

[
Sti/Sti−1 − egi∆, 0

]
· 1{τ1(i)>∆

⋂
τ2(i)>∆}

)

where τ1(i) and τ2(i) are the hitting times of the upper and lower barrier, respectively, in
subperiod i. From independency between periods we get the price of the n-period Double
Barrier European knock-out contract

1 + πDB
n =

n∏

i=1

(
egi∆−r∆ + C

βi
1

βi
2

(
ti, 1; e

gi∆
))

. (4.12)

Stochastic Interest Rate

When modelling with a stochastic short-term interest rate we encounter problems with depen-
dent periods. In other words we can not immediately take nth product of some expectation.
To see this we define the simplest contract, the n-period European contract, and let∫ ti
ti−1

rsds := δi

CE
n =

n∏

i=1

(
egi∆ + max

[
e(µ− 1

2
σ2)∆+σ(Wti

−Wti−1) − egi∆, 0
])

= e
∑n

i=1{[(µ− 1
2
σ2)∆+σ(Wti

−Wti−1)]∨gi∆}
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4.3. MULTI PERIOD GUARANTEES

Since the integral with the short-term interest rate is not Markovian, the periods will be
dependent. In [19] Miltersen & Persson give a special case with n = 2, i.e. two periods.
Modelling with the Vasiček model or any other Gaussian interest model a covariance matrix
can be defined for 2n multinormal variables. Since many life insurance contracts consist of
numerous periods, like 30 to 40 years, the expectation of a expression including almost a
hundred multinomal variables may get tedious. Instead simulation of the path of the short-
term interest rate and the stochastic process driving the value of the stock-like investment is
preferred. The price of the n-period European contract is then given by

1 + πE
n,r = EQ

t

[
e−

∫ T

t
rsds · CE

n

]

= EQ
t

[ n∏

i=1

[
egi∆−δi + max

[
e−

1
2
σ2∆+σ(Wti

−Wti−1) − egi∆−δi , 0
]]]

= EQ
t

[
e
∑n

i=1{[− 1
2
σ2∆+σ(Wti

−Wti−1 )]∨[gi∆−δi]}
]

Using a numerical method on the simulated interest rate paths in each subperiod and simu-
lation of the Brownian motion driving the stock-like process, where the Brownian motions in
the respective processes may be correlated, we can get an estimat of this price.

Similarly the price if the n-period Collar contract is given by

1 + πC
n,r = EQ

t

[ n∏

i=1

[
egi∆−δi + max

[
e−

1
2
σ2∆+σ(Wti

−Wti−1) − egi∆−δi , 0
]]

−max
[
e−

1
2
σ2∆+σ(Wti

−Wti−1) − ehi∆−δi , 0
]]]

(4.13)

The price of the n-period Asian contract is given by

1 + πA
n,r = EQ

t

[ n∏

i=1

[
egi∆−δi + max

[
AS(t0, ti−1, ti) − egi∆−δi , 0

]]]
(4.14)

where AS(t0, ti−1, ti) = 1
∆

∫ ti
ti−1

e−
∫ ti
u

rsds− 1
2
σ2(u−ti−1)+σ(Wu−Wti−1)du.

Since traditional Monte Carlo simulations seem to give poor results w.r.t hit probability
we do not bother to give a similar price approximation for the n-period Double Barrier
European knock-out contract.

4.3.2 Interest Rate Guarantees

When considering multi period interest rate guarantees we face the same computational prob-
lem as in the above section. Since the integral of the short-term interest rate is not Markovian
we can not claim independency between periods. Modelling with a Gaussian short-term in-
terest rate, like the Vasiček model, we can calculate the expectation under Q of a contract
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function consisting of n multinormal variables. Specifying a covariance matrix this can be
done but e.g. a life insurance contract consisting of 30-40 periods makes it computationally
hard. In [19] a 2-period example is given. We define the n-period contract by

Cr
n =

n∏

i=1

max
[
e
∫ ti
ti−1

rsds
, egi∆

]
=

n∏

i=1

(
egi∆ + max

[
eδi − egi∆, 0

])
= e

∑n
i=1 δi∨gi∆

Using Monte Carlo simulations the following pricing function can be estimated

1 + πr
n = EQ

t

[
e−

∫ T

t
rsds ·

n∏

i=1

(
egi∆ + max

[
eδi − egi∆, 0

])]

= EQ
t

[ n∏

i=1

(
egi∆−δi + max

[
1 − egi∆−δi , 0

])]
= EQ

t

[
e
∑n

i=1{0∨[gi∆−δi]}
]
. (4.15)

4.4 Life Insurance Applications

Traditionally, life insurance products have guaranteed a deterministic amount or a benefit
specified by a contractual agreement. Typically an amount is to be paid to the insured if
he/she survives, dies or both in a predetermined period. Other traditional contracts pay pre-
described amounts as a future pension. The recent years insurance companies have expanded
their product spectre by offering unit-link insurances and guaranteed contracts connected to
these unit-link contracts. Also interest guarantees have been offered by the insurance compa-
nies. In insurance terms we denote the prices of such contracts as their market values, which
is paid for with premium payments. As in traditional life insurance these ”new” products are
usually paid by periodical premiums, often determined in inception of the contract but other
premium payment schemes have also been proposed. The insurance companies might want
more ”control” with long term contracts and may offer contracts with stochastic periodical
premiums. See e.g. the unit-link contract constructed in [4] by Bacinello & Persson, where the
periodical guarantees are expressed in number of units of the mutual fund giving a stochastic
premium payment scheme.

Now, people wanting insurance do not fancy the financial risk of e.g. the mutual fund linked
to their premiums (unit-link contract). By issuing the contract with a guarantee this down-
side risk of the financial markets is avoided. By using the pricing theory from the preceding
chapters we can find the market value of this contract. Life insurance contracts must also
consider the risk factor of mortality. Usually independence between mortality risk and finan-
cial risk is assumed, which computationally makes the valuation of the contract easier.
Guarantees in life insurance, like guaranteed unit-link products and interest rate guarantees,
can easily be derived from the presented pricing results by considering this mortality risk. A
variety of life insurance contracts can be constructed using these pricing results as “building
blocks”, so we are content with giving some numerical examples concerning these bulding
blocks only.

79



Chapter 5

Some Numerical Examples

We will restrict ourselves to single payments, or single premiums in insurance terms, and
we disregard the mortality risk which life insurance contracts would have to take in con-
sideration. We also restrict ourselves to comparing guarantees with different rate of return
structures without performing any type of sensitivity analysis w.r.t. the modelling param-
eters, except from the length of time , T − t, of the various contracts. Since we are not
concerned with parameter estimation or sensitivity analysis the parameters in the models
are tried being specified from the actual situation in the Norwegian financial market, while
parameters concerning the stochastic interest rate process and the market price of risk, λ,
Hull [14] has been useful.

In the case of guarantees on the stock market account, Sv we model it by a GBM-model
with a one-dimensional Wiener process as its source of uncertainty. We specify whether we a
assume constant or stochastic short-term interest rate, and in the last case we use the Vasiček
model.

dSv = αSvdv + σSvdW 1
v

drv = a(r̄ − rv)dv + σrdW 2
v

For simplicity we assume independence between W 1 and W 2.
We use the following values for the modelling parameters throughout the examples

Parameters: a = 0.125, r̄ = 0.06, rt = 0.07, σr = 0.02, λ = −σB = −0.05, σ = 0.15.

This is consistent with a long term interest rate mean of 0.06 and 0.092 under the measures P
and Q, respectively. And a long term interest variance of 0.042. In the cases where a constant
interest rate is assumed we let r = r̄ = 0.06.

Now we redefine g to be the guaranteed rate of return, and the examples given uses g = 0 and
g = 0.04. Which in the first case means that only the invested amount is guaranteed while
in the second case a rate of return of 4% is guaranteed on the investment.
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Single Period Guarantee on the Stock Market Account

An investor wants to invest K NOK and agrees on a contract with an investment bank which
places his/her money in a mutual fund with a guarantee. In the case of a European contract
the investor is guaranteed his/her investment in monetary value or some positive rate of
return. In other words the contract is defined as

XE = K max
[ST

St
, eg(T−t)

]
= K + K max

[ST

St
− eg(T−t), 0

]

letting π be the market value and price of this contract where πb and πo are the prices of the
bond-part and option part, respectively, we have

π = πb + πo = Keg(T−t)B(t, T ) + KC(t, 1; eg(T−t)).

Or, when K NOK is invested the investor has to pay a market based loading, denoted L. By
definition we then must have

π = πb + πo = K + L

In order to express the loading in percent of the invested amount we divide the whole expres-
sion with K and get

1 + πE =
πb + πo

K
= eg(T−t)B(t, T ) + C(t, 1; eg(T−t)).

In the case where a constant interest rate, r, is assumed we have

1+πE = N
[(−g + r)(T − t) + 1/2σ2(T − t)

σ
√

T − t

]
+e(g−r)(T−t)N

[(g − r)(T − t) + 1/2σ2(T − t)

σ
√

T − t

]

and

1 + πE
r = N

[−g(T − t) − ln B(t, T ) + 1/2(σ − λ)2(T − t)

(σ − λ)
√

T − t

]

+ B(t, T )eg(T−t)N
[g(T − t) + ln B(t, T ) + 1/2(σ − λ)2(T − t)

(σ − λ)
√

T − t

]

in the case of a stochastic short-term interest rate and when assuming a constant market
price of risk. See Theorem 3.1.2.

For a Collar contract define K∗ = m · K > K as an upper bound payoff, and πC as the
price in percent of the invested amount or the market based loading. We define the following
contract
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X = min
[
K max

[
ST /St, e

g(T−t)
]
,K∗

]

= Keg(T−t) + K max
[
ST /St − eg(T−t), 0

]
− K max

[
ST /St − m, 0

]

with market values

1 + πC = eg(T−t)B(t, T ) + C(t, 1; eg(T−t)) − C(t, 1;m) = 1 + πE − C(t, 1;m)

= N [w1] + e(g−r)(T−t)N [w2] − N [w3] + m · e−r(T−t)N [w4]

1 + πC
r = 1 + πE

r − C(t, 1;m) = N [w5] + eg(T−t)B(t, T )N [w6] − N [w7] + m · B(t, T )N [w8]

in the case of a constant interest rate and a stochastic interest rate , respectively. And where

w1 =
(−g + r)(T − t) + 1/2σ2(T − t)

σ
√

T − t
w2 =

(g − r)(T − t) + 1/2σ2(T − t)

σ
√

T − t

w3 =
− lnm + r(T − t) + 1/2σ2(T − t)

σ
√

T − t
w4 =

(− ln m + r)(T − t) − 1/2σ2(T − t)

σ
√

T − t

w5 =
−g(T − t) − lnB(t, T ) + 1/2(σ − λ)2(T − t)

(σ − λ)
√

T − t
w6 =

g(T − t) + ln B(t, T ) + 1/2(σ − λ)2(T − t)

(σ − λ)
√

T − t

w7 =
− lnm − ln B(t, T ) + 1/2(σ − λ)2(T − t)

(σ − λ)
√

T − t
w8 =

− ln m − ln B(t, T ) − 1/2(σ − λ)2(T − t)

(σ − λ)
√

T − t
.

By taking a the price of one particular benchmark bond as given we can, theoretically, decide
the maket price of risk, λ. Assuming a constant market price of risk we have from section
3.1.2 that λ = −σB , where σB is the diffusion term of the benchmark bond.

T − t = ∆ πE πE
r πC πC

r

1 3.35 4.79 3.35 4.78
2 3.55 5.26 3.55 5.26
3 3.42 5.23 3.42 5.14
4 3.18 5.02 3.15 4.59
5 2.90 4.75 2.75 3.55
6 2.63 4.45 2.20 2.02
7 2.37 4.15 1.39 0.04
8 2.12 3.87 0.29 -2.30
9 1.89 3.60 -1.12 -4.94
10 1.69 3.34 -2.82 -7.78

Table 5.1: Market based loading in percent of invested amount when g = 0 and m =
K∗/K = 3.

From Table 5.1 we consider contracts with expiration from one to ten years. We see that
the loading of the European contract is higher than the loading of the “respective” Collar
contract, which we knew it would be. When modelling with a stochastic interest rate we get
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T − t = ∆ πE πE
r πC πC

r

1 4.98 6.47 4.98 6.47
2 6.47 8.29 6.47 8.29
3 7.39 9.39 7.39 9.30
4 8.02 10.15 7.99 9.72
5 8.48 10.71 8.33 9.52
6 8.82 11.14 8.38 8.71
7 9.06 11.48 8.08 7.37
8 9.24 11.76 7.41 5.60
9 9.36 12.00 6.35 3.47
10 9.44 12.20 4.93 1.07

Table 5.2: Market based loading in percent of invested amount when g = 0.04 and m =
K∗/K = 3. I.e. an annual guaranteed rate of return of 4% (continously compunded).

a higher absolute loading than with a constant rate. This follows from the volatility of the
interest rate, the a parameter in the Vasiček model and the market price of risk. In the case
of a Collar contract we get negative loadings, this is because the option part “bounding” the
contract from above becomes more valuable with time to expiration. From Table 5.1 and
5.2 we also observe that the loadings reaches a “top” for the various contracts. This can be
explained from the fact that the option part increases in value with time, while the bond part
does the opposite. From Table 5.2 we observe how a higher guarantee clearly increases the
overall loadings.

We will consider a contract which is denoted an Asian-tail contract. The Asian-part is not
to be evaluated in the whole contract period but only the last year. Such contracts have been
offered in the Norwegian market. We define the contract function to be

XAT = K ·max
[ 1

n − p

tn=T∑

i=tp

Si/St, e
g(T−t)

]
= Keg(T−t)+K ·max

[ 1

n − p

T∑

i=tp

Si/St − eg(T−t), 0
]

where tp := t+n−1 = (T −1)+. Instead of an integral we are taking a mean of the index over the
last year. We could consider the mean on e.g. a daily or a monthly basis. Letting n− p = 12
and observing the index value the last trading day of every month we get a contract which
is less vunerable to price changes at the time of expiration. Letting the invested amount be
guaranteed, we get the following percentage market value of this contract when assuming a
constant interest rate, r,

1 + πAT = eg(T−t)B(t, T ) + CAT (t, 1; eg(T−t))

where

CAT (t, 1; eg(T−t)) = e−r(T−t) · EQ
t

[
max

[ 1

12

T∑

i=tp

Si/St − eg(T−t), 0
]]
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Using Monte Carlo simulation we get an approximate value of πAT .

T − t 1 2 3 4 5 6 7 8 9 10

πAT (g1) -0.51 0.42 0.49 0.37 0.12 -0.13 -0.37 -0.56 -0.89 -1.02
πAT (g2) 1.28 3.53 4.59 5.43 5.87 6.17 6.53 6.76 8.86 7.00

Table 5.3: Approximate percentage loading of the Asian-tailed contract with g1 = 0 and
g2 = 0.04 when 106 Monte Carlo simulations are performed. The Asian-part is the mean of
the 12 annual observations made on the last trading day in every month.

In the case of a double barrier European knock-out contract we use the notation from section
3.4 and get

XDB = Keg(T−t) + K · max
[
ST/St − eg(T−t), 0

]
· 1{τ1>T

⋂
τ2>T},

assuming a constant interest rate we get the market value

1 + πDB = eg(T−t)B(t, T ) + Cβ1

β2(t, 1; e
g(T−t)).

a1 = 1.8 a2 = 0.5 b1 = 0.1 b2 = −0.1 a1 = 2.5 a2 = 0.3 b1 = 0.08 b2 = −0.08
T − t = ∆ g=0 g=0.04 g=0 g=0.04

1 3.35 4.98 3.35 4.98
2 3.49 6.41 3.55 6.47
3 3.13 7.12 3.41 7.38
4 2.55 7.45 3.12 7.97
5 1.89 7.56 2.75 8.33
6 1.22 7.55 2.30 8.52
7 0.59 7.47 1.82 8.56
8 0.00 7.34 1.30 8.49
9 -0.53 7.19 0.77 8.34
10 -1.00 7.03 0.24 8.12

Table 5.4: πDB in percent of invested amount, with different choices of boundaries and
guarantees.

From the tables 5.3 and 5.4 we observe that the Asian-tail- and Barrier contracts give signif-
icant lower loadings than the traditional European contract. Especially the Asian-tail seems
to perform “well” when it comes to offering attractive and relative simple contracts.

Multi Period Guarantee on the Stock Market Account

Now consider a n-period guarantee which includes a positive and constant rate of return and
where the periods are of one years length, i.e gi = g and ∆ = 1, respectively.
We define the various contracts when we assume that K NOK is invested
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XE
n = K · CE

n XC
n = K · CC

n XA
n = K · CA

n XDB
n = K · CDB

n

XE
n,r = K · CE

n,r XC
n,r = K · CC

n,r XA
n,r = K · CA

n,r XDB
n,r = K · CDB

n,r

where the C contracts are defined in section 4.3, together with the respective market values
in percent of the invested amount. Because of the computational aspect we do not consider
the above contracts when a stochastic interest rate is assumed.

g = 0.04 h = 0.2 g = 0 h = 0.4
T − t = ∆ πE

n πC
n πE

n πC
n

1 4.98 3.47 3.35 3.28
2 10.21 7.05 6.81 6.66
3 15.70 10.76 10.39 10.16
4 21.47 14.60 14.09 13.77
5 27.52 18.57 17.91 17.50
6 33.87 22.68 21.86 21.35
7 40.54 26.93 25.94 25.33
8 47.54 31.33 30.16 29.44
9 54.89 35.88 34.52 33.69
10 62.61 40.58 39.03 38.07

15 107.35 66.69 63.93 62.23
20 164.41 97.64 93.29 90.63
25 237.16 134.34 127.90 123.99
30 329.94 177.85 168.72 163.19

Table 5.5: πE
n and πC

n in percent of invested amount with different rate of raturn guarantees.

1 2 3 4 5 6 7 8 9 10 15 20 25 30

-0.52 -1.03 -1.55 -2.06 -2.56 -3.07 -3.57 -4.07 -4.57 -5.06 -7.50 -9.87 -12.18 -14.43
1.28 2.58 3.90 5.23 6.58 7.95 9.34 10.74 12.16 13.6 21.08 29.05 37.55 46.60

Table 5.6: Approximate percentage loading of the n-period Asian contract with g1 = 0 and
g2 = 0.04, respectively, when 106 Monte Carlo simulations are performed. The contract is
defined with the mean of the 12 annual observations made on the last trading day in every
month.

Comparing the different values in Table 5.5 and Table 5.7 we see how the market values
in percent of the Double Barrier contract are indentical (by using two decimals) with the
corresponding European contract when the boundaries get “wide” enough. We also notify
that by narrowing the boundaries we get relatively big differences in market value.

Interest Rate Guarantees

When modelling the short-term interest rate with the Vasiček model we get a quite sensitive
model w.r.t. the a and σ parameters. These parameters should be carefully examined before
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a1 = 1.2 a2 = 0.8 a1 = 2.0 a2 = 0.4 a1 = 1.2 a2 = 0.8 a1 = 2.0 a2 = 0.4
T − t = ∆ b1 = 0.1 b2 = −0.1 b1 = 0.2 b2 = −0.2 b1 = 0.1 b2 = −0.1 b1 = 0.2 b2 = −0.2

1 3.56 4.98 1.78 3.35
2 7.25 10.21 3.60 6.81
3 11.06 15.70 5.44 10.39
4 15.02 21.47 7.33 14.09
5 19.11 27.52 9.24 17.91
6 23.35 33.87 11.19 21.86
7 27.74 40.54 13.17 25.94
8 32.29 47.54 15.19 30.16
9 36.00 54.89 17.24 34.52
10 41.87 62.61 19.33 39.03

15 68.99 107.35 30.36 63.93
20 101.28 161.41 42.40 93.29
25 139.75 164.41 55.55 127.90
30 185.56 329.94 69.93 168.72

g = 0.04 g = 0.04 g = 0 g = 0

Table 5.7: πDB
n in percent of invested amount, with different choices of boundaries and

guaranteed rate of returns.

implementing the Vasiček model. Letting gi = g be constant in the n-period case and equal
the guaranteed rate of return in the single period case. When defining the n-period contract
with ∆ = 1 as above, the market values in percent of the invested amount in the single-and
n-period case are given in equation 4.8 and equation 4.15 , respectively. When K NOK is
invested we define the single-period interest rate guarantee contract by

X r = K max
[
e
∫ T

t
rsds, eg(T−t)

]

where g is the annual guaranteed rate of return.
Its market price in percent of the invested amount is given in (4.8).

T − t = ∆ 5 10 15 20 25 30 35 40 50 60

g = 0.00 0.001 0.015 0.032 0.040 0.039 0.032 0.025 0.018 0.008 0.004
g = 0.02 0.030 0.196 0.379 0.496 0.542 0.535 0.497 0.443 0.327 0.228
g = 0.04 0.374 1.461 2.616 3.589 4.322 4.831 5.150 5.321 5.347 5.118
g = 0.06 2.310 6.553 11.303 16.143 20.915 25.563 30.077 34.471 42.974 51.231

Table 5.8: πr with different guarantees when modelling with a Vasiček model.

From Table 5.8 we see that by guaranteeing the long term interest rate , 6% in our case, sub-
stantial loadings are generated while guaranteeing only the invested amount very small but
positive loadings are generated. Since the interest rate is always positive in real-life, there
can not be loadings when guaranteeing only the invested amount. Since we only consider
financial risk and not e.g. credit risk, administration costs etc, the positive loadings from
guaranteeing the invested amount are consequences from the Vasiček model and the fact that
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it may generate a negative interest rate.

We define the multi-period interest rate guarantee contract by

X r
n = K ·

n∏

i=1

max
[
eδi , egi∆

]
= K · e

∑n
i=1{δi∨gi∆}

and its market price in percent of the invested amount is given by

1 + πr
n = EQ

t

[
e
∑n

i=1{0∨[gi∆−δi]}
]
.

Monte Carlo simulations supplies us with an estimat of this last expectation.

Some Remarks

• In the multiperiod case the single premiums/payments tend to get very high. But we
must remember that such contracts usually contain a periodical saving/investment plan
or premium scheme, and that the premiums usually are paid in advance of eventual
benefits.

• In some of the examples we get negative market based loadings. This does not mean
that the guarantees are worthless but rather that the market values of the actual con-
tracts are below the invested amount. The financial institutions offering these contracts
still face costs when it comes to administration and hedging their risk-exposure .
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Appendix A

Stochastic Calculus

A.1 Measure Theory

Definition A.1.1 σ-algebra If Ω is a given set, then a σ-algebra F on Ω is a family F of
subsets of Ω with the following properties

(i) Ω ∈ F
(ii) F ∈ F ⇒ F c ∈ F
(iii) F1, F2 . . . ∈ F ⇒ ∪∞

i=1Fi ∈ F
Definition A.1.2 Borel σ-algebra If U is the collection of all open subsets of a topological
space Ω and B is the smallest σ-algebra containing U , then B is called the Borel σ-algebra on
Ω

The pair (Ω,F) is called a measurable space. On this we can define several different probability
measures. For P to be a probability measure defined on (Ω,F); P must satisfy Kolmogorov’s
axioms.

Definition A.1.3 Kolmogorov’s axioms A probability measure P on a measurable space
(Ω,F) is a function P : F → [0, 1] such that

(i) P (Ω) = 1

(ii) P (F ) ≥ 0 ∀F ∈ F
(iii) If F1, F2, . . . ∈ F and Fi

∞
i=1 are mutually disjoint, then P (∪∞

i=1Fi) =
∑∞

i=1 P (Fi)

The triple (Ω,F , P ) defines a probability space.

Definition A.1.4 Let P and Q be two probability measures on F . Then P is absolute con-
tinous w.r.t. Q, and we write P � Q iff Q(F ) = 0 ⇒ P (F ) = 0 ∀F ∈ F
Theorem A.1.1 Radon-Nikodym
P � Q iff it exists a measurable function f(ω) ≥ 0 such that:

P (F ) =

∫

F
1 · dP (ω) =

∫

F
f(ω) · dQ(ω)
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A.1. MEASURE THEORY

Or

dP (ω) = f(ω) · dQ(ω)

Similary Q � P iff:

dQ(ω) = g(ω) · dP (ω)

For a measurable function g(ω) ≥ 0.

For proof see [15].

If we have both P � Q and Q � P , then P and Q are said to be equivalent and we write
P ∼ Q. In this case we have both:

dP (ω) = f(ω) · dQ(ω) and dQ(ω) = g(ω) · dP (ω)

Thereby we get: g(ω) = 1
f(ω) and P (ω) = 0 ⇔ Q(ω) = 0.

Definition A.1.5 Random Variable Let (Ω,F , P ) be an arbitrary probability space, and
let X = X(ω) be a real-valued function on Ω so that:

F (x) = P (X ≤ x) −∞ < x < ∞

is defined. Then X is a random variable.

Definition A.1.6 Stochastic Process A stochastic process X, is a parameterised collection
of random variables

{Xt}t∈T

defined on a probability space (Ω,F , P ) and assuming values in R. The parameter space is
usually the halfline [0,∞), but it may also be the interval [a, b] etc. (The notation X(t, ω) or
Xt(ω) is also used).

Note that for each t ∈ T fixed, we have a random variable

ω → Xt(ω); ω ∈ Ω.

On the other hand, fixing ω ∈ Ω we can consider the function

t → Xt(ω); t ∈ Ω

which is called the path of Xt.

Definition A.1.7 Adapted Process Let {Ft}t≥0 be an increasing family of σ-algebras of
subsets of Ω. A process Xt(ω) : [0,∞) × Ω → R is called Ft-adapted if for each t ≥ 0 the
function

ω → Xt(ω)

is Ft-measurable.

Xt(ω) being Ft-measurable means that the value of Xt(ω) is “known” from the values of the
stochastic process generating the information,i.e. the family of σ-algebras.
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A.2. BROWNIAN MOTION AND ITÔ STOCHASTIC CALCULUS

Definition A.1.8 Filtration and Martingale A filtration on (Ω,F) is a family F =
{Ft}t≥0 of σ-algebras Ft ⊂ F such that

0 ≤ s < t ⇒ Fs ⊂ Ft

(i.e. {Ft} is increasing). A stochastic process {Xt}t≥0 on (Ω,F , P ) is called a martingale
with respect to a filtration {Ft}t≥0 (and with respect to P ) if

(i) Xt is F-measurable for all t

(ii) EP [|Xt|] < ∞ for all t ≥ 0

(iii) E[Xs|Ft] = Xt for all s ≥ t

Definition A.1.9 Local martingale A Ft-adapted stochastic process {Z(t)} is called a
local martingale w.r.t. to the given filtration {Ft}t≥0 if there exists an increasing sequence of
Ft-stopping times τk such that

τk → ∞ a.s as k → ∞

and

Z(τ ∧ τk) is an Ft − martingale for all k.

Definition A.1.10 Markov Process Let X be an F-adapted process on the probability
space (Ω,F , P ). We say that X is a Markov-process if

P (Xs < a|F) = P (Xs < a|Xt) ∀s ≥ t, a ∈ R

In other words, if X is a Markov process, the probability of any particular future behaviour
of the process, when its current state is known exactly, is not altered by additional knowledge
concerning its past behaviour.

A.2 Brownian Motion and Itô Stochastic Calculus

Brownian motion or Wienerprocesses has become very important in financial modelling the
recent years and we give the following definition:

Definition A.2.1 1-dimensional Brownian motion The only continous stochastic process
{Wt(ω); t ≥ 0} with values in R which satifies the following conditions

(i) For any time points 0 = t0 < t1 < . . . < tn the process increments {Wtk+1
− Wtk}n

k=1

are independent random variables.

(ii) For any time points t0 = 0 < t1 < . . . < tn the process increments {Wtk+1
− Wtk}n

k=0

are stationary.

(iii) Every increment Wt+s(ω) − Wt(ω) ∼ N (0, s) i.e. normally distributed with mean equal
to zero and variance equal to s.

(iv) E[Wt] = 0 and E[Wtk+1
− Wtk ] = 0 ∀ k ∈ [0, n].
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A.2. BROWNIAN MOTION AND ITÔ STOCHASTIC CALCULUS

is Brownian motion(Wiener process).

Definition A.2.2 Let V = V(S, T ) be the class of functions

f(t, ω) : [0,∞) × Ω → R

such that

(i) (t, ω) → f(t, ω) is B × F-measurable, where B denotes the Borel σ -algebra on [0,∞).

(ii) f(t, ω) is Ft-adapted.

(iii) E
[ ∫ T

S f(t, ω)2dt
]

< ∞

Definition A.2.3 The Itô Integral For f ∈ V we define the Itô integral as

I[f ](ω) =

∫ T

S
f(t, ω)dWt(ω)

The variations of the paths of Wt are so big that Brownian motion is nowhere differentiable,
that is the total variation of the path is infinite.
Brownian motion is thereby continous but not Newtonian differentiable in the Riemann-
Stieltjes sense.Because of this we need a “special” stochastic calculus, e.g. Itô or Stratonovich
stochastic calculus, when we are evaluating stochastic integrals.
For the latter one the (Stratonovich) stochastic integral is not adapted to the filtration {FW }
generated by the Brownian motion and is thereby not a martingale.

This specific feature of the Stratonovic model, that is “looking into the future”, is not very
appealing. The Itô interpretation, which is adapted to the filtration, is based on not“looking
into the future” and is much more appealing when modelling e.g. financial structures as
stocks and indices.
Because of this the Itô stochastic calculus will be used and as a result Brownian motion will
satisfy both the martingale and the Markov property.

By letting f ∈ V and using the Itô isometry we can make the Itô integral well-defined. For the
construction and the properties of the Itô integral and more about the Stratonovich integral
see [24].

Lemma A.2.1 Itô Isometry If f ∈ V(T, S) and T and S are fixed, we have

E

[(∫ T

S
f(t, ω)dWt(ω)

)2]
=

∫ T

S
E

[
f2(t, ω)

]
dt (A.1)

For proof see [24] p29.

Lemma A.2.2 If f ∈ V(T, S) and T and S are fixed, we have
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A.2. BROWNIAN MOTION AND ITÔ STOCHASTIC CALCULUS

E

[ ∫ T

S
f(t, ω)dWt(ω)

]
= 0 (A.2)

For proof see [24] p30.

We can extend the Itô integral for a larger class of integrands than V. By changing (ii) and
(iii) in definition A.1.11 we get the following definition

Definition A.2.4 Let WH = WH(S, T ) denote the class of functions

f(t, ω) : [0,∞) × Ω → R

such that

(i) (t, ω) → f(t, ω) is B × F-measurable, where B denotes the Borel σ-algebra on [0,∞).

(ii)’ There exists an increasing family of σ-algebras Ht; t such that

a) Wt is a martingale with respect to Ht and

b) f(t) is Ht-adapted

(iii)’ P
[ ∫ T

S f(s, ω)2ds < ∞
]

= 1.

Note that condition (iii)’ weakens condition (iii) of Definition A.1.11 and thereby gives no
guarantee for the Itô isometry.

Now follows a theorem about the Itô integral, giving it an important computational ad-
vantage w.r.t. e.g. the Stratonovich integral. The proof can be found in [24] p32-33.

Theorem A.2.1 Let f(t, ω) ∈ V(0, T ) for all T. Then the Itô integral

It(ω) =

∫ t

0
f(s, ω)dWs

is a martingale w.r.t. Ft and

P
[

sup
0≤t≤T

|It| ≥ λ
]
≤ 1

λ2
E

[ ∫ T

0
f(s, ω)2ds

]
; λ, T > 0.

The last part resulting from Doob’s martingale inequality (see [24] p31) and the Itô isom-
etry.

We now introduce Itô processes as sums of dWs and ds integrals:

Definition A.2.5 An Itô process is a stochastic process X on (Ω,F , P ) of the form

Xt = X0 +

∫ t

0
u(s, ω)ds +

∫ t

0
v(s, ω)dWs,
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A.2. BROWNIAN MOTION AND ITÔ STOCHASTIC CALCULUS

where v ∈ WH so that

P

[ ∫ t

0
v(s, ω)2ds < ∞

]
= 1 ∀t ≥ 0

We also assume that u(t, ω) is Ht-adapted and

P

[ ∫ t

0
|u(s, ω)|ds < ∞

]
= 1 ∀t ≥ 0

Usually we write the Itô process in the shorter differential form

dXt = udt + vdWt

To determine uniqueness for stochastic differential equations, we need some conditions.
The following Theorem is taken from [24] p66:

Theorem A.2.2 Existence and uniqeness Let us suppose the coefficients of the stochastic
differential equation

dXt = u(t,Xt)dt + v(t,Xt)dWt (A.3)

satisfy the conditions

|u(t, x) + v(t, y)| ≤ C(1 + |x|), (A.4)

|u(t, x) − u(t, y)| + |v(t, x) − v(t, y)| ≤ D(|x − y|), (A.5)

for every 0 ≤ t < ∞ and x ∈ R, y ∈ R, where C and D are constants Then uniqueness holds
for the equation (A.1).

Usually Itô processes are written on differential form. Itô’s formula is an indispensable tool
for evaluating functions of Itô processes. The 1-dimensional Itô’s formula is given below. The
general expression for higher dimensions can be found in [24].

Theorem A.2.3 (The 1-dimensional Itô’s formula) Let dXt be a stochastic differential
equation given by

dXt = u(t,Xt)dt + v(t,Xt)dWt

where u and v satisfy (A.2) and (A.3). Let g(t, x) ∈ C1,2([0,∞) × R). Then

Yt = g(t,Xt)

is again an Itô process, and

dYt =
∂g

∂t
(t,Xt)dt +

∂g

∂x
(t,Xt)dXt +

1

2

∂2g

∂x2
(t,Xt)(dXt)

2,

where (dXt)
2 = (dXt) · (dXt) is computed according to the rules

dt · dt = 0, dt · dWt = 0, dWt · dWt = dt.

For proof see [24].
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A.3. GIRSANOV’S THEOREM

Definition A.2.6 Itô diffusion A time homogeneous, 1-dimensional Ito diffusion is a stochas-
tic process Xt(ω) = X(t, ω) : [0,∞) × Ω → R satisfying a stochastic differential equation of
the form

dXt = u(Xt)dt + v(Xt)dWt, t ≥ s; Xs = x

where Wt is a Brownian motion and u and v satisfy (A.2) and (A.3).

The Markov property is satisfied for all diffusion processes.
Notice the difference between Itô processes and Itô diffusions, that is the diffusion is a special
case of the process.

The Martingale and Itô Representation Theorem

From theorem A.1.2 we have that every stochastic integral satisfying a certain condition
regarding the integrand is a martingale w.r.t. the filtration Ft and w.r.t. the probability
measure P .
Here we will give some additional and useful results stating the the converse is also true. That
is that any Ft-martingale w.r.t. P can be represented as an stochastic integral, i.e. an Itô
integral.

Theorem A.2.4 The Itô representation theorem Let F ∈ L2(FT , P ). Then there exists
a unique stochastic process f(s, ω) ∈ V(0, T ) such that

F (ω) = E[F ] +

∫ T

0
f(s, ω)dWs

For proof se e.g. [24] p52-53.

Theorem A.2.5 The martingale representation theorem Suppose Mt is an Ft-martingale
w.r.t. P and that Mt ∈ L2(P ) for all t≥ 0. Then there exists a unique stochastic process
g(s, ω) ∈ V(0, t) for all t ≥ 0 and

Mt(ω) = E[M0] +

∫ t

0
g(s, ω)dWs a.s ∀t ≥ 0

For proof see e.g. [24] p53-54 .

A.3 Girsanov’s Theorem

The following result is fundamental in stochastic analysis. It is an important “tool” in finance
and gives us some nice analytical results.
The Girsanov theorem gives us a way to change the drift coefficient of a given Itô process
without changing the law of the process dramatically:

Theorem A.3.1 The Girsanov theorem Let X(t) be an Itô process of the form

dXt = β(t, ω)dt + θ(t, ω)dWt; t ≤ T
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A.3. GIRSANOV’S THEOREM

Suppose there exists processes u(t, ω) and α(t, ω) both ∈ WH such that

θ(t, ω) · u(t, ω) = β(t, ω) − α(t, ω)

and assume that u(t, ω) satisfies Novikov’s condition.(See below)

E
[
exp

(1

2

∫ T

0
u2(s, ω)ds

)]
< ∞.

Put

Mt = exp
(
−

∫ t

0
u(s, ω)dWs −

1

2

∫ t

0
u2(s, ω)ds

)
; t ≤ T

and

dQ(ω) = MT (ω)dP (ω) on FW
T .

Then

W̃t :=

∫ t

0
u(s, ω)ds + Wt; t ≤ T

is a Brownian motion w.r.t. Q. In terms of W̃t the process X(t) satisfies the following
stochastic integral

dX(t) = α(t, ω)dt + θ(t, ω)dW̃t.

For proof see [24] p156.

The law of the new process will be absolutely continous w.r.t the law of original process
and we can compute explicitly the Radon-Nikodym derivative

MT =
dQ(ω)

dP (ω)
on FT

Proposition A.3.1 Novikov’s condition A sufficient condition that Mt is a martingale is
the Kazamaki condition

E
[
exp

(1

2

∫ t

0
u(s, ω)dWs

)]
< ∞ ∀ t ≤ T.

This is implied by the following and stronger Novikov condition

E
[
exp

(1

2

∫ T

0
u2(s, ω)ds

)]
< ∞.

For proof see e.g. [15].
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Appendix B

Proof of Anderson’s Probabilities

Here we try to give the proofs of the probabilities P1(t, y) and P2(t, y), given in equation
(3.74) and (3.75), respectively.
A more formal and general proof can be found in [2], in Theorem 4.1, Lemma 4.1 and Theo-
rem 4.2.

Before specifying P1(t, y) = P (τ1 < t, τ1 < τ2|Y (t) = y) and P2(t, y) = P (τ2 < t, τ2 <
τ1|Y (t) = y) we find the probabilities P (τ1 < τ2) and P (τ2 < τ1). These are given in Theo-
rem 4.1 in [2].

We are going to consider the process Y (t) = W (t), i.e. standard Brownian motion, and the
linear boundaries β1(t) and β2(t), specified in (3.65), and assuming that the boundaries are
not crossing in the interval s ∈ [0, t].

Now we begin with the probability P (τ1 < τ2 < t) which is the probability that the Brown-
ian motion hits the upper boundary before the lower without specifying any time-constraint.
In other words, the probability of the event τ1 < τ2. We can “divide” this event in an infi-
nite series of events by letting Ai, i = 1, 2, . . . be the event of a path y(s) hitting the upper
boundary, β1, and then alternating between hitting the lower and upper boundary i−1 times,
regardless of other contacts with the boundaries, followed by hitting the upper boundary the
i’th time. I.e. hitting the upper boundary, β1, i times and the lower, β2, i − 1 times.
And let Bi, i = 1, 2, . . . be the event of a path y(s) hitting the lower boundary and then hit-
ting the upper boundary, and then alternating between hitting the lower and upper boundary
i − 1 times, regardless of other contacts with the boundaries. I.e. hitting both boundaries i
times in sequence.

Then the event τ1 < τ2 is equivalent to

(A1 − B1) + (A2 − B2) + (A3 − B3) + · · · . (B.1)

This obviously gives us
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P (τ1 < τ2) = P
{
(A1 − B1) + (A2 − B2) + (A3 − B3) + · · ·

}

= P (A1) − P (B1) + P (A2) − P (B2) + · · · .

We now proceed by finding P (Ak) and P (Bk) when k = 1, 2, · · · .
In order to find these probabilities we use the reflection principle. We have our “initial”
boundaries β1 and β2 by

β1 = a1 + b1s β2 = a2 + b2s

with the conditions a1 > a2, β1 > β2 and b1 ≥ 0.

The probability of hitting β1 is

P (A1) = lim
t→∞

P
(

sup
0≤s≤t

Y (s) ≥ β1

)
= lim

t→∞
P (MY (t) ≥ β1). (B.2)

By total probability , Girsanov’s theorem and the reflection principle we have

P (MY (t) ≥ β1) = P (MY (t) ≥ β1, Y (t) ≥ β1) + P (MY (t) ≥ β1, Y (t) < β1)

= P (Y (t) ≥ β1) + Ẽ(Z−1(t) · 1{MY (t)≥β1,Y (t)<β1})

= N
(
− β1(t)√

t

)
+ Ẽ(e−b1W (t)+ 1

2
b21t · 1{Y (t)≥2β1−β1})

= N
(
− a1 + b1t√

t

)
+ Ẽ(e−b1(2β1−Y (t))+ 1

2
b21t · 1{Y (t)≥2β1−β1})

= N
(
− a1 + b1t√

t

)
+ e−2a1b1 · Ẽ(eb1W̃ (t)− 1

2
b21t · 1{Y (t)≥2β1−β1})

= N
(
− a1 + b1t√

t

)
+ e−2a1b1 · P̂ (Y (t) ≥ 2β1 − β1)

= N
(
− a1 + b1t√

t

)
+ e−2a1b1 · N

(2b1t − β1√
t

)
.

= N
(
− a1 + b1t√

t

)
+ e−2a1b1 · N

(b1t − a1√
t

)
. (B.3)

Where Z(t) = e−u(t)W (t)− 1
2
u(t)2t, u(t) = 0 − b1 = −b1, dY (t) = b1dt + dW̃ (t) and

d(Y (t) = 2b1dt + Ŵ (t).

From (B.2) and (B.3) we have

P (A1) = lim
t→∞

P (MY (t) ≥ β1) = e−2a1b1. (B.4)

The other cases, P (Ak) for k > 1, can now be shown to be functions of P (A1).

97



Consider a path hitting the boundaries β1 and β2 in sequence: β1, β2, β1, . . . , β1, β2 , e.g. with
k−1 hits of β1 and β2, and which starts with hitting β1. We denote this alternating sequence
by: L1, L2, L3, . . . , L2k−2, where L1 = β1, L2 = β2, . . . , L2k−3 = β1, L2k−2 = β2.
Let t2k−2 be the first value of t of which the path hits L2k−2 = β2, after hitting L1, . . . , L2k−3

in sequence. The conditional probability of then hitting L2k−1 = β1 is

e−2b1[(b1+b2)t2k−2+a1+a2]. (B.5)

This because the line/boundary L2k−1 = β1 has slope b1 and has intercept (b2t2k−2 + a2) +
(b1t2k−2 + a1) when referring to (t2k−2,−b2t2k−2 − a2) as our “new” origin.
Now this conditional probability equals the conditional probability of the process Y ′(s) =
b2s + W (s) hitting the line β4 = 2β2 − β1. Now instead of pursuing this argumentation
Anderson, [2], proposes an equivalent conditional probability by rearranging (B.5)

e
−2(b1+b2)

[
b1[(b1+b2)t2k−2+a1+a2]

b1+b2

]
. (B.6)

This is the conditional probability of hitting a line with slope b1 + b2 and which at time t2k−2

is a distance of

h =
b1[(b1 + b2)t2k−2 + a1 + a2]

b1 + b2

above L2k−2 = β2.
Since Y (s) is without drift we can immediately use the reflection principle and rephrasing
the last conditional probability to the conditional probability of hitting the line with slope
−(b1 + b2), and which at time t2k−2 is h below L2k−2 = β2.
Adding a2 to h and letting t2k−2 = 0 we get the constant term of this new line, L∗, which is
given by

L∗ : y = −(b1 + b2)t −
a1b1 + a2b2 + 2a2b1

b1 + b2
(B.7)

By drawing a figure we easily see that by applying the reflection principle again we get that
the probability of hitting L1, L2, L3, . . . , L2k−1 in sequence equals the probability of hitting
L1, L2, L3, . . . , L2k−2 in sequence and then the line L∗ in (B.7). But since L∗ lies below
L2k−2 = β2 it can only be touched if the path already has touched L2k−3 = β1, and since
L2k−2 = β2 lies entirely below L2k−3 = β1 this last probability equals the probability of hit-
ting L1, L2, L3, . . . , L2k−3 in sequence an then L∗.

By an recursive argument this can be reduced further. “Redefine” the line L∗ to

L∗ : y = −µ∗t − v∗. (B.8)

Then the conditional probability of hitting L∗ is
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e−2µ∗[(µ∗+b1)t2k−3+v∗+a1]

rearranging this we get

e
−2(µ∗+b1)

[
µ∗[(µ∗+b1)t2k−3+v∗+a1]

µ∗+b1

]
. (B.9)

Using the reflection principle this equals the conditional probability of hitting a new line L∗∗,
given by

L∗∗ : y′ = (µ∗ + b1)t +
µ∗v∗ + a1b1 + 2µ∗a1

µ∗ + b1

= µ∗∗t + v∗∗ (B.10)

But since L∗∗ lies above L2k−3 = β1, it can only be touched if the path already has touched
L2k−3 = β1. But since this lies entirely above L2k−4 = β2, the conditional probability equals
the conditional probability of hitting L1, L2, L3, . . . , L2k−4 in sequence and then L∗∗.
Finally this equals the conditional probability of hitting a line L̂ given that the process started
in Y (0) = 0, but this is exactly the probability we are looking for, i.e. P (Ak).

This last line L̂ is given by

L̂ : ŷ =
k∑

(b1 + b2)t +
k2a1b1 + (k − 1)2a2b2 − k(k − 1)(a1b2 + a2b1)∑k(b1 + b2)

= µ̂t + v̂ (B.11)

In other words, the probability of hitting L1, L2, L3, . . . , L2k−1 in sequence equals the prob-
ability of the process Y (s), starting at Y (0) = 0, hitting the line L̂. From (B.4) we then
get

P (Ak) = lim
t→∞

P (MY (t) ≥ L̂) = e−2µ̂v̂

= e−2(k2a1b1+(k−1)2a2b2−k(k−1)(a1b2+a2b1)). (B.12)

When finding P (Bk) observe the following. The events Ak and Bk consists by definition of
the following sequences, respectively

Ak : β1, β2, . . . , β1

L1, L2, L3, . . . , L2k−1

and
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Bk : β2, β1, . . . , β1

L2, L3, L4, . . . , L2k+1

now, it is easily seen that these two sequences are almost identical. The only difference is
that the event Ak starts out from Y (0) = 0 and hits L1 = β1 when the event Bk starts out
from Y (0) = 0, hits L2 = β2 and then hits L3 = β1 which corresponds to L1 = β1 in Ak.
Adding an additional “round” with the reflection principle we find the conditional proba-
bility of hitting a line L̃ given that the process started in Y (0) = 0, which is the probabil-
ity P (Bk). This line is given by

L̃ : ỹ =

k∑
(b1 + b2)t +

k2a1b1 + k2a2b2 − k(k − 1)a1b2 − k(k + 1)a2b1)∑k(b1 + b2)

= µ̃t + ṽ. (B.13)

This gives

P (Bk) = e−2(k2a1b1+k2a2b2−k(k−1)a1b2−k(k+1)a2b1)). (B.14)

Summing the equations in (B.12) and (B.14) for k = 1, 2, . . . when assuming a1 > a2, β1 > β2

and b1 ≥ 0 we get

P (τ1 < τ2) =
∞∑

k=1

e−2(k2a1b1+(k−1)2a2b2−k(k−1)(a1b2+a2b1))

−
∞∑

k=1

e−2(k2a1b1+k2a2b2−k(k−1)a1b2−k(k+1)a2b1)) (B.15)

(In order to find P (τ2 < τ1) we simply replace (a1, b1) by (−a2,−b2) and (a2, b2) by (−a1,−b1)
in the framework above.)

It remains to find the conditional probability of hitting one boundary first given that the pro-
cess Y (t) = y, this is given in Theorem 4.2 in [2]. Since we are considering a pure “knock-out”
contract, i.e. the contract is knocked to value zero when hitting a boundary, we consider only
the situation when y ∈ I.

For 0 ≤ s ≤ t we have Y (t) = Y (s) + (Y (t) − Y (s)) and Y (s), both normally distributed,
N(0,

√
t) and N(0,

√
s), respectively. Y (t) and Y (s) have a joint normal distribution, with

correlation coefficient ρ = Cov(Y (t),Y (s))
σY (s)σY (t)

=
√

s√
t
, and it can easily be shown that the conditional

density for Y (s) given that Y (t) = y is normal with
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E[Y (s)|Y (t) = y] = E[Y (s)] + ρ
σY (s)

σY (t)

(
y − E[Y (t)]

)
=

s

t
· y (B.16)

and

Var
(
Y (s)|Y (t) = y

)
= σ2

Y (t)(1 − ρ2) = s
(
1 − s

t

)
. (B.17)

This gives
{
Y (s)|Y (t) = y

}
∼ N

(
y · s/t,

√
s(1 − s/t)

)
.

We want to find the probability of the event
{
Y (s)|Y (t) = y

}
≥ β1 = a1 + b1s. Finding an

Wiener-process Z(u) such that the event Z(u) ≥ β′
1(u) for 0 ≤ u < ∞ is equivalent to the

above event, we can use the probability in equation (B.15).

Define Z(u) as follows

Z(u) =
t + u

t

[{
Y

( tu

t + u

)
|Y (t) = y

}
− u

t + u
y
]
, 0 ≤ u < ∞

then

E[Z(u)] = 0

and

Var(Z(u)) = u.

We easily see that Z(u) for 0 ≤ u < ∞ is a Wiener-process.
The event

{
Y (s)|Y (t) = y

}
≥ β1 = a1 + b1s is then equivalent to

Z(u) ≥ t + u

t

[
a1 + b1

tu

t + u
− u

t + u
y
]

=
1

t

[
a1(t + u) + b1tu − uy

]

= a1 +
(a1 − y

t
+ b1

)
u = a1 + b∗1u (B.18)

Correspondingly, b∗2 = a2−y
t + b2, and noting that

a1 − y

t
+ b1 =

a1 + b1t − y

t
≥ a2 + b2t − y

t
=

a2 − y

t
+ b2

and

a1 − y

t
+ b1 =

a1 + b1t − y

t
> 0

We finally find the probability P1(t, y) by

101



P1(t, y) = P (τ1 < t, τ1 < τ2|Y (t) = y) = P (τ
Z(u)
1 < τ

Z(u)
2 )

=
∞∑

k=1

e−2(k2a1b∗1+(k−1)2a2b∗2−k(k−1)(a1b∗2+a2b∗1))

−
∞∑

k=1

e−2(k2a1b∗1+k2a2b∗2−k(k−1)a1b∗2−k(k+1)a2b∗1))

=
∞∑

k=1

e−
2
t
(k2a1(a1+b1t−y)+(k−1)2a2(a2+b2t−y)−k(k−1)(a1(a2+b2t−y)+a2(a1+b1t−y)))

−
∞∑

k=1

e−
2
t
(k2a1(a1+b1t−y)+k2a2(a2+b2t−y)−k(k−1)a1(a2+b2t−y)−k(k+1)a2(a1+b1t−y))).

P2(t, y) is found by replacing (a1, b1) by (−a2,−b2) and (a2, b2) by (−a1,−b1).
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